Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
  3 *
  4 *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
  5 *
  6 *	This program is free software; you can redistribute it and/or
  7 *	modify it under the terms of the GNU General Public License
  8 *	as published by the Free Software Foundation; either version
  9 *	2 of the License, or (at your option) any later version.
 10 *
 11 *  Meant to be mostly used for locally generated traffic :
 12 *  Fast classification depends on skb->sk being set before reaching us.
 13 *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
 14 *  All packets belonging to a socket are considered as a 'flow'.
 15 *
 16 *  Flows are dynamically allocated and stored in a hash table of RB trees
 17 *  They are also part of one Round Robin 'queues' (new or old flows)
 18 *
 19 *  Burst avoidance (aka pacing) capability :
 20 *
 21 *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
 22 *  bunch of packets, and this packet scheduler adds delay between
 23 *  packets to respect rate limitation.
 24 *
 25 *  enqueue() :
 26 *   - lookup one RB tree (out of 1024 or more) to find the flow.
 27 *     If non existent flow, create it, add it to the tree.
 28 *     Add skb to the per flow list of skb (fifo).
 29 *   - Use a special fifo for high prio packets
 30 *
 31 *  dequeue() : serves flows in Round Robin
 32 *  Note : When a flow becomes empty, we do not immediately remove it from
 33 *  rb trees, for performance reasons (its expected to send additional packets,
 34 *  or SLAB cache will reuse socket for another flow)
 35 */
 36
 37#include <linux/module.h>
 38#include <linux/types.h>
 39#include <linux/kernel.h>
 40#include <linux/jiffies.h>
 41#include <linux/string.h>
 42#include <linux/in.h>
 43#include <linux/errno.h>
 44#include <linux/init.h>
 45#include <linux/skbuff.h>
 46#include <linux/slab.h>
 47#include <linux/rbtree.h>
 48#include <linux/hash.h>
 49#include <linux/prefetch.h>
 50#include <linux/vmalloc.h>
 51#include <net/netlink.h>
 52#include <net/pkt_sched.h>
 53#include <net/sock.h>
 54#include <net/tcp_states.h>
 55#include <net/tcp.h>
 56
 57/*
 58 * Per flow structure, dynamically allocated
 59 */
 60struct fq_flow {
 61	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
 62	union {
 63		struct sk_buff *tail;	/* last skb in the list */
 64		unsigned long  age;	/* jiffies when flow was emptied, for gc */
 65	};
 66	struct rb_node	fq_node;	/* anchor in fq_root[] trees */
 67	struct sock	*sk;
 68	int		qlen;		/* number of packets in flow queue */
 69	int		credit;
 70	u32		socket_hash;	/* sk_hash */
 71	struct fq_flow *next;		/* next pointer in RR lists, or &detached */
 72
 73	struct rb_node  rate_node;	/* anchor in q->delayed tree */
 74	u64		time_next_packet;
 75};
 76
 77struct fq_flow_head {
 78	struct fq_flow *first;
 79	struct fq_flow *last;
 80};
 81
 82struct fq_sched_data {
 83	struct fq_flow_head new_flows;
 84
 85	struct fq_flow_head old_flows;
 86
 87	struct rb_root	delayed;	/* for rate limited flows */
 88	u64		time_next_delayed_flow;
 
 89
 90	struct fq_flow	internal;	/* for non classified or high prio packets */
 91	u32		quantum;
 92	u32		initial_quantum;
 93	u32		flow_refill_delay;
 94	u32		flow_max_rate;	/* optional max rate per flow */
 95	u32		flow_plimit;	/* max packets per flow */
 96	u32		orphan_mask;	/* mask for orphaned skb */
 
 97	struct rb_root	*fq_root;
 98	u8		rate_enable;
 99	u8		fq_trees_log;
100
101	u32		flows;
102	u32		inactive_flows;
103	u32		throttled_flows;
104
105	u64		stat_gc_flows;
106	u64		stat_internal_packets;
107	u64		stat_tcp_retrans;
108	u64		stat_throttled;
109	u64		stat_flows_plimit;
110	u64		stat_pkts_too_long;
111	u64		stat_allocation_errors;
112	struct qdisc_watchdog watchdog;
113};
114
115/* special value to mark a detached flow (not on old/new list) */
116static struct fq_flow detached, throttled;
117
118static void fq_flow_set_detached(struct fq_flow *f)
119{
120	f->next = &detached;
121	f->age = jiffies;
122}
123
124static bool fq_flow_is_detached(const struct fq_flow *f)
125{
126	return f->next == &detached;
127}
128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
130{
131	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
132
133	while (*p) {
134		struct fq_flow *aux;
135
136		parent = *p;
137		aux = container_of(parent, struct fq_flow, rate_node);
138		if (f->time_next_packet >= aux->time_next_packet)
139			p = &parent->rb_right;
140		else
141			p = &parent->rb_left;
142	}
143	rb_link_node(&f->rate_node, parent, p);
144	rb_insert_color(&f->rate_node, &q->delayed);
145	q->throttled_flows++;
146	q->stat_throttled++;
147
148	f->next = &throttled;
149	if (q->time_next_delayed_flow > f->time_next_packet)
150		q->time_next_delayed_flow = f->time_next_packet;
151}
152
153
154static struct kmem_cache *fq_flow_cachep __read_mostly;
155
156static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
157{
158	if (head->first)
159		head->last->next = flow;
160	else
161		head->first = flow;
162	head->last = flow;
163	flow->next = NULL;
164}
165
166/* limit number of collected flows per round */
167#define FQ_GC_MAX 8
168#define FQ_GC_AGE (3*HZ)
169
170static bool fq_gc_candidate(const struct fq_flow *f)
171{
172	return fq_flow_is_detached(f) &&
173	       time_after(jiffies, f->age + FQ_GC_AGE);
174}
175
176static void fq_gc(struct fq_sched_data *q,
177		  struct rb_root *root,
178		  struct sock *sk)
179{
180	struct fq_flow *f, *tofree[FQ_GC_MAX];
181	struct rb_node **p, *parent;
182	int fcnt = 0;
183
184	p = &root->rb_node;
185	parent = NULL;
186	while (*p) {
187		parent = *p;
188
189		f = container_of(parent, struct fq_flow, fq_node);
190		if (f->sk == sk)
191			break;
192
193		if (fq_gc_candidate(f)) {
194			tofree[fcnt++] = f;
195			if (fcnt == FQ_GC_MAX)
196				break;
197		}
198
199		if (f->sk > sk)
200			p = &parent->rb_right;
201		else
202			p = &parent->rb_left;
203	}
204
205	q->flows -= fcnt;
206	q->inactive_flows -= fcnt;
207	q->stat_gc_flows += fcnt;
208	while (fcnt) {
209		struct fq_flow *f = tofree[--fcnt];
210
211		rb_erase(&f->fq_node, root);
212		kmem_cache_free(fq_flow_cachep, f);
213	}
214}
215
216static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
217{
218	struct rb_node **p, *parent;
219	struct sock *sk = skb->sk;
220	struct rb_root *root;
221	struct fq_flow *f;
222
223	/* warning: no starvation prevention... */
224	if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
225		return &q->internal;
226
227	/* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
228	 * or a listener (SYNCOOKIE mode)
229	 * 1) request sockets are not full blown,
230	 *    they do not contain sk_pacing_rate
231	 * 2) They are not part of a 'flow' yet
232	 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
233	 *    especially if the listener set SO_MAX_PACING_RATE
234	 * 4) We pretend they are orphaned
235	 */
236	if (!sk || sk_listener(sk)) {
237		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
238
239		/* By forcing low order bit to 1, we make sure to not
240		 * collide with a local flow (socket pointers are word aligned)
241		 */
242		sk = (struct sock *)((hash << 1) | 1UL);
243		skb_orphan(skb);
244	}
245
246	root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
247
248	if (q->flows >= (2U << q->fq_trees_log) &&
249	    q->inactive_flows > q->flows/2)
250		fq_gc(q, root, sk);
251
252	p = &root->rb_node;
253	parent = NULL;
254	while (*p) {
255		parent = *p;
256
257		f = container_of(parent, struct fq_flow, fq_node);
258		if (f->sk == sk) {
259			/* socket might have been reallocated, so check
260			 * if its sk_hash is the same.
261			 * It not, we need to refill credit with
262			 * initial quantum
263			 */
264			if (unlikely(skb->sk &&
265				     f->socket_hash != sk->sk_hash)) {
266				f->credit = q->initial_quantum;
267				f->socket_hash = sk->sk_hash;
 
 
268				f->time_next_packet = 0ULL;
269			}
270			return f;
271		}
272		if (f->sk > sk)
273			p = &parent->rb_right;
274		else
275			p = &parent->rb_left;
276	}
277
278	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
279	if (unlikely(!f)) {
280		q->stat_allocation_errors++;
281		return &q->internal;
282	}
283	fq_flow_set_detached(f);
284	f->sk = sk;
285	if (skb->sk)
286		f->socket_hash = sk->sk_hash;
287	f->credit = q->initial_quantum;
288
289	rb_link_node(&f->fq_node, parent, p);
290	rb_insert_color(&f->fq_node, root);
291
292	q->flows++;
293	q->inactive_flows++;
294	return f;
295}
296
297
298/* remove one skb from head of flow queue */
299static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
300{
301	struct sk_buff *skb = flow->head;
302
303	if (skb) {
304		flow->head = skb->next;
305		skb->next = NULL;
306		flow->qlen--;
307		qdisc_qstats_backlog_dec(sch, skb);
308		sch->q.qlen--;
309	}
310	return skb;
311}
312
313/* We might add in the future detection of retransmits
314 * For the time being, just return false
315 */
316static bool skb_is_retransmit(struct sk_buff *skb)
317{
318	return false;
319}
320
321/* add skb to flow queue
322 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
323 * We special case tcp retransmits to be transmitted before other packets.
324 * We rely on fact that TCP retransmits are unlikely, so we do not waste
325 * a separate queue or a pointer.
326 * head->  [retrans pkt 1]
327 *         [retrans pkt 2]
328 *         [ normal pkt 1]
329 *         [ normal pkt 2]
330 *         [ normal pkt 3]
331 * tail->  [ normal pkt 4]
332 */
333static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
334{
335	struct sk_buff *prev, *head = flow->head;
336
337	skb->next = NULL;
338	if (!head) {
339		flow->head = skb;
340		flow->tail = skb;
341		return;
342	}
343	if (likely(!skb_is_retransmit(skb))) {
344		flow->tail->next = skb;
345		flow->tail = skb;
346		return;
347	}
348
349	/* This skb is a tcp retransmit,
350	 * find the last retrans packet in the queue
351	 */
352	prev = NULL;
353	while (skb_is_retransmit(head)) {
354		prev = head;
355		head = head->next;
356		if (!head)
357			break;
358	}
359	if (!prev) { /* no rtx packet in queue, become the new head */
360		skb->next = flow->head;
361		flow->head = skb;
362	} else {
363		if (prev == flow->tail)
364			flow->tail = skb;
365		else
366			skb->next = prev->next;
367		prev->next = skb;
368	}
369}
370
371static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
 
372{
373	struct fq_sched_data *q = qdisc_priv(sch);
374	struct fq_flow *f;
375
376	if (unlikely(sch->q.qlen >= sch->limit))
377		return qdisc_drop(skb, sch);
378
379	f = fq_classify(skb, q);
380	if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
381		q->stat_flows_plimit++;
382		return qdisc_drop(skb, sch);
383	}
384
385	f->qlen++;
386	if (skb_is_retransmit(skb))
387		q->stat_tcp_retrans++;
388	qdisc_qstats_backlog_inc(sch, skb);
389	if (fq_flow_is_detached(f)) {
 
 
390		fq_flow_add_tail(&q->new_flows, f);
391		if (time_after(jiffies, f->age + q->flow_refill_delay))
392			f->credit = max_t(u32, f->credit, q->quantum);
 
 
 
 
 
 
393		q->inactive_flows--;
394	}
395
396	/* Note: this overwrites f->age */
397	flow_queue_add(f, skb);
398
399	if (unlikely(f == &q->internal)) {
400		q->stat_internal_packets++;
401	}
402	sch->q.qlen++;
403
404	return NET_XMIT_SUCCESS;
405}
406
407static void fq_check_throttled(struct fq_sched_data *q, u64 now)
408{
 
409	struct rb_node *p;
410
411	if (q->time_next_delayed_flow > now)
412		return;
413
 
 
 
 
 
 
 
414	q->time_next_delayed_flow = ~0ULL;
415	while ((p = rb_first(&q->delayed)) != NULL) {
416		struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
417
418		if (f->time_next_packet > now) {
419			q->time_next_delayed_flow = f->time_next_packet;
420			break;
421		}
422		rb_erase(p, &q->delayed);
423		q->throttled_flows--;
424		fq_flow_add_tail(&q->old_flows, f);
425	}
426}
427
428static struct sk_buff *fq_dequeue(struct Qdisc *sch)
429{
430	struct fq_sched_data *q = qdisc_priv(sch);
431	u64 now = ktime_get_ns();
432	struct fq_flow_head *head;
433	struct sk_buff *skb;
434	struct fq_flow *f;
435	u32 rate;
436
437	skb = fq_dequeue_head(sch, &q->internal);
438	if (skb)
439		goto out;
440	fq_check_throttled(q, now);
441begin:
442	head = &q->new_flows;
443	if (!head->first) {
444		head = &q->old_flows;
445		if (!head->first) {
446			if (q->time_next_delayed_flow != ~0ULL)
447				qdisc_watchdog_schedule_ns(&q->watchdog,
448							   q->time_next_delayed_flow,
449							   false);
450			return NULL;
451		}
452	}
453	f = head->first;
454
455	if (f->credit <= 0) {
456		f->credit += q->quantum;
457		head->first = f->next;
458		fq_flow_add_tail(&q->old_flows, f);
459		goto begin;
460	}
461
462	skb = f->head;
463	if (unlikely(skb && now < f->time_next_packet &&
464		     !skb_is_tcp_pure_ack(skb))) {
465		head->first = f->next;
466		fq_flow_set_throttled(q, f);
467		goto begin;
468	}
469
470	skb = fq_dequeue_head(sch, f);
471	if (!skb) {
472		head->first = f->next;
473		/* force a pass through old_flows to prevent starvation */
474		if ((head == &q->new_flows) && q->old_flows.first) {
475			fq_flow_add_tail(&q->old_flows, f);
476		} else {
477			fq_flow_set_detached(f);
478			q->inactive_flows++;
479		}
480		goto begin;
481	}
482	prefetch(&skb->end);
483	f->credit -= qdisc_pkt_len(skb);
484
485	if (f->credit > 0 || !q->rate_enable)
486		goto out;
487
488	/* Do not pace locally generated ack packets */
489	if (skb_is_tcp_pure_ack(skb))
490		goto out;
491
492	rate = q->flow_max_rate;
493	if (skb->sk)
494		rate = min(skb->sk->sk_pacing_rate, rate);
495
 
 
 
 
 
 
 
 
496	if (rate != ~0U) {
497		u32 plen = max(qdisc_pkt_len(skb), q->quantum);
498		u64 len = (u64)plen * NSEC_PER_SEC;
499
500		if (likely(rate))
501			do_div(len, rate);
502		/* Since socket rate can change later,
503		 * clamp the delay to 1 second.
504		 * Really, providers of too big packets should be fixed !
505		 */
506		if (unlikely(len > NSEC_PER_SEC)) {
507			len = NSEC_PER_SEC;
508			q->stat_pkts_too_long++;
509		}
510
 
 
 
 
 
511		f->time_next_packet = now + len;
512	}
513out:
514	qdisc_bstats_update(sch, skb);
515	return skb;
516}
517
 
 
 
 
 
 
 
518static void fq_reset(struct Qdisc *sch)
519{
520	struct fq_sched_data *q = qdisc_priv(sch);
521	struct rb_root *root;
522	struct sk_buff *skb;
523	struct rb_node *p;
524	struct fq_flow *f;
525	unsigned int idx;
526
527	while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
528		kfree_skb(skb);
 
 
529
530	if (!q->fq_root)
531		return;
532
533	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
534		root = &q->fq_root[idx];
535		while ((p = rb_first(root)) != NULL) {
536			f = container_of(p, struct fq_flow, fq_node);
537			rb_erase(p, root);
538
539			while ((skb = fq_dequeue_head(sch, f)) != NULL)
540				kfree_skb(skb);
541
542			kmem_cache_free(fq_flow_cachep, f);
543		}
544	}
545	q->new_flows.first	= NULL;
546	q->old_flows.first	= NULL;
547	q->delayed		= RB_ROOT;
548	q->flows		= 0;
549	q->inactive_flows	= 0;
550	q->throttled_flows	= 0;
551}
552
553static void fq_rehash(struct fq_sched_data *q,
554		      struct rb_root *old_array, u32 old_log,
555		      struct rb_root *new_array, u32 new_log)
556{
557	struct rb_node *op, **np, *parent;
558	struct rb_root *oroot, *nroot;
559	struct fq_flow *of, *nf;
560	int fcnt = 0;
561	u32 idx;
562
563	for (idx = 0; idx < (1U << old_log); idx++) {
564		oroot = &old_array[idx];
565		while ((op = rb_first(oroot)) != NULL) {
566			rb_erase(op, oroot);
567			of = container_of(op, struct fq_flow, fq_node);
568			if (fq_gc_candidate(of)) {
569				fcnt++;
570				kmem_cache_free(fq_flow_cachep, of);
571				continue;
572			}
573			nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
574
575			np = &nroot->rb_node;
576			parent = NULL;
577			while (*np) {
578				parent = *np;
579
580				nf = container_of(parent, struct fq_flow, fq_node);
581				BUG_ON(nf->sk == of->sk);
582
583				if (nf->sk > of->sk)
584					np = &parent->rb_right;
585				else
586					np = &parent->rb_left;
587			}
588
589			rb_link_node(&of->fq_node, parent, np);
590			rb_insert_color(&of->fq_node, nroot);
591		}
592	}
593	q->flows -= fcnt;
594	q->inactive_flows -= fcnt;
595	q->stat_gc_flows += fcnt;
596}
597
598static void *fq_alloc_node(size_t sz, int node)
599{
600	void *ptr;
601
602	ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node);
603	if (!ptr)
604		ptr = vmalloc_node(sz, node);
605	return ptr;
606}
607
608static void fq_free(void *addr)
609{
610	kvfree(addr);
611}
612
613static int fq_resize(struct Qdisc *sch, u32 log)
614{
615	struct fq_sched_data *q = qdisc_priv(sch);
616	struct rb_root *array;
617	void *old_fq_root;
618	u32 idx;
619
620	if (q->fq_root && log == q->fq_trees_log)
621		return 0;
622
623	/* If XPS was setup, we can allocate memory on right NUMA node */
624	array = fq_alloc_node(sizeof(struct rb_root) << log,
625			      netdev_queue_numa_node_read(sch->dev_queue));
626	if (!array)
627		return -ENOMEM;
628
629	for (idx = 0; idx < (1U << log); idx++)
630		array[idx] = RB_ROOT;
631
632	sch_tree_lock(sch);
633
634	old_fq_root = q->fq_root;
635	if (old_fq_root)
636		fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
637
638	q->fq_root = array;
639	q->fq_trees_log = log;
640
641	sch_tree_unlock(sch);
642
643	fq_free(old_fq_root);
644
645	return 0;
646}
647
648static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
649	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
650	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
651	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
652	[TCA_FQ_INITIAL_QUANTUM]	= { .type = NLA_U32 },
653	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
654	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
655	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
656	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
657	[TCA_FQ_FLOW_REFILL_DELAY]	= { .type = NLA_U32 },
 
658};
659
660static int fq_change(struct Qdisc *sch, struct nlattr *opt)
 
661{
662	struct fq_sched_data *q = qdisc_priv(sch);
663	struct nlattr *tb[TCA_FQ_MAX + 1];
664	int err, drop_count = 0;
665	unsigned drop_len = 0;
666	u32 fq_log;
667
668	if (!opt)
669		return -EINVAL;
670
671	err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
672	if (err < 0)
673		return err;
674
675	sch_tree_lock(sch);
676
677	fq_log = q->fq_trees_log;
678
679	if (tb[TCA_FQ_BUCKETS_LOG]) {
680		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
681
682		if (nval >= 1 && nval <= ilog2(256*1024))
683			fq_log = nval;
684		else
685			err = -EINVAL;
686	}
687	if (tb[TCA_FQ_PLIMIT])
688		sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
689
690	if (tb[TCA_FQ_FLOW_PLIMIT])
691		q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
692
693	if (tb[TCA_FQ_QUANTUM]) {
694		u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
695
696		if (quantum > 0)
697			q->quantum = quantum;
698		else
699			err = -EINVAL;
700	}
701
702	if (tb[TCA_FQ_INITIAL_QUANTUM])
703		q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
704
705	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
706		pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
707				    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
708
709	if (tb[TCA_FQ_FLOW_MAX_RATE])
710		q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
711
 
 
 
 
712	if (tb[TCA_FQ_RATE_ENABLE]) {
713		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
714
715		if (enable <= 1)
716			q->rate_enable = enable;
717		else
718			err = -EINVAL;
719	}
720
721	if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
722		u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
723
724		q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
725	}
726
727	if (tb[TCA_FQ_ORPHAN_MASK])
728		q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
729
730	if (!err) {
731		sch_tree_unlock(sch);
732		err = fq_resize(sch, fq_log);
733		sch_tree_lock(sch);
734	}
735	while (sch->q.qlen > sch->limit) {
736		struct sk_buff *skb = fq_dequeue(sch);
737
738		if (!skb)
739			break;
740		drop_len += qdisc_pkt_len(skb);
741		kfree_skb(skb);
742		drop_count++;
743	}
744	qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
745
746	sch_tree_unlock(sch);
747	return err;
748}
749
750static void fq_destroy(struct Qdisc *sch)
751{
752	struct fq_sched_data *q = qdisc_priv(sch);
753
754	fq_reset(sch);
755	fq_free(q->fq_root);
756	qdisc_watchdog_cancel(&q->watchdog);
757}
758
759static int fq_init(struct Qdisc *sch, struct nlattr *opt)
 
760{
761	struct fq_sched_data *q = qdisc_priv(sch);
762	int err;
763
764	sch->limit		= 10000;
765	q->flow_plimit		= 100;
766	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
767	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
768	q->flow_refill_delay	= msecs_to_jiffies(40);
769	q->flow_max_rate	= ~0U;
 
770	q->rate_enable		= 1;
771	q->new_flows.first	= NULL;
772	q->old_flows.first	= NULL;
773	q->delayed		= RB_ROOT;
774	q->fq_root		= NULL;
775	q->fq_trees_log		= ilog2(1024);
776	q->orphan_mask		= 1024 - 1;
 
777	qdisc_watchdog_init(&q->watchdog, sch);
778
779	if (opt)
780		err = fq_change(sch, opt);
781	else
782		err = fq_resize(sch, q->fq_trees_log);
783
784	return err;
785}
786
787static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
788{
789	struct fq_sched_data *q = qdisc_priv(sch);
790	struct nlattr *opts;
791
792	opts = nla_nest_start(skb, TCA_OPTIONS);
793	if (opts == NULL)
794		goto nla_put_failure;
795
796	/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
797
798	if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
799	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
800	    nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
801	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
802	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
803	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
804	    nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
805			jiffies_to_usecs(q->flow_refill_delay)) ||
806	    nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
 
 
807	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
808		goto nla_put_failure;
809
810	return nla_nest_end(skb, opts);
811
812nla_put_failure:
813	return -1;
814}
815
816static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
817{
818	struct fq_sched_data *q = qdisc_priv(sch);
819	u64 now = ktime_get_ns();
820	struct tc_fq_qd_stats st = {
821		.gc_flows		= q->stat_gc_flows,
822		.highprio_packets	= q->stat_internal_packets,
823		.tcp_retrans		= q->stat_tcp_retrans,
824		.throttled		= q->stat_throttled,
825		.flows_plimit		= q->stat_flows_plimit,
826		.pkts_too_long		= q->stat_pkts_too_long,
827		.allocation_errors	= q->stat_allocation_errors,
828		.flows			= q->flows,
829		.inactive_flows		= q->inactive_flows,
830		.throttled_flows	= q->throttled_flows,
831		.time_next_delayed_flow	= q->time_next_delayed_flow - now,
832	};
 
 
 
 
833
834	return gnet_stats_copy_app(d, &st, sizeof(st));
835}
836
837static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
838	.id		=	"fq",
839	.priv_size	=	sizeof(struct fq_sched_data),
840
841	.enqueue	=	fq_enqueue,
842	.dequeue	=	fq_dequeue,
843	.peek		=	qdisc_peek_dequeued,
844	.init		=	fq_init,
845	.reset		=	fq_reset,
846	.destroy	=	fq_destroy,
847	.change		=	fq_change,
848	.dump		=	fq_dump,
849	.dump_stats	=	fq_dump_stats,
850	.owner		=	THIS_MODULE,
851};
852
853static int __init fq_module_init(void)
854{
855	int ret;
856
857	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
858					   sizeof(struct fq_flow),
859					   0, 0, NULL);
860	if (!fq_flow_cachep)
861		return -ENOMEM;
862
863	ret = register_qdisc(&fq_qdisc_ops);
864	if (ret)
865		kmem_cache_destroy(fq_flow_cachep);
866	return ret;
867}
868
869static void __exit fq_module_exit(void)
870{
871	unregister_qdisc(&fq_qdisc_ops);
872	kmem_cache_destroy(fq_flow_cachep);
873}
874
875module_init(fq_module_init)
876module_exit(fq_module_exit)
877MODULE_AUTHOR("Eric Dumazet");
878MODULE_LICENSE("GPL");
v4.17
  1/*
  2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
  3 *
  4 *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
  5 *
  6 *	This program is free software; you can redistribute it and/or
  7 *	modify it under the terms of the GNU General Public License
  8 *	as published by the Free Software Foundation; either version
  9 *	2 of the License, or (at your option) any later version.
 10 *
 11 *  Meant to be mostly used for locally generated traffic :
 12 *  Fast classification depends on skb->sk being set before reaching us.
 13 *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
 14 *  All packets belonging to a socket are considered as a 'flow'.
 15 *
 16 *  Flows are dynamically allocated and stored in a hash table of RB trees
 17 *  They are also part of one Round Robin 'queues' (new or old flows)
 18 *
 19 *  Burst avoidance (aka pacing) capability :
 20 *
 21 *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
 22 *  bunch of packets, and this packet scheduler adds delay between
 23 *  packets to respect rate limitation.
 24 *
 25 *  enqueue() :
 26 *   - lookup one RB tree (out of 1024 or more) to find the flow.
 27 *     If non existent flow, create it, add it to the tree.
 28 *     Add skb to the per flow list of skb (fifo).
 29 *   - Use a special fifo for high prio packets
 30 *
 31 *  dequeue() : serves flows in Round Robin
 32 *  Note : When a flow becomes empty, we do not immediately remove it from
 33 *  rb trees, for performance reasons (its expected to send additional packets,
 34 *  or SLAB cache will reuse socket for another flow)
 35 */
 36
 37#include <linux/module.h>
 38#include <linux/types.h>
 39#include <linux/kernel.h>
 40#include <linux/jiffies.h>
 41#include <linux/string.h>
 42#include <linux/in.h>
 43#include <linux/errno.h>
 44#include <linux/init.h>
 45#include <linux/skbuff.h>
 46#include <linux/slab.h>
 47#include <linux/rbtree.h>
 48#include <linux/hash.h>
 49#include <linux/prefetch.h>
 50#include <linux/vmalloc.h>
 51#include <net/netlink.h>
 52#include <net/pkt_sched.h>
 53#include <net/sock.h>
 54#include <net/tcp_states.h>
 55#include <net/tcp.h>
 56
 57/*
 58 * Per flow structure, dynamically allocated
 59 */
 60struct fq_flow {
 61	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
 62	union {
 63		struct sk_buff *tail;	/* last skb in the list */
 64		unsigned long  age;	/* jiffies when flow was emptied, for gc */
 65	};
 66	struct rb_node	fq_node;	/* anchor in fq_root[] trees */
 67	struct sock	*sk;
 68	int		qlen;		/* number of packets in flow queue */
 69	int		credit;
 70	u32		socket_hash;	/* sk_hash */
 71	struct fq_flow *next;		/* next pointer in RR lists, or &detached */
 72
 73	struct rb_node  rate_node;	/* anchor in q->delayed tree */
 74	u64		time_next_packet;
 75};
 76
 77struct fq_flow_head {
 78	struct fq_flow *first;
 79	struct fq_flow *last;
 80};
 81
 82struct fq_sched_data {
 83	struct fq_flow_head new_flows;
 84
 85	struct fq_flow_head old_flows;
 86
 87	struct rb_root	delayed;	/* for rate limited flows */
 88	u64		time_next_delayed_flow;
 89	unsigned long	unthrottle_latency_ns;
 90
 91	struct fq_flow	internal;	/* for non classified or high prio packets */
 92	u32		quantum;
 93	u32		initial_quantum;
 94	u32		flow_refill_delay;
 95	u32		flow_max_rate;	/* optional max rate per flow */
 96	u32		flow_plimit;	/* max packets per flow */
 97	u32		orphan_mask;	/* mask for orphaned skb */
 98	u32		low_rate_threshold;
 99	struct rb_root	*fq_root;
100	u8		rate_enable;
101	u8		fq_trees_log;
102
103	u32		flows;
104	u32		inactive_flows;
105	u32		throttled_flows;
106
107	u64		stat_gc_flows;
108	u64		stat_internal_packets;
109	u64		stat_tcp_retrans;
110	u64		stat_throttled;
111	u64		stat_flows_plimit;
112	u64		stat_pkts_too_long;
113	u64		stat_allocation_errors;
114	struct qdisc_watchdog watchdog;
115};
116
117/* special value to mark a detached flow (not on old/new list) */
118static struct fq_flow detached, throttled;
119
120static void fq_flow_set_detached(struct fq_flow *f)
121{
122	f->next = &detached;
123	f->age = jiffies;
124}
125
126static bool fq_flow_is_detached(const struct fq_flow *f)
127{
128	return f->next == &detached;
129}
130
131static bool fq_flow_is_throttled(const struct fq_flow *f)
132{
133	return f->next == &throttled;
134}
135
136static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
137{
138	if (head->first)
139		head->last->next = flow;
140	else
141		head->first = flow;
142	head->last = flow;
143	flow->next = NULL;
144}
145
146static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
147{
148	rb_erase(&f->rate_node, &q->delayed);
149	q->throttled_flows--;
150	fq_flow_add_tail(&q->old_flows, f);
151}
152
153static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
154{
155	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
156
157	while (*p) {
158		struct fq_flow *aux;
159
160		parent = *p;
161		aux = rb_entry(parent, struct fq_flow, rate_node);
162		if (f->time_next_packet >= aux->time_next_packet)
163			p = &parent->rb_right;
164		else
165			p = &parent->rb_left;
166	}
167	rb_link_node(&f->rate_node, parent, p);
168	rb_insert_color(&f->rate_node, &q->delayed);
169	q->throttled_flows++;
170	q->stat_throttled++;
171
172	f->next = &throttled;
173	if (q->time_next_delayed_flow > f->time_next_packet)
174		q->time_next_delayed_flow = f->time_next_packet;
175}
176
177
178static struct kmem_cache *fq_flow_cachep __read_mostly;
179
 
 
 
 
 
 
 
 
 
180
181/* limit number of collected flows per round */
182#define FQ_GC_MAX 8
183#define FQ_GC_AGE (3*HZ)
184
185static bool fq_gc_candidate(const struct fq_flow *f)
186{
187	return fq_flow_is_detached(f) &&
188	       time_after(jiffies, f->age + FQ_GC_AGE);
189}
190
191static void fq_gc(struct fq_sched_data *q,
192		  struct rb_root *root,
193		  struct sock *sk)
194{
195	struct fq_flow *f, *tofree[FQ_GC_MAX];
196	struct rb_node **p, *parent;
197	int fcnt = 0;
198
199	p = &root->rb_node;
200	parent = NULL;
201	while (*p) {
202		parent = *p;
203
204		f = rb_entry(parent, struct fq_flow, fq_node);
205		if (f->sk == sk)
206			break;
207
208		if (fq_gc_candidate(f)) {
209			tofree[fcnt++] = f;
210			if (fcnt == FQ_GC_MAX)
211				break;
212		}
213
214		if (f->sk > sk)
215			p = &parent->rb_right;
216		else
217			p = &parent->rb_left;
218	}
219
220	q->flows -= fcnt;
221	q->inactive_flows -= fcnt;
222	q->stat_gc_flows += fcnt;
223	while (fcnt) {
224		struct fq_flow *f = tofree[--fcnt];
225
226		rb_erase(&f->fq_node, root);
227		kmem_cache_free(fq_flow_cachep, f);
228	}
229}
230
231static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
232{
233	struct rb_node **p, *parent;
234	struct sock *sk = skb->sk;
235	struct rb_root *root;
236	struct fq_flow *f;
237
238	/* warning: no starvation prevention... */
239	if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
240		return &q->internal;
241
242	/* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
243	 * or a listener (SYNCOOKIE mode)
244	 * 1) request sockets are not full blown,
245	 *    they do not contain sk_pacing_rate
246	 * 2) They are not part of a 'flow' yet
247	 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
248	 *    especially if the listener set SO_MAX_PACING_RATE
249	 * 4) We pretend they are orphaned
250	 */
251	if (!sk || sk_listener(sk)) {
252		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
253
254		/* By forcing low order bit to 1, we make sure to not
255		 * collide with a local flow (socket pointers are word aligned)
256		 */
257		sk = (struct sock *)((hash << 1) | 1UL);
258		skb_orphan(skb);
259	}
260
261	root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
262
263	if (q->flows >= (2U << q->fq_trees_log) &&
264	    q->inactive_flows > q->flows/2)
265		fq_gc(q, root, sk);
266
267	p = &root->rb_node;
268	parent = NULL;
269	while (*p) {
270		parent = *p;
271
272		f = rb_entry(parent, struct fq_flow, fq_node);
273		if (f->sk == sk) {
274			/* socket might have been reallocated, so check
275			 * if its sk_hash is the same.
276			 * It not, we need to refill credit with
277			 * initial quantum
278			 */
279			if (unlikely(skb->sk &&
280				     f->socket_hash != sk->sk_hash)) {
281				f->credit = q->initial_quantum;
282				f->socket_hash = sk->sk_hash;
283				if (fq_flow_is_throttled(f))
284					fq_flow_unset_throttled(q, f);
285				f->time_next_packet = 0ULL;
286			}
287			return f;
288		}
289		if (f->sk > sk)
290			p = &parent->rb_right;
291		else
292			p = &parent->rb_left;
293	}
294
295	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
296	if (unlikely(!f)) {
297		q->stat_allocation_errors++;
298		return &q->internal;
299	}
300	fq_flow_set_detached(f);
301	f->sk = sk;
302	if (skb->sk)
303		f->socket_hash = sk->sk_hash;
304	f->credit = q->initial_quantum;
305
306	rb_link_node(&f->fq_node, parent, p);
307	rb_insert_color(&f->fq_node, root);
308
309	q->flows++;
310	q->inactive_flows++;
311	return f;
312}
313
314
315/* remove one skb from head of flow queue */
316static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
317{
318	struct sk_buff *skb = flow->head;
319
320	if (skb) {
321		flow->head = skb->next;
322		skb->next = NULL;
323		flow->qlen--;
324		qdisc_qstats_backlog_dec(sch, skb);
325		sch->q.qlen--;
326	}
327	return skb;
328}
329
330/* We might add in the future detection of retransmits
331 * For the time being, just return false
332 */
333static bool skb_is_retransmit(struct sk_buff *skb)
334{
335	return false;
336}
337
338/* add skb to flow queue
339 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
340 * We special case tcp retransmits to be transmitted before other packets.
341 * We rely on fact that TCP retransmits are unlikely, so we do not waste
342 * a separate queue or a pointer.
343 * head->  [retrans pkt 1]
344 *         [retrans pkt 2]
345 *         [ normal pkt 1]
346 *         [ normal pkt 2]
347 *         [ normal pkt 3]
348 * tail->  [ normal pkt 4]
349 */
350static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
351{
352	struct sk_buff *prev, *head = flow->head;
353
354	skb->next = NULL;
355	if (!head) {
356		flow->head = skb;
357		flow->tail = skb;
358		return;
359	}
360	if (likely(!skb_is_retransmit(skb))) {
361		flow->tail->next = skb;
362		flow->tail = skb;
363		return;
364	}
365
366	/* This skb is a tcp retransmit,
367	 * find the last retrans packet in the queue
368	 */
369	prev = NULL;
370	while (skb_is_retransmit(head)) {
371		prev = head;
372		head = head->next;
373		if (!head)
374			break;
375	}
376	if (!prev) { /* no rtx packet in queue, become the new head */
377		skb->next = flow->head;
378		flow->head = skb;
379	} else {
380		if (prev == flow->tail)
381			flow->tail = skb;
382		else
383			skb->next = prev->next;
384		prev->next = skb;
385	}
386}
387
388static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
389		      struct sk_buff **to_free)
390{
391	struct fq_sched_data *q = qdisc_priv(sch);
392	struct fq_flow *f;
393
394	if (unlikely(sch->q.qlen >= sch->limit))
395		return qdisc_drop(skb, sch, to_free);
396
397	f = fq_classify(skb, q);
398	if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
399		q->stat_flows_plimit++;
400		return qdisc_drop(skb, sch, to_free);
401	}
402
403	f->qlen++;
404	if (skb_is_retransmit(skb))
405		q->stat_tcp_retrans++;
406	qdisc_qstats_backlog_inc(sch, skb);
407	if (fq_flow_is_detached(f)) {
408		struct sock *sk = skb->sk;
409
410		fq_flow_add_tail(&q->new_flows, f);
411		if (time_after(jiffies, f->age + q->flow_refill_delay))
412			f->credit = max_t(u32, f->credit, q->quantum);
413		if (sk && q->rate_enable) {
414			if (unlikely(smp_load_acquire(&sk->sk_pacing_status) !=
415				     SK_PACING_FQ))
416				smp_store_release(&sk->sk_pacing_status,
417						  SK_PACING_FQ);
418		}
419		q->inactive_flows--;
420	}
421
422	/* Note: this overwrites f->age */
423	flow_queue_add(f, skb);
424
425	if (unlikely(f == &q->internal)) {
426		q->stat_internal_packets++;
427	}
428	sch->q.qlen++;
429
430	return NET_XMIT_SUCCESS;
431}
432
433static void fq_check_throttled(struct fq_sched_data *q, u64 now)
434{
435	unsigned long sample;
436	struct rb_node *p;
437
438	if (q->time_next_delayed_flow > now)
439		return;
440
441	/* Update unthrottle latency EWMA.
442	 * This is cheap and can help diagnosing timer/latency problems.
443	 */
444	sample = (unsigned long)(now - q->time_next_delayed_flow);
445	q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
446	q->unthrottle_latency_ns += sample >> 3;
447
448	q->time_next_delayed_flow = ~0ULL;
449	while ((p = rb_first(&q->delayed)) != NULL) {
450		struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
451
452		if (f->time_next_packet > now) {
453			q->time_next_delayed_flow = f->time_next_packet;
454			break;
455		}
456		fq_flow_unset_throttled(q, f);
 
 
457	}
458}
459
460static struct sk_buff *fq_dequeue(struct Qdisc *sch)
461{
462	struct fq_sched_data *q = qdisc_priv(sch);
463	u64 now = ktime_get_ns();
464	struct fq_flow_head *head;
465	struct sk_buff *skb;
466	struct fq_flow *f;
467	u32 rate, plen;
468
469	skb = fq_dequeue_head(sch, &q->internal);
470	if (skb)
471		goto out;
472	fq_check_throttled(q, now);
473begin:
474	head = &q->new_flows;
475	if (!head->first) {
476		head = &q->old_flows;
477		if (!head->first) {
478			if (q->time_next_delayed_flow != ~0ULL)
479				qdisc_watchdog_schedule_ns(&q->watchdog,
480							   q->time_next_delayed_flow);
 
481			return NULL;
482		}
483	}
484	f = head->first;
485
486	if (f->credit <= 0) {
487		f->credit += q->quantum;
488		head->first = f->next;
489		fq_flow_add_tail(&q->old_flows, f);
490		goto begin;
491	}
492
493	skb = f->head;
494	if (unlikely(skb && now < f->time_next_packet &&
495		     !skb_is_tcp_pure_ack(skb))) {
496		head->first = f->next;
497		fq_flow_set_throttled(q, f);
498		goto begin;
499	}
500
501	skb = fq_dequeue_head(sch, f);
502	if (!skb) {
503		head->first = f->next;
504		/* force a pass through old_flows to prevent starvation */
505		if ((head == &q->new_flows) && q->old_flows.first) {
506			fq_flow_add_tail(&q->old_flows, f);
507		} else {
508			fq_flow_set_detached(f);
509			q->inactive_flows++;
510		}
511		goto begin;
512	}
513	prefetch(&skb->end);
514	f->credit -= qdisc_pkt_len(skb);
515
516	if (!q->rate_enable)
517		goto out;
518
519	/* Do not pace locally generated ack packets */
520	if (skb_is_tcp_pure_ack(skb))
521		goto out;
522
523	rate = q->flow_max_rate;
524	if (skb->sk)
525		rate = min(skb->sk->sk_pacing_rate, rate);
526
527	if (rate <= q->low_rate_threshold) {
528		f->credit = 0;
529		plen = qdisc_pkt_len(skb);
530	} else {
531		plen = max(qdisc_pkt_len(skb), q->quantum);
532		if (f->credit > 0)
533			goto out;
534	}
535	if (rate != ~0U) {
 
536		u64 len = (u64)plen * NSEC_PER_SEC;
537
538		if (likely(rate))
539			do_div(len, rate);
540		/* Since socket rate can change later,
541		 * clamp the delay to 1 second.
542		 * Really, providers of too big packets should be fixed !
543		 */
544		if (unlikely(len > NSEC_PER_SEC)) {
545			len = NSEC_PER_SEC;
546			q->stat_pkts_too_long++;
547		}
548		/* Account for schedule/timers drifts.
549		 * f->time_next_packet was set when prior packet was sent,
550		 * and current time (@now) can be too late by tens of us.
551		 */
552		if (f->time_next_packet)
553			len -= min(len/2, now - f->time_next_packet);
554		f->time_next_packet = now + len;
555	}
556out:
557	qdisc_bstats_update(sch, skb);
558	return skb;
559}
560
561static void fq_flow_purge(struct fq_flow *flow)
562{
563	rtnl_kfree_skbs(flow->head, flow->tail);
564	flow->head = NULL;
565	flow->qlen = 0;
566}
567
568static void fq_reset(struct Qdisc *sch)
569{
570	struct fq_sched_data *q = qdisc_priv(sch);
571	struct rb_root *root;
 
572	struct rb_node *p;
573	struct fq_flow *f;
574	unsigned int idx;
575
576	sch->q.qlen = 0;
577	sch->qstats.backlog = 0;
578
579	fq_flow_purge(&q->internal);
580
581	if (!q->fq_root)
582		return;
583
584	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
585		root = &q->fq_root[idx];
586		while ((p = rb_first(root)) != NULL) {
587			f = rb_entry(p, struct fq_flow, fq_node);
588			rb_erase(p, root);
589
590			fq_flow_purge(f);
 
591
592			kmem_cache_free(fq_flow_cachep, f);
593		}
594	}
595	q->new_flows.first	= NULL;
596	q->old_flows.first	= NULL;
597	q->delayed		= RB_ROOT;
598	q->flows		= 0;
599	q->inactive_flows	= 0;
600	q->throttled_flows	= 0;
601}
602
603static void fq_rehash(struct fq_sched_data *q,
604		      struct rb_root *old_array, u32 old_log,
605		      struct rb_root *new_array, u32 new_log)
606{
607	struct rb_node *op, **np, *parent;
608	struct rb_root *oroot, *nroot;
609	struct fq_flow *of, *nf;
610	int fcnt = 0;
611	u32 idx;
612
613	for (idx = 0; idx < (1U << old_log); idx++) {
614		oroot = &old_array[idx];
615		while ((op = rb_first(oroot)) != NULL) {
616			rb_erase(op, oroot);
617			of = rb_entry(op, struct fq_flow, fq_node);
618			if (fq_gc_candidate(of)) {
619				fcnt++;
620				kmem_cache_free(fq_flow_cachep, of);
621				continue;
622			}
623			nroot = &new_array[hash_ptr(of->sk, new_log)];
624
625			np = &nroot->rb_node;
626			parent = NULL;
627			while (*np) {
628				parent = *np;
629
630				nf = rb_entry(parent, struct fq_flow, fq_node);
631				BUG_ON(nf->sk == of->sk);
632
633				if (nf->sk > of->sk)
634					np = &parent->rb_right;
635				else
636					np = &parent->rb_left;
637			}
638
639			rb_link_node(&of->fq_node, parent, np);
640			rb_insert_color(&of->fq_node, nroot);
641		}
642	}
643	q->flows -= fcnt;
644	q->inactive_flows -= fcnt;
645	q->stat_gc_flows += fcnt;
646}
647
 
 
 
 
 
 
 
 
 
 
648static void fq_free(void *addr)
649{
650	kvfree(addr);
651}
652
653static int fq_resize(struct Qdisc *sch, u32 log)
654{
655	struct fq_sched_data *q = qdisc_priv(sch);
656	struct rb_root *array;
657	void *old_fq_root;
658	u32 idx;
659
660	if (q->fq_root && log == q->fq_trees_log)
661		return 0;
662
663	/* If XPS was setup, we can allocate memory on right NUMA node */
664	array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
665			      netdev_queue_numa_node_read(sch->dev_queue));
666	if (!array)
667		return -ENOMEM;
668
669	for (idx = 0; idx < (1U << log); idx++)
670		array[idx] = RB_ROOT;
671
672	sch_tree_lock(sch);
673
674	old_fq_root = q->fq_root;
675	if (old_fq_root)
676		fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
677
678	q->fq_root = array;
679	q->fq_trees_log = log;
680
681	sch_tree_unlock(sch);
682
683	fq_free(old_fq_root);
684
685	return 0;
686}
687
688static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
689	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
690	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
691	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
692	[TCA_FQ_INITIAL_QUANTUM]	= { .type = NLA_U32 },
693	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
694	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
695	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
696	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
697	[TCA_FQ_FLOW_REFILL_DELAY]	= { .type = NLA_U32 },
698	[TCA_FQ_LOW_RATE_THRESHOLD]	= { .type = NLA_U32 },
699};
700
701static int fq_change(struct Qdisc *sch, struct nlattr *opt,
702		     struct netlink_ext_ack *extack)
703{
704	struct fq_sched_data *q = qdisc_priv(sch);
705	struct nlattr *tb[TCA_FQ_MAX + 1];
706	int err, drop_count = 0;
707	unsigned drop_len = 0;
708	u32 fq_log;
709
710	if (!opt)
711		return -EINVAL;
712
713	err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy, NULL);
714	if (err < 0)
715		return err;
716
717	sch_tree_lock(sch);
718
719	fq_log = q->fq_trees_log;
720
721	if (tb[TCA_FQ_BUCKETS_LOG]) {
722		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
723
724		if (nval >= 1 && nval <= ilog2(256*1024))
725			fq_log = nval;
726		else
727			err = -EINVAL;
728	}
729	if (tb[TCA_FQ_PLIMIT])
730		sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
731
732	if (tb[TCA_FQ_FLOW_PLIMIT])
733		q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
734
735	if (tb[TCA_FQ_QUANTUM]) {
736		u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
737
738		if (quantum > 0)
739			q->quantum = quantum;
740		else
741			err = -EINVAL;
742	}
743
744	if (tb[TCA_FQ_INITIAL_QUANTUM])
745		q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
746
747	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
748		pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
749				    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
750
751	if (tb[TCA_FQ_FLOW_MAX_RATE])
752		q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
753
754	if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
755		q->low_rate_threshold =
756			nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
757
758	if (tb[TCA_FQ_RATE_ENABLE]) {
759		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
760
761		if (enable <= 1)
762			q->rate_enable = enable;
763		else
764			err = -EINVAL;
765	}
766
767	if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
768		u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
769
770		q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
771	}
772
773	if (tb[TCA_FQ_ORPHAN_MASK])
774		q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
775
776	if (!err) {
777		sch_tree_unlock(sch);
778		err = fq_resize(sch, fq_log);
779		sch_tree_lock(sch);
780	}
781	while (sch->q.qlen > sch->limit) {
782		struct sk_buff *skb = fq_dequeue(sch);
783
784		if (!skb)
785			break;
786		drop_len += qdisc_pkt_len(skb);
787		rtnl_kfree_skbs(skb, skb);
788		drop_count++;
789	}
790	qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
791
792	sch_tree_unlock(sch);
793	return err;
794}
795
796static void fq_destroy(struct Qdisc *sch)
797{
798	struct fq_sched_data *q = qdisc_priv(sch);
799
800	fq_reset(sch);
801	fq_free(q->fq_root);
802	qdisc_watchdog_cancel(&q->watchdog);
803}
804
805static int fq_init(struct Qdisc *sch, struct nlattr *opt,
806		   struct netlink_ext_ack *extack)
807{
808	struct fq_sched_data *q = qdisc_priv(sch);
809	int err;
810
811	sch->limit		= 10000;
812	q->flow_plimit		= 100;
813	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
814	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
815	q->flow_refill_delay	= msecs_to_jiffies(40);
816	q->flow_max_rate	= ~0U;
817	q->time_next_delayed_flow = ~0ULL;
818	q->rate_enable		= 1;
819	q->new_flows.first	= NULL;
820	q->old_flows.first	= NULL;
821	q->delayed		= RB_ROOT;
822	q->fq_root		= NULL;
823	q->fq_trees_log		= ilog2(1024);
824	q->orphan_mask		= 1024 - 1;
825	q->low_rate_threshold	= 550000 / 8;
826	qdisc_watchdog_init(&q->watchdog, sch);
827
828	if (opt)
829		err = fq_change(sch, opt, extack);
830	else
831		err = fq_resize(sch, q->fq_trees_log);
832
833	return err;
834}
835
836static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
837{
838	struct fq_sched_data *q = qdisc_priv(sch);
839	struct nlattr *opts;
840
841	opts = nla_nest_start(skb, TCA_OPTIONS);
842	if (opts == NULL)
843		goto nla_put_failure;
844
845	/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
846
847	if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
848	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
849	    nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
850	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
851	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
852	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
853	    nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
854			jiffies_to_usecs(q->flow_refill_delay)) ||
855	    nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
856	    nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
857			q->low_rate_threshold) ||
858	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
859		goto nla_put_failure;
860
861	return nla_nest_end(skb, opts);
862
863nla_put_failure:
864	return -1;
865}
866
867static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
868{
869	struct fq_sched_data *q = qdisc_priv(sch);
870	struct tc_fq_qd_stats st;
871
872	sch_tree_lock(sch);
873
874	st.gc_flows		  = q->stat_gc_flows;
875	st.highprio_packets	  = q->stat_internal_packets;
876	st.tcp_retrans		  = q->stat_tcp_retrans;
877	st.throttled		  = q->stat_throttled;
878	st.flows_plimit		  = q->stat_flows_plimit;
879	st.pkts_too_long	  = q->stat_pkts_too_long;
880	st.allocation_errors	  = q->stat_allocation_errors;
881	st.time_next_delayed_flow = q->time_next_delayed_flow - ktime_get_ns();
882	st.flows		  = q->flows;
883	st.inactive_flows	  = q->inactive_flows;
884	st.throttled_flows	  = q->throttled_flows;
885	st.unthrottle_latency_ns  = min_t(unsigned long,
886					  q->unthrottle_latency_ns, ~0U);
887	sch_tree_unlock(sch);
888
889	return gnet_stats_copy_app(d, &st, sizeof(st));
890}
891
892static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
893	.id		=	"fq",
894	.priv_size	=	sizeof(struct fq_sched_data),
895
896	.enqueue	=	fq_enqueue,
897	.dequeue	=	fq_dequeue,
898	.peek		=	qdisc_peek_dequeued,
899	.init		=	fq_init,
900	.reset		=	fq_reset,
901	.destroy	=	fq_destroy,
902	.change		=	fq_change,
903	.dump		=	fq_dump,
904	.dump_stats	=	fq_dump_stats,
905	.owner		=	THIS_MODULE,
906};
907
908static int __init fq_module_init(void)
909{
910	int ret;
911
912	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
913					   sizeof(struct fq_flow),
914					   0, 0, NULL);
915	if (!fq_flow_cachep)
916		return -ENOMEM;
917
918	ret = register_qdisc(&fq_qdisc_ops);
919	if (ret)
920		kmem_cache_destroy(fq_flow_cachep);
921	return ret;
922}
923
924static void __exit fq_module_exit(void)
925{
926	unregister_qdisc(&fq_qdisc_ops);
927	kmem_cache_destroy(fq_flow_cachep);
928}
929
930module_init(fq_module_init)
931module_exit(fq_module_exit)
932MODULE_AUTHOR("Eric Dumazet");
933MODULE_LICENSE("GPL");