Linux Audio

Check our new training course

Loading...
v4.6
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
  20#include <linux/err.h>
  21#include "internal.h"
  22
  23struct kmem_cache *key_jar;
  24struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  25DEFINE_SPINLOCK(key_serial_lock);
  26
  27struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  28DEFINE_SPINLOCK(key_user_lock);
  29
  30unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
  31unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  32unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  33unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  34
  35static LIST_HEAD(key_types_list);
  36static DECLARE_RWSEM(key_types_sem);
  37
  38/* We serialise key instantiation and link */
  39DEFINE_MUTEX(key_construction_mutex);
  40
  41#ifdef KEY_DEBUGGING
  42void __key_check(const struct key *key)
  43{
  44	printk("__key_check: key %p {%08x} should be {%08x}\n",
  45	       key, key->magic, KEY_DEBUG_MAGIC);
  46	BUG();
  47}
  48#endif
  49
  50/*
  51 * Get the key quota record for a user, allocating a new record if one doesn't
  52 * already exist.
  53 */
  54struct key_user *key_user_lookup(kuid_t uid)
  55{
  56	struct key_user *candidate = NULL, *user;
  57	struct rb_node *parent = NULL;
  58	struct rb_node **p;
  59
  60try_again:
 
  61	p = &key_user_tree.rb_node;
  62	spin_lock(&key_user_lock);
  63
  64	/* search the tree for a user record with a matching UID */
  65	while (*p) {
  66		parent = *p;
  67		user = rb_entry(parent, struct key_user, node);
  68
  69		if (uid_lt(uid, user->uid))
  70			p = &(*p)->rb_left;
  71		else if (uid_gt(uid, user->uid))
  72			p = &(*p)->rb_right;
  73		else
  74			goto found;
  75	}
  76
  77	/* if we get here, we failed to find a match in the tree */
  78	if (!candidate) {
  79		/* allocate a candidate user record if we don't already have
  80		 * one */
  81		spin_unlock(&key_user_lock);
  82
  83		user = NULL;
  84		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  85		if (unlikely(!candidate))
  86			goto out;
  87
  88		/* the allocation may have scheduled, so we need to repeat the
  89		 * search lest someone else added the record whilst we were
  90		 * asleep */
  91		goto try_again;
  92	}
  93
  94	/* if we get here, then the user record still hadn't appeared on the
  95	 * second pass - so we use the candidate record */
  96	atomic_set(&candidate->usage, 1);
  97	atomic_set(&candidate->nkeys, 0);
  98	atomic_set(&candidate->nikeys, 0);
  99	candidate->uid = uid;
 100	candidate->qnkeys = 0;
 101	candidate->qnbytes = 0;
 102	spin_lock_init(&candidate->lock);
 103	mutex_init(&candidate->cons_lock);
 104
 105	rb_link_node(&candidate->node, parent, p);
 106	rb_insert_color(&candidate->node, &key_user_tree);
 107	spin_unlock(&key_user_lock);
 108	user = candidate;
 109	goto out;
 110
 111	/* okay - we found a user record for this UID */
 112found:
 113	atomic_inc(&user->usage);
 114	spin_unlock(&key_user_lock);
 115	kfree(candidate);
 116out:
 117	return user;
 118}
 119
 120/*
 121 * Dispose of a user structure
 122 */
 123void key_user_put(struct key_user *user)
 124{
 125	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
 126		rb_erase(&user->node, &key_user_tree);
 127		spin_unlock(&key_user_lock);
 128
 129		kfree(user);
 130	}
 131}
 132
 133/*
 134 * Allocate a serial number for a key.  These are assigned randomly to avoid
 135 * security issues through covert channel problems.
 136 */
 137static inline void key_alloc_serial(struct key *key)
 138{
 139	struct rb_node *parent, **p;
 140	struct key *xkey;
 141
 142	/* propose a random serial number and look for a hole for it in the
 143	 * serial number tree */
 144	do {
 145		get_random_bytes(&key->serial, sizeof(key->serial));
 146
 147		key->serial >>= 1; /* negative numbers are not permitted */
 148	} while (key->serial < 3);
 149
 150	spin_lock(&key_serial_lock);
 151
 152attempt_insertion:
 153	parent = NULL;
 154	p = &key_serial_tree.rb_node;
 155
 156	while (*p) {
 157		parent = *p;
 158		xkey = rb_entry(parent, struct key, serial_node);
 159
 160		if (key->serial < xkey->serial)
 161			p = &(*p)->rb_left;
 162		else if (key->serial > xkey->serial)
 163			p = &(*p)->rb_right;
 164		else
 165			goto serial_exists;
 166	}
 167
 168	/* we've found a suitable hole - arrange for this key to occupy it */
 169	rb_link_node(&key->serial_node, parent, p);
 170	rb_insert_color(&key->serial_node, &key_serial_tree);
 171
 172	spin_unlock(&key_serial_lock);
 173	return;
 174
 175	/* we found a key with the proposed serial number - walk the tree from
 176	 * that point looking for the next unused serial number */
 177serial_exists:
 178	for (;;) {
 179		key->serial++;
 180		if (key->serial < 3) {
 181			key->serial = 3;
 182			goto attempt_insertion;
 183		}
 184
 185		parent = rb_next(parent);
 186		if (!parent)
 187			goto attempt_insertion;
 188
 189		xkey = rb_entry(parent, struct key, serial_node);
 190		if (key->serial < xkey->serial)
 191			goto attempt_insertion;
 192	}
 193}
 194
 195/**
 196 * key_alloc - Allocate a key of the specified type.
 197 * @type: The type of key to allocate.
 198 * @desc: The key description to allow the key to be searched out.
 199 * @uid: The owner of the new key.
 200 * @gid: The group ID for the new key's group permissions.
 201 * @cred: The credentials specifying UID namespace.
 202 * @perm: The permissions mask of the new key.
 203 * @flags: Flags specifying quota properties.
 
 204 *
 205 * Allocate a key of the specified type with the attributes given.  The key is
 206 * returned in an uninstantiated state and the caller needs to instantiate the
 207 * key before returning.
 208 *
 
 
 
 209 * The user's key count quota is updated to reflect the creation of the key and
 210 * the user's key data quota has the default for the key type reserved.  The
 211 * instantiation function should amend this as necessary.  If insufficient
 212 * quota is available, -EDQUOT will be returned.
 213 *
 214 * The LSM security modules can prevent a key being created, in which case
 215 * -EACCES will be returned.
 216 *
 217 * Returns a pointer to the new key if successful and an error code otherwise.
 218 *
 219 * Note that the caller needs to ensure the key type isn't uninstantiated.
 220 * Internally this can be done by locking key_types_sem.  Externally, this can
 221 * be done by either never unregistering the key type, or making sure
 222 * key_alloc() calls don't race with module unloading.
 223 */
 224struct key *key_alloc(struct key_type *type, const char *desc,
 225		      kuid_t uid, kgid_t gid, const struct cred *cred,
 226		      key_perm_t perm, unsigned long flags)
 
 227{
 228	struct key_user *user = NULL;
 229	struct key *key;
 230	size_t desclen, quotalen;
 231	int ret;
 232
 233	key = ERR_PTR(-EINVAL);
 234	if (!desc || !*desc)
 235		goto error;
 236
 237	if (type->vet_description) {
 238		ret = type->vet_description(desc);
 239		if (ret < 0) {
 240			key = ERR_PTR(ret);
 241			goto error;
 242		}
 243	}
 244
 245	desclen = strlen(desc);
 246	quotalen = desclen + 1 + type->def_datalen;
 247
 248	/* get hold of the key tracking for this user */
 249	user = key_user_lookup(uid);
 250	if (!user)
 251		goto no_memory_1;
 252
 253	/* check that the user's quota permits allocation of another key and
 254	 * its description */
 255	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 256		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 257			key_quota_root_maxkeys : key_quota_maxkeys;
 258		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 259			key_quota_root_maxbytes : key_quota_maxbytes;
 260
 261		spin_lock(&user->lock);
 262		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 263			if (user->qnkeys + 1 >= maxkeys ||
 264			    user->qnbytes + quotalen >= maxbytes ||
 265			    user->qnbytes + quotalen < user->qnbytes)
 266				goto no_quota;
 267		}
 268
 269		user->qnkeys++;
 270		user->qnbytes += quotalen;
 271		spin_unlock(&user->lock);
 272	}
 273
 274	/* allocate and initialise the key and its description */
 275	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 276	if (!key)
 277		goto no_memory_2;
 278
 279	key->index_key.desc_len = desclen;
 280	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 281	if (!key->index_key.description)
 282		goto no_memory_3;
 283
 284	atomic_set(&key->usage, 1);
 285	init_rwsem(&key->sem);
 286	lockdep_set_class(&key->sem, &type->lock_class);
 287	key->index_key.type = type;
 288	key->user = user;
 289	key->quotalen = quotalen;
 290	key->datalen = type->def_datalen;
 291	key->uid = uid;
 292	key->gid = gid;
 293	key->perm = perm;
 
 294
 295	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 296		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 297	if (flags & KEY_ALLOC_TRUSTED)
 298		key->flags |= 1 << KEY_FLAG_TRUSTED;
 299	if (flags & KEY_ALLOC_BUILT_IN)
 300		key->flags |= 1 << KEY_FLAG_BUILTIN;
 
 
 301
 302#ifdef KEY_DEBUGGING
 303	key->magic = KEY_DEBUG_MAGIC;
 304#endif
 305
 306	/* let the security module know about the key */
 307	ret = security_key_alloc(key, cred, flags);
 308	if (ret < 0)
 309		goto security_error;
 310
 311	/* publish the key by giving it a serial number */
 312	atomic_inc(&user->nkeys);
 313	key_alloc_serial(key);
 314
 315error:
 316	return key;
 317
 318security_error:
 319	kfree(key->description);
 320	kmem_cache_free(key_jar, key);
 321	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 322		spin_lock(&user->lock);
 323		user->qnkeys--;
 324		user->qnbytes -= quotalen;
 325		spin_unlock(&user->lock);
 326	}
 327	key_user_put(user);
 328	key = ERR_PTR(ret);
 329	goto error;
 330
 331no_memory_3:
 332	kmem_cache_free(key_jar, key);
 333no_memory_2:
 334	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 335		spin_lock(&user->lock);
 336		user->qnkeys--;
 337		user->qnbytes -= quotalen;
 338		spin_unlock(&user->lock);
 339	}
 340	key_user_put(user);
 341no_memory_1:
 342	key = ERR_PTR(-ENOMEM);
 343	goto error;
 344
 345no_quota:
 346	spin_unlock(&user->lock);
 347	key_user_put(user);
 348	key = ERR_PTR(-EDQUOT);
 349	goto error;
 350}
 351EXPORT_SYMBOL(key_alloc);
 352
 353/**
 354 * key_payload_reserve - Adjust data quota reservation for the key's payload
 355 * @key: The key to make the reservation for.
 356 * @datalen: The amount of data payload the caller now wants.
 357 *
 358 * Adjust the amount of the owning user's key data quota that a key reserves.
 359 * If the amount is increased, then -EDQUOT may be returned if there isn't
 360 * enough free quota available.
 361 *
 362 * If successful, 0 is returned.
 363 */
 364int key_payload_reserve(struct key *key, size_t datalen)
 365{
 366	int delta = (int)datalen - key->datalen;
 367	int ret = 0;
 368
 369	key_check(key);
 370
 371	/* contemplate the quota adjustment */
 372	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 373		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 374			key_quota_root_maxbytes : key_quota_maxbytes;
 375
 376		spin_lock(&key->user->lock);
 377
 378		if (delta > 0 &&
 379		    (key->user->qnbytes + delta >= maxbytes ||
 380		     key->user->qnbytes + delta < key->user->qnbytes)) {
 381			ret = -EDQUOT;
 382		}
 383		else {
 384			key->user->qnbytes += delta;
 385			key->quotalen += delta;
 386		}
 387		spin_unlock(&key->user->lock);
 388	}
 389
 390	/* change the recorded data length if that didn't generate an error */
 391	if (ret == 0)
 392		key->datalen = datalen;
 393
 394	return ret;
 395}
 396EXPORT_SYMBOL(key_payload_reserve);
 397
 398/*
 
 
 
 
 
 
 
 
 
 
 
 
 399 * Instantiate a key and link it into the target keyring atomically.  Must be
 400 * called with the target keyring's semaphore writelocked.  The target key's
 401 * semaphore need not be locked as instantiation is serialised by
 402 * key_construction_mutex.
 403 */
 404static int __key_instantiate_and_link(struct key *key,
 405				      struct key_preparsed_payload *prep,
 406				      struct key *keyring,
 407				      struct key *authkey,
 408				      struct assoc_array_edit **_edit)
 409{
 410	int ret, awaken;
 411
 412	key_check(key);
 413	key_check(keyring);
 414
 415	awaken = 0;
 416	ret = -EBUSY;
 417
 418	mutex_lock(&key_construction_mutex);
 419
 420	/* can't instantiate twice */
 421	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 422		/* instantiate the key */
 423		ret = key->type->instantiate(key, prep);
 424
 425		if (ret == 0) {
 426			/* mark the key as being instantiated */
 427			atomic_inc(&key->user->nikeys);
 428			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 429
 430			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 431				awaken = 1;
 432
 433			/* and link it into the destination keyring */
 434			if (keyring) {
 435				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 436					set_bit(KEY_FLAG_KEEP, &key->flags);
 437
 438				__key_link(key, _edit);
 439			}
 440
 441			/* disable the authorisation key */
 442			if (authkey)
 443				key_revoke(authkey);
 444
 445			if (prep->expiry != TIME_T_MAX) {
 446				key->expiry = prep->expiry;
 447				key_schedule_gc(prep->expiry + key_gc_delay);
 448			}
 449		}
 450	}
 451
 452	mutex_unlock(&key_construction_mutex);
 453
 454	/* wake up anyone waiting for a key to be constructed */
 455	if (awaken)
 456		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 457
 458	return ret;
 459}
 460
 461/**
 462 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 463 * @key: The key to instantiate.
 464 * @data: The data to use to instantiate the keyring.
 465 * @datalen: The length of @data.
 466 * @keyring: Keyring to create a link in on success (or NULL).
 467 * @authkey: The authorisation token permitting instantiation.
 468 *
 469 * Instantiate a key that's in the uninstantiated state using the provided data
 470 * and, if successful, link it in to the destination keyring if one is
 471 * supplied.
 472 *
 473 * If successful, 0 is returned, the authorisation token is revoked and anyone
 474 * waiting for the key is woken up.  If the key was already instantiated,
 475 * -EBUSY will be returned.
 476 */
 477int key_instantiate_and_link(struct key *key,
 478			     const void *data,
 479			     size_t datalen,
 480			     struct key *keyring,
 481			     struct key *authkey)
 482{
 483	struct key_preparsed_payload prep;
 484	struct assoc_array_edit *edit;
 485	int ret;
 486
 487	memset(&prep, 0, sizeof(prep));
 488	prep.data = data;
 489	prep.datalen = datalen;
 490	prep.quotalen = key->type->def_datalen;
 491	prep.expiry = TIME_T_MAX;
 492	if (key->type->preparse) {
 493		ret = key->type->preparse(&prep);
 494		if (ret < 0)
 495			goto error;
 496	}
 497
 498	if (keyring) {
 499		ret = __key_link_begin(keyring, &key->index_key, &edit);
 500		if (ret < 0)
 501			goto error;
 
 
 
 
 
 
 
 
 
 502	}
 503
 504	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 505
 
 506	if (keyring)
 507		__key_link_end(keyring, &key->index_key, edit);
 508
 509error:
 510	if (key->type->preparse)
 511		key->type->free_preparse(&prep);
 512	return ret;
 513}
 514
 515EXPORT_SYMBOL(key_instantiate_and_link);
 516
 517/**
 518 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 519 * @key: The key to instantiate.
 520 * @timeout: The timeout on the negative key.
 521 * @error: The error to return when the key is hit.
 522 * @keyring: Keyring to create a link in on success (or NULL).
 523 * @authkey: The authorisation token permitting instantiation.
 524 *
 525 * Negatively instantiate a key that's in the uninstantiated state and, if
 526 * successful, set its timeout and stored error and link it in to the
 527 * destination keyring if one is supplied.  The key and any links to the key
 528 * will be automatically garbage collected after the timeout expires.
 529 *
 530 * Negative keys are used to rate limit repeated request_key() calls by causing
 531 * them to return the stored error code (typically ENOKEY) until the negative
 532 * key expires.
 533 *
 534 * If successful, 0 is returned, the authorisation token is revoked and anyone
 535 * waiting for the key is woken up.  If the key was already instantiated,
 536 * -EBUSY will be returned.
 537 */
 538int key_reject_and_link(struct key *key,
 539			unsigned timeout,
 540			unsigned error,
 541			struct key *keyring,
 542			struct key *authkey)
 543{
 544	struct assoc_array_edit *edit;
 545	struct timespec now;
 546	int ret, awaken, link_ret = 0;
 547
 548	key_check(key);
 549	key_check(keyring);
 550
 551	awaken = 0;
 552	ret = -EBUSY;
 553
 554	if (keyring)
 
 
 
 555		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 
 556
 557	mutex_lock(&key_construction_mutex);
 558
 559	/* can't instantiate twice */
 560	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 561		/* mark the key as being negatively instantiated */
 562		atomic_inc(&key->user->nikeys);
 563		key->reject_error = -error;
 564		smp_wmb();
 565		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
 566		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 567		now = current_kernel_time();
 568		key->expiry = now.tv_sec + timeout;
 569		key_schedule_gc(key->expiry + key_gc_delay);
 570
 571		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 572			awaken = 1;
 573
 574		ret = 0;
 575
 576		/* and link it into the destination keyring */
 577		if (keyring && link_ret == 0)
 578			__key_link(key, &edit);
 579
 580		/* disable the authorisation key */
 581		if (authkey)
 582			key_revoke(authkey);
 583	}
 584
 585	mutex_unlock(&key_construction_mutex);
 586
 587	if (keyring)
 588		__key_link_end(keyring, &key->index_key, edit);
 589
 590	/* wake up anyone waiting for a key to be constructed */
 591	if (awaken)
 592		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 593
 594	return ret == 0 ? link_ret : ret;
 595}
 596EXPORT_SYMBOL(key_reject_and_link);
 597
 598/**
 599 * key_put - Discard a reference to a key.
 600 * @key: The key to discard a reference from.
 601 *
 602 * Discard a reference to a key, and when all the references are gone, we
 603 * schedule the cleanup task to come and pull it out of the tree in process
 604 * context at some later time.
 605 */
 606void key_put(struct key *key)
 607{
 608	if (key) {
 609		key_check(key);
 610
 611		if (atomic_dec_and_test(&key->usage))
 612			schedule_work(&key_gc_work);
 613	}
 614}
 615EXPORT_SYMBOL(key_put);
 616
 617/*
 618 * Find a key by its serial number.
 619 */
 620struct key *key_lookup(key_serial_t id)
 621{
 622	struct rb_node *n;
 623	struct key *key;
 624
 625	spin_lock(&key_serial_lock);
 626
 627	/* search the tree for the specified key */
 628	n = key_serial_tree.rb_node;
 629	while (n) {
 630		key = rb_entry(n, struct key, serial_node);
 631
 632		if (id < key->serial)
 633			n = n->rb_left;
 634		else if (id > key->serial)
 635			n = n->rb_right;
 636		else
 637			goto found;
 638	}
 639
 640not_found:
 641	key = ERR_PTR(-ENOKEY);
 642	goto error;
 643
 644found:
 645	/* pretend it doesn't exist if it is awaiting deletion */
 646	if (atomic_read(&key->usage) == 0)
 647		goto not_found;
 648
 649	/* this races with key_put(), but that doesn't matter since key_put()
 650	 * doesn't actually change the key
 651	 */
 652	__key_get(key);
 
 653
 654error:
 655	spin_unlock(&key_serial_lock);
 656	return key;
 657}
 658
 659/*
 660 * Find and lock the specified key type against removal.
 661 *
 662 * We return with the sem read-locked if successful.  If the type wasn't
 663 * available -ENOKEY is returned instead.
 664 */
 665struct key_type *key_type_lookup(const char *type)
 666{
 667	struct key_type *ktype;
 668
 669	down_read(&key_types_sem);
 670
 671	/* look up the key type to see if it's one of the registered kernel
 672	 * types */
 673	list_for_each_entry(ktype, &key_types_list, link) {
 674		if (strcmp(ktype->name, type) == 0)
 675			goto found_kernel_type;
 676	}
 677
 678	up_read(&key_types_sem);
 679	ktype = ERR_PTR(-ENOKEY);
 680
 681found_kernel_type:
 682	return ktype;
 683}
 684
 685void key_set_timeout(struct key *key, unsigned timeout)
 686{
 687	struct timespec now;
 688	time_t expiry = 0;
 689
 690	/* make the changes with the locks held to prevent races */
 691	down_write(&key->sem);
 692
 693	if (timeout > 0) {
 694		now = current_kernel_time();
 695		expiry = now.tv_sec + timeout;
 696	}
 697
 698	key->expiry = expiry;
 699	key_schedule_gc(key->expiry + key_gc_delay);
 700
 701	up_write(&key->sem);
 702}
 703EXPORT_SYMBOL_GPL(key_set_timeout);
 704
 705/*
 706 * Unlock a key type locked by key_type_lookup().
 707 */
 708void key_type_put(struct key_type *ktype)
 709{
 710	up_read(&key_types_sem);
 711}
 712
 713/*
 714 * Attempt to update an existing key.
 715 *
 716 * The key is given to us with an incremented refcount that we need to discard
 717 * if we get an error.
 718 */
 719static inline key_ref_t __key_update(key_ref_t key_ref,
 720				     struct key_preparsed_payload *prep)
 721{
 722	struct key *key = key_ref_to_ptr(key_ref);
 723	int ret;
 724
 725	/* need write permission on the key to update it */
 726	ret = key_permission(key_ref, KEY_NEED_WRITE);
 727	if (ret < 0)
 728		goto error;
 729
 730	ret = -EEXIST;
 731	if (!key->type->update)
 732		goto error;
 733
 734	down_write(&key->sem);
 735
 736	ret = key->type->update(key, prep);
 737	if (ret == 0)
 738		/* updating a negative key instantiates it */
 739		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 740
 741	up_write(&key->sem);
 742
 743	if (ret < 0)
 744		goto error;
 745out:
 746	return key_ref;
 747
 748error:
 749	key_put(key);
 750	key_ref = ERR_PTR(ret);
 751	goto out;
 752}
 753
 754/**
 755 * key_create_or_update - Update or create and instantiate a key.
 756 * @keyring_ref: A pointer to the destination keyring with possession flag.
 757 * @type: The type of key.
 758 * @description: The searchable description for the key.
 759 * @payload: The data to use to instantiate or update the key.
 760 * @plen: The length of @payload.
 761 * @perm: The permissions mask for a new key.
 762 * @flags: The quota flags for a new key.
 763 *
 764 * Search the destination keyring for a key of the same description and if one
 765 * is found, update it, otherwise create and instantiate a new one and create a
 766 * link to it from that keyring.
 767 *
 768 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 769 * concocted.
 770 *
 771 * Returns a pointer to the new key if successful, -ENODEV if the key type
 772 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 773 * caller isn't permitted to modify the keyring or the LSM did not permit
 774 * creation of the key.
 775 *
 776 * On success, the possession flag from the keyring ref will be tacked on to
 777 * the key ref before it is returned.
 778 */
 779key_ref_t key_create_or_update(key_ref_t keyring_ref,
 780			       const char *type,
 781			       const char *description,
 782			       const void *payload,
 783			       size_t plen,
 784			       key_perm_t perm,
 785			       unsigned long flags)
 786{
 787	struct keyring_index_key index_key = {
 788		.description	= description,
 789	};
 790	struct key_preparsed_payload prep;
 791	struct assoc_array_edit *edit;
 792	const struct cred *cred = current_cred();
 793	struct key *keyring, *key = NULL;
 794	key_ref_t key_ref;
 795	int ret;
 
 796
 797	/* look up the key type to see if it's one of the registered kernel
 798	 * types */
 799	index_key.type = key_type_lookup(type);
 800	if (IS_ERR(index_key.type)) {
 801		key_ref = ERR_PTR(-ENODEV);
 802		goto error;
 803	}
 804
 805	key_ref = ERR_PTR(-EINVAL);
 806	if (!index_key.type->instantiate ||
 807	    (!index_key.description && !index_key.type->preparse))
 808		goto error_put_type;
 809
 810	keyring = key_ref_to_ptr(keyring_ref);
 811
 812	key_check(keyring);
 813
 
 
 
 814	key_ref = ERR_PTR(-ENOTDIR);
 815	if (keyring->type != &key_type_keyring)
 816		goto error_put_type;
 817
 818	memset(&prep, 0, sizeof(prep));
 819	prep.data = payload;
 820	prep.datalen = plen;
 821	prep.quotalen = index_key.type->def_datalen;
 822	prep.trusted = flags & KEY_ALLOC_TRUSTED;
 823	prep.expiry = TIME_T_MAX;
 824	if (index_key.type->preparse) {
 825		ret = index_key.type->preparse(&prep);
 826		if (ret < 0) {
 827			key_ref = ERR_PTR(ret);
 828			goto error_free_prep;
 829		}
 830		if (!index_key.description)
 831			index_key.description = prep.description;
 832		key_ref = ERR_PTR(-EINVAL);
 833		if (!index_key.description)
 834			goto error_free_prep;
 835	}
 836	index_key.desc_len = strlen(index_key.description);
 837
 838	key_ref = ERR_PTR(-EPERM);
 839	if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags))
 840		goto error_free_prep;
 841	flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0;
 842
 843	ret = __key_link_begin(keyring, &index_key, &edit);
 844	if (ret < 0) {
 845		key_ref = ERR_PTR(ret);
 846		goto error_free_prep;
 847	}
 848
 
 
 
 
 
 
 
 
 
 849	/* if we're going to allocate a new key, we're going to have
 850	 * to modify the keyring */
 851	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 852	if (ret < 0) {
 853		key_ref = ERR_PTR(ret);
 854		goto error_link_end;
 855	}
 856
 857	/* if it's possible to update this type of key, search for an existing
 858	 * key of the same type and description in the destination keyring and
 859	 * update that instead if possible
 860	 */
 861	if (index_key.type->update) {
 862		key_ref = find_key_to_update(keyring_ref, &index_key);
 863		if (key_ref)
 864			goto found_matching_key;
 865	}
 866
 867	/* if the client doesn't provide, decide on the permissions we want */
 868	if (perm == KEY_PERM_UNDEF) {
 869		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 870		perm |= KEY_USR_VIEW;
 871
 872		if (index_key.type->read)
 873			perm |= KEY_POS_READ;
 874
 875		if (index_key.type == &key_type_keyring ||
 876		    index_key.type->update)
 877			perm |= KEY_POS_WRITE;
 878	}
 879
 880	/* allocate a new key */
 881	key = key_alloc(index_key.type, index_key.description,
 882			cred->fsuid, cred->fsgid, cred, perm, flags);
 883	if (IS_ERR(key)) {
 884		key_ref = ERR_CAST(key);
 885		goto error_link_end;
 886	}
 887
 888	/* instantiate it and link it into the target keyring */
 889	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 890	if (ret < 0) {
 891		key_put(key);
 892		key_ref = ERR_PTR(ret);
 893		goto error_link_end;
 894	}
 895
 896	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 897
 898error_link_end:
 899	__key_link_end(keyring, &index_key, edit);
 900error_free_prep:
 901	if (index_key.type->preparse)
 902		index_key.type->free_preparse(&prep);
 903error_put_type:
 904	key_type_put(index_key.type);
 905error:
 906	return key_ref;
 907
 908 found_matching_key:
 909	/* we found a matching key, so we're going to try to update it
 910	 * - we can drop the locks first as we have the key pinned
 911	 */
 912	__key_link_end(keyring, &index_key, edit);
 913
 
 
 
 
 
 
 
 
 
 
 914	key_ref = __key_update(key_ref, &prep);
 915	goto error_free_prep;
 916}
 917EXPORT_SYMBOL(key_create_or_update);
 918
 919/**
 920 * key_update - Update a key's contents.
 921 * @key_ref: The pointer (plus possession flag) to the key.
 922 * @payload: The data to be used to update the key.
 923 * @plen: The length of @payload.
 924 *
 925 * Attempt to update the contents of a key with the given payload data.  The
 926 * caller must be granted Write permission on the key.  Negative keys can be
 927 * instantiated by this method.
 928 *
 929 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 930 * type does not support updating.  The key type may return other errors.
 931 */
 932int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 933{
 934	struct key_preparsed_payload prep;
 935	struct key *key = key_ref_to_ptr(key_ref);
 936	int ret;
 937
 938	key_check(key);
 939
 940	/* the key must be writable */
 941	ret = key_permission(key_ref, KEY_NEED_WRITE);
 942	if (ret < 0)
 943		goto error;
 944
 945	/* attempt to update it if supported */
 946	ret = -EOPNOTSUPP;
 947	if (!key->type->update)
 948		goto error;
 949
 950	memset(&prep, 0, sizeof(prep));
 951	prep.data = payload;
 952	prep.datalen = plen;
 953	prep.quotalen = key->type->def_datalen;
 954	prep.expiry = TIME_T_MAX;
 955	if (key->type->preparse) {
 956		ret = key->type->preparse(&prep);
 957		if (ret < 0)
 958			goto error;
 959	}
 960
 961	down_write(&key->sem);
 962
 963	ret = key->type->update(key, &prep);
 964	if (ret == 0)
 965		/* updating a negative key instantiates it */
 966		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 967
 968	up_write(&key->sem);
 969
 970error:
 971	if (key->type->preparse)
 972		key->type->free_preparse(&prep);
 973	return ret;
 974}
 975EXPORT_SYMBOL(key_update);
 976
 977/**
 978 * key_revoke - Revoke a key.
 979 * @key: The key to be revoked.
 980 *
 981 * Mark a key as being revoked and ask the type to free up its resources.  The
 982 * revocation timeout is set and the key and all its links will be
 983 * automatically garbage collected after key_gc_delay amount of time if they
 984 * are not manually dealt with first.
 985 */
 986void key_revoke(struct key *key)
 987{
 988	struct timespec now;
 989	time_t time;
 990
 991	key_check(key);
 992
 993	/* make sure no one's trying to change or use the key when we mark it
 994	 * - we tell lockdep that we might nest because we might be revoking an
 995	 *   authorisation key whilst holding the sem on a key we've just
 996	 *   instantiated
 997	 */
 998	down_write_nested(&key->sem, 1);
 999	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1000	    key->type->revoke)
1001		key->type->revoke(key);
1002
1003	/* set the death time to no more than the expiry time */
1004	now = current_kernel_time();
1005	time = now.tv_sec;
1006	if (key->revoked_at == 0 || key->revoked_at > time) {
1007		key->revoked_at = time;
1008		key_schedule_gc(key->revoked_at + key_gc_delay);
1009	}
1010
1011	up_write(&key->sem);
1012}
1013EXPORT_SYMBOL(key_revoke);
1014
1015/**
1016 * key_invalidate - Invalidate a key.
1017 * @key: The key to be invalidated.
1018 *
1019 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1020 * is ignored by all searches and other operations from this point.
1021 */
1022void key_invalidate(struct key *key)
1023{
1024	kenter("%d", key_serial(key));
1025
1026	key_check(key);
1027
1028	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1029		down_write_nested(&key->sem, 1);
1030		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1031			key_schedule_gc_links();
1032		up_write(&key->sem);
1033	}
1034}
1035EXPORT_SYMBOL(key_invalidate);
1036
1037/**
1038 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1039 * @key: The key to be instantiated
1040 * @prep: The preparsed data to load.
1041 *
1042 * Instantiate a key from preparsed data.  We assume we can just copy the data
1043 * in directly and clear the old pointers.
1044 *
1045 * This can be pointed to directly by the key type instantiate op pointer.
1046 */
1047int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1048{
1049	int ret;
1050
1051	pr_devel("==>%s()\n", __func__);
1052
1053	ret = key_payload_reserve(key, prep->quotalen);
1054	if (ret == 0) {
1055		rcu_assign_keypointer(key, prep->payload.data[0]);
1056		key->payload.data[1] = prep->payload.data[1];
1057		key->payload.data[2] = prep->payload.data[2];
1058		key->payload.data[3] = prep->payload.data[3];
1059		prep->payload.data[0] = NULL;
1060		prep->payload.data[1] = NULL;
1061		prep->payload.data[2] = NULL;
1062		prep->payload.data[3] = NULL;
1063	}
1064	pr_devel("<==%s() = %d\n", __func__, ret);
1065	return ret;
1066}
1067EXPORT_SYMBOL(generic_key_instantiate);
1068
1069/**
1070 * register_key_type - Register a type of key.
1071 * @ktype: The new key type.
1072 *
1073 * Register a new key type.
1074 *
1075 * Returns 0 on success or -EEXIST if a type of this name already exists.
1076 */
1077int register_key_type(struct key_type *ktype)
1078{
1079	struct key_type *p;
1080	int ret;
1081
1082	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1083
1084	ret = -EEXIST;
1085	down_write(&key_types_sem);
1086
1087	/* disallow key types with the same name */
1088	list_for_each_entry(p, &key_types_list, link) {
1089		if (strcmp(p->name, ktype->name) == 0)
1090			goto out;
1091	}
1092
1093	/* store the type */
1094	list_add(&ktype->link, &key_types_list);
1095
1096	pr_notice("Key type %s registered\n", ktype->name);
1097	ret = 0;
1098
1099out:
1100	up_write(&key_types_sem);
1101	return ret;
1102}
1103EXPORT_SYMBOL(register_key_type);
1104
1105/**
1106 * unregister_key_type - Unregister a type of key.
1107 * @ktype: The key type.
1108 *
1109 * Unregister a key type and mark all the extant keys of this type as dead.
1110 * Those keys of this type are then destroyed to get rid of their payloads and
1111 * they and their links will be garbage collected as soon as possible.
1112 */
1113void unregister_key_type(struct key_type *ktype)
1114{
1115	down_write(&key_types_sem);
1116	list_del_init(&ktype->link);
1117	downgrade_write(&key_types_sem);
1118	key_gc_keytype(ktype);
1119	pr_notice("Key type %s unregistered\n", ktype->name);
1120	up_read(&key_types_sem);
1121}
1122EXPORT_SYMBOL(unregister_key_type);
1123
1124/*
1125 * Initialise the key management state.
1126 */
1127void __init key_init(void)
1128{
1129	/* allocate a slab in which we can store keys */
1130	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1131			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1132
1133	/* add the special key types */
1134	list_add_tail(&key_type_keyring.link, &key_types_list);
1135	list_add_tail(&key_type_dead.link, &key_types_list);
1136	list_add_tail(&key_type_user.link, &key_types_list);
1137	list_add_tail(&key_type_logon.link, &key_types_list);
1138
1139	/* record the root user tracking */
1140	rb_link_node(&root_key_user.node,
1141		     NULL,
1142		     &key_user_tree.rb_node);
1143
1144	rb_insert_color(&root_key_user.node,
1145			&key_user_tree);
1146}
v4.17
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
  20#include <linux/err.h>
  21#include "internal.h"
  22
  23struct kmem_cache *key_jar;
  24struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  25DEFINE_SPINLOCK(key_serial_lock);
  26
  27struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  28DEFINE_SPINLOCK(key_user_lock);
  29
  30unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
  31unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  32unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  33unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  34
  35static LIST_HEAD(key_types_list);
  36static DECLARE_RWSEM(key_types_sem);
  37
  38/* We serialise key instantiation and link */
  39DEFINE_MUTEX(key_construction_mutex);
  40
  41#ifdef KEY_DEBUGGING
  42void __key_check(const struct key *key)
  43{
  44	printk("__key_check: key %p {%08x} should be {%08x}\n",
  45	       key, key->magic, KEY_DEBUG_MAGIC);
  46	BUG();
  47}
  48#endif
  49
  50/*
  51 * Get the key quota record for a user, allocating a new record if one doesn't
  52 * already exist.
  53 */
  54struct key_user *key_user_lookup(kuid_t uid)
  55{
  56	struct key_user *candidate = NULL, *user;
  57	struct rb_node *parent, **p;
 
  58
  59try_again:
  60	parent = NULL;
  61	p = &key_user_tree.rb_node;
  62	spin_lock(&key_user_lock);
  63
  64	/* search the tree for a user record with a matching UID */
  65	while (*p) {
  66		parent = *p;
  67		user = rb_entry(parent, struct key_user, node);
  68
  69		if (uid_lt(uid, user->uid))
  70			p = &(*p)->rb_left;
  71		else if (uid_gt(uid, user->uid))
  72			p = &(*p)->rb_right;
  73		else
  74			goto found;
  75	}
  76
  77	/* if we get here, we failed to find a match in the tree */
  78	if (!candidate) {
  79		/* allocate a candidate user record if we don't already have
  80		 * one */
  81		spin_unlock(&key_user_lock);
  82
  83		user = NULL;
  84		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  85		if (unlikely(!candidate))
  86			goto out;
  87
  88		/* the allocation may have scheduled, so we need to repeat the
  89		 * search lest someone else added the record whilst we were
  90		 * asleep */
  91		goto try_again;
  92	}
  93
  94	/* if we get here, then the user record still hadn't appeared on the
  95	 * second pass - so we use the candidate record */
  96	refcount_set(&candidate->usage, 1);
  97	atomic_set(&candidate->nkeys, 0);
  98	atomic_set(&candidate->nikeys, 0);
  99	candidate->uid = uid;
 100	candidate->qnkeys = 0;
 101	candidate->qnbytes = 0;
 102	spin_lock_init(&candidate->lock);
 103	mutex_init(&candidate->cons_lock);
 104
 105	rb_link_node(&candidate->node, parent, p);
 106	rb_insert_color(&candidate->node, &key_user_tree);
 107	spin_unlock(&key_user_lock);
 108	user = candidate;
 109	goto out;
 110
 111	/* okay - we found a user record for this UID */
 112found:
 113	refcount_inc(&user->usage);
 114	spin_unlock(&key_user_lock);
 115	kfree(candidate);
 116out:
 117	return user;
 118}
 119
 120/*
 121 * Dispose of a user structure
 122 */
 123void key_user_put(struct key_user *user)
 124{
 125	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
 126		rb_erase(&user->node, &key_user_tree);
 127		spin_unlock(&key_user_lock);
 128
 129		kfree(user);
 130	}
 131}
 132
 133/*
 134 * Allocate a serial number for a key.  These are assigned randomly to avoid
 135 * security issues through covert channel problems.
 136 */
 137static inline void key_alloc_serial(struct key *key)
 138{
 139	struct rb_node *parent, **p;
 140	struct key *xkey;
 141
 142	/* propose a random serial number and look for a hole for it in the
 143	 * serial number tree */
 144	do {
 145		get_random_bytes(&key->serial, sizeof(key->serial));
 146
 147		key->serial >>= 1; /* negative numbers are not permitted */
 148	} while (key->serial < 3);
 149
 150	spin_lock(&key_serial_lock);
 151
 152attempt_insertion:
 153	parent = NULL;
 154	p = &key_serial_tree.rb_node;
 155
 156	while (*p) {
 157		parent = *p;
 158		xkey = rb_entry(parent, struct key, serial_node);
 159
 160		if (key->serial < xkey->serial)
 161			p = &(*p)->rb_left;
 162		else if (key->serial > xkey->serial)
 163			p = &(*p)->rb_right;
 164		else
 165			goto serial_exists;
 166	}
 167
 168	/* we've found a suitable hole - arrange for this key to occupy it */
 169	rb_link_node(&key->serial_node, parent, p);
 170	rb_insert_color(&key->serial_node, &key_serial_tree);
 171
 172	spin_unlock(&key_serial_lock);
 173	return;
 174
 175	/* we found a key with the proposed serial number - walk the tree from
 176	 * that point looking for the next unused serial number */
 177serial_exists:
 178	for (;;) {
 179		key->serial++;
 180		if (key->serial < 3) {
 181			key->serial = 3;
 182			goto attempt_insertion;
 183		}
 184
 185		parent = rb_next(parent);
 186		if (!parent)
 187			goto attempt_insertion;
 188
 189		xkey = rb_entry(parent, struct key, serial_node);
 190		if (key->serial < xkey->serial)
 191			goto attempt_insertion;
 192	}
 193}
 194
 195/**
 196 * key_alloc - Allocate a key of the specified type.
 197 * @type: The type of key to allocate.
 198 * @desc: The key description to allow the key to be searched out.
 199 * @uid: The owner of the new key.
 200 * @gid: The group ID for the new key's group permissions.
 201 * @cred: The credentials specifying UID namespace.
 202 * @perm: The permissions mask of the new key.
 203 * @flags: Flags specifying quota properties.
 204 * @restrict_link: Optional link restriction for new keyrings.
 205 *
 206 * Allocate a key of the specified type with the attributes given.  The key is
 207 * returned in an uninstantiated state and the caller needs to instantiate the
 208 * key before returning.
 209 *
 210 * The restrict_link structure (if not NULL) will be freed when the
 211 * keyring is destroyed, so it must be dynamically allocated.
 212 *
 213 * The user's key count quota is updated to reflect the creation of the key and
 214 * the user's key data quota has the default for the key type reserved.  The
 215 * instantiation function should amend this as necessary.  If insufficient
 216 * quota is available, -EDQUOT will be returned.
 217 *
 218 * The LSM security modules can prevent a key being created, in which case
 219 * -EACCES will be returned.
 220 *
 221 * Returns a pointer to the new key if successful and an error code otherwise.
 222 *
 223 * Note that the caller needs to ensure the key type isn't uninstantiated.
 224 * Internally this can be done by locking key_types_sem.  Externally, this can
 225 * be done by either never unregistering the key type, or making sure
 226 * key_alloc() calls don't race with module unloading.
 227 */
 228struct key *key_alloc(struct key_type *type, const char *desc,
 229		      kuid_t uid, kgid_t gid, const struct cred *cred,
 230		      key_perm_t perm, unsigned long flags,
 231		      struct key_restriction *restrict_link)
 232{
 233	struct key_user *user = NULL;
 234	struct key *key;
 235	size_t desclen, quotalen;
 236	int ret;
 237
 238	key = ERR_PTR(-EINVAL);
 239	if (!desc || !*desc)
 240		goto error;
 241
 242	if (type->vet_description) {
 243		ret = type->vet_description(desc);
 244		if (ret < 0) {
 245			key = ERR_PTR(ret);
 246			goto error;
 247		}
 248	}
 249
 250	desclen = strlen(desc);
 251	quotalen = desclen + 1 + type->def_datalen;
 252
 253	/* get hold of the key tracking for this user */
 254	user = key_user_lookup(uid);
 255	if (!user)
 256		goto no_memory_1;
 257
 258	/* check that the user's quota permits allocation of another key and
 259	 * its description */
 260	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 261		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 262			key_quota_root_maxkeys : key_quota_maxkeys;
 263		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 264			key_quota_root_maxbytes : key_quota_maxbytes;
 265
 266		spin_lock(&user->lock);
 267		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 268			if (user->qnkeys + 1 >= maxkeys ||
 269			    user->qnbytes + quotalen >= maxbytes ||
 270			    user->qnbytes + quotalen < user->qnbytes)
 271				goto no_quota;
 272		}
 273
 274		user->qnkeys++;
 275		user->qnbytes += quotalen;
 276		spin_unlock(&user->lock);
 277	}
 278
 279	/* allocate and initialise the key and its description */
 280	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 281	if (!key)
 282		goto no_memory_2;
 283
 284	key->index_key.desc_len = desclen;
 285	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 286	if (!key->index_key.description)
 287		goto no_memory_3;
 288
 289	refcount_set(&key->usage, 1);
 290	init_rwsem(&key->sem);
 291	lockdep_set_class(&key->sem, &type->lock_class);
 292	key->index_key.type = type;
 293	key->user = user;
 294	key->quotalen = quotalen;
 295	key->datalen = type->def_datalen;
 296	key->uid = uid;
 297	key->gid = gid;
 298	key->perm = perm;
 299	key->restrict_link = restrict_link;
 300
 301	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 302		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 
 
 303	if (flags & KEY_ALLOC_BUILT_IN)
 304		key->flags |= 1 << KEY_FLAG_BUILTIN;
 305	if (flags & KEY_ALLOC_UID_KEYRING)
 306		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
 307
 308#ifdef KEY_DEBUGGING
 309	key->magic = KEY_DEBUG_MAGIC;
 310#endif
 311
 312	/* let the security module know about the key */
 313	ret = security_key_alloc(key, cred, flags);
 314	if (ret < 0)
 315		goto security_error;
 316
 317	/* publish the key by giving it a serial number */
 318	atomic_inc(&user->nkeys);
 319	key_alloc_serial(key);
 320
 321error:
 322	return key;
 323
 324security_error:
 325	kfree(key->description);
 326	kmem_cache_free(key_jar, key);
 327	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 328		spin_lock(&user->lock);
 329		user->qnkeys--;
 330		user->qnbytes -= quotalen;
 331		spin_unlock(&user->lock);
 332	}
 333	key_user_put(user);
 334	key = ERR_PTR(ret);
 335	goto error;
 336
 337no_memory_3:
 338	kmem_cache_free(key_jar, key);
 339no_memory_2:
 340	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 341		spin_lock(&user->lock);
 342		user->qnkeys--;
 343		user->qnbytes -= quotalen;
 344		spin_unlock(&user->lock);
 345	}
 346	key_user_put(user);
 347no_memory_1:
 348	key = ERR_PTR(-ENOMEM);
 349	goto error;
 350
 351no_quota:
 352	spin_unlock(&user->lock);
 353	key_user_put(user);
 354	key = ERR_PTR(-EDQUOT);
 355	goto error;
 356}
 357EXPORT_SYMBOL(key_alloc);
 358
 359/**
 360 * key_payload_reserve - Adjust data quota reservation for the key's payload
 361 * @key: The key to make the reservation for.
 362 * @datalen: The amount of data payload the caller now wants.
 363 *
 364 * Adjust the amount of the owning user's key data quota that a key reserves.
 365 * If the amount is increased, then -EDQUOT may be returned if there isn't
 366 * enough free quota available.
 367 *
 368 * If successful, 0 is returned.
 369 */
 370int key_payload_reserve(struct key *key, size_t datalen)
 371{
 372	int delta = (int)datalen - key->datalen;
 373	int ret = 0;
 374
 375	key_check(key);
 376
 377	/* contemplate the quota adjustment */
 378	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 379		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 380			key_quota_root_maxbytes : key_quota_maxbytes;
 381
 382		spin_lock(&key->user->lock);
 383
 384		if (delta > 0 &&
 385		    (key->user->qnbytes + delta >= maxbytes ||
 386		     key->user->qnbytes + delta < key->user->qnbytes)) {
 387			ret = -EDQUOT;
 388		}
 389		else {
 390			key->user->qnbytes += delta;
 391			key->quotalen += delta;
 392		}
 393		spin_unlock(&key->user->lock);
 394	}
 395
 396	/* change the recorded data length if that didn't generate an error */
 397	if (ret == 0)
 398		key->datalen = datalen;
 399
 400	return ret;
 401}
 402EXPORT_SYMBOL(key_payload_reserve);
 403
 404/*
 405 * Change the key state to being instantiated.
 406 */
 407static void mark_key_instantiated(struct key *key, int reject_error)
 408{
 409	/* Commit the payload before setting the state; barrier versus
 410	 * key_read_state().
 411	 */
 412	smp_store_release(&key->state,
 413			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
 414}
 415
 416/*
 417 * Instantiate a key and link it into the target keyring atomically.  Must be
 418 * called with the target keyring's semaphore writelocked.  The target key's
 419 * semaphore need not be locked as instantiation is serialised by
 420 * key_construction_mutex.
 421 */
 422static int __key_instantiate_and_link(struct key *key,
 423				      struct key_preparsed_payload *prep,
 424				      struct key *keyring,
 425				      struct key *authkey,
 426				      struct assoc_array_edit **_edit)
 427{
 428	int ret, awaken;
 429
 430	key_check(key);
 431	key_check(keyring);
 432
 433	awaken = 0;
 434	ret = -EBUSY;
 435
 436	mutex_lock(&key_construction_mutex);
 437
 438	/* can't instantiate twice */
 439	if (key->state == KEY_IS_UNINSTANTIATED) {
 440		/* instantiate the key */
 441		ret = key->type->instantiate(key, prep);
 442
 443		if (ret == 0) {
 444			/* mark the key as being instantiated */
 445			atomic_inc(&key->user->nikeys);
 446			mark_key_instantiated(key, 0);
 447
 448			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 449				awaken = 1;
 450
 451			/* and link it into the destination keyring */
 452			if (keyring) {
 453				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 454					set_bit(KEY_FLAG_KEEP, &key->flags);
 455
 456				__key_link(key, _edit);
 457			}
 458
 459			/* disable the authorisation key */
 460			if (authkey)
 461				key_revoke(authkey);
 462
 463			if (prep->expiry != TIME64_MAX) {
 464				key->expiry = prep->expiry;
 465				key_schedule_gc(prep->expiry + key_gc_delay);
 466			}
 467		}
 468	}
 469
 470	mutex_unlock(&key_construction_mutex);
 471
 472	/* wake up anyone waiting for a key to be constructed */
 473	if (awaken)
 474		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 475
 476	return ret;
 477}
 478
 479/**
 480 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 481 * @key: The key to instantiate.
 482 * @data: The data to use to instantiate the keyring.
 483 * @datalen: The length of @data.
 484 * @keyring: Keyring to create a link in on success (or NULL).
 485 * @authkey: The authorisation token permitting instantiation.
 486 *
 487 * Instantiate a key that's in the uninstantiated state using the provided data
 488 * and, if successful, link it in to the destination keyring if one is
 489 * supplied.
 490 *
 491 * If successful, 0 is returned, the authorisation token is revoked and anyone
 492 * waiting for the key is woken up.  If the key was already instantiated,
 493 * -EBUSY will be returned.
 494 */
 495int key_instantiate_and_link(struct key *key,
 496			     const void *data,
 497			     size_t datalen,
 498			     struct key *keyring,
 499			     struct key *authkey)
 500{
 501	struct key_preparsed_payload prep;
 502	struct assoc_array_edit *edit;
 503	int ret;
 504
 505	memset(&prep, 0, sizeof(prep));
 506	prep.data = data;
 507	prep.datalen = datalen;
 508	prep.quotalen = key->type->def_datalen;
 509	prep.expiry = TIME64_MAX;
 510	if (key->type->preparse) {
 511		ret = key->type->preparse(&prep);
 512		if (ret < 0)
 513			goto error;
 514	}
 515
 516	if (keyring) {
 517		ret = __key_link_begin(keyring, &key->index_key, &edit);
 518		if (ret < 0)
 519			goto error;
 520
 521		if (keyring->restrict_link && keyring->restrict_link->check) {
 522			struct key_restriction *keyres = keyring->restrict_link;
 523
 524			ret = keyres->check(keyring, key->type, &prep.payload,
 525					    keyres->key);
 526			if (ret < 0)
 527				goto error_link_end;
 528		}
 529	}
 530
 531	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 532
 533error_link_end:
 534	if (keyring)
 535		__key_link_end(keyring, &key->index_key, edit);
 536
 537error:
 538	if (key->type->preparse)
 539		key->type->free_preparse(&prep);
 540	return ret;
 541}
 542
 543EXPORT_SYMBOL(key_instantiate_and_link);
 544
 545/**
 546 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 547 * @key: The key to instantiate.
 548 * @timeout: The timeout on the negative key.
 549 * @error: The error to return when the key is hit.
 550 * @keyring: Keyring to create a link in on success (or NULL).
 551 * @authkey: The authorisation token permitting instantiation.
 552 *
 553 * Negatively instantiate a key that's in the uninstantiated state and, if
 554 * successful, set its timeout and stored error and link it in to the
 555 * destination keyring if one is supplied.  The key and any links to the key
 556 * will be automatically garbage collected after the timeout expires.
 557 *
 558 * Negative keys are used to rate limit repeated request_key() calls by causing
 559 * them to return the stored error code (typically ENOKEY) until the negative
 560 * key expires.
 561 *
 562 * If successful, 0 is returned, the authorisation token is revoked and anyone
 563 * waiting for the key is woken up.  If the key was already instantiated,
 564 * -EBUSY will be returned.
 565 */
 566int key_reject_and_link(struct key *key,
 567			unsigned timeout,
 568			unsigned error,
 569			struct key *keyring,
 570			struct key *authkey)
 571{
 572	struct assoc_array_edit *edit;
 
 573	int ret, awaken, link_ret = 0;
 574
 575	key_check(key);
 576	key_check(keyring);
 577
 578	awaken = 0;
 579	ret = -EBUSY;
 580
 581	if (keyring) {
 582		if (keyring->restrict_link)
 583			return -EPERM;
 584
 585		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 586	}
 587
 588	mutex_lock(&key_construction_mutex);
 589
 590	/* can't instantiate twice */
 591	if (key->state == KEY_IS_UNINSTANTIATED) {
 592		/* mark the key as being negatively instantiated */
 593		atomic_inc(&key->user->nikeys);
 594		mark_key_instantiated(key, -error);
 595		key->expiry = ktime_get_real_seconds() + timeout;
 
 
 
 
 596		key_schedule_gc(key->expiry + key_gc_delay);
 597
 598		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 599			awaken = 1;
 600
 601		ret = 0;
 602
 603		/* and link it into the destination keyring */
 604		if (keyring && link_ret == 0)
 605			__key_link(key, &edit);
 606
 607		/* disable the authorisation key */
 608		if (authkey)
 609			key_revoke(authkey);
 610	}
 611
 612	mutex_unlock(&key_construction_mutex);
 613
 614	if (keyring && link_ret == 0)
 615		__key_link_end(keyring, &key->index_key, edit);
 616
 617	/* wake up anyone waiting for a key to be constructed */
 618	if (awaken)
 619		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 620
 621	return ret == 0 ? link_ret : ret;
 622}
 623EXPORT_SYMBOL(key_reject_and_link);
 624
 625/**
 626 * key_put - Discard a reference to a key.
 627 * @key: The key to discard a reference from.
 628 *
 629 * Discard a reference to a key, and when all the references are gone, we
 630 * schedule the cleanup task to come and pull it out of the tree in process
 631 * context at some later time.
 632 */
 633void key_put(struct key *key)
 634{
 635	if (key) {
 636		key_check(key);
 637
 638		if (refcount_dec_and_test(&key->usage))
 639			schedule_work(&key_gc_work);
 640	}
 641}
 642EXPORT_SYMBOL(key_put);
 643
 644/*
 645 * Find a key by its serial number.
 646 */
 647struct key *key_lookup(key_serial_t id)
 648{
 649	struct rb_node *n;
 650	struct key *key;
 651
 652	spin_lock(&key_serial_lock);
 653
 654	/* search the tree for the specified key */
 655	n = key_serial_tree.rb_node;
 656	while (n) {
 657		key = rb_entry(n, struct key, serial_node);
 658
 659		if (id < key->serial)
 660			n = n->rb_left;
 661		else if (id > key->serial)
 662			n = n->rb_right;
 663		else
 664			goto found;
 665	}
 666
 667not_found:
 668	key = ERR_PTR(-ENOKEY);
 669	goto error;
 670
 671found:
 672	/* A key is allowed to be looked up only if someone still owns a
 673	 * reference to it - otherwise it's awaiting the gc.
 
 
 
 
 674	 */
 675	if (!refcount_inc_not_zero(&key->usage))
 676		goto not_found;
 677
 678error:
 679	spin_unlock(&key_serial_lock);
 680	return key;
 681}
 682
 683/*
 684 * Find and lock the specified key type against removal.
 685 *
 686 * We return with the sem read-locked if successful.  If the type wasn't
 687 * available -ENOKEY is returned instead.
 688 */
 689struct key_type *key_type_lookup(const char *type)
 690{
 691	struct key_type *ktype;
 692
 693	down_read(&key_types_sem);
 694
 695	/* look up the key type to see if it's one of the registered kernel
 696	 * types */
 697	list_for_each_entry(ktype, &key_types_list, link) {
 698		if (strcmp(ktype->name, type) == 0)
 699			goto found_kernel_type;
 700	}
 701
 702	up_read(&key_types_sem);
 703	ktype = ERR_PTR(-ENOKEY);
 704
 705found_kernel_type:
 706	return ktype;
 707}
 708
 709void key_set_timeout(struct key *key, unsigned timeout)
 710{
 711	time64_t expiry = 0;
 
 712
 713	/* make the changes with the locks held to prevent races */
 714	down_write(&key->sem);
 715
 716	if (timeout > 0)
 717		expiry = ktime_get_real_seconds() + timeout;
 
 
 718
 719	key->expiry = expiry;
 720	key_schedule_gc(key->expiry + key_gc_delay);
 721
 722	up_write(&key->sem);
 723}
 724EXPORT_SYMBOL_GPL(key_set_timeout);
 725
 726/*
 727 * Unlock a key type locked by key_type_lookup().
 728 */
 729void key_type_put(struct key_type *ktype)
 730{
 731	up_read(&key_types_sem);
 732}
 733
 734/*
 735 * Attempt to update an existing key.
 736 *
 737 * The key is given to us with an incremented refcount that we need to discard
 738 * if we get an error.
 739 */
 740static inline key_ref_t __key_update(key_ref_t key_ref,
 741				     struct key_preparsed_payload *prep)
 742{
 743	struct key *key = key_ref_to_ptr(key_ref);
 744	int ret;
 745
 746	/* need write permission on the key to update it */
 747	ret = key_permission(key_ref, KEY_NEED_WRITE);
 748	if (ret < 0)
 749		goto error;
 750
 751	ret = -EEXIST;
 752	if (!key->type->update)
 753		goto error;
 754
 755	down_write(&key->sem);
 756
 757	ret = key->type->update(key, prep);
 758	if (ret == 0)
 759		/* Updating a negative key positively instantiates it */
 760		mark_key_instantiated(key, 0);
 761
 762	up_write(&key->sem);
 763
 764	if (ret < 0)
 765		goto error;
 766out:
 767	return key_ref;
 768
 769error:
 770	key_put(key);
 771	key_ref = ERR_PTR(ret);
 772	goto out;
 773}
 774
 775/**
 776 * key_create_or_update - Update or create and instantiate a key.
 777 * @keyring_ref: A pointer to the destination keyring with possession flag.
 778 * @type: The type of key.
 779 * @description: The searchable description for the key.
 780 * @payload: The data to use to instantiate or update the key.
 781 * @plen: The length of @payload.
 782 * @perm: The permissions mask for a new key.
 783 * @flags: The quota flags for a new key.
 784 *
 785 * Search the destination keyring for a key of the same description and if one
 786 * is found, update it, otherwise create and instantiate a new one and create a
 787 * link to it from that keyring.
 788 *
 789 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 790 * concocted.
 791 *
 792 * Returns a pointer to the new key if successful, -ENODEV if the key type
 793 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 794 * caller isn't permitted to modify the keyring or the LSM did not permit
 795 * creation of the key.
 796 *
 797 * On success, the possession flag from the keyring ref will be tacked on to
 798 * the key ref before it is returned.
 799 */
 800key_ref_t key_create_or_update(key_ref_t keyring_ref,
 801			       const char *type,
 802			       const char *description,
 803			       const void *payload,
 804			       size_t plen,
 805			       key_perm_t perm,
 806			       unsigned long flags)
 807{
 808	struct keyring_index_key index_key = {
 809		.description	= description,
 810	};
 811	struct key_preparsed_payload prep;
 812	struct assoc_array_edit *edit;
 813	const struct cred *cred = current_cred();
 814	struct key *keyring, *key = NULL;
 815	key_ref_t key_ref;
 816	int ret;
 817	struct key_restriction *restrict_link = NULL;
 818
 819	/* look up the key type to see if it's one of the registered kernel
 820	 * types */
 821	index_key.type = key_type_lookup(type);
 822	if (IS_ERR(index_key.type)) {
 823		key_ref = ERR_PTR(-ENODEV);
 824		goto error;
 825	}
 826
 827	key_ref = ERR_PTR(-EINVAL);
 828	if (!index_key.type->instantiate ||
 829	    (!index_key.description && !index_key.type->preparse))
 830		goto error_put_type;
 831
 832	keyring = key_ref_to_ptr(keyring_ref);
 833
 834	key_check(keyring);
 835
 836	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
 837		restrict_link = keyring->restrict_link;
 838
 839	key_ref = ERR_PTR(-ENOTDIR);
 840	if (keyring->type != &key_type_keyring)
 841		goto error_put_type;
 842
 843	memset(&prep, 0, sizeof(prep));
 844	prep.data = payload;
 845	prep.datalen = plen;
 846	prep.quotalen = index_key.type->def_datalen;
 847	prep.expiry = TIME64_MAX;
 
 848	if (index_key.type->preparse) {
 849		ret = index_key.type->preparse(&prep);
 850		if (ret < 0) {
 851			key_ref = ERR_PTR(ret);
 852			goto error_free_prep;
 853		}
 854		if (!index_key.description)
 855			index_key.description = prep.description;
 856		key_ref = ERR_PTR(-EINVAL);
 857		if (!index_key.description)
 858			goto error_free_prep;
 859	}
 860	index_key.desc_len = strlen(index_key.description);
 861
 
 
 
 
 
 862	ret = __key_link_begin(keyring, &index_key, &edit);
 863	if (ret < 0) {
 864		key_ref = ERR_PTR(ret);
 865		goto error_free_prep;
 866	}
 867
 868	if (restrict_link && restrict_link->check) {
 869		ret = restrict_link->check(keyring, index_key.type,
 870					   &prep.payload, restrict_link->key);
 871		if (ret < 0) {
 872			key_ref = ERR_PTR(ret);
 873			goto error_link_end;
 874		}
 875	}
 876
 877	/* if we're going to allocate a new key, we're going to have
 878	 * to modify the keyring */
 879	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 880	if (ret < 0) {
 881		key_ref = ERR_PTR(ret);
 882		goto error_link_end;
 883	}
 884
 885	/* if it's possible to update this type of key, search for an existing
 886	 * key of the same type and description in the destination keyring and
 887	 * update that instead if possible
 888	 */
 889	if (index_key.type->update) {
 890		key_ref = find_key_to_update(keyring_ref, &index_key);
 891		if (key_ref)
 892			goto found_matching_key;
 893	}
 894
 895	/* if the client doesn't provide, decide on the permissions we want */
 896	if (perm == KEY_PERM_UNDEF) {
 897		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 898		perm |= KEY_USR_VIEW;
 899
 900		if (index_key.type->read)
 901			perm |= KEY_POS_READ;
 902
 903		if (index_key.type == &key_type_keyring ||
 904		    index_key.type->update)
 905			perm |= KEY_POS_WRITE;
 906	}
 907
 908	/* allocate a new key */
 909	key = key_alloc(index_key.type, index_key.description,
 910			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
 911	if (IS_ERR(key)) {
 912		key_ref = ERR_CAST(key);
 913		goto error_link_end;
 914	}
 915
 916	/* instantiate it and link it into the target keyring */
 917	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 918	if (ret < 0) {
 919		key_put(key);
 920		key_ref = ERR_PTR(ret);
 921		goto error_link_end;
 922	}
 923
 924	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 925
 926error_link_end:
 927	__key_link_end(keyring, &index_key, edit);
 928error_free_prep:
 929	if (index_key.type->preparse)
 930		index_key.type->free_preparse(&prep);
 931error_put_type:
 932	key_type_put(index_key.type);
 933error:
 934	return key_ref;
 935
 936 found_matching_key:
 937	/* we found a matching key, so we're going to try to update it
 938	 * - we can drop the locks first as we have the key pinned
 939	 */
 940	__key_link_end(keyring, &index_key, edit);
 941
 942	key = key_ref_to_ptr(key_ref);
 943	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
 944		ret = wait_for_key_construction(key, true);
 945		if (ret < 0) {
 946			key_ref_put(key_ref);
 947			key_ref = ERR_PTR(ret);
 948			goto error_free_prep;
 949		}
 950	}
 951
 952	key_ref = __key_update(key_ref, &prep);
 953	goto error_free_prep;
 954}
 955EXPORT_SYMBOL(key_create_or_update);
 956
 957/**
 958 * key_update - Update a key's contents.
 959 * @key_ref: The pointer (plus possession flag) to the key.
 960 * @payload: The data to be used to update the key.
 961 * @plen: The length of @payload.
 962 *
 963 * Attempt to update the contents of a key with the given payload data.  The
 964 * caller must be granted Write permission on the key.  Negative keys can be
 965 * instantiated by this method.
 966 *
 967 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 968 * type does not support updating.  The key type may return other errors.
 969 */
 970int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 971{
 972	struct key_preparsed_payload prep;
 973	struct key *key = key_ref_to_ptr(key_ref);
 974	int ret;
 975
 976	key_check(key);
 977
 978	/* the key must be writable */
 979	ret = key_permission(key_ref, KEY_NEED_WRITE);
 980	if (ret < 0)
 981		return ret;
 982
 983	/* attempt to update it if supported */
 
 984	if (!key->type->update)
 985		return -EOPNOTSUPP;
 986
 987	memset(&prep, 0, sizeof(prep));
 988	prep.data = payload;
 989	prep.datalen = plen;
 990	prep.quotalen = key->type->def_datalen;
 991	prep.expiry = TIME64_MAX;
 992	if (key->type->preparse) {
 993		ret = key->type->preparse(&prep);
 994		if (ret < 0)
 995			goto error;
 996	}
 997
 998	down_write(&key->sem);
 999
1000	ret = key->type->update(key, &prep);
1001	if (ret == 0)
1002		/* Updating a negative key positively instantiates it */
1003		mark_key_instantiated(key, 0);
1004
1005	up_write(&key->sem);
1006
1007error:
1008	if (key->type->preparse)
1009		key->type->free_preparse(&prep);
1010	return ret;
1011}
1012EXPORT_SYMBOL(key_update);
1013
1014/**
1015 * key_revoke - Revoke a key.
1016 * @key: The key to be revoked.
1017 *
1018 * Mark a key as being revoked and ask the type to free up its resources.  The
1019 * revocation timeout is set and the key and all its links will be
1020 * automatically garbage collected after key_gc_delay amount of time if they
1021 * are not manually dealt with first.
1022 */
1023void key_revoke(struct key *key)
1024{
1025	time64_t time;
 
1026
1027	key_check(key);
1028
1029	/* make sure no one's trying to change or use the key when we mark it
1030	 * - we tell lockdep that we might nest because we might be revoking an
1031	 *   authorisation key whilst holding the sem on a key we've just
1032	 *   instantiated
1033	 */
1034	down_write_nested(&key->sem, 1);
1035	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1036	    key->type->revoke)
1037		key->type->revoke(key);
1038
1039	/* set the death time to no more than the expiry time */
1040	time = ktime_get_real_seconds();
 
1041	if (key->revoked_at == 0 || key->revoked_at > time) {
1042		key->revoked_at = time;
1043		key_schedule_gc(key->revoked_at + key_gc_delay);
1044	}
1045
1046	up_write(&key->sem);
1047}
1048EXPORT_SYMBOL(key_revoke);
1049
1050/**
1051 * key_invalidate - Invalidate a key.
1052 * @key: The key to be invalidated.
1053 *
1054 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1055 * is ignored by all searches and other operations from this point.
1056 */
1057void key_invalidate(struct key *key)
1058{
1059	kenter("%d", key_serial(key));
1060
1061	key_check(key);
1062
1063	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1064		down_write_nested(&key->sem, 1);
1065		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1066			key_schedule_gc_links();
1067		up_write(&key->sem);
1068	}
1069}
1070EXPORT_SYMBOL(key_invalidate);
1071
1072/**
1073 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1074 * @key: The key to be instantiated
1075 * @prep: The preparsed data to load.
1076 *
1077 * Instantiate a key from preparsed data.  We assume we can just copy the data
1078 * in directly and clear the old pointers.
1079 *
1080 * This can be pointed to directly by the key type instantiate op pointer.
1081 */
1082int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1083{
1084	int ret;
1085
1086	pr_devel("==>%s()\n", __func__);
1087
1088	ret = key_payload_reserve(key, prep->quotalen);
1089	if (ret == 0) {
1090		rcu_assign_keypointer(key, prep->payload.data[0]);
1091		key->payload.data[1] = prep->payload.data[1];
1092		key->payload.data[2] = prep->payload.data[2];
1093		key->payload.data[3] = prep->payload.data[3];
1094		prep->payload.data[0] = NULL;
1095		prep->payload.data[1] = NULL;
1096		prep->payload.data[2] = NULL;
1097		prep->payload.data[3] = NULL;
1098	}
1099	pr_devel("<==%s() = %d\n", __func__, ret);
1100	return ret;
1101}
1102EXPORT_SYMBOL(generic_key_instantiate);
1103
1104/**
1105 * register_key_type - Register a type of key.
1106 * @ktype: The new key type.
1107 *
1108 * Register a new key type.
1109 *
1110 * Returns 0 on success or -EEXIST if a type of this name already exists.
1111 */
1112int register_key_type(struct key_type *ktype)
1113{
1114	struct key_type *p;
1115	int ret;
1116
1117	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1118
1119	ret = -EEXIST;
1120	down_write(&key_types_sem);
1121
1122	/* disallow key types with the same name */
1123	list_for_each_entry(p, &key_types_list, link) {
1124		if (strcmp(p->name, ktype->name) == 0)
1125			goto out;
1126	}
1127
1128	/* store the type */
1129	list_add(&ktype->link, &key_types_list);
1130
1131	pr_notice("Key type %s registered\n", ktype->name);
1132	ret = 0;
1133
1134out:
1135	up_write(&key_types_sem);
1136	return ret;
1137}
1138EXPORT_SYMBOL(register_key_type);
1139
1140/**
1141 * unregister_key_type - Unregister a type of key.
1142 * @ktype: The key type.
1143 *
1144 * Unregister a key type and mark all the extant keys of this type as dead.
1145 * Those keys of this type are then destroyed to get rid of their payloads and
1146 * they and their links will be garbage collected as soon as possible.
1147 */
1148void unregister_key_type(struct key_type *ktype)
1149{
1150	down_write(&key_types_sem);
1151	list_del_init(&ktype->link);
1152	downgrade_write(&key_types_sem);
1153	key_gc_keytype(ktype);
1154	pr_notice("Key type %s unregistered\n", ktype->name);
1155	up_read(&key_types_sem);
1156}
1157EXPORT_SYMBOL(unregister_key_type);
1158
1159/*
1160 * Initialise the key management state.
1161 */
1162void __init key_init(void)
1163{
1164	/* allocate a slab in which we can store keys */
1165	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1166			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1167
1168	/* add the special key types */
1169	list_add_tail(&key_type_keyring.link, &key_types_list);
1170	list_add_tail(&key_type_dead.link, &key_types_list);
1171	list_add_tail(&key_type_user.link, &key_types_list);
1172	list_add_tail(&key_type_logon.link, &key_types_list);
1173
1174	/* record the root user tracking */
1175	rb_link_node(&root_key_user.node,
1176		     NULL,
1177		     &key_user_tree.rb_node);
1178
1179	rb_insert_color(&root_key_user.node,
1180			&key_user_tree);
1181}