Loading...
1/*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
29 *
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be equal to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
45 *
46 * To use this allocator, arch code should do the followings.
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
51 *
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
54 */
55
56#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57
58#include <linux/bitmap.h>
59#include <linux/bootmem.h>
60#include <linux/err.h>
61#include <linux/list.h>
62#include <linux/log2.h>
63#include <linux/mm.h>
64#include <linux/module.h>
65#include <linux/mutex.h>
66#include <linux/percpu.h>
67#include <linux/pfn.h>
68#include <linux/slab.h>
69#include <linux/spinlock.h>
70#include <linux/vmalloc.h>
71#include <linux/workqueue.h>
72#include <linux/kmemleak.h>
73
74#include <asm/cacheflush.h>
75#include <asm/sections.h>
76#include <asm/tlbflush.h>
77#include <asm/io.h>
78
79#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
80#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
81#define PCPU_ATOMIC_MAP_MARGIN_LOW 32
82#define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
83#define PCPU_EMPTY_POP_PAGES_LOW 2
84#define PCPU_EMPTY_POP_PAGES_HIGH 4
85
86#ifdef CONFIG_SMP
87/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
88#ifndef __addr_to_pcpu_ptr
89#define __addr_to_pcpu_ptr(addr) \
90 (void __percpu *)((unsigned long)(addr) - \
91 (unsigned long)pcpu_base_addr + \
92 (unsigned long)__per_cpu_start)
93#endif
94#ifndef __pcpu_ptr_to_addr
95#define __pcpu_ptr_to_addr(ptr) \
96 (void __force *)((unsigned long)(ptr) + \
97 (unsigned long)pcpu_base_addr - \
98 (unsigned long)__per_cpu_start)
99#endif
100#else /* CONFIG_SMP */
101/* on UP, it's always identity mapped */
102#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
103#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
104#endif /* CONFIG_SMP */
105
106struct pcpu_chunk {
107 struct list_head list; /* linked to pcpu_slot lists */
108 int free_size; /* free bytes in the chunk */
109 int contig_hint; /* max contiguous size hint */
110 void *base_addr; /* base address of this chunk */
111
112 int map_used; /* # of map entries used before the sentry */
113 int map_alloc; /* # of map entries allocated */
114 int *map; /* allocation map */
115 struct work_struct map_extend_work;/* async ->map[] extension */
116
117 void *data; /* chunk data */
118 int first_free; /* no free below this */
119 bool immutable; /* no [de]population allowed */
120 int nr_populated; /* # of populated pages */
121 unsigned long populated[]; /* populated bitmap */
122};
123
124static int pcpu_unit_pages __read_mostly;
125static int pcpu_unit_size __read_mostly;
126static int pcpu_nr_units __read_mostly;
127static int pcpu_atom_size __read_mostly;
128static int pcpu_nr_slots __read_mostly;
129static size_t pcpu_chunk_struct_size __read_mostly;
130
131/* cpus with the lowest and highest unit addresses */
132static unsigned int pcpu_low_unit_cpu __read_mostly;
133static unsigned int pcpu_high_unit_cpu __read_mostly;
134
135/* the address of the first chunk which starts with the kernel static area */
136void *pcpu_base_addr __read_mostly;
137EXPORT_SYMBOL_GPL(pcpu_base_addr);
138
139static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
140const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
141
142/* group information, used for vm allocation */
143static int pcpu_nr_groups __read_mostly;
144static const unsigned long *pcpu_group_offsets __read_mostly;
145static const size_t *pcpu_group_sizes __read_mostly;
146
147/*
148 * The first chunk which always exists. Note that unlike other
149 * chunks, this one can be allocated and mapped in several different
150 * ways and thus often doesn't live in the vmalloc area.
151 */
152static struct pcpu_chunk *pcpu_first_chunk;
153
154/*
155 * Optional reserved chunk. This chunk reserves part of the first
156 * chunk and serves it for reserved allocations. The amount of
157 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
158 * area doesn't exist, the following variables contain NULL and 0
159 * respectively.
160 */
161static struct pcpu_chunk *pcpu_reserved_chunk;
162static int pcpu_reserved_chunk_limit;
163
164static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
165static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop */
166
167static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
168
169/*
170 * The number of empty populated pages, protected by pcpu_lock. The
171 * reserved chunk doesn't contribute to the count.
172 */
173static int pcpu_nr_empty_pop_pages;
174
175/*
176 * Balance work is used to populate or destroy chunks asynchronously. We
177 * try to keep the number of populated free pages between
178 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
179 * empty chunk.
180 */
181static void pcpu_balance_workfn(struct work_struct *work);
182static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
183static bool pcpu_async_enabled __read_mostly;
184static bool pcpu_atomic_alloc_failed;
185
186static void pcpu_schedule_balance_work(void)
187{
188 if (pcpu_async_enabled)
189 schedule_work(&pcpu_balance_work);
190}
191
192static bool pcpu_addr_in_first_chunk(void *addr)
193{
194 void *first_start = pcpu_first_chunk->base_addr;
195
196 return addr >= first_start && addr < first_start + pcpu_unit_size;
197}
198
199static bool pcpu_addr_in_reserved_chunk(void *addr)
200{
201 void *first_start = pcpu_first_chunk->base_addr;
202
203 return addr >= first_start &&
204 addr < first_start + pcpu_reserved_chunk_limit;
205}
206
207static int __pcpu_size_to_slot(int size)
208{
209 int highbit = fls(size); /* size is in bytes */
210 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
211}
212
213static int pcpu_size_to_slot(int size)
214{
215 if (size == pcpu_unit_size)
216 return pcpu_nr_slots - 1;
217 return __pcpu_size_to_slot(size);
218}
219
220static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
221{
222 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
223 return 0;
224
225 return pcpu_size_to_slot(chunk->free_size);
226}
227
228/* set the pointer to a chunk in a page struct */
229static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
230{
231 page->index = (unsigned long)pcpu;
232}
233
234/* obtain pointer to a chunk from a page struct */
235static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
236{
237 return (struct pcpu_chunk *)page->index;
238}
239
240static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
241{
242 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
243}
244
245static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
246 unsigned int cpu, int page_idx)
247{
248 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
249 (page_idx << PAGE_SHIFT);
250}
251
252static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
253 int *rs, int *re, int end)
254{
255 *rs = find_next_zero_bit(chunk->populated, end, *rs);
256 *re = find_next_bit(chunk->populated, end, *rs + 1);
257}
258
259static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
260 int *rs, int *re, int end)
261{
262 *rs = find_next_bit(chunk->populated, end, *rs);
263 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
264}
265
266/*
267 * (Un)populated page region iterators. Iterate over (un)populated
268 * page regions between @start and @end in @chunk. @rs and @re should
269 * be integer variables and will be set to start and end page index of
270 * the current region.
271 */
272#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
273 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
274 (rs) < (re); \
275 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
276
277#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
278 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
279 (rs) < (re); \
280 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
281
282/**
283 * pcpu_mem_zalloc - allocate memory
284 * @size: bytes to allocate
285 *
286 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
287 * kzalloc() is used; otherwise, vzalloc() is used. The returned
288 * memory is always zeroed.
289 *
290 * CONTEXT:
291 * Does GFP_KERNEL allocation.
292 *
293 * RETURNS:
294 * Pointer to the allocated area on success, NULL on failure.
295 */
296static void *pcpu_mem_zalloc(size_t size)
297{
298 if (WARN_ON_ONCE(!slab_is_available()))
299 return NULL;
300
301 if (size <= PAGE_SIZE)
302 return kzalloc(size, GFP_KERNEL);
303 else
304 return vzalloc(size);
305}
306
307/**
308 * pcpu_mem_free - free memory
309 * @ptr: memory to free
310 *
311 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
312 */
313static void pcpu_mem_free(void *ptr)
314{
315 kvfree(ptr);
316}
317
318/**
319 * pcpu_count_occupied_pages - count the number of pages an area occupies
320 * @chunk: chunk of interest
321 * @i: index of the area in question
322 *
323 * Count the number of pages chunk's @i'th area occupies. When the area's
324 * start and/or end address isn't aligned to page boundary, the straddled
325 * page is included in the count iff the rest of the page is free.
326 */
327static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
328{
329 int off = chunk->map[i] & ~1;
330 int end = chunk->map[i + 1] & ~1;
331
332 if (!PAGE_ALIGNED(off) && i > 0) {
333 int prev = chunk->map[i - 1];
334
335 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
336 off = round_down(off, PAGE_SIZE);
337 }
338
339 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
340 int next = chunk->map[i + 1];
341 int nend = chunk->map[i + 2] & ~1;
342
343 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
344 end = round_up(end, PAGE_SIZE);
345 }
346
347 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
348}
349
350/**
351 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
352 * @chunk: chunk of interest
353 * @oslot: the previous slot it was on
354 *
355 * This function is called after an allocation or free changed @chunk.
356 * New slot according to the changed state is determined and @chunk is
357 * moved to the slot. Note that the reserved chunk is never put on
358 * chunk slots.
359 *
360 * CONTEXT:
361 * pcpu_lock.
362 */
363static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
364{
365 int nslot = pcpu_chunk_slot(chunk);
366
367 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
368 if (oslot < nslot)
369 list_move(&chunk->list, &pcpu_slot[nslot]);
370 else
371 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
372 }
373}
374
375/**
376 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
377 * @chunk: chunk of interest
378 * @is_atomic: the allocation context
379 *
380 * Determine whether area map of @chunk needs to be extended. If
381 * @is_atomic, only the amount necessary for a new allocation is
382 * considered; however, async extension is scheduled if the left amount is
383 * low. If !@is_atomic, it aims for more empty space. Combined, this
384 * ensures that the map is likely to have enough available space to
385 * accomodate atomic allocations which can't extend maps directly.
386 *
387 * CONTEXT:
388 * pcpu_lock.
389 *
390 * RETURNS:
391 * New target map allocation length if extension is necessary, 0
392 * otherwise.
393 */
394static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
395{
396 int margin, new_alloc;
397
398 if (is_atomic) {
399 margin = 3;
400
401 if (chunk->map_alloc <
402 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW &&
403 pcpu_async_enabled)
404 schedule_work(&chunk->map_extend_work);
405 } else {
406 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
407 }
408
409 if (chunk->map_alloc >= chunk->map_used + margin)
410 return 0;
411
412 new_alloc = PCPU_DFL_MAP_ALLOC;
413 while (new_alloc < chunk->map_used + margin)
414 new_alloc *= 2;
415
416 return new_alloc;
417}
418
419/**
420 * pcpu_extend_area_map - extend area map of a chunk
421 * @chunk: chunk of interest
422 * @new_alloc: new target allocation length of the area map
423 *
424 * Extend area map of @chunk to have @new_alloc entries.
425 *
426 * CONTEXT:
427 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
428 *
429 * RETURNS:
430 * 0 on success, -errno on failure.
431 */
432static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
433{
434 int *old = NULL, *new = NULL;
435 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
436 unsigned long flags;
437
438 new = pcpu_mem_zalloc(new_size);
439 if (!new)
440 return -ENOMEM;
441
442 /* acquire pcpu_lock and switch to new area map */
443 spin_lock_irqsave(&pcpu_lock, flags);
444
445 if (new_alloc <= chunk->map_alloc)
446 goto out_unlock;
447
448 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
449 old = chunk->map;
450
451 memcpy(new, old, old_size);
452
453 chunk->map_alloc = new_alloc;
454 chunk->map = new;
455 new = NULL;
456
457out_unlock:
458 spin_unlock_irqrestore(&pcpu_lock, flags);
459
460 /*
461 * pcpu_mem_free() might end up calling vfree() which uses
462 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
463 */
464 pcpu_mem_free(old);
465 pcpu_mem_free(new);
466
467 return 0;
468}
469
470static void pcpu_map_extend_workfn(struct work_struct *work)
471{
472 struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk,
473 map_extend_work);
474 int new_alloc;
475
476 spin_lock_irq(&pcpu_lock);
477 new_alloc = pcpu_need_to_extend(chunk, false);
478 spin_unlock_irq(&pcpu_lock);
479
480 if (new_alloc)
481 pcpu_extend_area_map(chunk, new_alloc);
482}
483
484/**
485 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
486 * @chunk: chunk the candidate area belongs to
487 * @off: the offset to the start of the candidate area
488 * @this_size: the size of the candidate area
489 * @size: the size of the target allocation
490 * @align: the alignment of the target allocation
491 * @pop_only: only allocate from already populated region
492 *
493 * We're trying to allocate @size bytes aligned at @align. @chunk's area
494 * at @off sized @this_size is a candidate. This function determines
495 * whether the target allocation fits in the candidate area and returns the
496 * number of bytes to pad after @off. If the target area doesn't fit, -1
497 * is returned.
498 *
499 * If @pop_only is %true, this function only considers the already
500 * populated part of the candidate area.
501 */
502static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
503 int size, int align, bool pop_only)
504{
505 int cand_off = off;
506
507 while (true) {
508 int head = ALIGN(cand_off, align) - off;
509 int page_start, page_end, rs, re;
510
511 if (this_size < head + size)
512 return -1;
513
514 if (!pop_only)
515 return head;
516
517 /*
518 * If the first unpopulated page is beyond the end of the
519 * allocation, the whole allocation is populated;
520 * otherwise, retry from the end of the unpopulated area.
521 */
522 page_start = PFN_DOWN(head + off);
523 page_end = PFN_UP(head + off + size);
524
525 rs = page_start;
526 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
527 if (rs >= page_end)
528 return head;
529 cand_off = re * PAGE_SIZE;
530 }
531}
532
533/**
534 * pcpu_alloc_area - allocate area from a pcpu_chunk
535 * @chunk: chunk of interest
536 * @size: wanted size in bytes
537 * @align: wanted align
538 * @pop_only: allocate only from the populated area
539 * @occ_pages_p: out param for the number of pages the area occupies
540 *
541 * Try to allocate @size bytes area aligned at @align from @chunk.
542 * Note that this function only allocates the offset. It doesn't
543 * populate or map the area.
544 *
545 * @chunk->map must have at least two free slots.
546 *
547 * CONTEXT:
548 * pcpu_lock.
549 *
550 * RETURNS:
551 * Allocated offset in @chunk on success, -1 if no matching area is
552 * found.
553 */
554static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
555 bool pop_only, int *occ_pages_p)
556{
557 int oslot = pcpu_chunk_slot(chunk);
558 int max_contig = 0;
559 int i, off;
560 bool seen_free = false;
561 int *p;
562
563 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
564 int head, tail;
565 int this_size;
566
567 off = *p;
568 if (off & 1)
569 continue;
570
571 this_size = (p[1] & ~1) - off;
572
573 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
574 pop_only);
575 if (head < 0) {
576 if (!seen_free) {
577 chunk->first_free = i;
578 seen_free = true;
579 }
580 max_contig = max(this_size, max_contig);
581 continue;
582 }
583
584 /*
585 * If head is small or the previous block is free,
586 * merge'em. Note that 'small' is defined as smaller
587 * than sizeof(int), which is very small but isn't too
588 * uncommon for percpu allocations.
589 */
590 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
591 *p = off += head;
592 if (p[-1] & 1)
593 chunk->free_size -= head;
594 else
595 max_contig = max(*p - p[-1], max_contig);
596 this_size -= head;
597 head = 0;
598 }
599
600 /* if tail is small, just keep it around */
601 tail = this_size - head - size;
602 if (tail < sizeof(int)) {
603 tail = 0;
604 size = this_size - head;
605 }
606
607 /* split if warranted */
608 if (head || tail) {
609 int nr_extra = !!head + !!tail;
610
611 /* insert new subblocks */
612 memmove(p + nr_extra + 1, p + 1,
613 sizeof(chunk->map[0]) * (chunk->map_used - i));
614 chunk->map_used += nr_extra;
615
616 if (head) {
617 if (!seen_free) {
618 chunk->first_free = i;
619 seen_free = true;
620 }
621 *++p = off += head;
622 ++i;
623 max_contig = max(head, max_contig);
624 }
625 if (tail) {
626 p[1] = off + size;
627 max_contig = max(tail, max_contig);
628 }
629 }
630
631 if (!seen_free)
632 chunk->first_free = i + 1;
633
634 /* update hint and mark allocated */
635 if (i + 1 == chunk->map_used)
636 chunk->contig_hint = max_contig; /* fully scanned */
637 else
638 chunk->contig_hint = max(chunk->contig_hint,
639 max_contig);
640
641 chunk->free_size -= size;
642 *p |= 1;
643
644 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
645 pcpu_chunk_relocate(chunk, oslot);
646 return off;
647 }
648
649 chunk->contig_hint = max_contig; /* fully scanned */
650 pcpu_chunk_relocate(chunk, oslot);
651
652 /* tell the upper layer that this chunk has no matching area */
653 return -1;
654}
655
656/**
657 * pcpu_free_area - free area to a pcpu_chunk
658 * @chunk: chunk of interest
659 * @freeme: offset of area to free
660 * @occ_pages_p: out param for the number of pages the area occupies
661 *
662 * Free area starting from @freeme to @chunk. Note that this function
663 * only modifies the allocation map. It doesn't depopulate or unmap
664 * the area.
665 *
666 * CONTEXT:
667 * pcpu_lock.
668 */
669static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
670 int *occ_pages_p)
671{
672 int oslot = pcpu_chunk_slot(chunk);
673 int off = 0;
674 unsigned i, j;
675 int to_free = 0;
676 int *p;
677
678 freeme |= 1; /* we are searching for <given offset, in use> pair */
679
680 i = 0;
681 j = chunk->map_used;
682 while (i != j) {
683 unsigned k = (i + j) / 2;
684 off = chunk->map[k];
685 if (off < freeme)
686 i = k + 1;
687 else if (off > freeme)
688 j = k;
689 else
690 i = j = k;
691 }
692 BUG_ON(off != freeme);
693
694 if (i < chunk->first_free)
695 chunk->first_free = i;
696
697 p = chunk->map + i;
698 *p = off &= ~1;
699 chunk->free_size += (p[1] & ~1) - off;
700
701 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
702
703 /* merge with next? */
704 if (!(p[1] & 1))
705 to_free++;
706 /* merge with previous? */
707 if (i > 0 && !(p[-1] & 1)) {
708 to_free++;
709 i--;
710 p--;
711 }
712 if (to_free) {
713 chunk->map_used -= to_free;
714 memmove(p + 1, p + 1 + to_free,
715 (chunk->map_used - i) * sizeof(chunk->map[0]));
716 }
717
718 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
719 pcpu_chunk_relocate(chunk, oslot);
720}
721
722static struct pcpu_chunk *pcpu_alloc_chunk(void)
723{
724 struct pcpu_chunk *chunk;
725
726 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
727 if (!chunk)
728 return NULL;
729
730 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
731 sizeof(chunk->map[0]));
732 if (!chunk->map) {
733 pcpu_mem_free(chunk);
734 return NULL;
735 }
736
737 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
738 chunk->map[0] = 0;
739 chunk->map[1] = pcpu_unit_size | 1;
740 chunk->map_used = 1;
741
742 INIT_LIST_HEAD(&chunk->list);
743 INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn);
744 chunk->free_size = pcpu_unit_size;
745 chunk->contig_hint = pcpu_unit_size;
746
747 return chunk;
748}
749
750static void pcpu_free_chunk(struct pcpu_chunk *chunk)
751{
752 if (!chunk)
753 return;
754 pcpu_mem_free(chunk->map);
755 pcpu_mem_free(chunk);
756}
757
758/**
759 * pcpu_chunk_populated - post-population bookkeeping
760 * @chunk: pcpu_chunk which got populated
761 * @page_start: the start page
762 * @page_end: the end page
763 *
764 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
765 * the bookkeeping information accordingly. Must be called after each
766 * successful population.
767 */
768static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
769 int page_start, int page_end)
770{
771 int nr = page_end - page_start;
772
773 lockdep_assert_held(&pcpu_lock);
774
775 bitmap_set(chunk->populated, page_start, nr);
776 chunk->nr_populated += nr;
777 pcpu_nr_empty_pop_pages += nr;
778}
779
780/**
781 * pcpu_chunk_depopulated - post-depopulation bookkeeping
782 * @chunk: pcpu_chunk which got depopulated
783 * @page_start: the start page
784 * @page_end: the end page
785 *
786 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
787 * Update the bookkeeping information accordingly. Must be called after
788 * each successful depopulation.
789 */
790static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
791 int page_start, int page_end)
792{
793 int nr = page_end - page_start;
794
795 lockdep_assert_held(&pcpu_lock);
796
797 bitmap_clear(chunk->populated, page_start, nr);
798 chunk->nr_populated -= nr;
799 pcpu_nr_empty_pop_pages -= nr;
800}
801
802/*
803 * Chunk management implementation.
804 *
805 * To allow different implementations, chunk alloc/free and
806 * [de]population are implemented in a separate file which is pulled
807 * into this file and compiled together. The following functions
808 * should be implemented.
809 *
810 * pcpu_populate_chunk - populate the specified range of a chunk
811 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
812 * pcpu_create_chunk - create a new chunk
813 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
814 * pcpu_addr_to_page - translate address to physical address
815 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
816 */
817static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
818static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
819static struct pcpu_chunk *pcpu_create_chunk(void);
820static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
821static struct page *pcpu_addr_to_page(void *addr);
822static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
823
824#ifdef CONFIG_NEED_PER_CPU_KM
825#include "percpu-km.c"
826#else
827#include "percpu-vm.c"
828#endif
829
830/**
831 * pcpu_chunk_addr_search - determine chunk containing specified address
832 * @addr: address for which the chunk needs to be determined.
833 *
834 * RETURNS:
835 * The address of the found chunk.
836 */
837static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
838{
839 /* is it in the first chunk? */
840 if (pcpu_addr_in_first_chunk(addr)) {
841 /* is it in the reserved area? */
842 if (pcpu_addr_in_reserved_chunk(addr))
843 return pcpu_reserved_chunk;
844 return pcpu_first_chunk;
845 }
846
847 /*
848 * The address is relative to unit0 which might be unused and
849 * thus unmapped. Offset the address to the unit space of the
850 * current processor before looking it up in the vmalloc
851 * space. Note that any possible cpu id can be used here, so
852 * there's no need to worry about preemption or cpu hotplug.
853 */
854 addr += pcpu_unit_offsets[raw_smp_processor_id()];
855 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
856}
857
858/**
859 * pcpu_alloc - the percpu allocator
860 * @size: size of area to allocate in bytes
861 * @align: alignment of area (max PAGE_SIZE)
862 * @reserved: allocate from the reserved chunk if available
863 * @gfp: allocation flags
864 *
865 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
866 * contain %GFP_KERNEL, the allocation is atomic.
867 *
868 * RETURNS:
869 * Percpu pointer to the allocated area on success, NULL on failure.
870 */
871static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
872 gfp_t gfp)
873{
874 static int warn_limit = 10;
875 struct pcpu_chunk *chunk;
876 const char *err;
877 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
878 int occ_pages = 0;
879 int slot, off, new_alloc, cpu, ret;
880 unsigned long flags;
881 void __percpu *ptr;
882
883 /*
884 * We want the lowest bit of offset available for in-use/free
885 * indicator, so force >= 16bit alignment and make size even.
886 */
887 if (unlikely(align < 2))
888 align = 2;
889
890 size = ALIGN(size, 2);
891
892 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
893 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
894 size, align);
895 return NULL;
896 }
897
898 spin_lock_irqsave(&pcpu_lock, flags);
899
900 /* serve reserved allocations from the reserved chunk if available */
901 if (reserved && pcpu_reserved_chunk) {
902 chunk = pcpu_reserved_chunk;
903
904 if (size > chunk->contig_hint) {
905 err = "alloc from reserved chunk failed";
906 goto fail_unlock;
907 }
908
909 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
910 spin_unlock_irqrestore(&pcpu_lock, flags);
911 if (is_atomic ||
912 pcpu_extend_area_map(chunk, new_alloc) < 0) {
913 err = "failed to extend area map of reserved chunk";
914 goto fail;
915 }
916 spin_lock_irqsave(&pcpu_lock, flags);
917 }
918
919 off = pcpu_alloc_area(chunk, size, align, is_atomic,
920 &occ_pages);
921 if (off >= 0)
922 goto area_found;
923
924 err = "alloc from reserved chunk failed";
925 goto fail_unlock;
926 }
927
928restart:
929 /* search through normal chunks */
930 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
931 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
932 if (size > chunk->contig_hint)
933 continue;
934
935 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
936 if (new_alloc) {
937 if (is_atomic)
938 continue;
939 spin_unlock_irqrestore(&pcpu_lock, flags);
940 if (pcpu_extend_area_map(chunk,
941 new_alloc) < 0) {
942 err = "failed to extend area map";
943 goto fail;
944 }
945 spin_lock_irqsave(&pcpu_lock, flags);
946 /*
947 * pcpu_lock has been dropped, need to
948 * restart cpu_slot list walking.
949 */
950 goto restart;
951 }
952
953 off = pcpu_alloc_area(chunk, size, align, is_atomic,
954 &occ_pages);
955 if (off >= 0)
956 goto area_found;
957 }
958 }
959
960 spin_unlock_irqrestore(&pcpu_lock, flags);
961
962 /*
963 * No space left. Create a new chunk. We don't want multiple
964 * tasks to create chunks simultaneously. Serialize and create iff
965 * there's still no empty chunk after grabbing the mutex.
966 */
967 if (is_atomic)
968 goto fail;
969
970 mutex_lock(&pcpu_alloc_mutex);
971
972 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
973 chunk = pcpu_create_chunk();
974 if (!chunk) {
975 mutex_unlock(&pcpu_alloc_mutex);
976 err = "failed to allocate new chunk";
977 goto fail;
978 }
979
980 spin_lock_irqsave(&pcpu_lock, flags);
981 pcpu_chunk_relocate(chunk, -1);
982 } else {
983 spin_lock_irqsave(&pcpu_lock, flags);
984 }
985
986 mutex_unlock(&pcpu_alloc_mutex);
987 goto restart;
988
989area_found:
990 spin_unlock_irqrestore(&pcpu_lock, flags);
991
992 /* populate if not all pages are already there */
993 if (!is_atomic) {
994 int page_start, page_end, rs, re;
995
996 mutex_lock(&pcpu_alloc_mutex);
997
998 page_start = PFN_DOWN(off);
999 page_end = PFN_UP(off + size);
1000
1001 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1002 WARN_ON(chunk->immutable);
1003
1004 ret = pcpu_populate_chunk(chunk, rs, re);
1005
1006 spin_lock_irqsave(&pcpu_lock, flags);
1007 if (ret) {
1008 mutex_unlock(&pcpu_alloc_mutex);
1009 pcpu_free_area(chunk, off, &occ_pages);
1010 err = "failed to populate";
1011 goto fail_unlock;
1012 }
1013 pcpu_chunk_populated(chunk, rs, re);
1014 spin_unlock_irqrestore(&pcpu_lock, flags);
1015 }
1016
1017 mutex_unlock(&pcpu_alloc_mutex);
1018 }
1019
1020 if (chunk != pcpu_reserved_chunk)
1021 pcpu_nr_empty_pop_pages -= occ_pages;
1022
1023 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1024 pcpu_schedule_balance_work();
1025
1026 /* clear the areas and return address relative to base address */
1027 for_each_possible_cpu(cpu)
1028 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1029
1030 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1031 kmemleak_alloc_percpu(ptr, size, gfp);
1032 return ptr;
1033
1034fail_unlock:
1035 spin_unlock_irqrestore(&pcpu_lock, flags);
1036fail:
1037 if (!is_atomic && warn_limit) {
1038 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1039 size, align, is_atomic, err);
1040 dump_stack();
1041 if (!--warn_limit)
1042 pr_info("limit reached, disable warning\n");
1043 }
1044 if (is_atomic) {
1045 /* see the flag handling in pcpu_blance_workfn() */
1046 pcpu_atomic_alloc_failed = true;
1047 pcpu_schedule_balance_work();
1048 }
1049 return NULL;
1050}
1051
1052/**
1053 * __alloc_percpu_gfp - allocate dynamic percpu area
1054 * @size: size of area to allocate in bytes
1055 * @align: alignment of area (max PAGE_SIZE)
1056 * @gfp: allocation flags
1057 *
1058 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1059 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1060 * be called from any context but is a lot more likely to fail.
1061 *
1062 * RETURNS:
1063 * Percpu pointer to the allocated area on success, NULL on failure.
1064 */
1065void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1066{
1067 return pcpu_alloc(size, align, false, gfp);
1068}
1069EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1070
1071/**
1072 * __alloc_percpu - allocate dynamic percpu area
1073 * @size: size of area to allocate in bytes
1074 * @align: alignment of area (max PAGE_SIZE)
1075 *
1076 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1077 */
1078void __percpu *__alloc_percpu(size_t size, size_t align)
1079{
1080 return pcpu_alloc(size, align, false, GFP_KERNEL);
1081}
1082EXPORT_SYMBOL_GPL(__alloc_percpu);
1083
1084/**
1085 * __alloc_reserved_percpu - allocate reserved percpu area
1086 * @size: size of area to allocate in bytes
1087 * @align: alignment of area (max PAGE_SIZE)
1088 *
1089 * Allocate zero-filled percpu area of @size bytes aligned at @align
1090 * from reserved percpu area if arch has set it up; otherwise,
1091 * allocation is served from the same dynamic area. Might sleep.
1092 * Might trigger writeouts.
1093 *
1094 * CONTEXT:
1095 * Does GFP_KERNEL allocation.
1096 *
1097 * RETURNS:
1098 * Percpu pointer to the allocated area on success, NULL on failure.
1099 */
1100void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1101{
1102 return pcpu_alloc(size, align, true, GFP_KERNEL);
1103}
1104
1105/**
1106 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1107 * @work: unused
1108 *
1109 * Reclaim all fully free chunks except for the first one.
1110 */
1111static void pcpu_balance_workfn(struct work_struct *work)
1112{
1113 LIST_HEAD(to_free);
1114 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1115 struct pcpu_chunk *chunk, *next;
1116 int slot, nr_to_pop, ret;
1117
1118 /*
1119 * There's no reason to keep around multiple unused chunks and VM
1120 * areas can be scarce. Destroy all free chunks except for one.
1121 */
1122 mutex_lock(&pcpu_alloc_mutex);
1123 spin_lock_irq(&pcpu_lock);
1124
1125 list_for_each_entry_safe(chunk, next, free_head, list) {
1126 WARN_ON(chunk->immutable);
1127
1128 /* spare the first one */
1129 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1130 continue;
1131
1132 list_move(&chunk->list, &to_free);
1133 }
1134
1135 spin_unlock_irq(&pcpu_lock);
1136
1137 list_for_each_entry_safe(chunk, next, &to_free, list) {
1138 int rs, re;
1139
1140 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1141 pcpu_depopulate_chunk(chunk, rs, re);
1142 spin_lock_irq(&pcpu_lock);
1143 pcpu_chunk_depopulated(chunk, rs, re);
1144 spin_unlock_irq(&pcpu_lock);
1145 }
1146 pcpu_destroy_chunk(chunk);
1147 }
1148
1149 /*
1150 * Ensure there are certain number of free populated pages for
1151 * atomic allocs. Fill up from the most packed so that atomic
1152 * allocs don't increase fragmentation. If atomic allocation
1153 * failed previously, always populate the maximum amount. This
1154 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1155 * failing indefinitely; however, large atomic allocs are not
1156 * something we support properly and can be highly unreliable and
1157 * inefficient.
1158 */
1159retry_pop:
1160 if (pcpu_atomic_alloc_failed) {
1161 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1162 /* best effort anyway, don't worry about synchronization */
1163 pcpu_atomic_alloc_failed = false;
1164 } else {
1165 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1166 pcpu_nr_empty_pop_pages,
1167 0, PCPU_EMPTY_POP_PAGES_HIGH);
1168 }
1169
1170 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1171 int nr_unpop = 0, rs, re;
1172
1173 if (!nr_to_pop)
1174 break;
1175
1176 spin_lock_irq(&pcpu_lock);
1177 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1178 nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1179 if (nr_unpop)
1180 break;
1181 }
1182 spin_unlock_irq(&pcpu_lock);
1183
1184 if (!nr_unpop)
1185 continue;
1186
1187 /* @chunk can't go away while pcpu_alloc_mutex is held */
1188 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1189 int nr = min(re - rs, nr_to_pop);
1190
1191 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1192 if (!ret) {
1193 nr_to_pop -= nr;
1194 spin_lock_irq(&pcpu_lock);
1195 pcpu_chunk_populated(chunk, rs, rs + nr);
1196 spin_unlock_irq(&pcpu_lock);
1197 } else {
1198 nr_to_pop = 0;
1199 }
1200
1201 if (!nr_to_pop)
1202 break;
1203 }
1204 }
1205
1206 if (nr_to_pop) {
1207 /* ran out of chunks to populate, create a new one and retry */
1208 chunk = pcpu_create_chunk();
1209 if (chunk) {
1210 spin_lock_irq(&pcpu_lock);
1211 pcpu_chunk_relocate(chunk, -1);
1212 spin_unlock_irq(&pcpu_lock);
1213 goto retry_pop;
1214 }
1215 }
1216
1217 mutex_unlock(&pcpu_alloc_mutex);
1218}
1219
1220/**
1221 * free_percpu - free percpu area
1222 * @ptr: pointer to area to free
1223 *
1224 * Free percpu area @ptr.
1225 *
1226 * CONTEXT:
1227 * Can be called from atomic context.
1228 */
1229void free_percpu(void __percpu *ptr)
1230{
1231 void *addr;
1232 struct pcpu_chunk *chunk;
1233 unsigned long flags;
1234 int off, occ_pages;
1235
1236 if (!ptr)
1237 return;
1238
1239 kmemleak_free_percpu(ptr);
1240
1241 addr = __pcpu_ptr_to_addr(ptr);
1242
1243 spin_lock_irqsave(&pcpu_lock, flags);
1244
1245 chunk = pcpu_chunk_addr_search(addr);
1246 off = addr - chunk->base_addr;
1247
1248 pcpu_free_area(chunk, off, &occ_pages);
1249
1250 if (chunk != pcpu_reserved_chunk)
1251 pcpu_nr_empty_pop_pages += occ_pages;
1252
1253 /* if there are more than one fully free chunks, wake up grim reaper */
1254 if (chunk->free_size == pcpu_unit_size) {
1255 struct pcpu_chunk *pos;
1256
1257 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1258 if (pos != chunk) {
1259 pcpu_schedule_balance_work();
1260 break;
1261 }
1262 }
1263
1264 spin_unlock_irqrestore(&pcpu_lock, flags);
1265}
1266EXPORT_SYMBOL_GPL(free_percpu);
1267
1268/**
1269 * is_kernel_percpu_address - test whether address is from static percpu area
1270 * @addr: address to test
1271 *
1272 * Test whether @addr belongs to in-kernel static percpu area. Module
1273 * static percpu areas are not considered. For those, use
1274 * is_module_percpu_address().
1275 *
1276 * RETURNS:
1277 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1278 */
1279bool is_kernel_percpu_address(unsigned long addr)
1280{
1281#ifdef CONFIG_SMP
1282 const size_t static_size = __per_cpu_end - __per_cpu_start;
1283 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1284 unsigned int cpu;
1285
1286 for_each_possible_cpu(cpu) {
1287 void *start = per_cpu_ptr(base, cpu);
1288
1289 if ((void *)addr >= start && (void *)addr < start + static_size)
1290 return true;
1291 }
1292#endif
1293 /* on UP, can't distinguish from other static vars, always false */
1294 return false;
1295}
1296
1297/**
1298 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1299 * @addr: the address to be converted to physical address
1300 *
1301 * Given @addr which is dereferenceable address obtained via one of
1302 * percpu access macros, this function translates it into its physical
1303 * address. The caller is responsible for ensuring @addr stays valid
1304 * until this function finishes.
1305 *
1306 * percpu allocator has special setup for the first chunk, which currently
1307 * supports either embedding in linear address space or vmalloc mapping,
1308 * and, from the second one, the backing allocator (currently either vm or
1309 * km) provides translation.
1310 *
1311 * The addr can be translated simply without checking if it falls into the
1312 * first chunk. But the current code reflects better how percpu allocator
1313 * actually works, and the verification can discover both bugs in percpu
1314 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1315 * code.
1316 *
1317 * RETURNS:
1318 * The physical address for @addr.
1319 */
1320phys_addr_t per_cpu_ptr_to_phys(void *addr)
1321{
1322 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1323 bool in_first_chunk = false;
1324 unsigned long first_low, first_high;
1325 unsigned int cpu;
1326
1327 /*
1328 * The following test on unit_low/high isn't strictly
1329 * necessary but will speed up lookups of addresses which
1330 * aren't in the first chunk.
1331 */
1332 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1333 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1334 pcpu_unit_pages);
1335 if ((unsigned long)addr >= first_low &&
1336 (unsigned long)addr < first_high) {
1337 for_each_possible_cpu(cpu) {
1338 void *start = per_cpu_ptr(base, cpu);
1339
1340 if (addr >= start && addr < start + pcpu_unit_size) {
1341 in_first_chunk = true;
1342 break;
1343 }
1344 }
1345 }
1346
1347 if (in_first_chunk) {
1348 if (!is_vmalloc_addr(addr))
1349 return __pa(addr);
1350 else
1351 return page_to_phys(vmalloc_to_page(addr)) +
1352 offset_in_page(addr);
1353 } else
1354 return page_to_phys(pcpu_addr_to_page(addr)) +
1355 offset_in_page(addr);
1356}
1357
1358/**
1359 * pcpu_alloc_alloc_info - allocate percpu allocation info
1360 * @nr_groups: the number of groups
1361 * @nr_units: the number of units
1362 *
1363 * Allocate ai which is large enough for @nr_groups groups containing
1364 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1365 * cpu_map array which is long enough for @nr_units and filled with
1366 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1367 * pointer of other groups.
1368 *
1369 * RETURNS:
1370 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1371 * failure.
1372 */
1373struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1374 int nr_units)
1375{
1376 struct pcpu_alloc_info *ai;
1377 size_t base_size, ai_size;
1378 void *ptr;
1379 int unit;
1380
1381 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1382 __alignof__(ai->groups[0].cpu_map[0]));
1383 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1384
1385 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1386 if (!ptr)
1387 return NULL;
1388 ai = ptr;
1389 ptr += base_size;
1390
1391 ai->groups[0].cpu_map = ptr;
1392
1393 for (unit = 0; unit < nr_units; unit++)
1394 ai->groups[0].cpu_map[unit] = NR_CPUS;
1395
1396 ai->nr_groups = nr_groups;
1397 ai->__ai_size = PFN_ALIGN(ai_size);
1398
1399 return ai;
1400}
1401
1402/**
1403 * pcpu_free_alloc_info - free percpu allocation info
1404 * @ai: pcpu_alloc_info to free
1405 *
1406 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1407 */
1408void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1409{
1410 memblock_free_early(__pa(ai), ai->__ai_size);
1411}
1412
1413/**
1414 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1415 * @lvl: loglevel
1416 * @ai: allocation info to dump
1417 *
1418 * Print out information about @ai using loglevel @lvl.
1419 */
1420static void pcpu_dump_alloc_info(const char *lvl,
1421 const struct pcpu_alloc_info *ai)
1422{
1423 int group_width = 1, cpu_width = 1, width;
1424 char empty_str[] = "--------";
1425 int alloc = 0, alloc_end = 0;
1426 int group, v;
1427 int upa, apl; /* units per alloc, allocs per line */
1428
1429 v = ai->nr_groups;
1430 while (v /= 10)
1431 group_width++;
1432
1433 v = num_possible_cpus();
1434 while (v /= 10)
1435 cpu_width++;
1436 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1437
1438 upa = ai->alloc_size / ai->unit_size;
1439 width = upa * (cpu_width + 1) + group_width + 3;
1440 apl = rounddown_pow_of_two(max(60 / width, 1));
1441
1442 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1443 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1444 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1445
1446 for (group = 0; group < ai->nr_groups; group++) {
1447 const struct pcpu_group_info *gi = &ai->groups[group];
1448 int unit = 0, unit_end = 0;
1449
1450 BUG_ON(gi->nr_units % upa);
1451 for (alloc_end += gi->nr_units / upa;
1452 alloc < alloc_end; alloc++) {
1453 if (!(alloc % apl)) {
1454 pr_cont("\n");
1455 printk("%spcpu-alloc: ", lvl);
1456 }
1457 pr_cont("[%0*d] ", group_width, group);
1458
1459 for (unit_end += upa; unit < unit_end; unit++)
1460 if (gi->cpu_map[unit] != NR_CPUS)
1461 pr_cont("%0*d ",
1462 cpu_width, gi->cpu_map[unit]);
1463 else
1464 pr_cont("%s ", empty_str);
1465 }
1466 }
1467 pr_cont("\n");
1468}
1469
1470/**
1471 * pcpu_setup_first_chunk - initialize the first percpu chunk
1472 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1473 * @base_addr: mapped address
1474 *
1475 * Initialize the first percpu chunk which contains the kernel static
1476 * perpcu area. This function is to be called from arch percpu area
1477 * setup path.
1478 *
1479 * @ai contains all information necessary to initialize the first
1480 * chunk and prime the dynamic percpu allocator.
1481 *
1482 * @ai->static_size is the size of static percpu area.
1483 *
1484 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1485 * reserve after the static area in the first chunk. This reserves
1486 * the first chunk such that it's available only through reserved
1487 * percpu allocation. This is primarily used to serve module percpu
1488 * static areas on architectures where the addressing model has
1489 * limited offset range for symbol relocations to guarantee module
1490 * percpu symbols fall inside the relocatable range.
1491 *
1492 * @ai->dyn_size determines the number of bytes available for dynamic
1493 * allocation in the first chunk. The area between @ai->static_size +
1494 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1495 *
1496 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1497 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1498 * @ai->dyn_size.
1499 *
1500 * @ai->atom_size is the allocation atom size and used as alignment
1501 * for vm areas.
1502 *
1503 * @ai->alloc_size is the allocation size and always multiple of
1504 * @ai->atom_size. This is larger than @ai->atom_size if
1505 * @ai->unit_size is larger than @ai->atom_size.
1506 *
1507 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1508 * percpu areas. Units which should be colocated are put into the
1509 * same group. Dynamic VM areas will be allocated according to these
1510 * groupings. If @ai->nr_groups is zero, a single group containing
1511 * all units is assumed.
1512 *
1513 * The caller should have mapped the first chunk at @base_addr and
1514 * copied static data to each unit.
1515 *
1516 * If the first chunk ends up with both reserved and dynamic areas, it
1517 * is served by two chunks - one to serve the core static and reserved
1518 * areas and the other for the dynamic area. They share the same vm
1519 * and page map but uses different area allocation map to stay away
1520 * from each other. The latter chunk is circulated in the chunk slots
1521 * and available for dynamic allocation like any other chunks.
1522 *
1523 * RETURNS:
1524 * 0 on success, -errno on failure.
1525 */
1526int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1527 void *base_addr)
1528{
1529 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1530 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1531 size_t dyn_size = ai->dyn_size;
1532 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1533 struct pcpu_chunk *schunk, *dchunk = NULL;
1534 unsigned long *group_offsets;
1535 size_t *group_sizes;
1536 unsigned long *unit_off;
1537 unsigned int cpu;
1538 int *unit_map;
1539 int group, unit, i;
1540
1541#define PCPU_SETUP_BUG_ON(cond) do { \
1542 if (unlikely(cond)) { \
1543 pr_emerg("failed to initialize, %s\n", #cond); \
1544 pr_emerg("cpu_possible_mask=%*pb\n", \
1545 cpumask_pr_args(cpu_possible_mask)); \
1546 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1547 BUG(); \
1548 } \
1549} while (0)
1550
1551 /* sanity checks */
1552 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1553#ifdef CONFIG_SMP
1554 PCPU_SETUP_BUG_ON(!ai->static_size);
1555 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1556#endif
1557 PCPU_SETUP_BUG_ON(!base_addr);
1558 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1559 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1560 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1561 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1562 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1563 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1564
1565 /* process group information and build config tables accordingly */
1566 group_offsets = memblock_virt_alloc(ai->nr_groups *
1567 sizeof(group_offsets[0]), 0);
1568 group_sizes = memblock_virt_alloc(ai->nr_groups *
1569 sizeof(group_sizes[0]), 0);
1570 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1571 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1572
1573 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1574 unit_map[cpu] = UINT_MAX;
1575
1576 pcpu_low_unit_cpu = NR_CPUS;
1577 pcpu_high_unit_cpu = NR_CPUS;
1578
1579 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1580 const struct pcpu_group_info *gi = &ai->groups[group];
1581
1582 group_offsets[group] = gi->base_offset;
1583 group_sizes[group] = gi->nr_units * ai->unit_size;
1584
1585 for (i = 0; i < gi->nr_units; i++) {
1586 cpu = gi->cpu_map[i];
1587 if (cpu == NR_CPUS)
1588 continue;
1589
1590 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1591 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1592 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1593
1594 unit_map[cpu] = unit + i;
1595 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1596
1597 /* determine low/high unit_cpu */
1598 if (pcpu_low_unit_cpu == NR_CPUS ||
1599 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1600 pcpu_low_unit_cpu = cpu;
1601 if (pcpu_high_unit_cpu == NR_CPUS ||
1602 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1603 pcpu_high_unit_cpu = cpu;
1604 }
1605 }
1606 pcpu_nr_units = unit;
1607
1608 for_each_possible_cpu(cpu)
1609 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1610
1611 /* we're done parsing the input, undefine BUG macro and dump config */
1612#undef PCPU_SETUP_BUG_ON
1613 pcpu_dump_alloc_info(KERN_DEBUG, ai);
1614
1615 pcpu_nr_groups = ai->nr_groups;
1616 pcpu_group_offsets = group_offsets;
1617 pcpu_group_sizes = group_sizes;
1618 pcpu_unit_map = unit_map;
1619 pcpu_unit_offsets = unit_off;
1620
1621 /* determine basic parameters */
1622 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1623 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1624 pcpu_atom_size = ai->atom_size;
1625 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1626 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1627
1628 /*
1629 * Allocate chunk slots. The additional last slot is for
1630 * empty chunks.
1631 */
1632 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1633 pcpu_slot = memblock_virt_alloc(
1634 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1635 for (i = 0; i < pcpu_nr_slots; i++)
1636 INIT_LIST_HEAD(&pcpu_slot[i]);
1637
1638 /*
1639 * Initialize static chunk. If reserved_size is zero, the
1640 * static chunk covers static area + dynamic allocation area
1641 * in the first chunk. If reserved_size is not zero, it
1642 * covers static area + reserved area (mostly used for module
1643 * static percpu allocation).
1644 */
1645 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1646 INIT_LIST_HEAD(&schunk->list);
1647 INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn);
1648 schunk->base_addr = base_addr;
1649 schunk->map = smap;
1650 schunk->map_alloc = ARRAY_SIZE(smap);
1651 schunk->immutable = true;
1652 bitmap_fill(schunk->populated, pcpu_unit_pages);
1653 schunk->nr_populated = pcpu_unit_pages;
1654
1655 if (ai->reserved_size) {
1656 schunk->free_size = ai->reserved_size;
1657 pcpu_reserved_chunk = schunk;
1658 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1659 } else {
1660 schunk->free_size = dyn_size;
1661 dyn_size = 0; /* dynamic area covered */
1662 }
1663 schunk->contig_hint = schunk->free_size;
1664
1665 schunk->map[0] = 1;
1666 schunk->map[1] = ai->static_size;
1667 schunk->map_used = 1;
1668 if (schunk->free_size)
1669 schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1670 schunk->map[schunk->map_used] |= 1;
1671
1672 /* init dynamic chunk if necessary */
1673 if (dyn_size) {
1674 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1675 INIT_LIST_HEAD(&dchunk->list);
1676 INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn);
1677 dchunk->base_addr = base_addr;
1678 dchunk->map = dmap;
1679 dchunk->map_alloc = ARRAY_SIZE(dmap);
1680 dchunk->immutable = true;
1681 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1682 dchunk->nr_populated = pcpu_unit_pages;
1683
1684 dchunk->contig_hint = dchunk->free_size = dyn_size;
1685 dchunk->map[0] = 1;
1686 dchunk->map[1] = pcpu_reserved_chunk_limit;
1687 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1688 dchunk->map_used = 2;
1689 }
1690
1691 /* link the first chunk in */
1692 pcpu_first_chunk = dchunk ?: schunk;
1693 pcpu_nr_empty_pop_pages +=
1694 pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1695 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1696
1697 /* we're done */
1698 pcpu_base_addr = base_addr;
1699 return 0;
1700}
1701
1702#ifdef CONFIG_SMP
1703
1704const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1705 [PCPU_FC_AUTO] = "auto",
1706 [PCPU_FC_EMBED] = "embed",
1707 [PCPU_FC_PAGE] = "page",
1708};
1709
1710enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1711
1712static int __init percpu_alloc_setup(char *str)
1713{
1714 if (!str)
1715 return -EINVAL;
1716
1717 if (0)
1718 /* nada */;
1719#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1720 else if (!strcmp(str, "embed"))
1721 pcpu_chosen_fc = PCPU_FC_EMBED;
1722#endif
1723#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1724 else if (!strcmp(str, "page"))
1725 pcpu_chosen_fc = PCPU_FC_PAGE;
1726#endif
1727 else
1728 pr_warn("unknown allocator %s specified\n", str);
1729
1730 return 0;
1731}
1732early_param("percpu_alloc", percpu_alloc_setup);
1733
1734/*
1735 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1736 * Build it if needed by the arch config or the generic setup is going
1737 * to be used.
1738 */
1739#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1740 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1741#define BUILD_EMBED_FIRST_CHUNK
1742#endif
1743
1744/* build pcpu_page_first_chunk() iff needed by the arch config */
1745#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1746#define BUILD_PAGE_FIRST_CHUNK
1747#endif
1748
1749/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1750#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1751/**
1752 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1753 * @reserved_size: the size of reserved percpu area in bytes
1754 * @dyn_size: minimum free size for dynamic allocation in bytes
1755 * @atom_size: allocation atom size
1756 * @cpu_distance_fn: callback to determine distance between cpus, optional
1757 *
1758 * This function determines grouping of units, their mappings to cpus
1759 * and other parameters considering needed percpu size, allocation
1760 * atom size and distances between CPUs.
1761 *
1762 * Groups are always multiples of atom size and CPUs which are of
1763 * LOCAL_DISTANCE both ways are grouped together and share space for
1764 * units in the same group. The returned configuration is guaranteed
1765 * to have CPUs on different nodes on different groups and >=75% usage
1766 * of allocated virtual address space.
1767 *
1768 * RETURNS:
1769 * On success, pointer to the new allocation_info is returned. On
1770 * failure, ERR_PTR value is returned.
1771 */
1772static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1773 size_t reserved_size, size_t dyn_size,
1774 size_t atom_size,
1775 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1776{
1777 static int group_map[NR_CPUS] __initdata;
1778 static int group_cnt[NR_CPUS] __initdata;
1779 const size_t static_size = __per_cpu_end - __per_cpu_start;
1780 int nr_groups = 1, nr_units = 0;
1781 size_t size_sum, min_unit_size, alloc_size;
1782 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1783 int last_allocs, group, unit;
1784 unsigned int cpu, tcpu;
1785 struct pcpu_alloc_info *ai;
1786 unsigned int *cpu_map;
1787
1788 /* this function may be called multiple times */
1789 memset(group_map, 0, sizeof(group_map));
1790 memset(group_cnt, 0, sizeof(group_cnt));
1791
1792 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1793 size_sum = PFN_ALIGN(static_size + reserved_size +
1794 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1795 dyn_size = size_sum - static_size - reserved_size;
1796
1797 /*
1798 * Determine min_unit_size, alloc_size and max_upa such that
1799 * alloc_size is multiple of atom_size and is the smallest
1800 * which can accommodate 4k aligned segments which are equal to
1801 * or larger than min_unit_size.
1802 */
1803 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1804
1805 alloc_size = roundup(min_unit_size, atom_size);
1806 upa = alloc_size / min_unit_size;
1807 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1808 upa--;
1809 max_upa = upa;
1810
1811 /* group cpus according to their proximity */
1812 for_each_possible_cpu(cpu) {
1813 group = 0;
1814 next_group:
1815 for_each_possible_cpu(tcpu) {
1816 if (cpu == tcpu)
1817 break;
1818 if (group_map[tcpu] == group && cpu_distance_fn &&
1819 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1820 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1821 group++;
1822 nr_groups = max(nr_groups, group + 1);
1823 goto next_group;
1824 }
1825 }
1826 group_map[cpu] = group;
1827 group_cnt[group]++;
1828 }
1829
1830 /*
1831 * Expand unit size until address space usage goes over 75%
1832 * and then as much as possible without using more address
1833 * space.
1834 */
1835 last_allocs = INT_MAX;
1836 for (upa = max_upa; upa; upa--) {
1837 int allocs = 0, wasted = 0;
1838
1839 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1840 continue;
1841
1842 for (group = 0; group < nr_groups; group++) {
1843 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1844 allocs += this_allocs;
1845 wasted += this_allocs * upa - group_cnt[group];
1846 }
1847
1848 /*
1849 * Don't accept if wastage is over 1/3. The
1850 * greater-than comparison ensures upa==1 always
1851 * passes the following check.
1852 */
1853 if (wasted > num_possible_cpus() / 3)
1854 continue;
1855
1856 /* and then don't consume more memory */
1857 if (allocs > last_allocs)
1858 break;
1859 last_allocs = allocs;
1860 best_upa = upa;
1861 }
1862 upa = best_upa;
1863
1864 /* allocate and fill alloc_info */
1865 for (group = 0; group < nr_groups; group++)
1866 nr_units += roundup(group_cnt[group], upa);
1867
1868 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1869 if (!ai)
1870 return ERR_PTR(-ENOMEM);
1871 cpu_map = ai->groups[0].cpu_map;
1872
1873 for (group = 0; group < nr_groups; group++) {
1874 ai->groups[group].cpu_map = cpu_map;
1875 cpu_map += roundup(group_cnt[group], upa);
1876 }
1877
1878 ai->static_size = static_size;
1879 ai->reserved_size = reserved_size;
1880 ai->dyn_size = dyn_size;
1881 ai->unit_size = alloc_size / upa;
1882 ai->atom_size = atom_size;
1883 ai->alloc_size = alloc_size;
1884
1885 for (group = 0, unit = 0; group_cnt[group]; group++) {
1886 struct pcpu_group_info *gi = &ai->groups[group];
1887
1888 /*
1889 * Initialize base_offset as if all groups are located
1890 * back-to-back. The caller should update this to
1891 * reflect actual allocation.
1892 */
1893 gi->base_offset = unit * ai->unit_size;
1894
1895 for_each_possible_cpu(cpu)
1896 if (group_map[cpu] == group)
1897 gi->cpu_map[gi->nr_units++] = cpu;
1898 gi->nr_units = roundup(gi->nr_units, upa);
1899 unit += gi->nr_units;
1900 }
1901 BUG_ON(unit != nr_units);
1902
1903 return ai;
1904}
1905#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1906
1907#if defined(BUILD_EMBED_FIRST_CHUNK)
1908/**
1909 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1910 * @reserved_size: the size of reserved percpu area in bytes
1911 * @dyn_size: minimum free size for dynamic allocation in bytes
1912 * @atom_size: allocation atom size
1913 * @cpu_distance_fn: callback to determine distance between cpus, optional
1914 * @alloc_fn: function to allocate percpu page
1915 * @free_fn: function to free percpu page
1916 *
1917 * This is a helper to ease setting up embedded first percpu chunk and
1918 * can be called where pcpu_setup_first_chunk() is expected.
1919 *
1920 * If this function is used to setup the first chunk, it is allocated
1921 * by calling @alloc_fn and used as-is without being mapped into
1922 * vmalloc area. Allocations are always whole multiples of @atom_size
1923 * aligned to @atom_size.
1924 *
1925 * This enables the first chunk to piggy back on the linear physical
1926 * mapping which often uses larger page size. Please note that this
1927 * can result in very sparse cpu->unit mapping on NUMA machines thus
1928 * requiring large vmalloc address space. Don't use this allocator if
1929 * vmalloc space is not orders of magnitude larger than distances
1930 * between node memory addresses (ie. 32bit NUMA machines).
1931 *
1932 * @dyn_size specifies the minimum dynamic area size.
1933 *
1934 * If the needed size is smaller than the minimum or specified unit
1935 * size, the leftover is returned using @free_fn.
1936 *
1937 * RETURNS:
1938 * 0 on success, -errno on failure.
1939 */
1940int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1941 size_t atom_size,
1942 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1943 pcpu_fc_alloc_fn_t alloc_fn,
1944 pcpu_fc_free_fn_t free_fn)
1945{
1946 void *base = (void *)ULONG_MAX;
1947 void **areas = NULL;
1948 struct pcpu_alloc_info *ai;
1949 size_t size_sum, areas_size, max_distance;
1950 int group, i, rc;
1951
1952 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1953 cpu_distance_fn);
1954 if (IS_ERR(ai))
1955 return PTR_ERR(ai);
1956
1957 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1958 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1959
1960 areas = memblock_virt_alloc_nopanic(areas_size, 0);
1961 if (!areas) {
1962 rc = -ENOMEM;
1963 goto out_free;
1964 }
1965
1966 /* allocate, copy and determine base address */
1967 for (group = 0; group < ai->nr_groups; group++) {
1968 struct pcpu_group_info *gi = &ai->groups[group];
1969 unsigned int cpu = NR_CPUS;
1970 void *ptr;
1971
1972 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1973 cpu = gi->cpu_map[i];
1974 BUG_ON(cpu == NR_CPUS);
1975
1976 /* allocate space for the whole group */
1977 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1978 if (!ptr) {
1979 rc = -ENOMEM;
1980 goto out_free_areas;
1981 }
1982 /* kmemleak tracks the percpu allocations separately */
1983 kmemleak_free(ptr);
1984 areas[group] = ptr;
1985
1986 base = min(ptr, base);
1987 }
1988
1989 /*
1990 * Copy data and free unused parts. This should happen after all
1991 * allocations are complete; otherwise, we may end up with
1992 * overlapping groups.
1993 */
1994 for (group = 0; group < ai->nr_groups; group++) {
1995 struct pcpu_group_info *gi = &ai->groups[group];
1996 void *ptr = areas[group];
1997
1998 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1999 if (gi->cpu_map[i] == NR_CPUS) {
2000 /* unused unit, free whole */
2001 free_fn(ptr, ai->unit_size);
2002 continue;
2003 }
2004 /* copy and return the unused part */
2005 memcpy(ptr, __per_cpu_load, ai->static_size);
2006 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2007 }
2008 }
2009
2010 /* base address is now known, determine group base offsets */
2011 max_distance = 0;
2012 for (group = 0; group < ai->nr_groups; group++) {
2013 ai->groups[group].base_offset = areas[group] - base;
2014 max_distance = max_t(size_t, max_distance,
2015 ai->groups[group].base_offset);
2016 }
2017 max_distance += ai->unit_size;
2018
2019 /* warn if maximum distance is further than 75% of vmalloc space */
2020 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2021 pr_warn("max_distance=0x%zx too large for vmalloc space 0x%lx\n",
2022 max_distance, VMALLOC_TOTAL);
2023#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2024 /* and fail if we have fallback */
2025 rc = -EINVAL;
2026 goto out_free;
2027#endif
2028 }
2029
2030 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2031 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2032 ai->dyn_size, ai->unit_size);
2033
2034 rc = pcpu_setup_first_chunk(ai, base);
2035 goto out_free;
2036
2037out_free_areas:
2038 for (group = 0; group < ai->nr_groups; group++)
2039 if (areas[group])
2040 free_fn(areas[group],
2041 ai->groups[group].nr_units * ai->unit_size);
2042out_free:
2043 pcpu_free_alloc_info(ai);
2044 if (areas)
2045 memblock_free_early(__pa(areas), areas_size);
2046 return rc;
2047}
2048#endif /* BUILD_EMBED_FIRST_CHUNK */
2049
2050#ifdef BUILD_PAGE_FIRST_CHUNK
2051/**
2052 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2053 * @reserved_size: the size of reserved percpu area in bytes
2054 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2055 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2056 * @populate_pte_fn: function to populate pte
2057 *
2058 * This is a helper to ease setting up page-remapped first percpu
2059 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2060 *
2061 * This is the basic allocator. Static percpu area is allocated
2062 * page-by-page into vmalloc area.
2063 *
2064 * RETURNS:
2065 * 0 on success, -errno on failure.
2066 */
2067int __init pcpu_page_first_chunk(size_t reserved_size,
2068 pcpu_fc_alloc_fn_t alloc_fn,
2069 pcpu_fc_free_fn_t free_fn,
2070 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2071{
2072 static struct vm_struct vm;
2073 struct pcpu_alloc_info *ai;
2074 char psize_str[16];
2075 int unit_pages;
2076 size_t pages_size;
2077 struct page **pages;
2078 int unit, i, j, rc;
2079
2080 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2081
2082 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2083 if (IS_ERR(ai))
2084 return PTR_ERR(ai);
2085 BUG_ON(ai->nr_groups != 1);
2086 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2087
2088 unit_pages = ai->unit_size >> PAGE_SHIFT;
2089
2090 /* unaligned allocations can't be freed, round up to page size */
2091 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2092 sizeof(pages[0]));
2093 pages = memblock_virt_alloc(pages_size, 0);
2094
2095 /* allocate pages */
2096 j = 0;
2097 for (unit = 0; unit < num_possible_cpus(); unit++)
2098 for (i = 0; i < unit_pages; i++) {
2099 unsigned int cpu = ai->groups[0].cpu_map[unit];
2100 void *ptr;
2101
2102 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2103 if (!ptr) {
2104 pr_warn("failed to allocate %s page for cpu%u\n",
2105 psize_str, cpu);
2106 goto enomem;
2107 }
2108 /* kmemleak tracks the percpu allocations separately */
2109 kmemleak_free(ptr);
2110 pages[j++] = virt_to_page(ptr);
2111 }
2112
2113 /* allocate vm area, map the pages and copy static data */
2114 vm.flags = VM_ALLOC;
2115 vm.size = num_possible_cpus() * ai->unit_size;
2116 vm_area_register_early(&vm, PAGE_SIZE);
2117
2118 for (unit = 0; unit < num_possible_cpus(); unit++) {
2119 unsigned long unit_addr =
2120 (unsigned long)vm.addr + unit * ai->unit_size;
2121
2122 for (i = 0; i < unit_pages; i++)
2123 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2124
2125 /* pte already populated, the following shouldn't fail */
2126 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2127 unit_pages);
2128 if (rc < 0)
2129 panic("failed to map percpu area, err=%d\n", rc);
2130
2131 /*
2132 * FIXME: Archs with virtual cache should flush local
2133 * cache for the linear mapping here - something
2134 * equivalent to flush_cache_vmap() on the local cpu.
2135 * flush_cache_vmap() can't be used as most supporting
2136 * data structures are not set up yet.
2137 */
2138
2139 /* copy static data */
2140 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2141 }
2142
2143 /* we're ready, commit */
2144 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2145 unit_pages, psize_str, vm.addr, ai->static_size,
2146 ai->reserved_size, ai->dyn_size);
2147
2148 rc = pcpu_setup_first_chunk(ai, vm.addr);
2149 goto out_free_ar;
2150
2151enomem:
2152 while (--j >= 0)
2153 free_fn(page_address(pages[j]), PAGE_SIZE);
2154 rc = -ENOMEM;
2155out_free_ar:
2156 memblock_free_early(__pa(pages), pages_size);
2157 pcpu_free_alloc_info(ai);
2158 return rc;
2159}
2160#endif /* BUILD_PAGE_FIRST_CHUNK */
2161
2162#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2163/*
2164 * Generic SMP percpu area setup.
2165 *
2166 * The embedding helper is used because its behavior closely resembles
2167 * the original non-dynamic generic percpu area setup. This is
2168 * important because many archs have addressing restrictions and might
2169 * fail if the percpu area is located far away from the previous
2170 * location. As an added bonus, in non-NUMA cases, embedding is
2171 * generally a good idea TLB-wise because percpu area can piggy back
2172 * on the physical linear memory mapping which uses large page
2173 * mappings on applicable archs.
2174 */
2175unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2176EXPORT_SYMBOL(__per_cpu_offset);
2177
2178static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2179 size_t align)
2180{
2181 return memblock_virt_alloc_from_nopanic(
2182 size, align, __pa(MAX_DMA_ADDRESS));
2183}
2184
2185static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2186{
2187 memblock_free_early(__pa(ptr), size);
2188}
2189
2190void __init setup_per_cpu_areas(void)
2191{
2192 unsigned long delta;
2193 unsigned int cpu;
2194 int rc;
2195
2196 /*
2197 * Always reserve area for module percpu variables. That's
2198 * what the legacy allocator did.
2199 */
2200 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2201 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2202 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2203 if (rc < 0)
2204 panic("Failed to initialize percpu areas.");
2205
2206 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2207 for_each_possible_cpu(cpu)
2208 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2209}
2210#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2211
2212#else /* CONFIG_SMP */
2213
2214/*
2215 * UP percpu area setup.
2216 *
2217 * UP always uses km-based percpu allocator with identity mapping.
2218 * Static percpu variables are indistinguishable from the usual static
2219 * variables and don't require any special preparation.
2220 */
2221void __init setup_per_cpu_areas(void)
2222{
2223 const size_t unit_size =
2224 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2225 PERCPU_DYNAMIC_RESERVE));
2226 struct pcpu_alloc_info *ai;
2227 void *fc;
2228
2229 ai = pcpu_alloc_alloc_info(1, 1);
2230 fc = memblock_virt_alloc_from_nopanic(unit_size,
2231 PAGE_SIZE,
2232 __pa(MAX_DMA_ADDRESS));
2233 if (!ai || !fc)
2234 panic("Failed to allocate memory for percpu areas.");
2235 /* kmemleak tracks the percpu allocations separately */
2236 kmemleak_free(fc);
2237
2238 ai->dyn_size = unit_size;
2239 ai->unit_size = unit_size;
2240 ai->atom_size = unit_size;
2241 ai->alloc_size = unit_size;
2242 ai->groups[0].nr_units = 1;
2243 ai->groups[0].cpu_map[0] = 0;
2244
2245 if (pcpu_setup_first_chunk(ai, fc) < 0)
2246 panic("Failed to initialize percpu areas.");
2247}
2248
2249#endif /* CONFIG_SMP */
2250
2251/*
2252 * First and reserved chunks are initialized with temporary allocation
2253 * map in initdata so that they can be used before slab is online.
2254 * This function is called after slab is brought up and replaces those
2255 * with properly allocated maps.
2256 */
2257void __init percpu_init_late(void)
2258{
2259 struct pcpu_chunk *target_chunks[] =
2260 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2261 struct pcpu_chunk *chunk;
2262 unsigned long flags;
2263 int i;
2264
2265 for (i = 0; (chunk = target_chunks[i]); i++) {
2266 int *map;
2267 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2268
2269 BUILD_BUG_ON(size > PAGE_SIZE);
2270
2271 map = pcpu_mem_zalloc(size);
2272 BUG_ON(!map);
2273
2274 spin_lock_irqsave(&pcpu_lock, flags);
2275 memcpy(map, chunk->map, size);
2276 chunk->map = map;
2277 spin_unlock_irqrestore(&pcpu_lock, flags);
2278 }
2279}
2280
2281/*
2282 * Percpu allocator is initialized early during boot when neither slab or
2283 * workqueue is available. Plug async management until everything is up
2284 * and running.
2285 */
2286static int __init percpu_enable_async(void)
2287{
2288 pcpu_async_enabled = true;
2289 return 0;
2290}
2291subsys_initcall(percpu_enable_async);
1/*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * Copyright (C) 2017 Facebook Inc.
8 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com>
9 *
10 * This file is released under the GPLv2 license.
11 *
12 * The percpu allocator handles both static and dynamic areas. Percpu
13 * areas are allocated in chunks which are divided into units. There is
14 * a 1-to-1 mapping for units to possible cpus. These units are grouped
15 * based on NUMA properties of the machine.
16 *
17 * c0 c1 c2
18 * ------------------- ------------------- ------------
19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
20 * ------------------- ...... ------------------- .... ------------
21 *
22 * Allocation is done by offsets into a unit's address space. Ie., an
23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
25 * and even sparse. Access is handled by configuring percpu base
26 * registers according to the cpu to unit mappings and offsetting the
27 * base address using pcpu_unit_size.
28 *
29 * There is special consideration for the first chunk which must handle
30 * the static percpu variables in the kernel image as allocation services
31 * are not online yet. In short, the first chunk is structured like so:
32 *
33 * <Static | [Reserved] | Dynamic>
34 *
35 * The static data is copied from the original section managed by the
36 * linker. The reserved section, if non-zero, primarily manages static
37 * percpu variables from kernel modules. Finally, the dynamic section
38 * takes care of normal allocations.
39 *
40 * The allocator organizes chunks into lists according to free size and
41 * tries to allocate from the fullest chunk first. Each chunk is managed
42 * by a bitmap with metadata blocks. The allocation map is updated on
43 * every allocation and free to reflect the current state while the boundary
44 * map is only updated on allocation. Each metadata block contains
45 * information to help mitigate the need to iterate over large portions
46 * of the bitmap. The reverse mapping from page to chunk is stored in
47 * the page's index. Lastly, units are lazily backed and grow in unison.
48 *
49 * There is a unique conversion that goes on here between bytes and bits.
50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
51 * tracks the number of pages it is responsible for in nr_pages. Helper
52 * functions are used to convert from between the bytes, bits, and blocks.
53 * All hints are managed in bits unless explicitly stated.
54 *
55 * To use this allocator, arch code should do the following:
56 *
57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58 * regular address to percpu pointer and back if they need to be
59 * different from the default
60 *
61 * - use pcpu_setup_first_chunk() during percpu area initialization to
62 * setup the first chunk containing the kernel static percpu area
63 */
64
65#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66
67#include <linux/bitmap.h>
68#include <linux/bootmem.h>
69#include <linux/err.h>
70#include <linux/lcm.h>
71#include <linux/list.h>
72#include <linux/log2.h>
73#include <linux/mm.h>
74#include <linux/module.h>
75#include <linux/mutex.h>
76#include <linux/percpu.h>
77#include <linux/pfn.h>
78#include <linux/slab.h>
79#include <linux/spinlock.h>
80#include <linux/vmalloc.h>
81#include <linux/workqueue.h>
82#include <linux/kmemleak.h>
83#include <linux/sched.h>
84
85#include <asm/cacheflush.h>
86#include <asm/sections.h>
87#include <asm/tlbflush.h>
88#include <asm/io.h>
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/percpu.h>
92
93#include "percpu-internal.h"
94
95/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
96#define PCPU_SLOT_BASE_SHIFT 5
97
98#define PCPU_EMPTY_POP_PAGES_LOW 2
99#define PCPU_EMPTY_POP_PAGES_HIGH 4
100
101#ifdef CONFIG_SMP
102/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
103#ifndef __addr_to_pcpu_ptr
104#define __addr_to_pcpu_ptr(addr) \
105 (void __percpu *)((unsigned long)(addr) - \
106 (unsigned long)pcpu_base_addr + \
107 (unsigned long)__per_cpu_start)
108#endif
109#ifndef __pcpu_ptr_to_addr
110#define __pcpu_ptr_to_addr(ptr) \
111 (void __force *)((unsigned long)(ptr) + \
112 (unsigned long)pcpu_base_addr - \
113 (unsigned long)__per_cpu_start)
114#endif
115#else /* CONFIG_SMP */
116/* on UP, it's always identity mapped */
117#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
118#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
119#endif /* CONFIG_SMP */
120
121static int pcpu_unit_pages __ro_after_init;
122static int pcpu_unit_size __ro_after_init;
123static int pcpu_nr_units __ro_after_init;
124static int pcpu_atom_size __ro_after_init;
125int pcpu_nr_slots __ro_after_init;
126static size_t pcpu_chunk_struct_size __ro_after_init;
127
128/* cpus with the lowest and highest unit addresses */
129static unsigned int pcpu_low_unit_cpu __ro_after_init;
130static unsigned int pcpu_high_unit_cpu __ro_after_init;
131
132/* the address of the first chunk which starts with the kernel static area */
133void *pcpu_base_addr __ro_after_init;
134EXPORT_SYMBOL_GPL(pcpu_base_addr);
135
136static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
137const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
138
139/* group information, used for vm allocation */
140static int pcpu_nr_groups __ro_after_init;
141static const unsigned long *pcpu_group_offsets __ro_after_init;
142static const size_t *pcpu_group_sizes __ro_after_init;
143
144/*
145 * The first chunk which always exists. Note that unlike other
146 * chunks, this one can be allocated and mapped in several different
147 * ways and thus often doesn't live in the vmalloc area.
148 */
149struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
150
151/*
152 * Optional reserved chunk. This chunk reserves part of the first
153 * chunk and serves it for reserved allocations. When the reserved
154 * region doesn't exist, the following variable is NULL.
155 */
156struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
157
158DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
159static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
160
161struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
162
163/* chunks which need their map areas extended, protected by pcpu_lock */
164static LIST_HEAD(pcpu_map_extend_chunks);
165
166/*
167 * The number of empty populated pages, protected by pcpu_lock. The
168 * reserved chunk doesn't contribute to the count.
169 */
170int pcpu_nr_empty_pop_pages;
171
172/*
173 * Balance work is used to populate or destroy chunks asynchronously. We
174 * try to keep the number of populated free pages between
175 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
176 * empty chunk.
177 */
178static void pcpu_balance_workfn(struct work_struct *work);
179static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
180static bool pcpu_async_enabled __read_mostly;
181static bool pcpu_atomic_alloc_failed;
182
183static void pcpu_schedule_balance_work(void)
184{
185 if (pcpu_async_enabled)
186 schedule_work(&pcpu_balance_work);
187}
188
189/**
190 * pcpu_addr_in_chunk - check if the address is served from this chunk
191 * @chunk: chunk of interest
192 * @addr: percpu address
193 *
194 * RETURNS:
195 * True if the address is served from this chunk.
196 */
197static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
198{
199 void *start_addr, *end_addr;
200
201 if (!chunk)
202 return false;
203
204 start_addr = chunk->base_addr + chunk->start_offset;
205 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
206 chunk->end_offset;
207
208 return addr >= start_addr && addr < end_addr;
209}
210
211static int __pcpu_size_to_slot(int size)
212{
213 int highbit = fls(size); /* size is in bytes */
214 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
215}
216
217static int pcpu_size_to_slot(int size)
218{
219 if (size == pcpu_unit_size)
220 return pcpu_nr_slots - 1;
221 return __pcpu_size_to_slot(size);
222}
223
224static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
225{
226 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
227 return 0;
228
229 return pcpu_size_to_slot(chunk->free_bytes);
230}
231
232/* set the pointer to a chunk in a page struct */
233static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
234{
235 page->index = (unsigned long)pcpu;
236}
237
238/* obtain pointer to a chunk from a page struct */
239static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
240{
241 return (struct pcpu_chunk *)page->index;
242}
243
244static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
245{
246 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
247}
248
249static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
250{
251 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
252}
253
254static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
255 unsigned int cpu, int page_idx)
256{
257 return (unsigned long)chunk->base_addr +
258 pcpu_unit_page_offset(cpu, page_idx);
259}
260
261static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
262{
263 *rs = find_next_zero_bit(bitmap, end, *rs);
264 *re = find_next_bit(bitmap, end, *rs + 1);
265}
266
267static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
268{
269 *rs = find_next_bit(bitmap, end, *rs);
270 *re = find_next_zero_bit(bitmap, end, *rs + 1);
271}
272
273/*
274 * Bitmap region iterators. Iterates over the bitmap between
275 * [@start, @end) in @chunk. @rs and @re should be integer variables
276 * and will be set to start and end index of the current free region.
277 */
278#define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
279 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
280 (rs) < (re); \
281 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
282
283#define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
284 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
285 (rs) < (re); \
286 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
287
288/*
289 * The following are helper functions to help access bitmaps and convert
290 * between bitmap offsets to address offsets.
291 */
292static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
293{
294 return chunk->alloc_map +
295 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
296}
297
298static unsigned long pcpu_off_to_block_index(int off)
299{
300 return off / PCPU_BITMAP_BLOCK_BITS;
301}
302
303static unsigned long pcpu_off_to_block_off(int off)
304{
305 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
306}
307
308static unsigned long pcpu_block_off_to_off(int index, int off)
309{
310 return index * PCPU_BITMAP_BLOCK_BITS + off;
311}
312
313/**
314 * pcpu_next_md_free_region - finds the next hint free area
315 * @chunk: chunk of interest
316 * @bit_off: chunk offset
317 * @bits: size of free area
318 *
319 * Helper function for pcpu_for_each_md_free_region. It checks
320 * block->contig_hint and performs aggregation across blocks to find the
321 * next hint. It modifies bit_off and bits in-place to be consumed in the
322 * loop.
323 */
324static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
325 int *bits)
326{
327 int i = pcpu_off_to_block_index(*bit_off);
328 int block_off = pcpu_off_to_block_off(*bit_off);
329 struct pcpu_block_md *block;
330
331 *bits = 0;
332 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
333 block++, i++) {
334 /* handles contig area across blocks */
335 if (*bits) {
336 *bits += block->left_free;
337 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
338 continue;
339 return;
340 }
341
342 /*
343 * This checks three things. First is there a contig_hint to
344 * check. Second, have we checked this hint before by
345 * comparing the block_off. Third, is this the same as the
346 * right contig hint. In the last case, it spills over into
347 * the next block and should be handled by the contig area
348 * across blocks code.
349 */
350 *bits = block->contig_hint;
351 if (*bits && block->contig_hint_start >= block_off &&
352 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
353 *bit_off = pcpu_block_off_to_off(i,
354 block->contig_hint_start);
355 return;
356 }
357 /* reset to satisfy the second predicate above */
358 block_off = 0;
359
360 *bits = block->right_free;
361 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
362 }
363}
364
365/**
366 * pcpu_next_fit_region - finds fit areas for a given allocation request
367 * @chunk: chunk of interest
368 * @alloc_bits: size of allocation
369 * @align: alignment of area (max PAGE_SIZE)
370 * @bit_off: chunk offset
371 * @bits: size of free area
372 *
373 * Finds the next free region that is viable for use with a given size and
374 * alignment. This only returns if there is a valid area to be used for this
375 * allocation. block->first_free is returned if the allocation request fits
376 * within the block to see if the request can be fulfilled prior to the contig
377 * hint.
378 */
379static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
380 int align, int *bit_off, int *bits)
381{
382 int i = pcpu_off_to_block_index(*bit_off);
383 int block_off = pcpu_off_to_block_off(*bit_off);
384 struct pcpu_block_md *block;
385
386 *bits = 0;
387 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
388 block++, i++) {
389 /* handles contig area across blocks */
390 if (*bits) {
391 *bits += block->left_free;
392 if (*bits >= alloc_bits)
393 return;
394 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
395 continue;
396 }
397
398 /* check block->contig_hint */
399 *bits = ALIGN(block->contig_hint_start, align) -
400 block->contig_hint_start;
401 /*
402 * This uses the block offset to determine if this has been
403 * checked in the prior iteration.
404 */
405 if (block->contig_hint &&
406 block->contig_hint_start >= block_off &&
407 block->contig_hint >= *bits + alloc_bits) {
408 *bits += alloc_bits + block->contig_hint_start -
409 block->first_free;
410 *bit_off = pcpu_block_off_to_off(i, block->first_free);
411 return;
412 }
413 /* reset to satisfy the second predicate above */
414 block_off = 0;
415
416 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
417 align);
418 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
419 *bit_off = pcpu_block_off_to_off(i, *bit_off);
420 if (*bits >= alloc_bits)
421 return;
422 }
423
424 /* no valid offsets were found - fail condition */
425 *bit_off = pcpu_chunk_map_bits(chunk);
426}
427
428/*
429 * Metadata free area iterators. These perform aggregation of free areas
430 * based on the metadata blocks and return the offset @bit_off and size in
431 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
432 * a fit is found for the allocation request.
433 */
434#define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
435 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
436 (bit_off) < pcpu_chunk_map_bits((chunk)); \
437 (bit_off) += (bits) + 1, \
438 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
439
440#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
441 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
442 &(bits)); \
443 (bit_off) < pcpu_chunk_map_bits((chunk)); \
444 (bit_off) += (bits), \
445 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
446 &(bits)))
447
448/**
449 * pcpu_mem_zalloc - allocate memory
450 * @size: bytes to allocate
451 * @gfp: allocation flags
452 *
453 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
454 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
455 * This is to facilitate passing through whitelisted flags. The
456 * returned memory is always zeroed.
457 *
458 * RETURNS:
459 * Pointer to the allocated area on success, NULL on failure.
460 */
461static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
462{
463 if (WARN_ON_ONCE(!slab_is_available()))
464 return NULL;
465
466 if (size <= PAGE_SIZE)
467 return kzalloc(size, gfp);
468 else
469 return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
470}
471
472/**
473 * pcpu_mem_free - free memory
474 * @ptr: memory to free
475 *
476 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
477 */
478static void pcpu_mem_free(void *ptr)
479{
480 kvfree(ptr);
481}
482
483/**
484 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
485 * @chunk: chunk of interest
486 * @oslot: the previous slot it was on
487 *
488 * This function is called after an allocation or free changed @chunk.
489 * New slot according to the changed state is determined and @chunk is
490 * moved to the slot. Note that the reserved chunk is never put on
491 * chunk slots.
492 *
493 * CONTEXT:
494 * pcpu_lock.
495 */
496static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
497{
498 int nslot = pcpu_chunk_slot(chunk);
499
500 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
501 if (oslot < nslot)
502 list_move(&chunk->list, &pcpu_slot[nslot]);
503 else
504 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
505 }
506}
507
508/**
509 * pcpu_cnt_pop_pages- counts populated backing pages in range
510 * @chunk: chunk of interest
511 * @bit_off: start offset
512 * @bits: size of area to check
513 *
514 * Calculates the number of populated pages in the region
515 * [page_start, page_end). This keeps track of how many empty populated
516 * pages are available and decide if async work should be scheduled.
517 *
518 * RETURNS:
519 * The nr of populated pages.
520 */
521static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
522 int bits)
523{
524 int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
525 int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
526
527 if (page_start >= page_end)
528 return 0;
529
530 /*
531 * bitmap_weight counts the number of bits set in a bitmap up to
532 * the specified number of bits. This is counting the populated
533 * pages up to page_end and then subtracting the populated pages
534 * up to page_start to count the populated pages in
535 * [page_start, page_end).
536 */
537 return bitmap_weight(chunk->populated, page_end) -
538 bitmap_weight(chunk->populated, page_start);
539}
540
541/**
542 * pcpu_chunk_update - updates the chunk metadata given a free area
543 * @chunk: chunk of interest
544 * @bit_off: chunk offset
545 * @bits: size of free area
546 *
547 * This updates the chunk's contig hint and starting offset given a free area.
548 * Choose the best starting offset if the contig hint is equal.
549 */
550static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
551{
552 if (bits > chunk->contig_bits) {
553 chunk->contig_bits_start = bit_off;
554 chunk->contig_bits = bits;
555 } else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
556 (!bit_off ||
557 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
558 /* use the start with the best alignment */
559 chunk->contig_bits_start = bit_off;
560 }
561}
562
563/**
564 * pcpu_chunk_refresh_hint - updates metadata about a chunk
565 * @chunk: chunk of interest
566 *
567 * Iterates over the metadata blocks to find the largest contig area.
568 * It also counts the populated pages and uses the delta to update the
569 * global count.
570 *
571 * Updates:
572 * chunk->contig_bits
573 * chunk->contig_bits_start
574 * nr_empty_pop_pages (chunk and global)
575 */
576static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
577{
578 int bit_off, bits, nr_empty_pop_pages;
579
580 /* clear metadata */
581 chunk->contig_bits = 0;
582
583 bit_off = chunk->first_bit;
584 bits = nr_empty_pop_pages = 0;
585 pcpu_for_each_md_free_region(chunk, bit_off, bits) {
586 pcpu_chunk_update(chunk, bit_off, bits);
587
588 nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
589 }
590
591 /*
592 * Keep track of nr_empty_pop_pages.
593 *
594 * The chunk maintains the previous number of free pages it held,
595 * so the delta is used to update the global counter. The reserved
596 * chunk is not part of the free page count as they are populated
597 * at init and are special to serving reserved allocations.
598 */
599 if (chunk != pcpu_reserved_chunk)
600 pcpu_nr_empty_pop_pages +=
601 (nr_empty_pop_pages - chunk->nr_empty_pop_pages);
602
603 chunk->nr_empty_pop_pages = nr_empty_pop_pages;
604}
605
606/**
607 * pcpu_block_update - updates a block given a free area
608 * @block: block of interest
609 * @start: start offset in block
610 * @end: end offset in block
611 *
612 * Updates a block given a known free area. The region [start, end) is
613 * expected to be the entirety of the free area within a block. Chooses
614 * the best starting offset if the contig hints are equal.
615 */
616static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
617{
618 int contig = end - start;
619
620 block->first_free = min(block->first_free, start);
621 if (start == 0)
622 block->left_free = contig;
623
624 if (end == PCPU_BITMAP_BLOCK_BITS)
625 block->right_free = contig;
626
627 if (contig > block->contig_hint) {
628 block->contig_hint_start = start;
629 block->contig_hint = contig;
630 } else if (block->contig_hint_start && contig == block->contig_hint &&
631 (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
632 /* use the start with the best alignment */
633 block->contig_hint_start = start;
634 }
635}
636
637/**
638 * pcpu_block_refresh_hint
639 * @chunk: chunk of interest
640 * @index: index of the metadata block
641 *
642 * Scans over the block beginning at first_free and updates the block
643 * metadata accordingly.
644 */
645static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
646{
647 struct pcpu_block_md *block = chunk->md_blocks + index;
648 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
649 int rs, re; /* region start, region end */
650
651 /* clear hints */
652 block->contig_hint = 0;
653 block->left_free = block->right_free = 0;
654
655 /* iterate over free areas and update the contig hints */
656 pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
657 PCPU_BITMAP_BLOCK_BITS) {
658 pcpu_block_update(block, rs, re);
659 }
660}
661
662/**
663 * pcpu_block_update_hint_alloc - update hint on allocation path
664 * @chunk: chunk of interest
665 * @bit_off: chunk offset
666 * @bits: size of request
667 *
668 * Updates metadata for the allocation path. The metadata only has to be
669 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
670 * scans are required if the block's contig hint is broken.
671 */
672static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
673 int bits)
674{
675 struct pcpu_block_md *s_block, *e_block, *block;
676 int s_index, e_index; /* block indexes of the freed allocation */
677 int s_off, e_off; /* block offsets of the freed allocation */
678
679 /*
680 * Calculate per block offsets.
681 * The calculation uses an inclusive range, but the resulting offsets
682 * are [start, end). e_index always points to the last block in the
683 * range.
684 */
685 s_index = pcpu_off_to_block_index(bit_off);
686 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
687 s_off = pcpu_off_to_block_off(bit_off);
688 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
689
690 s_block = chunk->md_blocks + s_index;
691 e_block = chunk->md_blocks + e_index;
692
693 /*
694 * Update s_block.
695 * block->first_free must be updated if the allocation takes its place.
696 * If the allocation breaks the contig_hint, a scan is required to
697 * restore this hint.
698 */
699 if (s_off == s_block->first_free)
700 s_block->first_free = find_next_zero_bit(
701 pcpu_index_alloc_map(chunk, s_index),
702 PCPU_BITMAP_BLOCK_BITS,
703 s_off + bits);
704
705 if (s_off >= s_block->contig_hint_start &&
706 s_off < s_block->contig_hint_start + s_block->contig_hint) {
707 /* block contig hint is broken - scan to fix it */
708 pcpu_block_refresh_hint(chunk, s_index);
709 } else {
710 /* update left and right contig manually */
711 s_block->left_free = min(s_block->left_free, s_off);
712 if (s_index == e_index)
713 s_block->right_free = min_t(int, s_block->right_free,
714 PCPU_BITMAP_BLOCK_BITS - e_off);
715 else
716 s_block->right_free = 0;
717 }
718
719 /*
720 * Update e_block.
721 */
722 if (s_index != e_index) {
723 /*
724 * When the allocation is across blocks, the end is along
725 * the left part of the e_block.
726 */
727 e_block->first_free = find_next_zero_bit(
728 pcpu_index_alloc_map(chunk, e_index),
729 PCPU_BITMAP_BLOCK_BITS, e_off);
730
731 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
732 /* reset the block */
733 e_block++;
734 } else {
735 if (e_off > e_block->contig_hint_start) {
736 /* contig hint is broken - scan to fix it */
737 pcpu_block_refresh_hint(chunk, e_index);
738 } else {
739 e_block->left_free = 0;
740 e_block->right_free =
741 min_t(int, e_block->right_free,
742 PCPU_BITMAP_BLOCK_BITS - e_off);
743 }
744 }
745
746 /* update in-between md_blocks */
747 for (block = s_block + 1; block < e_block; block++) {
748 block->contig_hint = 0;
749 block->left_free = 0;
750 block->right_free = 0;
751 }
752 }
753
754 /*
755 * The only time a full chunk scan is required is if the chunk
756 * contig hint is broken. Otherwise, it means a smaller space
757 * was used and therefore the chunk contig hint is still correct.
758 */
759 if (bit_off >= chunk->contig_bits_start &&
760 bit_off < chunk->contig_bits_start + chunk->contig_bits)
761 pcpu_chunk_refresh_hint(chunk);
762}
763
764/**
765 * pcpu_block_update_hint_free - updates the block hints on the free path
766 * @chunk: chunk of interest
767 * @bit_off: chunk offset
768 * @bits: size of request
769 *
770 * Updates metadata for the allocation path. This avoids a blind block
771 * refresh by making use of the block contig hints. If this fails, it scans
772 * forward and backward to determine the extent of the free area. This is
773 * capped at the boundary of blocks.
774 *
775 * A chunk update is triggered if a page becomes free, a block becomes free,
776 * or the free spans across blocks. This tradeoff is to minimize iterating
777 * over the block metadata to update chunk->contig_bits. chunk->contig_bits
778 * may be off by up to a page, but it will never be more than the available
779 * space. If the contig hint is contained in one block, it will be accurate.
780 */
781static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
782 int bits)
783{
784 struct pcpu_block_md *s_block, *e_block, *block;
785 int s_index, e_index; /* block indexes of the freed allocation */
786 int s_off, e_off; /* block offsets of the freed allocation */
787 int start, end; /* start and end of the whole free area */
788
789 /*
790 * Calculate per block offsets.
791 * The calculation uses an inclusive range, but the resulting offsets
792 * are [start, end). e_index always points to the last block in the
793 * range.
794 */
795 s_index = pcpu_off_to_block_index(bit_off);
796 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
797 s_off = pcpu_off_to_block_off(bit_off);
798 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
799
800 s_block = chunk->md_blocks + s_index;
801 e_block = chunk->md_blocks + e_index;
802
803 /*
804 * Check if the freed area aligns with the block->contig_hint.
805 * If it does, then the scan to find the beginning/end of the
806 * larger free area can be avoided.
807 *
808 * start and end refer to beginning and end of the free area
809 * within each their respective blocks. This is not necessarily
810 * the entire free area as it may span blocks past the beginning
811 * or end of the block.
812 */
813 start = s_off;
814 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
815 start = s_block->contig_hint_start;
816 } else {
817 /*
818 * Scan backwards to find the extent of the free area.
819 * find_last_bit returns the starting bit, so if the start bit
820 * is returned, that means there was no last bit and the
821 * remainder of the chunk is free.
822 */
823 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
824 start);
825 start = (start == l_bit) ? 0 : l_bit + 1;
826 }
827
828 end = e_off;
829 if (e_off == e_block->contig_hint_start)
830 end = e_block->contig_hint_start + e_block->contig_hint;
831 else
832 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
833 PCPU_BITMAP_BLOCK_BITS, end);
834
835 /* update s_block */
836 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
837 pcpu_block_update(s_block, start, e_off);
838
839 /* freeing in the same block */
840 if (s_index != e_index) {
841 /* update e_block */
842 pcpu_block_update(e_block, 0, end);
843
844 /* reset md_blocks in the middle */
845 for (block = s_block + 1; block < e_block; block++) {
846 block->first_free = 0;
847 block->contig_hint_start = 0;
848 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
849 block->left_free = PCPU_BITMAP_BLOCK_BITS;
850 block->right_free = PCPU_BITMAP_BLOCK_BITS;
851 }
852 }
853
854 /*
855 * Refresh chunk metadata when the free makes a page free, a block
856 * free, or spans across blocks. The contig hint may be off by up to
857 * a page, but if the hint is contained in a block, it will be accurate
858 * with the else condition below.
859 */
860 if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
861 ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
862 s_index != e_index)
863 pcpu_chunk_refresh_hint(chunk);
864 else
865 pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
866 s_block->contig_hint);
867}
868
869/**
870 * pcpu_is_populated - determines if the region is populated
871 * @chunk: chunk of interest
872 * @bit_off: chunk offset
873 * @bits: size of area
874 * @next_off: return value for the next offset to start searching
875 *
876 * For atomic allocations, check if the backing pages are populated.
877 *
878 * RETURNS:
879 * Bool if the backing pages are populated.
880 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
881 */
882static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
883 int *next_off)
884{
885 int page_start, page_end, rs, re;
886
887 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
888 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
889
890 rs = page_start;
891 pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
892 if (rs >= page_end)
893 return true;
894
895 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
896 return false;
897}
898
899/**
900 * pcpu_find_block_fit - finds the block index to start searching
901 * @chunk: chunk of interest
902 * @alloc_bits: size of request in allocation units
903 * @align: alignment of area (max PAGE_SIZE bytes)
904 * @pop_only: use populated regions only
905 *
906 * Given a chunk and an allocation spec, find the offset to begin searching
907 * for a free region. This iterates over the bitmap metadata blocks to
908 * find an offset that will be guaranteed to fit the requirements. It is
909 * not quite first fit as if the allocation does not fit in the contig hint
910 * of a block or chunk, it is skipped. This errs on the side of caution
911 * to prevent excess iteration. Poor alignment can cause the allocator to
912 * skip over blocks and chunks that have valid free areas.
913 *
914 * RETURNS:
915 * The offset in the bitmap to begin searching.
916 * -1 if no offset is found.
917 */
918static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
919 size_t align, bool pop_only)
920{
921 int bit_off, bits, next_off;
922
923 /*
924 * Check to see if the allocation can fit in the chunk's contig hint.
925 * This is an optimization to prevent scanning by assuming if it
926 * cannot fit in the global hint, there is memory pressure and creating
927 * a new chunk would happen soon.
928 */
929 bit_off = ALIGN(chunk->contig_bits_start, align) -
930 chunk->contig_bits_start;
931 if (bit_off + alloc_bits > chunk->contig_bits)
932 return -1;
933
934 bit_off = chunk->first_bit;
935 bits = 0;
936 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
937 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
938 &next_off))
939 break;
940
941 bit_off = next_off;
942 bits = 0;
943 }
944
945 if (bit_off == pcpu_chunk_map_bits(chunk))
946 return -1;
947
948 return bit_off;
949}
950
951/**
952 * pcpu_alloc_area - allocates an area from a pcpu_chunk
953 * @chunk: chunk of interest
954 * @alloc_bits: size of request in allocation units
955 * @align: alignment of area (max PAGE_SIZE)
956 * @start: bit_off to start searching
957 *
958 * This function takes in a @start offset to begin searching to fit an
959 * allocation of @alloc_bits with alignment @align. It needs to scan
960 * the allocation map because if it fits within the block's contig hint,
961 * @start will be block->first_free. This is an attempt to fill the
962 * allocation prior to breaking the contig hint. The allocation and
963 * boundary maps are updated accordingly if it confirms a valid
964 * free area.
965 *
966 * RETURNS:
967 * Allocated addr offset in @chunk on success.
968 * -1 if no matching area is found.
969 */
970static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
971 size_t align, int start)
972{
973 size_t align_mask = (align) ? (align - 1) : 0;
974 int bit_off, end, oslot;
975
976 lockdep_assert_held(&pcpu_lock);
977
978 oslot = pcpu_chunk_slot(chunk);
979
980 /*
981 * Search to find a fit.
982 */
983 end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
984 bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
985 alloc_bits, align_mask);
986 if (bit_off >= end)
987 return -1;
988
989 /* update alloc map */
990 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
991
992 /* update boundary map */
993 set_bit(bit_off, chunk->bound_map);
994 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
995 set_bit(bit_off + alloc_bits, chunk->bound_map);
996
997 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
998
999 /* update first free bit */
1000 if (bit_off == chunk->first_bit)
1001 chunk->first_bit = find_next_zero_bit(
1002 chunk->alloc_map,
1003 pcpu_chunk_map_bits(chunk),
1004 bit_off + alloc_bits);
1005
1006 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1007
1008 pcpu_chunk_relocate(chunk, oslot);
1009
1010 return bit_off * PCPU_MIN_ALLOC_SIZE;
1011}
1012
1013/**
1014 * pcpu_free_area - frees the corresponding offset
1015 * @chunk: chunk of interest
1016 * @off: addr offset into chunk
1017 *
1018 * This function determines the size of an allocation to free using
1019 * the boundary bitmap and clears the allocation map.
1020 */
1021static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1022{
1023 int bit_off, bits, end, oslot;
1024
1025 lockdep_assert_held(&pcpu_lock);
1026 pcpu_stats_area_dealloc(chunk);
1027
1028 oslot = pcpu_chunk_slot(chunk);
1029
1030 bit_off = off / PCPU_MIN_ALLOC_SIZE;
1031
1032 /* find end index */
1033 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1034 bit_off + 1);
1035 bits = end - bit_off;
1036 bitmap_clear(chunk->alloc_map, bit_off, bits);
1037
1038 /* update metadata */
1039 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1040
1041 /* update first free bit */
1042 chunk->first_bit = min(chunk->first_bit, bit_off);
1043
1044 pcpu_block_update_hint_free(chunk, bit_off, bits);
1045
1046 pcpu_chunk_relocate(chunk, oslot);
1047}
1048
1049static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1050{
1051 struct pcpu_block_md *md_block;
1052
1053 for (md_block = chunk->md_blocks;
1054 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1055 md_block++) {
1056 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1057 md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1058 md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1059 }
1060}
1061
1062/**
1063 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1064 * @tmp_addr: the start of the region served
1065 * @map_size: size of the region served
1066 *
1067 * This is responsible for creating the chunks that serve the first chunk. The
1068 * base_addr is page aligned down of @tmp_addr while the region end is page
1069 * aligned up. Offsets are kept track of to determine the region served. All
1070 * this is done to appease the bitmap allocator in avoiding partial blocks.
1071 *
1072 * RETURNS:
1073 * Chunk serving the region at @tmp_addr of @map_size.
1074 */
1075static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1076 int map_size)
1077{
1078 struct pcpu_chunk *chunk;
1079 unsigned long aligned_addr, lcm_align;
1080 int start_offset, offset_bits, region_size, region_bits;
1081
1082 /* region calculations */
1083 aligned_addr = tmp_addr & PAGE_MASK;
1084
1085 start_offset = tmp_addr - aligned_addr;
1086
1087 /*
1088 * Align the end of the region with the LCM of PAGE_SIZE and
1089 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1090 * the other.
1091 */
1092 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1093 region_size = ALIGN(start_offset + map_size, lcm_align);
1094
1095 /* allocate chunk */
1096 chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
1097 BITS_TO_LONGS(region_size >> PAGE_SHIFT),
1098 0);
1099
1100 INIT_LIST_HEAD(&chunk->list);
1101
1102 chunk->base_addr = (void *)aligned_addr;
1103 chunk->start_offset = start_offset;
1104 chunk->end_offset = region_size - chunk->start_offset - map_size;
1105
1106 chunk->nr_pages = region_size >> PAGE_SHIFT;
1107 region_bits = pcpu_chunk_map_bits(chunk);
1108
1109 chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
1110 sizeof(chunk->alloc_map[0]), 0);
1111 chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
1112 sizeof(chunk->bound_map[0]), 0);
1113 chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
1114 sizeof(chunk->md_blocks[0]), 0);
1115 pcpu_init_md_blocks(chunk);
1116
1117 /* manage populated page bitmap */
1118 chunk->immutable = true;
1119 bitmap_fill(chunk->populated, chunk->nr_pages);
1120 chunk->nr_populated = chunk->nr_pages;
1121 chunk->nr_empty_pop_pages =
1122 pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
1123 map_size / PCPU_MIN_ALLOC_SIZE);
1124
1125 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1126 chunk->free_bytes = map_size;
1127
1128 if (chunk->start_offset) {
1129 /* hide the beginning of the bitmap */
1130 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1131 bitmap_set(chunk->alloc_map, 0, offset_bits);
1132 set_bit(0, chunk->bound_map);
1133 set_bit(offset_bits, chunk->bound_map);
1134
1135 chunk->first_bit = offset_bits;
1136
1137 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1138 }
1139
1140 if (chunk->end_offset) {
1141 /* hide the end of the bitmap */
1142 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1143 bitmap_set(chunk->alloc_map,
1144 pcpu_chunk_map_bits(chunk) - offset_bits,
1145 offset_bits);
1146 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1147 chunk->bound_map);
1148 set_bit(region_bits, chunk->bound_map);
1149
1150 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1151 - offset_bits, offset_bits);
1152 }
1153
1154 return chunk;
1155}
1156
1157static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1158{
1159 struct pcpu_chunk *chunk;
1160 int region_bits;
1161
1162 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1163 if (!chunk)
1164 return NULL;
1165
1166 INIT_LIST_HEAD(&chunk->list);
1167 chunk->nr_pages = pcpu_unit_pages;
1168 region_bits = pcpu_chunk_map_bits(chunk);
1169
1170 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1171 sizeof(chunk->alloc_map[0]), gfp);
1172 if (!chunk->alloc_map)
1173 goto alloc_map_fail;
1174
1175 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1176 sizeof(chunk->bound_map[0]), gfp);
1177 if (!chunk->bound_map)
1178 goto bound_map_fail;
1179
1180 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1181 sizeof(chunk->md_blocks[0]), gfp);
1182 if (!chunk->md_blocks)
1183 goto md_blocks_fail;
1184
1185 pcpu_init_md_blocks(chunk);
1186
1187 /* init metadata */
1188 chunk->contig_bits = region_bits;
1189 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1190
1191 return chunk;
1192
1193md_blocks_fail:
1194 pcpu_mem_free(chunk->bound_map);
1195bound_map_fail:
1196 pcpu_mem_free(chunk->alloc_map);
1197alloc_map_fail:
1198 pcpu_mem_free(chunk);
1199
1200 return NULL;
1201}
1202
1203static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1204{
1205 if (!chunk)
1206 return;
1207 pcpu_mem_free(chunk->bound_map);
1208 pcpu_mem_free(chunk->alloc_map);
1209 pcpu_mem_free(chunk);
1210}
1211
1212/**
1213 * pcpu_chunk_populated - post-population bookkeeping
1214 * @chunk: pcpu_chunk which got populated
1215 * @page_start: the start page
1216 * @page_end: the end page
1217 * @for_alloc: if this is to populate for allocation
1218 *
1219 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1220 * the bookkeeping information accordingly. Must be called after each
1221 * successful population.
1222 *
1223 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1224 * is to serve an allocation in that area.
1225 */
1226static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1227 int page_end, bool for_alloc)
1228{
1229 int nr = page_end - page_start;
1230
1231 lockdep_assert_held(&pcpu_lock);
1232
1233 bitmap_set(chunk->populated, page_start, nr);
1234 chunk->nr_populated += nr;
1235
1236 if (!for_alloc) {
1237 chunk->nr_empty_pop_pages += nr;
1238 pcpu_nr_empty_pop_pages += nr;
1239 }
1240}
1241
1242/**
1243 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1244 * @chunk: pcpu_chunk which got depopulated
1245 * @page_start: the start page
1246 * @page_end: the end page
1247 *
1248 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1249 * Update the bookkeeping information accordingly. Must be called after
1250 * each successful depopulation.
1251 */
1252static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1253 int page_start, int page_end)
1254{
1255 int nr = page_end - page_start;
1256
1257 lockdep_assert_held(&pcpu_lock);
1258
1259 bitmap_clear(chunk->populated, page_start, nr);
1260 chunk->nr_populated -= nr;
1261 chunk->nr_empty_pop_pages -= nr;
1262 pcpu_nr_empty_pop_pages -= nr;
1263}
1264
1265/*
1266 * Chunk management implementation.
1267 *
1268 * To allow different implementations, chunk alloc/free and
1269 * [de]population are implemented in a separate file which is pulled
1270 * into this file and compiled together. The following functions
1271 * should be implemented.
1272 *
1273 * pcpu_populate_chunk - populate the specified range of a chunk
1274 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1275 * pcpu_create_chunk - create a new chunk
1276 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1277 * pcpu_addr_to_page - translate address to physical address
1278 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1279 */
1280static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1281 int page_start, int page_end, gfp_t gfp);
1282static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1283 int page_start, int page_end);
1284static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1285static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1286static struct page *pcpu_addr_to_page(void *addr);
1287static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1288
1289#ifdef CONFIG_NEED_PER_CPU_KM
1290#include "percpu-km.c"
1291#else
1292#include "percpu-vm.c"
1293#endif
1294
1295/**
1296 * pcpu_chunk_addr_search - determine chunk containing specified address
1297 * @addr: address for which the chunk needs to be determined.
1298 *
1299 * This is an internal function that handles all but static allocations.
1300 * Static percpu address values should never be passed into the allocator.
1301 *
1302 * RETURNS:
1303 * The address of the found chunk.
1304 */
1305static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1306{
1307 /* is it in the dynamic region (first chunk)? */
1308 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1309 return pcpu_first_chunk;
1310
1311 /* is it in the reserved region? */
1312 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1313 return pcpu_reserved_chunk;
1314
1315 /*
1316 * The address is relative to unit0 which might be unused and
1317 * thus unmapped. Offset the address to the unit space of the
1318 * current processor before looking it up in the vmalloc
1319 * space. Note that any possible cpu id can be used here, so
1320 * there's no need to worry about preemption or cpu hotplug.
1321 */
1322 addr += pcpu_unit_offsets[raw_smp_processor_id()];
1323 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1324}
1325
1326/**
1327 * pcpu_alloc - the percpu allocator
1328 * @size: size of area to allocate in bytes
1329 * @align: alignment of area (max PAGE_SIZE)
1330 * @reserved: allocate from the reserved chunk if available
1331 * @gfp: allocation flags
1332 *
1333 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1334 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1335 * then no warning will be triggered on invalid or failed allocation
1336 * requests.
1337 *
1338 * RETURNS:
1339 * Percpu pointer to the allocated area on success, NULL on failure.
1340 */
1341static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1342 gfp_t gfp)
1343{
1344 /* whitelisted flags that can be passed to the backing allocators */
1345 gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1346 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1347 bool do_warn = !(gfp & __GFP_NOWARN);
1348 static int warn_limit = 10;
1349 struct pcpu_chunk *chunk;
1350 const char *err;
1351 int slot, off, cpu, ret;
1352 unsigned long flags;
1353 void __percpu *ptr;
1354 size_t bits, bit_align;
1355
1356 /*
1357 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1358 * therefore alignment must be a minimum of that many bytes.
1359 * An allocation may have internal fragmentation from rounding up
1360 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1361 */
1362 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1363 align = PCPU_MIN_ALLOC_SIZE;
1364
1365 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1366 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1367 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1368
1369 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1370 !is_power_of_2(align))) {
1371 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1372 size, align);
1373 return NULL;
1374 }
1375
1376 if (!is_atomic) {
1377 /*
1378 * pcpu_balance_workfn() allocates memory under this mutex,
1379 * and it may wait for memory reclaim. Allow current task
1380 * to become OOM victim, in case of memory pressure.
1381 */
1382 if (gfp & __GFP_NOFAIL)
1383 mutex_lock(&pcpu_alloc_mutex);
1384 else if (mutex_lock_killable(&pcpu_alloc_mutex))
1385 return NULL;
1386 }
1387
1388 spin_lock_irqsave(&pcpu_lock, flags);
1389
1390 /* serve reserved allocations from the reserved chunk if available */
1391 if (reserved && pcpu_reserved_chunk) {
1392 chunk = pcpu_reserved_chunk;
1393
1394 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1395 if (off < 0) {
1396 err = "alloc from reserved chunk failed";
1397 goto fail_unlock;
1398 }
1399
1400 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1401 if (off >= 0)
1402 goto area_found;
1403
1404 err = "alloc from reserved chunk failed";
1405 goto fail_unlock;
1406 }
1407
1408restart:
1409 /* search through normal chunks */
1410 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1411 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1412 off = pcpu_find_block_fit(chunk, bits, bit_align,
1413 is_atomic);
1414 if (off < 0)
1415 continue;
1416
1417 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1418 if (off >= 0)
1419 goto area_found;
1420
1421 }
1422 }
1423
1424 spin_unlock_irqrestore(&pcpu_lock, flags);
1425
1426 /*
1427 * No space left. Create a new chunk. We don't want multiple
1428 * tasks to create chunks simultaneously. Serialize and create iff
1429 * there's still no empty chunk after grabbing the mutex.
1430 */
1431 if (is_atomic) {
1432 err = "atomic alloc failed, no space left";
1433 goto fail;
1434 }
1435
1436 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1437 chunk = pcpu_create_chunk(pcpu_gfp);
1438 if (!chunk) {
1439 err = "failed to allocate new chunk";
1440 goto fail;
1441 }
1442
1443 spin_lock_irqsave(&pcpu_lock, flags);
1444 pcpu_chunk_relocate(chunk, -1);
1445 } else {
1446 spin_lock_irqsave(&pcpu_lock, flags);
1447 }
1448
1449 goto restart;
1450
1451area_found:
1452 pcpu_stats_area_alloc(chunk, size);
1453 spin_unlock_irqrestore(&pcpu_lock, flags);
1454
1455 /* populate if not all pages are already there */
1456 if (!is_atomic) {
1457 int page_start, page_end, rs, re;
1458
1459 page_start = PFN_DOWN(off);
1460 page_end = PFN_UP(off + size);
1461
1462 pcpu_for_each_unpop_region(chunk->populated, rs, re,
1463 page_start, page_end) {
1464 WARN_ON(chunk->immutable);
1465
1466 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1467
1468 spin_lock_irqsave(&pcpu_lock, flags);
1469 if (ret) {
1470 pcpu_free_area(chunk, off);
1471 err = "failed to populate";
1472 goto fail_unlock;
1473 }
1474 pcpu_chunk_populated(chunk, rs, re, true);
1475 spin_unlock_irqrestore(&pcpu_lock, flags);
1476 }
1477
1478 mutex_unlock(&pcpu_alloc_mutex);
1479 }
1480
1481 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1482 pcpu_schedule_balance_work();
1483
1484 /* clear the areas and return address relative to base address */
1485 for_each_possible_cpu(cpu)
1486 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1487
1488 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1489 kmemleak_alloc_percpu(ptr, size, gfp);
1490
1491 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1492 chunk->base_addr, off, ptr);
1493
1494 return ptr;
1495
1496fail_unlock:
1497 spin_unlock_irqrestore(&pcpu_lock, flags);
1498fail:
1499 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1500
1501 if (!is_atomic && do_warn && warn_limit) {
1502 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1503 size, align, is_atomic, err);
1504 dump_stack();
1505 if (!--warn_limit)
1506 pr_info("limit reached, disable warning\n");
1507 }
1508 if (is_atomic) {
1509 /* see the flag handling in pcpu_blance_workfn() */
1510 pcpu_atomic_alloc_failed = true;
1511 pcpu_schedule_balance_work();
1512 } else {
1513 mutex_unlock(&pcpu_alloc_mutex);
1514 }
1515 return NULL;
1516}
1517
1518/**
1519 * __alloc_percpu_gfp - allocate dynamic percpu area
1520 * @size: size of area to allocate in bytes
1521 * @align: alignment of area (max PAGE_SIZE)
1522 * @gfp: allocation flags
1523 *
1524 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1525 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1526 * be called from any context but is a lot more likely to fail. If @gfp
1527 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1528 * allocation requests.
1529 *
1530 * RETURNS:
1531 * Percpu pointer to the allocated area on success, NULL on failure.
1532 */
1533void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1534{
1535 return pcpu_alloc(size, align, false, gfp);
1536}
1537EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1538
1539/**
1540 * __alloc_percpu - allocate dynamic percpu area
1541 * @size: size of area to allocate in bytes
1542 * @align: alignment of area (max PAGE_SIZE)
1543 *
1544 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1545 */
1546void __percpu *__alloc_percpu(size_t size, size_t align)
1547{
1548 return pcpu_alloc(size, align, false, GFP_KERNEL);
1549}
1550EXPORT_SYMBOL_GPL(__alloc_percpu);
1551
1552/**
1553 * __alloc_reserved_percpu - allocate reserved percpu area
1554 * @size: size of area to allocate in bytes
1555 * @align: alignment of area (max PAGE_SIZE)
1556 *
1557 * Allocate zero-filled percpu area of @size bytes aligned at @align
1558 * from reserved percpu area if arch has set it up; otherwise,
1559 * allocation is served from the same dynamic area. Might sleep.
1560 * Might trigger writeouts.
1561 *
1562 * CONTEXT:
1563 * Does GFP_KERNEL allocation.
1564 *
1565 * RETURNS:
1566 * Percpu pointer to the allocated area on success, NULL on failure.
1567 */
1568void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1569{
1570 return pcpu_alloc(size, align, true, GFP_KERNEL);
1571}
1572
1573/**
1574 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1575 * @work: unused
1576 *
1577 * Reclaim all fully free chunks except for the first one. This is also
1578 * responsible for maintaining the pool of empty populated pages. However,
1579 * it is possible that this is called when physical memory is scarce causing
1580 * OOM killer to be triggered. We should avoid doing so until an actual
1581 * allocation causes the failure as it is possible that requests can be
1582 * serviced from already backed regions.
1583 */
1584static void pcpu_balance_workfn(struct work_struct *work)
1585{
1586 /* gfp flags passed to underlying allocators */
1587 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1588 LIST_HEAD(to_free);
1589 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1590 struct pcpu_chunk *chunk, *next;
1591 int slot, nr_to_pop, ret;
1592
1593 /*
1594 * There's no reason to keep around multiple unused chunks and VM
1595 * areas can be scarce. Destroy all free chunks except for one.
1596 */
1597 mutex_lock(&pcpu_alloc_mutex);
1598 spin_lock_irq(&pcpu_lock);
1599
1600 list_for_each_entry_safe(chunk, next, free_head, list) {
1601 WARN_ON(chunk->immutable);
1602
1603 /* spare the first one */
1604 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1605 continue;
1606
1607 list_move(&chunk->list, &to_free);
1608 }
1609
1610 spin_unlock_irq(&pcpu_lock);
1611
1612 list_for_each_entry_safe(chunk, next, &to_free, list) {
1613 int rs, re;
1614
1615 pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1616 chunk->nr_pages) {
1617 pcpu_depopulate_chunk(chunk, rs, re);
1618 spin_lock_irq(&pcpu_lock);
1619 pcpu_chunk_depopulated(chunk, rs, re);
1620 spin_unlock_irq(&pcpu_lock);
1621 }
1622 pcpu_destroy_chunk(chunk);
1623 cond_resched();
1624 }
1625
1626 /*
1627 * Ensure there are certain number of free populated pages for
1628 * atomic allocs. Fill up from the most packed so that atomic
1629 * allocs don't increase fragmentation. If atomic allocation
1630 * failed previously, always populate the maximum amount. This
1631 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1632 * failing indefinitely; however, large atomic allocs are not
1633 * something we support properly and can be highly unreliable and
1634 * inefficient.
1635 */
1636retry_pop:
1637 if (pcpu_atomic_alloc_failed) {
1638 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1639 /* best effort anyway, don't worry about synchronization */
1640 pcpu_atomic_alloc_failed = false;
1641 } else {
1642 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1643 pcpu_nr_empty_pop_pages,
1644 0, PCPU_EMPTY_POP_PAGES_HIGH);
1645 }
1646
1647 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1648 int nr_unpop = 0, rs, re;
1649
1650 if (!nr_to_pop)
1651 break;
1652
1653 spin_lock_irq(&pcpu_lock);
1654 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1655 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1656 if (nr_unpop)
1657 break;
1658 }
1659 spin_unlock_irq(&pcpu_lock);
1660
1661 if (!nr_unpop)
1662 continue;
1663
1664 /* @chunk can't go away while pcpu_alloc_mutex is held */
1665 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1666 chunk->nr_pages) {
1667 int nr = min(re - rs, nr_to_pop);
1668
1669 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1670 if (!ret) {
1671 nr_to_pop -= nr;
1672 spin_lock_irq(&pcpu_lock);
1673 pcpu_chunk_populated(chunk, rs, rs + nr, false);
1674 spin_unlock_irq(&pcpu_lock);
1675 } else {
1676 nr_to_pop = 0;
1677 }
1678
1679 if (!nr_to_pop)
1680 break;
1681 }
1682 }
1683
1684 if (nr_to_pop) {
1685 /* ran out of chunks to populate, create a new one and retry */
1686 chunk = pcpu_create_chunk(gfp);
1687 if (chunk) {
1688 spin_lock_irq(&pcpu_lock);
1689 pcpu_chunk_relocate(chunk, -1);
1690 spin_unlock_irq(&pcpu_lock);
1691 goto retry_pop;
1692 }
1693 }
1694
1695 mutex_unlock(&pcpu_alloc_mutex);
1696}
1697
1698/**
1699 * free_percpu - free percpu area
1700 * @ptr: pointer to area to free
1701 *
1702 * Free percpu area @ptr.
1703 *
1704 * CONTEXT:
1705 * Can be called from atomic context.
1706 */
1707void free_percpu(void __percpu *ptr)
1708{
1709 void *addr;
1710 struct pcpu_chunk *chunk;
1711 unsigned long flags;
1712 int off;
1713
1714 if (!ptr)
1715 return;
1716
1717 kmemleak_free_percpu(ptr);
1718
1719 addr = __pcpu_ptr_to_addr(ptr);
1720
1721 spin_lock_irqsave(&pcpu_lock, flags);
1722
1723 chunk = pcpu_chunk_addr_search(addr);
1724 off = addr - chunk->base_addr;
1725
1726 pcpu_free_area(chunk, off);
1727
1728 /* if there are more than one fully free chunks, wake up grim reaper */
1729 if (chunk->free_bytes == pcpu_unit_size) {
1730 struct pcpu_chunk *pos;
1731
1732 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1733 if (pos != chunk) {
1734 pcpu_schedule_balance_work();
1735 break;
1736 }
1737 }
1738
1739 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1740
1741 spin_unlock_irqrestore(&pcpu_lock, flags);
1742}
1743EXPORT_SYMBOL_GPL(free_percpu);
1744
1745bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1746{
1747#ifdef CONFIG_SMP
1748 const size_t static_size = __per_cpu_end - __per_cpu_start;
1749 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1750 unsigned int cpu;
1751
1752 for_each_possible_cpu(cpu) {
1753 void *start = per_cpu_ptr(base, cpu);
1754 void *va = (void *)addr;
1755
1756 if (va >= start && va < start + static_size) {
1757 if (can_addr) {
1758 *can_addr = (unsigned long) (va - start);
1759 *can_addr += (unsigned long)
1760 per_cpu_ptr(base, get_boot_cpu_id());
1761 }
1762 return true;
1763 }
1764 }
1765#endif
1766 /* on UP, can't distinguish from other static vars, always false */
1767 return false;
1768}
1769
1770/**
1771 * is_kernel_percpu_address - test whether address is from static percpu area
1772 * @addr: address to test
1773 *
1774 * Test whether @addr belongs to in-kernel static percpu area. Module
1775 * static percpu areas are not considered. For those, use
1776 * is_module_percpu_address().
1777 *
1778 * RETURNS:
1779 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1780 */
1781bool is_kernel_percpu_address(unsigned long addr)
1782{
1783 return __is_kernel_percpu_address(addr, NULL);
1784}
1785
1786/**
1787 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1788 * @addr: the address to be converted to physical address
1789 *
1790 * Given @addr which is dereferenceable address obtained via one of
1791 * percpu access macros, this function translates it into its physical
1792 * address. The caller is responsible for ensuring @addr stays valid
1793 * until this function finishes.
1794 *
1795 * percpu allocator has special setup for the first chunk, which currently
1796 * supports either embedding in linear address space or vmalloc mapping,
1797 * and, from the second one, the backing allocator (currently either vm or
1798 * km) provides translation.
1799 *
1800 * The addr can be translated simply without checking if it falls into the
1801 * first chunk. But the current code reflects better how percpu allocator
1802 * actually works, and the verification can discover both bugs in percpu
1803 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1804 * code.
1805 *
1806 * RETURNS:
1807 * The physical address for @addr.
1808 */
1809phys_addr_t per_cpu_ptr_to_phys(void *addr)
1810{
1811 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1812 bool in_first_chunk = false;
1813 unsigned long first_low, first_high;
1814 unsigned int cpu;
1815
1816 /*
1817 * The following test on unit_low/high isn't strictly
1818 * necessary but will speed up lookups of addresses which
1819 * aren't in the first chunk.
1820 *
1821 * The address check is against full chunk sizes. pcpu_base_addr
1822 * points to the beginning of the first chunk including the
1823 * static region. Assumes good intent as the first chunk may
1824 * not be full (ie. < pcpu_unit_pages in size).
1825 */
1826 first_low = (unsigned long)pcpu_base_addr +
1827 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1828 first_high = (unsigned long)pcpu_base_addr +
1829 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
1830 if ((unsigned long)addr >= first_low &&
1831 (unsigned long)addr < first_high) {
1832 for_each_possible_cpu(cpu) {
1833 void *start = per_cpu_ptr(base, cpu);
1834
1835 if (addr >= start && addr < start + pcpu_unit_size) {
1836 in_first_chunk = true;
1837 break;
1838 }
1839 }
1840 }
1841
1842 if (in_first_chunk) {
1843 if (!is_vmalloc_addr(addr))
1844 return __pa(addr);
1845 else
1846 return page_to_phys(vmalloc_to_page(addr)) +
1847 offset_in_page(addr);
1848 } else
1849 return page_to_phys(pcpu_addr_to_page(addr)) +
1850 offset_in_page(addr);
1851}
1852
1853/**
1854 * pcpu_alloc_alloc_info - allocate percpu allocation info
1855 * @nr_groups: the number of groups
1856 * @nr_units: the number of units
1857 *
1858 * Allocate ai which is large enough for @nr_groups groups containing
1859 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1860 * cpu_map array which is long enough for @nr_units and filled with
1861 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1862 * pointer of other groups.
1863 *
1864 * RETURNS:
1865 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1866 * failure.
1867 */
1868struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1869 int nr_units)
1870{
1871 struct pcpu_alloc_info *ai;
1872 size_t base_size, ai_size;
1873 void *ptr;
1874 int unit;
1875
1876 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1877 __alignof__(ai->groups[0].cpu_map[0]));
1878 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1879
1880 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), PAGE_SIZE);
1881 if (!ptr)
1882 return NULL;
1883 ai = ptr;
1884 ptr += base_size;
1885
1886 ai->groups[0].cpu_map = ptr;
1887
1888 for (unit = 0; unit < nr_units; unit++)
1889 ai->groups[0].cpu_map[unit] = NR_CPUS;
1890
1891 ai->nr_groups = nr_groups;
1892 ai->__ai_size = PFN_ALIGN(ai_size);
1893
1894 return ai;
1895}
1896
1897/**
1898 * pcpu_free_alloc_info - free percpu allocation info
1899 * @ai: pcpu_alloc_info to free
1900 *
1901 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1902 */
1903void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1904{
1905 memblock_free_early(__pa(ai), ai->__ai_size);
1906}
1907
1908/**
1909 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1910 * @lvl: loglevel
1911 * @ai: allocation info to dump
1912 *
1913 * Print out information about @ai using loglevel @lvl.
1914 */
1915static void pcpu_dump_alloc_info(const char *lvl,
1916 const struct pcpu_alloc_info *ai)
1917{
1918 int group_width = 1, cpu_width = 1, width;
1919 char empty_str[] = "--------";
1920 int alloc = 0, alloc_end = 0;
1921 int group, v;
1922 int upa, apl; /* units per alloc, allocs per line */
1923
1924 v = ai->nr_groups;
1925 while (v /= 10)
1926 group_width++;
1927
1928 v = num_possible_cpus();
1929 while (v /= 10)
1930 cpu_width++;
1931 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1932
1933 upa = ai->alloc_size / ai->unit_size;
1934 width = upa * (cpu_width + 1) + group_width + 3;
1935 apl = rounddown_pow_of_two(max(60 / width, 1));
1936
1937 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1938 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1939 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1940
1941 for (group = 0; group < ai->nr_groups; group++) {
1942 const struct pcpu_group_info *gi = &ai->groups[group];
1943 int unit = 0, unit_end = 0;
1944
1945 BUG_ON(gi->nr_units % upa);
1946 for (alloc_end += gi->nr_units / upa;
1947 alloc < alloc_end; alloc++) {
1948 if (!(alloc % apl)) {
1949 pr_cont("\n");
1950 printk("%spcpu-alloc: ", lvl);
1951 }
1952 pr_cont("[%0*d] ", group_width, group);
1953
1954 for (unit_end += upa; unit < unit_end; unit++)
1955 if (gi->cpu_map[unit] != NR_CPUS)
1956 pr_cont("%0*d ",
1957 cpu_width, gi->cpu_map[unit]);
1958 else
1959 pr_cont("%s ", empty_str);
1960 }
1961 }
1962 pr_cont("\n");
1963}
1964
1965/**
1966 * pcpu_setup_first_chunk - initialize the first percpu chunk
1967 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1968 * @base_addr: mapped address
1969 *
1970 * Initialize the first percpu chunk which contains the kernel static
1971 * perpcu area. This function is to be called from arch percpu area
1972 * setup path.
1973 *
1974 * @ai contains all information necessary to initialize the first
1975 * chunk and prime the dynamic percpu allocator.
1976 *
1977 * @ai->static_size is the size of static percpu area.
1978 *
1979 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1980 * reserve after the static area in the first chunk. This reserves
1981 * the first chunk such that it's available only through reserved
1982 * percpu allocation. This is primarily used to serve module percpu
1983 * static areas on architectures where the addressing model has
1984 * limited offset range for symbol relocations to guarantee module
1985 * percpu symbols fall inside the relocatable range.
1986 *
1987 * @ai->dyn_size determines the number of bytes available for dynamic
1988 * allocation in the first chunk. The area between @ai->static_size +
1989 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1990 *
1991 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1992 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1993 * @ai->dyn_size.
1994 *
1995 * @ai->atom_size is the allocation atom size and used as alignment
1996 * for vm areas.
1997 *
1998 * @ai->alloc_size is the allocation size and always multiple of
1999 * @ai->atom_size. This is larger than @ai->atom_size if
2000 * @ai->unit_size is larger than @ai->atom_size.
2001 *
2002 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2003 * percpu areas. Units which should be colocated are put into the
2004 * same group. Dynamic VM areas will be allocated according to these
2005 * groupings. If @ai->nr_groups is zero, a single group containing
2006 * all units is assumed.
2007 *
2008 * The caller should have mapped the first chunk at @base_addr and
2009 * copied static data to each unit.
2010 *
2011 * The first chunk will always contain a static and a dynamic region.
2012 * However, the static region is not managed by any chunk. If the first
2013 * chunk also contains a reserved region, it is served by two chunks -
2014 * one for the reserved region and one for the dynamic region. They
2015 * share the same vm, but use offset regions in the area allocation map.
2016 * The chunk serving the dynamic region is circulated in the chunk slots
2017 * and available for dynamic allocation like any other chunk.
2018 *
2019 * RETURNS:
2020 * 0 on success, -errno on failure.
2021 */
2022int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2023 void *base_addr)
2024{
2025 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2026 size_t static_size, dyn_size;
2027 struct pcpu_chunk *chunk;
2028 unsigned long *group_offsets;
2029 size_t *group_sizes;
2030 unsigned long *unit_off;
2031 unsigned int cpu;
2032 int *unit_map;
2033 int group, unit, i;
2034 int map_size;
2035 unsigned long tmp_addr;
2036
2037#define PCPU_SETUP_BUG_ON(cond) do { \
2038 if (unlikely(cond)) { \
2039 pr_emerg("failed to initialize, %s\n", #cond); \
2040 pr_emerg("cpu_possible_mask=%*pb\n", \
2041 cpumask_pr_args(cpu_possible_mask)); \
2042 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2043 BUG(); \
2044 } \
2045} while (0)
2046
2047 /* sanity checks */
2048 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2049#ifdef CONFIG_SMP
2050 PCPU_SETUP_BUG_ON(!ai->static_size);
2051 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2052#endif
2053 PCPU_SETUP_BUG_ON(!base_addr);
2054 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2055 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2056 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2057 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2058 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2059 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2060 PCPU_SETUP_BUG_ON(!ai->dyn_size);
2061 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2062 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2063 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2064 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2065
2066 /* process group information and build config tables accordingly */
2067 group_offsets = memblock_virt_alloc(ai->nr_groups *
2068 sizeof(group_offsets[0]), 0);
2069 group_sizes = memblock_virt_alloc(ai->nr_groups *
2070 sizeof(group_sizes[0]), 0);
2071 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
2072 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2073
2074 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2075 unit_map[cpu] = UINT_MAX;
2076
2077 pcpu_low_unit_cpu = NR_CPUS;
2078 pcpu_high_unit_cpu = NR_CPUS;
2079
2080 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2081 const struct pcpu_group_info *gi = &ai->groups[group];
2082
2083 group_offsets[group] = gi->base_offset;
2084 group_sizes[group] = gi->nr_units * ai->unit_size;
2085
2086 for (i = 0; i < gi->nr_units; i++) {
2087 cpu = gi->cpu_map[i];
2088 if (cpu == NR_CPUS)
2089 continue;
2090
2091 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2092 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2093 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2094
2095 unit_map[cpu] = unit + i;
2096 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2097
2098 /* determine low/high unit_cpu */
2099 if (pcpu_low_unit_cpu == NR_CPUS ||
2100 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2101 pcpu_low_unit_cpu = cpu;
2102 if (pcpu_high_unit_cpu == NR_CPUS ||
2103 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2104 pcpu_high_unit_cpu = cpu;
2105 }
2106 }
2107 pcpu_nr_units = unit;
2108
2109 for_each_possible_cpu(cpu)
2110 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2111
2112 /* we're done parsing the input, undefine BUG macro and dump config */
2113#undef PCPU_SETUP_BUG_ON
2114 pcpu_dump_alloc_info(KERN_DEBUG, ai);
2115
2116 pcpu_nr_groups = ai->nr_groups;
2117 pcpu_group_offsets = group_offsets;
2118 pcpu_group_sizes = group_sizes;
2119 pcpu_unit_map = unit_map;
2120 pcpu_unit_offsets = unit_off;
2121
2122 /* determine basic parameters */
2123 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2124 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2125 pcpu_atom_size = ai->atom_size;
2126 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2127 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2128
2129 pcpu_stats_save_ai(ai);
2130
2131 /*
2132 * Allocate chunk slots. The additional last slot is for
2133 * empty chunks.
2134 */
2135 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2136 pcpu_slot = memblock_virt_alloc(
2137 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
2138 for (i = 0; i < pcpu_nr_slots; i++)
2139 INIT_LIST_HEAD(&pcpu_slot[i]);
2140
2141 /*
2142 * The end of the static region needs to be aligned with the
2143 * minimum allocation size as this offsets the reserved and
2144 * dynamic region. The first chunk ends page aligned by
2145 * expanding the dynamic region, therefore the dynamic region
2146 * can be shrunk to compensate while still staying above the
2147 * configured sizes.
2148 */
2149 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2150 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2151
2152 /*
2153 * Initialize first chunk.
2154 * If the reserved_size is non-zero, this initializes the reserved
2155 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2156 * and the dynamic region is initialized here. The first chunk,
2157 * pcpu_first_chunk, will always point to the chunk that serves
2158 * the dynamic region.
2159 */
2160 tmp_addr = (unsigned long)base_addr + static_size;
2161 map_size = ai->reserved_size ?: dyn_size;
2162 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2163
2164 /* init dynamic chunk if necessary */
2165 if (ai->reserved_size) {
2166 pcpu_reserved_chunk = chunk;
2167
2168 tmp_addr = (unsigned long)base_addr + static_size +
2169 ai->reserved_size;
2170 map_size = dyn_size;
2171 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2172 }
2173
2174 /* link the first chunk in */
2175 pcpu_first_chunk = chunk;
2176 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2177 pcpu_chunk_relocate(pcpu_first_chunk, -1);
2178
2179 pcpu_stats_chunk_alloc();
2180 trace_percpu_create_chunk(base_addr);
2181
2182 /* we're done */
2183 pcpu_base_addr = base_addr;
2184 return 0;
2185}
2186
2187#ifdef CONFIG_SMP
2188
2189const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2190 [PCPU_FC_AUTO] = "auto",
2191 [PCPU_FC_EMBED] = "embed",
2192 [PCPU_FC_PAGE] = "page",
2193};
2194
2195enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2196
2197static int __init percpu_alloc_setup(char *str)
2198{
2199 if (!str)
2200 return -EINVAL;
2201
2202 if (0)
2203 /* nada */;
2204#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2205 else if (!strcmp(str, "embed"))
2206 pcpu_chosen_fc = PCPU_FC_EMBED;
2207#endif
2208#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2209 else if (!strcmp(str, "page"))
2210 pcpu_chosen_fc = PCPU_FC_PAGE;
2211#endif
2212 else
2213 pr_warn("unknown allocator %s specified\n", str);
2214
2215 return 0;
2216}
2217early_param("percpu_alloc", percpu_alloc_setup);
2218
2219/*
2220 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2221 * Build it if needed by the arch config or the generic setup is going
2222 * to be used.
2223 */
2224#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2225 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2226#define BUILD_EMBED_FIRST_CHUNK
2227#endif
2228
2229/* build pcpu_page_first_chunk() iff needed by the arch config */
2230#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2231#define BUILD_PAGE_FIRST_CHUNK
2232#endif
2233
2234/* pcpu_build_alloc_info() is used by both embed and page first chunk */
2235#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2236/**
2237 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2238 * @reserved_size: the size of reserved percpu area in bytes
2239 * @dyn_size: minimum free size for dynamic allocation in bytes
2240 * @atom_size: allocation atom size
2241 * @cpu_distance_fn: callback to determine distance between cpus, optional
2242 *
2243 * This function determines grouping of units, their mappings to cpus
2244 * and other parameters considering needed percpu size, allocation
2245 * atom size and distances between CPUs.
2246 *
2247 * Groups are always multiples of atom size and CPUs which are of
2248 * LOCAL_DISTANCE both ways are grouped together and share space for
2249 * units in the same group. The returned configuration is guaranteed
2250 * to have CPUs on different nodes on different groups and >=75% usage
2251 * of allocated virtual address space.
2252 *
2253 * RETURNS:
2254 * On success, pointer to the new allocation_info is returned. On
2255 * failure, ERR_PTR value is returned.
2256 */
2257static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2258 size_t reserved_size, size_t dyn_size,
2259 size_t atom_size,
2260 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2261{
2262 static int group_map[NR_CPUS] __initdata;
2263 static int group_cnt[NR_CPUS] __initdata;
2264 const size_t static_size = __per_cpu_end - __per_cpu_start;
2265 int nr_groups = 1, nr_units = 0;
2266 size_t size_sum, min_unit_size, alloc_size;
2267 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
2268 int last_allocs, group, unit;
2269 unsigned int cpu, tcpu;
2270 struct pcpu_alloc_info *ai;
2271 unsigned int *cpu_map;
2272
2273 /* this function may be called multiple times */
2274 memset(group_map, 0, sizeof(group_map));
2275 memset(group_cnt, 0, sizeof(group_cnt));
2276
2277 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2278 size_sum = PFN_ALIGN(static_size + reserved_size +
2279 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2280 dyn_size = size_sum - static_size - reserved_size;
2281
2282 /*
2283 * Determine min_unit_size, alloc_size and max_upa such that
2284 * alloc_size is multiple of atom_size and is the smallest
2285 * which can accommodate 4k aligned segments which are equal to
2286 * or larger than min_unit_size.
2287 */
2288 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2289
2290 /* determine the maximum # of units that can fit in an allocation */
2291 alloc_size = roundup(min_unit_size, atom_size);
2292 upa = alloc_size / min_unit_size;
2293 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2294 upa--;
2295 max_upa = upa;
2296
2297 /* group cpus according to their proximity */
2298 for_each_possible_cpu(cpu) {
2299 group = 0;
2300 next_group:
2301 for_each_possible_cpu(tcpu) {
2302 if (cpu == tcpu)
2303 break;
2304 if (group_map[tcpu] == group && cpu_distance_fn &&
2305 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2306 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2307 group++;
2308 nr_groups = max(nr_groups, group + 1);
2309 goto next_group;
2310 }
2311 }
2312 group_map[cpu] = group;
2313 group_cnt[group]++;
2314 }
2315
2316 /*
2317 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2318 * Expand the unit_size until we use >= 75% of the units allocated.
2319 * Related to atom_size, which could be much larger than the unit_size.
2320 */
2321 last_allocs = INT_MAX;
2322 for (upa = max_upa; upa; upa--) {
2323 int allocs = 0, wasted = 0;
2324
2325 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2326 continue;
2327
2328 for (group = 0; group < nr_groups; group++) {
2329 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2330 allocs += this_allocs;
2331 wasted += this_allocs * upa - group_cnt[group];
2332 }
2333
2334 /*
2335 * Don't accept if wastage is over 1/3. The
2336 * greater-than comparison ensures upa==1 always
2337 * passes the following check.
2338 */
2339 if (wasted > num_possible_cpus() / 3)
2340 continue;
2341
2342 /* and then don't consume more memory */
2343 if (allocs > last_allocs)
2344 break;
2345 last_allocs = allocs;
2346 best_upa = upa;
2347 }
2348 upa = best_upa;
2349
2350 /* allocate and fill alloc_info */
2351 for (group = 0; group < nr_groups; group++)
2352 nr_units += roundup(group_cnt[group], upa);
2353
2354 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2355 if (!ai)
2356 return ERR_PTR(-ENOMEM);
2357 cpu_map = ai->groups[0].cpu_map;
2358
2359 for (group = 0; group < nr_groups; group++) {
2360 ai->groups[group].cpu_map = cpu_map;
2361 cpu_map += roundup(group_cnt[group], upa);
2362 }
2363
2364 ai->static_size = static_size;
2365 ai->reserved_size = reserved_size;
2366 ai->dyn_size = dyn_size;
2367 ai->unit_size = alloc_size / upa;
2368 ai->atom_size = atom_size;
2369 ai->alloc_size = alloc_size;
2370
2371 for (group = 0, unit = 0; group_cnt[group]; group++) {
2372 struct pcpu_group_info *gi = &ai->groups[group];
2373
2374 /*
2375 * Initialize base_offset as if all groups are located
2376 * back-to-back. The caller should update this to
2377 * reflect actual allocation.
2378 */
2379 gi->base_offset = unit * ai->unit_size;
2380
2381 for_each_possible_cpu(cpu)
2382 if (group_map[cpu] == group)
2383 gi->cpu_map[gi->nr_units++] = cpu;
2384 gi->nr_units = roundup(gi->nr_units, upa);
2385 unit += gi->nr_units;
2386 }
2387 BUG_ON(unit != nr_units);
2388
2389 return ai;
2390}
2391#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2392
2393#if defined(BUILD_EMBED_FIRST_CHUNK)
2394/**
2395 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2396 * @reserved_size: the size of reserved percpu area in bytes
2397 * @dyn_size: minimum free size for dynamic allocation in bytes
2398 * @atom_size: allocation atom size
2399 * @cpu_distance_fn: callback to determine distance between cpus, optional
2400 * @alloc_fn: function to allocate percpu page
2401 * @free_fn: function to free percpu page
2402 *
2403 * This is a helper to ease setting up embedded first percpu chunk and
2404 * can be called where pcpu_setup_first_chunk() is expected.
2405 *
2406 * If this function is used to setup the first chunk, it is allocated
2407 * by calling @alloc_fn and used as-is without being mapped into
2408 * vmalloc area. Allocations are always whole multiples of @atom_size
2409 * aligned to @atom_size.
2410 *
2411 * This enables the first chunk to piggy back on the linear physical
2412 * mapping which often uses larger page size. Please note that this
2413 * can result in very sparse cpu->unit mapping on NUMA machines thus
2414 * requiring large vmalloc address space. Don't use this allocator if
2415 * vmalloc space is not orders of magnitude larger than distances
2416 * between node memory addresses (ie. 32bit NUMA machines).
2417 *
2418 * @dyn_size specifies the minimum dynamic area size.
2419 *
2420 * If the needed size is smaller than the minimum or specified unit
2421 * size, the leftover is returned using @free_fn.
2422 *
2423 * RETURNS:
2424 * 0 on success, -errno on failure.
2425 */
2426int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2427 size_t atom_size,
2428 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2429 pcpu_fc_alloc_fn_t alloc_fn,
2430 pcpu_fc_free_fn_t free_fn)
2431{
2432 void *base = (void *)ULONG_MAX;
2433 void **areas = NULL;
2434 struct pcpu_alloc_info *ai;
2435 size_t size_sum, areas_size;
2436 unsigned long max_distance;
2437 int group, i, highest_group, rc;
2438
2439 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2440 cpu_distance_fn);
2441 if (IS_ERR(ai))
2442 return PTR_ERR(ai);
2443
2444 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2445 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2446
2447 areas = memblock_virt_alloc_nopanic(areas_size, 0);
2448 if (!areas) {
2449 rc = -ENOMEM;
2450 goto out_free;
2451 }
2452
2453 /* allocate, copy and determine base address & max_distance */
2454 highest_group = 0;
2455 for (group = 0; group < ai->nr_groups; group++) {
2456 struct pcpu_group_info *gi = &ai->groups[group];
2457 unsigned int cpu = NR_CPUS;
2458 void *ptr;
2459
2460 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2461 cpu = gi->cpu_map[i];
2462 BUG_ON(cpu == NR_CPUS);
2463
2464 /* allocate space for the whole group */
2465 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2466 if (!ptr) {
2467 rc = -ENOMEM;
2468 goto out_free_areas;
2469 }
2470 /* kmemleak tracks the percpu allocations separately */
2471 kmemleak_free(ptr);
2472 areas[group] = ptr;
2473
2474 base = min(ptr, base);
2475 if (ptr > areas[highest_group])
2476 highest_group = group;
2477 }
2478 max_distance = areas[highest_group] - base;
2479 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2480
2481 /* warn if maximum distance is further than 75% of vmalloc space */
2482 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2483 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2484 max_distance, VMALLOC_TOTAL);
2485#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2486 /* and fail if we have fallback */
2487 rc = -EINVAL;
2488 goto out_free_areas;
2489#endif
2490 }
2491
2492 /*
2493 * Copy data and free unused parts. This should happen after all
2494 * allocations are complete; otherwise, we may end up with
2495 * overlapping groups.
2496 */
2497 for (group = 0; group < ai->nr_groups; group++) {
2498 struct pcpu_group_info *gi = &ai->groups[group];
2499 void *ptr = areas[group];
2500
2501 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2502 if (gi->cpu_map[i] == NR_CPUS) {
2503 /* unused unit, free whole */
2504 free_fn(ptr, ai->unit_size);
2505 continue;
2506 }
2507 /* copy and return the unused part */
2508 memcpy(ptr, __per_cpu_load, ai->static_size);
2509 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2510 }
2511 }
2512
2513 /* base address is now known, determine group base offsets */
2514 for (group = 0; group < ai->nr_groups; group++) {
2515 ai->groups[group].base_offset = areas[group] - base;
2516 }
2517
2518 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2519 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2520 ai->dyn_size, ai->unit_size);
2521
2522 rc = pcpu_setup_first_chunk(ai, base);
2523 goto out_free;
2524
2525out_free_areas:
2526 for (group = 0; group < ai->nr_groups; group++)
2527 if (areas[group])
2528 free_fn(areas[group],
2529 ai->groups[group].nr_units * ai->unit_size);
2530out_free:
2531 pcpu_free_alloc_info(ai);
2532 if (areas)
2533 memblock_free_early(__pa(areas), areas_size);
2534 return rc;
2535}
2536#endif /* BUILD_EMBED_FIRST_CHUNK */
2537
2538#ifdef BUILD_PAGE_FIRST_CHUNK
2539/**
2540 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2541 * @reserved_size: the size of reserved percpu area in bytes
2542 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2543 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2544 * @populate_pte_fn: function to populate pte
2545 *
2546 * This is a helper to ease setting up page-remapped first percpu
2547 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2548 *
2549 * This is the basic allocator. Static percpu area is allocated
2550 * page-by-page into vmalloc area.
2551 *
2552 * RETURNS:
2553 * 0 on success, -errno on failure.
2554 */
2555int __init pcpu_page_first_chunk(size_t reserved_size,
2556 pcpu_fc_alloc_fn_t alloc_fn,
2557 pcpu_fc_free_fn_t free_fn,
2558 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2559{
2560 static struct vm_struct vm;
2561 struct pcpu_alloc_info *ai;
2562 char psize_str[16];
2563 int unit_pages;
2564 size_t pages_size;
2565 struct page **pages;
2566 int unit, i, j, rc;
2567 int upa;
2568 int nr_g0_units;
2569
2570 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2571
2572 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2573 if (IS_ERR(ai))
2574 return PTR_ERR(ai);
2575 BUG_ON(ai->nr_groups != 1);
2576 upa = ai->alloc_size/ai->unit_size;
2577 nr_g0_units = roundup(num_possible_cpus(), upa);
2578 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2579 pcpu_free_alloc_info(ai);
2580 return -EINVAL;
2581 }
2582
2583 unit_pages = ai->unit_size >> PAGE_SHIFT;
2584
2585 /* unaligned allocations can't be freed, round up to page size */
2586 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2587 sizeof(pages[0]));
2588 pages = memblock_virt_alloc(pages_size, 0);
2589
2590 /* allocate pages */
2591 j = 0;
2592 for (unit = 0; unit < num_possible_cpus(); unit++) {
2593 unsigned int cpu = ai->groups[0].cpu_map[unit];
2594 for (i = 0; i < unit_pages; i++) {
2595 void *ptr;
2596
2597 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2598 if (!ptr) {
2599 pr_warn("failed to allocate %s page for cpu%u\n",
2600 psize_str, cpu);
2601 goto enomem;
2602 }
2603 /* kmemleak tracks the percpu allocations separately */
2604 kmemleak_free(ptr);
2605 pages[j++] = virt_to_page(ptr);
2606 }
2607 }
2608
2609 /* allocate vm area, map the pages and copy static data */
2610 vm.flags = VM_ALLOC;
2611 vm.size = num_possible_cpus() * ai->unit_size;
2612 vm_area_register_early(&vm, PAGE_SIZE);
2613
2614 for (unit = 0; unit < num_possible_cpus(); unit++) {
2615 unsigned long unit_addr =
2616 (unsigned long)vm.addr + unit * ai->unit_size;
2617
2618 for (i = 0; i < unit_pages; i++)
2619 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2620
2621 /* pte already populated, the following shouldn't fail */
2622 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2623 unit_pages);
2624 if (rc < 0)
2625 panic("failed to map percpu area, err=%d\n", rc);
2626
2627 /*
2628 * FIXME: Archs with virtual cache should flush local
2629 * cache for the linear mapping here - something
2630 * equivalent to flush_cache_vmap() on the local cpu.
2631 * flush_cache_vmap() can't be used as most supporting
2632 * data structures are not set up yet.
2633 */
2634
2635 /* copy static data */
2636 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2637 }
2638
2639 /* we're ready, commit */
2640 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2641 unit_pages, psize_str, vm.addr, ai->static_size,
2642 ai->reserved_size, ai->dyn_size);
2643
2644 rc = pcpu_setup_first_chunk(ai, vm.addr);
2645 goto out_free_ar;
2646
2647enomem:
2648 while (--j >= 0)
2649 free_fn(page_address(pages[j]), PAGE_SIZE);
2650 rc = -ENOMEM;
2651out_free_ar:
2652 memblock_free_early(__pa(pages), pages_size);
2653 pcpu_free_alloc_info(ai);
2654 return rc;
2655}
2656#endif /* BUILD_PAGE_FIRST_CHUNK */
2657
2658#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2659/*
2660 * Generic SMP percpu area setup.
2661 *
2662 * The embedding helper is used because its behavior closely resembles
2663 * the original non-dynamic generic percpu area setup. This is
2664 * important because many archs have addressing restrictions and might
2665 * fail if the percpu area is located far away from the previous
2666 * location. As an added bonus, in non-NUMA cases, embedding is
2667 * generally a good idea TLB-wise because percpu area can piggy back
2668 * on the physical linear memory mapping which uses large page
2669 * mappings on applicable archs.
2670 */
2671unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2672EXPORT_SYMBOL(__per_cpu_offset);
2673
2674static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2675 size_t align)
2676{
2677 return memblock_virt_alloc_from_nopanic(
2678 size, align, __pa(MAX_DMA_ADDRESS));
2679}
2680
2681static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2682{
2683 memblock_free_early(__pa(ptr), size);
2684}
2685
2686void __init setup_per_cpu_areas(void)
2687{
2688 unsigned long delta;
2689 unsigned int cpu;
2690 int rc;
2691
2692 /*
2693 * Always reserve area for module percpu variables. That's
2694 * what the legacy allocator did.
2695 */
2696 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2697 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2698 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2699 if (rc < 0)
2700 panic("Failed to initialize percpu areas.");
2701
2702 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2703 for_each_possible_cpu(cpu)
2704 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2705}
2706#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2707
2708#else /* CONFIG_SMP */
2709
2710/*
2711 * UP percpu area setup.
2712 *
2713 * UP always uses km-based percpu allocator with identity mapping.
2714 * Static percpu variables are indistinguishable from the usual static
2715 * variables and don't require any special preparation.
2716 */
2717void __init setup_per_cpu_areas(void)
2718{
2719 const size_t unit_size =
2720 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2721 PERCPU_DYNAMIC_RESERVE));
2722 struct pcpu_alloc_info *ai;
2723 void *fc;
2724
2725 ai = pcpu_alloc_alloc_info(1, 1);
2726 fc = memblock_virt_alloc_from_nopanic(unit_size,
2727 PAGE_SIZE,
2728 __pa(MAX_DMA_ADDRESS));
2729 if (!ai || !fc)
2730 panic("Failed to allocate memory for percpu areas.");
2731 /* kmemleak tracks the percpu allocations separately */
2732 kmemleak_free(fc);
2733
2734 ai->dyn_size = unit_size;
2735 ai->unit_size = unit_size;
2736 ai->atom_size = unit_size;
2737 ai->alloc_size = unit_size;
2738 ai->groups[0].nr_units = 1;
2739 ai->groups[0].cpu_map[0] = 0;
2740
2741 if (pcpu_setup_first_chunk(ai, fc) < 0)
2742 panic("Failed to initialize percpu areas.");
2743 pcpu_free_alloc_info(ai);
2744}
2745
2746#endif /* CONFIG_SMP */
2747
2748/*
2749 * Percpu allocator is initialized early during boot when neither slab or
2750 * workqueue is available. Plug async management until everything is up
2751 * and running.
2752 */
2753static int __init percpu_enable_async(void)
2754{
2755 pcpu_async_enabled = true;
2756 return 0;
2757}
2758subsys_initcall(percpu_enable_async);