Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Xilinx USB peripheral controller driver
   3 *
   4 * Copyright (C) 2004 by Thomas Rathbone
   5 * Copyright (C) 2005 by HP Labs
   6 * Copyright (C) 2005 by David Brownell
   7 * Copyright (C) 2010 - 2014 Xilinx, Inc.
   8 *
   9 * Some parts of this driver code is based on the driver for at91-series
  10 * USB peripheral controller (at91_udc.c).
  11 *
  12 * This program is free software; you can redistribute it
  13 * and/or modify it under the terms of the GNU General Public
  14 * License as published by the Free Software Foundation;
  15 * either version 2 of the License, or (at your option) any
  16 * later version.
  17 */
  18
  19#include <linux/delay.h>
  20#include <linux/device.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/module.h>
  25#include <linux/of_address.h>
  26#include <linux/of_device.h>
  27#include <linux/of_platform.h>
  28#include <linux/of_irq.h>
  29#include <linux/prefetch.h>
  30#include <linux/usb/ch9.h>
  31#include <linux/usb/gadget.h>
  32
  33/* Register offsets for the USB device.*/
  34#define XUSB_EP0_CONFIG_OFFSET		0x0000  /* EP0 Config Reg Offset */
  35#define XUSB_SETUP_PKT_ADDR_OFFSET	0x0080  /* Setup Packet Address */
  36#define XUSB_ADDRESS_OFFSET		0x0100  /* Address Register */
  37#define XUSB_CONTROL_OFFSET		0x0104  /* Control Register */
  38#define XUSB_STATUS_OFFSET		0x0108  /* Status Register */
  39#define XUSB_FRAMENUM_OFFSET		0x010C	/* Frame Number Register */
  40#define XUSB_IER_OFFSET			0x0110	/* Interrupt Enable Register */
  41#define XUSB_BUFFREADY_OFFSET		0x0114	/* Buffer Ready Register */
  42#define XUSB_TESTMODE_OFFSET		0x0118	/* Test Mode Register */
  43#define XUSB_DMA_RESET_OFFSET		0x0200  /* DMA Soft Reset Register */
  44#define XUSB_DMA_CONTROL_OFFSET		0x0204	/* DMA Control Register */
  45#define XUSB_DMA_DSAR_ADDR_OFFSET	0x0208	/* DMA source Address Reg */
  46#define XUSB_DMA_DDAR_ADDR_OFFSET	0x020C	/* DMA destination Addr Reg */
  47#define XUSB_DMA_LENGTH_OFFSET		0x0210	/* DMA Length Register */
  48#define XUSB_DMA_STATUS_OFFSET		0x0214	/* DMA Status Register */
  49
  50/* Endpoint Configuration Space offsets */
  51#define XUSB_EP_CFGSTATUS_OFFSET	0x00	/* Endpoint Config Status  */
  52#define XUSB_EP_BUF0COUNT_OFFSET	0x08	/* Buffer 0 Count */
  53#define XUSB_EP_BUF1COUNT_OFFSET	0x0C	/* Buffer 1 Count */
  54
  55#define XUSB_CONTROL_USB_READY_MASK	0x80000000 /* USB ready Mask */
  56#define XUSB_CONTROL_USB_RMTWAKE_MASK	0x40000000 /* Remote wake up mask */
  57
  58/* Interrupt register related masks.*/
  59#define XUSB_STATUS_GLOBAL_INTR_MASK	0x80000000 /* Global Intr Enable */
  60#define XUSB_STATUS_DMADONE_MASK	0x04000000 /* DMA done Mask */
  61#define XUSB_STATUS_DMAERR_MASK		0x02000000 /* DMA Error Mask */
  62#define XUSB_STATUS_DMABUSY_MASK	0x80000000 /* DMA Error Mask */
  63#define XUSB_STATUS_RESUME_MASK		0x01000000 /* USB Resume Mask */
  64#define XUSB_STATUS_RESET_MASK		0x00800000 /* USB Reset Mask */
  65#define XUSB_STATUS_SUSPEND_MASK	0x00400000 /* USB Suspend Mask */
  66#define XUSB_STATUS_DISCONNECT_MASK	0x00200000 /* USB Disconnect Mask */
  67#define XUSB_STATUS_FIFO_BUFF_RDY_MASK	0x00100000 /* FIFO Buff Ready Mask */
  68#define XUSB_STATUS_FIFO_BUFF_FREE_MASK	0x00080000 /* FIFO Buff Free Mask */
  69#define XUSB_STATUS_SETUP_PACKET_MASK	0x00040000 /* Setup packet received */
  70#define XUSB_STATUS_EP1_BUFF2_COMP_MASK	0x00000200 /* EP 1 Buff 2 Processed */
  71#define XUSB_STATUS_EP1_BUFF1_COMP_MASK	0x00000002 /* EP 1 Buff 1 Processed */
  72#define XUSB_STATUS_EP0_BUFF2_COMP_MASK	0x00000100 /* EP 0 Buff 2 Processed */
  73#define XUSB_STATUS_EP0_BUFF1_COMP_MASK	0x00000001 /* EP 0 Buff 1 Processed */
  74#define XUSB_STATUS_HIGH_SPEED_MASK	0x00010000 /* USB Speed Mask */
  75/* Suspend,Reset,Suspend and Disconnect Mask */
  76#define XUSB_STATUS_INTR_EVENT_MASK	0x01E00000
  77/* Buffers  completion Mask */
  78#define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK	0x0000FEFF
  79/* Mask for buffer 0 and buffer 1 completion for all Endpoints */
  80#define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK	0x00000101
  81#define XUSB_STATUS_EP_BUFF2_SHIFT	8	   /* EP buffer offset */
  82
  83/* Endpoint Configuration Status Register */
  84#define XUSB_EP_CFG_VALID_MASK		0x80000000 /* Endpoint Valid bit */
  85#define XUSB_EP_CFG_STALL_MASK		0x40000000 /* Endpoint Stall bit */
  86#define XUSB_EP_CFG_DATA_TOGGLE_MASK	0x08000000 /* Endpoint Data toggle */
  87
  88/* USB device specific global configuration constants.*/
  89#define XUSB_MAX_ENDPOINTS		8	/* Maximum End Points */
  90#define XUSB_EP_NUMBER_ZERO		0	/* End point Zero */
  91/* DPRAM is the source address for DMA transfer */
  92#define XUSB_DMA_READ_FROM_DPRAM	0x80000000
  93#define XUSB_DMA_DMASR_BUSY		0x80000000 /* DMA busy */
  94#define XUSB_DMA_DMASR_ERROR		0x40000000 /* DMA Error */
  95/*
  96 * When this bit is set, the DMA buffer ready bit is set by hardware upon
  97 * DMA transfer completion.
  98 */
  99#define XUSB_DMA_BRR_CTRL		0x40000000 /* DMA bufready ctrl bit */
 100/* Phase States */
 101#define SETUP_PHASE			0x0000	/* Setup Phase */
 102#define DATA_PHASE			0x0001  /* Data Phase */
 103#define STATUS_PHASE			0x0002  /* Status Phase */
 104
 105#define EP0_MAX_PACKET		64 /* Endpoint 0 maximum packet length */
 106#define STATUSBUFF_SIZE		2  /* Buffer size for GET_STATUS command */
 107#define EPNAME_SIZE		4  /* Buffer size for endpoint name */
 108
 109/* container_of helper macros */
 110#define to_udc(g)	 container_of((g), struct xusb_udc, gadget)
 111#define to_xusb_ep(ep)	 container_of((ep), struct xusb_ep, ep_usb)
 112#define to_xusb_req(req) container_of((req), struct xusb_req, usb_req)
 113
 114/**
 115 * struct xusb_req - Xilinx USB device request structure
 116 * @usb_req: Linux usb request structure
 117 * @queue: usb device request queue
 118 * @ep: pointer to xusb_endpoint structure
 119 */
 120struct xusb_req {
 121	struct usb_request usb_req;
 122	struct list_head queue;
 123	struct xusb_ep *ep;
 124};
 125
 126/**
 127 * struct xusb_ep - USB end point structure.
 128 * @ep_usb: usb endpoint instance
 129 * @queue: endpoint message queue
 130 * @udc: xilinx usb peripheral driver instance pointer
 131 * @desc: pointer to the usb endpoint descriptor
 132 * @rambase: the endpoint buffer address
 133 * @offset: the endpoint register offset value
 134 * @name: name of the endpoint
 135 * @epnumber: endpoint number
 136 * @maxpacket: maximum packet size the endpoint can store
 137 * @buffer0count: the size of the packet recieved in the first buffer
 138 * @buffer1count: the size of the packet received in the second buffer
 139 * @curbufnum: current buffer of endpoint that will be processed next
 140 * @buffer0ready: the busy state of first buffer
 141 * @buffer1ready: the busy state of second buffer
 142 * @is_in: endpoint direction (IN or OUT)
 143 * @is_iso: endpoint type(isochronous or non isochronous)
 144 */
 145struct xusb_ep {
 146	struct usb_ep ep_usb;
 147	struct list_head queue;
 148	struct xusb_udc *udc;
 149	const struct usb_endpoint_descriptor *desc;
 150	u32  rambase;
 151	u32  offset;
 152	char name[4];
 153	u16  epnumber;
 154	u16  maxpacket;
 155	u16  buffer0count;
 156	u16  buffer1count;
 157	u8   curbufnum;
 158	bool buffer0ready;
 159	bool buffer1ready;
 160	bool is_in;
 161	bool is_iso;
 162};
 163
 164/**
 165 * struct xusb_udc -  USB peripheral driver structure
 166 * @gadget: USB gadget driver instance
 167 * @ep: an array of endpoint structures
 168 * @driver: pointer to the usb gadget driver instance
 169 * @setup: usb_ctrlrequest structure for control requests
 170 * @req: pointer to dummy request for get status command
 171 * @dev: pointer to device structure in gadget
 172 * @usb_state: device in suspended state or not
 173 * @remote_wkp: remote wakeup enabled by host
 174 * @setupseqtx: tx status
 175 * @setupseqrx: rx status
 176 * @addr: the usb device base address
 177 * @lock: instance of spinlock
 178 * @dma_enabled: flag indicating whether the dma is included in the system
 179 * @read_fn: function pointer to read device registers
 180 * @write_fn: function pointer to write to device registers
 181 */
 182struct xusb_udc {
 183	struct usb_gadget gadget;
 184	struct xusb_ep ep[8];
 185	struct usb_gadget_driver *driver;
 186	struct usb_ctrlrequest setup;
 187	struct xusb_req *req;
 188	struct device *dev;
 189	u32 usb_state;
 190	u32 remote_wkp;
 191	u32 setupseqtx;
 192	u32 setupseqrx;
 193	void __iomem *addr;
 194	spinlock_t lock;
 195	bool dma_enabled;
 196
 197	unsigned int (*read_fn)(void __iomem *);
 198	void (*write_fn)(void __iomem *, u32, u32);
 199};
 200
 201/* Endpoint buffer start addresses in the core */
 202static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500,
 203			  0x1600 };
 204
 205static const char driver_name[] = "xilinx-udc";
 206static const char ep0name[] = "ep0";
 207
 208/* Control endpoint configuration.*/
 209static const struct usb_endpoint_descriptor config_bulk_out_desc = {
 210	.bLength		= USB_DT_ENDPOINT_SIZE,
 211	.bDescriptorType	= USB_DT_ENDPOINT,
 212	.bEndpointAddress	= USB_DIR_OUT,
 213	.bmAttributes		= USB_ENDPOINT_XFER_BULK,
 214	.wMaxPacketSize		= cpu_to_le16(EP0_MAX_PACKET),
 215};
 216
 217/**
 218 * xudc_write32 - little endian write to device registers
 219 * @addr: base addr of device registers
 220 * @offset: register offset
 221 * @val: data to be written
 222 */
 223static void xudc_write32(void __iomem *addr, u32 offset, u32 val)
 224{
 225	iowrite32(val, addr + offset);
 226}
 227
 228/**
 229 * xudc_read32 - little endian read from device registers
 230 * @addr: addr of device register
 231 * Return: value at addr
 232 */
 233static unsigned int xudc_read32(void __iomem *addr)
 234{
 235	return ioread32(addr);
 236}
 237
 238/**
 239 * xudc_write32_be - big endian write to device registers
 240 * @addr: base addr of device registers
 241 * @offset: register offset
 242 * @val: data to be written
 243 */
 244static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val)
 245{
 246	iowrite32be(val, addr + offset);
 247}
 248
 249/**
 250 * xudc_read32_be - big endian read from device registers
 251 * @addr: addr of device register
 252 * Return: value at addr
 253 */
 254static unsigned int xudc_read32_be(void __iomem *addr)
 255{
 256	return ioread32be(addr);
 257}
 258
 259/**
 260 * xudc_wrstatus - Sets up the usb device status stages.
 261 * @udc: pointer to the usb device controller structure.
 262 */
 263static void xudc_wrstatus(struct xusb_udc *udc)
 264{
 265	struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
 266	u32 epcfgreg;
 267
 268	epcfgreg = udc->read_fn(udc->addr + ep0->offset)|
 269				XUSB_EP_CFG_DATA_TOGGLE_MASK;
 270	udc->write_fn(udc->addr, ep0->offset, epcfgreg);
 271	udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0);
 272	udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
 273}
 274
 275/**
 276 * xudc_epconfig - Configures the given endpoint.
 277 * @ep: pointer to the usb device endpoint structure.
 278 * @udc: pointer to the usb peripheral controller structure.
 279 *
 280 * This function configures a specific endpoint with the given configuration
 281 * data.
 282 */
 283static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc)
 284{
 285	u32 epcfgreg;
 286
 287	/*
 288	 * Configure the end point direction, type, Max Packet Size and the
 289	 * EP buffer location.
 290	 */
 291	epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) |
 292		   (ep->ep_usb.maxpacket << 15) | (ep->rambase));
 293	udc->write_fn(udc->addr, ep->offset, epcfgreg);
 294
 295	/* Set the Buffer count and the Buffer ready bits.*/
 296	udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET,
 297		      ep->buffer0count);
 298	udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET,
 299		      ep->buffer1count);
 300	if (ep->buffer0ready)
 301		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 302			      1 << ep->epnumber);
 303	if (ep->buffer1ready)
 304		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 305			      1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
 306}
 307
 308/**
 309 * xudc_start_dma - Starts DMA transfer.
 310 * @ep: pointer to the usb device endpoint structure.
 311 * @src: DMA source address.
 312 * @dst: DMA destination address.
 313 * @length: number of bytes to transfer.
 314 *
 315 * Return: 0 on success, error code on failure
 316 *
 317 * This function starts DMA transfer by writing to DMA source,
 318 * destination and lenth registers.
 319 */
 320static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src,
 321			  dma_addr_t dst, u32 length)
 322{
 323	struct xusb_udc *udc = ep->udc;
 324	int rc = 0;
 325	u32 timeout = 500;
 326	u32 reg;
 327
 328	/*
 329	 * Set the addresses in the DMA source and
 330	 * destination registers and then set the length
 331	 * into the DMA length register.
 332	 */
 333	udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src);
 334	udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst);
 335	udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length);
 336
 337	/*
 338	 * Wait till DMA transaction is complete and
 339	 * check whether the DMA transaction was
 340	 * successful.
 341	 */
 342	do {
 343		reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET);
 344		if (!(reg &  XUSB_DMA_DMASR_BUSY))
 345			break;
 346
 347		/*
 348		 * We can't sleep here, because it's also called from
 349		 * interrupt context.
 350		 */
 351		timeout--;
 352		if (!timeout) {
 353			dev_err(udc->dev, "DMA timeout\n");
 354			return -ETIMEDOUT;
 355		}
 356		udelay(1);
 357	} while (1);
 358
 359	if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) &
 360			  XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){
 361		dev_err(udc->dev, "DMA Error\n");
 362		rc = -EINVAL;
 363	}
 364
 365	return rc;
 366}
 367
 368/**
 369 * xudc_dma_send - Sends IN data using DMA.
 370 * @ep: pointer to the usb device endpoint structure.
 371 * @req: pointer to the usb request structure.
 372 * @buffer: pointer to data to be sent.
 373 * @length: number of bytes to send.
 374 *
 375 * Return: 0 on success, -EAGAIN if no buffer is free and error
 376 *	   code on failure.
 377 *
 378 * This function sends data using DMA.
 379 */
 380static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req,
 381			 u8 *buffer, u32 length)
 382{
 383	u32 *eprambase;
 384	dma_addr_t src;
 385	dma_addr_t dst;
 386	struct xusb_udc *udc = ep->udc;
 387
 388	src = req->usb_req.dma + req->usb_req.actual;
 389	if (req->usb_req.length)
 390		dma_sync_single_for_device(udc->dev, src,
 391					   length, DMA_TO_DEVICE);
 392	if (!ep->curbufnum && !ep->buffer0ready) {
 393		/* Get the Buffer address and copy the transmit data.*/
 394		eprambase = (u32 __force *)(udc->addr + ep->rambase);
 395		dst = virt_to_phys(eprambase);
 396		udc->write_fn(udc->addr, ep->offset +
 397			      XUSB_EP_BUF0COUNT_OFFSET, length);
 398		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 399			      XUSB_DMA_BRR_CTRL | (1 << ep->epnumber));
 400		ep->buffer0ready = 1;
 401		ep->curbufnum = 1;
 402	} else if (ep->curbufnum && !ep->buffer1ready) {
 403		/* Get the Buffer address and copy the transmit data.*/
 404		eprambase = (u32 __force *)(udc->addr + ep->rambase +
 405			     ep->ep_usb.maxpacket);
 406		dst = virt_to_phys(eprambase);
 407		udc->write_fn(udc->addr, ep->offset +
 408			      XUSB_EP_BUF1COUNT_OFFSET, length);
 409		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 410			      XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber +
 411			      XUSB_STATUS_EP_BUFF2_SHIFT)));
 412		ep->buffer1ready = 1;
 413		ep->curbufnum = 0;
 414	} else {
 415		/* None of ping pong buffers are ready currently .*/
 416		return -EAGAIN;
 417	}
 418
 419	return xudc_start_dma(ep, src, dst, length);
 420}
 421
 422/**
 423 * xudc_dma_receive - Receives OUT data using DMA.
 424 * @ep: pointer to the usb device endpoint structure.
 425 * @req: pointer to the usb request structure.
 426 * @buffer: pointer to storage buffer of received data.
 427 * @length: number of bytes to receive.
 428 *
 429 * Return: 0 on success, -EAGAIN if no buffer is free and error
 430 *	   code on failure.
 431 *
 432 * This function receives data using DMA.
 433 */
 434static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req,
 435			    u8 *buffer, u32 length)
 436{
 437	u32 *eprambase;
 438	dma_addr_t src;
 439	dma_addr_t dst;
 440	struct xusb_udc *udc = ep->udc;
 441
 442	dst = req->usb_req.dma + req->usb_req.actual;
 443	if (!ep->curbufnum && !ep->buffer0ready) {
 444		/* Get the Buffer address and copy the transmit data */
 445		eprambase = (u32 __force *)(udc->addr + ep->rambase);
 446		src = virt_to_phys(eprambase);
 447		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 448			      XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
 449			      (1 << ep->epnumber));
 450		ep->buffer0ready = 1;
 451		ep->curbufnum = 1;
 452	} else if (ep->curbufnum && !ep->buffer1ready) {
 453		/* Get the Buffer address and copy the transmit data */
 454		eprambase = (u32 __force *)(udc->addr +
 455			     ep->rambase + ep->ep_usb.maxpacket);
 456		src = virt_to_phys(eprambase);
 457		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 458			      XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
 459			      (1 << (ep->epnumber +
 460			      XUSB_STATUS_EP_BUFF2_SHIFT)));
 461		ep->buffer1ready = 1;
 462		ep->curbufnum = 0;
 463	} else {
 464		/* None of the ping-pong buffers are ready currently */
 465		return -EAGAIN;
 466	}
 467
 468	return xudc_start_dma(ep, src, dst, length);
 469}
 470
 471/**
 472 * xudc_eptxrx - Transmits or receives data to or from an endpoint.
 473 * @ep: pointer to the usb endpoint configuration structure.
 474 * @req: pointer to the usb request structure.
 475 * @bufferptr: pointer to buffer containing the data to be sent.
 476 * @bufferlen: The number of data bytes to be sent.
 477 *
 478 * Return: 0 on success, -EAGAIN if no buffer is free.
 479 *
 480 * This function copies the transmit/receive data to/from the end point buffer
 481 * and enables the buffer for transmission/reception.
 482 */
 483static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req,
 484		       u8 *bufferptr, u32 bufferlen)
 485{
 486	u32 *eprambase;
 487	u32 bytestosend;
 488	int rc = 0;
 489	struct xusb_udc *udc = ep->udc;
 490
 491	bytestosend = bufferlen;
 492	if (udc->dma_enabled) {
 493		if (ep->is_in)
 494			rc = xudc_dma_send(ep, req, bufferptr, bufferlen);
 495		else
 496			rc = xudc_dma_receive(ep, req, bufferptr, bufferlen);
 497		return rc;
 498	}
 499	/* Put the transmit buffer into the correct ping-pong buffer.*/
 500	if (!ep->curbufnum && !ep->buffer0ready) {
 501		/* Get the Buffer address and copy the transmit data.*/
 502		eprambase = (u32 __force *)(udc->addr + ep->rambase);
 503		if (ep->is_in) {
 504			memcpy(eprambase, bufferptr, bytestosend);
 505			udc->write_fn(udc->addr, ep->offset +
 506				      XUSB_EP_BUF0COUNT_OFFSET, bufferlen);
 507		} else {
 508			memcpy(bufferptr, eprambase, bytestosend);
 509		}
 510		/*
 511		 * Enable the buffer for transmission.
 512		 */
 513		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 514			      1 << ep->epnumber);
 515		ep->buffer0ready = 1;
 516		ep->curbufnum = 1;
 517	} else if (ep->curbufnum && !ep->buffer1ready) {
 518		/* Get the Buffer address and copy the transmit data.*/
 519		eprambase = (u32 __force *)(udc->addr + ep->rambase +
 520			     ep->ep_usb.maxpacket);
 521		if (ep->is_in) {
 522			memcpy(eprambase, bufferptr, bytestosend);
 523			udc->write_fn(udc->addr, ep->offset +
 524				      XUSB_EP_BUF1COUNT_OFFSET, bufferlen);
 525		} else {
 526			memcpy(bufferptr, eprambase, bytestosend);
 527		}
 528		/*
 529		 * Enable the buffer for transmission.
 530		 */
 531		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 532			      1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
 533		ep->buffer1ready = 1;
 534		ep->curbufnum = 0;
 535	} else {
 536		/* None of the ping-pong buffers are ready currently */
 537		return -EAGAIN;
 538	}
 539	return rc;
 540}
 541
 542/**
 543 * xudc_done - Exeutes the endpoint data transfer completion tasks.
 544 * @ep: pointer to the usb device endpoint structure.
 545 * @req: pointer to the usb request structure.
 546 * @status: Status of the data transfer.
 547 *
 548 * Deletes the message from the queue and updates data transfer completion
 549 * status.
 550 */
 551static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status)
 552{
 553	struct xusb_udc *udc = ep->udc;
 554
 555	list_del_init(&req->queue);
 556
 557	if (req->usb_req.status == -EINPROGRESS)
 558		req->usb_req.status = status;
 559	else
 560		status = req->usb_req.status;
 561
 562	if (status && status != -ESHUTDOWN)
 563		dev_dbg(udc->dev, "%s done %p, status %d\n",
 564			ep->ep_usb.name, req, status);
 565	/* unmap request if DMA is present*/
 566	if (udc->dma_enabled && ep->epnumber && req->usb_req.length)
 567		usb_gadget_unmap_request(&udc->gadget, &req->usb_req,
 568					 ep->is_in);
 569
 570	if (req->usb_req.complete) {
 571		spin_unlock(&udc->lock);
 572		req->usb_req.complete(&ep->ep_usb, &req->usb_req);
 573		spin_lock(&udc->lock);
 574	}
 575}
 576
 577/**
 578 * xudc_read_fifo - Reads the data from the given endpoint buffer.
 579 * @ep: pointer to the usb device endpoint structure.
 580 * @req: pointer to the usb request structure.
 581 *
 582 * Return: 0 if request is completed and -EAGAIN if not completed.
 583 *
 584 * Pulls OUT packet data from the endpoint buffer.
 585 */
 586static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req)
 587{
 588	u8 *buf;
 589	u32 is_short, count, bufferspace;
 590	u8 bufoffset;
 591	u8 two_pkts = 0;
 592	int ret;
 593	int retval = -EAGAIN;
 594	struct xusb_udc *udc = ep->udc;
 595
 596	if (ep->buffer0ready && ep->buffer1ready) {
 597		dev_dbg(udc->dev, "Packet NOT ready!\n");
 598		return retval;
 599	}
 600top:
 601	if (ep->curbufnum)
 602		bufoffset = XUSB_EP_BUF1COUNT_OFFSET;
 603	else
 604		bufoffset = XUSB_EP_BUF0COUNT_OFFSET;
 605
 606	count = udc->read_fn(udc->addr + ep->offset + bufoffset);
 607
 608	if (!ep->buffer0ready && !ep->buffer1ready)
 609		two_pkts = 1;
 610
 611	buf = req->usb_req.buf + req->usb_req.actual;
 612	prefetchw(buf);
 613	bufferspace = req->usb_req.length - req->usb_req.actual;
 614	is_short = count < ep->ep_usb.maxpacket;
 615
 616	if (unlikely(!bufferspace)) {
 617		/*
 618		 * This happens when the driver's buffer
 619		 * is smaller than what the host sent.
 620		 * discard the extra data.
 621		 */
 622		if (req->usb_req.status != -EOVERFLOW)
 623			dev_dbg(udc->dev, "%s overflow %d\n",
 624				ep->ep_usb.name, count);
 625		req->usb_req.status = -EOVERFLOW;
 626		xudc_done(ep, req, -EOVERFLOW);
 627		return 0;
 628	}
 629
 630	ret = xudc_eptxrx(ep, req, buf, count);
 631	switch (ret) {
 632	case 0:
 633		req->usb_req.actual += min(count, bufferspace);
 634		dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n",
 635			ep->ep_usb.name, count, is_short ? "/S" : "", req,
 636			req->usb_req.actual, req->usb_req.length);
 637		bufferspace -= count;
 638		/* Completion */
 639		if ((req->usb_req.actual == req->usb_req.length) || is_short) {
 640			if (udc->dma_enabled && req->usb_req.length)
 641				dma_sync_single_for_cpu(udc->dev,
 642							req->usb_req.dma,
 643							req->usb_req.actual,
 644							DMA_FROM_DEVICE);
 645			xudc_done(ep, req, 0);
 646			return 0;
 647		}
 648		if (two_pkts) {
 649			two_pkts = 0;
 650			goto top;
 651		}
 652		break;
 653	case -EAGAIN:
 654		dev_dbg(udc->dev, "receive busy\n");
 655		break;
 656	case -EINVAL:
 657	case -ETIMEDOUT:
 658		/* DMA error, dequeue the request */
 659		xudc_done(ep, req, -ECONNRESET);
 660		retval = 0;
 661		break;
 662	}
 663
 664	return retval;
 665}
 666
 667/**
 668 * xudc_write_fifo - Writes data into the given endpoint buffer.
 669 * @ep: pointer to the usb device endpoint structure.
 670 * @req: pointer to the usb request structure.
 671 *
 672 * Return: 0 if request is completed and -EAGAIN if not completed.
 673 *
 674 * Loads endpoint buffer for an IN packet.
 675 */
 676static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req)
 677{
 678	u32 max;
 679	u32 length;
 680	int ret;
 681	int retval = -EAGAIN;
 682	struct xusb_udc *udc = ep->udc;
 683	int is_last, is_short = 0;
 684	u8 *buf;
 685
 686	max = le16_to_cpu(ep->desc->wMaxPacketSize);
 687	buf = req->usb_req.buf + req->usb_req.actual;
 688	prefetch(buf);
 689	length = req->usb_req.length - req->usb_req.actual;
 690	length = min(length, max);
 691
 692	ret = xudc_eptxrx(ep, req, buf, length);
 693	switch (ret) {
 694	case 0:
 695		req->usb_req.actual += length;
 696		if (unlikely(length != max)) {
 697			is_last = is_short = 1;
 698		} else {
 699			if (likely(req->usb_req.length !=
 700				   req->usb_req.actual) || req->usb_req.zero)
 701				is_last = 0;
 702			else
 703				is_last = 1;
 704		}
 705		dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n",
 706			__func__, ep->ep_usb.name, length, is_last ? "/L" : "",
 707			is_short ? "/S" : "",
 708			req->usb_req.length - req->usb_req.actual, req);
 709		/* completion */
 710		if (is_last) {
 711			xudc_done(ep, req, 0);
 712			retval = 0;
 713		}
 714		break;
 715	case -EAGAIN:
 716		dev_dbg(udc->dev, "Send busy\n");
 717		break;
 718	case -EINVAL:
 719	case -ETIMEDOUT:
 720		/* DMA error, dequeue the request */
 721		xudc_done(ep, req, -ECONNRESET);
 722		retval = 0;
 723		break;
 724	}
 725
 726	return retval;
 727}
 728
 729/**
 730 * xudc_nuke - Cleans up the data transfer message list.
 731 * @ep: pointer to the usb device endpoint structure.
 732 * @status: Status of the data transfer.
 733 */
 734static void xudc_nuke(struct xusb_ep *ep, int status)
 735{
 736	struct xusb_req *req;
 737
 738	while (!list_empty(&ep->queue)) {
 739		req = list_first_entry(&ep->queue, struct xusb_req, queue);
 740		xudc_done(ep, req, status);
 741	}
 742}
 743
 744/**
 745 * xudc_ep_set_halt - Stalls/unstalls the given endpoint.
 746 * @_ep: pointer to the usb device endpoint structure.
 747 * @value: value to indicate stall/unstall.
 748 *
 749 * Return: 0 for success and error value on failure
 750 */
 751static int xudc_ep_set_halt(struct usb_ep *_ep, int value)
 752{
 753	struct xusb_ep *ep = to_xusb_ep(_ep);
 754	struct xusb_udc *udc;
 755	unsigned long flags;
 756	u32 epcfgreg;
 757
 758	if (!_ep || (!ep->desc && ep->epnumber)) {
 759		pr_debug("%s: bad ep or descriptor\n", __func__);
 760		return -EINVAL;
 761	}
 762	udc = ep->udc;
 763
 764	if (ep->is_in && (!list_empty(&ep->queue)) && value) {
 765		dev_dbg(udc->dev, "requests pending can't halt\n");
 766		return -EAGAIN;
 767	}
 768
 769	if (ep->buffer0ready || ep->buffer1ready) {
 770		dev_dbg(udc->dev, "HW buffers busy can't halt\n");
 771		return -EAGAIN;
 772	}
 773
 774	spin_lock_irqsave(&udc->lock, flags);
 775
 776	if (value) {
 777		/* Stall the device.*/
 778		epcfgreg = udc->read_fn(udc->addr + ep->offset);
 779		epcfgreg |= XUSB_EP_CFG_STALL_MASK;
 780		udc->write_fn(udc->addr, ep->offset, epcfgreg);
 781	} else {
 782		/* Unstall the device.*/
 783		epcfgreg = udc->read_fn(udc->addr + ep->offset);
 784		epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
 785		udc->write_fn(udc->addr, ep->offset, epcfgreg);
 786		if (ep->epnumber) {
 787			/* Reset the toggle bit.*/
 788			epcfgreg = udc->read_fn(ep->udc->addr + ep->offset);
 789			epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
 790			udc->write_fn(udc->addr, ep->offset, epcfgreg);
 791		}
 792	}
 793
 794	spin_unlock_irqrestore(&udc->lock, flags);
 795	return 0;
 796}
 797
 798/**
 799 * xudc_ep_enable - Enables the given endpoint.
 800 * @ep: pointer to the xusb endpoint structure.
 801 * @desc: pointer to usb endpoint descriptor.
 802 *
 803 * Return: 0 for success and error value on failure
 804 */
 805static int __xudc_ep_enable(struct xusb_ep *ep,
 806			    const struct usb_endpoint_descriptor *desc)
 807{
 808	struct xusb_udc *udc = ep->udc;
 809	u32 tmp;
 810	u32 epcfg;
 811	u32 ier;
 812	u16 maxpacket;
 813
 814	ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0);
 815	/* Bit 3...0:endpoint number */
 816	ep->epnumber = (desc->bEndpointAddress & 0x0f);
 817	ep->desc = desc;
 818	ep->ep_usb.desc = desc;
 819	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
 820	ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize);
 821
 822	switch (tmp) {
 823	case USB_ENDPOINT_XFER_CONTROL:
 824		dev_dbg(udc->dev, "only one control endpoint\n");
 825		/* NON- ISO */
 826		ep->is_iso = 0;
 827		return -EINVAL;
 828	case USB_ENDPOINT_XFER_INT:
 829		/* NON- ISO */
 830		ep->is_iso = 0;
 831		if (maxpacket > 64) {
 832			dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
 833			return -EINVAL;
 834		}
 835		break;
 836	case USB_ENDPOINT_XFER_BULK:
 837		/* NON- ISO */
 838		ep->is_iso = 0;
 839		if (!(is_power_of_2(maxpacket) && maxpacket >= 8 &&
 840				maxpacket <= 512)) {
 841			dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
 842			return -EINVAL;
 843		}
 844		break;
 845	case USB_ENDPOINT_XFER_ISOC:
 846		/* ISO */
 847		ep->is_iso = 1;
 848		break;
 849	}
 850
 851	ep->buffer0ready = 0;
 852	ep->buffer1ready = 0;
 853	ep->curbufnum = 0;
 854	ep->rambase = rambase[ep->epnumber];
 855	xudc_epconfig(ep, udc);
 856
 857	dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n",
 858		ep->epnumber, maxpacket);
 859
 860	/* Enable the End point.*/
 861	epcfg = udc->read_fn(udc->addr + ep->offset);
 862	epcfg |= XUSB_EP_CFG_VALID_MASK;
 863	udc->write_fn(udc->addr, ep->offset, epcfg);
 864	if (ep->epnumber)
 865		ep->rambase <<= 2;
 866
 867	/* Enable buffer completion interrupts for endpoint */
 868	ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
 869	ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber);
 870	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
 871
 872	/* for OUT endpoint set buffers ready to receive */
 873	if (ep->epnumber && !ep->is_in) {
 874		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 875			      1 << ep->epnumber);
 876		ep->buffer0ready = 1;
 877		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 878			     (1 << (ep->epnumber +
 879			      XUSB_STATUS_EP_BUFF2_SHIFT)));
 880		ep->buffer1ready = 1;
 881	}
 882
 883	return 0;
 884}
 885
 886/**
 887 * xudc_ep_enable - Enables the given endpoint.
 888 * @_ep: pointer to the usb endpoint structure.
 889 * @desc: pointer to usb endpoint descriptor.
 890 *
 891 * Return: 0 for success and error value on failure
 892 */
 893static int xudc_ep_enable(struct usb_ep *_ep,
 894			  const struct usb_endpoint_descriptor *desc)
 895{
 896	struct xusb_ep *ep;
 897	struct xusb_udc *udc;
 898	unsigned long flags;
 899	int ret;
 900
 901	if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) {
 902		pr_debug("%s: bad ep or descriptor\n", __func__);
 903		return -EINVAL;
 904	}
 905
 906	ep = to_xusb_ep(_ep);
 907	udc = ep->udc;
 908
 909	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
 910		dev_dbg(udc->dev, "bogus device state\n");
 911		return -ESHUTDOWN;
 912	}
 913
 914	spin_lock_irqsave(&udc->lock, flags);
 915	ret = __xudc_ep_enable(ep, desc);
 916	spin_unlock_irqrestore(&udc->lock, flags);
 917
 918	return ret;
 919}
 920
 921/**
 922 * xudc_ep_disable - Disables the given endpoint.
 923 * @_ep: pointer to the usb endpoint structure.
 924 *
 925 * Return: 0 for success and error value on failure
 926 */
 927static int xudc_ep_disable(struct usb_ep *_ep)
 928{
 929	struct xusb_ep *ep;
 930	unsigned long flags;
 931	u32 epcfg;
 932	struct xusb_udc *udc;
 933
 934	if (!_ep) {
 935		pr_debug("%s: invalid ep\n", __func__);
 936		return -EINVAL;
 937	}
 938
 939	ep = to_xusb_ep(_ep);
 940	udc = ep->udc;
 941
 942	spin_lock_irqsave(&udc->lock, flags);
 943
 944	xudc_nuke(ep, -ESHUTDOWN);
 945
 946	/* Restore the endpoint's pristine config */
 947	ep->desc = NULL;
 948	ep->ep_usb.desc = NULL;
 949
 950	dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber);
 951	/* Disable the endpoint.*/
 952	epcfg = udc->read_fn(udc->addr + ep->offset);
 953	epcfg &= ~XUSB_EP_CFG_VALID_MASK;
 954	udc->write_fn(udc->addr, ep->offset, epcfg);
 955
 956	spin_unlock_irqrestore(&udc->lock, flags);
 957	return 0;
 958}
 959
 960/**
 961 * xudc_ep_alloc_request - Initializes the request queue.
 962 * @_ep: pointer to the usb endpoint structure.
 963 * @gfp_flags: Flags related to the request call.
 964 *
 965 * Return: pointer to request structure on success and a NULL on failure.
 966 */
 967static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep,
 968						 gfp_t gfp_flags)
 969{
 970	struct xusb_ep *ep = to_xusb_ep(_ep);
 971	struct xusb_udc *udc;
 972	struct xusb_req *req;
 973
 974	udc = ep->udc;
 975	req = kzalloc(sizeof(*req), gfp_flags);
 976	if (!req) {
 977		dev_err(udc->dev, "%s:not enough memory", __func__);
 978		return NULL;
 979	}
 980
 981	req->ep = ep;
 982	INIT_LIST_HEAD(&req->queue);
 983	return &req->usb_req;
 984}
 985
 986/**
 987 * xudc_free_request - Releases the request from queue.
 988 * @_ep: pointer to the usb device endpoint structure.
 989 * @_req: pointer to the usb request structure.
 990 */
 991static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req)
 992{
 993	struct xusb_req *req = to_xusb_req(_req);
 994
 995	kfree(req);
 996}
 997
 998/**
 999 * xudc_ep0_queue - Adds the request to endpoint 0 queue.
1000 * @ep0: pointer to the xusb endpoint 0 structure.
1001 * @req: pointer to the xusb request structure.
1002 *
1003 * Return: 0 for success and error value on failure
1004 */
1005static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req)
1006{
1007	struct xusb_udc *udc = ep0->udc;
1008	u32 length;
1009	u8 *corebuf;
1010
1011	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1012		dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1013		return -EINVAL;
1014	}
1015	if (!list_empty(&ep0->queue)) {
1016		dev_dbg(udc->dev, "%s:ep0 busy\n", __func__);
1017		return -EBUSY;
1018	}
1019
1020	req->usb_req.status = -EINPROGRESS;
1021	req->usb_req.actual = 0;
1022
1023	list_add_tail(&req->queue, &ep0->queue);
1024
1025	if (udc->setup.bRequestType & USB_DIR_IN) {
1026		prefetch(req->usb_req.buf);
1027		length = req->usb_req.length;
1028		corebuf = (void __force *) ((ep0->rambase << 2) +
1029			   udc->addr);
1030		length = req->usb_req.actual = min_t(u32, length,
1031						     EP0_MAX_PACKET);
1032		memcpy(corebuf, req->usb_req.buf, length);
1033		udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length);
1034		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1035	} else {
1036		if (udc->setup.wLength) {
1037			/* Enable EP0 buffer to receive data */
1038			udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1039			udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1040		} else {
1041			xudc_wrstatus(udc);
1042		}
1043	}
1044
1045	return 0;
1046}
1047
1048/**
1049 * xudc_ep0_queue - Adds the request to endpoint 0 queue.
1050 * @_ep: pointer to the usb endpoint 0 structure.
1051 * @_req: pointer to the usb request structure.
1052 * @gfp_flags: Flags related to the request call.
1053 *
1054 * Return: 0 for success and error value on failure
1055 */
1056static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req,
1057			  gfp_t gfp_flags)
1058{
1059	struct xusb_req *req	= to_xusb_req(_req);
1060	struct xusb_ep	*ep0	= to_xusb_ep(_ep);
1061	struct xusb_udc *udc	= ep0->udc;
1062	unsigned long flags;
1063	int ret;
1064
1065	spin_lock_irqsave(&udc->lock, flags);
1066	ret = __xudc_ep0_queue(ep0, req);
1067	spin_unlock_irqrestore(&udc->lock, flags);
1068
1069	return ret;
1070}
1071
1072/**
1073 * xudc_ep_queue - Adds the request to endpoint queue.
1074 * @_ep: pointer to the usb endpoint structure.
1075 * @_req: pointer to the usb request structure.
1076 * @gfp_flags: Flags related to the request call.
1077 *
1078 * Return: 0 for success and error value on failure
1079 */
1080static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1081			 gfp_t gfp_flags)
1082{
1083	struct xusb_req *req = to_xusb_req(_req);
1084	struct xusb_ep	*ep  = to_xusb_ep(_ep);
1085	struct xusb_udc *udc = ep->udc;
1086	int  ret;
1087	unsigned long flags;
1088
1089	if (!ep->desc) {
1090		dev_dbg(udc->dev, "%s:queing request to disabled %s\n",
1091			__func__, ep->name);
1092		return -ESHUTDOWN;
1093	}
1094
1095	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1096		dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1097		return -EINVAL;
1098	}
1099
1100	spin_lock_irqsave(&udc->lock, flags);
1101
1102	_req->status = -EINPROGRESS;
1103	_req->actual = 0;
1104
1105	if (udc->dma_enabled) {
1106		ret = usb_gadget_map_request(&udc->gadget, &req->usb_req,
1107					     ep->is_in);
1108		if (ret) {
1109			dev_dbg(udc->dev, "gadget_map failed ep%d\n",
1110				ep->epnumber);
1111			spin_unlock_irqrestore(&udc->lock, flags);
1112			return -EAGAIN;
1113		}
1114	}
1115
1116	if (list_empty(&ep->queue)) {
1117		if (ep->is_in) {
1118			dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n");
1119			if (!xudc_write_fifo(ep, req))
1120				req = NULL;
1121		} else {
1122			dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n");
1123			if (!xudc_read_fifo(ep, req))
1124				req = NULL;
1125		}
1126	}
1127
1128	if (req != NULL)
1129		list_add_tail(&req->queue, &ep->queue);
1130
1131	spin_unlock_irqrestore(&udc->lock, flags);
1132	return 0;
1133}
1134
1135/**
1136 * xudc_ep_dequeue - Removes the request from the queue.
1137 * @_ep: pointer to the usb device endpoint structure.
1138 * @_req: pointer to the usb request structure.
1139 *
1140 * Return: 0 for success and error value on failure
1141 */
1142static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1143{
1144	struct xusb_ep *ep	= to_xusb_ep(_ep);
1145	struct xusb_req *req	= to_xusb_req(_req);
1146	struct xusb_udc *udc	= ep->udc;
1147	unsigned long flags;
1148
1149	spin_lock_irqsave(&udc->lock, flags);
1150	/* Make sure it's actually queued on this endpoint */
1151	list_for_each_entry(req, &ep->queue, queue) {
1152		if (&req->usb_req == _req)
1153			break;
1154	}
1155	if (&req->usb_req != _req) {
1156		spin_unlock_irqrestore(&ep->udc->lock, flags);
1157		return -EINVAL;
1158	}
1159	xudc_done(ep, req, -ECONNRESET);
1160	spin_unlock_irqrestore(&udc->lock, flags);
1161
1162	return 0;
1163}
1164
1165/**
1166 * xudc_ep0_enable - Enables the given endpoint.
1167 * @ep: pointer to the usb endpoint structure.
1168 * @desc: pointer to usb endpoint descriptor.
1169 *
1170 * Return: error always.
1171 *
1172 * endpoint 0 enable should not be called by gadget layer.
1173 */
1174static int xudc_ep0_enable(struct usb_ep *ep,
1175			   const struct usb_endpoint_descriptor *desc)
1176{
1177	return -EINVAL;
1178}
1179
1180/**
1181 * xudc_ep0_disable - Disables the given endpoint.
1182 * @ep: pointer to the usb endpoint structure.
1183 *
1184 * Return: error always.
1185 *
1186 * endpoint 0 disable should not be called by gadget layer.
1187 */
1188static int xudc_ep0_disable(struct usb_ep *ep)
1189{
1190	return -EINVAL;
1191}
1192
1193static const struct usb_ep_ops xusb_ep0_ops = {
1194	.enable		= xudc_ep0_enable,
1195	.disable	= xudc_ep0_disable,
1196	.alloc_request	= xudc_ep_alloc_request,
1197	.free_request	= xudc_free_request,
1198	.queue		= xudc_ep0_queue,
1199	.dequeue	= xudc_ep_dequeue,
1200	.set_halt	= xudc_ep_set_halt,
1201};
1202
1203static const struct usb_ep_ops xusb_ep_ops = {
1204	.enable		= xudc_ep_enable,
1205	.disable	= xudc_ep_disable,
1206	.alloc_request	= xudc_ep_alloc_request,
1207	.free_request	= xudc_free_request,
1208	.queue		= xudc_ep_queue,
1209	.dequeue	= xudc_ep_dequeue,
1210	.set_halt	= xudc_ep_set_halt,
1211};
1212
1213/**
1214 * xudc_get_frame - Reads the current usb frame number.
1215 * @gadget: pointer to the usb gadget structure.
1216 *
1217 * Return: current frame number for success and error value on failure.
1218 */
1219static int xudc_get_frame(struct usb_gadget *gadget)
1220{
1221	struct xusb_udc *udc;
1222	int frame;
1223
1224	if (!gadget)
1225		return -ENODEV;
1226
1227	udc = to_udc(gadget);
1228	frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET);
1229	return frame;
1230}
1231
1232/**
1233 * xudc_wakeup - Send remote wakeup signal to host
1234 * @gadget: pointer to the usb gadget structure.
1235 *
1236 * Return: 0 on success and error on failure
1237 */
1238static int xudc_wakeup(struct usb_gadget *gadget)
1239{
1240	struct xusb_udc *udc = to_udc(gadget);
1241	u32 crtlreg;
1242	int status = -EINVAL;
1243	unsigned long flags;
1244
1245	spin_lock_irqsave(&udc->lock, flags);
1246
1247	/* Remote wake up not enabled by host */
1248	if (!udc->remote_wkp)
1249		goto done;
1250
1251	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1252	crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK;
1253	/* set remote wake up bit */
1254	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1255	/*
1256	 * wait for a while and reset remote wake up bit since this bit
1257	 * is not cleared by HW after sending remote wakeup to host.
1258	 */
1259	mdelay(2);
1260
1261	crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK;
1262	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1263	status = 0;
1264done:
1265	spin_unlock_irqrestore(&udc->lock, flags);
1266	return status;
1267}
1268
1269/**
1270 * xudc_pullup - start/stop USB traffic
1271 * @gadget: pointer to the usb gadget structure.
1272 * @is_on: flag to start or stop
1273 *
1274 * Return: 0 always
1275 *
1276 * This function starts/stops SIE engine of IP based on is_on.
1277 */
1278static int xudc_pullup(struct usb_gadget *gadget, int is_on)
1279{
1280	struct xusb_udc *udc = to_udc(gadget);
1281	unsigned long flags;
1282	u32 crtlreg;
1283
1284	spin_lock_irqsave(&udc->lock, flags);
1285
1286	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1287	if (is_on)
1288		crtlreg |= XUSB_CONTROL_USB_READY_MASK;
1289	else
1290		crtlreg &= ~XUSB_CONTROL_USB_READY_MASK;
1291
1292	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1293
1294	spin_unlock_irqrestore(&udc->lock, flags);
1295
1296	return 0;
1297}
1298
1299/**
1300 * xudc_eps_init - initialize endpoints.
1301 * @udc: pointer to the usb device controller structure.
1302 */
1303static void xudc_eps_init(struct xusb_udc *udc)
1304{
1305	u32 ep_number;
1306
1307	INIT_LIST_HEAD(&udc->gadget.ep_list);
1308
1309	for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) {
1310		struct xusb_ep *ep = &udc->ep[ep_number];
1311
1312		if (ep_number) {
1313			list_add_tail(&ep->ep_usb.ep_list,
1314				      &udc->gadget.ep_list);
1315			usb_ep_set_maxpacket_limit(&ep->ep_usb,
1316						  (unsigned short) ~0);
1317			snprintf(ep->name, EPNAME_SIZE, "ep%d", ep_number);
1318			ep->ep_usb.name = ep->name;
1319			ep->ep_usb.ops = &xusb_ep_ops;
1320
1321			ep->ep_usb.caps.type_iso = true;
1322			ep->ep_usb.caps.type_bulk = true;
1323			ep->ep_usb.caps.type_int = true;
1324		} else {
1325			ep->ep_usb.name = ep0name;
1326			usb_ep_set_maxpacket_limit(&ep->ep_usb, EP0_MAX_PACKET);
1327			ep->ep_usb.ops = &xusb_ep0_ops;
1328
1329			ep->ep_usb.caps.type_control = true;
1330		}
1331
1332		ep->ep_usb.caps.dir_in = true;
1333		ep->ep_usb.caps.dir_out = true;
1334
1335		ep->udc = udc;
1336		ep->epnumber = ep_number;
1337		ep->desc = NULL;
1338		/*
1339		 * The configuration register address offset between
1340		 * each endpoint is 0x10.
1341		 */
1342		ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10);
1343		ep->is_in = 0;
1344		ep->is_iso = 0;
1345		ep->maxpacket = 0;
1346		xudc_epconfig(ep, udc);
1347
1348		/* Initialize one queue per endpoint */
1349		INIT_LIST_HEAD(&ep->queue);
1350	}
1351}
1352
1353/**
1354 * xudc_stop_activity - Stops any further activity on the device.
1355 * @udc: pointer to the usb device controller structure.
1356 */
1357static void xudc_stop_activity(struct xusb_udc *udc)
1358{
1359	int i;
1360	struct xusb_ep *ep;
1361
1362	for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1363		ep = &udc->ep[i];
1364		xudc_nuke(ep, -ESHUTDOWN);
1365	}
1366}
1367
1368/**
1369 * xudc_start - Starts the device.
1370 * @gadget: pointer to the usb gadget structure
1371 * @driver: pointer to gadget driver structure
1372 *
1373 * Return: zero on success and error on failure
1374 */
1375static int xudc_start(struct usb_gadget *gadget,
1376		      struct usb_gadget_driver *driver)
1377{
1378	struct xusb_udc *udc	= to_udc(gadget);
1379	struct xusb_ep *ep0	= &udc->ep[XUSB_EP_NUMBER_ZERO];
1380	const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc;
1381	unsigned long flags;
1382	int ret = 0;
1383
1384	spin_lock_irqsave(&udc->lock, flags);
1385
1386	if (udc->driver) {
1387		dev_err(udc->dev, "%s is already bound to %s\n",
1388			udc->gadget.name, udc->driver->driver.name);
1389		ret = -EBUSY;
1390		goto err;
1391	}
1392
1393	/* hook up the driver */
1394	udc->driver = driver;
1395	udc->gadget.speed = driver->max_speed;
1396
1397	/* Enable the control endpoint. */
1398	ret = __xudc_ep_enable(ep0, desc);
1399
1400	/* Set device address and remote wakeup to 0 */
1401	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1402	udc->remote_wkp = 0;
1403err:
1404	spin_unlock_irqrestore(&udc->lock, flags);
1405	return ret;
1406}
1407
1408/**
1409 * xudc_stop - stops the device.
1410 * @gadget: pointer to the usb gadget structure
1411 * @driver: pointer to usb gadget driver structure
1412 *
1413 * Return: zero always
1414 */
1415static int xudc_stop(struct usb_gadget *gadget)
1416{
1417	struct xusb_udc *udc = to_udc(gadget);
1418	unsigned long flags;
1419
1420	spin_lock_irqsave(&udc->lock, flags);
1421
1422	udc->gadget.speed = USB_SPEED_UNKNOWN;
1423	udc->driver = NULL;
1424
1425	/* Set device address and remote wakeup to 0 */
1426	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1427	udc->remote_wkp = 0;
1428
1429	xudc_stop_activity(udc);
1430
1431	spin_unlock_irqrestore(&udc->lock, flags);
1432
1433	return 0;
1434}
1435
1436static const struct usb_gadget_ops xusb_udc_ops = {
1437	.get_frame	= xudc_get_frame,
1438	.wakeup		= xudc_wakeup,
1439	.pullup		= xudc_pullup,
1440	.udc_start	= xudc_start,
1441	.udc_stop	= xudc_stop,
1442};
1443
1444/**
1445 * xudc_clear_stall_all_ep - clears stall of every endpoint.
1446 * @udc: pointer to the udc structure.
1447 */
1448static void xudc_clear_stall_all_ep(struct xusb_udc *udc)
1449{
1450	struct xusb_ep *ep;
1451	u32 epcfgreg;
1452	int i;
1453
1454	for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1455		ep = &udc->ep[i];
1456		epcfgreg = udc->read_fn(udc->addr + ep->offset);
1457		epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1458		udc->write_fn(udc->addr, ep->offset, epcfgreg);
1459		if (ep->epnumber) {
1460			/* Reset the toggle bit.*/
1461			epcfgreg = udc->read_fn(udc->addr + ep->offset);
1462			epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
1463			udc->write_fn(udc->addr, ep->offset, epcfgreg);
1464		}
1465	}
1466}
1467
1468/**
1469 * xudc_startup_handler - The usb device controller interrupt handler.
1470 * @udc: pointer to the udc structure.
1471 * @intrstatus: The mask value containing the interrupt sources.
1472 *
1473 * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts.
1474 */
1475static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus)
1476{
1477	u32 intrreg;
1478
1479	if (intrstatus & XUSB_STATUS_RESET_MASK) {
1480
1481		dev_dbg(udc->dev, "Reset\n");
1482
1483		if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK)
1484			udc->gadget.speed = USB_SPEED_HIGH;
1485		else
1486			udc->gadget.speed = USB_SPEED_FULL;
1487
1488		xudc_stop_activity(udc);
1489		xudc_clear_stall_all_ep(udc);
1490		udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
1491
1492		/* Set device address and remote wakeup to 0 */
1493		udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1494		udc->remote_wkp = 0;
1495
1496		/* Enable the suspend, resume and disconnect */
1497		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1498		intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK |
1499			   XUSB_STATUS_DISCONNECT_MASK;
1500		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1501	}
1502	if (intrstatus & XUSB_STATUS_SUSPEND_MASK) {
1503
1504		dev_dbg(udc->dev, "Suspend\n");
1505
1506		/* Enable the reset, resume and disconnect */
1507		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1508		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1509			   XUSB_STATUS_DISCONNECT_MASK;
1510		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1511
1512		udc->usb_state = USB_STATE_SUSPENDED;
1513
1514		if (udc->driver->suspend) {
1515			spin_unlock(&udc->lock);
1516			udc->driver->suspend(&udc->gadget);
1517			spin_lock(&udc->lock);
1518		}
1519	}
1520	if (intrstatus & XUSB_STATUS_RESUME_MASK) {
1521		bool condition = (udc->usb_state != USB_STATE_SUSPENDED);
1522
1523		dev_WARN_ONCE(udc->dev, condition,
1524				"Resume IRQ while not suspended\n");
1525
1526		dev_dbg(udc->dev, "Resume\n");
1527
1528		/* Enable the reset, suspend and disconnect */
1529		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1530		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK |
1531			   XUSB_STATUS_DISCONNECT_MASK;
1532		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1533
1534		udc->usb_state = 0;
1535
1536		if (udc->driver->resume) {
1537			spin_unlock(&udc->lock);
1538			udc->driver->resume(&udc->gadget);
1539			spin_lock(&udc->lock);
1540		}
1541	}
1542	if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) {
1543
1544		dev_dbg(udc->dev, "Disconnect\n");
1545
1546		/* Enable the reset, resume and suspend */
1547		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1548		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1549			   XUSB_STATUS_SUSPEND_MASK;
1550		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1551
1552		if (udc->driver && udc->driver->disconnect) {
1553			spin_unlock(&udc->lock);
1554			udc->driver->disconnect(&udc->gadget);
1555			spin_lock(&udc->lock);
1556		}
1557	}
1558}
1559
1560/**
1561 * xudc_ep0_stall - Stall endpoint zero.
1562 * @udc: pointer to the udc structure.
1563 *
1564 * This function stalls endpoint zero.
1565 */
1566static void xudc_ep0_stall(struct xusb_udc *udc)
1567{
1568	u32 epcfgreg;
1569	struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
1570
1571	epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1572	epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1573	udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1574}
1575
1576/**
1577 * xudc_setaddress - executes SET_ADDRESS command
1578 * @udc: pointer to the udc structure.
1579 *
1580 * This function executes USB SET_ADDRESS command
1581 */
1582static void xudc_setaddress(struct xusb_udc *udc)
1583{
1584	struct xusb_ep *ep0	= &udc->ep[0];
1585	struct xusb_req *req	= udc->req;
1586	int ret;
1587
1588	req->usb_req.length = 0;
1589	ret = __xudc_ep0_queue(ep0, req);
1590	if (ret == 0)
1591		return;
1592
1593	dev_err(udc->dev, "Can't respond to SET ADDRESS request\n");
1594	xudc_ep0_stall(udc);
1595}
1596
1597/**
1598 * xudc_getstatus - executes GET_STATUS command
1599 * @udc: pointer to the udc structure.
1600 *
1601 * This function executes USB GET_STATUS command
1602 */
1603static void xudc_getstatus(struct xusb_udc *udc)
1604{
1605	struct xusb_ep *ep0	= &udc->ep[0];
1606	struct xusb_req *req	= udc->req;
1607	struct xusb_ep *target_ep;
1608	u16 status = 0;
1609	u32 epcfgreg;
1610	int epnum;
1611	u32 halt;
1612	int ret;
1613
1614	switch (udc->setup.bRequestType & USB_RECIP_MASK) {
1615	case USB_RECIP_DEVICE:
1616		/* Get device status */
1617		status = 1 << USB_DEVICE_SELF_POWERED;
1618		if (udc->remote_wkp)
1619			status |= (1 << USB_DEVICE_REMOTE_WAKEUP);
1620		break;
1621	case USB_RECIP_INTERFACE:
1622		break;
1623	case USB_RECIP_ENDPOINT:
1624		epnum = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
1625		target_ep = &udc->ep[epnum];
1626		epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1627		halt = epcfgreg & XUSB_EP_CFG_STALL_MASK;
1628		if (udc->setup.wIndex & USB_DIR_IN) {
1629			if (!target_ep->is_in)
1630				goto stall;
1631		} else {
1632			if (target_ep->is_in)
1633				goto stall;
1634		}
1635		if (halt)
1636			status = 1 << USB_ENDPOINT_HALT;
1637		break;
1638	default:
1639		goto stall;
1640	}
1641
1642	req->usb_req.length = 2;
1643	*(u16 *)req->usb_req.buf = cpu_to_le16(status);
1644	ret = __xudc_ep0_queue(ep0, req);
1645	if (ret == 0)
1646		return;
1647stall:
1648	dev_err(udc->dev, "Can't respond to getstatus request\n");
1649	xudc_ep0_stall(udc);
1650}
1651
1652/**
1653 * xudc_set_clear_feature - Executes the set feature and clear feature commands.
1654 * @udc: pointer to the usb device controller structure.
1655 *
1656 * Processes the SET_FEATURE and CLEAR_FEATURE commands.
1657 */
1658static void xudc_set_clear_feature(struct xusb_udc *udc)
1659{
1660	struct xusb_ep *ep0	= &udc->ep[0];
1661	struct xusb_req *req	= udc->req;
1662	struct xusb_ep *target_ep;
1663	u8 endpoint;
1664	u8 outinbit;
1665	u32 epcfgreg;
1666	int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0);
1667	int ret;
1668
1669	switch (udc->setup.bRequestType) {
1670	case USB_RECIP_DEVICE:
1671		switch (udc->setup.wValue) {
1672		case USB_DEVICE_TEST_MODE:
1673			/*
1674			 * The Test Mode will be executed
1675			 * after the status phase.
1676			 */
1677			break;
1678		case USB_DEVICE_REMOTE_WAKEUP:
1679			if (flag)
1680				udc->remote_wkp = 1;
1681			else
1682				udc->remote_wkp = 0;
1683			break;
1684		default:
1685			xudc_ep0_stall(udc);
1686			break;
1687		}
1688		break;
1689	case USB_RECIP_ENDPOINT:
1690		if (!udc->setup.wValue) {
1691			endpoint = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
1692			target_ep = &udc->ep[endpoint];
1693			outinbit = udc->setup.wIndex & USB_ENDPOINT_DIR_MASK;
1694			outinbit = outinbit >> 7;
1695
1696			/* Make sure direction matches.*/
1697			if (outinbit != target_ep->is_in) {
1698				xudc_ep0_stall(udc);
1699				return;
1700			}
1701			epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1702			if (!endpoint) {
1703				/* Clear the stall.*/
1704				epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1705				udc->write_fn(udc->addr,
1706					      target_ep->offset, epcfgreg);
1707			} else {
1708				if (flag) {
1709					epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1710					udc->write_fn(udc->addr,
1711						      target_ep->offset,
1712						      epcfgreg);
1713				} else {
1714					/* Unstall the endpoint.*/
1715					epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK |
1716						XUSB_EP_CFG_DATA_TOGGLE_MASK);
1717					udc->write_fn(udc->addr,
1718						      target_ep->offset,
1719						      epcfgreg);
1720				}
1721			}
1722		}
1723		break;
1724	default:
1725		xudc_ep0_stall(udc);
1726		return;
1727	}
1728
1729	req->usb_req.length = 0;
1730	ret = __xudc_ep0_queue(ep0, req);
1731	if (ret == 0)
1732		return;
1733
1734	dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n");
1735	xudc_ep0_stall(udc);
1736}
1737
1738/**
1739 * xudc_handle_setup - Processes the setup packet.
1740 * @udc: pointer to the usb device controller structure.
1741 *
1742 * Process setup packet and delegate to gadget layer.
1743 */
1744static void xudc_handle_setup(struct xusb_udc *udc)
1745{
1746	struct xusb_ep *ep0 = &udc->ep[0];
1747	struct usb_ctrlrequest setup;
1748	u32 *ep0rambase;
1749
1750	/* Load up the chapter 9 command buffer.*/
1751	ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET);
1752	memcpy(&setup, ep0rambase, 8);
1753
1754	udc->setup = setup;
1755	udc->setup.wValue = cpu_to_le16(setup.wValue);
1756	udc->setup.wIndex = cpu_to_le16(setup.wIndex);
1757	udc->setup.wLength = cpu_to_le16(setup.wLength);
1758
1759	/* Clear previous requests */
1760	xudc_nuke(ep0, -ECONNRESET);
1761
1762	if (udc->setup.bRequestType & USB_DIR_IN) {
1763		/* Execute the get command.*/
1764		udc->setupseqrx = STATUS_PHASE;
1765		udc->setupseqtx = DATA_PHASE;
1766	} else {
1767		/* Execute the put command.*/
1768		udc->setupseqrx = DATA_PHASE;
1769		udc->setupseqtx = STATUS_PHASE;
1770	}
1771
1772	switch (udc->setup.bRequest) {
1773	case USB_REQ_GET_STATUS:
1774		/* Data+Status phase form udc */
1775		if ((udc->setup.bRequestType &
1776				(USB_DIR_IN | USB_TYPE_MASK)) !=
1777				(USB_DIR_IN | USB_TYPE_STANDARD))
1778			break;
1779		xudc_getstatus(udc);
1780		return;
1781	case USB_REQ_SET_ADDRESS:
1782		/* Status phase from udc */
1783		if (udc->setup.bRequestType != (USB_DIR_OUT |
1784				USB_TYPE_STANDARD | USB_RECIP_DEVICE))
1785			break;
1786		xudc_setaddress(udc);
1787		return;
1788	case USB_REQ_CLEAR_FEATURE:
1789	case USB_REQ_SET_FEATURE:
1790		/* Requests with no data phase, status phase from udc */
1791		if ((udc->setup.bRequestType & USB_TYPE_MASK)
1792				!= USB_TYPE_STANDARD)
1793			break;
1794		xudc_set_clear_feature(udc);
1795		return;
1796	default:
1797		break;
1798	}
1799
1800	spin_unlock(&udc->lock);
1801	if (udc->driver->setup(&udc->gadget, &setup) < 0)
1802		xudc_ep0_stall(udc);
1803	spin_lock(&udc->lock);
1804}
1805
1806/**
1807 * xudc_ep0_out - Processes the endpoint 0 OUT token.
1808 * @udc: pointer to the usb device controller structure.
1809 */
1810static void xudc_ep0_out(struct xusb_udc *udc)
1811{
1812	struct xusb_ep *ep0 = &udc->ep[0];
1813	struct xusb_req *req;
1814	u8 *ep0rambase;
1815	unsigned int bytes_to_rx;
1816	void *buffer;
1817
1818	req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1819
1820	switch (udc->setupseqrx) {
1821	case STATUS_PHASE:
1822		/*
1823		 * This resets both state machines for the next
1824		 * Setup packet.
1825		 */
1826		udc->setupseqrx = SETUP_PHASE;
1827		udc->setupseqtx = SETUP_PHASE;
1828		req->usb_req.actual = req->usb_req.length;
1829		xudc_done(ep0, req, 0);
1830		break;
1831	case DATA_PHASE:
1832		bytes_to_rx = udc->read_fn(udc->addr +
1833					   XUSB_EP_BUF0COUNT_OFFSET);
1834		/* Copy the data to be received from the DPRAM. */
1835		ep0rambase = (u8 __force *) (udc->addr +
1836			     (ep0->rambase << 2));
1837		buffer = req->usb_req.buf + req->usb_req.actual;
1838		req->usb_req.actual = req->usb_req.actual + bytes_to_rx;
1839		memcpy(buffer, ep0rambase, bytes_to_rx);
1840
1841		if (req->usb_req.length == req->usb_req.actual) {
1842			/* Data transfer completed get ready for Status stage */
1843			xudc_wrstatus(udc);
1844		} else {
1845			/* Enable EP0 buffer to receive data */
1846			udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1847			udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1848		}
1849		break;
1850	default:
1851		break;
1852	}
1853}
1854
1855/**
1856 * xudc_ep0_in - Processes the endpoint 0 IN token.
1857 * @udc: pointer to the usb device controller structure.
1858 */
1859static void xudc_ep0_in(struct xusb_udc *udc)
1860{
1861	struct xusb_ep *ep0 = &udc->ep[0];
1862	struct xusb_req *req;
1863	unsigned int bytes_to_tx;
1864	void *buffer;
1865	u32 epcfgreg;
1866	u16 count = 0;
1867	u16 length;
1868	u8 *ep0rambase;
1869	u8 test_mode = udc->setup.wIndex >> 8;
1870
1871	req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1872	bytes_to_tx = req->usb_req.length - req->usb_req.actual;
1873
1874	switch (udc->setupseqtx) {
1875	case STATUS_PHASE:
1876		switch (udc->setup.bRequest) {
1877		case USB_REQ_SET_ADDRESS:
1878			/* Set the address of the device.*/
1879			udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET,
1880				      udc->setup.wValue);
1881			break;
1882		case USB_REQ_SET_FEATURE:
1883			if (udc->setup.bRequestType ==
1884					USB_RECIP_DEVICE) {
1885				if (udc->setup.wValue ==
1886						USB_DEVICE_TEST_MODE)
1887					udc->write_fn(udc->addr,
1888						      XUSB_TESTMODE_OFFSET,
1889						      test_mode);
1890			}
1891			break;
1892		}
1893		req->usb_req.actual = req->usb_req.length;
1894		xudc_done(ep0, req, 0);
1895		break;
1896	case DATA_PHASE:
1897		if (!bytes_to_tx) {
1898			/*
1899			 * We're done with data transfer, next
1900			 * will be zero length OUT with data toggle of
1901			 * 1. Setup data_toggle.
1902			 */
1903			epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1904			epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK;
1905			udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1906			udc->setupseqtx = STATUS_PHASE;
1907		} else {
1908			length = count = min_t(u32, bytes_to_tx,
1909					       EP0_MAX_PACKET);
1910			/* Copy the data to be transmitted into the DPRAM. */
1911			ep0rambase = (u8 __force *) (udc->addr +
1912				     (ep0->rambase << 2));
1913			buffer = req->usb_req.buf + req->usb_req.actual;
1914			req->usb_req.actual = req->usb_req.actual + length;
1915			memcpy(ep0rambase, buffer, length);
1916		}
1917		udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count);
1918		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1919		break;
1920	default:
1921		break;
1922	}
1923}
1924
1925/**
1926 * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler.
1927 * @udc: pointer to the udc structure.
1928 * @intrstatus:	It's the mask value for the interrupt sources on endpoint 0.
1929 *
1930 * Processes the commands received during enumeration phase.
1931 */
1932static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus)
1933{
1934
1935	if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) {
1936		xudc_handle_setup(udc);
1937	} else {
1938		if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK)
1939			xudc_ep0_out(udc);
1940		else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK)
1941			xudc_ep0_in(udc);
1942	}
1943}
1944
1945/**
1946 * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler.
1947 * @udc: pointer to the udc structure.
1948 * @epnum: End point number for which the interrupt is to be processed
1949 * @intrstatus:	mask value for interrupt sources of endpoints other
1950 *		than endpoint 0.
1951 *
1952 * Processes the buffer completion interrupts.
1953 */
1954static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum,
1955				    u32 intrstatus)
1956{
1957
1958	struct xusb_req *req;
1959	struct xusb_ep *ep;
1960
1961	ep = &udc->ep[epnum];
1962	/* Process the End point interrupts.*/
1963	if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum))
1964		ep->buffer0ready = 0;
1965	if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum))
1966		ep->buffer1ready = 0;
1967
1968	if (list_empty(&ep->queue))
1969		return;
1970
1971	req = list_first_entry(&ep->queue, struct xusb_req, queue);
1972
1973	if (ep->is_in)
1974		xudc_write_fifo(ep, req);
1975	else
1976		xudc_read_fifo(ep, req);
1977}
1978
1979/**
1980 * xudc_irq - The main interrupt handler.
1981 * @irq: The interrupt number.
1982 * @_udc: pointer to the usb device controller structure.
1983 *
1984 * Return: IRQ_HANDLED after the interrupt is handled.
1985 */
1986static irqreturn_t xudc_irq(int irq, void *_udc)
1987{
1988	struct xusb_udc *udc = _udc;
1989	u32 intrstatus;
1990	u32 ier;
1991	u8 index;
1992	u32 bufintr;
1993	unsigned long flags;
1994
1995	spin_lock_irqsave(&udc->lock, flags);
1996
1997	/*
1998	 * Event interrupts are level sensitive hence first disable
1999	 * IER, read ISR and figure out active interrupts.
2000	 */
2001	ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2002	ier &= ~XUSB_STATUS_INTR_EVENT_MASK;
2003	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2004
2005	/* Read the Interrupt Status Register.*/
2006	intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET);
2007
2008	/* Call the handler for the event interrupt.*/
2009	if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) {
2010		/*
2011		 * Check if there is any action to be done for :
2012		 * - USB Reset received {XUSB_STATUS_RESET_MASK}
2013		 * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK}
2014		 * - USB Resume received {XUSB_STATUS_RESUME_MASK}
2015		 * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK}
2016		 */
2017		xudc_startup_handler(udc, intrstatus);
2018	}
2019
2020	/* Check the buffer completion interrupts */
2021	if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) {
2022		/* Enable Reset, Suspend, Resume and Disconnect  */
2023		ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2024		ier |= XUSB_STATUS_INTR_EVENT_MASK;
2025		udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2026
2027		if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK)
2028			xudc_ctrl_ep_handler(udc, intrstatus);
2029
2030		for (index = 1; index < 8; index++) {
2031			bufintr = ((intrstatus &
2032				  (XUSB_STATUS_EP1_BUFF1_COMP_MASK <<
2033				  (index - 1))) || (intrstatus &
2034				  (XUSB_STATUS_EP1_BUFF2_COMP_MASK <<
2035				  (index - 1))));
2036			if (bufintr) {
2037				xudc_nonctrl_ep_handler(udc, index,
2038							intrstatus);
2039			}
2040		}
2041	}
2042
2043	spin_unlock_irqrestore(&udc->lock, flags);
2044	return IRQ_HANDLED;
2045}
2046
2047/**
2048 * xudc_probe - The device probe function for driver initialization.
2049 * @pdev: pointer to the platform device structure.
2050 *
2051 * Return: 0 for success and error value on failure
2052 */
2053static int xudc_probe(struct platform_device *pdev)
2054{
2055	struct device_node *np = pdev->dev.of_node;
2056	struct resource *res;
2057	struct xusb_udc *udc;
2058	struct xusb_ep *ep0;
2059	int irq;
2060	int ret;
2061	u32 ier;
2062	u8 *buff;
2063
2064	udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2065	if (!udc)
2066		return -ENOMEM;
2067
2068	/* Create a dummy request for GET_STATUS, SET_ADDRESS */
2069	udc->req = devm_kzalloc(&pdev->dev, sizeof(struct xusb_req),
2070				GFP_KERNEL);
2071	if (!udc->req)
2072		return -ENOMEM;
2073
2074	buff = devm_kzalloc(&pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL);
2075	if (!buff)
2076		return -ENOMEM;
2077
2078	udc->req->usb_req.buf = buff;
2079
2080	/* Map the registers */
2081	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2082	udc->addr = devm_ioremap_resource(&pdev->dev, res);
2083	if (IS_ERR(udc->addr))
2084		return PTR_ERR(udc->addr);
2085
2086	irq = platform_get_irq(pdev, 0);
2087	if (irq < 0) {
2088		dev_err(&pdev->dev, "unable to get irq\n");
2089		return irq;
2090	}
2091	ret = devm_request_irq(&pdev->dev, irq, xudc_irq, 0,
2092			       dev_name(&pdev->dev), udc);
2093	if (ret < 0) {
2094		dev_dbg(&pdev->dev, "unable to request irq %d", irq);
2095		goto fail;
2096	}
2097
2098	udc->dma_enabled = of_property_read_bool(np, "xlnx,has-builtin-dma");
2099
2100	/* Setup gadget structure */
2101	udc->gadget.ops = &xusb_udc_ops;
2102	udc->gadget.max_speed = USB_SPEED_HIGH;
2103	udc->gadget.speed = USB_SPEED_UNKNOWN;
2104	udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb;
2105	udc->gadget.name = driver_name;
2106
2107	spin_lock_init(&udc->lock);
2108
2109	/* Check for IP endianness */
2110	udc->write_fn = xudc_write32_be;
2111	udc->read_fn = xudc_read32_be;
2112	udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, TEST_J);
2113	if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET))
2114			!= TEST_J) {
2115		udc->write_fn = xudc_write32;
2116		udc->read_fn = xudc_read32;
2117	}
2118	udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
2119
2120	xudc_eps_init(udc);
2121
2122	ep0 = &udc->ep[0];
2123
2124	/* Set device address to 0.*/
2125	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
2126
2127	ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2128	if (ret)
2129		goto fail;
2130
2131	udc->dev = &udc->gadget.dev;
2132
2133	/* Enable the interrupts.*/
2134	ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK |
2135	      XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK |
2136	      XUSB_STATUS_SETUP_PACKET_MASK |
2137	      XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK;
2138
2139	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2140
2141	platform_set_drvdata(pdev, udc);
2142
2143	dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n",
2144		 driver_name, (u32)res->start, udc->addr,
2145		 udc->dma_enabled ? "with DMA" : "without DMA");
2146
2147	return 0;
2148fail:
2149	dev_err(&pdev->dev, "probe failed, %d\n", ret);
2150	return ret;
2151}
2152
2153/**
2154 * xudc_remove - Releases the resources allocated during the initialization.
2155 * @pdev: pointer to the platform device structure.
2156 *
2157 * Return: 0 always
2158 */
2159static int xudc_remove(struct platform_device *pdev)
2160{
2161	struct xusb_udc *udc = platform_get_drvdata(pdev);
2162
2163	usb_del_gadget_udc(&udc->gadget);
2164
2165	return 0;
2166}
2167
2168/* Match table for of_platform binding */
2169static const struct of_device_id usb_of_match[] = {
2170	{ .compatible = "xlnx,usb2-device-4.00.a", },
2171	{ /* end of list */ },
2172};
2173MODULE_DEVICE_TABLE(of, usb_of_match);
2174
2175static struct platform_driver xudc_driver = {
2176	.driver = {
2177		.name = driver_name,
2178		.of_match_table = usb_of_match,
2179	},
2180	.probe = xudc_probe,
2181	.remove = xudc_remove,
2182};
2183
2184module_platform_driver(xudc_driver);
2185
2186MODULE_DESCRIPTION("Xilinx udc driver");
2187MODULE_AUTHOR("Xilinx, Inc");
2188MODULE_LICENSE("GPL");
v4.17
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Xilinx USB peripheral controller driver
   4 *
   5 * Copyright (C) 2004 by Thomas Rathbone
   6 * Copyright (C) 2005 by HP Labs
   7 * Copyright (C) 2005 by David Brownell
   8 * Copyright (C) 2010 - 2014 Xilinx, Inc.
   9 *
  10 * Some parts of this driver code is based on the driver for at91-series
  11 * USB peripheral controller (at91_udc.c).
 
 
 
 
 
 
  12 */
  13
  14#include <linux/delay.h>
  15#include <linux/device.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/module.h>
  20#include <linux/of_address.h>
  21#include <linux/of_device.h>
  22#include <linux/of_platform.h>
  23#include <linux/of_irq.h>
  24#include <linux/prefetch.h>
  25#include <linux/usb/ch9.h>
  26#include <linux/usb/gadget.h>
  27
  28/* Register offsets for the USB device.*/
  29#define XUSB_EP0_CONFIG_OFFSET		0x0000  /* EP0 Config Reg Offset */
  30#define XUSB_SETUP_PKT_ADDR_OFFSET	0x0080  /* Setup Packet Address */
  31#define XUSB_ADDRESS_OFFSET		0x0100  /* Address Register */
  32#define XUSB_CONTROL_OFFSET		0x0104  /* Control Register */
  33#define XUSB_STATUS_OFFSET		0x0108  /* Status Register */
  34#define XUSB_FRAMENUM_OFFSET		0x010C	/* Frame Number Register */
  35#define XUSB_IER_OFFSET			0x0110	/* Interrupt Enable Register */
  36#define XUSB_BUFFREADY_OFFSET		0x0114	/* Buffer Ready Register */
  37#define XUSB_TESTMODE_OFFSET		0x0118	/* Test Mode Register */
  38#define XUSB_DMA_RESET_OFFSET		0x0200  /* DMA Soft Reset Register */
  39#define XUSB_DMA_CONTROL_OFFSET		0x0204	/* DMA Control Register */
  40#define XUSB_DMA_DSAR_ADDR_OFFSET	0x0208	/* DMA source Address Reg */
  41#define XUSB_DMA_DDAR_ADDR_OFFSET	0x020C	/* DMA destination Addr Reg */
  42#define XUSB_DMA_LENGTH_OFFSET		0x0210	/* DMA Length Register */
  43#define XUSB_DMA_STATUS_OFFSET		0x0214	/* DMA Status Register */
  44
  45/* Endpoint Configuration Space offsets */
  46#define XUSB_EP_CFGSTATUS_OFFSET	0x00	/* Endpoint Config Status  */
  47#define XUSB_EP_BUF0COUNT_OFFSET	0x08	/* Buffer 0 Count */
  48#define XUSB_EP_BUF1COUNT_OFFSET	0x0C	/* Buffer 1 Count */
  49
  50#define XUSB_CONTROL_USB_READY_MASK	0x80000000 /* USB ready Mask */
  51#define XUSB_CONTROL_USB_RMTWAKE_MASK	0x40000000 /* Remote wake up mask */
  52
  53/* Interrupt register related masks.*/
  54#define XUSB_STATUS_GLOBAL_INTR_MASK	0x80000000 /* Global Intr Enable */
  55#define XUSB_STATUS_DMADONE_MASK	0x04000000 /* DMA done Mask */
  56#define XUSB_STATUS_DMAERR_MASK		0x02000000 /* DMA Error Mask */
  57#define XUSB_STATUS_DMABUSY_MASK	0x80000000 /* DMA Error Mask */
  58#define XUSB_STATUS_RESUME_MASK		0x01000000 /* USB Resume Mask */
  59#define XUSB_STATUS_RESET_MASK		0x00800000 /* USB Reset Mask */
  60#define XUSB_STATUS_SUSPEND_MASK	0x00400000 /* USB Suspend Mask */
  61#define XUSB_STATUS_DISCONNECT_MASK	0x00200000 /* USB Disconnect Mask */
  62#define XUSB_STATUS_FIFO_BUFF_RDY_MASK	0x00100000 /* FIFO Buff Ready Mask */
  63#define XUSB_STATUS_FIFO_BUFF_FREE_MASK	0x00080000 /* FIFO Buff Free Mask */
  64#define XUSB_STATUS_SETUP_PACKET_MASK	0x00040000 /* Setup packet received */
  65#define XUSB_STATUS_EP1_BUFF2_COMP_MASK	0x00000200 /* EP 1 Buff 2 Processed */
  66#define XUSB_STATUS_EP1_BUFF1_COMP_MASK	0x00000002 /* EP 1 Buff 1 Processed */
  67#define XUSB_STATUS_EP0_BUFF2_COMP_MASK	0x00000100 /* EP 0 Buff 2 Processed */
  68#define XUSB_STATUS_EP0_BUFF1_COMP_MASK	0x00000001 /* EP 0 Buff 1 Processed */
  69#define XUSB_STATUS_HIGH_SPEED_MASK	0x00010000 /* USB Speed Mask */
  70/* Suspend,Reset,Suspend and Disconnect Mask */
  71#define XUSB_STATUS_INTR_EVENT_MASK	0x01E00000
  72/* Buffers  completion Mask */
  73#define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK	0x0000FEFF
  74/* Mask for buffer 0 and buffer 1 completion for all Endpoints */
  75#define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK	0x00000101
  76#define XUSB_STATUS_EP_BUFF2_SHIFT	8	   /* EP buffer offset */
  77
  78/* Endpoint Configuration Status Register */
  79#define XUSB_EP_CFG_VALID_MASK		0x80000000 /* Endpoint Valid bit */
  80#define XUSB_EP_CFG_STALL_MASK		0x40000000 /* Endpoint Stall bit */
  81#define XUSB_EP_CFG_DATA_TOGGLE_MASK	0x08000000 /* Endpoint Data toggle */
  82
  83/* USB device specific global configuration constants.*/
  84#define XUSB_MAX_ENDPOINTS		8	/* Maximum End Points */
  85#define XUSB_EP_NUMBER_ZERO		0	/* End point Zero */
  86/* DPRAM is the source address for DMA transfer */
  87#define XUSB_DMA_READ_FROM_DPRAM	0x80000000
  88#define XUSB_DMA_DMASR_BUSY		0x80000000 /* DMA busy */
  89#define XUSB_DMA_DMASR_ERROR		0x40000000 /* DMA Error */
  90/*
  91 * When this bit is set, the DMA buffer ready bit is set by hardware upon
  92 * DMA transfer completion.
  93 */
  94#define XUSB_DMA_BRR_CTRL		0x40000000 /* DMA bufready ctrl bit */
  95/* Phase States */
  96#define SETUP_PHASE			0x0000	/* Setup Phase */
  97#define DATA_PHASE			0x0001  /* Data Phase */
  98#define STATUS_PHASE			0x0002  /* Status Phase */
  99
 100#define EP0_MAX_PACKET		64 /* Endpoint 0 maximum packet length */
 101#define STATUSBUFF_SIZE		2  /* Buffer size for GET_STATUS command */
 102#define EPNAME_SIZE		4  /* Buffer size for endpoint name */
 103
 104/* container_of helper macros */
 105#define to_udc(g)	 container_of((g), struct xusb_udc, gadget)
 106#define to_xusb_ep(ep)	 container_of((ep), struct xusb_ep, ep_usb)
 107#define to_xusb_req(req) container_of((req), struct xusb_req, usb_req)
 108
 109/**
 110 * struct xusb_req - Xilinx USB device request structure
 111 * @usb_req: Linux usb request structure
 112 * @queue: usb device request queue
 113 * @ep: pointer to xusb_endpoint structure
 114 */
 115struct xusb_req {
 116	struct usb_request usb_req;
 117	struct list_head queue;
 118	struct xusb_ep *ep;
 119};
 120
 121/**
 122 * struct xusb_ep - USB end point structure.
 123 * @ep_usb: usb endpoint instance
 124 * @queue: endpoint message queue
 125 * @udc: xilinx usb peripheral driver instance pointer
 126 * @desc: pointer to the usb endpoint descriptor
 127 * @rambase: the endpoint buffer address
 128 * @offset: the endpoint register offset value
 129 * @name: name of the endpoint
 130 * @epnumber: endpoint number
 131 * @maxpacket: maximum packet size the endpoint can store
 132 * @buffer0count: the size of the packet recieved in the first buffer
 133 * @buffer1count: the size of the packet received in the second buffer
 134 * @curbufnum: current buffer of endpoint that will be processed next
 135 * @buffer0ready: the busy state of first buffer
 136 * @buffer1ready: the busy state of second buffer
 137 * @is_in: endpoint direction (IN or OUT)
 138 * @is_iso: endpoint type(isochronous or non isochronous)
 139 */
 140struct xusb_ep {
 141	struct usb_ep ep_usb;
 142	struct list_head queue;
 143	struct xusb_udc *udc;
 144	const struct usb_endpoint_descriptor *desc;
 145	u32  rambase;
 146	u32  offset;
 147	char name[4];
 148	u16  epnumber;
 149	u16  maxpacket;
 150	u16  buffer0count;
 151	u16  buffer1count;
 152	u8   curbufnum;
 153	bool buffer0ready;
 154	bool buffer1ready;
 155	bool is_in;
 156	bool is_iso;
 157};
 158
 159/**
 160 * struct xusb_udc -  USB peripheral driver structure
 161 * @gadget: USB gadget driver instance
 162 * @ep: an array of endpoint structures
 163 * @driver: pointer to the usb gadget driver instance
 164 * @setup: usb_ctrlrequest structure for control requests
 165 * @req: pointer to dummy request for get status command
 166 * @dev: pointer to device structure in gadget
 167 * @usb_state: device in suspended state or not
 168 * @remote_wkp: remote wakeup enabled by host
 169 * @setupseqtx: tx status
 170 * @setupseqrx: rx status
 171 * @addr: the usb device base address
 172 * @lock: instance of spinlock
 173 * @dma_enabled: flag indicating whether the dma is included in the system
 174 * @read_fn: function pointer to read device registers
 175 * @write_fn: function pointer to write to device registers
 176 */
 177struct xusb_udc {
 178	struct usb_gadget gadget;
 179	struct xusb_ep ep[8];
 180	struct usb_gadget_driver *driver;
 181	struct usb_ctrlrequest setup;
 182	struct xusb_req *req;
 183	struct device *dev;
 184	u32 usb_state;
 185	u32 remote_wkp;
 186	u32 setupseqtx;
 187	u32 setupseqrx;
 188	void __iomem *addr;
 189	spinlock_t lock;
 190	bool dma_enabled;
 191
 192	unsigned int (*read_fn)(void __iomem *);
 193	void (*write_fn)(void __iomem *, u32, u32);
 194};
 195
 196/* Endpoint buffer start addresses in the core */
 197static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500,
 198			  0x1600 };
 199
 200static const char driver_name[] = "xilinx-udc";
 201static const char ep0name[] = "ep0";
 202
 203/* Control endpoint configuration.*/
 204static const struct usb_endpoint_descriptor config_bulk_out_desc = {
 205	.bLength		= USB_DT_ENDPOINT_SIZE,
 206	.bDescriptorType	= USB_DT_ENDPOINT,
 207	.bEndpointAddress	= USB_DIR_OUT,
 208	.bmAttributes		= USB_ENDPOINT_XFER_BULK,
 209	.wMaxPacketSize		= cpu_to_le16(EP0_MAX_PACKET),
 210};
 211
 212/**
 213 * xudc_write32 - little endian write to device registers
 214 * @addr: base addr of device registers
 215 * @offset: register offset
 216 * @val: data to be written
 217 */
 218static void xudc_write32(void __iomem *addr, u32 offset, u32 val)
 219{
 220	iowrite32(val, addr + offset);
 221}
 222
 223/**
 224 * xudc_read32 - little endian read from device registers
 225 * @addr: addr of device register
 226 * Return: value at addr
 227 */
 228static unsigned int xudc_read32(void __iomem *addr)
 229{
 230	return ioread32(addr);
 231}
 232
 233/**
 234 * xudc_write32_be - big endian write to device registers
 235 * @addr: base addr of device registers
 236 * @offset: register offset
 237 * @val: data to be written
 238 */
 239static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val)
 240{
 241	iowrite32be(val, addr + offset);
 242}
 243
 244/**
 245 * xudc_read32_be - big endian read from device registers
 246 * @addr: addr of device register
 247 * Return: value at addr
 248 */
 249static unsigned int xudc_read32_be(void __iomem *addr)
 250{
 251	return ioread32be(addr);
 252}
 253
 254/**
 255 * xudc_wrstatus - Sets up the usb device status stages.
 256 * @udc: pointer to the usb device controller structure.
 257 */
 258static void xudc_wrstatus(struct xusb_udc *udc)
 259{
 260	struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
 261	u32 epcfgreg;
 262
 263	epcfgreg = udc->read_fn(udc->addr + ep0->offset)|
 264				XUSB_EP_CFG_DATA_TOGGLE_MASK;
 265	udc->write_fn(udc->addr, ep0->offset, epcfgreg);
 266	udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0);
 267	udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
 268}
 269
 270/**
 271 * xudc_epconfig - Configures the given endpoint.
 272 * @ep: pointer to the usb device endpoint structure.
 273 * @udc: pointer to the usb peripheral controller structure.
 274 *
 275 * This function configures a specific endpoint with the given configuration
 276 * data.
 277 */
 278static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc)
 279{
 280	u32 epcfgreg;
 281
 282	/*
 283	 * Configure the end point direction, type, Max Packet Size and the
 284	 * EP buffer location.
 285	 */
 286	epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) |
 287		   (ep->ep_usb.maxpacket << 15) | (ep->rambase));
 288	udc->write_fn(udc->addr, ep->offset, epcfgreg);
 289
 290	/* Set the Buffer count and the Buffer ready bits.*/
 291	udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET,
 292		      ep->buffer0count);
 293	udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET,
 294		      ep->buffer1count);
 295	if (ep->buffer0ready)
 296		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 297			      1 << ep->epnumber);
 298	if (ep->buffer1ready)
 299		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 300			      1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
 301}
 302
 303/**
 304 * xudc_start_dma - Starts DMA transfer.
 305 * @ep: pointer to the usb device endpoint structure.
 306 * @src: DMA source address.
 307 * @dst: DMA destination address.
 308 * @length: number of bytes to transfer.
 309 *
 310 * Return: 0 on success, error code on failure
 311 *
 312 * This function starts DMA transfer by writing to DMA source,
 313 * destination and lenth registers.
 314 */
 315static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src,
 316			  dma_addr_t dst, u32 length)
 317{
 318	struct xusb_udc *udc = ep->udc;
 319	int rc = 0;
 320	u32 timeout = 500;
 321	u32 reg;
 322
 323	/*
 324	 * Set the addresses in the DMA source and
 325	 * destination registers and then set the length
 326	 * into the DMA length register.
 327	 */
 328	udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src);
 329	udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst);
 330	udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length);
 331
 332	/*
 333	 * Wait till DMA transaction is complete and
 334	 * check whether the DMA transaction was
 335	 * successful.
 336	 */
 337	do {
 338		reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET);
 339		if (!(reg &  XUSB_DMA_DMASR_BUSY))
 340			break;
 341
 342		/*
 343		 * We can't sleep here, because it's also called from
 344		 * interrupt context.
 345		 */
 346		timeout--;
 347		if (!timeout) {
 348			dev_err(udc->dev, "DMA timeout\n");
 349			return -ETIMEDOUT;
 350		}
 351		udelay(1);
 352	} while (1);
 353
 354	if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) &
 355			  XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){
 356		dev_err(udc->dev, "DMA Error\n");
 357		rc = -EINVAL;
 358	}
 359
 360	return rc;
 361}
 362
 363/**
 364 * xudc_dma_send - Sends IN data using DMA.
 365 * @ep: pointer to the usb device endpoint structure.
 366 * @req: pointer to the usb request structure.
 367 * @buffer: pointer to data to be sent.
 368 * @length: number of bytes to send.
 369 *
 370 * Return: 0 on success, -EAGAIN if no buffer is free and error
 371 *	   code on failure.
 372 *
 373 * This function sends data using DMA.
 374 */
 375static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req,
 376			 u8 *buffer, u32 length)
 377{
 378	u32 *eprambase;
 379	dma_addr_t src;
 380	dma_addr_t dst;
 381	struct xusb_udc *udc = ep->udc;
 382
 383	src = req->usb_req.dma + req->usb_req.actual;
 384	if (req->usb_req.length)
 385		dma_sync_single_for_device(udc->dev, src,
 386					   length, DMA_TO_DEVICE);
 387	if (!ep->curbufnum && !ep->buffer0ready) {
 388		/* Get the Buffer address and copy the transmit data.*/
 389		eprambase = (u32 __force *)(udc->addr + ep->rambase);
 390		dst = virt_to_phys(eprambase);
 391		udc->write_fn(udc->addr, ep->offset +
 392			      XUSB_EP_BUF0COUNT_OFFSET, length);
 393		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 394			      XUSB_DMA_BRR_CTRL | (1 << ep->epnumber));
 395		ep->buffer0ready = 1;
 396		ep->curbufnum = 1;
 397	} else if (ep->curbufnum && !ep->buffer1ready) {
 398		/* Get the Buffer address and copy the transmit data.*/
 399		eprambase = (u32 __force *)(udc->addr + ep->rambase +
 400			     ep->ep_usb.maxpacket);
 401		dst = virt_to_phys(eprambase);
 402		udc->write_fn(udc->addr, ep->offset +
 403			      XUSB_EP_BUF1COUNT_OFFSET, length);
 404		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 405			      XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber +
 406			      XUSB_STATUS_EP_BUFF2_SHIFT)));
 407		ep->buffer1ready = 1;
 408		ep->curbufnum = 0;
 409	} else {
 410		/* None of ping pong buffers are ready currently .*/
 411		return -EAGAIN;
 412	}
 413
 414	return xudc_start_dma(ep, src, dst, length);
 415}
 416
 417/**
 418 * xudc_dma_receive - Receives OUT data using DMA.
 419 * @ep: pointer to the usb device endpoint structure.
 420 * @req: pointer to the usb request structure.
 421 * @buffer: pointer to storage buffer of received data.
 422 * @length: number of bytes to receive.
 423 *
 424 * Return: 0 on success, -EAGAIN if no buffer is free and error
 425 *	   code on failure.
 426 *
 427 * This function receives data using DMA.
 428 */
 429static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req,
 430			    u8 *buffer, u32 length)
 431{
 432	u32 *eprambase;
 433	dma_addr_t src;
 434	dma_addr_t dst;
 435	struct xusb_udc *udc = ep->udc;
 436
 437	dst = req->usb_req.dma + req->usb_req.actual;
 438	if (!ep->curbufnum && !ep->buffer0ready) {
 439		/* Get the Buffer address and copy the transmit data */
 440		eprambase = (u32 __force *)(udc->addr + ep->rambase);
 441		src = virt_to_phys(eprambase);
 442		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 443			      XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
 444			      (1 << ep->epnumber));
 445		ep->buffer0ready = 1;
 446		ep->curbufnum = 1;
 447	} else if (ep->curbufnum && !ep->buffer1ready) {
 448		/* Get the Buffer address and copy the transmit data */
 449		eprambase = (u32 __force *)(udc->addr +
 450			     ep->rambase + ep->ep_usb.maxpacket);
 451		src = virt_to_phys(eprambase);
 452		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 453			      XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
 454			      (1 << (ep->epnumber +
 455			      XUSB_STATUS_EP_BUFF2_SHIFT)));
 456		ep->buffer1ready = 1;
 457		ep->curbufnum = 0;
 458	} else {
 459		/* None of the ping-pong buffers are ready currently */
 460		return -EAGAIN;
 461	}
 462
 463	return xudc_start_dma(ep, src, dst, length);
 464}
 465
 466/**
 467 * xudc_eptxrx - Transmits or receives data to or from an endpoint.
 468 * @ep: pointer to the usb endpoint configuration structure.
 469 * @req: pointer to the usb request structure.
 470 * @bufferptr: pointer to buffer containing the data to be sent.
 471 * @bufferlen: The number of data bytes to be sent.
 472 *
 473 * Return: 0 on success, -EAGAIN if no buffer is free.
 474 *
 475 * This function copies the transmit/receive data to/from the end point buffer
 476 * and enables the buffer for transmission/reception.
 477 */
 478static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req,
 479		       u8 *bufferptr, u32 bufferlen)
 480{
 481	u32 *eprambase;
 482	u32 bytestosend;
 483	int rc = 0;
 484	struct xusb_udc *udc = ep->udc;
 485
 486	bytestosend = bufferlen;
 487	if (udc->dma_enabled) {
 488		if (ep->is_in)
 489			rc = xudc_dma_send(ep, req, bufferptr, bufferlen);
 490		else
 491			rc = xudc_dma_receive(ep, req, bufferptr, bufferlen);
 492		return rc;
 493	}
 494	/* Put the transmit buffer into the correct ping-pong buffer.*/
 495	if (!ep->curbufnum && !ep->buffer0ready) {
 496		/* Get the Buffer address and copy the transmit data.*/
 497		eprambase = (u32 __force *)(udc->addr + ep->rambase);
 498		if (ep->is_in) {
 499			memcpy(eprambase, bufferptr, bytestosend);
 500			udc->write_fn(udc->addr, ep->offset +
 501				      XUSB_EP_BUF0COUNT_OFFSET, bufferlen);
 502		} else {
 503			memcpy(bufferptr, eprambase, bytestosend);
 504		}
 505		/*
 506		 * Enable the buffer for transmission.
 507		 */
 508		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 509			      1 << ep->epnumber);
 510		ep->buffer0ready = 1;
 511		ep->curbufnum = 1;
 512	} else if (ep->curbufnum && !ep->buffer1ready) {
 513		/* Get the Buffer address and copy the transmit data.*/
 514		eprambase = (u32 __force *)(udc->addr + ep->rambase +
 515			     ep->ep_usb.maxpacket);
 516		if (ep->is_in) {
 517			memcpy(eprambase, bufferptr, bytestosend);
 518			udc->write_fn(udc->addr, ep->offset +
 519				      XUSB_EP_BUF1COUNT_OFFSET, bufferlen);
 520		} else {
 521			memcpy(bufferptr, eprambase, bytestosend);
 522		}
 523		/*
 524		 * Enable the buffer for transmission.
 525		 */
 526		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 527			      1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
 528		ep->buffer1ready = 1;
 529		ep->curbufnum = 0;
 530	} else {
 531		/* None of the ping-pong buffers are ready currently */
 532		return -EAGAIN;
 533	}
 534	return rc;
 535}
 536
 537/**
 538 * xudc_done - Exeutes the endpoint data transfer completion tasks.
 539 * @ep: pointer to the usb device endpoint structure.
 540 * @req: pointer to the usb request structure.
 541 * @status: Status of the data transfer.
 542 *
 543 * Deletes the message from the queue and updates data transfer completion
 544 * status.
 545 */
 546static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status)
 547{
 548	struct xusb_udc *udc = ep->udc;
 549
 550	list_del_init(&req->queue);
 551
 552	if (req->usb_req.status == -EINPROGRESS)
 553		req->usb_req.status = status;
 554	else
 555		status = req->usb_req.status;
 556
 557	if (status && status != -ESHUTDOWN)
 558		dev_dbg(udc->dev, "%s done %p, status %d\n",
 559			ep->ep_usb.name, req, status);
 560	/* unmap request if DMA is present*/
 561	if (udc->dma_enabled && ep->epnumber && req->usb_req.length)
 562		usb_gadget_unmap_request(&udc->gadget, &req->usb_req,
 563					 ep->is_in);
 564
 565	if (req->usb_req.complete) {
 566		spin_unlock(&udc->lock);
 567		req->usb_req.complete(&ep->ep_usb, &req->usb_req);
 568		spin_lock(&udc->lock);
 569	}
 570}
 571
 572/**
 573 * xudc_read_fifo - Reads the data from the given endpoint buffer.
 574 * @ep: pointer to the usb device endpoint structure.
 575 * @req: pointer to the usb request structure.
 576 *
 577 * Return: 0 if request is completed and -EAGAIN if not completed.
 578 *
 579 * Pulls OUT packet data from the endpoint buffer.
 580 */
 581static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req)
 582{
 583	u8 *buf;
 584	u32 is_short, count, bufferspace;
 585	u8 bufoffset;
 586	u8 two_pkts = 0;
 587	int ret;
 588	int retval = -EAGAIN;
 589	struct xusb_udc *udc = ep->udc;
 590
 591	if (ep->buffer0ready && ep->buffer1ready) {
 592		dev_dbg(udc->dev, "Packet NOT ready!\n");
 593		return retval;
 594	}
 595top:
 596	if (ep->curbufnum)
 597		bufoffset = XUSB_EP_BUF1COUNT_OFFSET;
 598	else
 599		bufoffset = XUSB_EP_BUF0COUNT_OFFSET;
 600
 601	count = udc->read_fn(udc->addr + ep->offset + bufoffset);
 602
 603	if (!ep->buffer0ready && !ep->buffer1ready)
 604		two_pkts = 1;
 605
 606	buf = req->usb_req.buf + req->usb_req.actual;
 607	prefetchw(buf);
 608	bufferspace = req->usb_req.length - req->usb_req.actual;
 609	is_short = count < ep->ep_usb.maxpacket;
 610
 611	if (unlikely(!bufferspace)) {
 612		/*
 613		 * This happens when the driver's buffer
 614		 * is smaller than what the host sent.
 615		 * discard the extra data.
 616		 */
 617		if (req->usb_req.status != -EOVERFLOW)
 618			dev_dbg(udc->dev, "%s overflow %d\n",
 619				ep->ep_usb.name, count);
 620		req->usb_req.status = -EOVERFLOW;
 621		xudc_done(ep, req, -EOVERFLOW);
 622		return 0;
 623	}
 624
 625	ret = xudc_eptxrx(ep, req, buf, count);
 626	switch (ret) {
 627	case 0:
 628		req->usb_req.actual += min(count, bufferspace);
 629		dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n",
 630			ep->ep_usb.name, count, is_short ? "/S" : "", req,
 631			req->usb_req.actual, req->usb_req.length);
 632		bufferspace -= count;
 633		/* Completion */
 634		if ((req->usb_req.actual == req->usb_req.length) || is_short) {
 635			if (udc->dma_enabled && req->usb_req.length)
 636				dma_sync_single_for_cpu(udc->dev,
 637							req->usb_req.dma,
 638							req->usb_req.actual,
 639							DMA_FROM_DEVICE);
 640			xudc_done(ep, req, 0);
 641			return 0;
 642		}
 643		if (two_pkts) {
 644			two_pkts = 0;
 645			goto top;
 646		}
 647		break;
 648	case -EAGAIN:
 649		dev_dbg(udc->dev, "receive busy\n");
 650		break;
 651	case -EINVAL:
 652	case -ETIMEDOUT:
 653		/* DMA error, dequeue the request */
 654		xudc_done(ep, req, -ECONNRESET);
 655		retval = 0;
 656		break;
 657	}
 658
 659	return retval;
 660}
 661
 662/**
 663 * xudc_write_fifo - Writes data into the given endpoint buffer.
 664 * @ep: pointer to the usb device endpoint structure.
 665 * @req: pointer to the usb request structure.
 666 *
 667 * Return: 0 if request is completed and -EAGAIN if not completed.
 668 *
 669 * Loads endpoint buffer for an IN packet.
 670 */
 671static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req)
 672{
 673	u32 max;
 674	u32 length;
 675	int ret;
 676	int retval = -EAGAIN;
 677	struct xusb_udc *udc = ep->udc;
 678	int is_last, is_short = 0;
 679	u8 *buf;
 680
 681	max = le16_to_cpu(ep->desc->wMaxPacketSize);
 682	buf = req->usb_req.buf + req->usb_req.actual;
 683	prefetch(buf);
 684	length = req->usb_req.length - req->usb_req.actual;
 685	length = min(length, max);
 686
 687	ret = xudc_eptxrx(ep, req, buf, length);
 688	switch (ret) {
 689	case 0:
 690		req->usb_req.actual += length;
 691		if (unlikely(length != max)) {
 692			is_last = is_short = 1;
 693		} else {
 694			if (likely(req->usb_req.length !=
 695				   req->usb_req.actual) || req->usb_req.zero)
 696				is_last = 0;
 697			else
 698				is_last = 1;
 699		}
 700		dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n",
 701			__func__, ep->ep_usb.name, length, is_last ? "/L" : "",
 702			is_short ? "/S" : "",
 703			req->usb_req.length - req->usb_req.actual, req);
 704		/* completion */
 705		if (is_last) {
 706			xudc_done(ep, req, 0);
 707			retval = 0;
 708		}
 709		break;
 710	case -EAGAIN:
 711		dev_dbg(udc->dev, "Send busy\n");
 712		break;
 713	case -EINVAL:
 714	case -ETIMEDOUT:
 715		/* DMA error, dequeue the request */
 716		xudc_done(ep, req, -ECONNRESET);
 717		retval = 0;
 718		break;
 719	}
 720
 721	return retval;
 722}
 723
 724/**
 725 * xudc_nuke - Cleans up the data transfer message list.
 726 * @ep: pointer to the usb device endpoint structure.
 727 * @status: Status of the data transfer.
 728 */
 729static void xudc_nuke(struct xusb_ep *ep, int status)
 730{
 731	struct xusb_req *req;
 732
 733	while (!list_empty(&ep->queue)) {
 734		req = list_first_entry(&ep->queue, struct xusb_req, queue);
 735		xudc_done(ep, req, status);
 736	}
 737}
 738
 739/**
 740 * xudc_ep_set_halt - Stalls/unstalls the given endpoint.
 741 * @_ep: pointer to the usb device endpoint structure.
 742 * @value: value to indicate stall/unstall.
 743 *
 744 * Return: 0 for success and error value on failure
 745 */
 746static int xudc_ep_set_halt(struct usb_ep *_ep, int value)
 747{
 748	struct xusb_ep *ep = to_xusb_ep(_ep);
 749	struct xusb_udc *udc;
 750	unsigned long flags;
 751	u32 epcfgreg;
 752
 753	if (!_ep || (!ep->desc && ep->epnumber)) {
 754		pr_debug("%s: bad ep or descriptor\n", __func__);
 755		return -EINVAL;
 756	}
 757	udc = ep->udc;
 758
 759	if (ep->is_in && (!list_empty(&ep->queue)) && value) {
 760		dev_dbg(udc->dev, "requests pending can't halt\n");
 761		return -EAGAIN;
 762	}
 763
 764	if (ep->buffer0ready || ep->buffer1ready) {
 765		dev_dbg(udc->dev, "HW buffers busy can't halt\n");
 766		return -EAGAIN;
 767	}
 768
 769	spin_lock_irqsave(&udc->lock, flags);
 770
 771	if (value) {
 772		/* Stall the device.*/
 773		epcfgreg = udc->read_fn(udc->addr + ep->offset);
 774		epcfgreg |= XUSB_EP_CFG_STALL_MASK;
 775		udc->write_fn(udc->addr, ep->offset, epcfgreg);
 776	} else {
 777		/* Unstall the device.*/
 778		epcfgreg = udc->read_fn(udc->addr + ep->offset);
 779		epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
 780		udc->write_fn(udc->addr, ep->offset, epcfgreg);
 781		if (ep->epnumber) {
 782			/* Reset the toggle bit.*/
 783			epcfgreg = udc->read_fn(ep->udc->addr + ep->offset);
 784			epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
 785			udc->write_fn(udc->addr, ep->offset, epcfgreg);
 786		}
 787	}
 788
 789	spin_unlock_irqrestore(&udc->lock, flags);
 790	return 0;
 791}
 792
 793/**
 794 * xudc_ep_enable - Enables the given endpoint.
 795 * @ep: pointer to the xusb endpoint structure.
 796 * @desc: pointer to usb endpoint descriptor.
 797 *
 798 * Return: 0 for success and error value on failure
 799 */
 800static int __xudc_ep_enable(struct xusb_ep *ep,
 801			    const struct usb_endpoint_descriptor *desc)
 802{
 803	struct xusb_udc *udc = ep->udc;
 804	u32 tmp;
 805	u32 epcfg;
 806	u32 ier;
 807	u16 maxpacket;
 808
 809	ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0);
 810	/* Bit 3...0:endpoint number */
 811	ep->epnumber = (desc->bEndpointAddress & 0x0f);
 812	ep->desc = desc;
 813	ep->ep_usb.desc = desc;
 814	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
 815	ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize);
 816
 817	switch (tmp) {
 818	case USB_ENDPOINT_XFER_CONTROL:
 819		dev_dbg(udc->dev, "only one control endpoint\n");
 820		/* NON- ISO */
 821		ep->is_iso = 0;
 822		return -EINVAL;
 823	case USB_ENDPOINT_XFER_INT:
 824		/* NON- ISO */
 825		ep->is_iso = 0;
 826		if (maxpacket > 64) {
 827			dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
 828			return -EINVAL;
 829		}
 830		break;
 831	case USB_ENDPOINT_XFER_BULK:
 832		/* NON- ISO */
 833		ep->is_iso = 0;
 834		if (!(is_power_of_2(maxpacket) && maxpacket >= 8 &&
 835				maxpacket <= 512)) {
 836			dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
 837			return -EINVAL;
 838		}
 839		break;
 840	case USB_ENDPOINT_XFER_ISOC:
 841		/* ISO */
 842		ep->is_iso = 1;
 843		break;
 844	}
 845
 846	ep->buffer0ready = 0;
 847	ep->buffer1ready = 0;
 848	ep->curbufnum = 0;
 849	ep->rambase = rambase[ep->epnumber];
 850	xudc_epconfig(ep, udc);
 851
 852	dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n",
 853		ep->epnumber, maxpacket);
 854
 855	/* Enable the End point.*/
 856	epcfg = udc->read_fn(udc->addr + ep->offset);
 857	epcfg |= XUSB_EP_CFG_VALID_MASK;
 858	udc->write_fn(udc->addr, ep->offset, epcfg);
 859	if (ep->epnumber)
 860		ep->rambase <<= 2;
 861
 862	/* Enable buffer completion interrupts for endpoint */
 863	ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
 864	ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber);
 865	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
 866
 867	/* for OUT endpoint set buffers ready to receive */
 868	if (ep->epnumber && !ep->is_in) {
 869		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 870			      1 << ep->epnumber);
 871		ep->buffer0ready = 1;
 872		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 873			     (1 << (ep->epnumber +
 874			      XUSB_STATUS_EP_BUFF2_SHIFT)));
 875		ep->buffer1ready = 1;
 876	}
 877
 878	return 0;
 879}
 880
 881/**
 882 * xudc_ep_enable - Enables the given endpoint.
 883 * @_ep: pointer to the usb endpoint structure.
 884 * @desc: pointer to usb endpoint descriptor.
 885 *
 886 * Return: 0 for success and error value on failure
 887 */
 888static int xudc_ep_enable(struct usb_ep *_ep,
 889			  const struct usb_endpoint_descriptor *desc)
 890{
 891	struct xusb_ep *ep;
 892	struct xusb_udc *udc;
 893	unsigned long flags;
 894	int ret;
 895
 896	if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) {
 897		pr_debug("%s: bad ep or descriptor\n", __func__);
 898		return -EINVAL;
 899	}
 900
 901	ep = to_xusb_ep(_ep);
 902	udc = ep->udc;
 903
 904	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
 905		dev_dbg(udc->dev, "bogus device state\n");
 906		return -ESHUTDOWN;
 907	}
 908
 909	spin_lock_irqsave(&udc->lock, flags);
 910	ret = __xudc_ep_enable(ep, desc);
 911	spin_unlock_irqrestore(&udc->lock, flags);
 912
 913	return ret;
 914}
 915
 916/**
 917 * xudc_ep_disable - Disables the given endpoint.
 918 * @_ep: pointer to the usb endpoint structure.
 919 *
 920 * Return: 0 for success and error value on failure
 921 */
 922static int xudc_ep_disable(struct usb_ep *_ep)
 923{
 924	struct xusb_ep *ep;
 925	unsigned long flags;
 926	u32 epcfg;
 927	struct xusb_udc *udc;
 928
 929	if (!_ep) {
 930		pr_debug("%s: invalid ep\n", __func__);
 931		return -EINVAL;
 932	}
 933
 934	ep = to_xusb_ep(_ep);
 935	udc = ep->udc;
 936
 937	spin_lock_irqsave(&udc->lock, flags);
 938
 939	xudc_nuke(ep, -ESHUTDOWN);
 940
 941	/* Restore the endpoint's pristine config */
 942	ep->desc = NULL;
 943	ep->ep_usb.desc = NULL;
 944
 945	dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber);
 946	/* Disable the endpoint.*/
 947	epcfg = udc->read_fn(udc->addr + ep->offset);
 948	epcfg &= ~XUSB_EP_CFG_VALID_MASK;
 949	udc->write_fn(udc->addr, ep->offset, epcfg);
 950
 951	spin_unlock_irqrestore(&udc->lock, flags);
 952	return 0;
 953}
 954
 955/**
 956 * xudc_ep_alloc_request - Initializes the request queue.
 957 * @_ep: pointer to the usb endpoint structure.
 958 * @gfp_flags: Flags related to the request call.
 959 *
 960 * Return: pointer to request structure on success and a NULL on failure.
 961 */
 962static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep,
 963						 gfp_t gfp_flags)
 964{
 965	struct xusb_ep *ep = to_xusb_ep(_ep);
 
 966	struct xusb_req *req;
 967
 
 968	req = kzalloc(sizeof(*req), gfp_flags);
 969	if (!req)
 
 970		return NULL;
 
 971
 972	req->ep = ep;
 973	INIT_LIST_HEAD(&req->queue);
 974	return &req->usb_req;
 975}
 976
 977/**
 978 * xudc_free_request - Releases the request from queue.
 979 * @_ep: pointer to the usb device endpoint structure.
 980 * @_req: pointer to the usb request structure.
 981 */
 982static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req)
 983{
 984	struct xusb_req *req = to_xusb_req(_req);
 985
 986	kfree(req);
 987}
 988
 989/**
 990 * xudc_ep0_queue - Adds the request to endpoint 0 queue.
 991 * @ep0: pointer to the xusb endpoint 0 structure.
 992 * @req: pointer to the xusb request structure.
 993 *
 994 * Return: 0 for success and error value on failure
 995 */
 996static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req)
 997{
 998	struct xusb_udc *udc = ep0->udc;
 999	u32 length;
1000	u8 *corebuf;
1001
1002	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1003		dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1004		return -EINVAL;
1005	}
1006	if (!list_empty(&ep0->queue)) {
1007		dev_dbg(udc->dev, "%s:ep0 busy\n", __func__);
1008		return -EBUSY;
1009	}
1010
1011	req->usb_req.status = -EINPROGRESS;
1012	req->usb_req.actual = 0;
1013
1014	list_add_tail(&req->queue, &ep0->queue);
1015
1016	if (udc->setup.bRequestType & USB_DIR_IN) {
1017		prefetch(req->usb_req.buf);
1018		length = req->usb_req.length;
1019		corebuf = (void __force *) ((ep0->rambase << 2) +
1020			   udc->addr);
1021		length = req->usb_req.actual = min_t(u32, length,
1022						     EP0_MAX_PACKET);
1023		memcpy(corebuf, req->usb_req.buf, length);
1024		udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length);
1025		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1026	} else {
1027		if (udc->setup.wLength) {
1028			/* Enable EP0 buffer to receive data */
1029			udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1030			udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1031		} else {
1032			xudc_wrstatus(udc);
1033		}
1034	}
1035
1036	return 0;
1037}
1038
1039/**
1040 * xudc_ep0_queue - Adds the request to endpoint 0 queue.
1041 * @_ep: pointer to the usb endpoint 0 structure.
1042 * @_req: pointer to the usb request structure.
1043 * @gfp_flags: Flags related to the request call.
1044 *
1045 * Return: 0 for success and error value on failure
1046 */
1047static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req,
1048			  gfp_t gfp_flags)
1049{
1050	struct xusb_req *req	= to_xusb_req(_req);
1051	struct xusb_ep	*ep0	= to_xusb_ep(_ep);
1052	struct xusb_udc *udc	= ep0->udc;
1053	unsigned long flags;
1054	int ret;
1055
1056	spin_lock_irqsave(&udc->lock, flags);
1057	ret = __xudc_ep0_queue(ep0, req);
1058	spin_unlock_irqrestore(&udc->lock, flags);
1059
1060	return ret;
1061}
1062
1063/**
1064 * xudc_ep_queue - Adds the request to endpoint queue.
1065 * @_ep: pointer to the usb endpoint structure.
1066 * @_req: pointer to the usb request structure.
1067 * @gfp_flags: Flags related to the request call.
1068 *
1069 * Return: 0 for success and error value on failure
1070 */
1071static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1072			 gfp_t gfp_flags)
1073{
1074	struct xusb_req *req = to_xusb_req(_req);
1075	struct xusb_ep	*ep  = to_xusb_ep(_ep);
1076	struct xusb_udc *udc = ep->udc;
1077	int  ret;
1078	unsigned long flags;
1079
1080	if (!ep->desc) {
1081		dev_dbg(udc->dev, "%s:queing request to disabled %s\n",
1082			__func__, ep->name);
1083		return -ESHUTDOWN;
1084	}
1085
1086	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1087		dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1088		return -EINVAL;
1089	}
1090
1091	spin_lock_irqsave(&udc->lock, flags);
1092
1093	_req->status = -EINPROGRESS;
1094	_req->actual = 0;
1095
1096	if (udc->dma_enabled) {
1097		ret = usb_gadget_map_request(&udc->gadget, &req->usb_req,
1098					     ep->is_in);
1099		if (ret) {
1100			dev_dbg(udc->dev, "gadget_map failed ep%d\n",
1101				ep->epnumber);
1102			spin_unlock_irqrestore(&udc->lock, flags);
1103			return -EAGAIN;
1104		}
1105	}
1106
1107	if (list_empty(&ep->queue)) {
1108		if (ep->is_in) {
1109			dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n");
1110			if (!xudc_write_fifo(ep, req))
1111				req = NULL;
1112		} else {
1113			dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n");
1114			if (!xudc_read_fifo(ep, req))
1115				req = NULL;
1116		}
1117	}
1118
1119	if (req != NULL)
1120		list_add_tail(&req->queue, &ep->queue);
1121
1122	spin_unlock_irqrestore(&udc->lock, flags);
1123	return 0;
1124}
1125
1126/**
1127 * xudc_ep_dequeue - Removes the request from the queue.
1128 * @_ep: pointer to the usb device endpoint structure.
1129 * @_req: pointer to the usb request structure.
1130 *
1131 * Return: 0 for success and error value on failure
1132 */
1133static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1134{
1135	struct xusb_ep *ep	= to_xusb_ep(_ep);
1136	struct xusb_req *req	= to_xusb_req(_req);
1137	struct xusb_udc *udc	= ep->udc;
1138	unsigned long flags;
1139
1140	spin_lock_irqsave(&udc->lock, flags);
1141	/* Make sure it's actually queued on this endpoint */
1142	list_for_each_entry(req, &ep->queue, queue) {
1143		if (&req->usb_req == _req)
1144			break;
1145	}
1146	if (&req->usb_req != _req) {
1147		spin_unlock_irqrestore(&udc->lock, flags);
1148		return -EINVAL;
1149	}
1150	xudc_done(ep, req, -ECONNRESET);
1151	spin_unlock_irqrestore(&udc->lock, flags);
1152
1153	return 0;
1154}
1155
1156/**
1157 * xudc_ep0_enable - Enables the given endpoint.
1158 * @ep: pointer to the usb endpoint structure.
1159 * @desc: pointer to usb endpoint descriptor.
1160 *
1161 * Return: error always.
1162 *
1163 * endpoint 0 enable should not be called by gadget layer.
1164 */
1165static int xudc_ep0_enable(struct usb_ep *ep,
1166			   const struct usb_endpoint_descriptor *desc)
1167{
1168	return -EINVAL;
1169}
1170
1171/**
1172 * xudc_ep0_disable - Disables the given endpoint.
1173 * @ep: pointer to the usb endpoint structure.
1174 *
1175 * Return: error always.
1176 *
1177 * endpoint 0 disable should not be called by gadget layer.
1178 */
1179static int xudc_ep0_disable(struct usb_ep *ep)
1180{
1181	return -EINVAL;
1182}
1183
1184static const struct usb_ep_ops xusb_ep0_ops = {
1185	.enable		= xudc_ep0_enable,
1186	.disable	= xudc_ep0_disable,
1187	.alloc_request	= xudc_ep_alloc_request,
1188	.free_request	= xudc_free_request,
1189	.queue		= xudc_ep0_queue,
1190	.dequeue	= xudc_ep_dequeue,
1191	.set_halt	= xudc_ep_set_halt,
1192};
1193
1194static const struct usb_ep_ops xusb_ep_ops = {
1195	.enable		= xudc_ep_enable,
1196	.disable	= xudc_ep_disable,
1197	.alloc_request	= xudc_ep_alloc_request,
1198	.free_request	= xudc_free_request,
1199	.queue		= xudc_ep_queue,
1200	.dequeue	= xudc_ep_dequeue,
1201	.set_halt	= xudc_ep_set_halt,
1202};
1203
1204/**
1205 * xudc_get_frame - Reads the current usb frame number.
1206 * @gadget: pointer to the usb gadget structure.
1207 *
1208 * Return: current frame number for success and error value on failure.
1209 */
1210static int xudc_get_frame(struct usb_gadget *gadget)
1211{
1212	struct xusb_udc *udc;
1213	int frame;
1214
1215	if (!gadget)
1216		return -ENODEV;
1217
1218	udc = to_udc(gadget);
1219	frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET);
1220	return frame;
1221}
1222
1223/**
1224 * xudc_wakeup - Send remote wakeup signal to host
1225 * @gadget: pointer to the usb gadget structure.
1226 *
1227 * Return: 0 on success and error on failure
1228 */
1229static int xudc_wakeup(struct usb_gadget *gadget)
1230{
1231	struct xusb_udc *udc = to_udc(gadget);
1232	u32 crtlreg;
1233	int status = -EINVAL;
1234	unsigned long flags;
1235
1236	spin_lock_irqsave(&udc->lock, flags);
1237
1238	/* Remote wake up not enabled by host */
1239	if (!udc->remote_wkp)
1240		goto done;
1241
1242	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1243	crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK;
1244	/* set remote wake up bit */
1245	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1246	/*
1247	 * wait for a while and reset remote wake up bit since this bit
1248	 * is not cleared by HW after sending remote wakeup to host.
1249	 */
1250	mdelay(2);
1251
1252	crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK;
1253	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1254	status = 0;
1255done:
1256	spin_unlock_irqrestore(&udc->lock, flags);
1257	return status;
1258}
1259
1260/**
1261 * xudc_pullup - start/stop USB traffic
1262 * @gadget: pointer to the usb gadget structure.
1263 * @is_on: flag to start or stop
1264 *
1265 * Return: 0 always
1266 *
1267 * This function starts/stops SIE engine of IP based on is_on.
1268 */
1269static int xudc_pullup(struct usb_gadget *gadget, int is_on)
1270{
1271	struct xusb_udc *udc = to_udc(gadget);
1272	unsigned long flags;
1273	u32 crtlreg;
1274
1275	spin_lock_irqsave(&udc->lock, flags);
1276
1277	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1278	if (is_on)
1279		crtlreg |= XUSB_CONTROL_USB_READY_MASK;
1280	else
1281		crtlreg &= ~XUSB_CONTROL_USB_READY_MASK;
1282
1283	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1284
1285	spin_unlock_irqrestore(&udc->lock, flags);
1286
1287	return 0;
1288}
1289
1290/**
1291 * xudc_eps_init - initialize endpoints.
1292 * @udc: pointer to the usb device controller structure.
1293 */
1294static void xudc_eps_init(struct xusb_udc *udc)
1295{
1296	u32 ep_number;
1297
1298	INIT_LIST_HEAD(&udc->gadget.ep_list);
1299
1300	for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) {
1301		struct xusb_ep *ep = &udc->ep[ep_number];
1302
1303		if (ep_number) {
1304			list_add_tail(&ep->ep_usb.ep_list,
1305				      &udc->gadget.ep_list);
1306			usb_ep_set_maxpacket_limit(&ep->ep_usb,
1307						  (unsigned short) ~0);
1308			snprintf(ep->name, EPNAME_SIZE, "ep%d", ep_number);
1309			ep->ep_usb.name = ep->name;
1310			ep->ep_usb.ops = &xusb_ep_ops;
1311
1312			ep->ep_usb.caps.type_iso = true;
1313			ep->ep_usb.caps.type_bulk = true;
1314			ep->ep_usb.caps.type_int = true;
1315		} else {
1316			ep->ep_usb.name = ep0name;
1317			usb_ep_set_maxpacket_limit(&ep->ep_usb, EP0_MAX_PACKET);
1318			ep->ep_usb.ops = &xusb_ep0_ops;
1319
1320			ep->ep_usb.caps.type_control = true;
1321		}
1322
1323		ep->ep_usb.caps.dir_in = true;
1324		ep->ep_usb.caps.dir_out = true;
1325
1326		ep->udc = udc;
1327		ep->epnumber = ep_number;
1328		ep->desc = NULL;
1329		/*
1330		 * The configuration register address offset between
1331		 * each endpoint is 0x10.
1332		 */
1333		ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10);
1334		ep->is_in = 0;
1335		ep->is_iso = 0;
1336		ep->maxpacket = 0;
1337		xudc_epconfig(ep, udc);
1338
1339		/* Initialize one queue per endpoint */
1340		INIT_LIST_HEAD(&ep->queue);
1341	}
1342}
1343
1344/**
1345 * xudc_stop_activity - Stops any further activity on the device.
1346 * @udc: pointer to the usb device controller structure.
1347 */
1348static void xudc_stop_activity(struct xusb_udc *udc)
1349{
1350	int i;
1351	struct xusb_ep *ep;
1352
1353	for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1354		ep = &udc->ep[i];
1355		xudc_nuke(ep, -ESHUTDOWN);
1356	}
1357}
1358
1359/**
1360 * xudc_start - Starts the device.
1361 * @gadget: pointer to the usb gadget structure
1362 * @driver: pointer to gadget driver structure
1363 *
1364 * Return: zero on success and error on failure
1365 */
1366static int xudc_start(struct usb_gadget *gadget,
1367		      struct usb_gadget_driver *driver)
1368{
1369	struct xusb_udc *udc	= to_udc(gadget);
1370	struct xusb_ep *ep0	= &udc->ep[XUSB_EP_NUMBER_ZERO];
1371	const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc;
1372	unsigned long flags;
1373	int ret = 0;
1374
1375	spin_lock_irqsave(&udc->lock, flags);
1376
1377	if (udc->driver) {
1378		dev_err(udc->dev, "%s is already bound to %s\n",
1379			udc->gadget.name, udc->driver->driver.name);
1380		ret = -EBUSY;
1381		goto err;
1382	}
1383
1384	/* hook up the driver */
1385	udc->driver = driver;
1386	udc->gadget.speed = driver->max_speed;
1387
1388	/* Enable the control endpoint. */
1389	ret = __xudc_ep_enable(ep0, desc);
1390
1391	/* Set device address and remote wakeup to 0 */
1392	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1393	udc->remote_wkp = 0;
1394err:
1395	spin_unlock_irqrestore(&udc->lock, flags);
1396	return ret;
1397}
1398
1399/**
1400 * xudc_stop - stops the device.
1401 * @gadget: pointer to the usb gadget structure
1402 * @driver: pointer to usb gadget driver structure
1403 *
1404 * Return: zero always
1405 */
1406static int xudc_stop(struct usb_gadget *gadget)
1407{
1408	struct xusb_udc *udc = to_udc(gadget);
1409	unsigned long flags;
1410
1411	spin_lock_irqsave(&udc->lock, flags);
1412
1413	udc->gadget.speed = USB_SPEED_UNKNOWN;
1414	udc->driver = NULL;
1415
1416	/* Set device address and remote wakeup to 0 */
1417	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1418	udc->remote_wkp = 0;
1419
1420	xudc_stop_activity(udc);
1421
1422	spin_unlock_irqrestore(&udc->lock, flags);
1423
1424	return 0;
1425}
1426
1427static const struct usb_gadget_ops xusb_udc_ops = {
1428	.get_frame	= xudc_get_frame,
1429	.wakeup		= xudc_wakeup,
1430	.pullup		= xudc_pullup,
1431	.udc_start	= xudc_start,
1432	.udc_stop	= xudc_stop,
1433};
1434
1435/**
1436 * xudc_clear_stall_all_ep - clears stall of every endpoint.
1437 * @udc: pointer to the udc structure.
1438 */
1439static void xudc_clear_stall_all_ep(struct xusb_udc *udc)
1440{
1441	struct xusb_ep *ep;
1442	u32 epcfgreg;
1443	int i;
1444
1445	for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1446		ep = &udc->ep[i];
1447		epcfgreg = udc->read_fn(udc->addr + ep->offset);
1448		epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1449		udc->write_fn(udc->addr, ep->offset, epcfgreg);
1450		if (ep->epnumber) {
1451			/* Reset the toggle bit.*/
1452			epcfgreg = udc->read_fn(udc->addr + ep->offset);
1453			epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
1454			udc->write_fn(udc->addr, ep->offset, epcfgreg);
1455		}
1456	}
1457}
1458
1459/**
1460 * xudc_startup_handler - The usb device controller interrupt handler.
1461 * @udc: pointer to the udc structure.
1462 * @intrstatus: The mask value containing the interrupt sources.
1463 *
1464 * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts.
1465 */
1466static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus)
1467{
1468	u32 intrreg;
1469
1470	if (intrstatus & XUSB_STATUS_RESET_MASK) {
1471
1472		dev_dbg(udc->dev, "Reset\n");
1473
1474		if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK)
1475			udc->gadget.speed = USB_SPEED_HIGH;
1476		else
1477			udc->gadget.speed = USB_SPEED_FULL;
1478
1479		xudc_stop_activity(udc);
1480		xudc_clear_stall_all_ep(udc);
1481		udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
1482
1483		/* Set device address and remote wakeup to 0 */
1484		udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1485		udc->remote_wkp = 0;
1486
1487		/* Enable the suspend, resume and disconnect */
1488		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1489		intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK |
1490			   XUSB_STATUS_DISCONNECT_MASK;
1491		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1492	}
1493	if (intrstatus & XUSB_STATUS_SUSPEND_MASK) {
1494
1495		dev_dbg(udc->dev, "Suspend\n");
1496
1497		/* Enable the reset, resume and disconnect */
1498		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1499		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1500			   XUSB_STATUS_DISCONNECT_MASK;
1501		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1502
1503		udc->usb_state = USB_STATE_SUSPENDED;
1504
1505		if (udc->driver->suspend) {
1506			spin_unlock(&udc->lock);
1507			udc->driver->suspend(&udc->gadget);
1508			spin_lock(&udc->lock);
1509		}
1510	}
1511	if (intrstatus & XUSB_STATUS_RESUME_MASK) {
1512		bool condition = (udc->usb_state != USB_STATE_SUSPENDED);
1513
1514		dev_WARN_ONCE(udc->dev, condition,
1515				"Resume IRQ while not suspended\n");
1516
1517		dev_dbg(udc->dev, "Resume\n");
1518
1519		/* Enable the reset, suspend and disconnect */
1520		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1521		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK |
1522			   XUSB_STATUS_DISCONNECT_MASK;
1523		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1524
1525		udc->usb_state = 0;
1526
1527		if (udc->driver->resume) {
1528			spin_unlock(&udc->lock);
1529			udc->driver->resume(&udc->gadget);
1530			spin_lock(&udc->lock);
1531		}
1532	}
1533	if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) {
1534
1535		dev_dbg(udc->dev, "Disconnect\n");
1536
1537		/* Enable the reset, resume and suspend */
1538		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1539		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1540			   XUSB_STATUS_SUSPEND_MASK;
1541		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1542
1543		if (udc->driver && udc->driver->disconnect) {
1544			spin_unlock(&udc->lock);
1545			udc->driver->disconnect(&udc->gadget);
1546			spin_lock(&udc->lock);
1547		}
1548	}
1549}
1550
1551/**
1552 * xudc_ep0_stall - Stall endpoint zero.
1553 * @udc: pointer to the udc structure.
1554 *
1555 * This function stalls endpoint zero.
1556 */
1557static void xudc_ep0_stall(struct xusb_udc *udc)
1558{
1559	u32 epcfgreg;
1560	struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
1561
1562	epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1563	epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1564	udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1565}
1566
1567/**
1568 * xudc_setaddress - executes SET_ADDRESS command
1569 * @udc: pointer to the udc structure.
1570 *
1571 * This function executes USB SET_ADDRESS command
1572 */
1573static void xudc_setaddress(struct xusb_udc *udc)
1574{
1575	struct xusb_ep *ep0	= &udc->ep[0];
1576	struct xusb_req *req	= udc->req;
1577	int ret;
1578
1579	req->usb_req.length = 0;
1580	ret = __xudc_ep0_queue(ep0, req);
1581	if (ret == 0)
1582		return;
1583
1584	dev_err(udc->dev, "Can't respond to SET ADDRESS request\n");
1585	xudc_ep0_stall(udc);
1586}
1587
1588/**
1589 * xudc_getstatus - executes GET_STATUS command
1590 * @udc: pointer to the udc structure.
1591 *
1592 * This function executes USB GET_STATUS command
1593 */
1594static void xudc_getstatus(struct xusb_udc *udc)
1595{
1596	struct xusb_ep *ep0	= &udc->ep[0];
1597	struct xusb_req *req	= udc->req;
1598	struct xusb_ep *target_ep;
1599	u16 status = 0;
1600	u32 epcfgreg;
1601	int epnum;
1602	u32 halt;
1603	int ret;
1604
1605	switch (udc->setup.bRequestType & USB_RECIP_MASK) {
1606	case USB_RECIP_DEVICE:
1607		/* Get device status */
1608		status = 1 << USB_DEVICE_SELF_POWERED;
1609		if (udc->remote_wkp)
1610			status |= (1 << USB_DEVICE_REMOTE_WAKEUP);
1611		break;
1612	case USB_RECIP_INTERFACE:
1613		break;
1614	case USB_RECIP_ENDPOINT:
1615		epnum = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
1616		target_ep = &udc->ep[epnum];
1617		epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1618		halt = epcfgreg & XUSB_EP_CFG_STALL_MASK;
1619		if (udc->setup.wIndex & USB_DIR_IN) {
1620			if (!target_ep->is_in)
1621				goto stall;
1622		} else {
1623			if (target_ep->is_in)
1624				goto stall;
1625		}
1626		if (halt)
1627			status = 1 << USB_ENDPOINT_HALT;
1628		break;
1629	default:
1630		goto stall;
1631	}
1632
1633	req->usb_req.length = 2;
1634	*(u16 *)req->usb_req.buf = cpu_to_le16(status);
1635	ret = __xudc_ep0_queue(ep0, req);
1636	if (ret == 0)
1637		return;
1638stall:
1639	dev_err(udc->dev, "Can't respond to getstatus request\n");
1640	xudc_ep0_stall(udc);
1641}
1642
1643/**
1644 * xudc_set_clear_feature - Executes the set feature and clear feature commands.
1645 * @udc: pointer to the usb device controller structure.
1646 *
1647 * Processes the SET_FEATURE and CLEAR_FEATURE commands.
1648 */
1649static void xudc_set_clear_feature(struct xusb_udc *udc)
1650{
1651	struct xusb_ep *ep0	= &udc->ep[0];
1652	struct xusb_req *req	= udc->req;
1653	struct xusb_ep *target_ep;
1654	u8 endpoint;
1655	u8 outinbit;
1656	u32 epcfgreg;
1657	int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0);
1658	int ret;
1659
1660	switch (udc->setup.bRequestType) {
1661	case USB_RECIP_DEVICE:
1662		switch (udc->setup.wValue) {
1663		case USB_DEVICE_TEST_MODE:
1664			/*
1665			 * The Test Mode will be executed
1666			 * after the status phase.
1667			 */
1668			break;
1669		case USB_DEVICE_REMOTE_WAKEUP:
1670			if (flag)
1671				udc->remote_wkp = 1;
1672			else
1673				udc->remote_wkp = 0;
1674			break;
1675		default:
1676			xudc_ep0_stall(udc);
1677			break;
1678		}
1679		break;
1680	case USB_RECIP_ENDPOINT:
1681		if (!udc->setup.wValue) {
1682			endpoint = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
1683			target_ep = &udc->ep[endpoint];
1684			outinbit = udc->setup.wIndex & USB_ENDPOINT_DIR_MASK;
1685			outinbit = outinbit >> 7;
1686
1687			/* Make sure direction matches.*/
1688			if (outinbit != target_ep->is_in) {
1689				xudc_ep0_stall(udc);
1690				return;
1691			}
1692			epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1693			if (!endpoint) {
1694				/* Clear the stall.*/
1695				epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1696				udc->write_fn(udc->addr,
1697					      target_ep->offset, epcfgreg);
1698			} else {
1699				if (flag) {
1700					epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1701					udc->write_fn(udc->addr,
1702						      target_ep->offset,
1703						      epcfgreg);
1704				} else {
1705					/* Unstall the endpoint.*/
1706					epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK |
1707						XUSB_EP_CFG_DATA_TOGGLE_MASK);
1708					udc->write_fn(udc->addr,
1709						      target_ep->offset,
1710						      epcfgreg);
1711				}
1712			}
1713		}
1714		break;
1715	default:
1716		xudc_ep0_stall(udc);
1717		return;
1718	}
1719
1720	req->usb_req.length = 0;
1721	ret = __xudc_ep0_queue(ep0, req);
1722	if (ret == 0)
1723		return;
1724
1725	dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n");
1726	xudc_ep0_stall(udc);
1727}
1728
1729/**
1730 * xudc_handle_setup - Processes the setup packet.
1731 * @udc: pointer to the usb device controller structure.
1732 *
1733 * Process setup packet and delegate to gadget layer.
1734 */
1735static void xudc_handle_setup(struct xusb_udc *udc)
1736{
1737	struct xusb_ep *ep0 = &udc->ep[0];
1738	struct usb_ctrlrequest setup;
1739	u32 *ep0rambase;
1740
1741	/* Load up the chapter 9 command buffer.*/
1742	ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET);
1743	memcpy(&setup, ep0rambase, 8);
1744
1745	udc->setup = setup;
1746	udc->setup.wValue = cpu_to_le16(setup.wValue);
1747	udc->setup.wIndex = cpu_to_le16(setup.wIndex);
1748	udc->setup.wLength = cpu_to_le16(setup.wLength);
1749
1750	/* Clear previous requests */
1751	xudc_nuke(ep0, -ECONNRESET);
1752
1753	if (udc->setup.bRequestType & USB_DIR_IN) {
1754		/* Execute the get command.*/
1755		udc->setupseqrx = STATUS_PHASE;
1756		udc->setupseqtx = DATA_PHASE;
1757	} else {
1758		/* Execute the put command.*/
1759		udc->setupseqrx = DATA_PHASE;
1760		udc->setupseqtx = STATUS_PHASE;
1761	}
1762
1763	switch (udc->setup.bRequest) {
1764	case USB_REQ_GET_STATUS:
1765		/* Data+Status phase form udc */
1766		if ((udc->setup.bRequestType &
1767				(USB_DIR_IN | USB_TYPE_MASK)) !=
1768				(USB_DIR_IN | USB_TYPE_STANDARD))
1769			break;
1770		xudc_getstatus(udc);
1771		return;
1772	case USB_REQ_SET_ADDRESS:
1773		/* Status phase from udc */
1774		if (udc->setup.bRequestType != (USB_DIR_OUT |
1775				USB_TYPE_STANDARD | USB_RECIP_DEVICE))
1776			break;
1777		xudc_setaddress(udc);
1778		return;
1779	case USB_REQ_CLEAR_FEATURE:
1780	case USB_REQ_SET_FEATURE:
1781		/* Requests with no data phase, status phase from udc */
1782		if ((udc->setup.bRequestType & USB_TYPE_MASK)
1783				!= USB_TYPE_STANDARD)
1784			break;
1785		xudc_set_clear_feature(udc);
1786		return;
1787	default:
1788		break;
1789	}
1790
1791	spin_unlock(&udc->lock);
1792	if (udc->driver->setup(&udc->gadget, &setup) < 0)
1793		xudc_ep0_stall(udc);
1794	spin_lock(&udc->lock);
1795}
1796
1797/**
1798 * xudc_ep0_out - Processes the endpoint 0 OUT token.
1799 * @udc: pointer to the usb device controller structure.
1800 */
1801static void xudc_ep0_out(struct xusb_udc *udc)
1802{
1803	struct xusb_ep *ep0 = &udc->ep[0];
1804	struct xusb_req *req;
1805	u8 *ep0rambase;
1806	unsigned int bytes_to_rx;
1807	void *buffer;
1808
1809	req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1810
1811	switch (udc->setupseqrx) {
1812	case STATUS_PHASE:
1813		/*
1814		 * This resets both state machines for the next
1815		 * Setup packet.
1816		 */
1817		udc->setupseqrx = SETUP_PHASE;
1818		udc->setupseqtx = SETUP_PHASE;
1819		req->usb_req.actual = req->usb_req.length;
1820		xudc_done(ep0, req, 0);
1821		break;
1822	case DATA_PHASE:
1823		bytes_to_rx = udc->read_fn(udc->addr +
1824					   XUSB_EP_BUF0COUNT_OFFSET);
1825		/* Copy the data to be received from the DPRAM. */
1826		ep0rambase = (u8 __force *) (udc->addr +
1827			     (ep0->rambase << 2));
1828		buffer = req->usb_req.buf + req->usb_req.actual;
1829		req->usb_req.actual = req->usb_req.actual + bytes_to_rx;
1830		memcpy(buffer, ep0rambase, bytes_to_rx);
1831
1832		if (req->usb_req.length == req->usb_req.actual) {
1833			/* Data transfer completed get ready for Status stage */
1834			xudc_wrstatus(udc);
1835		} else {
1836			/* Enable EP0 buffer to receive data */
1837			udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1838			udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1839		}
1840		break;
1841	default:
1842		break;
1843	}
1844}
1845
1846/**
1847 * xudc_ep0_in - Processes the endpoint 0 IN token.
1848 * @udc: pointer to the usb device controller structure.
1849 */
1850static void xudc_ep0_in(struct xusb_udc *udc)
1851{
1852	struct xusb_ep *ep0 = &udc->ep[0];
1853	struct xusb_req *req;
1854	unsigned int bytes_to_tx;
1855	void *buffer;
1856	u32 epcfgreg;
1857	u16 count = 0;
1858	u16 length;
1859	u8 *ep0rambase;
1860	u8 test_mode = udc->setup.wIndex >> 8;
1861
1862	req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1863	bytes_to_tx = req->usb_req.length - req->usb_req.actual;
1864
1865	switch (udc->setupseqtx) {
1866	case STATUS_PHASE:
1867		switch (udc->setup.bRequest) {
1868		case USB_REQ_SET_ADDRESS:
1869			/* Set the address of the device.*/
1870			udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET,
1871				      udc->setup.wValue);
1872			break;
1873		case USB_REQ_SET_FEATURE:
1874			if (udc->setup.bRequestType ==
1875					USB_RECIP_DEVICE) {
1876				if (udc->setup.wValue ==
1877						USB_DEVICE_TEST_MODE)
1878					udc->write_fn(udc->addr,
1879						      XUSB_TESTMODE_OFFSET,
1880						      test_mode);
1881			}
1882			break;
1883		}
1884		req->usb_req.actual = req->usb_req.length;
1885		xudc_done(ep0, req, 0);
1886		break;
1887	case DATA_PHASE:
1888		if (!bytes_to_tx) {
1889			/*
1890			 * We're done with data transfer, next
1891			 * will be zero length OUT with data toggle of
1892			 * 1. Setup data_toggle.
1893			 */
1894			epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1895			epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK;
1896			udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1897			udc->setupseqtx = STATUS_PHASE;
1898		} else {
1899			length = count = min_t(u32, bytes_to_tx,
1900					       EP0_MAX_PACKET);
1901			/* Copy the data to be transmitted into the DPRAM. */
1902			ep0rambase = (u8 __force *) (udc->addr +
1903				     (ep0->rambase << 2));
1904			buffer = req->usb_req.buf + req->usb_req.actual;
1905			req->usb_req.actual = req->usb_req.actual + length;
1906			memcpy(ep0rambase, buffer, length);
1907		}
1908		udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count);
1909		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1910		break;
1911	default:
1912		break;
1913	}
1914}
1915
1916/**
1917 * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler.
1918 * @udc: pointer to the udc structure.
1919 * @intrstatus:	It's the mask value for the interrupt sources on endpoint 0.
1920 *
1921 * Processes the commands received during enumeration phase.
1922 */
1923static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus)
1924{
1925
1926	if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) {
1927		xudc_handle_setup(udc);
1928	} else {
1929		if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK)
1930			xudc_ep0_out(udc);
1931		else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK)
1932			xudc_ep0_in(udc);
1933	}
1934}
1935
1936/**
1937 * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler.
1938 * @udc: pointer to the udc structure.
1939 * @epnum: End point number for which the interrupt is to be processed
1940 * @intrstatus:	mask value for interrupt sources of endpoints other
1941 *		than endpoint 0.
1942 *
1943 * Processes the buffer completion interrupts.
1944 */
1945static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum,
1946				    u32 intrstatus)
1947{
1948
1949	struct xusb_req *req;
1950	struct xusb_ep *ep;
1951
1952	ep = &udc->ep[epnum];
1953	/* Process the End point interrupts.*/
1954	if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum))
1955		ep->buffer0ready = 0;
1956	if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum))
1957		ep->buffer1ready = 0;
1958
1959	if (list_empty(&ep->queue))
1960		return;
1961
1962	req = list_first_entry(&ep->queue, struct xusb_req, queue);
1963
1964	if (ep->is_in)
1965		xudc_write_fifo(ep, req);
1966	else
1967		xudc_read_fifo(ep, req);
1968}
1969
1970/**
1971 * xudc_irq - The main interrupt handler.
1972 * @irq: The interrupt number.
1973 * @_udc: pointer to the usb device controller structure.
1974 *
1975 * Return: IRQ_HANDLED after the interrupt is handled.
1976 */
1977static irqreturn_t xudc_irq(int irq, void *_udc)
1978{
1979	struct xusb_udc *udc = _udc;
1980	u32 intrstatus;
1981	u32 ier;
1982	u8 index;
1983	u32 bufintr;
1984	unsigned long flags;
1985
1986	spin_lock_irqsave(&udc->lock, flags);
1987
1988	/*
1989	 * Event interrupts are level sensitive hence first disable
1990	 * IER, read ISR and figure out active interrupts.
1991	 */
1992	ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1993	ier &= ~XUSB_STATUS_INTR_EVENT_MASK;
1994	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
1995
1996	/* Read the Interrupt Status Register.*/
1997	intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET);
1998
1999	/* Call the handler for the event interrupt.*/
2000	if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) {
2001		/*
2002		 * Check if there is any action to be done for :
2003		 * - USB Reset received {XUSB_STATUS_RESET_MASK}
2004		 * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK}
2005		 * - USB Resume received {XUSB_STATUS_RESUME_MASK}
2006		 * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK}
2007		 */
2008		xudc_startup_handler(udc, intrstatus);
2009	}
2010
2011	/* Check the buffer completion interrupts */
2012	if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) {
2013		/* Enable Reset, Suspend, Resume and Disconnect  */
2014		ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2015		ier |= XUSB_STATUS_INTR_EVENT_MASK;
2016		udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2017
2018		if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK)
2019			xudc_ctrl_ep_handler(udc, intrstatus);
2020
2021		for (index = 1; index < 8; index++) {
2022			bufintr = ((intrstatus &
2023				  (XUSB_STATUS_EP1_BUFF1_COMP_MASK <<
2024				  (index - 1))) || (intrstatus &
2025				  (XUSB_STATUS_EP1_BUFF2_COMP_MASK <<
2026				  (index - 1))));
2027			if (bufintr) {
2028				xudc_nonctrl_ep_handler(udc, index,
2029							intrstatus);
2030			}
2031		}
2032	}
2033
2034	spin_unlock_irqrestore(&udc->lock, flags);
2035	return IRQ_HANDLED;
2036}
2037
2038/**
2039 * xudc_probe - The device probe function for driver initialization.
2040 * @pdev: pointer to the platform device structure.
2041 *
2042 * Return: 0 for success and error value on failure
2043 */
2044static int xudc_probe(struct platform_device *pdev)
2045{
2046	struct device_node *np = pdev->dev.of_node;
2047	struct resource *res;
2048	struct xusb_udc *udc;
 
2049	int irq;
2050	int ret;
2051	u32 ier;
2052	u8 *buff;
2053
2054	udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2055	if (!udc)
2056		return -ENOMEM;
2057
2058	/* Create a dummy request for GET_STATUS, SET_ADDRESS */
2059	udc->req = devm_kzalloc(&pdev->dev, sizeof(struct xusb_req),
2060				GFP_KERNEL);
2061	if (!udc->req)
2062		return -ENOMEM;
2063
2064	buff = devm_kzalloc(&pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL);
2065	if (!buff)
2066		return -ENOMEM;
2067
2068	udc->req->usb_req.buf = buff;
2069
2070	/* Map the registers */
2071	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2072	udc->addr = devm_ioremap_resource(&pdev->dev, res);
2073	if (IS_ERR(udc->addr))
2074		return PTR_ERR(udc->addr);
2075
2076	irq = platform_get_irq(pdev, 0);
2077	if (irq < 0) {
2078		dev_err(&pdev->dev, "unable to get irq\n");
2079		return irq;
2080	}
2081	ret = devm_request_irq(&pdev->dev, irq, xudc_irq, 0,
2082			       dev_name(&pdev->dev), udc);
2083	if (ret < 0) {
2084		dev_dbg(&pdev->dev, "unable to request irq %d", irq);
2085		goto fail;
2086	}
2087
2088	udc->dma_enabled = of_property_read_bool(np, "xlnx,has-builtin-dma");
2089
2090	/* Setup gadget structure */
2091	udc->gadget.ops = &xusb_udc_ops;
2092	udc->gadget.max_speed = USB_SPEED_HIGH;
2093	udc->gadget.speed = USB_SPEED_UNKNOWN;
2094	udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb;
2095	udc->gadget.name = driver_name;
2096
2097	spin_lock_init(&udc->lock);
2098
2099	/* Check for IP endianness */
2100	udc->write_fn = xudc_write32_be;
2101	udc->read_fn = xudc_read32_be;
2102	udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, TEST_J);
2103	if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET))
2104			!= TEST_J) {
2105		udc->write_fn = xudc_write32;
2106		udc->read_fn = xudc_read32;
2107	}
2108	udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
2109
2110	xudc_eps_init(udc);
 
 
2111
2112	/* Set device address to 0.*/
2113	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
2114
2115	ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2116	if (ret)
2117		goto fail;
2118
2119	udc->dev = &udc->gadget.dev;
2120
2121	/* Enable the interrupts.*/
2122	ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK |
2123	      XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK |
2124	      XUSB_STATUS_SETUP_PACKET_MASK |
2125	      XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK;
2126
2127	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2128
2129	platform_set_drvdata(pdev, udc);
2130
2131	dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n",
2132		 driver_name, (u32)res->start, udc->addr,
2133		 udc->dma_enabled ? "with DMA" : "without DMA");
2134
2135	return 0;
2136fail:
2137	dev_err(&pdev->dev, "probe failed, %d\n", ret);
2138	return ret;
2139}
2140
2141/**
2142 * xudc_remove - Releases the resources allocated during the initialization.
2143 * @pdev: pointer to the platform device structure.
2144 *
2145 * Return: 0 always
2146 */
2147static int xudc_remove(struct platform_device *pdev)
2148{
2149	struct xusb_udc *udc = platform_get_drvdata(pdev);
2150
2151	usb_del_gadget_udc(&udc->gadget);
2152
2153	return 0;
2154}
2155
2156/* Match table for of_platform binding */
2157static const struct of_device_id usb_of_match[] = {
2158	{ .compatible = "xlnx,usb2-device-4.00.a", },
2159	{ /* end of list */ },
2160};
2161MODULE_DEVICE_TABLE(of, usb_of_match);
2162
2163static struct platform_driver xudc_driver = {
2164	.driver = {
2165		.name = driver_name,
2166		.of_match_table = usb_of_match,
2167	},
2168	.probe = xudc_probe,
2169	.remove = xudc_remove,
2170};
2171
2172module_platform_driver(xudc_driver);
2173
2174MODULE_DESCRIPTION("Xilinx udc driver");
2175MODULE_AUTHOR("Xilinx, Inc");
2176MODULE_LICENSE("GPL");