Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
   1/*
   2 *    Disk Array driver for HP Smart Array controllers.
   3 *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
   4 *
   5 *    This program is free software; you can redistribute it and/or modify
   6 *    it under the terms of the GNU General Public License as published by
   7 *    the Free Software Foundation; version 2 of the License.
   8 *
   9 *    This program is distributed in the hope that it will be useful,
  10 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12 *    General Public License for more details.
  13 *
  14 *    You should have received a copy of the GNU General Public License
  15 *    along with this program; if not, write to the Free Software
  16 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  17 *    02111-1307, USA.
  18 *
  19 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
  20 *
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/interrupt.h>
  25#include <linux/types.h>
  26#include <linux/pci.h>
  27#include <linux/pci-aspm.h>
  28#include <linux/kernel.h>
  29#include <linux/slab.h>
  30#include <linux/delay.h>
  31#include <linux/major.h>
  32#include <linux/fs.h>
  33#include <linux/bio.h>
  34#include <linux/blkpg.h>
  35#include <linux/timer.h>
  36#include <linux/proc_fs.h>
  37#include <linux/seq_file.h>
  38#include <linux/init.h>
  39#include <linux/jiffies.h>
  40#include <linux/hdreg.h>
  41#include <linux/spinlock.h>
  42#include <linux/compat.h>
  43#include <linux/mutex.h>
  44#include <linux/bitmap.h>
  45#include <linux/io.h>
  46#include <asm/uaccess.h>
  47
  48#include <linux/dma-mapping.h>
  49#include <linux/blkdev.h>
  50#include <linux/genhd.h>
  51#include <linux/completion.h>
  52#include <scsi/scsi.h>
  53#include <scsi/sg.h>
  54#include <scsi/scsi_ioctl.h>
  55#include <linux/cdrom.h>
  56#include <linux/scatterlist.h>
  57#include <linux/kthread.h>
  58
  59#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
  60#define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
  61#define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
  62
  63/* Embedded module documentation macros - see modules.h */
  64MODULE_AUTHOR("Hewlett-Packard Company");
  65MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
  66MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
  67MODULE_VERSION("3.6.26");
  68MODULE_LICENSE("GPL");
  69static int cciss_tape_cmds = 6;
  70module_param(cciss_tape_cmds, int, 0644);
  71MODULE_PARM_DESC(cciss_tape_cmds,
  72	"number of commands to allocate for tape devices (default: 6)");
  73static int cciss_simple_mode;
  74module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
  75MODULE_PARM_DESC(cciss_simple_mode,
  76	"Use 'simple mode' rather than 'performant mode'");
  77
  78static int cciss_allow_hpsa;
  79module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
  80MODULE_PARM_DESC(cciss_allow_hpsa,
  81	"Prevent cciss driver from accessing hardware known to be "
  82	" supported by the hpsa driver");
  83
  84static DEFINE_MUTEX(cciss_mutex);
  85static struct proc_dir_entry *proc_cciss;
  86
  87#include "cciss_cmd.h"
  88#include "cciss.h"
  89#include <linux/cciss_ioctl.h>
  90
  91/* define the PCI info for the cards we can control */
  92static const struct pci_device_id cciss_pci_device_id[] = {
  93	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
  94	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
  95	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
  96	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
  97	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
  98	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
  99	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
 100	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
 101	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
 102	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
 103	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
 104	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
 105	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
 106	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
 107	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
 108	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
 109	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
 110	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
 111	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
 112	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
 113	{0,}
 114};
 115
 116MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
 117
 118/*  board_id = Subsystem Device ID & Vendor ID
 119 *  product = Marketing Name for the board
 120 *  access = Address of the struct of function pointers
 121 */
 122static struct board_type products[] = {
 123	{0x40700E11, "Smart Array 5300", &SA5_access},
 124	{0x40800E11, "Smart Array 5i", &SA5B_access},
 125	{0x40820E11, "Smart Array 532", &SA5B_access},
 126	{0x40830E11, "Smart Array 5312", &SA5B_access},
 127	{0x409A0E11, "Smart Array 641", &SA5_access},
 128	{0x409B0E11, "Smart Array 642", &SA5_access},
 129	{0x409C0E11, "Smart Array 6400", &SA5_access},
 130	{0x409D0E11, "Smart Array 6400 EM", &SA5_access},
 131	{0x40910E11, "Smart Array 6i", &SA5_access},
 132	{0x3225103C, "Smart Array P600", &SA5_access},
 133	{0x3223103C, "Smart Array P800", &SA5_access},
 134	{0x3234103C, "Smart Array P400", &SA5_access},
 135	{0x3235103C, "Smart Array P400i", &SA5_access},
 136	{0x3211103C, "Smart Array E200i", &SA5_access},
 137	{0x3212103C, "Smart Array E200", &SA5_access},
 138	{0x3213103C, "Smart Array E200i", &SA5_access},
 139	{0x3214103C, "Smart Array E200i", &SA5_access},
 140	{0x3215103C, "Smart Array E200i", &SA5_access},
 141	{0x3237103C, "Smart Array E500", &SA5_access},
 142	{0x323D103C, "Smart Array P700m", &SA5_access},
 143};
 144
 145/* How long to wait (in milliseconds) for board to go into simple mode */
 146#define MAX_CONFIG_WAIT 30000
 147#define MAX_IOCTL_CONFIG_WAIT 1000
 148
 149/*define how many times we will try a command because of bus resets */
 150#define MAX_CMD_RETRIES 3
 151
 152#define MAX_CTLR	32
 153
 154/* Originally cciss driver only supports 8 major numbers */
 155#define MAX_CTLR_ORIG 	8
 156
 157static ctlr_info_t *hba[MAX_CTLR];
 158
 159static struct task_struct *cciss_scan_thread;
 160static DEFINE_MUTEX(scan_mutex);
 161static LIST_HEAD(scan_q);
 162
 163static void do_cciss_request(struct request_queue *q);
 164static irqreturn_t do_cciss_intx(int irq, void *dev_id);
 165static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
 166static int cciss_open(struct block_device *bdev, fmode_t mode);
 167static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
 168static void cciss_release(struct gendisk *disk, fmode_t mode);
 169static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
 170		       unsigned int cmd, unsigned long arg);
 171static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
 172
 173static int cciss_revalidate(struct gendisk *disk);
 174static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
 175static int deregister_disk(ctlr_info_t *h, int drv_index,
 176			   int clear_all, int via_ioctl);
 177
 178static void cciss_read_capacity(ctlr_info_t *h, int logvol,
 179			sector_t *total_size, unsigned int *block_size);
 180static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
 181			sector_t *total_size, unsigned int *block_size);
 182static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
 183			sector_t total_size,
 184			unsigned int block_size, InquiryData_struct *inq_buff,
 185				   drive_info_struct *drv);
 186static void cciss_interrupt_mode(ctlr_info_t *);
 187static int cciss_enter_simple_mode(struct ctlr_info *h);
 188static void start_io(ctlr_info_t *h);
 189static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
 190			__u8 page_code, unsigned char scsi3addr[],
 191			int cmd_type);
 192static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
 193	int attempt_retry);
 194static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
 195
 196static int add_to_scan_list(struct ctlr_info *h);
 197static int scan_thread(void *data);
 198static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
 199static void cciss_hba_release(struct device *dev);
 200static void cciss_device_release(struct device *dev);
 201static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
 202static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
 203static inline u32 next_command(ctlr_info_t *h);
 204static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
 205				u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 206				u64 *cfg_offset);
 207static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
 208				     unsigned long *memory_bar);
 209static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
 210static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable);
 211
 212/* performant mode helper functions */
 213static void  calc_bucket_map(int *bucket, int num_buckets, int nsgs,
 214				int *bucket_map);
 215static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
 216
 217#ifdef CONFIG_PROC_FS
 218static void cciss_procinit(ctlr_info_t *h);
 219#else
 220static void cciss_procinit(ctlr_info_t *h)
 221{
 222}
 223#endif				/* CONFIG_PROC_FS */
 224
 225#ifdef CONFIG_COMPAT
 226static int cciss_compat_ioctl(struct block_device *, fmode_t,
 227			      unsigned, unsigned long);
 228#endif
 229
 230static const struct block_device_operations cciss_fops = {
 231	.owner = THIS_MODULE,
 232	.open = cciss_unlocked_open,
 233	.release = cciss_release,
 234	.ioctl = cciss_ioctl,
 235	.getgeo = cciss_getgeo,
 236#ifdef CONFIG_COMPAT
 237	.compat_ioctl = cciss_compat_ioctl,
 238#endif
 239	.revalidate_disk = cciss_revalidate,
 240};
 241
 242/* set_performant_mode: Modify the tag for cciss performant
 243 * set bit 0 for pull model, bits 3-1 for block fetch
 244 * register number
 245 */
 246static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
 247{
 248	if (likely(h->transMethod & CFGTBL_Trans_Performant))
 249		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
 250}
 251
 252/*
 253 * Enqueuing and dequeuing functions for cmdlists.
 254 */
 255static inline void addQ(struct list_head *list, CommandList_struct *c)
 256{
 257	list_add_tail(&c->list, list);
 258}
 259
 260static inline void removeQ(CommandList_struct *c)
 261{
 262	/*
 263	 * After kexec/dump some commands might still
 264	 * be in flight, which the firmware will try
 265	 * to complete. Resetting the firmware doesn't work
 266	 * with old fw revisions, so we have to mark
 267	 * them off as 'stale' to prevent the driver from
 268	 * falling over.
 269	 */
 270	if (WARN_ON(list_empty(&c->list))) {
 271		c->cmd_type = CMD_MSG_STALE;
 272		return;
 273	}
 274
 275	list_del_init(&c->list);
 276}
 277
 278static void enqueue_cmd_and_start_io(ctlr_info_t *h,
 279	CommandList_struct *c)
 280{
 281	unsigned long flags;
 282	set_performant_mode(h, c);
 283	spin_lock_irqsave(&h->lock, flags);
 284	addQ(&h->reqQ, c);
 285	h->Qdepth++;
 286	if (h->Qdepth > h->maxQsinceinit)
 287		h->maxQsinceinit = h->Qdepth;
 288	start_io(h);
 289	spin_unlock_irqrestore(&h->lock, flags);
 290}
 291
 292static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
 293	int nr_cmds)
 294{
 295	int i;
 296
 297	if (!cmd_sg_list)
 298		return;
 299	for (i = 0; i < nr_cmds; i++) {
 300		kfree(cmd_sg_list[i]);
 301		cmd_sg_list[i] = NULL;
 302	}
 303	kfree(cmd_sg_list);
 304}
 305
 306static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
 307	ctlr_info_t *h, int chainsize, int nr_cmds)
 308{
 309	int j;
 310	SGDescriptor_struct **cmd_sg_list;
 311
 312	if (chainsize <= 0)
 313		return NULL;
 314
 315	cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
 316	if (!cmd_sg_list)
 317		return NULL;
 318
 319	/* Build up chain blocks for each command */
 320	for (j = 0; j < nr_cmds; j++) {
 321		/* Need a block of chainsized s/g elements. */
 322		cmd_sg_list[j] = kmalloc((chainsize *
 323			sizeof(*cmd_sg_list[j])), GFP_KERNEL);
 324		if (!cmd_sg_list[j]) {
 325			dev_err(&h->pdev->dev, "Cannot get memory "
 326				"for s/g chains.\n");
 327			goto clean;
 328		}
 329	}
 330	return cmd_sg_list;
 331clean:
 332	cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
 333	return NULL;
 334}
 335
 336static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
 337{
 338	SGDescriptor_struct *chain_sg;
 339	u64bit temp64;
 340
 341	if (c->Header.SGTotal <= h->max_cmd_sgentries)
 342		return;
 343
 344	chain_sg = &c->SG[h->max_cmd_sgentries - 1];
 345	temp64.val32.lower = chain_sg->Addr.lower;
 346	temp64.val32.upper = chain_sg->Addr.upper;
 347	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
 348}
 349
 350static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
 351	SGDescriptor_struct *chain_block, int len)
 352{
 353	SGDescriptor_struct *chain_sg;
 354	u64bit temp64;
 355
 356	chain_sg = &c->SG[h->max_cmd_sgentries - 1];
 357	chain_sg->Ext = CCISS_SG_CHAIN;
 358	chain_sg->Len = len;
 359	temp64.val = pci_map_single(h->pdev, chain_block, len,
 360				PCI_DMA_TODEVICE);
 361	chain_sg->Addr.lower = temp64.val32.lower;
 362	chain_sg->Addr.upper = temp64.val32.upper;
 363}
 364
 365#include "cciss_scsi.c"		/* For SCSI tape support */
 366
 367static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
 368	"UNKNOWN"
 369};
 370#define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
 371
 372#ifdef CONFIG_PROC_FS
 373
 374/*
 375 * Report information about this controller.
 376 */
 377#define ENG_GIG 1000000000
 378#define ENG_GIG_FACTOR (ENG_GIG/512)
 379#define ENGAGE_SCSI	"engage scsi"
 380
 381static void cciss_seq_show_header(struct seq_file *seq)
 382{
 383	ctlr_info_t *h = seq->private;
 384
 385	seq_printf(seq, "%s: HP %s Controller\n"
 386		"Board ID: 0x%08lx\n"
 387		"Firmware Version: %c%c%c%c\n"
 388		"IRQ: %d\n"
 389		"Logical drives: %d\n"
 390		"Current Q depth: %d\n"
 391		"Current # commands on controller: %d\n"
 392		"Max Q depth since init: %d\n"
 393		"Max # commands on controller since init: %d\n"
 394		"Max SG entries since init: %d\n",
 395		h->devname,
 396		h->product_name,
 397		(unsigned long)h->board_id,
 398		h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
 399		h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
 400		h->num_luns,
 401		h->Qdepth, h->commands_outstanding,
 402		h->maxQsinceinit, h->max_outstanding, h->maxSG);
 403
 404#ifdef CONFIG_CISS_SCSI_TAPE
 405	cciss_seq_tape_report(seq, h);
 406#endif /* CONFIG_CISS_SCSI_TAPE */
 407}
 408
 409static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
 410{
 411	ctlr_info_t *h = seq->private;
 412	unsigned long flags;
 413
 414	/* prevent displaying bogus info during configuration
 415	 * or deconfiguration of a logical volume
 416	 */
 417	spin_lock_irqsave(&h->lock, flags);
 418	if (h->busy_configuring) {
 419		spin_unlock_irqrestore(&h->lock, flags);
 420		return ERR_PTR(-EBUSY);
 421	}
 422	h->busy_configuring = 1;
 423	spin_unlock_irqrestore(&h->lock, flags);
 424
 425	if (*pos == 0)
 426		cciss_seq_show_header(seq);
 427
 428	return pos;
 429}
 430
 431static int cciss_seq_show(struct seq_file *seq, void *v)
 432{
 433	sector_t vol_sz, vol_sz_frac;
 434	ctlr_info_t *h = seq->private;
 435	unsigned ctlr = h->ctlr;
 436	loff_t *pos = v;
 437	drive_info_struct *drv = h->drv[*pos];
 438
 439	if (*pos > h->highest_lun)
 440		return 0;
 441
 442	if (drv == NULL) /* it's possible for h->drv[] to have holes. */
 443		return 0;
 444
 445	if (drv->heads == 0)
 446		return 0;
 447
 448	vol_sz = drv->nr_blocks;
 449	vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
 450	vol_sz_frac *= 100;
 451	sector_div(vol_sz_frac, ENG_GIG_FACTOR);
 452
 453	if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
 454		drv->raid_level = RAID_UNKNOWN;
 455	seq_printf(seq, "cciss/c%dd%d:"
 456			"\t%4u.%02uGB\tRAID %s\n",
 457			ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
 458			raid_label[drv->raid_level]);
 459	return 0;
 460}
 461
 462static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 463{
 464	ctlr_info_t *h = seq->private;
 465
 466	if (*pos > h->highest_lun)
 467		return NULL;
 468	*pos += 1;
 469
 470	return pos;
 471}
 472
 473static void cciss_seq_stop(struct seq_file *seq, void *v)
 474{
 475	ctlr_info_t *h = seq->private;
 476
 477	/* Only reset h->busy_configuring if we succeeded in setting
 478	 * it during cciss_seq_start. */
 479	if (v == ERR_PTR(-EBUSY))
 480		return;
 481
 482	h->busy_configuring = 0;
 483}
 484
 485static const struct seq_operations cciss_seq_ops = {
 486	.start = cciss_seq_start,
 487	.show  = cciss_seq_show,
 488	.next  = cciss_seq_next,
 489	.stop  = cciss_seq_stop,
 490};
 491
 492static int cciss_seq_open(struct inode *inode, struct file *file)
 493{
 494	int ret = seq_open(file, &cciss_seq_ops);
 495	struct seq_file *seq = file->private_data;
 496
 497	if (!ret)
 498		seq->private = PDE_DATA(inode);
 499
 500	return ret;
 501}
 502
 503static ssize_t
 504cciss_proc_write(struct file *file, const char __user *buf,
 505		 size_t length, loff_t *ppos)
 506{
 507	int err;
 508	char *buffer;
 509
 510#ifndef CONFIG_CISS_SCSI_TAPE
 511	return -EINVAL;
 512#endif
 513
 514	if (!buf || length > PAGE_SIZE - 1)
 515		return -EINVAL;
 516
 517	buffer = memdup_user_nul(buf, length);
 518	if (IS_ERR(buffer))
 519		return PTR_ERR(buffer);
 520
 521#ifdef CONFIG_CISS_SCSI_TAPE
 522	if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
 523		struct seq_file *seq = file->private_data;
 524		ctlr_info_t *h = seq->private;
 525
 526		err = cciss_engage_scsi(h);
 527		if (err == 0)
 528			err = length;
 529	} else
 530#endif /* CONFIG_CISS_SCSI_TAPE */
 531		err = -EINVAL;
 532	/* might be nice to have "disengage" too, but it's not
 533	   safely possible. (only 1 module use count, lock issues.) */
 534
 535	kfree(buffer);
 536	return err;
 537}
 538
 539static const struct file_operations cciss_proc_fops = {
 540	.owner	 = THIS_MODULE,
 541	.open    = cciss_seq_open,
 542	.read    = seq_read,
 543	.llseek  = seq_lseek,
 544	.release = seq_release,
 545	.write	 = cciss_proc_write,
 546};
 547
 548static void cciss_procinit(ctlr_info_t *h)
 549{
 550	struct proc_dir_entry *pde;
 551
 552	if (proc_cciss == NULL)
 553		proc_cciss = proc_mkdir("driver/cciss", NULL);
 554	if (!proc_cciss)
 555		return;
 556	pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
 557					S_IROTH, proc_cciss,
 558					&cciss_proc_fops, h);
 559}
 560#endif				/* CONFIG_PROC_FS */
 561
 562#define MAX_PRODUCT_NAME_LEN 19
 563
 564#define to_hba(n) container_of(n, struct ctlr_info, dev)
 565#define to_drv(n) container_of(n, drive_info_struct, dev)
 566
 567/* List of controllers which cannot be hard reset on kexec with reset_devices */
 568static u32 unresettable_controller[] = {
 569	0x3223103C, /* Smart Array P800 */
 570	0x3234103C, /* Smart Array P400 */
 571	0x3235103C, /* Smart Array P400i */
 572	0x3211103C, /* Smart Array E200i */
 573	0x3212103C, /* Smart Array E200 */
 574	0x3213103C, /* Smart Array E200i */
 575	0x3214103C, /* Smart Array E200i */
 576	0x3215103C, /* Smart Array E200i */
 577	0x3237103C, /* Smart Array E500 */
 578	0x323D103C, /* Smart Array P700m */
 579	0x40800E11, /* Smart Array 5i */
 580	0x409C0E11, /* Smart Array 6400 */
 581	0x409D0E11, /* Smart Array 6400 EM */
 582	0x40700E11, /* Smart Array 5300 */
 583	0x40820E11, /* Smart Array 532 */
 584	0x40830E11, /* Smart Array 5312 */
 585	0x409A0E11, /* Smart Array 641 */
 586	0x409B0E11, /* Smart Array 642 */
 587	0x40910E11, /* Smart Array 6i */
 588};
 589
 590/* List of controllers which cannot even be soft reset */
 591static u32 soft_unresettable_controller[] = {
 592	0x40800E11, /* Smart Array 5i */
 593	0x40700E11, /* Smart Array 5300 */
 594	0x40820E11, /* Smart Array 532 */
 595	0x40830E11, /* Smart Array 5312 */
 596	0x409A0E11, /* Smart Array 641 */
 597	0x409B0E11, /* Smart Array 642 */
 598	0x40910E11, /* Smart Array 6i */
 599	/* Exclude 640x boards.  These are two pci devices in one slot
 600	 * which share a battery backed cache module.  One controls the
 601	 * cache, the other accesses the cache through the one that controls
 602	 * it.  If we reset the one controlling the cache, the other will
 603	 * likely not be happy.  Just forbid resetting this conjoined mess.
 604	 */
 605	0x409C0E11, /* Smart Array 6400 */
 606	0x409D0E11, /* Smart Array 6400 EM */
 607};
 608
 609static int ctlr_is_hard_resettable(u32 board_id)
 610{
 611	int i;
 612
 613	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
 614		if (unresettable_controller[i] == board_id)
 615			return 0;
 616	return 1;
 617}
 618
 619static int ctlr_is_soft_resettable(u32 board_id)
 620{
 621	int i;
 622
 623	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
 624		if (soft_unresettable_controller[i] == board_id)
 625			return 0;
 626	return 1;
 627}
 628
 629static int ctlr_is_resettable(u32 board_id)
 630{
 631	return ctlr_is_hard_resettable(board_id) ||
 632		ctlr_is_soft_resettable(board_id);
 633}
 634
 635static ssize_t host_show_resettable(struct device *dev,
 636				    struct device_attribute *attr,
 637				    char *buf)
 638{
 639	struct ctlr_info *h = to_hba(dev);
 640
 641	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
 642}
 643static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
 644
 645static ssize_t host_store_rescan(struct device *dev,
 646				 struct device_attribute *attr,
 647				 const char *buf, size_t count)
 648{
 649	struct ctlr_info *h = to_hba(dev);
 650
 651	add_to_scan_list(h);
 652	wake_up_process(cciss_scan_thread);
 653	wait_for_completion_interruptible(&h->scan_wait);
 654
 655	return count;
 656}
 657static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
 658
 659static ssize_t host_show_transport_mode(struct device *dev,
 660				 struct device_attribute *attr,
 661				 char *buf)
 662{
 663	struct ctlr_info *h = to_hba(dev);
 664
 665	return snprintf(buf, 20, "%s\n",
 666		h->transMethod & CFGTBL_Trans_Performant ?
 667			"performant" : "simple");
 668}
 669static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
 670
 671static ssize_t dev_show_unique_id(struct device *dev,
 672				 struct device_attribute *attr,
 673				 char *buf)
 674{
 675	drive_info_struct *drv = to_drv(dev);
 676	struct ctlr_info *h = to_hba(drv->dev.parent);
 677	__u8 sn[16];
 678	unsigned long flags;
 679	int ret = 0;
 680
 681	spin_lock_irqsave(&h->lock, flags);
 682	if (h->busy_configuring)
 683		ret = -EBUSY;
 684	else
 685		memcpy(sn, drv->serial_no, sizeof(sn));
 686	spin_unlock_irqrestore(&h->lock, flags);
 687
 688	if (ret)
 689		return ret;
 690	else
 691		return snprintf(buf, 16 * 2 + 2,
 692				"%02X%02X%02X%02X%02X%02X%02X%02X"
 693				"%02X%02X%02X%02X%02X%02X%02X%02X\n",
 694				sn[0], sn[1], sn[2], sn[3],
 695				sn[4], sn[5], sn[6], sn[7],
 696				sn[8], sn[9], sn[10], sn[11],
 697				sn[12], sn[13], sn[14], sn[15]);
 698}
 699static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
 700
 701static ssize_t dev_show_vendor(struct device *dev,
 702			       struct device_attribute *attr,
 703			       char *buf)
 704{
 705	drive_info_struct *drv = to_drv(dev);
 706	struct ctlr_info *h = to_hba(drv->dev.parent);
 707	char vendor[VENDOR_LEN + 1];
 708	unsigned long flags;
 709	int ret = 0;
 710
 711	spin_lock_irqsave(&h->lock, flags);
 712	if (h->busy_configuring)
 713		ret = -EBUSY;
 714	else
 715		memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
 716	spin_unlock_irqrestore(&h->lock, flags);
 717
 718	if (ret)
 719		return ret;
 720	else
 721		return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
 722}
 723static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
 724
 725static ssize_t dev_show_model(struct device *dev,
 726			      struct device_attribute *attr,
 727			      char *buf)
 728{
 729	drive_info_struct *drv = to_drv(dev);
 730	struct ctlr_info *h = to_hba(drv->dev.parent);
 731	char model[MODEL_LEN + 1];
 732	unsigned long flags;
 733	int ret = 0;
 734
 735	spin_lock_irqsave(&h->lock, flags);
 736	if (h->busy_configuring)
 737		ret = -EBUSY;
 738	else
 739		memcpy(model, drv->model, MODEL_LEN + 1);
 740	spin_unlock_irqrestore(&h->lock, flags);
 741
 742	if (ret)
 743		return ret;
 744	else
 745		return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
 746}
 747static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
 748
 749static ssize_t dev_show_rev(struct device *dev,
 750			    struct device_attribute *attr,
 751			    char *buf)
 752{
 753	drive_info_struct *drv = to_drv(dev);
 754	struct ctlr_info *h = to_hba(drv->dev.parent);
 755	char rev[REV_LEN + 1];
 756	unsigned long flags;
 757	int ret = 0;
 758
 759	spin_lock_irqsave(&h->lock, flags);
 760	if (h->busy_configuring)
 761		ret = -EBUSY;
 762	else
 763		memcpy(rev, drv->rev, REV_LEN + 1);
 764	spin_unlock_irqrestore(&h->lock, flags);
 765
 766	if (ret)
 767		return ret;
 768	else
 769		return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
 770}
 771static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
 772
 773static ssize_t cciss_show_lunid(struct device *dev,
 774				struct device_attribute *attr, char *buf)
 775{
 776	drive_info_struct *drv = to_drv(dev);
 777	struct ctlr_info *h = to_hba(drv->dev.parent);
 778	unsigned long flags;
 779	unsigned char lunid[8];
 780
 781	spin_lock_irqsave(&h->lock, flags);
 782	if (h->busy_configuring) {
 783		spin_unlock_irqrestore(&h->lock, flags);
 784		return -EBUSY;
 785	}
 786	if (!drv->heads) {
 787		spin_unlock_irqrestore(&h->lock, flags);
 788		return -ENOTTY;
 789	}
 790	memcpy(lunid, drv->LunID, sizeof(lunid));
 791	spin_unlock_irqrestore(&h->lock, flags);
 792	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
 793		lunid[0], lunid[1], lunid[2], lunid[3],
 794		lunid[4], lunid[5], lunid[6], lunid[7]);
 795}
 796static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
 797
 798static ssize_t cciss_show_raid_level(struct device *dev,
 799				     struct device_attribute *attr, char *buf)
 800{
 801	drive_info_struct *drv = to_drv(dev);
 802	struct ctlr_info *h = to_hba(drv->dev.parent);
 803	int raid;
 804	unsigned long flags;
 805
 806	spin_lock_irqsave(&h->lock, flags);
 807	if (h->busy_configuring) {
 808		spin_unlock_irqrestore(&h->lock, flags);
 809		return -EBUSY;
 810	}
 811	raid = drv->raid_level;
 812	spin_unlock_irqrestore(&h->lock, flags);
 813	if (raid < 0 || raid > RAID_UNKNOWN)
 814		raid = RAID_UNKNOWN;
 815
 816	return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
 817			raid_label[raid]);
 818}
 819static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
 820
 821static ssize_t cciss_show_usage_count(struct device *dev,
 822				      struct device_attribute *attr, char *buf)
 823{
 824	drive_info_struct *drv = to_drv(dev);
 825	struct ctlr_info *h = to_hba(drv->dev.parent);
 826	unsigned long flags;
 827	int count;
 828
 829	spin_lock_irqsave(&h->lock, flags);
 830	if (h->busy_configuring) {
 831		spin_unlock_irqrestore(&h->lock, flags);
 832		return -EBUSY;
 833	}
 834	count = drv->usage_count;
 835	spin_unlock_irqrestore(&h->lock, flags);
 836	return snprintf(buf, 20, "%d\n", count);
 837}
 838static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
 839
 840static struct attribute *cciss_host_attrs[] = {
 841	&dev_attr_rescan.attr,
 842	&dev_attr_resettable.attr,
 843	&dev_attr_transport_mode.attr,
 844	NULL
 845};
 846
 847static struct attribute_group cciss_host_attr_group = {
 848	.attrs = cciss_host_attrs,
 849};
 850
 851static const struct attribute_group *cciss_host_attr_groups[] = {
 852	&cciss_host_attr_group,
 853	NULL
 854};
 855
 856static struct device_type cciss_host_type = {
 857	.name		= "cciss_host",
 858	.groups		= cciss_host_attr_groups,
 859	.release	= cciss_hba_release,
 860};
 861
 862static struct attribute *cciss_dev_attrs[] = {
 863	&dev_attr_unique_id.attr,
 864	&dev_attr_model.attr,
 865	&dev_attr_vendor.attr,
 866	&dev_attr_rev.attr,
 867	&dev_attr_lunid.attr,
 868	&dev_attr_raid_level.attr,
 869	&dev_attr_usage_count.attr,
 870	NULL
 871};
 872
 873static struct attribute_group cciss_dev_attr_group = {
 874	.attrs = cciss_dev_attrs,
 875};
 876
 877static const struct attribute_group *cciss_dev_attr_groups[] = {
 878	&cciss_dev_attr_group,
 879	NULL
 880};
 881
 882static struct device_type cciss_dev_type = {
 883	.name		= "cciss_device",
 884	.groups		= cciss_dev_attr_groups,
 885	.release	= cciss_device_release,
 886};
 887
 888static struct bus_type cciss_bus_type = {
 889	.name		= "cciss",
 890};
 891
 892/*
 893 * cciss_hba_release is called when the reference count
 894 * of h->dev goes to zero.
 895 */
 896static void cciss_hba_release(struct device *dev)
 897{
 898	/*
 899	 * nothing to do, but need this to avoid a warning
 900	 * about not having a release handler from lib/kref.c.
 901	 */
 902}
 903
 904/*
 905 * Initialize sysfs entry for each controller.  This sets up and registers
 906 * the 'cciss#' directory for each individual controller under
 907 * /sys/bus/pci/devices/<dev>/.
 908 */
 909static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
 910{
 911	device_initialize(&h->dev);
 912	h->dev.type = &cciss_host_type;
 913	h->dev.bus = &cciss_bus_type;
 914	dev_set_name(&h->dev, "%s", h->devname);
 915	h->dev.parent = &h->pdev->dev;
 916
 917	return device_add(&h->dev);
 918}
 919
 920/*
 921 * Remove sysfs entries for an hba.
 922 */
 923static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
 924{
 925	device_del(&h->dev);
 926	put_device(&h->dev); /* final put. */
 927}
 928
 929/* cciss_device_release is called when the reference count
 930 * of h->drv[x]dev goes to zero.
 931 */
 932static void cciss_device_release(struct device *dev)
 933{
 934	drive_info_struct *drv = to_drv(dev);
 935	kfree(drv);
 936}
 937
 938/*
 939 * Initialize sysfs for each logical drive.  This sets up and registers
 940 * the 'c#d#' directory for each individual logical drive under
 941 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
 942 * /sys/block/cciss!c#d# to this entry.
 943 */
 944static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
 945				       int drv_index)
 946{
 947	struct device *dev;
 948
 949	if (h->drv[drv_index]->device_initialized)
 950		return 0;
 951
 952	dev = &h->drv[drv_index]->dev;
 953	device_initialize(dev);
 954	dev->type = &cciss_dev_type;
 955	dev->bus = &cciss_bus_type;
 956	dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
 957	dev->parent = &h->dev;
 958	h->drv[drv_index]->device_initialized = 1;
 959	return device_add(dev);
 960}
 961
 962/*
 963 * Remove sysfs entries for a logical drive.
 964 */
 965static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
 966	int ctlr_exiting)
 967{
 968	struct device *dev = &h->drv[drv_index]->dev;
 969
 970	/* special case for c*d0, we only destroy it on controller exit */
 971	if (drv_index == 0 && !ctlr_exiting)
 972		return;
 973
 974	device_del(dev);
 975	put_device(dev); /* the "final" put. */
 976	h->drv[drv_index] = NULL;
 977}
 978
 979/*
 980 * For operations that cannot sleep, a command block is allocated at init,
 981 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 982 * which ones are free or in use.
 983 */
 984static CommandList_struct *cmd_alloc(ctlr_info_t *h)
 985{
 986	CommandList_struct *c;
 987	int i;
 988	u64bit temp64;
 989	dma_addr_t cmd_dma_handle, err_dma_handle;
 990
 991	do {
 992		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
 993		if (i == h->nr_cmds)
 994			return NULL;
 995	} while (test_and_set_bit(i, h->cmd_pool_bits) != 0);
 996	c = h->cmd_pool + i;
 997	memset(c, 0, sizeof(CommandList_struct));
 998	cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
 999	c->err_info = h->errinfo_pool + i;
1000	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1001	err_dma_handle = h->errinfo_pool_dhandle
1002	    + i * sizeof(ErrorInfo_struct);
1003	h->nr_allocs++;
1004
1005	c->cmdindex = i;
1006
1007	INIT_LIST_HEAD(&c->list);
1008	c->busaddr = (__u32) cmd_dma_handle;
1009	temp64.val = (__u64) err_dma_handle;
1010	c->ErrDesc.Addr.lower = temp64.val32.lower;
1011	c->ErrDesc.Addr.upper = temp64.val32.upper;
1012	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1013
1014	c->ctlr = h->ctlr;
1015	return c;
1016}
1017
1018/* allocate a command using pci_alloc_consistent, used for ioctls,
1019 * etc., not for the main i/o path.
1020 */
1021static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1022{
1023	CommandList_struct *c;
1024	u64bit temp64;
1025	dma_addr_t cmd_dma_handle, err_dma_handle;
1026
1027	c = pci_zalloc_consistent(h->pdev, sizeof(CommandList_struct),
1028				  &cmd_dma_handle);
1029	if (c == NULL)
1030		return NULL;
1031
1032	c->cmdindex = -1;
1033
1034	c->err_info = pci_zalloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1035					    &err_dma_handle);
1036
1037	if (c->err_info == NULL) {
1038		pci_free_consistent(h->pdev,
1039			sizeof(CommandList_struct), c, cmd_dma_handle);
1040		return NULL;
1041	}
1042
1043	INIT_LIST_HEAD(&c->list);
1044	c->busaddr = (__u32) cmd_dma_handle;
1045	temp64.val = (__u64) err_dma_handle;
1046	c->ErrDesc.Addr.lower = temp64.val32.lower;
1047	c->ErrDesc.Addr.upper = temp64.val32.upper;
1048	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1049
1050	c->ctlr = h->ctlr;
1051	return c;
1052}
1053
1054static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1055{
1056	int i;
1057
1058	i = c - h->cmd_pool;
1059	clear_bit(i, h->cmd_pool_bits);
1060	h->nr_frees++;
1061}
1062
1063static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1064{
1065	u64bit temp64;
1066
1067	temp64.val32.lower = c->ErrDesc.Addr.lower;
1068	temp64.val32.upper = c->ErrDesc.Addr.upper;
1069	pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1070			    c->err_info, (dma_addr_t) temp64.val);
1071	pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1072		(dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1073}
1074
1075static inline ctlr_info_t *get_host(struct gendisk *disk)
1076{
1077	return disk->queue->queuedata;
1078}
1079
1080static inline drive_info_struct *get_drv(struct gendisk *disk)
1081{
1082	return disk->private_data;
1083}
1084
1085/*
1086 * Open.  Make sure the device is really there.
1087 */
1088static int cciss_open(struct block_device *bdev, fmode_t mode)
1089{
1090	ctlr_info_t *h = get_host(bdev->bd_disk);
1091	drive_info_struct *drv = get_drv(bdev->bd_disk);
1092
1093	dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1094	if (drv->busy_configuring)
1095		return -EBUSY;
1096	/*
1097	 * Root is allowed to open raw volume zero even if it's not configured
1098	 * so array config can still work. Root is also allowed to open any
1099	 * volume that has a LUN ID, so it can issue IOCTL to reread the
1100	 * disk information.  I don't think I really like this
1101	 * but I'm already using way to many device nodes to claim another one
1102	 * for "raw controller".
1103	 */
1104	if (drv->heads == 0) {
1105		if (MINOR(bdev->bd_dev) != 0) {	/* not node 0? */
1106			/* if not node 0 make sure it is a partition = 0 */
1107			if (MINOR(bdev->bd_dev) & 0x0f) {
1108				return -ENXIO;
1109				/* if it is, make sure we have a LUN ID */
1110			} else if (memcmp(drv->LunID, CTLR_LUNID,
1111				sizeof(drv->LunID))) {
1112				return -ENXIO;
1113			}
1114		}
1115		if (!capable(CAP_SYS_ADMIN))
1116			return -EPERM;
1117	}
1118	drv->usage_count++;
1119	h->usage_count++;
1120	return 0;
1121}
1122
1123static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1124{
1125	int ret;
1126
1127	mutex_lock(&cciss_mutex);
1128	ret = cciss_open(bdev, mode);
1129	mutex_unlock(&cciss_mutex);
1130
1131	return ret;
1132}
1133
1134/*
1135 * Close.  Sync first.
1136 */
1137static void cciss_release(struct gendisk *disk, fmode_t mode)
1138{
1139	ctlr_info_t *h;
1140	drive_info_struct *drv;
1141
1142	mutex_lock(&cciss_mutex);
1143	h = get_host(disk);
1144	drv = get_drv(disk);
1145	dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1146	drv->usage_count--;
1147	h->usage_count--;
1148	mutex_unlock(&cciss_mutex);
1149}
1150
1151#ifdef CONFIG_COMPAT
1152
1153static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1154				  unsigned cmd, unsigned long arg);
1155static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1156				      unsigned cmd, unsigned long arg);
1157
1158static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1159			      unsigned cmd, unsigned long arg)
1160{
1161	switch (cmd) {
1162	case CCISS_GETPCIINFO:
1163	case CCISS_GETINTINFO:
1164	case CCISS_SETINTINFO:
1165	case CCISS_GETNODENAME:
1166	case CCISS_SETNODENAME:
1167	case CCISS_GETHEARTBEAT:
1168	case CCISS_GETBUSTYPES:
1169	case CCISS_GETFIRMVER:
1170	case CCISS_GETDRIVVER:
1171	case CCISS_REVALIDVOLS:
1172	case CCISS_DEREGDISK:
1173	case CCISS_REGNEWDISK:
1174	case CCISS_REGNEWD:
1175	case CCISS_RESCANDISK:
1176	case CCISS_GETLUNINFO:
1177		return cciss_ioctl(bdev, mode, cmd, arg);
1178
1179	case CCISS_PASSTHRU32:
1180		return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1181	case CCISS_BIG_PASSTHRU32:
1182		return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1183
1184	default:
1185		return -ENOIOCTLCMD;
1186	}
1187}
1188
1189static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1190				  unsigned cmd, unsigned long arg)
1191{
1192	IOCTL32_Command_struct __user *arg32 =
1193	    (IOCTL32_Command_struct __user *) arg;
1194	IOCTL_Command_struct arg64;
1195	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1196	int err;
1197	u32 cp;
1198
1199	memset(&arg64, 0, sizeof(arg64));
1200	err = 0;
1201	err |=
1202	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1203			   sizeof(arg64.LUN_info));
1204	err |=
1205	    copy_from_user(&arg64.Request, &arg32->Request,
1206			   sizeof(arg64.Request));
1207	err |=
1208	    copy_from_user(&arg64.error_info, &arg32->error_info,
1209			   sizeof(arg64.error_info));
1210	err |= get_user(arg64.buf_size, &arg32->buf_size);
1211	err |= get_user(cp, &arg32->buf);
1212	arg64.buf = compat_ptr(cp);
1213	err |= copy_to_user(p, &arg64, sizeof(arg64));
1214
1215	if (err)
1216		return -EFAULT;
1217
1218	err = cciss_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1219	if (err)
1220		return err;
1221	err |=
1222	    copy_in_user(&arg32->error_info, &p->error_info,
1223			 sizeof(arg32->error_info));
1224	if (err)
1225		return -EFAULT;
1226	return err;
1227}
1228
1229static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1230				      unsigned cmd, unsigned long arg)
1231{
1232	BIG_IOCTL32_Command_struct __user *arg32 =
1233	    (BIG_IOCTL32_Command_struct __user *) arg;
1234	BIG_IOCTL_Command_struct arg64;
1235	BIG_IOCTL_Command_struct __user *p =
1236	    compat_alloc_user_space(sizeof(arg64));
1237	int err;
1238	u32 cp;
1239
1240	memset(&arg64, 0, sizeof(arg64));
1241	err = 0;
1242	err |=
1243	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1244			   sizeof(arg64.LUN_info));
1245	err |=
1246	    copy_from_user(&arg64.Request, &arg32->Request,
1247			   sizeof(arg64.Request));
1248	err |=
1249	    copy_from_user(&arg64.error_info, &arg32->error_info,
1250			   sizeof(arg64.error_info));
1251	err |= get_user(arg64.buf_size, &arg32->buf_size);
1252	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1253	err |= get_user(cp, &arg32->buf);
1254	arg64.buf = compat_ptr(cp);
1255	err |= copy_to_user(p, &arg64, sizeof(arg64));
1256
1257	if (err)
1258		return -EFAULT;
1259
1260	err = cciss_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1261	if (err)
1262		return err;
1263	err |=
1264	    copy_in_user(&arg32->error_info, &p->error_info,
1265			 sizeof(arg32->error_info));
1266	if (err)
1267		return -EFAULT;
1268	return err;
1269}
1270#endif
1271
1272static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1273{
1274	drive_info_struct *drv = get_drv(bdev->bd_disk);
1275
1276	if (!drv->cylinders)
1277		return -ENXIO;
1278
1279	geo->heads = drv->heads;
1280	geo->sectors = drv->sectors;
1281	geo->cylinders = drv->cylinders;
1282	return 0;
1283}
1284
1285static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1286{
1287	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1288			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1289		(void)check_for_unit_attention(h, c);
1290}
1291
1292static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1293{
1294	cciss_pci_info_struct pciinfo;
1295
1296	if (!argp)
1297		return -EINVAL;
1298	pciinfo.domain = pci_domain_nr(h->pdev->bus);
1299	pciinfo.bus = h->pdev->bus->number;
1300	pciinfo.dev_fn = h->pdev->devfn;
1301	pciinfo.board_id = h->board_id;
1302	if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1303		return -EFAULT;
1304	return 0;
1305}
1306
1307static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1308{
1309	cciss_coalint_struct intinfo;
1310	unsigned long flags;
1311
1312	if (!argp)
1313		return -EINVAL;
1314	spin_lock_irqsave(&h->lock, flags);
1315	intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1316	intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1317	spin_unlock_irqrestore(&h->lock, flags);
1318	if (copy_to_user
1319	    (argp, &intinfo, sizeof(cciss_coalint_struct)))
1320		return -EFAULT;
1321	return 0;
1322}
1323
1324static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1325{
1326	cciss_coalint_struct intinfo;
1327	unsigned long flags;
1328	int i;
1329
1330	if (!argp)
1331		return -EINVAL;
1332	if (!capable(CAP_SYS_ADMIN))
1333		return -EPERM;
1334	if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1335		return -EFAULT;
1336	if ((intinfo.delay == 0) && (intinfo.count == 0))
1337		return -EINVAL;
1338	spin_lock_irqsave(&h->lock, flags);
1339	/* Update the field, and then ring the doorbell */
1340	writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1341	writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1342	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1343
1344	for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1345		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1346			break;
1347		udelay(1000); /* delay and try again */
1348	}
1349	spin_unlock_irqrestore(&h->lock, flags);
1350	if (i >= MAX_IOCTL_CONFIG_WAIT)
1351		return -EAGAIN;
1352	return 0;
1353}
1354
1355static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1356{
1357	NodeName_type NodeName;
1358	unsigned long flags;
1359	int i;
1360
1361	if (!argp)
1362		return -EINVAL;
1363	spin_lock_irqsave(&h->lock, flags);
1364	for (i = 0; i < 16; i++)
1365		NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1366	spin_unlock_irqrestore(&h->lock, flags);
1367	if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1368		return -EFAULT;
1369	return 0;
1370}
1371
1372static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1373{
1374	NodeName_type NodeName;
1375	unsigned long flags;
1376	int i;
1377
1378	if (!argp)
1379		return -EINVAL;
1380	if (!capable(CAP_SYS_ADMIN))
1381		return -EPERM;
1382	if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1383		return -EFAULT;
1384	spin_lock_irqsave(&h->lock, flags);
1385	/* Update the field, and then ring the doorbell */
1386	for (i = 0; i < 16; i++)
1387		writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1388	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1389	for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1390		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1391			break;
1392		udelay(1000); /* delay and try again */
1393	}
1394	spin_unlock_irqrestore(&h->lock, flags);
1395	if (i >= MAX_IOCTL_CONFIG_WAIT)
1396		return -EAGAIN;
1397	return 0;
1398}
1399
1400static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1401{
1402	Heartbeat_type heartbeat;
1403	unsigned long flags;
1404
1405	if (!argp)
1406		return -EINVAL;
1407	spin_lock_irqsave(&h->lock, flags);
1408	heartbeat = readl(&h->cfgtable->HeartBeat);
1409	spin_unlock_irqrestore(&h->lock, flags);
1410	if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1411		return -EFAULT;
1412	return 0;
1413}
1414
1415static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1416{
1417	BusTypes_type BusTypes;
1418	unsigned long flags;
1419
1420	if (!argp)
1421		return -EINVAL;
1422	spin_lock_irqsave(&h->lock, flags);
1423	BusTypes = readl(&h->cfgtable->BusTypes);
1424	spin_unlock_irqrestore(&h->lock, flags);
1425	if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1426		return -EFAULT;
1427	return 0;
1428}
1429
1430static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1431{
1432	FirmwareVer_type firmware;
1433
1434	if (!argp)
1435		return -EINVAL;
1436	memcpy(firmware, h->firm_ver, 4);
1437
1438	if (copy_to_user
1439	    (argp, firmware, sizeof(FirmwareVer_type)))
1440		return -EFAULT;
1441	return 0;
1442}
1443
1444static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1445{
1446	DriverVer_type DriverVer = DRIVER_VERSION;
1447
1448	if (!argp)
1449		return -EINVAL;
1450	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1451		return -EFAULT;
1452	return 0;
1453}
1454
1455static int cciss_getluninfo(ctlr_info_t *h,
1456	struct gendisk *disk, void __user *argp)
1457{
1458	LogvolInfo_struct luninfo;
1459	drive_info_struct *drv = get_drv(disk);
1460
1461	if (!argp)
1462		return -EINVAL;
1463	memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1464	luninfo.num_opens = drv->usage_count;
1465	luninfo.num_parts = 0;
1466	if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1467		return -EFAULT;
1468	return 0;
1469}
1470
1471static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1472{
1473	IOCTL_Command_struct iocommand;
1474	CommandList_struct *c;
1475	char *buff = NULL;
1476	u64bit temp64;
1477	DECLARE_COMPLETION_ONSTACK(wait);
1478
1479	if (!argp)
1480		return -EINVAL;
1481
1482	if (!capable(CAP_SYS_RAWIO))
1483		return -EPERM;
1484
1485	if (copy_from_user
1486	    (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1487		return -EFAULT;
1488	if ((iocommand.buf_size < 1) &&
1489	    (iocommand.Request.Type.Direction != XFER_NONE)) {
1490		return -EINVAL;
1491	}
1492	if (iocommand.buf_size > 0) {
1493		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1494		if (buff == NULL)
1495			return -EFAULT;
1496	}
1497	if (iocommand.Request.Type.Direction == XFER_WRITE) {
1498		/* Copy the data into the buffer we created */
1499		if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1500			kfree(buff);
1501			return -EFAULT;
1502		}
1503	} else {
1504		memset(buff, 0, iocommand.buf_size);
1505	}
1506	c = cmd_special_alloc(h);
1507	if (!c) {
1508		kfree(buff);
1509		return -ENOMEM;
1510	}
1511	/* Fill in the command type */
1512	c->cmd_type = CMD_IOCTL_PEND;
1513	/* Fill in Command Header */
1514	c->Header.ReplyQueue = 0;   /* unused in simple mode */
1515	if (iocommand.buf_size > 0) { /* buffer to fill */
1516		c->Header.SGList = 1;
1517		c->Header.SGTotal = 1;
1518	} else { /* no buffers to fill */
1519		c->Header.SGList = 0;
1520		c->Header.SGTotal = 0;
1521	}
1522	c->Header.LUN = iocommand.LUN_info;
1523	/* use the kernel address the cmd block for tag */
1524	c->Header.Tag.lower = c->busaddr;
1525
1526	/* Fill in Request block */
1527	c->Request = iocommand.Request;
1528
1529	/* Fill in the scatter gather information */
1530	if (iocommand.buf_size > 0) {
1531		temp64.val = pci_map_single(h->pdev, buff,
1532			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1533		c->SG[0].Addr.lower = temp64.val32.lower;
1534		c->SG[0].Addr.upper = temp64.val32.upper;
1535		c->SG[0].Len = iocommand.buf_size;
1536		c->SG[0].Ext = 0;  /* we are not chaining */
1537	}
1538	c->waiting = &wait;
1539
1540	enqueue_cmd_and_start_io(h, c);
1541	wait_for_completion(&wait);
1542
1543	/* unlock the buffers from DMA */
1544	temp64.val32.lower = c->SG[0].Addr.lower;
1545	temp64.val32.upper = c->SG[0].Addr.upper;
1546	pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1547			 PCI_DMA_BIDIRECTIONAL);
1548	check_ioctl_unit_attention(h, c);
1549
1550	/* Copy the error information out */
1551	iocommand.error_info = *(c->err_info);
1552	if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1553		kfree(buff);
1554		cmd_special_free(h, c);
1555		return -EFAULT;
1556	}
1557
1558	if (iocommand.Request.Type.Direction == XFER_READ) {
1559		/* Copy the data out of the buffer we created */
1560		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1561			kfree(buff);
1562			cmd_special_free(h, c);
1563			return -EFAULT;
1564		}
1565	}
1566	kfree(buff);
1567	cmd_special_free(h, c);
1568	return 0;
1569}
1570
1571static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1572{
1573	BIG_IOCTL_Command_struct *ioc;
1574	CommandList_struct *c;
1575	unsigned char **buff = NULL;
1576	int *buff_size = NULL;
1577	u64bit temp64;
1578	BYTE sg_used = 0;
1579	int status = 0;
1580	int i;
1581	DECLARE_COMPLETION_ONSTACK(wait);
1582	__u32 left;
1583	__u32 sz;
1584	BYTE __user *data_ptr;
1585
1586	if (!argp)
1587		return -EINVAL;
1588	if (!capable(CAP_SYS_RAWIO))
1589		return -EPERM;
1590	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1591	if (!ioc) {
1592		status = -ENOMEM;
1593		goto cleanup1;
1594	}
1595	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1596		status = -EFAULT;
1597		goto cleanup1;
1598	}
1599	if ((ioc->buf_size < 1) &&
1600	    (ioc->Request.Type.Direction != XFER_NONE)) {
1601		status = -EINVAL;
1602		goto cleanup1;
1603	}
1604	/* Check kmalloc limits  using all SGs */
1605	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1606		status = -EINVAL;
1607		goto cleanup1;
1608	}
1609	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1610		status = -EINVAL;
1611		goto cleanup1;
1612	}
1613	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1614	if (!buff) {
1615		status = -ENOMEM;
1616		goto cleanup1;
1617	}
1618	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1619	if (!buff_size) {
1620		status = -ENOMEM;
1621		goto cleanup1;
1622	}
1623	left = ioc->buf_size;
1624	data_ptr = ioc->buf;
1625	while (left) {
1626		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1627		buff_size[sg_used] = sz;
1628		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1629		if (buff[sg_used] == NULL) {
1630			status = -ENOMEM;
1631			goto cleanup1;
1632		}
1633		if (ioc->Request.Type.Direction == XFER_WRITE) {
1634			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1635				status = -EFAULT;
1636				goto cleanup1;
1637			}
1638		} else {
1639			memset(buff[sg_used], 0, sz);
1640		}
1641		left -= sz;
1642		data_ptr += sz;
1643		sg_used++;
1644	}
1645	c = cmd_special_alloc(h);
1646	if (!c) {
1647		status = -ENOMEM;
1648		goto cleanup1;
1649	}
1650	c->cmd_type = CMD_IOCTL_PEND;
1651	c->Header.ReplyQueue = 0;
1652	c->Header.SGList = sg_used;
1653	c->Header.SGTotal = sg_used;
1654	c->Header.LUN = ioc->LUN_info;
1655	c->Header.Tag.lower = c->busaddr;
1656
1657	c->Request = ioc->Request;
1658	for (i = 0; i < sg_used; i++) {
1659		temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1660				    PCI_DMA_BIDIRECTIONAL);
1661		c->SG[i].Addr.lower = temp64.val32.lower;
1662		c->SG[i].Addr.upper = temp64.val32.upper;
1663		c->SG[i].Len = buff_size[i];
1664		c->SG[i].Ext = 0;	/* we are not chaining */
1665	}
1666	c->waiting = &wait;
1667	enqueue_cmd_and_start_io(h, c);
1668	wait_for_completion(&wait);
1669	/* unlock the buffers from DMA */
1670	for (i = 0; i < sg_used; i++) {
1671		temp64.val32.lower = c->SG[i].Addr.lower;
1672		temp64.val32.upper = c->SG[i].Addr.upper;
1673		pci_unmap_single(h->pdev,
1674			(dma_addr_t) temp64.val, buff_size[i],
1675			PCI_DMA_BIDIRECTIONAL);
1676	}
1677	check_ioctl_unit_attention(h, c);
1678	/* Copy the error information out */
1679	ioc->error_info = *(c->err_info);
1680	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1681		cmd_special_free(h, c);
1682		status = -EFAULT;
1683		goto cleanup1;
1684	}
1685	if (ioc->Request.Type.Direction == XFER_READ) {
1686		/* Copy the data out of the buffer we created */
1687		BYTE __user *ptr = ioc->buf;
1688		for (i = 0; i < sg_used; i++) {
1689			if (copy_to_user(ptr, buff[i], buff_size[i])) {
1690				cmd_special_free(h, c);
1691				status = -EFAULT;
1692				goto cleanup1;
1693			}
1694			ptr += buff_size[i];
1695		}
1696	}
1697	cmd_special_free(h, c);
1698	status = 0;
1699cleanup1:
1700	if (buff) {
1701		for (i = 0; i < sg_used; i++)
1702			kfree(buff[i]);
1703		kfree(buff);
1704	}
1705	kfree(buff_size);
1706	kfree(ioc);
1707	return status;
1708}
1709
1710static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1711	unsigned int cmd, unsigned long arg)
1712{
1713	struct gendisk *disk = bdev->bd_disk;
1714	ctlr_info_t *h = get_host(disk);
1715	void __user *argp = (void __user *)arg;
1716
1717	dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1718		cmd, arg);
1719	switch (cmd) {
1720	case CCISS_GETPCIINFO:
1721		return cciss_getpciinfo(h, argp);
1722	case CCISS_GETINTINFO:
1723		return cciss_getintinfo(h, argp);
1724	case CCISS_SETINTINFO:
1725		return cciss_setintinfo(h, argp);
1726	case CCISS_GETNODENAME:
1727		return cciss_getnodename(h, argp);
1728	case CCISS_SETNODENAME:
1729		return cciss_setnodename(h, argp);
1730	case CCISS_GETHEARTBEAT:
1731		return cciss_getheartbeat(h, argp);
1732	case CCISS_GETBUSTYPES:
1733		return cciss_getbustypes(h, argp);
1734	case CCISS_GETFIRMVER:
1735		return cciss_getfirmver(h, argp);
1736	case CCISS_GETDRIVVER:
1737		return cciss_getdrivver(h, argp);
1738	case CCISS_DEREGDISK:
1739	case CCISS_REGNEWD:
1740	case CCISS_REVALIDVOLS:
1741		return rebuild_lun_table(h, 0, 1);
1742	case CCISS_GETLUNINFO:
1743		return cciss_getluninfo(h, disk, argp);
1744	case CCISS_PASSTHRU:
1745		return cciss_passthru(h, argp);
1746	case CCISS_BIG_PASSTHRU:
1747		return cciss_bigpassthru(h, argp);
1748
1749	/* scsi_cmd_blk_ioctl handles these, below, though some are not */
1750	/* very meaningful for cciss.  SG_IO is the main one people want. */
1751
1752	case SG_GET_VERSION_NUM:
1753	case SG_SET_TIMEOUT:
1754	case SG_GET_TIMEOUT:
1755	case SG_GET_RESERVED_SIZE:
1756	case SG_SET_RESERVED_SIZE:
1757	case SG_EMULATED_HOST:
1758	case SG_IO:
1759	case SCSI_IOCTL_SEND_COMMAND:
1760		return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
1761
1762	/* scsi_cmd_blk_ioctl would normally handle these, below, but */
1763	/* they aren't a good fit for cciss, as CD-ROMs are */
1764	/* not supported, and we don't have any bus/target/lun */
1765	/* which we present to the kernel. */
1766
1767	case CDROM_SEND_PACKET:
1768	case CDROMCLOSETRAY:
1769	case CDROMEJECT:
1770	case SCSI_IOCTL_GET_IDLUN:
1771	case SCSI_IOCTL_GET_BUS_NUMBER:
1772	default:
1773		return -ENOTTY;
1774	}
1775}
1776
1777static void cciss_check_queues(ctlr_info_t *h)
1778{
1779	int start_queue = h->next_to_run;
1780	int i;
1781
1782	/* check to see if we have maxed out the number of commands that can
1783	 * be placed on the queue.  If so then exit.  We do this check here
1784	 * in case the interrupt we serviced was from an ioctl and did not
1785	 * free any new commands.
1786	 */
1787	if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1788		return;
1789
1790	/* We have room on the queue for more commands.  Now we need to queue
1791	 * them up.  We will also keep track of the next queue to run so
1792	 * that every queue gets a chance to be started first.
1793	 */
1794	for (i = 0; i < h->highest_lun + 1; i++) {
1795		int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1796		/* make sure the disk has been added and the drive is real
1797		 * because this can be called from the middle of init_one.
1798		 */
1799		if (!h->drv[curr_queue])
1800			continue;
1801		if (!(h->drv[curr_queue]->queue) ||
1802			!(h->drv[curr_queue]->heads))
1803			continue;
1804		blk_start_queue(h->gendisk[curr_queue]->queue);
1805
1806		/* check to see if we have maxed out the number of commands
1807		 * that can be placed on the queue.
1808		 */
1809		if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1810			if (curr_queue == start_queue) {
1811				h->next_to_run =
1812				    (start_queue + 1) % (h->highest_lun + 1);
1813				break;
1814			} else {
1815				h->next_to_run = curr_queue;
1816				break;
1817			}
1818		}
1819	}
1820}
1821
1822static void cciss_softirq_done(struct request *rq)
1823{
1824	CommandList_struct *c = rq->completion_data;
1825	ctlr_info_t *h = hba[c->ctlr];
1826	SGDescriptor_struct *curr_sg = c->SG;
1827	u64bit temp64;
1828	unsigned long flags;
1829	int i, ddir;
1830	int sg_index = 0;
1831
1832	if (c->Request.Type.Direction == XFER_READ)
1833		ddir = PCI_DMA_FROMDEVICE;
1834	else
1835		ddir = PCI_DMA_TODEVICE;
1836
1837	/* command did not need to be retried */
1838	/* unmap the DMA mapping for all the scatter gather elements */
1839	for (i = 0; i < c->Header.SGList; i++) {
1840		if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1841			cciss_unmap_sg_chain_block(h, c);
1842			/* Point to the next block */
1843			curr_sg = h->cmd_sg_list[c->cmdindex];
1844			sg_index = 0;
1845		}
1846		temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1847		temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1848		pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1849				ddir);
1850		++sg_index;
1851	}
1852
1853	dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1854
1855	/* set the residual count for pc requests */
1856	if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1857		rq->resid_len = c->err_info->ResidualCnt;
1858
1859	blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1860
1861	spin_lock_irqsave(&h->lock, flags);
1862	cmd_free(h, c);
1863	cciss_check_queues(h);
1864	spin_unlock_irqrestore(&h->lock, flags);
1865}
1866
1867static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1868	unsigned char scsi3addr[], uint32_t log_unit)
1869{
1870	memcpy(scsi3addr, h->drv[log_unit]->LunID,
1871		sizeof(h->drv[log_unit]->LunID));
1872}
1873
1874/* This function gets the SCSI vendor, model, and revision of a logical drive
1875 * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1876 * they cannot be read.
1877 */
1878static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1879				   char *vendor, char *model, char *rev)
1880{
1881	int rc;
1882	InquiryData_struct *inq_buf;
1883	unsigned char scsi3addr[8];
1884
1885	*vendor = '\0';
1886	*model = '\0';
1887	*rev = '\0';
1888
1889	inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1890	if (!inq_buf)
1891		return;
1892
1893	log_unit_to_scsi3addr(h, scsi3addr, logvol);
1894	rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1895			scsi3addr, TYPE_CMD);
1896	if (rc == IO_OK) {
1897		memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1898		vendor[VENDOR_LEN] = '\0';
1899		memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1900		model[MODEL_LEN] = '\0';
1901		memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1902		rev[REV_LEN] = '\0';
1903	}
1904
1905	kfree(inq_buf);
1906	return;
1907}
1908
1909/* This function gets the serial number of a logical drive via
1910 * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1911 * number cannot be had, for whatever reason, 16 bytes of 0xff
1912 * are returned instead.
1913 */
1914static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1915				unsigned char *serial_no, int buflen)
1916{
1917#define PAGE_83_INQ_BYTES 64
1918	int rc;
1919	unsigned char *buf;
1920	unsigned char scsi3addr[8];
1921
1922	if (buflen > 16)
1923		buflen = 16;
1924	memset(serial_no, 0xff, buflen);
1925	buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1926	if (!buf)
1927		return;
1928	memset(serial_no, 0, buflen);
1929	log_unit_to_scsi3addr(h, scsi3addr, logvol);
1930	rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1931		PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1932	if (rc == IO_OK)
1933		memcpy(serial_no, &buf[8], buflen);
1934	kfree(buf);
1935	return;
1936}
1937
1938/*
1939 * cciss_add_disk sets up the block device queue for a logical drive
1940 */
1941static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1942				int drv_index)
1943{
1944	disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1945	if (!disk->queue)
1946		goto init_queue_failure;
1947	sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1948	disk->major = h->major;
1949	disk->first_minor = drv_index << NWD_SHIFT;
1950	disk->fops = &cciss_fops;
1951	if (cciss_create_ld_sysfs_entry(h, drv_index))
1952		goto cleanup_queue;
1953	disk->private_data = h->drv[drv_index];
1954	disk->driverfs_dev = &h->drv[drv_index]->dev;
1955
1956	/* Set up queue information */
1957	blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1958
1959	/* This is a hardware imposed limit. */
1960	blk_queue_max_segments(disk->queue, h->maxsgentries);
1961
1962	blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1963
1964	blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1965
1966	disk->queue->queuedata = h;
1967
1968	blk_queue_logical_block_size(disk->queue,
1969				     h->drv[drv_index]->block_size);
1970
1971	/* Make sure all queue data is written out before */
1972	/* setting h->drv[drv_index]->queue, as setting this */
1973	/* allows the interrupt handler to start the queue */
1974	wmb();
1975	h->drv[drv_index]->queue = disk->queue;
1976	add_disk(disk);
1977	return 0;
1978
1979cleanup_queue:
1980	blk_cleanup_queue(disk->queue);
1981	disk->queue = NULL;
1982init_queue_failure:
1983	return -1;
1984}
1985
1986/* This function will check the usage_count of the drive to be updated/added.
1987 * If the usage_count is zero and it is a heretofore unknown drive, or,
1988 * the drive's capacity, geometry, or serial number has changed,
1989 * then the drive information will be updated and the disk will be
1990 * re-registered with the kernel.  If these conditions don't hold,
1991 * then it will be left alone for the next reboot.  The exception to this
1992 * is disk 0 which will always be left registered with the kernel since it
1993 * is also the controller node.  Any changes to disk 0 will show up on
1994 * the next reboot.
1995 */
1996static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1997	int first_time, int via_ioctl)
1998{
1999	struct gendisk *disk;
2000	InquiryData_struct *inq_buff = NULL;
2001	unsigned int block_size;
2002	sector_t total_size;
2003	unsigned long flags = 0;
2004	int ret = 0;
2005	drive_info_struct *drvinfo;
2006
2007	/* Get information about the disk and modify the driver structure */
2008	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2009	drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
2010	if (inq_buff == NULL || drvinfo == NULL)
2011		goto mem_msg;
2012
2013	/* testing to see if 16-byte CDBs are already being used */
2014	if (h->cciss_read == CCISS_READ_16) {
2015		cciss_read_capacity_16(h, drv_index,
2016			&total_size, &block_size);
2017
2018	} else {
2019		cciss_read_capacity(h, drv_index, &total_size, &block_size);
2020		/* if read_capacity returns all F's this volume is >2TB */
2021		/* in size so we switch to 16-byte CDB's for all */
2022		/* read/write ops */
2023		if (total_size == 0xFFFFFFFFULL) {
2024			cciss_read_capacity_16(h, drv_index,
2025			&total_size, &block_size);
2026			h->cciss_read = CCISS_READ_16;
2027			h->cciss_write = CCISS_WRITE_16;
2028		} else {
2029			h->cciss_read = CCISS_READ_10;
2030			h->cciss_write = CCISS_WRITE_10;
2031		}
2032	}
2033
2034	cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2035			       inq_buff, drvinfo);
2036	drvinfo->block_size = block_size;
2037	drvinfo->nr_blocks = total_size + 1;
2038
2039	cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2040				drvinfo->model, drvinfo->rev);
2041	cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2042			sizeof(drvinfo->serial_no));
2043	/* Save the lunid in case we deregister the disk, below. */
2044	memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2045		sizeof(drvinfo->LunID));
2046
2047	/* Is it the same disk we already know, and nothing's changed? */
2048	if (h->drv[drv_index]->raid_level != -1 &&
2049		((memcmp(drvinfo->serial_no,
2050				h->drv[drv_index]->serial_no, 16) == 0) &&
2051		drvinfo->block_size == h->drv[drv_index]->block_size &&
2052		drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2053		drvinfo->heads == h->drv[drv_index]->heads &&
2054		drvinfo->sectors == h->drv[drv_index]->sectors &&
2055		drvinfo->cylinders == h->drv[drv_index]->cylinders))
2056			/* The disk is unchanged, nothing to update */
2057			goto freeret;
2058
2059	/* If we get here it's not the same disk, or something's changed,
2060	 * so we need to * deregister it, and re-register it, if it's not
2061	 * in use.
2062	 * If the disk already exists then deregister it before proceeding
2063	 * (unless it's the first disk (for the controller node).
2064	 */
2065	if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2066		dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2067		spin_lock_irqsave(&h->lock, flags);
2068		h->drv[drv_index]->busy_configuring = 1;
2069		spin_unlock_irqrestore(&h->lock, flags);
2070
2071		/* deregister_disk sets h->drv[drv_index]->queue = NULL
2072		 * which keeps the interrupt handler from starting
2073		 * the queue.
2074		 */
2075		ret = deregister_disk(h, drv_index, 0, via_ioctl);
2076	}
2077
2078	/* If the disk is in use return */
2079	if (ret)
2080		goto freeret;
2081
2082	/* Save the new information from cciss_geometry_inquiry
2083	 * and serial number inquiry.  If the disk was deregistered
2084	 * above, then h->drv[drv_index] will be NULL.
2085	 */
2086	if (h->drv[drv_index] == NULL) {
2087		drvinfo->device_initialized = 0;
2088		h->drv[drv_index] = drvinfo;
2089		drvinfo = NULL; /* so it won't be freed below. */
2090	} else {
2091		/* special case for cxd0 */
2092		h->drv[drv_index]->block_size = drvinfo->block_size;
2093		h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2094		h->drv[drv_index]->heads = drvinfo->heads;
2095		h->drv[drv_index]->sectors = drvinfo->sectors;
2096		h->drv[drv_index]->cylinders = drvinfo->cylinders;
2097		h->drv[drv_index]->raid_level = drvinfo->raid_level;
2098		memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2099		memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2100			VENDOR_LEN + 1);
2101		memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2102		memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2103	}
2104
2105	++h->num_luns;
2106	disk = h->gendisk[drv_index];
2107	set_capacity(disk, h->drv[drv_index]->nr_blocks);
2108
2109	/* If it's not disk 0 (drv_index != 0)
2110	 * or if it was disk 0, but there was previously
2111	 * no actual corresponding configured logical drive
2112	 * (raid_leve == -1) then we want to update the
2113	 * logical drive's information.
2114	 */
2115	if (drv_index || first_time) {
2116		if (cciss_add_disk(h, disk, drv_index) != 0) {
2117			cciss_free_gendisk(h, drv_index);
2118			cciss_free_drive_info(h, drv_index);
2119			dev_warn(&h->pdev->dev, "could not update disk %d\n",
2120				drv_index);
2121			--h->num_luns;
2122		}
2123	}
2124
2125freeret:
2126	kfree(inq_buff);
2127	kfree(drvinfo);
2128	return;
2129mem_msg:
2130	dev_err(&h->pdev->dev, "out of memory\n");
2131	goto freeret;
2132}
2133
2134/* This function will find the first index of the controllers drive array
2135 * that has a null drv pointer and allocate the drive info struct and
2136 * will return that index   This is where new drives will be added.
2137 * If the index to be returned is greater than the highest_lun index for
2138 * the controller then highest_lun is set * to this new index.
2139 * If there are no available indexes or if tha allocation fails, then -1
2140 * is returned.  * "controller_node" is used to know if this is a real
2141 * logical drive, or just the controller node, which determines if this
2142 * counts towards highest_lun.
2143 */
2144static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2145{
2146	int i;
2147	drive_info_struct *drv;
2148
2149	/* Search for an empty slot for our drive info */
2150	for (i = 0; i < CISS_MAX_LUN; i++) {
2151
2152		/* if not cxd0 case, and it's occupied, skip it. */
2153		if (h->drv[i] && i != 0)
2154			continue;
2155		/*
2156		 * If it's cxd0 case, and drv is alloc'ed already, and a
2157		 * disk is configured there, skip it.
2158		 */
2159		if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2160			continue;
2161
2162		/*
2163		 * We've found an empty slot.  Update highest_lun
2164		 * provided this isn't just the fake cxd0 controller node.
2165		 */
2166		if (i > h->highest_lun && !controller_node)
2167			h->highest_lun = i;
2168
2169		/* If adding a real disk at cxd0, and it's already alloc'ed */
2170		if (i == 0 && h->drv[i] != NULL)
2171			return i;
2172
2173		/*
2174		 * Found an empty slot, not already alloc'ed.  Allocate it.
2175		 * Mark it with raid_level == -1, so we know it's new later on.
2176		 */
2177		drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2178		if (!drv)
2179			return -1;
2180		drv->raid_level = -1; /* so we know it's new */
2181		h->drv[i] = drv;
2182		return i;
2183	}
2184	return -1;
2185}
2186
2187static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2188{
2189	kfree(h->drv[drv_index]);
2190	h->drv[drv_index] = NULL;
2191}
2192
2193static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2194{
2195	put_disk(h->gendisk[drv_index]);
2196	h->gendisk[drv_index] = NULL;
2197}
2198
2199/* cciss_add_gendisk finds a free hba[]->drv structure
2200 * and allocates a gendisk if needed, and sets the lunid
2201 * in the drvinfo structure.   It returns the index into
2202 * the ->drv[] array, or -1 if none are free.
2203 * is_controller_node indicates whether highest_lun should
2204 * count this disk, or if it's only being added to provide
2205 * a means to talk to the controller in case no logical
2206 * drives have yet been configured.
2207 */
2208static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2209	int controller_node)
2210{
2211	int drv_index;
2212
2213	drv_index = cciss_alloc_drive_info(h, controller_node);
2214	if (drv_index == -1)
2215		return -1;
2216
2217	/*Check if the gendisk needs to be allocated */
2218	if (!h->gendisk[drv_index]) {
2219		h->gendisk[drv_index] =
2220			alloc_disk(1 << NWD_SHIFT);
2221		if (!h->gendisk[drv_index]) {
2222			dev_err(&h->pdev->dev,
2223				"could not allocate a new disk %d\n",
2224				drv_index);
2225			goto err_free_drive_info;
2226		}
2227	}
2228	memcpy(h->drv[drv_index]->LunID, lunid,
2229		sizeof(h->drv[drv_index]->LunID));
2230	if (cciss_create_ld_sysfs_entry(h, drv_index))
2231		goto err_free_disk;
2232	/* Don't need to mark this busy because nobody */
2233	/* else knows about this disk yet to contend */
2234	/* for access to it. */
2235	h->drv[drv_index]->busy_configuring = 0;
2236	wmb();
2237	return drv_index;
2238
2239err_free_disk:
2240	cciss_free_gendisk(h, drv_index);
2241err_free_drive_info:
2242	cciss_free_drive_info(h, drv_index);
2243	return -1;
2244}
2245
2246/* This is for the special case of a controller which
2247 * has no logical drives.  In this case, we still need
2248 * to register a disk so the controller can be accessed
2249 * by the Array Config Utility.
2250 */
2251static void cciss_add_controller_node(ctlr_info_t *h)
2252{
2253	struct gendisk *disk;
2254	int drv_index;
2255
2256	if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2257		return;
2258
2259	drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2260	if (drv_index == -1)
2261		goto error;
2262	h->drv[drv_index]->block_size = 512;
2263	h->drv[drv_index]->nr_blocks = 0;
2264	h->drv[drv_index]->heads = 0;
2265	h->drv[drv_index]->sectors = 0;
2266	h->drv[drv_index]->cylinders = 0;
2267	h->drv[drv_index]->raid_level = -1;
2268	memset(h->drv[drv_index]->serial_no, 0, 16);
2269	disk = h->gendisk[drv_index];
2270	if (cciss_add_disk(h, disk, drv_index) == 0)
2271		return;
2272	cciss_free_gendisk(h, drv_index);
2273	cciss_free_drive_info(h, drv_index);
2274error:
2275	dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2276	return;
2277}
2278
2279/* This function will add and remove logical drives from the Logical
2280 * drive array of the controller and maintain persistency of ordering
2281 * so that mount points are preserved until the next reboot.  This allows
2282 * for the removal of logical drives in the middle of the drive array
2283 * without a re-ordering of those drives.
2284 * INPUT
2285 * h		= The controller to perform the operations on
2286 */
2287static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2288	int via_ioctl)
2289{
2290	int num_luns;
2291	ReportLunData_struct *ld_buff = NULL;
2292	int return_code;
2293	int listlength = 0;
2294	int i;
2295	int drv_found;
2296	int drv_index = 0;
2297	unsigned char lunid[8] = CTLR_LUNID;
2298	unsigned long flags;
2299
2300	if (!capable(CAP_SYS_RAWIO))
2301		return -EPERM;
2302
2303	/* Set busy_configuring flag for this operation */
2304	spin_lock_irqsave(&h->lock, flags);
2305	if (h->busy_configuring) {
2306		spin_unlock_irqrestore(&h->lock, flags);
2307		return -EBUSY;
2308	}
2309	h->busy_configuring = 1;
2310	spin_unlock_irqrestore(&h->lock, flags);
2311
2312	ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2313	if (ld_buff == NULL)
2314		goto mem_msg;
2315
2316	return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2317				      sizeof(ReportLunData_struct),
2318				      0, CTLR_LUNID, TYPE_CMD);
2319
2320	if (return_code == IO_OK)
2321		listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2322	else {	/* reading number of logical volumes failed */
2323		dev_warn(&h->pdev->dev,
2324			"report logical volume command failed\n");
2325		listlength = 0;
2326		goto freeret;
2327	}
2328
2329	num_luns = listlength / 8;	/* 8 bytes per entry */
2330	if (num_luns > CISS_MAX_LUN) {
2331		num_luns = CISS_MAX_LUN;
2332		dev_warn(&h->pdev->dev, "more luns configured"
2333		       " on controller than can be handled by"
2334		       " this driver.\n");
2335	}
2336
2337	if (num_luns == 0)
2338		cciss_add_controller_node(h);
2339
2340	/* Compare controller drive array to driver's drive array
2341	 * to see if any drives are missing on the controller due
2342	 * to action of Array Config Utility (user deletes drive)
2343	 * and deregister logical drives which have disappeared.
2344	 */
2345	for (i = 0; i <= h->highest_lun; i++) {
2346		int j;
2347		drv_found = 0;
2348
2349		/* skip holes in the array from already deleted drives */
2350		if (h->drv[i] == NULL)
2351			continue;
2352
2353		for (j = 0; j < num_luns; j++) {
2354			memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2355			if (memcmp(h->drv[i]->LunID, lunid,
2356				sizeof(lunid)) == 0) {
2357				drv_found = 1;
2358				break;
2359			}
2360		}
2361		if (!drv_found) {
2362			/* Deregister it from the OS, it's gone. */
2363			spin_lock_irqsave(&h->lock, flags);
2364			h->drv[i]->busy_configuring = 1;
2365			spin_unlock_irqrestore(&h->lock, flags);
2366			return_code = deregister_disk(h, i, 1, via_ioctl);
2367			if (h->drv[i] != NULL)
2368				h->drv[i]->busy_configuring = 0;
2369		}
2370	}
2371
2372	/* Compare controller drive array to driver's drive array.
2373	 * Check for updates in the drive information and any new drives
2374	 * on the controller due to ACU adding logical drives, or changing
2375	 * a logical drive's size, etc.  Reregister any new/changed drives
2376	 */
2377	for (i = 0; i < num_luns; i++) {
2378		int j;
2379
2380		drv_found = 0;
2381
2382		memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2383		/* Find if the LUN is already in the drive array
2384		 * of the driver.  If so then update its info
2385		 * if not in use.  If it does not exist then find
2386		 * the first free index and add it.
2387		 */
2388		for (j = 0; j <= h->highest_lun; j++) {
2389			if (h->drv[j] != NULL &&
2390				memcmp(h->drv[j]->LunID, lunid,
2391					sizeof(h->drv[j]->LunID)) == 0) {
2392				drv_index = j;
2393				drv_found = 1;
2394				break;
2395			}
2396		}
2397
2398		/* check if the drive was found already in the array */
2399		if (!drv_found) {
2400			drv_index = cciss_add_gendisk(h, lunid, 0);
2401			if (drv_index == -1)
2402				goto freeret;
2403		}
2404		cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2405	}		/* end for */
2406
2407freeret:
2408	kfree(ld_buff);
2409	h->busy_configuring = 0;
2410	/* We return -1 here to tell the ACU that we have registered/updated
2411	 * all of the drives that we can and to keep it from calling us
2412	 * additional times.
2413	 */
2414	return -1;
2415mem_msg:
2416	dev_err(&h->pdev->dev, "out of memory\n");
2417	h->busy_configuring = 0;
2418	goto freeret;
2419}
2420
2421static void cciss_clear_drive_info(drive_info_struct *drive_info)
2422{
2423	/* zero out the disk size info */
2424	drive_info->nr_blocks = 0;
2425	drive_info->block_size = 0;
2426	drive_info->heads = 0;
2427	drive_info->sectors = 0;
2428	drive_info->cylinders = 0;
2429	drive_info->raid_level = -1;
2430	memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2431	memset(drive_info->model, 0, sizeof(drive_info->model));
2432	memset(drive_info->rev, 0, sizeof(drive_info->rev));
2433	memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2434	/*
2435	 * don't clear the LUNID though, we need to remember which
2436	 * one this one is.
2437	 */
2438}
2439
2440/* This function will deregister the disk and it's queue from the
2441 * kernel.  It must be called with the controller lock held and the
2442 * drv structures busy_configuring flag set.  It's parameters are:
2443 *
2444 * disk = This is the disk to be deregistered
2445 * drv  = This is the drive_info_struct associated with the disk to be
2446 *        deregistered.  It contains information about the disk used
2447 *        by the driver.
2448 * clear_all = This flag determines whether or not the disk information
2449 *             is going to be completely cleared out and the highest_lun
2450 *             reset.  Sometimes we want to clear out information about
2451 *             the disk in preparation for re-adding it.  In this case
2452 *             the highest_lun should be left unchanged and the LunID
2453 *             should not be cleared.
2454 * via_ioctl
2455 *    This indicates whether we've reached this path via ioctl.
2456 *    This affects the maximum usage count allowed for c0d0 to be messed with.
2457 *    If this path is reached via ioctl(), then the max_usage_count will
2458 *    be 1, as the process calling ioctl() has got to have the device open.
2459 *    If we get here via sysfs, then the max usage count will be zero.
2460*/
2461static int deregister_disk(ctlr_info_t *h, int drv_index,
2462			   int clear_all, int via_ioctl)
2463{
2464	int i;
2465	struct gendisk *disk;
2466	drive_info_struct *drv;
2467	int recalculate_highest_lun;
2468
2469	if (!capable(CAP_SYS_RAWIO))
2470		return -EPERM;
2471
2472	drv = h->drv[drv_index];
2473	disk = h->gendisk[drv_index];
2474
2475	/* make sure logical volume is NOT is use */
2476	if (clear_all || (h->gendisk[0] == disk)) {
2477		if (drv->usage_count > via_ioctl)
2478			return -EBUSY;
2479	} else if (drv->usage_count > 0)
2480		return -EBUSY;
2481
2482	recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2483
2484	/* invalidate the devices and deregister the disk.  If it is disk
2485	 * zero do not deregister it but just zero out it's values.  This
2486	 * allows us to delete disk zero but keep the controller registered.
2487	 */
2488	if (h->gendisk[0] != disk) {
2489		struct request_queue *q = disk->queue;
2490		if (disk->flags & GENHD_FL_UP) {
2491			cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2492			del_gendisk(disk);
2493		}
2494		if (q)
2495			blk_cleanup_queue(q);
2496		/* If clear_all is set then we are deleting the logical
2497		 * drive, not just refreshing its info.  For drives
2498		 * other than disk 0 we will call put_disk.  We do not
2499		 * do this for disk 0 as we need it to be able to
2500		 * configure the controller.
2501		 */
2502		if (clear_all){
2503			/* This isn't pretty, but we need to find the
2504			 * disk in our array and NULL our the pointer.
2505			 * This is so that we will call alloc_disk if
2506			 * this index is used again later.
2507			 */
2508			for (i=0; i < CISS_MAX_LUN; i++){
2509				if (h->gendisk[i] == disk) {
2510					h->gendisk[i] = NULL;
2511					break;
2512				}
2513			}
2514			put_disk(disk);
2515		}
2516	} else {
2517		set_capacity(disk, 0);
2518		cciss_clear_drive_info(drv);
2519	}
2520
2521	--h->num_luns;
2522
2523	/* if it was the last disk, find the new hightest lun */
2524	if (clear_all && recalculate_highest_lun) {
2525		int newhighest = -1;
2526		for (i = 0; i <= h->highest_lun; i++) {
2527			/* if the disk has size > 0, it is available */
2528			if (h->drv[i] && h->drv[i]->heads)
2529				newhighest = i;
2530		}
2531		h->highest_lun = newhighest;
2532	}
2533	return 0;
2534}
2535
2536static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2537		size_t size, __u8 page_code, unsigned char *scsi3addr,
2538		int cmd_type)
2539{
2540	u64bit buff_dma_handle;
2541	int status = IO_OK;
2542
2543	c->cmd_type = CMD_IOCTL_PEND;
2544	c->Header.ReplyQueue = 0;
2545	if (buff != NULL) {
2546		c->Header.SGList = 1;
2547		c->Header.SGTotal = 1;
2548	} else {
2549		c->Header.SGList = 0;
2550		c->Header.SGTotal = 0;
2551	}
2552	c->Header.Tag.lower = c->busaddr;
2553	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2554
2555	c->Request.Type.Type = cmd_type;
2556	if (cmd_type == TYPE_CMD) {
2557		switch (cmd) {
2558		case CISS_INQUIRY:
2559			/* are we trying to read a vital product page */
2560			if (page_code != 0) {
2561				c->Request.CDB[1] = 0x01;
2562				c->Request.CDB[2] = page_code;
2563			}
2564			c->Request.CDBLen = 6;
2565			c->Request.Type.Attribute = ATTR_SIMPLE;
2566			c->Request.Type.Direction = XFER_READ;
2567			c->Request.Timeout = 0;
2568			c->Request.CDB[0] = CISS_INQUIRY;
2569			c->Request.CDB[4] = size & 0xFF;
2570			break;
2571		case CISS_REPORT_LOG:
2572		case CISS_REPORT_PHYS:
2573			/* Talking to controller so It's a physical command
2574			   mode = 00 target = 0.  Nothing to write.
2575			 */
2576			c->Request.CDBLen = 12;
2577			c->Request.Type.Attribute = ATTR_SIMPLE;
2578			c->Request.Type.Direction = XFER_READ;
2579			c->Request.Timeout = 0;
2580			c->Request.CDB[0] = cmd;
2581			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2582			c->Request.CDB[7] = (size >> 16) & 0xFF;
2583			c->Request.CDB[8] = (size >> 8) & 0xFF;
2584			c->Request.CDB[9] = size & 0xFF;
2585			break;
2586
2587		case CCISS_READ_CAPACITY:
2588			c->Request.CDBLen = 10;
2589			c->Request.Type.Attribute = ATTR_SIMPLE;
2590			c->Request.Type.Direction = XFER_READ;
2591			c->Request.Timeout = 0;
2592			c->Request.CDB[0] = cmd;
2593			break;
2594		case CCISS_READ_CAPACITY_16:
2595			c->Request.CDBLen = 16;
2596			c->Request.Type.Attribute = ATTR_SIMPLE;
2597			c->Request.Type.Direction = XFER_READ;
2598			c->Request.Timeout = 0;
2599			c->Request.CDB[0] = cmd;
2600			c->Request.CDB[1] = 0x10;
2601			c->Request.CDB[10] = (size >> 24) & 0xFF;
2602			c->Request.CDB[11] = (size >> 16) & 0xFF;
2603			c->Request.CDB[12] = (size >> 8) & 0xFF;
2604			c->Request.CDB[13] = size & 0xFF;
2605			c->Request.Timeout = 0;
2606			c->Request.CDB[0] = cmd;
2607			break;
2608		case CCISS_CACHE_FLUSH:
2609			c->Request.CDBLen = 12;
2610			c->Request.Type.Attribute = ATTR_SIMPLE;
2611			c->Request.Type.Direction = XFER_WRITE;
2612			c->Request.Timeout = 0;
2613			c->Request.CDB[0] = BMIC_WRITE;
2614			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2615			c->Request.CDB[7] = (size >> 8) & 0xFF;
2616			c->Request.CDB[8] = size & 0xFF;
2617			break;
2618		case TEST_UNIT_READY:
2619			c->Request.CDBLen = 6;
2620			c->Request.Type.Attribute = ATTR_SIMPLE;
2621			c->Request.Type.Direction = XFER_NONE;
2622			c->Request.Timeout = 0;
2623			break;
2624		default:
2625			dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2626			return IO_ERROR;
2627		}
2628	} else if (cmd_type == TYPE_MSG) {
2629		switch (cmd) {
2630		case CCISS_ABORT_MSG:
2631			c->Request.CDBLen = 12;
2632			c->Request.Type.Attribute = ATTR_SIMPLE;
2633			c->Request.Type.Direction = XFER_WRITE;
2634			c->Request.Timeout = 0;
2635			c->Request.CDB[0] = cmd;	/* abort */
2636			c->Request.CDB[1] = 0;	/* abort a command */
2637			/* buff contains the tag of the command to abort */
2638			memcpy(&c->Request.CDB[4], buff, 8);
2639			break;
2640		case CCISS_RESET_MSG:
2641			c->Request.CDBLen = 16;
2642			c->Request.Type.Attribute = ATTR_SIMPLE;
2643			c->Request.Type.Direction = XFER_NONE;
2644			c->Request.Timeout = 0;
2645			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2646			c->Request.CDB[0] = cmd;	/* reset */
2647			c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2648			break;
2649		case CCISS_NOOP_MSG:
2650			c->Request.CDBLen = 1;
2651			c->Request.Type.Attribute = ATTR_SIMPLE;
2652			c->Request.Type.Direction = XFER_WRITE;
2653			c->Request.Timeout = 0;
2654			c->Request.CDB[0] = cmd;
2655			break;
2656		default:
2657			dev_warn(&h->pdev->dev,
2658				"unknown message type %d\n", cmd);
2659			return IO_ERROR;
2660		}
2661	} else {
2662		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2663		return IO_ERROR;
2664	}
2665	/* Fill in the scatter gather information */
2666	if (size > 0) {
2667		buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2668							     buff, size,
2669							     PCI_DMA_BIDIRECTIONAL);
2670		c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2671		c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2672		c->SG[0].Len = size;
2673		c->SG[0].Ext = 0;	/* we are not chaining */
2674	}
2675	return status;
2676}
2677
2678static int cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2679			    u8 reset_type)
2680{
2681	CommandList_struct *c;
2682	int return_status;
2683
2684	c = cmd_alloc(h);
2685	if (!c)
2686		return -ENOMEM;
2687	return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2688		CTLR_LUNID, TYPE_MSG);
2689	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2690	if (return_status != IO_OK) {
2691		cmd_special_free(h, c);
2692		return return_status;
2693	}
2694	c->waiting = NULL;
2695	enqueue_cmd_and_start_io(h, c);
2696	/* Don't wait for completion, the reset won't complete.  Don't free
2697	 * the command either.  This is the last command we will send before
2698	 * re-initializing everything, so it doesn't matter and won't leak.
2699	 */
2700	return 0;
2701}
2702
2703static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2704{
2705	switch (c->err_info->ScsiStatus) {
2706	case SAM_STAT_GOOD:
2707		return IO_OK;
2708	case SAM_STAT_CHECK_CONDITION:
2709		switch (0xf & c->err_info->SenseInfo[2]) {
2710		case 0: return IO_OK; /* no sense */
2711		case 1: return IO_OK; /* recovered error */
2712		default:
2713			if (check_for_unit_attention(h, c))
2714				return IO_NEEDS_RETRY;
2715			dev_warn(&h->pdev->dev, "cmd 0x%02x "
2716				"check condition, sense key = 0x%02x\n",
2717				c->Request.CDB[0], c->err_info->SenseInfo[2]);
2718		}
2719		break;
2720	default:
2721		dev_warn(&h->pdev->dev, "cmd 0x%02x"
2722			"scsi status = 0x%02x\n",
2723			c->Request.CDB[0], c->err_info->ScsiStatus);
2724		break;
2725	}
2726	return IO_ERROR;
2727}
2728
2729static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2730{
2731	int return_status = IO_OK;
2732
2733	if (c->err_info->CommandStatus == CMD_SUCCESS)
2734		return IO_OK;
2735
2736	switch (c->err_info->CommandStatus) {
2737	case CMD_TARGET_STATUS:
2738		return_status = check_target_status(h, c);
2739		break;
2740	case CMD_DATA_UNDERRUN:
2741	case CMD_DATA_OVERRUN:
2742		/* expected for inquiry and report lun commands */
2743		break;
2744	case CMD_INVALID:
2745		dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2746		       "reported invalid\n", c->Request.CDB[0]);
2747		return_status = IO_ERROR;
2748		break;
2749	case CMD_PROTOCOL_ERR:
2750		dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2751		       "protocol error\n", c->Request.CDB[0]);
2752		return_status = IO_ERROR;
2753		break;
2754	case CMD_HARDWARE_ERR:
2755		dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2756		       " hardware error\n", c->Request.CDB[0]);
2757		return_status = IO_ERROR;
2758		break;
2759	case CMD_CONNECTION_LOST:
2760		dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2761		       "connection lost\n", c->Request.CDB[0]);
2762		return_status = IO_ERROR;
2763		break;
2764	case CMD_ABORTED:
2765		dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2766		       "aborted\n", c->Request.CDB[0]);
2767		return_status = IO_ERROR;
2768		break;
2769	case CMD_ABORT_FAILED:
2770		dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2771		       "abort failed\n", c->Request.CDB[0]);
2772		return_status = IO_ERROR;
2773		break;
2774	case CMD_UNSOLICITED_ABORT:
2775		dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2776			c->Request.CDB[0]);
2777		return_status = IO_NEEDS_RETRY;
2778		break;
2779	case CMD_UNABORTABLE:
2780		dev_warn(&h->pdev->dev, "cmd unabortable\n");
2781		return_status = IO_ERROR;
2782		break;
2783	default:
2784		dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2785		       "unknown status %x\n", c->Request.CDB[0],
2786		       c->err_info->CommandStatus);
2787		return_status = IO_ERROR;
2788	}
2789	return return_status;
2790}
2791
2792static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2793	int attempt_retry)
2794{
2795	DECLARE_COMPLETION_ONSTACK(wait);
2796	u64bit buff_dma_handle;
2797	int return_status = IO_OK;
2798
2799resend_cmd2:
2800	c->waiting = &wait;
2801	enqueue_cmd_and_start_io(h, c);
2802
2803	wait_for_completion(&wait);
2804
2805	if (c->err_info->CommandStatus == 0 || !attempt_retry)
2806		goto command_done;
2807
2808	return_status = process_sendcmd_error(h, c);
2809
2810	if (return_status == IO_NEEDS_RETRY &&
2811		c->retry_count < MAX_CMD_RETRIES) {
2812		dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2813			c->Request.CDB[0]);
2814		c->retry_count++;
2815		/* erase the old error information */
2816		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2817		return_status = IO_OK;
2818		reinit_completion(&wait);
2819		goto resend_cmd2;
2820	}
2821
2822command_done:
2823	/* unlock the buffers from DMA */
2824	buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2825	buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2826	pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2827			 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2828	return return_status;
2829}
2830
2831static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2832			   __u8 page_code, unsigned char scsi3addr[],
2833			int cmd_type)
2834{
2835	CommandList_struct *c;
2836	int return_status;
2837
2838	c = cmd_special_alloc(h);
2839	if (!c)
2840		return -ENOMEM;
2841	return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2842		scsi3addr, cmd_type);
2843	if (return_status == IO_OK)
2844		return_status = sendcmd_withirq_core(h, c, 1);
2845
2846	cmd_special_free(h, c);
2847	return return_status;
2848}
2849
2850static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2851				   sector_t total_size,
2852				   unsigned int block_size,
2853				   InquiryData_struct *inq_buff,
2854				   drive_info_struct *drv)
2855{
2856	int return_code;
2857	unsigned long t;
2858	unsigned char scsi3addr[8];
2859
2860	memset(inq_buff, 0, sizeof(InquiryData_struct));
2861	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2862	return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2863			sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2864	if (return_code == IO_OK) {
2865		if (inq_buff->data_byte[8] == 0xFF) {
2866			dev_warn(&h->pdev->dev,
2867			       "reading geometry failed, volume "
2868			       "does not support reading geometry\n");
2869			drv->heads = 255;
2870			drv->sectors = 32;	/* Sectors per track */
2871			drv->cylinders = total_size + 1;
2872			drv->raid_level = RAID_UNKNOWN;
2873		} else {
2874			drv->heads = inq_buff->data_byte[6];
2875			drv->sectors = inq_buff->data_byte[7];
2876			drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2877			drv->cylinders += inq_buff->data_byte[5];
2878			drv->raid_level = inq_buff->data_byte[8];
2879		}
2880		drv->block_size = block_size;
2881		drv->nr_blocks = total_size + 1;
2882		t = drv->heads * drv->sectors;
2883		if (t > 1) {
2884			sector_t real_size = total_size + 1;
2885			unsigned long rem = sector_div(real_size, t);
2886			if (rem)
2887				real_size++;
2888			drv->cylinders = real_size;
2889		}
2890	} else {		/* Get geometry failed */
2891		dev_warn(&h->pdev->dev, "reading geometry failed\n");
2892	}
2893}
2894
2895static void
2896cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2897		    unsigned int *block_size)
2898{
2899	ReadCapdata_struct *buf;
2900	int return_code;
2901	unsigned char scsi3addr[8];
2902
2903	buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2904	if (!buf) {
2905		dev_warn(&h->pdev->dev, "out of memory\n");
2906		return;
2907	}
2908
2909	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2910	return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2911		sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2912	if (return_code == IO_OK) {
2913		*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2914		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2915	} else {		/* read capacity command failed */
2916		dev_warn(&h->pdev->dev, "read capacity failed\n");
2917		*total_size = 0;
2918		*block_size = BLOCK_SIZE;
2919	}
2920	kfree(buf);
2921}
2922
2923static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2924	sector_t *total_size, unsigned int *block_size)
2925{
2926	ReadCapdata_struct_16 *buf;
2927	int return_code;
2928	unsigned char scsi3addr[8];
2929
2930	buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2931	if (!buf) {
2932		dev_warn(&h->pdev->dev, "out of memory\n");
2933		return;
2934	}
2935
2936	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2937	return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2938		buf, sizeof(ReadCapdata_struct_16),
2939			0, scsi3addr, TYPE_CMD);
2940	if (return_code == IO_OK) {
2941		*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2942		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2943	} else {		/* read capacity command failed */
2944		dev_warn(&h->pdev->dev, "read capacity failed\n");
2945		*total_size = 0;
2946		*block_size = BLOCK_SIZE;
2947	}
2948	dev_info(&h->pdev->dev, "      blocks= %llu block_size= %d\n",
2949	       (unsigned long long)*total_size+1, *block_size);
2950	kfree(buf);
2951}
2952
2953static int cciss_revalidate(struct gendisk *disk)
2954{
2955	ctlr_info_t *h = get_host(disk);
2956	drive_info_struct *drv = get_drv(disk);
2957	int logvol;
2958	int FOUND = 0;
2959	unsigned int block_size;
2960	sector_t total_size;
2961	InquiryData_struct *inq_buff = NULL;
2962
2963	for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2964		if (!h->drv[logvol])
2965			continue;
2966		if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2967			sizeof(drv->LunID)) == 0) {
2968			FOUND = 1;
2969			break;
2970		}
2971	}
2972
2973	if (!FOUND)
2974		return 1;
2975
2976	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2977	if (inq_buff == NULL) {
2978		dev_warn(&h->pdev->dev, "out of memory\n");
2979		return 1;
2980	}
2981	if (h->cciss_read == CCISS_READ_10) {
2982		cciss_read_capacity(h, logvol,
2983					&total_size, &block_size);
2984	} else {
2985		cciss_read_capacity_16(h, logvol,
2986					&total_size, &block_size);
2987	}
2988	cciss_geometry_inquiry(h, logvol, total_size, block_size,
2989			       inq_buff, drv);
2990
2991	blk_queue_logical_block_size(drv->queue, drv->block_size);
2992	set_capacity(disk, drv->nr_blocks);
2993
2994	kfree(inq_buff);
2995	return 0;
2996}
2997
2998/*
2999 * Map (physical) PCI mem into (virtual) kernel space
3000 */
3001static void __iomem *remap_pci_mem(ulong base, ulong size)
3002{
3003	ulong page_base = ((ulong) base) & PAGE_MASK;
3004	ulong page_offs = ((ulong) base) - page_base;
3005	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3006
3007	return page_remapped ? (page_remapped + page_offs) : NULL;
3008}
3009
3010/*
3011 * Takes jobs of the Q and sends them to the hardware, then puts it on
3012 * the Q to wait for completion.
3013 */
3014static void start_io(ctlr_info_t *h)
3015{
3016	CommandList_struct *c;
3017
3018	while (!list_empty(&h->reqQ)) {
3019		c = list_entry(h->reqQ.next, CommandList_struct, list);
3020		/* can't do anything if fifo is full */
3021		if ((h->access.fifo_full(h))) {
3022			dev_warn(&h->pdev->dev, "fifo full\n");
3023			break;
3024		}
3025
3026		/* Get the first entry from the Request Q */
3027		removeQ(c);
3028		h->Qdepth--;
3029
3030		/* Tell the controller execute command */
3031		h->access.submit_command(h, c);
3032
3033		/* Put job onto the completed Q */
3034		addQ(&h->cmpQ, c);
3035	}
3036}
3037
3038/* Assumes that h->lock is held. */
3039/* Zeros out the error record and then resends the command back */
3040/* to the controller */
3041static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3042{
3043	/* erase the old error information */
3044	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3045
3046	/* add it to software queue and then send it to the controller */
3047	addQ(&h->reqQ, c);
3048	h->Qdepth++;
3049	if (h->Qdepth > h->maxQsinceinit)
3050		h->maxQsinceinit = h->Qdepth;
3051
3052	start_io(h);
3053}
3054
3055static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3056	unsigned int msg_byte, unsigned int host_byte,
3057	unsigned int driver_byte)
3058{
3059	/* inverse of macros in scsi.h */
3060	return (scsi_status_byte & 0xff) |
3061		((msg_byte & 0xff) << 8) |
3062		((host_byte & 0xff) << 16) |
3063		((driver_byte & 0xff) << 24);
3064}
3065
3066static inline int evaluate_target_status(ctlr_info_t *h,
3067			CommandList_struct *cmd, int *retry_cmd)
3068{
3069	unsigned char sense_key;
3070	unsigned char status_byte, msg_byte, host_byte, driver_byte;
3071	int error_value;
3072
3073	*retry_cmd = 0;
3074	/* If we get in here, it means we got "target status", that is, scsi status */
3075	status_byte = cmd->err_info->ScsiStatus;
3076	driver_byte = DRIVER_OK;
3077	msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
3078
3079	if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3080		host_byte = DID_PASSTHROUGH;
3081	else
3082		host_byte = DID_OK;
3083
3084	error_value = make_status_bytes(status_byte, msg_byte,
3085		host_byte, driver_byte);
3086
3087	if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3088		if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3089			dev_warn(&h->pdev->dev, "cmd %p "
3090			       "has SCSI Status 0x%x\n",
3091			       cmd, cmd->err_info->ScsiStatus);
3092		return error_value;
3093	}
3094
3095	/* check the sense key */
3096	sense_key = 0xf & cmd->err_info->SenseInfo[2];
3097	/* no status or recovered error */
3098	if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3099	    (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3100		error_value = 0;
3101
3102	if (check_for_unit_attention(h, cmd)) {
3103		*retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3104		return 0;
3105	}
3106
3107	/* Not SG_IO or similar? */
3108	if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3109		if (error_value != 0)
3110			dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3111			       " sense key = 0x%x\n", cmd, sense_key);
3112		return error_value;
3113	}
3114
3115	/* SG_IO or similar, copy sense data back */
3116	if (cmd->rq->sense) {
3117		if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3118			cmd->rq->sense_len = cmd->err_info->SenseLen;
3119		memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3120			cmd->rq->sense_len);
3121	} else
3122		cmd->rq->sense_len = 0;
3123
3124	return error_value;
3125}
3126
3127/* checks the status of the job and calls complete buffers to mark all
3128 * buffers for the completed job. Note that this function does not need
3129 * to hold the hba/queue lock.
3130 */
3131static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3132				    int timeout)
3133{
3134	int retry_cmd = 0;
3135	struct request *rq = cmd->rq;
3136
3137	rq->errors = 0;
3138
3139	if (timeout)
3140		rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3141
3142	if (cmd->err_info->CommandStatus == 0)	/* no error has occurred */
3143		goto after_error_processing;
3144
3145	switch (cmd->err_info->CommandStatus) {
3146	case CMD_TARGET_STATUS:
3147		rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3148		break;
3149	case CMD_DATA_UNDERRUN:
3150		if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3151			dev_warn(&h->pdev->dev, "cmd %p has"
3152			       " completed with data underrun "
3153			       "reported\n", cmd);
3154			cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3155		}
3156		break;
3157	case CMD_DATA_OVERRUN:
3158		if (cmd->rq->cmd_type == REQ_TYPE_FS)
3159			dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3160			       " completed with data overrun "
3161			       "reported\n", cmd);
3162		break;
3163	case CMD_INVALID:
3164		dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3165		       "reported invalid\n", cmd);
3166		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3167			cmd->err_info->CommandStatus, DRIVER_OK,
3168			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3169				DID_PASSTHROUGH : DID_ERROR);
3170		break;
3171	case CMD_PROTOCOL_ERR:
3172		dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3173		       "protocol error\n", cmd);
3174		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3175			cmd->err_info->CommandStatus, DRIVER_OK,
3176			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3177				DID_PASSTHROUGH : DID_ERROR);
3178		break;
3179	case CMD_HARDWARE_ERR:
3180		dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3181		       " hardware error\n", cmd);
3182		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3183			cmd->err_info->CommandStatus, DRIVER_OK,
3184			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3185				DID_PASSTHROUGH : DID_ERROR);
3186		break;
3187	case CMD_CONNECTION_LOST:
3188		dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3189		       "connection lost\n", cmd);
3190		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3191			cmd->err_info->CommandStatus, DRIVER_OK,
3192			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3193				DID_PASSTHROUGH : DID_ERROR);
3194		break;
3195	case CMD_ABORTED:
3196		dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3197		       "aborted\n", cmd);
3198		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3199			cmd->err_info->CommandStatus, DRIVER_OK,
3200			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3201				DID_PASSTHROUGH : DID_ABORT);
3202		break;
3203	case CMD_ABORT_FAILED:
3204		dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3205		       "abort failed\n", cmd);
3206		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3207			cmd->err_info->CommandStatus, DRIVER_OK,
3208			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3209				DID_PASSTHROUGH : DID_ERROR);
3210		break;
3211	case CMD_UNSOLICITED_ABORT:
3212		dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3213		       "abort %p\n", h->ctlr, cmd);
3214		if (cmd->retry_count < MAX_CMD_RETRIES) {
3215			retry_cmd = 1;
3216			dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3217			cmd->retry_count++;
3218		} else
3219			dev_warn(&h->pdev->dev,
3220				"%p retried too many times\n", cmd);
3221		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3222			cmd->err_info->CommandStatus, DRIVER_OK,
3223			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3224				DID_PASSTHROUGH : DID_ABORT);
3225		break;
3226	case CMD_TIMEOUT:
3227		dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3228		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3229			cmd->err_info->CommandStatus, DRIVER_OK,
3230			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3231				DID_PASSTHROUGH : DID_ERROR);
3232		break;
3233	case CMD_UNABORTABLE:
3234		dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3235		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3236			cmd->err_info->CommandStatus, DRIVER_OK,
3237			cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3238				DID_PASSTHROUGH : DID_ERROR);
3239		break;
3240	default:
3241		dev_warn(&h->pdev->dev, "cmd %p returned "
3242		       "unknown status %x\n", cmd,
3243		       cmd->err_info->CommandStatus);
3244		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3245			cmd->err_info->CommandStatus, DRIVER_OK,
3246			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3247				DID_PASSTHROUGH : DID_ERROR);
3248	}
3249
3250after_error_processing:
3251
3252	/* We need to return this command */
3253	if (retry_cmd) {
3254		resend_cciss_cmd(h, cmd);
3255		return;
3256	}
3257	cmd->rq->completion_data = cmd;
3258	blk_complete_request(cmd->rq);
3259}
3260
3261static inline u32 cciss_tag_contains_index(u32 tag)
3262{
3263#define DIRECT_LOOKUP_BIT 0x10
3264	return tag & DIRECT_LOOKUP_BIT;
3265}
3266
3267static inline u32 cciss_tag_to_index(u32 tag)
3268{
3269#define DIRECT_LOOKUP_SHIFT 5
3270	return tag >> DIRECT_LOOKUP_SHIFT;
3271}
3272
3273static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3274{
3275#define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3276#define CCISS_SIMPLE_ERROR_BITS 0x03
3277	if (likely(h->transMethod & CFGTBL_Trans_Performant))
3278		return tag & ~CCISS_PERF_ERROR_BITS;
3279	return tag & ~CCISS_SIMPLE_ERROR_BITS;
3280}
3281
3282static inline void cciss_mark_tag_indexed(u32 *tag)
3283{
3284	*tag |= DIRECT_LOOKUP_BIT;
3285}
3286
3287static inline void cciss_set_tag_index(u32 *tag, u32 index)
3288{
3289	*tag |= (index << DIRECT_LOOKUP_SHIFT);
3290}
3291
3292/*
3293 * Get a request and submit it to the controller.
3294 */
3295static void do_cciss_request(struct request_queue *q)
3296{
3297	ctlr_info_t *h = q->queuedata;
3298	CommandList_struct *c;
3299	sector_t start_blk;
3300	int seg;
3301	struct request *creq;
3302	u64bit temp64;
3303	struct scatterlist *tmp_sg;
3304	SGDescriptor_struct *curr_sg;
3305	drive_info_struct *drv;
3306	int i, dir;
3307	int sg_index = 0;
3308	int chained = 0;
3309
3310      queue:
3311	creq = blk_peek_request(q);
3312	if (!creq)
3313		goto startio;
3314
3315	BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3316
3317	c = cmd_alloc(h);
3318	if (!c)
3319		goto full;
3320
3321	blk_start_request(creq);
3322
3323	tmp_sg = h->scatter_list[c->cmdindex];
3324	spin_unlock_irq(q->queue_lock);
3325
3326	c->cmd_type = CMD_RWREQ;
3327	c->rq = creq;
3328
3329	/* fill in the request */
3330	drv = creq->rq_disk->private_data;
3331	c->Header.ReplyQueue = 0;	/* unused in simple mode */
3332	/* got command from pool, so use the command block index instead */
3333	/* for direct lookups. */
3334	/* The first 2 bits are reserved for controller error reporting. */
3335	cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3336	cciss_mark_tag_indexed(&c->Header.Tag.lower);
3337	memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3338	c->Request.CDBLen = 10;	/* 12 byte commands not in FW yet; */
3339	c->Request.Type.Type = TYPE_CMD;	/* It is a command. */
3340	c->Request.Type.Attribute = ATTR_SIMPLE;
3341	c->Request.Type.Direction =
3342	    (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3343	c->Request.Timeout = 0;	/* Don't time out */
3344	c->Request.CDB[0] =
3345	    (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3346	start_blk = blk_rq_pos(creq);
3347	dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3348	       (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3349	sg_init_table(tmp_sg, h->maxsgentries);
3350	seg = blk_rq_map_sg(q, creq, tmp_sg);
3351
3352	/* get the DMA records for the setup */
3353	if (c->Request.Type.Direction == XFER_READ)
3354		dir = PCI_DMA_FROMDEVICE;
3355	else
3356		dir = PCI_DMA_TODEVICE;
3357
3358	curr_sg = c->SG;
3359	sg_index = 0;
3360	chained = 0;
3361
3362	for (i = 0; i < seg; i++) {
3363		if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3364			!chained && ((seg - i) > 1)) {
3365			/* Point to next chain block. */
3366			curr_sg = h->cmd_sg_list[c->cmdindex];
3367			sg_index = 0;
3368			chained = 1;
3369		}
3370		curr_sg[sg_index].Len = tmp_sg[i].length;
3371		temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3372						tmp_sg[i].offset,
3373						tmp_sg[i].length, dir);
3374		curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3375		curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3376		curr_sg[sg_index].Ext = 0;  /* we are not chaining */
3377		++sg_index;
3378	}
3379	if (chained)
3380		cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3381			(seg - (h->max_cmd_sgentries - 1)) *
3382				sizeof(SGDescriptor_struct));
3383
3384	/* track how many SG entries we are using */
3385	if (seg > h->maxSG)
3386		h->maxSG = seg;
3387
3388	dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3389			"chained[%d]\n",
3390			blk_rq_sectors(creq), seg, chained);
3391
3392	c->Header.SGTotal = seg + chained;
3393	if (seg <= h->max_cmd_sgentries)
3394		c->Header.SGList = c->Header.SGTotal;
3395	else
3396		c->Header.SGList = h->max_cmd_sgentries;
3397	set_performant_mode(h, c);
3398
3399	if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3400		if(h->cciss_read == CCISS_READ_10) {
3401			c->Request.CDB[1] = 0;
3402			c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3403			c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3404			c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3405			c->Request.CDB[5] = start_blk & 0xff;
3406			c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3407			c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3408			c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3409			c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3410		} else {
3411			u32 upper32 = upper_32_bits(start_blk);
3412
3413			c->Request.CDBLen = 16;
3414			c->Request.CDB[1]= 0;
3415			c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3416			c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3417			c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3418			c->Request.CDB[5]= upper32 & 0xff;
3419			c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3420			c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3421			c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3422			c->Request.CDB[9]= start_blk & 0xff;
3423			c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3424			c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3425			c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3426			c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3427			c->Request.CDB[14] = c->Request.CDB[15] = 0;
3428		}
3429	} else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3430		c->Request.CDBLen = creq->cmd_len;
3431		memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3432	} else {
3433		dev_warn(&h->pdev->dev, "bad request type %d\n",
3434			creq->cmd_type);
3435		BUG();
3436	}
3437
3438	spin_lock_irq(q->queue_lock);
3439
3440	addQ(&h->reqQ, c);
3441	h->Qdepth++;
3442	if (h->Qdepth > h->maxQsinceinit)
3443		h->maxQsinceinit = h->Qdepth;
3444
3445	goto queue;
3446full:
3447	blk_stop_queue(q);
3448startio:
3449	/* We will already have the driver lock here so not need
3450	 * to lock it.
3451	 */
3452	start_io(h);
3453}
3454
3455static inline unsigned long get_next_completion(ctlr_info_t *h)
3456{
3457	return h->access.command_completed(h);
3458}
3459
3460static inline int interrupt_pending(ctlr_info_t *h)
3461{
3462	return h->access.intr_pending(h);
3463}
3464
3465static inline long interrupt_not_for_us(ctlr_info_t *h)
3466{
3467	return ((h->access.intr_pending(h) == 0) ||
3468		(h->interrupts_enabled == 0));
3469}
3470
3471static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3472			u32 raw_tag)
3473{
3474	if (unlikely(tag_index >= h->nr_cmds)) {
3475		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3476		return 1;
3477	}
3478	return 0;
3479}
3480
3481static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3482				u32 raw_tag)
3483{
3484	removeQ(c);
3485	if (likely(c->cmd_type == CMD_RWREQ))
3486		complete_command(h, c, 0);
3487	else if (c->cmd_type == CMD_IOCTL_PEND)
3488		complete(c->waiting);
3489#ifdef CONFIG_CISS_SCSI_TAPE
3490	else if (c->cmd_type == CMD_SCSI)
3491		complete_scsi_command(c, 0, raw_tag);
3492#endif
3493}
3494
3495static inline u32 next_command(ctlr_info_t *h)
3496{
3497	u32 a;
3498
3499	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3500		return h->access.command_completed(h);
3501
3502	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3503		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3504		(h->reply_pool_head)++;
3505		h->commands_outstanding--;
3506	} else {
3507		a = FIFO_EMPTY;
3508	}
3509	/* Check for wraparound */
3510	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3511		h->reply_pool_head = h->reply_pool;
3512		h->reply_pool_wraparound ^= 1;
3513	}
3514	return a;
3515}
3516
3517/* process completion of an indexed ("direct lookup") command */
3518static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3519{
3520	u32 tag_index;
3521	CommandList_struct *c;
3522
3523	tag_index = cciss_tag_to_index(raw_tag);
3524	if (bad_tag(h, tag_index, raw_tag))
3525		return next_command(h);
3526	c = h->cmd_pool + tag_index;
3527	finish_cmd(h, c, raw_tag);
3528	return next_command(h);
3529}
3530
3531/* process completion of a non-indexed command */
3532static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3533{
3534	CommandList_struct *c = NULL;
3535	__u32 busaddr_masked, tag_masked;
3536
3537	tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3538	list_for_each_entry(c, &h->cmpQ, list) {
3539		busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3540		if (busaddr_masked == tag_masked) {
3541			finish_cmd(h, c, raw_tag);
3542			return next_command(h);
3543		}
3544	}
3545	bad_tag(h, h->nr_cmds + 1, raw_tag);
3546	return next_command(h);
3547}
3548
3549/* Some controllers, like p400, will give us one interrupt
3550 * after a soft reset, even if we turned interrupts off.
3551 * Only need to check for this in the cciss_xxx_discard_completions
3552 * functions.
3553 */
3554static int ignore_bogus_interrupt(ctlr_info_t *h)
3555{
3556	if (likely(!reset_devices))
3557		return 0;
3558
3559	if (likely(h->interrupts_enabled))
3560		return 0;
3561
3562	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3563		"(known firmware bug.)  Ignoring.\n");
3564
3565	return 1;
3566}
3567
3568static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3569{
3570	ctlr_info_t *h = dev_id;
3571	unsigned long flags;
3572	u32 raw_tag;
3573
3574	if (ignore_bogus_interrupt(h))
3575		return IRQ_NONE;
3576
3577	if (interrupt_not_for_us(h))
3578		return IRQ_NONE;
3579	spin_lock_irqsave(&h->lock, flags);
3580	while (interrupt_pending(h)) {
3581		raw_tag = get_next_completion(h);
3582		while (raw_tag != FIFO_EMPTY)
3583			raw_tag = next_command(h);
3584	}
3585	spin_unlock_irqrestore(&h->lock, flags);
3586	return IRQ_HANDLED;
3587}
3588
3589static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3590{
3591	ctlr_info_t *h = dev_id;
3592	unsigned long flags;
3593	u32 raw_tag;
3594
3595	if (ignore_bogus_interrupt(h))
3596		return IRQ_NONE;
3597
3598	spin_lock_irqsave(&h->lock, flags);
3599	raw_tag = get_next_completion(h);
3600	while (raw_tag != FIFO_EMPTY)
3601		raw_tag = next_command(h);
3602	spin_unlock_irqrestore(&h->lock, flags);
3603	return IRQ_HANDLED;
3604}
3605
3606static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3607{
3608	ctlr_info_t *h = dev_id;
3609	unsigned long flags;
3610	u32 raw_tag;
3611
3612	if (interrupt_not_for_us(h))
3613		return IRQ_NONE;
3614	spin_lock_irqsave(&h->lock, flags);
3615	while (interrupt_pending(h)) {
3616		raw_tag = get_next_completion(h);
3617		while (raw_tag != FIFO_EMPTY) {
3618			if (cciss_tag_contains_index(raw_tag))
3619				raw_tag = process_indexed_cmd(h, raw_tag);
3620			else
3621				raw_tag = process_nonindexed_cmd(h, raw_tag);
3622		}
3623	}
3624	spin_unlock_irqrestore(&h->lock, flags);
3625	return IRQ_HANDLED;
3626}
3627
3628/* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3629 * check the interrupt pending register because it is not set.
3630 */
3631static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3632{
3633	ctlr_info_t *h = dev_id;
3634	unsigned long flags;
3635	u32 raw_tag;
3636
3637	spin_lock_irqsave(&h->lock, flags);
3638	raw_tag = get_next_completion(h);
3639	while (raw_tag != FIFO_EMPTY) {
3640		if (cciss_tag_contains_index(raw_tag))
3641			raw_tag = process_indexed_cmd(h, raw_tag);
3642		else
3643			raw_tag = process_nonindexed_cmd(h, raw_tag);
3644	}
3645	spin_unlock_irqrestore(&h->lock, flags);
3646	return IRQ_HANDLED;
3647}
3648
3649/**
3650 * add_to_scan_list() - add controller to rescan queue
3651 * @h:		      Pointer to the controller.
3652 *
3653 * Adds the controller to the rescan queue if not already on the queue.
3654 *
3655 * returns 1 if added to the queue, 0 if skipped (could be on the
3656 * queue already, or the controller could be initializing or shutting
3657 * down).
3658 **/
3659static int add_to_scan_list(struct ctlr_info *h)
3660{
3661	struct ctlr_info *test_h;
3662	int found = 0;
3663	int ret = 0;
3664
3665	if (h->busy_initializing)
3666		return 0;
3667
3668	if (!mutex_trylock(&h->busy_shutting_down))
3669		return 0;
3670
3671	mutex_lock(&scan_mutex);
3672	list_for_each_entry(test_h, &scan_q, scan_list) {
3673		if (test_h == h) {
3674			found = 1;
3675			break;
3676		}
3677	}
3678	if (!found && !h->busy_scanning) {
3679		reinit_completion(&h->scan_wait);
3680		list_add_tail(&h->scan_list, &scan_q);
3681		ret = 1;
3682	}
3683	mutex_unlock(&scan_mutex);
3684	mutex_unlock(&h->busy_shutting_down);
3685
3686	return ret;
3687}
3688
3689/**
3690 * remove_from_scan_list() - remove controller from rescan queue
3691 * @h:			   Pointer to the controller.
3692 *
3693 * Removes the controller from the rescan queue if present. Blocks if
3694 * the controller is currently conducting a rescan.  The controller
3695 * can be in one of three states:
3696 * 1. Doesn't need a scan
3697 * 2. On the scan list, but not scanning yet (we remove it)
3698 * 3. Busy scanning (and not on the list). In this case we want to wait for
3699 *    the scan to complete to make sure the scanning thread for this
3700 *    controller is completely idle.
3701 **/
3702static void remove_from_scan_list(struct ctlr_info *h)
3703{
3704	struct ctlr_info *test_h, *tmp_h;
3705
3706	mutex_lock(&scan_mutex);
3707	list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3708		if (test_h == h) { /* state 2. */
3709			list_del(&h->scan_list);
3710			complete_all(&h->scan_wait);
3711			mutex_unlock(&scan_mutex);
3712			return;
3713		}
3714	}
3715	if (h->busy_scanning) { /* state 3. */
3716		mutex_unlock(&scan_mutex);
3717		wait_for_completion(&h->scan_wait);
3718	} else { /* state 1, nothing to do. */
3719		mutex_unlock(&scan_mutex);
3720	}
3721}
3722
3723/**
3724 * scan_thread() - kernel thread used to rescan controllers
3725 * @data:	 Ignored.
3726 *
3727 * A kernel thread used scan for drive topology changes on
3728 * controllers. The thread processes only one controller at a time
3729 * using a queue.  Controllers are added to the queue using
3730 * add_to_scan_list() and removed from the queue either after done
3731 * processing or using remove_from_scan_list().
3732 *
3733 * returns 0.
3734 **/
3735static int scan_thread(void *data)
3736{
3737	struct ctlr_info *h;
3738
3739	while (1) {
3740		set_current_state(TASK_INTERRUPTIBLE);
3741		schedule();
3742		if (kthread_should_stop())
3743			break;
3744
3745		while (1) {
3746			mutex_lock(&scan_mutex);
3747			if (list_empty(&scan_q)) {
3748				mutex_unlock(&scan_mutex);
3749				break;
3750			}
3751
3752			h = list_entry(scan_q.next,
3753				       struct ctlr_info,
3754				       scan_list);
3755			list_del(&h->scan_list);
3756			h->busy_scanning = 1;
3757			mutex_unlock(&scan_mutex);
3758
3759			rebuild_lun_table(h, 0, 0);
3760			complete_all(&h->scan_wait);
3761			mutex_lock(&scan_mutex);
3762			h->busy_scanning = 0;
3763			mutex_unlock(&scan_mutex);
3764		}
3765	}
3766
3767	return 0;
3768}
3769
3770static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3771{
3772	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3773		return 0;
3774
3775	switch (c->err_info->SenseInfo[12]) {
3776	case STATE_CHANGED:
3777		dev_warn(&h->pdev->dev, "a state change "
3778			"detected, command retried\n");
3779		return 1;
3780	break;
3781	case LUN_FAILED:
3782		dev_warn(&h->pdev->dev, "LUN failure "
3783			"detected, action required\n");
3784		return 1;
3785	break;
3786	case REPORT_LUNS_CHANGED:
3787		dev_warn(&h->pdev->dev, "report LUN data changed\n");
3788	/*
3789	 * Here, we could call add_to_scan_list and wake up the scan thread,
3790	 * except that it's quite likely that we will get more than one
3791	 * REPORT_LUNS_CHANGED condition in quick succession, which means
3792	 * that those which occur after the first one will likely happen
3793	 * *during* the scan_thread's rescan.  And the rescan code is not
3794	 * robust enough to restart in the middle, undoing what it has already
3795	 * done, and it's not clear that it's even possible to do this, since
3796	 * part of what it does is notify the block layer, which starts
3797	 * doing it's own i/o to read partition tables and so on, and the
3798	 * driver doesn't have visibility to know what might need undoing.
3799	 * In any event, if possible, it is horribly complicated to get right
3800	 * so we just don't do it for now.
3801	 *
3802	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3803	 */
3804		return 1;
3805	break;
3806	case POWER_OR_RESET:
3807		dev_warn(&h->pdev->dev,
3808			"a power on or device reset detected\n");
3809		return 1;
3810	break;
3811	case UNIT_ATTENTION_CLEARED:
3812		dev_warn(&h->pdev->dev,
3813			"unit attention cleared by another initiator\n");
3814		return 1;
3815	break;
3816	default:
3817		dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3818		return 1;
3819	}
3820}
3821
3822/*
3823 *  We cannot read the structure directly, for portability we must use
3824 *   the io functions.
3825 *   This is for debug only.
3826 */
3827static void print_cfg_table(ctlr_info_t *h)
3828{
3829	int i;
3830	char temp_name[17];
3831	CfgTable_struct *tb = h->cfgtable;
3832
3833	dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3834	dev_dbg(&h->pdev->dev, "------------------------------------\n");
3835	for (i = 0; i < 4; i++)
3836		temp_name[i] = readb(&(tb->Signature[i]));
3837	temp_name[4] = '\0';
3838	dev_dbg(&h->pdev->dev, "   Signature = %s\n", temp_name);
3839	dev_dbg(&h->pdev->dev, "   Spec Number = %d\n",
3840		readl(&(tb->SpecValence)));
3841	dev_dbg(&h->pdev->dev, "   Transport methods supported = 0x%x\n",
3842	       readl(&(tb->TransportSupport)));
3843	dev_dbg(&h->pdev->dev, "   Transport methods active = 0x%x\n",
3844	       readl(&(tb->TransportActive)));
3845	dev_dbg(&h->pdev->dev, "   Requested transport Method = 0x%x\n",
3846	       readl(&(tb->HostWrite.TransportRequest)));
3847	dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Delay = 0x%x\n",
3848	       readl(&(tb->HostWrite.CoalIntDelay)));
3849	dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Count = 0x%x\n",
3850	       readl(&(tb->HostWrite.CoalIntCount)));
3851	dev_dbg(&h->pdev->dev, "   Max outstanding commands = 0x%x\n",
3852	       readl(&(tb->CmdsOutMax)));
3853	dev_dbg(&h->pdev->dev, "   Bus Types = 0x%x\n",
3854		readl(&(tb->BusTypes)));
3855	for (i = 0; i < 16; i++)
3856		temp_name[i] = readb(&(tb->ServerName[i]));
3857	temp_name[16] = '\0';
3858	dev_dbg(&h->pdev->dev, "   Server Name = %s\n", temp_name);
3859	dev_dbg(&h->pdev->dev, "   Heartbeat Counter = 0x%x\n\n\n",
3860		readl(&(tb->HeartBeat)));
3861}
3862
3863static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3864{
3865	int i, offset, mem_type, bar_type;
3866	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3867		return 0;
3868	offset = 0;
3869	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3870		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3871		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3872			offset += 4;
3873		else {
3874			mem_type = pci_resource_flags(pdev, i) &
3875			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3876			switch (mem_type) {
3877			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3878			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3879				offset += 4;	/* 32 bit */
3880				break;
3881			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3882				offset += 8;
3883				break;
3884			default:	/* reserved in PCI 2.2 */
3885				dev_warn(&pdev->dev,
3886				       "Base address is invalid\n");
3887				return -1;
3888				break;
3889			}
3890		}
3891		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3892			return i + 1;
3893	}
3894	return -1;
3895}
3896
3897/* Fill in bucket_map[], given nsgs (the max number of
3898 * scatter gather elements supported) and bucket[],
3899 * which is an array of 8 integers.  The bucket[] array
3900 * contains 8 different DMA transfer sizes (in 16
3901 * byte increments) which the controller uses to fetch
3902 * commands.  This function fills in bucket_map[], which
3903 * maps a given number of scatter gather elements to one of
3904 * the 8 DMA transfer sizes.  The point of it is to allow the
3905 * controller to only do as much DMA as needed to fetch the
3906 * command, with the DMA transfer size encoded in the lower
3907 * bits of the command address.
3908 */
3909static void  calc_bucket_map(int bucket[], int num_buckets,
3910	int nsgs, int *bucket_map)
3911{
3912	int i, j, b, size;
3913
3914	/* even a command with 0 SGs requires 4 blocks */
3915#define MINIMUM_TRANSFER_BLOCKS 4
3916#define NUM_BUCKETS 8
3917	/* Note, bucket_map must have nsgs+1 entries. */
3918	for (i = 0; i <= nsgs; i++) {
3919		/* Compute size of a command with i SG entries */
3920		size = i + MINIMUM_TRANSFER_BLOCKS;
3921		b = num_buckets; /* Assume the biggest bucket */
3922		/* Find the bucket that is just big enough */
3923		for (j = 0; j < 8; j++) {
3924			if (bucket[j] >= size) {
3925				b = j;
3926				break;
3927			}
3928		}
3929		/* for a command with i SG entries, use bucket b. */
3930		bucket_map[i] = b;
3931	}
3932}
3933
3934static void cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3935{
3936	int i;
3937
3938	/* under certain very rare conditions, this can take awhile.
3939	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3940	 * as we enter this code.) */
3941	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3942		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3943			break;
3944		usleep_range(10000, 20000);
3945	}
3946}
3947
3948static void cciss_enter_performant_mode(ctlr_info_t *h, u32 use_short_tags)
3949{
3950	/* This is a bit complicated.  There are 8 registers on
3951	 * the controller which we write to to tell it 8 different
3952	 * sizes of commands which there may be.  It's a way of
3953	 * reducing the DMA done to fetch each command.  Encoded into
3954	 * each command's tag are 3 bits which communicate to the controller
3955	 * which of the eight sizes that command fits within.  The size of
3956	 * each command depends on how many scatter gather entries there are.
3957	 * Each SG entry requires 16 bytes.  The eight registers are programmed
3958	 * with the number of 16-byte blocks a command of that size requires.
3959	 * The smallest command possible requires 5 such 16 byte blocks.
3960	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3961	 * blocks.  Note, this only extends to the SG entries contained
3962	 * within the command block, and does not extend to chained blocks
3963	 * of SG elements.   bft[] contains the eight values we write to
3964	 * the registers.  They are not evenly distributed, but have more
3965	 * sizes for small commands, and fewer sizes for larger commands.
3966	 */
3967	__u32 trans_offset;
3968	int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3969			/*
3970			 *  5 = 1 s/g entry or 4k
3971			 *  6 = 2 s/g entry or 8k
3972			 *  8 = 4 s/g entry or 16k
3973			 * 10 = 6 s/g entry or 24k
3974			 */
3975	unsigned long register_value;
3976	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3977
3978	h->reply_pool_wraparound = 1; /* spec: init to 1 */
3979
3980	/* Controller spec: zero out this buffer. */
3981	memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3982	h->reply_pool_head = h->reply_pool;
3983
3984	trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3985	calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3986				h->blockFetchTable);
3987	writel(bft[0], &h->transtable->BlockFetch0);
3988	writel(bft[1], &h->transtable->BlockFetch1);
3989	writel(bft[2], &h->transtable->BlockFetch2);
3990	writel(bft[3], &h->transtable->BlockFetch3);
3991	writel(bft[4], &h->transtable->BlockFetch4);
3992	writel(bft[5], &h->transtable->BlockFetch5);
3993	writel(bft[6], &h->transtable->BlockFetch6);
3994	writel(bft[7], &h->transtable->BlockFetch7);
3995
3996	/* size of controller ring buffer */
3997	writel(h->max_commands, &h->transtable->RepQSize);
3998	writel(1, &h->transtable->RepQCount);
3999	writel(0, &h->transtable->RepQCtrAddrLow32);
4000	writel(0, &h->transtable->RepQCtrAddrHigh32);
4001	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4002	writel(0, &h->transtable->RepQAddr0High32);
4003	writel(CFGTBL_Trans_Performant | use_short_tags,
4004			&(h->cfgtable->HostWrite.TransportRequest));
4005
4006	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4007	cciss_wait_for_mode_change_ack(h);
4008	register_value = readl(&(h->cfgtable->TransportActive));
4009	if (!(register_value & CFGTBL_Trans_Performant))
4010		dev_warn(&h->pdev->dev, "cciss: unable to get board into"
4011					" performant mode\n");
4012}
4013
4014static void cciss_put_controller_into_performant_mode(ctlr_info_t *h)
4015{
4016	__u32 trans_support;
4017
4018	if (cciss_simple_mode)
4019		return;
4020
4021	dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
4022	/* Attempt to put controller into performant mode if supported */
4023	/* Does board support performant mode? */
4024	trans_support = readl(&(h->cfgtable->TransportSupport));
4025	if (!(trans_support & PERFORMANT_MODE))
4026		return;
4027
4028	dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
4029	/* Performant mode demands commands on a 32 byte boundary
4030	 * pci_alloc_consistent aligns on page boundarys already.
4031	 * Just need to check if divisible by 32
4032	 */
4033	if ((sizeof(CommandList_struct) % 32) != 0) {
4034		dev_warn(&h->pdev->dev, "%s %d %s\n",
4035			"cciss info: command size[",
4036			(int)sizeof(CommandList_struct),
4037			"] not divisible by 32, no performant mode..\n");
4038		return;
4039	}
4040
4041	/* Performant mode ring buffer and supporting data structures */
4042	h->reply_pool = (__u64 *)pci_alloc_consistent(
4043		h->pdev, h->max_commands * sizeof(__u64),
4044		&(h->reply_pool_dhandle));
4045
4046	/* Need a block fetch table for performant mode */
4047	h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4048		sizeof(__u32)), GFP_KERNEL);
4049
4050	if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4051		goto clean_up;
4052
4053	cciss_enter_performant_mode(h,
4054		trans_support & CFGTBL_Trans_use_short_tags);
4055
4056	/* Change the access methods to the performant access methods */
4057	h->access = SA5_performant_access;
4058	h->transMethod = CFGTBL_Trans_Performant;
4059
4060	return;
4061clean_up:
4062	kfree(h->blockFetchTable);
4063	if (h->reply_pool)
4064		pci_free_consistent(h->pdev,
4065				h->max_commands * sizeof(__u64),
4066				h->reply_pool,
4067				h->reply_pool_dhandle);
4068	return;
4069
4070} /* cciss_put_controller_into_performant_mode */
4071
4072/* If MSI/MSI-X is supported by the kernel we will try to enable it on
4073 * controllers that are capable. If not, we use IO-APIC mode.
4074 */
4075
4076static void cciss_interrupt_mode(ctlr_info_t *h)
4077{
4078#ifdef CONFIG_PCI_MSI
4079	int err;
4080	struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4081	{0, 2}, {0, 3}
4082	};
4083
4084	/* Some boards advertise MSI but don't really support it */
4085	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4086	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4087		goto default_int_mode;
4088
4089	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4090		err = pci_enable_msix_exact(h->pdev, cciss_msix_entries, 4);
4091		if (!err) {
4092			h->intr[0] = cciss_msix_entries[0].vector;
4093			h->intr[1] = cciss_msix_entries[1].vector;
4094			h->intr[2] = cciss_msix_entries[2].vector;
4095			h->intr[3] = cciss_msix_entries[3].vector;
4096			h->msix_vector = 1;
4097			return;
4098		} else {
4099			dev_warn(&h->pdev->dev,
4100				"MSI-X init failed %d\n", err);
4101		}
4102	}
4103	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4104		if (!pci_enable_msi(h->pdev))
4105			h->msi_vector = 1;
4106		else
4107			dev_warn(&h->pdev->dev, "MSI init failed\n");
4108	}
4109default_int_mode:
4110#endif				/* CONFIG_PCI_MSI */
4111	/* if we get here we're going to use the default interrupt mode */
4112	h->intr[h->intr_mode] = h->pdev->irq;
4113	return;
4114}
4115
4116static int cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4117{
4118	int i;
4119	u32 subsystem_vendor_id, subsystem_device_id;
4120
4121	subsystem_vendor_id = pdev->subsystem_vendor;
4122	subsystem_device_id = pdev->subsystem_device;
4123	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4124			subsystem_vendor_id;
4125
4126	for (i = 0; i < ARRAY_SIZE(products); i++) {
4127		/* Stand aside for hpsa driver on request */
4128		if (cciss_allow_hpsa)
4129			return -ENODEV;
4130		if (*board_id == products[i].board_id)
4131			return i;
4132	}
4133	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4134		*board_id);
4135	return -ENODEV;
4136}
4137
4138static inline bool cciss_board_disabled(ctlr_info_t *h)
4139{
4140	u16 command;
4141
4142	(void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4143	return ((command & PCI_COMMAND_MEMORY) == 0);
4144}
4145
4146static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4147				     unsigned long *memory_bar)
4148{
4149	int i;
4150
4151	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4152		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4153			/* addressing mode bits already removed */
4154			*memory_bar = pci_resource_start(pdev, i);
4155			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4156				*memory_bar);
4157			return 0;
4158		}
4159	dev_warn(&pdev->dev, "no memory BAR found\n");
4160	return -ENODEV;
4161}
4162
4163static int cciss_wait_for_board_state(struct pci_dev *pdev,
4164				      void __iomem *vaddr, int wait_for_ready)
4165#define BOARD_READY 1
4166#define BOARD_NOT_READY 0
4167{
4168	int i, iterations;
4169	u32 scratchpad;
4170
4171	if (wait_for_ready)
4172		iterations = CCISS_BOARD_READY_ITERATIONS;
4173	else
4174		iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4175
4176	for (i = 0; i < iterations; i++) {
4177		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4178		if (wait_for_ready) {
4179			if (scratchpad == CCISS_FIRMWARE_READY)
4180				return 0;
4181		} else {
4182			if (scratchpad != CCISS_FIRMWARE_READY)
4183				return 0;
4184		}
4185		msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4186	}
4187	dev_warn(&pdev->dev, "board not ready, timed out.\n");
4188	return -ENODEV;
4189}
4190
4191static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4192				u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4193				u64 *cfg_offset)
4194{
4195	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4196	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4197	*cfg_base_addr &= (u32) 0x0000ffff;
4198	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4199	if (*cfg_base_addr_index == -1) {
4200		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4201			"*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4202		return -ENODEV;
4203	}
4204	return 0;
4205}
4206
4207static int cciss_find_cfgtables(ctlr_info_t *h)
4208{
4209	u64 cfg_offset;
4210	u32 cfg_base_addr;
4211	u64 cfg_base_addr_index;
4212	u32 trans_offset;
4213	int rc;
4214
4215	rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4216		&cfg_base_addr_index, &cfg_offset);
4217	if (rc)
4218		return rc;
4219	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4220		cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4221	if (!h->cfgtable)
4222		return -ENOMEM;
4223	rc = write_driver_ver_to_cfgtable(h->cfgtable);
4224	if (rc)
4225		return rc;
4226	/* Find performant mode table. */
4227	trans_offset = readl(&h->cfgtable->TransMethodOffset);
4228	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4229				cfg_base_addr_index)+cfg_offset+trans_offset,
4230				sizeof(*h->transtable));
4231	if (!h->transtable)
4232		return -ENOMEM;
4233	return 0;
4234}
4235
4236static void cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4237{
4238	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4239
4240	/* Limit commands in memory limited kdump scenario. */
4241	if (reset_devices && h->max_commands > 32)
4242		h->max_commands = 32;
4243
4244	if (h->max_commands < 16) {
4245		dev_warn(&h->pdev->dev, "Controller reports "
4246			"max supported commands of %d, an obvious lie. "
4247			"Using 16.  Ensure that firmware is up to date.\n",
4248			h->max_commands);
4249		h->max_commands = 16;
4250	}
4251}
4252
4253/* Interrogate the hardware for some limits:
4254 * max commands, max SG elements without chaining, and with chaining,
4255 * SG chain block size, etc.
4256 */
4257static void cciss_find_board_params(ctlr_info_t *h)
4258{
4259	cciss_get_max_perf_mode_cmds(h);
4260	h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4261	h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4262	/*
4263	 * The P600 may exhibit poor performnace under some workloads
4264	 * if we use the value in the configuration table. Limit this
4265	 * controller to MAXSGENTRIES (32) instead.
4266	 */
4267	if (h->board_id == 0x3225103C)
4268		h->maxsgentries = MAXSGENTRIES;
4269	/*
4270	 * Limit in-command s/g elements to 32 save dma'able memory.
4271	 * Howvever spec says if 0, use 31
4272	 */
4273	h->max_cmd_sgentries = 31;
4274	if (h->maxsgentries > 512) {
4275		h->max_cmd_sgentries = 32;
4276		h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4277		h->maxsgentries--; /* save one for chain pointer */
4278	} else {
4279		h->maxsgentries = 31; /* default to traditional values */
4280		h->chainsize = 0;
4281	}
4282}
4283
4284static inline bool CISS_signature_present(ctlr_info_t *h)
4285{
4286	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4287		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4288		return false;
4289	}
4290	return true;
4291}
4292
4293/* Need to enable prefetch in the SCSI core for 6400 in x86 */
4294static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4295{
4296#ifdef CONFIG_X86
4297	u32 prefetch;
4298
4299	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4300	prefetch |= 0x100;
4301	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4302#endif
4303}
4304
4305/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4306 * in a prefetch beyond physical memory.
4307 */
4308static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4309{
4310	u32 dma_prefetch;
4311	__u32 dma_refetch;
4312
4313	if (h->board_id != 0x3225103C)
4314		return;
4315	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4316	dma_prefetch |= 0x8000;
4317	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4318	pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4319	dma_refetch |= 0x1;
4320	pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4321}
4322
4323static int cciss_pci_init(ctlr_info_t *h)
4324{
4325	int prod_index, err;
4326
4327	prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4328	if (prod_index < 0)
4329		return -ENODEV;
4330	h->product_name = products[prod_index].product_name;
4331	h->access = *(products[prod_index].access);
4332
4333	if (cciss_board_disabled(h)) {
4334		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4335		return -ENODEV;
4336	}
4337
4338	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4339				PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4340
4341	err = pci_enable_device(h->pdev);
4342	if (err) {
4343		dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4344		return err;
4345	}
4346
4347	err = pci_request_regions(h->pdev, "cciss");
4348	if (err) {
4349		dev_warn(&h->pdev->dev,
4350			"Cannot obtain PCI resources, aborting\n");
4351		return err;
4352	}
4353
4354	dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4355	dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4356
4357/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4358 * else we use the IO-APIC interrupt assigned to us by system ROM.
4359 */
4360	cciss_interrupt_mode(h);
4361	err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4362	if (err)
4363		goto err_out_free_res;
4364	h->vaddr = remap_pci_mem(h->paddr, 0x250);
4365	if (!h->vaddr) {
4366		err = -ENOMEM;
4367		goto err_out_free_res;
4368	}
4369	err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4370	if (err)
4371		goto err_out_free_res;
4372	err = cciss_find_cfgtables(h);
4373	if (err)
4374		goto err_out_free_res;
4375	print_cfg_table(h);
4376	cciss_find_board_params(h);
4377
4378	if (!CISS_signature_present(h)) {
4379		err = -ENODEV;
4380		goto err_out_free_res;
4381	}
4382	cciss_enable_scsi_prefetch(h);
4383	cciss_p600_dma_prefetch_quirk(h);
4384	err = cciss_enter_simple_mode(h);
4385	if (err)
4386		goto err_out_free_res;
4387	cciss_put_controller_into_performant_mode(h);
4388	return 0;
4389
4390err_out_free_res:
4391	/*
4392	 * Deliberately omit pci_disable_device(): it does something nasty to
4393	 * Smart Array controllers that pci_enable_device does not undo
4394	 */
4395	if (h->transtable)
4396		iounmap(h->transtable);
4397	if (h->cfgtable)
4398		iounmap(h->cfgtable);
4399	if (h->vaddr)
4400		iounmap(h->vaddr);
4401	pci_release_regions(h->pdev);
4402	return err;
4403}
4404
4405/* Function to find the first free pointer into our hba[] array
4406 * Returns -1 if no free entries are left.
4407 */
4408static int alloc_cciss_hba(struct pci_dev *pdev)
4409{
4410	int i;
4411
4412	for (i = 0; i < MAX_CTLR; i++) {
4413		if (!hba[i]) {
4414			ctlr_info_t *h;
4415
4416			h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4417			if (!h)
4418				goto Enomem;
4419			hba[i] = h;
4420			return i;
4421		}
4422	}
4423	dev_warn(&pdev->dev, "This driver supports a maximum"
4424	       " of %d controllers.\n", MAX_CTLR);
4425	return -1;
4426Enomem:
4427	dev_warn(&pdev->dev, "out of memory.\n");
4428	return -1;
4429}
4430
4431static void free_hba(ctlr_info_t *h)
4432{
4433	int i;
4434
4435	hba[h->ctlr] = NULL;
4436	for (i = 0; i < h->highest_lun + 1; i++)
4437		if (h->gendisk[i] != NULL)
4438			put_disk(h->gendisk[i]);
4439	kfree(h);
4440}
4441
4442/* Send a message CDB to the firmware. */
4443static int cciss_message(struct pci_dev *pdev, unsigned char opcode,
4444			 unsigned char type)
4445{
4446	typedef struct {
4447		CommandListHeader_struct CommandHeader;
4448		RequestBlock_struct Request;
4449		ErrDescriptor_struct ErrorDescriptor;
4450	} Command;
4451	static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4452	Command *cmd;
4453	dma_addr_t paddr64;
4454	uint32_t paddr32, tag;
4455	void __iomem *vaddr;
4456	int i, err;
4457
4458	vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4459	if (vaddr == NULL)
4460		return -ENOMEM;
4461
4462	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
4463	   CCISS commands, so they must be allocated from the lower 4GiB of
4464	   memory. */
4465	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4466	if (err) {
4467		iounmap(vaddr);
4468		return -ENOMEM;
4469	}
4470
4471	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4472	if (cmd == NULL) {
4473		iounmap(vaddr);
4474		return -ENOMEM;
4475	}
4476
4477	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
4478	   although there's no guarantee, we assume that the address is at
4479	   least 4-byte aligned (most likely, it's page-aligned). */
4480	paddr32 = paddr64;
4481
4482	cmd->CommandHeader.ReplyQueue = 0;
4483	cmd->CommandHeader.SGList = 0;
4484	cmd->CommandHeader.SGTotal = 0;
4485	cmd->CommandHeader.Tag.lower = paddr32;
4486	cmd->CommandHeader.Tag.upper = 0;
4487	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4488
4489	cmd->Request.CDBLen = 16;
4490	cmd->Request.Type.Type = TYPE_MSG;
4491	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4492	cmd->Request.Type.Direction = XFER_NONE;
4493	cmd->Request.Timeout = 0; /* Don't time out */
4494	cmd->Request.CDB[0] = opcode;
4495	cmd->Request.CDB[1] = type;
4496	memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4497
4498	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4499	cmd->ErrorDescriptor.Addr.upper = 0;
4500	cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4501
4502	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4503
4504	for (i = 0; i < 10; i++) {
4505		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4506		if ((tag & ~3) == paddr32)
4507			break;
4508		msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4509	}
4510
4511	iounmap(vaddr);
4512
4513	/* we leak the DMA buffer here ... no choice since the controller could
4514	   still complete the command. */
4515	if (i == 10) {
4516		dev_err(&pdev->dev,
4517			"controller message %02x:%02x timed out\n",
4518			opcode, type);
4519		return -ETIMEDOUT;
4520	}
4521
4522	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4523
4524	if (tag & 2) {
4525		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4526			opcode, type);
4527		return -EIO;
4528	}
4529
4530	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4531		opcode, type);
4532	return 0;
4533}
4534
4535#define cciss_noop(p) cciss_message(p, 3, 0)
4536
4537static int cciss_controller_hard_reset(struct pci_dev *pdev,
4538	void * __iomem vaddr, u32 use_doorbell)
4539{
4540	u16 pmcsr;
4541	int pos;
4542
4543	if (use_doorbell) {
4544		/* For everything after the P600, the PCI power state method
4545		 * of resetting the controller doesn't work, so we have this
4546		 * other way using the doorbell register.
4547		 */
4548		dev_info(&pdev->dev, "using doorbell to reset controller\n");
4549		writel(use_doorbell, vaddr + SA5_DOORBELL);
4550	} else { /* Try to do it the PCI power state way */
4551
4552		/* Quoting from the Open CISS Specification: "The Power
4553		 * Management Control/Status Register (CSR) controls the power
4554		 * state of the device.  The normal operating state is D0,
4555		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4556		 * the controller, place the interface device in D3 then to D0,
4557		 * this causes a secondary PCI reset which will reset the
4558		 * controller." */
4559
4560		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4561		if (pos == 0) {
4562			dev_err(&pdev->dev,
4563				"cciss_controller_hard_reset: "
4564				"PCI PM not supported\n");
4565			return -ENODEV;
4566		}
4567		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4568		/* enter the D3hot power management state */
4569		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4570		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4571		pmcsr |= PCI_D3hot;
4572		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4573
4574		msleep(500);
4575
4576		/* enter the D0 power management state */
4577		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4578		pmcsr |= PCI_D0;
4579		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4580
4581		/*
4582		 * The P600 requires a small delay when changing states.
4583		 * Otherwise we may think the board did not reset and we bail.
4584		 * This for kdump only and is particular to the P600.
4585		 */
4586		msleep(500);
4587	}
4588	return 0;
4589}
4590
4591static void init_driver_version(char *driver_version, int len)
4592{
4593	memset(driver_version, 0, len);
4594	strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4595}
4596
4597static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable)
4598{
4599	char *driver_version;
4600	int i, size = sizeof(cfgtable->driver_version);
4601
4602	driver_version = kmalloc(size, GFP_KERNEL);
4603	if (!driver_version)
4604		return -ENOMEM;
4605
4606	init_driver_version(driver_version, size);
4607	for (i = 0; i < size; i++)
4608		writeb(driver_version[i], &cfgtable->driver_version[i]);
4609	kfree(driver_version);
4610	return 0;
4611}
4612
4613static void read_driver_ver_from_cfgtable(CfgTable_struct __iomem *cfgtable,
4614					  unsigned char *driver_ver)
4615{
4616	int i;
4617
4618	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4619		driver_ver[i] = readb(&cfgtable->driver_version[i]);
4620}
4621
4622static int controller_reset_failed(CfgTable_struct __iomem *cfgtable)
4623{
4624
4625	char *driver_ver, *old_driver_ver;
4626	int rc, size = sizeof(cfgtable->driver_version);
4627
4628	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4629	if (!old_driver_ver)
4630		return -ENOMEM;
4631	driver_ver = old_driver_ver + size;
4632
4633	/* After a reset, the 32 bytes of "driver version" in the cfgtable
4634	 * should have been changed, otherwise we know the reset failed.
4635	 */
4636	init_driver_version(old_driver_ver, size);
4637	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4638	rc = !memcmp(driver_ver, old_driver_ver, size);
4639	kfree(old_driver_ver);
4640	return rc;
4641}
4642
4643/* This does a hard reset of the controller using PCI power management
4644 * states or using the doorbell register. */
4645static int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4646{
4647	u64 cfg_offset;
4648	u32 cfg_base_addr;
4649	u64 cfg_base_addr_index;
4650	void __iomem *vaddr;
4651	unsigned long paddr;
4652	u32 misc_fw_support;
4653	int rc;
4654	CfgTable_struct __iomem *cfgtable;
4655	u32 use_doorbell;
4656	u32 board_id;
4657	u16 command_register;
4658
4659	/* For controllers as old a the p600, this is very nearly
4660	 * the same thing as
4661	 *
4662	 * pci_save_state(pci_dev);
4663	 * pci_set_power_state(pci_dev, PCI_D3hot);
4664	 * pci_set_power_state(pci_dev, PCI_D0);
4665	 * pci_restore_state(pci_dev);
4666	 *
4667	 * For controllers newer than the P600, the pci power state
4668	 * method of resetting doesn't work so we have another way
4669	 * using the doorbell register.
4670	 */
4671
4672	/* Exclude 640x boards.  These are two pci devices in one slot
4673	 * which share a battery backed cache module.  One controls the
4674	 * cache, the other accesses the cache through the one that controls
4675	 * it.  If we reset the one controlling the cache, the other will
4676	 * likely not be happy.  Just forbid resetting this conjoined mess.
4677	 */
4678	cciss_lookup_board_id(pdev, &board_id);
4679	if (!ctlr_is_resettable(board_id)) {
4680		dev_warn(&pdev->dev, "Controller not resettable\n");
4681		return -ENODEV;
4682	}
4683
4684	/* if controller is soft- but not hard resettable... */
4685	if (!ctlr_is_hard_resettable(board_id))
4686		return -ENOTSUPP; /* try soft reset later. */
4687
4688	/* Save the PCI command register */
4689	pci_read_config_word(pdev, 4, &command_register);
4690	/* Turn the board off.  This is so that later pci_restore_state()
4691	 * won't turn the board on before the rest of config space is ready.
4692	 */
4693	pci_disable_device(pdev);
4694	pci_save_state(pdev);
4695
4696	/* find the first memory BAR, so we can find the cfg table */
4697	rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4698	if (rc)
4699		return rc;
4700	vaddr = remap_pci_mem(paddr, 0x250);
4701	if (!vaddr)
4702		return -ENOMEM;
4703
4704	/* find cfgtable in order to check if reset via doorbell is supported */
4705	rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4706					&cfg_base_addr_index, &cfg_offset);
4707	if (rc)
4708		goto unmap_vaddr;
4709	cfgtable = remap_pci_mem(pci_resource_start(pdev,
4710		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4711	if (!cfgtable) {
4712		rc = -ENOMEM;
4713		goto unmap_vaddr;
4714	}
4715	rc = write_driver_ver_to_cfgtable(cfgtable);
4716	if (rc)
4717		goto unmap_vaddr;
4718
4719	/* If reset via doorbell register is supported, use that.
4720	 * There are two such methods.  Favor the newest method.
4721	 */
4722	misc_fw_support = readl(&cfgtable->misc_fw_support);
4723	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4724	if (use_doorbell) {
4725		use_doorbell = DOORBELL_CTLR_RESET2;
4726	} else {
4727		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4728		if (use_doorbell) {
4729			dev_warn(&pdev->dev, "Controller claims that "
4730				"'Bit 2 doorbell reset' is "
4731				"supported, but not 'bit 5 doorbell reset'.  "
4732				"Firmware update is recommended.\n");
4733			rc = -ENOTSUPP; /* use the soft reset */
4734			goto unmap_cfgtable;
4735		}
4736	}
4737
4738	rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4739	if (rc)
4740		goto unmap_cfgtable;
4741	pci_restore_state(pdev);
4742	rc = pci_enable_device(pdev);
4743	if (rc) {
4744		dev_warn(&pdev->dev, "failed to enable device.\n");
4745		goto unmap_cfgtable;
4746	}
4747	pci_write_config_word(pdev, 4, command_register);
4748
4749	/* Some devices (notably the HP Smart Array 5i Controller)
4750	   need a little pause here */
4751	msleep(CCISS_POST_RESET_PAUSE_MSECS);
4752
4753	/* Wait for board to become not ready, then ready. */
4754	dev_info(&pdev->dev, "Waiting for board to reset.\n");
4755	rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4756	if (rc) {
4757		dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4758				"  Will try soft reset.\n");
4759		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4760		goto unmap_cfgtable;
4761	}
4762	rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4763	if (rc) {
4764		dev_warn(&pdev->dev,
4765			"failed waiting for board to become ready "
4766			"after hard reset\n");
4767		goto unmap_cfgtable;
4768	}
4769
4770	rc = controller_reset_failed(vaddr);
4771	if (rc < 0)
4772		goto unmap_cfgtable;
4773	if (rc) {
4774		dev_warn(&pdev->dev, "Unable to successfully hard reset "
4775			"controller. Will try soft reset.\n");
4776		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4777	} else {
4778		dev_info(&pdev->dev, "Board ready after hard reset.\n");
4779	}
4780
4781unmap_cfgtable:
4782	iounmap(cfgtable);
4783
4784unmap_vaddr:
4785	iounmap(vaddr);
4786	return rc;
4787}
4788
4789static int cciss_init_reset_devices(struct pci_dev *pdev)
4790{
4791	int rc, i;
4792
4793	if (!reset_devices)
4794		return 0;
4795
4796	/* Reset the controller with a PCI power-cycle or via doorbell */
4797	rc = cciss_kdump_hard_reset_controller(pdev);
4798
4799	/* -ENOTSUPP here means we cannot reset the controller
4800	 * but it's already (and still) up and running in
4801	 * "performant mode".  Or, it might be 640x, which can't reset
4802	 * due to concerns about shared bbwc between 6402/6404 pair.
4803	 */
4804	if (rc == -ENOTSUPP)
4805		return rc; /* just try to do the kdump anyhow. */
4806	if (rc)
4807		return -ENODEV;
4808
4809	/* Now try to get the controller to respond to a no-op */
4810	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4811	for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4812		if (cciss_noop(pdev) == 0)
4813			break;
4814		else
4815			dev_warn(&pdev->dev, "no-op failed%s\n",
4816				(i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4817					"; re-trying" : ""));
4818		msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4819	}
4820	return 0;
4821}
4822
4823static int cciss_allocate_cmd_pool(ctlr_info_t *h)
4824{
4825	h->cmd_pool_bits = kmalloc(BITS_TO_LONGS(h->nr_cmds) *
4826		sizeof(unsigned long), GFP_KERNEL);
4827	h->cmd_pool = pci_alloc_consistent(h->pdev,
4828		h->nr_cmds * sizeof(CommandList_struct),
4829		&(h->cmd_pool_dhandle));
4830	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4831		h->nr_cmds * sizeof(ErrorInfo_struct),
4832		&(h->errinfo_pool_dhandle));
4833	if ((h->cmd_pool_bits == NULL)
4834		|| (h->cmd_pool == NULL)
4835		|| (h->errinfo_pool == NULL)) {
4836		dev_err(&h->pdev->dev, "out of memory");
4837		return -ENOMEM;
4838	}
4839	return 0;
4840}
4841
4842static int cciss_allocate_scatterlists(ctlr_info_t *h)
4843{
4844	int i;
4845
4846	/* zero it, so that on free we need not know how many were alloc'ed */
4847	h->scatter_list = kzalloc(h->max_commands *
4848				sizeof(struct scatterlist *), GFP_KERNEL);
4849	if (!h->scatter_list)
4850		return -ENOMEM;
4851
4852	for (i = 0; i < h->nr_cmds; i++) {
4853		h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4854						h->maxsgentries, GFP_KERNEL);
4855		if (h->scatter_list[i] == NULL) {
4856			dev_err(&h->pdev->dev, "could not allocate "
4857				"s/g lists\n");
4858			return -ENOMEM;
4859		}
4860	}
4861	return 0;
4862}
4863
4864static void cciss_free_scatterlists(ctlr_info_t *h)
4865{
4866	int i;
4867
4868	if (h->scatter_list) {
4869		for (i = 0; i < h->nr_cmds; i++)
4870			kfree(h->scatter_list[i]);
4871		kfree(h->scatter_list);
4872	}
4873}
4874
4875static void cciss_free_cmd_pool(ctlr_info_t *h)
4876{
4877	kfree(h->cmd_pool_bits);
4878	if (h->cmd_pool)
4879		pci_free_consistent(h->pdev,
4880			h->nr_cmds * sizeof(CommandList_struct),
4881			h->cmd_pool, h->cmd_pool_dhandle);
4882	if (h->errinfo_pool)
4883		pci_free_consistent(h->pdev,
4884			h->nr_cmds * sizeof(ErrorInfo_struct),
4885			h->errinfo_pool, h->errinfo_pool_dhandle);
4886}
4887
4888static int cciss_request_irq(ctlr_info_t *h,
4889	irqreturn_t (*msixhandler)(int, void *),
4890	irqreturn_t (*intxhandler)(int, void *))
4891{
4892	if (h->msix_vector || h->msi_vector) {
4893		if (!request_irq(h->intr[h->intr_mode], msixhandler,
4894				0, h->devname, h))
4895			return 0;
4896		dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4897			" for %s\n", h->intr[h->intr_mode],
4898			h->devname);
4899		return -1;
4900	}
4901
4902	if (!request_irq(h->intr[h->intr_mode], intxhandler,
4903			IRQF_SHARED, h->devname, h))
4904		return 0;
4905	dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4906		h->intr[h->intr_mode], h->devname);
4907	return -1;
4908}
4909
4910static int cciss_kdump_soft_reset(ctlr_info_t *h)
4911{
4912	if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4913		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4914		return -EIO;
4915	}
4916
4917	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4918	if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4919		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4920		return -1;
4921	}
4922
4923	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4924	if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4925		dev_warn(&h->pdev->dev, "Board failed to become ready "
4926			"after soft reset.\n");
4927		return -1;
4928	}
4929
4930	return 0;
4931}
4932
4933static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4934{
4935	int ctlr = h->ctlr;
4936
4937	free_irq(h->intr[h->intr_mode], h);
4938#ifdef CONFIG_PCI_MSI
4939	if (h->msix_vector)
4940		pci_disable_msix(h->pdev);
4941	else if (h->msi_vector)
4942		pci_disable_msi(h->pdev);
4943#endif /* CONFIG_PCI_MSI */
4944	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4945	cciss_free_scatterlists(h);
4946	cciss_free_cmd_pool(h);
4947	kfree(h->blockFetchTable);
4948	if (h->reply_pool)
4949		pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4950				h->reply_pool, h->reply_pool_dhandle);
4951	if (h->transtable)
4952		iounmap(h->transtable);
4953	if (h->cfgtable)
4954		iounmap(h->cfgtable);
4955	if (h->vaddr)
4956		iounmap(h->vaddr);
4957	unregister_blkdev(h->major, h->devname);
4958	cciss_destroy_hba_sysfs_entry(h);
4959	pci_release_regions(h->pdev);
4960	kfree(h);
4961	hba[ctlr] = NULL;
4962}
4963
4964/*
4965 *  This is it.  Find all the controllers and register them.  I really hate
4966 *  stealing all these major device numbers.
4967 *  returns the number of block devices registered.
4968 */
4969static int cciss_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4970{
4971	int i;
4972	int j = 0;
4973	int rc;
4974	int try_soft_reset = 0;
4975	int dac, return_code;
4976	InquiryData_struct *inq_buff;
4977	ctlr_info_t *h;
4978	unsigned long flags;
4979
4980	/*
4981	 * By default the cciss driver is used for all older HP Smart Array
4982	 * controllers. There are module paramaters that allow a user to
4983	 * override this behavior and instead use the hpsa SCSI driver. If
4984	 * this is the case cciss may be loaded first from the kdump initrd
4985	 * image and cause a kernel panic. So if reset_devices is true and
4986	 * cciss_allow_hpsa is set just bail.
4987	 */
4988	if ((reset_devices) && (cciss_allow_hpsa == 1))
4989		return -ENODEV;
4990	rc = cciss_init_reset_devices(pdev);
4991	if (rc) {
4992		if (rc != -ENOTSUPP)
4993			return rc;
4994		/* If the reset fails in a particular way (it has no way to do
4995		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4996		 * a soft reset once we get the controller configured up to the
4997		 * point that it can accept a command.
4998		 */
4999		try_soft_reset = 1;
5000		rc = 0;
5001	}
5002
5003reinit_after_soft_reset:
5004
5005	i = alloc_cciss_hba(pdev);
5006	if (i < 0)
5007		return -ENOMEM;
5008
5009	h = hba[i];
5010	h->pdev = pdev;
5011	h->busy_initializing = 1;
5012	h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
5013	INIT_LIST_HEAD(&h->cmpQ);
5014	INIT_LIST_HEAD(&h->reqQ);
5015	mutex_init(&h->busy_shutting_down);
5016
5017	if (cciss_pci_init(h) != 0)
5018		goto clean_no_release_regions;
5019
5020	sprintf(h->devname, "cciss%d", i);
5021	h->ctlr = i;
5022
5023	if (cciss_tape_cmds < 2)
5024		cciss_tape_cmds = 2;
5025	if (cciss_tape_cmds > 16)
5026		cciss_tape_cmds = 16;
5027
5028	init_completion(&h->scan_wait);
5029
5030	if (cciss_create_hba_sysfs_entry(h))
5031		goto clean0;
5032
5033	/* configure PCI DMA stuff */
5034	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
5035		dac = 1;
5036	else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
5037		dac = 0;
5038	else {
5039		dev_err(&h->pdev->dev, "no suitable DMA available\n");
5040		goto clean1;
5041	}
5042
5043	/*
5044	 * register with the major number, or get a dynamic major number
5045	 * by passing 0 as argument.  This is done for greater than
5046	 * 8 controller support.
5047	 */
5048	if (i < MAX_CTLR_ORIG)
5049		h->major = COMPAQ_CISS_MAJOR + i;
5050	rc = register_blkdev(h->major, h->devname);
5051	if (rc == -EBUSY || rc == -EINVAL) {
5052		dev_err(&h->pdev->dev,
5053		       "Unable to get major number %d for %s "
5054		       "on hba %d\n", h->major, h->devname, i);
5055		goto clean1;
5056	} else {
5057		if (i >= MAX_CTLR_ORIG)
5058			h->major = rc;
5059	}
5060
5061	/* make sure the board interrupts are off */
5062	h->access.set_intr_mask(h, CCISS_INTR_OFF);
5063	rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5064	if (rc)
5065		goto clean2;
5066
5067	dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5068	       h->devname, pdev->device, pci_name(pdev),
5069	       h->intr[h->intr_mode], dac ? "" : " not");
5070
5071	if (cciss_allocate_cmd_pool(h))
5072		goto clean4;
5073
5074	if (cciss_allocate_scatterlists(h))
5075		goto clean4;
5076
5077	h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5078		h->chainsize, h->nr_cmds);
5079	if (!h->cmd_sg_list && h->chainsize > 0)
5080		goto clean4;
5081
5082	spin_lock_init(&h->lock);
5083
5084	/* Initialize the pdev driver private data.
5085	   have it point to h.  */
5086	pci_set_drvdata(pdev, h);
5087	/* command and error info recs zeroed out before
5088	   they are used */
5089	bitmap_zero(h->cmd_pool_bits, h->nr_cmds);
5090
5091	h->num_luns = 0;
5092	h->highest_lun = -1;
5093	for (j = 0; j < CISS_MAX_LUN; j++) {
5094		h->drv[j] = NULL;
5095		h->gendisk[j] = NULL;
5096	}
5097
5098	/* At this point, the controller is ready to take commands.
5099	 * Now, if reset_devices and the hard reset didn't work, try
5100	 * the soft reset and see if that works.
5101	 */
5102	if (try_soft_reset) {
5103
5104		/* This is kind of gross.  We may or may not get a completion
5105		 * from the soft reset command, and if we do, then the value
5106		 * from the fifo may or may not be valid.  So, we wait 10 secs
5107		 * after the reset throwing away any completions we get during
5108		 * that time.  Unregister the interrupt handler and register
5109		 * fake ones to scoop up any residual completions.
5110		 */
5111		spin_lock_irqsave(&h->lock, flags);
5112		h->access.set_intr_mask(h, CCISS_INTR_OFF);
5113		spin_unlock_irqrestore(&h->lock, flags);
5114		free_irq(h->intr[h->intr_mode], h);
5115		rc = cciss_request_irq(h, cciss_msix_discard_completions,
5116					cciss_intx_discard_completions);
5117		if (rc) {
5118			dev_warn(&h->pdev->dev, "Failed to request_irq after "
5119				"soft reset.\n");
5120			goto clean4;
5121		}
5122
5123		rc = cciss_kdump_soft_reset(h);
5124		if (rc) {
5125			dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5126			goto clean4;
5127		}
5128
5129		dev_info(&h->pdev->dev, "Board READY.\n");
5130		dev_info(&h->pdev->dev,
5131			"Waiting for stale completions to drain.\n");
5132		h->access.set_intr_mask(h, CCISS_INTR_ON);
5133		msleep(10000);
5134		h->access.set_intr_mask(h, CCISS_INTR_OFF);
5135
5136		rc = controller_reset_failed(h->cfgtable);
5137		if (rc)
5138			dev_info(&h->pdev->dev,
5139				"Soft reset appears to have failed.\n");
5140
5141		/* since the controller's reset, we have to go back and re-init
5142		 * everything.  Easiest to just forget what we've done and do it
5143		 * all over again.
5144		 */
5145		cciss_undo_allocations_after_kdump_soft_reset(h);
5146		try_soft_reset = 0;
5147		if (rc)
5148			/* don't go to clean4, we already unallocated */
5149			return -ENODEV;
5150
5151		goto reinit_after_soft_reset;
5152	}
5153
5154	cciss_scsi_setup(h);
5155
5156	/* Turn the interrupts on so we can service requests */
5157	h->access.set_intr_mask(h, CCISS_INTR_ON);
5158
5159	/* Get the firmware version */
5160	inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5161	if (inq_buff == NULL) {
5162		dev_err(&h->pdev->dev, "out of memory\n");
5163		goto clean4;
5164	}
5165
5166	return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5167		sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5168	if (return_code == IO_OK) {
5169		h->firm_ver[0] = inq_buff->data_byte[32];
5170		h->firm_ver[1] = inq_buff->data_byte[33];
5171		h->firm_ver[2] = inq_buff->data_byte[34];
5172		h->firm_ver[3] = inq_buff->data_byte[35];
5173	} else {	 /* send command failed */
5174		dev_warn(&h->pdev->dev, "unable to determine firmware"
5175			" version of controller\n");
5176	}
5177	kfree(inq_buff);
5178
5179	cciss_procinit(h);
5180
5181	h->cciss_max_sectors = 8192;
5182
5183	rebuild_lun_table(h, 1, 0);
5184	cciss_engage_scsi(h);
5185	h->busy_initializing = 0;
5186	return 0;
5187
5188clean4:
5189	cciss_free_cmd_pool(h);
5190	cciss_free_scatterlists(h);
5191	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5192	free_irq(h->intr[h->intr_mode], h);
5193clean2:
5194	unregister_blkdev(h->major, h->devname);
5195clean1:
5196	cciss_destroy_hba_sysfs_entry(h);
5197clean0:
5198	pci_release_regions(pdev);
5199clean_no_release_regions:
5200	h->busy_initializing = 0;
5201
5202	/*
5203	 * Deliberately omit pci_disable_device(): it does something nasty to
5204	 * Smart Array controllers that pci_enable_device does not undo
5205	 */
5206	pci_set_drvdata(pdev, NULL);
5207	free_hba(h);
5208	return -ENODEV;
5209}
5210
5211static void cciss_shutdown(struct pci_dev *pdev)
5212{
5213	ctlr_info_t *h;
5214	char *flush_buf;
5215	int return_code;
5216
5217	h = pci_get_drvdata(pdev);
5218	flush_buf = kzalloc(4, GFP_KERNEL);
5219	if (!flush_buf) {
5220		dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5221		return;
5222	}
5223	/* write all data in the battery backed cache to disk */
5224	return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5225		4, 0, CTLR_LUNID, TYPE_CMD);
5226	kfree(flush_buf);
5227	if (return_code != IO_OK)
5228		dev_warn(&h->pdev->dev, "Error flushing cache\n");
5229	h->access.set_intr_mask(h, CCISS_INTR_OFF);
5230	free_irq(h->intr[h->intr_mode], h);
5231}
5232
5233static int cciss_enter_simple_mode(struct ctlr_info *h)
5234{
5235	u32 trans_support;
5236
5237	trans_support = readl(&(h->cfgtable->TransportSupport));
5238	if (!(trans_support & SIMPLE_MODE))
5239		return -ENOTSUPP;
5240
5241	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5242	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
5243	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5244	cciss_wait_for_mode_change_ack(h);
5245	print_cfg_table(h);
5246	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
5247		dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
5248		return -ENODEV;
5249	}
5250	h->transMethod = CFGTBL_Trans_Simple;
5251	return 0;
5252}
5253
5254
5255static void cciss_remove_one(struct pci_dev *pdev)
5256{
5257	ctlr_info_t *h;
5258	int i, j;
5259
5260	if (pci_get_drvdata(pdev) == NULL) {
5261		dev_err(&pdev->dev, "Unable to remove device\n");
5262		return;
5263	}
5264
5265	h = pci_get_drvdata(pdev);
5266	i = h->ctlr;
5267	if (hba[i] == NULL) {
5268		dev_err(&pdev->dev, "device appears to already be removed\n");
5269		return;
5270	}
5271
5272	mutex_lock(&h->busy_shutting_down);
5273
5274	remove_from_scan_list(h);
5275	remove_proc_entry(h->devname, proc_cciss);
5276	unregister_blkdev(h->major, h->devname);
5277
5278	/* remove it from the disk list */
5279	for (j = 0; j < CISS_MAX_LUN; j++) {
5280		struct gendisk *disk = h->gendisk[j];
5281		if (disk) {
5282			struct request_queue *q = disk->queue;
5283
5284			if (disk->flags & GENHD_FL_UP) {
5285				cciss_destroy_ld_sysfs_entry(h, j, 1);
5286				del_gendisk(disk);
5287			}
5288			if (q)
5289				blk_cleanup_queue(q);
5290		}
5291	}
5292
5293#ifdef CONFIG_CISS_SCSI_TAPE
5294	cciss_unregister_scsi(h);	/* unhook from SCSI subsystem */
5295#endif
5296
5297	cciss_shutdown(pdev);
5298
5299#ifdef CONFIG_PCI_MSI
5300	if (h->msix_vector)
5301		pci_disable_msix(h->pdev);
5302	else if (h->msi_vector)
5303		pci_disable_msi(h->pdev);
5304#endif				/* CONFIG_PCI_MSI */
5305
5306	iounmap(h->transtable);
5307	iounmap(h->cfgtable);
5308	iounmap(h->vaddr);
5309
5310	cciss_free_cmd_pool(h);
5311	/* Free up sg elements */
5312	for (j = 0; j < h->nr_cmds; j++)
5313		kfree(h->scatter_list[j]);
5314	kfree(h->scatter_list);
5315	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5316	kfree(h->blockFetchTable);
5317	if (h->reply_pool)
5318		pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5319				h->reply_pool, h->reply_pool_dhandle);
5320	/*
5321	 * Deliberately omit pci_disable_device(): it does something nasty to
5322	 * Smart Array controllers that pci_enable_device does not undo
5323	 */
5324	pci_release_regions(pdev);
5325	pci_set_drvdata(pdev, NULL);
5326	cciss_destroy_hba_sysfs_entry(h);
5327	mutex_unlock(&h->busy_shutting_down);
5328	free_hba(h);
5329}
5330
5331static struct pci_driver cciss_pci_driver = {
5332	.name = "cciss",
5333	.probe = cciss_init_one,
5334	.remove = cciss_remove_one,
5335	.id_table = cciss_pci_device_id,	/* id_table */
5336	.shutdown = cciss_shutdown,
5337};
5338
5339/*
5340 *  This is it.  Register the PCI driver information for the cards we control
5341 *  the OS will call our registered routines when it finds one of our cards.
5342 */
5343static int __init cciss_init(void)
5344{
5345	int err;
5346
5347	/*
5348	 * The hardware requires that commands are aligned on a 64-bit
5349	 * boundary. Given that we use pci_alloc_consistent() to allocate an
5350	 * array of them, the size must be a multiple of 8 bytes.
5351	 */
5352	BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5353	printk(KERN_INFO DRIVER_NAME "\n");
5354
5355	err = bus_register(&cciss_bus_type);
5356	if (err)
5357		return err;
5358
5359	/* Start the scan thread */
5360	cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5361	if (IS_ERR(cciss_scan_thread)) {
5362		err = PTR_ERR(cciss_scan_thread);
5363		goto err_bus_unregister;
5364	}
5365
5366	/* Register for our PCI devices */
5367	err = pci_register_driver(&cciss_pci_driver);
5368	if (err)
5369		goto err_thread_stop;
5370
5371	return err;
5372
5373err_thread_stop:
5374	kthread_stop(cciss_scan_thread);
5375err_bus_unregister:
5376	bus_unregister(&cciss_bus_type);
5377
5378	return err;
5379}
5380
5381static void __exit cciss_cleanup(void)
5382{
5383	int i;
5384
5385	pci_unregister_driver(&cciss_pci_driver);
5386	/* double check that all controller entrys have been removed */
5387	for (i = 0; i < MAX_CTLR; i++) {
5388		if (hba[i] != NULL) {
5389			dev_warn(&hba[i]->pdev->dev,
5390				"had to remove controller\n");
5391			cciss_remove_one(hba[i]->pdev);
5392		}
5393	}
5394	kthread_stop(cciss_scan_thread);
5395	if (proc_cciss)
5396		remove_proc_entry("driver/cciss", NULL);
5397	bus_unregister(&cciss_bus_type);
5398}
5399
5400module_init(cciss_init);
5401module_exit(cciss_cleanup);
1