Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
   3 *
   4 *  Copyright (C) 2002 - 2011  Paul Mundt
   5 *  Copyright (C) 2015 Glider bvba
   6 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
   7 *
   8 * based off of the old drivers/char/sh-sci.c by:
   9 *
  10 *   Copyright (C) 1999, 2000  Niibe Yutaka
  11 *   Copyright (C) 2000  Sugioka Toshinobu
  12 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
  13 *   Modified to support SecureEdge. David McCullough (2002)
  14 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
  15 *   Removed SH7300 support (Jul 2007).
  16 *
  17 * This file is subject to the terms and conditions of the GNU General Public
  18 * License.  See the file "COPYING" in the main directory of this archive
  19 * for more details.
  20 */
  21#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  22#define SUPPORT_SYSRQ
  23#endif
  24
  25#undef DEBUG
  26
  27#include <linux/clk.h>
  28#include <linux/console.h>
  29#include <linux/ctype.h>
  30#include <linux/cpufreq.h>
  31#include <linux/delay.h>
  32#include <linux/dmaengine.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/err.h>
  35#include <linux/errno.h>
  36#include <linux/init.h>
  37#include <linux/interrupt.h>
  38#include <linux/ioport.h>
 
  39#include <linux/major.h>
  40#include <linux/module.h>
  41#include <linux/mm.h>
  42#include <linux/of.h>
 
  43#include <linux/platform_device.h>
  44#include <linux/pm_runtime.h>
  45#include <linux/scatterlist.h>
  46#include <linux/serial.h>
  47#include <linux/serial_sci.h>
  48#include <linux/sh_dma.h>
  49#include <linux/slab.h>
  50#include <linux/string.h>
  51#include <linux/sysrq.h>
  52#include <linux/timer.h>
  53#include <linux/tty.h>
  54#include <linux/tty_flip.h>
  55
  56#ifdef CONFIG_SUPERH
  57#include <asm/sh_bios.h>
  58#endif
  59
 
  60#include "sh-sci.h"
  61
  62/* Offsets into the sci_port->irqs array */
  63enum {
  64	SCIx_ERI_IRQ,
  65	SCIx_RXI_IRQ,
  66	SCIx_TXI_IRQ,
  67	SCIx_BRI_IRQ,
  68	SCIx_NR_IRQS,
  69
  70	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
  71};
  72
  73#define SCIx_IRQ_IS_MUXED(port)			\
  74	((port)->irqs[SCIx_ERI_IRQ] ==	\
  75	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
  76	((port)->irqs[SCIx_ERI_IRQ] &&	\
  77	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
  78
  79enum SCI_CLKS {
  80	SCI_FCK,		/* Functional Clock */
  81	SCI_SCK,		/* Optional External Clock */
  82	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
  83	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
  84	SCI_NUM_CLKS
  85};
  86
  87/* Bit x set means sampling rate x + 1 is supported */
  88#define SCI_SR(x)		BIT((x) - 1)
  89#define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
  90
  91#define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
  92				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
  93				SCI_SR(19) | SCI_SR(27)
  94
  95#define min_sr(_port)		ffs((_port)->sampling_rate_mask)
  96#define max_sr(_port)		fls((_port)->sampling_rate_mask)
  97
  98/* Iterate over all supported sampling rates, from high to low */
  99#define for_each_sr(_sr, _port)						\
 100	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
 101		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
 102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103struct sci_port {
 104	struct uart_port	port;
 105
 106	/* Platform configuration */
 107	struct plat_sci_port	*cfg;
 108	unsigned int		overrun_reg;
 109	unsigned int		overrun_mask;
 110	unsigned int		error_mask;
 111	unsigned int		error_clear;
 112	unsigned int		sampling_rate_mask;
 113	resource_size_t		reg_size;
 114
 115	/* Break timer */
 116	struct timer_list	break_timer;
 117	int			break_flag;
 118
 119	/* Clocks */
 120	struct clk		*clks[SCI_NUM_CLKS];
 121	unsigned long		clk_rates[SCI_NUM_CLKS];
 122
 123	int			irqs[SCIx_NR_IRQS];
 124	char			*irqstr[SCIx_NR_IRQS];
 125
 126	struct dma_chan			*chan_tx;
 127	struct dma_chan			*chan_rx;
 128
 129#ifdef CONFIG_SERIAL_SH_SCI_DMA
 130	dma_cookie_t			cookie_tx;
 131	dma_cookie_t			cookie_rx[2];
 132	dma_cookie_t			active_rx;
 133	dma_addr_t			tx_dma_addr;
 134	unsigned int			tx_dma_len;
 135	struct scatterlist		sg_rx[2];
 136	void				*rx_buf[2];
 137	size_t				buf_len_rx;
 138	struct work_struct		work_tx;
 139	struct timer_list		rx_timer;
 140	unsigned int			rx_timeout;
 141#endif
 
 
 
 
 
 
 
 
 142};
 143
 144#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
 145
 146static struct sci_port sci_ports[SCI_NPORTS];
 147static struct uart_driver sci_uart_driver;
 148
 149static inline struct sci_port *
 150to_sci_port(struct uart_port *uart)
 151{
 152	return container_of(uart, struct sci_port, port);
 153}
 154
 155struct plat_sci_reg {
 156	u8 offset, size;
 157};
 158
 159/* Helper for invalidating specific entries of an inherited map. */
 160#define sci_reg_invalid	{ .offset = 0, .size = 0 }
 161
 162static const struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
 163	[SCIx_PROBE_REGTYPE] = {
 164		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
 165	},
 166
 167	/*
 168	 * Common SCI definitions, dependent on the port's regshift
 169	 * value.
 170	 */
 171	[SCIx_SCI_REGTYPE] = {
 172		[SCSMR]		= { 0x00,  8 },
 173		[SCBRR]		= { 0x01,  8 },
 174		[SCSCR]		= { 0x02,  8 },
 175		[SCxTDR]	= { 0x03,  8 },
 176		[SCxSR]		= { 0x04,  8 },
 177		[SCxRDR]	= { 0x05,  8 },
 178		[SCFCR]		= sci_reg_invalid,
 179		[SCFDR]		= sci_reg_invalid,
 180		[SCTFDR]	= sci_reg_invalid,
 181		[SCRFDR]	= sci_reg_invalid,
 182		[SCSPTR]	= sci_reg_invalid,
 183		[SCLSR]		= sci_reg_invalid,
 184		[HSSRR]		= sci_reg_invalid,
 185		[SCPCR]		= sci_reg_invalid,
 186		[SCPDR]		= sci_reg_invalid,
 187		[SCDL]		= sci_reg_invalid,
 188		[SCCKS]		= sci_reg_invalid,
 189	},
 190
 191	/*
 192	 * Common definitions for legacy IrDA ports, dependent on
 193	 * regshift value.
 194	 */
 195	[SCIx_IRDA_REGTYPE] = {
 196		[SCSMR]		= { 0x00,  8 },
 197		[SCBRR]		= { 0x01,  8 },
 198		[SCSCR]		= { 0x02,  8 },
 199		[SCxTDR]	= { 0x03,  8 },
 200		[SCxSR]		= { 0x04,  8 },
 201		[SCxRDR]	= { 0x05,  8 },
 202		[SCFCR]		= { 0x06,  8 },
 203		[SCFDR]		= { 0x07, 16 },
 204		[SCTFDR]	= sci_reg_invalid,
 205		[SCRFDR]	= sci_reg_invalid,
 206		[SCSPTR]	= sci_reg_invalid,
 207		[SCLSR]		= sci_reg_invalid,
 208		[HSSRR]		= sci_reg_invalid,
 209		[SCPCR]		= sci_reg_invalid,
 210		[SCPDR]		= sci_reg_invalid,
 211		[SCDL]		= sci_reg_invalid,
 212		[SCCKS]		= sci_reg_invalid,
 213	},
 214
 215	/*
 216	 * Common SCIFA definitions.
 217	 */
 218	[SCIx_SCIFA_REGTYPE] = {
 219		[SCSMR]		= { 0x00, 16 },
 220		[SCBRR]		= { 0x04,  8 },
 221		[SCSCR]		= { 0x08, 16 },
 222		[SCxTDR]	= { 0x20,  8 },
 223		[SCxSR]		= { 0x14, 16 },
 224		[SCxRDR]	= { 0x24,  8 },
 225		[SCFCR]		= { 0x18, 16 },
 226		[SCFDR]		= { 0x1c, 16 },
 227		[SCTFDR]	= sci_reg_invalid,
 228		[SCRFDR]	= sci_reg_invalid,
 229		[SCSPTR]	= sci_reg_invalid,
 230		[SCLSR]		= sci_reg_invalid,
 231		[HSSRR]		= sci_reg_invalid,
 232		[SCPCR]		= { 0x30, 16 },
 233		[SCPDR]		= { 0x34, 16 },
 234		[SCDL]		= sci_reg_invalid,
 235		[SCCKS]		= sci_reg_invalid,
 
 236	},
 237
 238	/*
 239	 * Common SCIFB definitions.
 240	 */
 241	[SCIx_SCIFB_REGTYPE] = {
 242		[SCSMR]		= { 0x00, 16 },
 243		[SCBRR]		= { 0x04,  8 },
 244		[SCSCR]		= { 0x08, 16 },
 245		[SCxTDR]	= { 0x40,  8 },
 246		[SCxSR]		= { 0x14, 16 },
 247		[SCxRDR]	= { 0x60,  8 },
 248		[SCFCR]		= { 0x18, 16 },
 249		[SCFDR]		= sci_reg_invalid,
 250		[SCTFDR]	= { 0x38, 16 },
 251		[SCRFDR]	= { 0x3c, 16 },
 252		[SCSPTR]	= sci_reg_invalid,
 253		[SCLSR]		= sci_reg_invalid,
 254		[HSSRR]		= sci_reg_invalid,
 255		[SCPCR]		= { 0x30, 16 },
 256		[SCPDR]		= { 0x34, 16 },
 257		[SCDL]		= sci_reg_invalid,
 258		[SCCKS]		= sci_reg_invalid,
 
 
 259	},
 260
 261	/*
 262	 * Common SH-2(A) SCIF definitions for ports with FIFO data
 263	 * count registers.
 264	 */
 265	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
 266		[SCSMR]		= { 0x00, 16 },
 267		[SCBRR]		= { 0x04,  8 },
 268		[SCSCR]		= { 0x08, 16 },
 269		[SCxTDR]	= { 0x0c,  8 },
 270		[SCxSR]		= { 0x10, 16 },
 271		[SCxRDR]	= { 0x14,  8 },
 272		[SCFCR]		= { 0x18, 16 },
 273		[SCFDR]		= { 0x1c, 16 },
 274		[SCTFDR]	= sci_reg_invalid,
 275		[SCRFDR]	= sci_reg_invalid,
 276		[SCSPTR]	= { 0x20, 16 },
 277		[SCLSR]		= { 0x24, 16 },
 278		[HSSRR]		= sci_reg_invalid,
 279		[SCPCR]		= sci_reg_invalid,
 280		[SCPDR]		= sci_reg_invalid,
 281		[SCDL]		= sci_reg_invalid,
 282		[SCCKS]		= sci_reg_invalid,
 
 283	},
 284
 285	/*
 286	 * Common SH-3 SCIF definitions.
 287	 */
 288	[SCIx_SH3_SCIF_REGTYPE] = {
 289		[SCSMR]		= { 0x00,  8 },
 290		[SCBRR]		= { 0x02,  8 },
 291		[SCSCR]		= { 0x04,  8 },
 292		[SCxTDR]	= { 0x06,  8 },
 293		[SCxSR]		= { 0x08, 16 },
 294		[SCxRDR]	= { 0x0a,  8 },
 295		[SCFCR]		= { 0x0c,  8 },
 296		[SCFDR]		= { 0x0e, 16 },
 297		[SCTFDR]	= sci_reg_invalid,
 298		[SCRFDR]	= sci_reg_invalid,
 299		[SCSPTR]	= sci_reg_invalid,
 300		[SCLSR]		= sci_reg_invalid,
 301		[HSSRR]		= sci_reg_invalid,
 302		[SCPCR]		= sci_reg_invalid,
 303		[SCPDR]		= sci_reg_invalid,
 304		[SCDL]		= sci_reg_invalid,
 305		[SCCKS]		= sci_reg_invalid,
 306	},
 307
 308	/*
 309	 * Common SH-4(A) SCIF(B) definitions.
 310	 */
 311	[SCIx_SH4_SCIF_REGTYPE] = {
 312		[SCSMR]		= { 0x00, 16 },
 313		[SCBRR]		= { 0x04,  8 },
 314		[SCSCR]		= { 0x08, 16 },
 315		[SCxTDR]	= { 0x0c,  8 },
 316		[SCxSR]		= { 0x10, 16 },
 317		[SCxRDR]	= { 0x14,  8 },
 318		[SCFCR]		= { 0x18, 16 },
 319		[SCFDR]		= { 0x1c, 16 },
 320		[SCTFDR]	= sci_reg_invalid,
 321		[SCRFDR]	= sci_reg_invalid,
 322		[SCSPTR]	= { 0x20, 16 },
 323		[SCLSR]		= { 0x24, 16 },
 324		[HSSRR]		= sci_reg_invalid,
 325		[SCPCR]		= sci_reg_invalid,
 326		[SCPDR]		= sci_reg_invalid,
 327		[SCDL]		= sci_reg_invalid,
 328		[SCCKS]		= sci_reg_invalid,
 
 329	},
 330
 331	/*
 332	 * Common SCIF definitions for ports with a Baud Rate Generator for
 333	 * External Clock (BRG).
 334	 */
 335	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
 336		[SCSMR]		= { 0x00, 16 },
 337		[SCBRR]		= { 0x04,  8 },
 338		[SCSCR]		= { 0x08, 16 },
 339		[SCxTDR]	= { 0x0c,  8 },
 340		[SCxSR]		= { 0x10, 16 },
 341		[SCxRDR]	= { 0x14,  8 },
 342		[SCFCR]		= { 0x18, 16 },
 343		[SCFDR]		= { 0x1c, 16 },
 344		[SCTFDR]	= sci_reg_invalid,
 345		[SCRFDR]	= sci_reg_invalid,
 346		[SCSPTR]	= { 0x20, 16 },
 347		[SCLSR]		= { 0x24, 16 },
 348		[HSSRR]		= sci_reg_invalid,
 349		[SCPCR]		= sci_reg_invalid,
 350		[SCPDR]		= sci_reg_invalid,
 351		[SCDL]		= { 0x30, 16 },
 352		[SCCKS]		= { 0x34, 16 },
 
 
 
 353	},
 354
 355	/*
 356	 * Common HSCIF definitions.
 357	 */
 358	[SCIx_HSCIF_REGTYPE] = {
 359		[SCSMR]		= { 0x00, 16 },
 360		[SCBRR]		= { 0x04,  8 },
 361		[SCSCR]		= { 0x08, 16 },
 362		[SCxTDR]	= { 0x0c,  8 },
 363		[SCxSR]		= { 0x10, 16 },
 364		[SCxRDR]	= { 0x14,  8 },
 365		[SCFCR]		= { 0x18, 16 },
 366		[SCFDR]		= { 0x1c, 16 },
 367		[SCTFDR]	= sci_reg_invalid,
 368		[SCRFDR]	= sci_reg_invalid,
 369		[SCSPTR]	= { 0x20, 16 },
 370		[SCLSR]		= { 0x24, 16 },
 371		[HSSRR]		= { 0x40, 16 },
 372		[SCPCR]		= sci_reg_invalid,
 373		[SCPDR]		= sci_reg_invalid,
 374		[SCDL]		= { 0x30, 16 },
 375		[SCCKS]		= { 0x34, 16 },
 
 
 
 
 
 
 376	},
 377
 378	/*
 379	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
 380	 * register.
 381	 */
 382	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
 383		[SCSMR]		= { 0x00, 16 },
 384		[SCBRR]		= { 0x04,  8 },
 385		[SCSCR]		= { 0x08, 16 },
 386		[SCxTDR]	= { 0x0c,  8 },
 387		[SCxSR]		= { 0x10, 16 },
 388		[SCxRDR]	= { 0x14,  8 },
 389		[SCFCR]		= { 0x18, 16 },
 390		[SCFDR]		= { 0x1c, 16 },
 391		[SCTFDR]	= sci_reg_invalid,
 392		[SCRFDR]	= sci_reg_invalid,
 393		[SCSPTR]	= sci_reg_invalid,
 394		[SCLSR]		= { 0x24, 16 },
 395		[HSSRR]		= sci_reg_invalid,
 396		[SCPCR]		= sci_reg_invalid,
 397		[SCPDR]		= sci_reg_invalid,
 398		[SCDL]		= sci_reg_invalid,
 399		[SCCKS]		= sci_reg_invalid,
 400	},
 401
 402	/*
 403	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
 404	 * count registers.
 405	 */
 406	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
 407		[SCSMR]		= { 0x00, 16 },
 408		[SCBRR]		= { 0x04,  8 },
 409		[SCSCR]		= { 0x08, 16 },
 410		[SCxTDR]	= { 0x0c,  8 },
 411		[SCxSR]		= { 0x10, 16 },
 412		[SCxRDR]	= { 0x14,  8 },
 413		[SCFCR]		= { 0x18, 16 },
 414		[SCFDR]		= { 0x1c, 16 },
 415		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
 416		[SCRFDR]	= { 0x20, 16 },
 417		[SCSPTR]	= { 0x24, 16 },
 418		[SCLSR]		= { 0x28, 16 },
 419		[HSSRR]		= sci_reg_invalid,
 420		[SCPCR]		= sci_reg_invalid,
 421		[SCPDR]		= sci_reg_invalid,
 422		[SCDL]		= sci_reg_invalid,
 423		[SCCKS]		= sci_reg_invalid,
 
 
 
 424	},
 425
 426	/*
 427	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
 428	 * registers.
 429	 */
 430	[SCIx_SH7705_SCIF_REGTYPE] = {
 431		[SCSMR]		= { 0x00, 16 },
 432		[SCBRR]		= { 0x04,  8 },
 433		[SCSCR]		= { 0x08, 16 },
 434		[SCxTDR]	= { 0x20,  8 },
 435		[SCxSR]		= { 0x14, 16 },
 436		[SCxRDR]	= { 0x24,  8 },
 437		[SCFCR]		= { 0x18, 16 },
 438		[SCFDR]		= { 0x1c, 16 },
 439		[SCTFDR]	= sci_reg_invalid,
 440		[SCRFDR]	= sci_reg_invalid,
 441		[SCSPTR]	= sci_reg_invalid,
 442		[SCLSR]		= sci_reg_invalid,
 443		[HSSRR]		= sci_reg_invalid,
 444		[SCPCR]		= sci_reg_invalid,
 445		[SCPDR]		= sci_reg_invalid,
 446		[SCDL]		= sci_reg_invalid,
 447		[SCCKS]		= sci_reg_invalid,
 448	},
 449};
 450
 451#define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
 452
 453/*
 454 * The "offset" here is rather misleading, in that it refers to an enum
 455 * value relative to the port mapping rather than the fixed offset
 456 * itself, which needs to be manually retrieved from the platform's
 457 * register map for the given port.
 458 */
 459static unsigned int sci_serial_in(struct uart_port *p, int offset)
 460{
 461	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 462
 463	if (reg->size == 8)
 464		return ioread8(p->membase + (reg->offset << p->regshift));
 465	else if (reg->size == 16)
 466		return ioread16(p->membase + (reg->offset << p->regshift));
 467	else
 468		WARN(1, "Invalid register access\n");
 469
 470	return 0;
 471}
 472
 473static void sci_serial_out(struct uart_port *p, int offset, int value)
 474{
 475	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 476
 477	if (reg->size == 8)
 478		iowrite8(value, p->membase + (reg->offset << p->regshift));
 479	else if (reg->size == 16)
 480		iowrite16(value, p->membase + (reg->offset << p->regshift));
 481	else
 482		WARN(1, "Invalid register access\n");
 483}
 484
 485static int sci_probe_regmap(struct plat_sci_port *cfg)
 486{
 487	switch (cfg->type) {
 488	case PORT_SCI:
 489		cfg->regtype = SCIx_SCI_REGTYPE;
 490		break;
 491	case PORT_IRDA:
 492		cfg->regtype = SCIx_IRDA_REGTYPE;
 493		break;
 494	case PORT_SCIFA:
 495		cfg->regtype = SCIx_SCIFA_REGTYPE;
 496		break;
 497	case PORT_SCIFB:
 498		cfg->regtype = SCIx_SCIFB_REGTYPE;
 499		break;
 500	case PORT_SCIF:
 501		/*
 502		 * The SH-4 is a bit of a misnomer here, although that's
 503		 * where this particular port layout originated. This
 504		 * configuration (or some slight variation thereof)
 505		 * remains the dominant model for all SCIFs.
 506		 */
 507		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
 508		break;
 509	case PORT_HSCIF:
 510		cfg->regtype = SCIx_HSCIF_REGTYPE;
 511		break;
 512	default:
 513		pr_err("Can't probe register map for given port\n");
 514		return -EINVAL;
 515	}
 516
 517	return 0;
 518}
 519
 520static void sci_port_enable(struct sci_port *sci_port)
 521{
 522	unsigned int i;
 523
 524	if (!sci_port->port.dev)
 525		return;
 526
 527	pm_runtime_get_sync(sci_port->port.dev);
 528
 529	for (i = 0; i < SCI_NUM_CLKS; i++) {
 530		clk_prepare_enable(sci_port->clks[i]);
 531		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
 532	}
 533	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
 534}
 535
 536static void sci_port_disable(struct sci_port *sci_port)
 537{
 538	unsigned int i;
 539
 540	if (!sci_port->port.dev)
 541		return;
 542
 543	/* Cancel the break timer to ensure that the timer handler will not try
 544	 * to access the hardware with clocks and power disabled. Reset the
 545	 * break flag to make the break debouncing state machine ready for the
 546	 * next break.
 547	 */
 548	del_timer_sync(&sci_port->break_timer);
 549	sci_port->break_flag = 0;
 550
 551	for (i = SCI_NUM_CLKS; i-- > 0; )
 552		clk_disable_unprepare(sci_port->clks[i]);
 553
 554	pm_runtime_put_sync(sci_port->port.dev);
 555}
 556
 557static inline unsigned long port_rx_irq_mask(struct uart_port *port)
 558{
 559	/*
 560	 * Not all ports (such as SCIFA) will support REIE. Rather than
 561	 * special-casing the port type, we check the port initialization
 562	 * IRQ enable mask to see whether the IRQ is desired at all. If
 563	 * it's unset, it's logically inferred that there's no point in
 564	 * testing for it.
 565	 */
 566	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
 567}
 568
 569static void sci_start_tx(struct uart_port *port)
 570{
 571	struct sci_port *s = to_sci_port(port);
 572	unsigned short ctrl;
 573
 574#ifdef CONFIG_SERIAL_SH_SCI_DMA
 575	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 576		u16 new, scr = serial_port_in(port, SCSCR);
 577		if (s->chan_tx)
 578			new = scr | SCSCR_TDRQE;
 579		else
 580			new = scr & ~SCSCR_TDRQE;
 581		if (new != scr)
 582			serial_port_out(port, SCSCR, new);
 583	}
 584
 585	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
 586	    dma_submit_error(s->cookie_tx)) {
 587		s->cookie_tx = 0;
 588		schedule_work(&s->work_tx);
 589	}
 590#endif
 591
 592	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 593		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
 594		ctrl = serial_port_in(port, SCSCR);
 595		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
 596	}
 597}
 598
 599static void sci_stop_tx(struct uart_port *port)
 600{
 601	unsigned short ctrl;
 602
 603	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
 604	ctrl = serial_port_in(port, SCSCR);
 605
 606	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 607		ctrl &= ~SCSCR_TDRQE;
 608
 609	ctrl &= ~SCSCR_TIE;
 610
 611	serial_port_out(port, SCSCR, ctrl);
 612}
 613
 614static void sci_start_rx(struct uart_port *port)
 615{
 616	unsigned short ctrl;
 617
 618	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
 619
 620	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 621		ctrl &= ~SCSCR_RDRQE;
 622
 623	serial_port_out(port, SCSCR, ctrl);
 624}
 625
 626static void sci_stop_rx(struct uart_port *port)
 627{
 628	unsigned short ctrl;
 629
 630	ctrl = serial_port_in(port, SCSCR);
 631
 632	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 633		ctrl &= ~SCSCR_RDRQE;
 634
 635	ctrl &= ~port_rx_irq_mask(port);
 636
 637	serial_port_out(port, SCSCR, ctrl);
 638}
 639
 640static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
 641{
 642	if (port->type == PORT_SCI) {
 643		/* Just store the mask */
 644		serial_port_out(port, SCxSR, mask);
 645	} else if (to_sci_port(port)->overrun_mask == SCIFA_ORER) {
 646		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
 647		/* Only clear the status bits we want to clear */
 648		serial_port_out(port, SCxSR,
 649				serial_port_in(port, SCxSR) & mask);
 650	} else {
 651		/* Store the mask, clear parity/framing errors */
 652		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
 653	}
 654}
 655
 656#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
 657    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
 658
 659#ifdef CONFIG_CONSOLE_POLL
 660static int sci_poll_get_char(struct uart_port *port)
 661{
 662	unsigned short status;
 663	int c;
 664
 665	do {
 666		status = serial_port_in(port, SCxSR);
 667		if (status & SCxSR_ERRORS(port)) {
 668			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
 669			continue;
 670		}
 671		break;
 672	} while (1);
 673
 674	if (!(status & SCxSR_RDxF(port)))
 675		return NO_POLL_CHAR;
 676
 677	c = serial_port_in(port, SCxRDR);
 678
 679	/* Dummy read */
 680	serial_port_in(port, SCxSR);
 681	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 682
 683	return c;
 684}
 685#endif
 686
 687static void sci_poll_put_char(struct uart_port *port, unsigned char c)
 688{
 689	unsigned short status;
 690
 691	do {
 692		status = serial_port_in(port, SCxSR);
 693	} while (!(status & SCxSR_TDxE(port)));
 694
 695	serial_port_out(port, SCxTDR, c);
 696	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
 697}
 698#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
 699	  CONFIG_SERIAL_SH_SCI_EARLYCON */
 700
 701static void sci_init_pins(struct uart_port *port, unsigned int cflag)
 702{
 703	struct sci_port *s = to_sci_port(port);
 704	const struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
 705
 706	/*
 707	 * Use port-specific handler if provided.
 708	 */
 709	if (s->cfg->ops && s->cfg->ops->init_pins) {
 710		s->cfg->ops->init_pins(port, cflag);
 711		return;
 712	}
 713
 714	/*
 715	 * For the generic path SCSPTR is necessary. Bail out if that's
 716	 * unavailable, too.
 717	 */
 718	if (!reg->size)
 719		return;
 720
 721	if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
 722	    ((!(cflag & CRTSCTS)))) {
 723		unsigned short status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 724
 725		status = serial_port_in(port, SCSPTR);
 726		status &= ~SCSPTR_CTSIO;
 727		status |= SCSPTR_RTSIO;
 728		serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
 
 
 
 
 
 
 729	}
 730}
 731
 732static int sci_txfill(struct uart_port *port)
 733{
 
 
 734	const struct plat_sci_reg *reg;
 735
 736	reg = sci_getreg(port, SCTFDR);
 737	if (reg->size)
 738		return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
 739
 740	reg = sci_getreg(port, SCFDR);
 741	if (reg->size)
 742		return serial_port_in(port, SCFDR) >> 8;
 743
 744	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
 745}
 746
 747static int sci_txroom(struct uart_port *port)
 748{
 749	return port->fifosize - sci_txfill(port);
 750}
 751
 752static int sci_rxfill(struct uart_port *port)
 753{
 
 
 754	const struct plat_sci_reg *reg;
 755
 756	reg = sci_getreg(port, SCRFDR);
 757	if (reg->size)
 758		return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
 759
 760	reg = sci_getreg(port, SCFDR);
 761	if (reg->size)
 762		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
 763
 764	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
 765}
 766
 767/*
 768 * SCI helper for checking the state of the muxed port/RXD pins.
 769 */
 770static inline int sci_rxd_in(struct uart_port *port)
 771{
 772	struct sci_port *s = to_sci_port(port);
 773
 774	if (s->cfg->port_reg <= 0)
 775		return 1;
 776
 777	/* Cast for ARM damage */
 778	return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
 779}
 780
 781/* ********************************************************************** *
 782 *                   the interrupt related routines                       *
 783 * ********************************************************************** */
 784
 785static void sci_transmit_chars(struct uart_port *port)
 786{
 787	struct circ_buf *xmit = &port->state->xmit;
 788	unsigned int stopped = uart_tx_stopped(port);
 789	unsigned short status;
 790	unsigned short ctrl;
 791	int count;
 792
 793	status = serial_port_in(port, SCxSR);
 794	if (!(status & SCxSR_TDxE(port))) {
 795		ctrl = serial_port_in(port, SCSCR);
 796		if (uart_circ_empty(xmit))
 797			ctrl &= ~SCSCR_TIE;
 798		else
 799			ctrl |= SCSCR_TIE;
 800		serial_port_out(port, SCSCR, ctrl);
 801		return;
 802	}
 803
 804	count = sci_txroom(port);
 805
 806	do {
 807		unsigned char c;
 808
 809		if (port->x_char) {
 810			c = port->x_char;
 811			port->x_char = 0;
 812		} else if (!uart_circ_empty(xmit) && !stopped) {
 813			c = xmit->buf[xmit->tail];
 814			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 815		} else {
 816			break;
 817		}
 818
 819		serial_port_out(port, SCxTDR, c);
 820
 821		port->icount.tx++;
 822	} while (--count > 0);
 823
 824	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 825
 826	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 827		uart_write_wakeup(port);
 828	if (uart_circ_empty(xmit)) {
 829		sci_stop_tx(port);
 830	} else {
 831		ctrl = serial_port_in(port, SCSCR);
 832
 833		if (port->type != PORT_SCI) {
 834			serial_port_in(port, SCxSR); /* Dummy read */
 835			sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 836		}
 837
 838		ctrl |= SCSCR_TIE;
 839		serial_port_out(port, SCSCR, ctrl);
 840	}
 841}
 842
 843/* On SH3, SCIF may read end-of-break as a space->mark char */
 844#define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
 845
 846static void sci_receive_chars(struct uart_port *port)
 847{
 848	struct sci_port *sci_port = to_sci_port(port);
 849	struct tty_port *tport = &port->state->port;
 850	int i, count, copied = 0;
 851	unsigned short status;
 852	unsigned char flag;
 853
 854	status = serial_port_in(port, SCxSR);
 855	if (!(status & SCxSR_RDxF(port)))
 856		return;
 857
 858	while (1) {
 859		/* Don't copy more bytes than there is room for in the buffer */
 860		count = tty_buffer_request_room(tport, sci_rxfill(port));
 861
 862		/* If for any reason we can't copy more data, we're done! */
 863		if (count == 0)
 864			break;
 865
 866		if (port->type == PORT_SCI) {
 867			char c = serial_port_in(port, SCxRDR);
 868			if (uart_handle_sysrq_char(port, c) ||
 869			    sci_port->break_flag)
 870				count = 0;
 871			else
 872				tty_insert_flip_char(tport, c, TTY_NORMAL);
 873		} else {
 874			for (i = 0; i < count; i++) {
 875				char c = serial_port_in(port, SCxRDR);
 876
 877				status = serial_port_in(port, SCxSR);
 878#if defined(CONFIG_CPU_SH3)
 879				/* Skip "chars" during break */
 880				if (sci_port->break_flag) {
 881					if ((c == 0) &&
 882					    (status & SCxSR_FER(port))) {
 883						count--; i--;
 884						continue;
 885					}
 886
 887					/* Nonzero => end-of-break */
 888					dev_dbg(port->dev, "debounce<%02x>\n", c);
 889					sci_port->break_flag = 0;
 890
 891					if (STEPFN(c)) {
 892						count--; i--;
 893						continue;
 894					}
 895				}
 896#endif /* CONFIG_CPU_SH3 */
 897				if (uart_handle_sysrq_char(port, c)) {
 898					count--; i--;
 899					continue;
 900				}
 901
 902				/* Store data and status */
 903				if (status & SCxSR_FER(port)) {
 904					flag = TTY_FRAME;
 905					port->icount.frame++;
 906					dev_notice(port->dev, "frame error\n");
 907				} else if (status & SCxSR_PER(port)) {
 908					flag = TTY_PARITY;
 909					port->icount.parity++;
 910					dev_notice(port->dev, "parity error\n");
 911				} else
 912					flag = TTY_NORMAL;
 913
 914				tty_insert_flip_char(tport, c, flag);
 915			}
 916		}
 917
 918		serial_port_in(port, SCxSR); /* dummy read */
 919		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 920
 921		copied += count;
 922		port->icount.rx += count;
 923	}
 924
 925	if (copied) {
 926		/* Tell the rest of the system the news. New characters! */
 927		tty_flip_buffer_push(tport);
 928	} else {
 
 
 929		serial_port_in(port, SCxSR); /* dummy read */
 930		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 931	}
 932}
 933
 934#define SCI_BREAK_JIFFIES (HZ/20)
 935
 936/*
 937 * The sci generates interrupts during the break,
 938 * 1 per millisecond or so during the break period, for 9600 baud.
 939 * So dont bother disabling interrupts.
 940 * But dont want more than 1 break event.
 941 * Use a kernel timer to periodically poll the rx line until
 942 * the break is finished.
 943 */
 944static inline void sci_schedule_break_timer(struct sci_port *port)
 945{
 946	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
 947}
 948
 949/* Ensure that two consecutive samples find the break over. */
 950static void sci_break_timer(unsigned long data)
 951{
 952	struct sci_port *port = (struct sci_port *)data;
 953
 954	if (sci_rxd_in(&port->port) == 0) {
 955		port->break_flag = 1;
 956		sci_schedule_break_timer(port);
 957	} else if (port->break_flag == 1) {
 958		/* break is over. */
 959		port->break_flag = 2;
 960		sci_schedule_break_timer(port);
 961	} else
 962		port->break_flag = 0;
 963}
 964
 965static int sci_handle_errors(struct uart_port *port)
 966{
 967	int copied = 0;
 968	unsigned short status = serial_port_in(port, SCxSR);
 969	struct tty_port *tport = &port->state->port;
 970	struct sci_port *s = to_sci_port(port);
 971
 972	/* Handle overruns */
 973	if (status & s->overrun_mask) {
 974		port->icount.overrun++;
 975
 976		/* overrun error */
 977		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
 978			copied++;
 979
 980		dev_notice(port->dev, "overrun error\n");
 981	}
 982
 983	if (status & SCxSR_FER(port)) {
 984		if (sci_rxd_in(port) == 0) {
 985			/* Notify of BREAK */
 986			struct sci_port *sci_port = to_sci_port(port);
 987
 988			if (!sci_port->break_flag) {
 989				port->icount.brk++;
 990
 991				sci_port->break_flag = 1;
 992				sci_schedule_break_timer(sci_port);
 993
 994				/* Do sysrq handling. */
 995				if (uart_handle_break(port))
 996					return 0;
 997
 998				dev_dbg(port->dev, "BREAK detected\n");
 999
1000				if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1001					copied++;
1002			}
1003
1004		} else {
1005			/* frame error */
1006			port->icount.frame++;
1007
1008			if (tty_insert_flip_char(tport, 0, TTY_FRAME))
1009				copied++;
1010
1011			dev_notice(port->dev, "frame error\n");
1012		}
1013	}
1014
1015	if (status & SCxSR_PER(port)) {
1016		/* parity error */
1017		port->icount.parity++;
1018
1019		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
1020			copied++;
1021
1022		dev_notice(port->dev, "parity error\n");
1023	}
1024
1025	if (copied)
1026		tty_flip_buffer_push(tport);
1027
1028	return copied;
1029}
1030
1031static int sci_handle_fifo_overrun(struct uart_port *port)
1032{
1033	struct tty_port *tport = &port->state->port;
1034	struct sci_port *s = to_sci_port(port);
1035	const struct plat_sci_reg *reg;
1036	int copied = 0;
1037	u16 status;
1038
1039	reg = sci_getreg(port, s->overrun_reg);
1040	if (!reg->size)
1041		return 0;
1042
1043	status = serial_port_in(port, s->overrun_reg);
1044	if (status & s->overrun_mask) {
1045		status &= ~s->overrun_mask;
1046		serial_port_out(port, s->overrun_reg, status);
1047
1048		port->icount.overrun++;
1049
1050		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1051		tty_flip_buffer_push(tport);
1052
1053		dev_dbg(port->dev, "overrun error\n");
1054		copied++;
1055	}
1056
1057	return copied;
1058}
1059
1060static int sci_handle_breaks(struct uart_port *port)
1061{
1062	int copied = 0;
1063	unsigned short status = serial_port_in(port, SCxSR);
1064	struct tty_port *tport = &port->state->port;
1065	struct sci_port *s = to_sci_port(port);
1066
1067	if (uart_handle_break(port))
1068		return 0;
1069
1070	if (!s->break_flag && status & SCxSR_BRK(port)) {
1071#if defined(CONFIG_CPU_SH3)
1072		/* Debounce break */
1073		s->break_flag = 1;
1074#endif
1075
1076		port->icount.brk++;
1077
1078		/* Notify of BREAK */
1079		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1080			copied++;
1081
1082		dev_dbg(port->dev, "BREAK detected\n");
1083	}
1084
1085	if (copied)
1086		tty_flip_buffer_push(tport);
1087
1088	copied += sci_handle_fifo_overrun(port);
1089
1090	return copied;
1091}
1092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093#ifdef CONFIG_SERIAL_SH_SCI_DMA
1094static void sci_dma_tx_complete(void *arg)
1095{
1096	struct sci_port *s = arg;
1097	struct uart_port *port = &s->port;
1098	struct circ_buf *xmit = &port->state->xmit;
1099	unsigned long flags;
1100
1101	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1102
1103	spin_lock_irqsave(&port->lock, flags);
1104
1105	xmit->tail += s->tx_dma_len;
1106	xmit->tail &= UART_XMIT_SIZE - 1;
1107
1108	port->icount.tx += s->tx_dma_len;
1109
1110	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1111		uart_write_wakeup(port);
1112
1113	if (!uart_circ_empty(xmit)) {
1114		s->cookie_tx = 0;
1115		schedule_work(&s->work_tx);
1116	} else {
1117		s->cookie_tx = -EINVAL;
1118		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1119			u16 ctrl = serial_port_in(port, SCSCR);
1120			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1121		}
1122	}
1123
1124	spin_unlock_irqrestore(&port->lock, flags);
1125}
1126
1127/* Locking: called with port lock held */
1128static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1129{
1130	struct uart_port *port = &s->port;
1131	struct tty_port *tport = &port->state->port;
1132	int copied;
1133
1134	copied = tty_insert_flip_string(tport, buf, count);
1135	if (copied < count) {
1136		dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1137			 count - copied);
1138		port->icount.buf_overrun++;
1139	}
1140
1141	port->icount.rx += copied;
1142
1143	return copied;
1144}
1145
1146static int sci_dma_rx_find_active(struct sci_port *s)
1147{
1148	unsigned int i;
1149
1150	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1151		if (s->active_rx == s->cookie_rx[i])
1152			return i;
1153
1154	dev_err(s->port.dev, "%s: Rx cookie %d not found!\n", __func__,
1155		s->active_rx);
1156	return -1;
1157}
1158
1159static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1160{
1161	struct dma_chan *chan = s->chan_rx;
1162	struct uart_port *port = &s->port;
1163	unsigned long flags;
1164
1165	spin_lock_irqsave(&port->lock, flags);
1166	s->chan_rx = NULL;
1167	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1168	spin_unlock_irqrestore(&port->lock, flags);
1169	dmaengine_terminate_all(chan);
1170	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1171			  sg_dma_address(&s->sg_rx[0]));
1172	dma_release_channel(chan);
1173	if (enable_pio)
 
1174		sci_start_rx(port);
 
 
 
 
 
 
 
 
 
 
 
1175}
1176
1177static void sci_dma_rx_complete(void *arg)
1178{
1179	struct sci_port *s = arg;
1180	struct dma_chan *chan = s->chan_rx;
1181	struct uart_port *port = &s->port;
1182	struct dma_async_tx_descriptor *desc;
1183	unsigned long flags;
1184	int active, count = 0;
1185
1186	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1187		s->active_rx);
1188
1189	spin_lock_irqsave(&port->lock, flags);
1190
1191	active = sci_dma_rx_find_active(s);
1192	if (active >= 0)
1193		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1194
1195	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1196
1197	if (count)
1198		tty_flip_buffer_push(&port->state->port);
1199
1200	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1201				       DMA_DEV_TO_MEM,
1202				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1203	if (!desc)
1204		goto fail;
1205
1206	desc->callback = sci_dma_rx_complete;
1207	desc->callback_param = s;
1208	s->cookie_rx[active] = dmaengine_submit(desc);
1209	if (dma_submit_error(s->cookie_rx[active]))
1210		goto fail;
1211
1212	s->active_rx = s->cookie_rx[!active];
1213
1214	dma_async_issue_pending(chan);
1215
 
1216	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1217		__func__, s->cookie_rx[active], active, s->active_rx);
1218	spin_unlock_irqrestore(&port->lock, flags);
1219	return;
1220
1221fail:
1222	spin_unlock_irqrestore(&port->lock, flags);
1223	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1224	sci_rx_dma_release(s, true);
1225}
1226
1227static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1228{
1229	struct dma_chan *chan = s->chan_tx;
1230	struct uart_port *port = &s->port;
1231	unsigned long flags;
1232
1233	spin_lock_irqsave(&port->lock, flags);
1234	s->chan_tx = NULL;
1235	s->cookie_tx = -EINVAL;
1236	spin_unlock_irqrestore(&port->lock, flags);
1237	dmaengine_terminate_all(chan);
1238	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1239			 DMA_TO_DEVICE);
1240	dma_release_channel(chan);
1241	if (enable_pio)
 
1242		sci_start_tx(port);
 
 
1243}
1244
1245static void sci_submit_rx(struct sci_port *s)
1246{
1247	struct dma_chan *chan = s->chan_rx;
1248	int i;
1249
1250	for (i = 0; i < 2; i++) {
1251		struct scatterlist *sg = &s->sg_rx[i];
1252		struct dma_async_tx_descriptor *desc;
1253
1254		desc = dmaengine_prep_slave_sg(chan,
1255			sg, 1, DMA_DEV_TO_MEM,
1256			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1257		if (!desc)
1258			goto fail;
1259
1260		desc->callback = sci_dma_rx_complete;
1261		desc->callback_param = s;
1262		s->cookie_rx[i] = dmaengine_submit(desc);
1263		if (dma_submit_error(s->cookie_rx[i]))
1264			goto fail;
1265
1266		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1267			s->cookie_rx[i], i);
1268	}
1269
1270	s->active_rx = s->cookie_rx[0];
1271
1272	dma_async_issue_pending(chan);
1273	return;
1274
1275fail:
1276	if (i)
1277		dmaengine_terminate_all(chan);
1278	for (i = 0; i < 2; i++)
1279		s->cookie_rx[i] = -EINVAL;
1280	s->active_rx = -EINVAL;
1281	dev_warn(s->port.dev, "Failed to re-start Rx DMA, using PIO\n");
1282	sci_rx_dma_release(s, true);
1283}
1284
1285static void work_fn_tx(struct work_struct *work)
1286{
1287	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1288	struct dma_async_tx_descriptor *desc;
1289	struct dma_chan *chan = s->chan_tx;
1290	struct uart_port *port = &s->port;
1291	struct circ_buf *xmit = &port->state->xmit;
1292	dma_addr_t buf;
1293
1294	/*
1295	 * DMA is idle now.
1296	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1297	 * offsets and lengths. Since it is a circular buffer, we have to
1298	 * transmit till the end, and then the rest. Take the port lock to get a
1299	 * consistent xmit buffer state.
1300	 */
1301	spin_lock_irq(&port->lock);
1302	buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1303	s->tx_dma_len = min_t(unsigned int,
1304		CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1305		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1306	spin_unlock_irq(&port->lock);
1307
1308	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1309					   DMA_MEM_TO_DEV,
1310					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1311	if (!desc) {
1312		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1313		/* switch to PIO */
1314		sci_tx_dma_release(s, true);
1315		return;
1316	}
1317
1318	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1319				   DMA_TO_DEVICE);
1320
1321	spin_lock_irq(&port->lock);
1322	desc->callback = sci_dma_tx_complete;
1323	desc->callback_param = s;
1324	spin_unlock_irq(&port->lock);
1325	s->cookie_tx = dmaengine_submit(desc);
1326	if (dma_submit_error(s->cookie_tx)) {
1327		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1328		/* switch to PIO */
1329		sci_tx_dma_release(s, true);
1330		return;
1331	}
1332
1333	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1334		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1335
1336	dma_async_issue_pending(chan);
1337}
1338
1339static void rx_timer_fn(unsigned long arg)
1340{
1341	struct sci_port *s = (struct sci_port *)arg;
1342	struct dma_chan *chan = s->chan_rx;
1343	struct uart_port *port = &s->port;
1344	struct dma_tx_state state;
1345	enum dma_status status;
1346	unsigned long flags;
1347	unsigned int read;
1348	int active, count;
1349	u16 scr;
1350
1351	spin_lock_irqsave(&port->lock, flags);
1352
1353	dev_dbg(port->dev, "DMA Rx timed out\n");
1354
 
 
1355	active = sci_dma_rx_find_active(s);
1356	if (active < 0) {
1357		spin_unlock_irqrestore(&port->lock, flags);
1358		return;
1359	}
1360
1361	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1362	if (status == DMA_COMPLETE) {
 
1363		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1364			s->active_rx, active);
1365		spin_unlock_irqrestore(&port->lock, flags);
1366
1367		/* Let packet complete handler take care of the packet */
1368		return;
1369	}
1370
1371	dmaengine_pause(chan);
1372
1373	/*
1374	 * sometimes DMA transfer doesn't stop even if it is stopped and
1375	 * data keeps on coming until transaction is complete so check
1376	 * for DMA_COMPLETE again
1377	 * Let packet complete handler take care of the packet
1378	 */
1379	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1380	if (status == DMA_COMPLETE) {
1381		spin_unlock_irqrestore(&port->lock, flags);
1382		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1383		return;
1384	}
1385
1386	/* Handle incomplete DMA receive */
1387	dmaengine_terminate_all(s->chan_rx);
1388	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1389	dev_dbg(port->dev, "Read %u bytes with cookie %d\n", read,
1390		s->active_rx);
1391
1392	if (read) {
1393		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1394		if (count)
1395			tty_flip_buffer_push(&port->state->port);
1396	}
1397
1398	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1399		sci_submit_rx(s);
1400
1401	/* Direct new serial port interrupts back to CPU */
1402	scr = serial_port_in(port, SCSCR);
1403	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1404		scr &= ~SCSCR_RDRQE;
1405		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1406	}
1407	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1408
1409	spin_unlock_irqrestore(&port->lock, flags);
 
 
1410}
1411
1412static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1413					     enum dma_transfer_direction dir,
1414					     unsigned int id)
1415{
1416	dma_cap_mask_t mask;
1417	struct dma_chan *chan;
1418	struct dma_slave_config cfg;
1419	int ret;
1420
1421	dma_cap_zero(mask);
1422	dma_cap_set(DMA_SLAVE, mask);
1423
1424	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1425					(void *)(unsigned long)id, port->dev,
1426					dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1427	if (!chan) {
1428		dev_warn(port->dev,
1429			 "dma_request_slave_channel_compat failed\n");
1430		return NULL;
1431	}
1432
1433	memset(&cfg, 0, sizeof(cfg));
1434	cfg.direction = dir;
1435	if (dir == DMA_MEM_TO_DEV) {
1436		cfg.dst_addr = port->mapbase +
1437			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1438		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1439	} else {
1440		cfg.src_addr = port->mapbase +
1441			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1442		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1443	}
1444
1445	ret = dmaengine_slave_config(chan, &cfg);
1446	if (ret) {
1447		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1448		dma_release_channel(chan);
1449		return NULL;
1450	}
1451
1452	return chan;
1453}
1454
1455static void sci_request_dma(struct uart_port *port)
1456{
1457	struct sci_port *s = to_sci_port(port);
1458	struct dma_chan *chan;
1459
1460	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1461
1462	if (!port->dev->of_node &&
1463	    (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0))
1464		return;
1465
1466	s->cookie_tx = -EINVAL;
1467	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV, s->cfg->dma_slave_tx);
 
 
 
 
 
 
 
 
1468	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1469	if (chan) {
1470		s->chan_tx = chan;
1471		/* UART circular tx buffer is an aligned page. */
1472		s->tx_dma_addr = dma_map_single(chan->device->dev,
1473						port->state->xmit.buf,
1474						UART_XMIT_SIZE,
1475						DMA_TO_DEVICE);
1476		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1477			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1478			dma_release_channel(chan);
1479			s->chan_tx = NULL;
1480		} else {
1481			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1482				__func__, UART_XMIT_SIZE,
1483				port->state->xmit.buf, &s->tx_dma_addr);
1484		}
1485
1486		INIT_WORK(&s->work_tx, work_fn_tx);
1487	}
1488
1489	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM, s->cfg->dma_slave_rx);
1490	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1491	if (chan) {
1492		unsigned int i;
1493		dma_addr_t dma;
1494		void *buf;
1495
1496		s->chan_rx = chan;
1497
1498		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1499		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1500					 &dma, GFP_KERNEL);
1501		if (!buf) {
1502			dev_warn(port->dev,
1503				 "Failed to allocate Rx dma buffer, using PIO\n");
1504			dma_release_channel(chan);
1505			s->chan_rx = NULL;
1506			return;
1507		}
1508
1509		for (i = 0; i < 2; i++) {
1510			struct scatterlist *sg = &s->sg_rx[i];
1511
1512			sg_init_table(sg, 1);
1513			s->rx_buf[i] = buf;
1514			sg_dma_address(sg) = dma;
1515			sg_dma_len(sg) = s->buf_len_rx;
1516
1517			buf += s->buf_len_rx;
1518			dma += s->buf_len_rx;
1519		}
1520
1521		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
 
1522
1523		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1524			sci_submit_rx(s);
1525	}
1526}
1527
1528static void sci_free_dma(struct uart_port *port)
1529{
1530	struct sci_port *s = to_sci_port(port);
1531
1532	if (s->chan_tx)
1533		sci_tx_dma_release(s, false);
1534	if (s->chan_rx)
1535		sci_rx_dma_release(s, false);
1536}
1537#else
 
 
 
 
 
 
 
 
 
1538static inline void sci_request_dma(struct uart_port *port)
1539{
1540}
1541
1542static inline void sci_free_dma(struct uart_port *port)
1543{
1544}
1545#endif
 
 
1546
1547static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1548{
1549#ifdef CONFIG_SERIAL_SH_SCI_DMA
1550	struct uart_port *port = ptr;
1551	struct sci_port *s = to_sci_port(port);
1552
 
1553	if (s->chan_rx) {
1554		u16 scr = serial_port_in(port, SCSCR);
1555		u16 ssr = serial_port_in(port, SCxSR);
1556
1557		/* Disable future Rx interrupts */
1558		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1559			disable_irq_nosync(irq);
1560			scr |= SCSCR_RDRQE;
1561		} else {
1562			scr &= ~SCSCR_RIE;
1563			sci_submit_rx(s);
1564		}
1565		serial_port_out(port, SCSCR, scr);
1566		/* Clear current interrupt */
1567		serial_port_out(port, SCxSR,
1568				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1569		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
1570			jiffies, s->rx_timeout);
1571		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1572
1573		return IRQ_HANDLED;
1574	}
1575#endif
1576
 
 
 
 
 
 
 
 
1577	/* I think sci_receive_chars has to be called irrespective
1578	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1579	 * to be disabled?
1580	 */
1581	sci_receive_chars(ptr);
1582
1583	return IRQ_HANDLED;
1584}
1585
1586static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1587{
1588	struct uart_port *port = ptr;
1589	unsigned long flags;
1590
1591	spin_lock_irqsave(&port->lock, flags);
1592	sci_transmit_chars(port);
1593	spin_unlock_irqrestore(&port->lock, flags);
1594
1595	return IRQ_HANDLED;
1596}
1597
1598static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1599{
1600	struct uart_port *port = ptr;
1601	struct sci_port *s = to_sci_port(port);
1602
1603	/* Handle errors */
1604	if (port->type == PORT_SCI) {
1605		if (sci_handle_errors(port)) {
1606			/* discard character in rx buffer */
1607			serial_port_in(port, SCxSR);
1608			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1609		}
1610	} else {
1611		sci_handle_fifo_overrun(port);
1612		if (!s->chan_rx)
1613			sci_receive_chars(ptr);
1614	}
1615
1616	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1617
1618	/* Kick the transmission */
1619	if (!s->chan_tx)
1620		sci_tx_interrupt(irq, ptr);
1621
1622	return IRQ_HANDLED;
1623}
1624
1625static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1626{
1627	struct uart_port *port = ptr;
1628
1629	/* Handle BREAKs */
1630	sci_handle_breaks(port);
1631	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1632
1633	return IRQ_HANDLED;
1634}
1635
1636static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1637{
1638	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1639	struct uart_port *port = ptr;
1640	struct sci_port *s = to_sci_port(port);
1641	irqreturn_t ret = IRQ_NONE;
1642
1643	ssr_status = serial_port_in(port, SCxSR);
1644	scr_status = serial_port_in(port, SCSCR);
1645	if (s->overrun_reg == SCxSR)
1646		orer_status = ssr_status;
1647	else {
1648		if (sci_getreg(port, s->overrun_reg)->size)
1649			orer_status = serial_port_in(port, s->overrun_reg);
1650	}
1651
1652	err_enabled = scr_status & port_rx_irq_mask(port);
1653
1654	/* Tx Interrupt */
1655	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1656	    !s->chan_tx)
1657		ret = sci_tx_interrupt(irq, ptr);
1658
1659	/*
1660	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1661	 * DR flags
1662	 */
1663	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1664	    (scr_status & SCSCR_RIE))
1665		ret = sci_rx_interrupt(irq, ptr);
1666
1667	/* Error Interrupt */
1668	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1669		ret = sci_er_interrupt(irq, ptr);
1670
1671	/* Break Interrupt */
1672	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1673		ret = sci_br_interrupt(irq, ptr);
1674
1675	/* Overrun Interrupt */
1676	if (orer_status & s->overrun_mask) {
1677		sci_handle_fifo_overrun(port);
1678		ret = IRQ_HANDLED;
1679	}
1680
1681	return ret;
1682}
1683
1684static const struct sci_irq_desc {
1685	const char	*desc;
1686	irq_handler_t	handler;
1687} sci_irq_desc[] = {
1688	/*
1689	 * Split out handlers, the default case.
1690	 */
1691	[SCIx_ERI_IRQ] = {
1692		.desc = "rx err",
1693		.handler = sci_er_interrupt,
1694	},
1695
1696	[SCIx_RXI_IRQ] = {
1697		.desc = "rx full",
1698		.handler = sci_rx_interrupt,
1699	},
1700
1701	[SCIx_TXI_IRQ] = {
1702		.desc = "tx empty",
1703		.handler = sci_tx_interrupt,
1704	},
1705
1706	[SCIx_BRI_IRQ] = {
1707		.desc = "break",
1708		.handler = sci_br_interrupt,
1709	},
1710
1711	/*
1712	 * Special muxed handler.
1713	 */
1714	[SCIx_MUX_IRQ] = {
1715		.desc = "mux",
1716		.handler = sci_mpxed_interrupt,
1717	},
1718};
1719
1720static int sci_request_irq(struct sci_port *port)
1721{
1722	struct uart_port *up = &port->port;
1723	int i, j, ret = 0;
1724
1725	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1726		const struct sci_irq_desc *desc;
1727		int irq;
1728
1729		if (SCIx_IRQ_IS_MUXED(port)) {
1730			i = SCIx_MUX_IRQ;
1731			irq = up->irq;
1732		} else {
1733			irq = port->irqs[i];
1734
1735			/*
1736			 * Certain port types won't support all of the
1737			 * available interrupt sources.
1738			 */
1739			if (unlikely(irq < 0))
1740				continue;
1741		}
1742
1743		desc = sci_irq_desc + i;
1744		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1745					    dev_name(up->dev), desc->desc);
1746		if (!port->irqstr[j])
 
1747			goto out_nomem;
 
1748
1749		ret = request_irq(irq, desc->handler, up->irqflags,
1750				  port->irqstr[j], port);
1751		if (unlikely(ret)) {
1752			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1753			goto out_noirq;
1754		}
1755	}
1756
1757	return 0;
1758
1759out_noirq:
1760	while (--i >= 0)
1761		free_irq(port->irqs[i], port);
1762
1763out_nomem:
1764	while (--j >= 0)
1765		kfree(port->irqstr[j]);
1766
1767	return ret;
1768}
1769
1770static void sci_free_irq(struct sci_port *port)
1771{
1772	int i;
1773
1774	/*
1775	 * Intentionally in reverse order so we iterate over the muxed
1776	 * IRQ first.
1777	 */
1778	for (i = 0; i < SCIx_NR_IRQS; i++) {
1779		int irq = port->irqs[i];
1780
1781		/*
1782		 * Certain port types won't support all of the available
1783		 * interrupt sources.
1784		 */
1785		if (unlikely(irq < 0))
1786			continue;
1787
1788		free_irq(port->irqs[i], port);
1789		kfree(port->irqstr[i]);
1790
1791		if (SCIx_IRQ_IS_MUXED(port)) {
1792			/* If there's only one IRQ, we're done. */
1793			return;
1794		}
1795	}
1796}
1797
1798static unsigned int sci_tx_empty(struct uart_port *port)
1799{
1800	unsigned short status = serial_port_in(port, SCxSR);
1801	unsigned short in_tx_fifo = sci_txfill(port);
1802
1803	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1804}
1805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1806/*
1807 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1808 * CTS/RTS is supported in hardware by at least one port and controlled
1809 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1810 * handled via the ->init_pins() op, which is a bit of a one-way street,
1811 * lacking any ability to defer pin control -- this will later be
1812 * converted over to the GPIO framework).
1813 *
1814 * Other modes (such as loopback) are supported generically on certain
1815 * port types, but not others. For these it's sufficient to test for the
1816 * existence of the support register and simply ignore the port type.
1817 */
1818static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1819{
 
 
1820	if (mctrl & TIOCM_LOOP) {
1821		const struct plat_sci_reg *reg;
1822
1823		/*
1824		 * Standard loopback mode for SCFCR ports.
1825		 */
1826		reg = sci_getreg(port, SCFCR);
1827		if (reg->size)
1828			serial_port_out(port, SCFCR,
1829					serial_port_in(port, SCFCR) |
1830					SCFCR_LOOP);
1831	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1832}
1833
1834static unsigned int sci_get_mctrl(struct uart_port *port)
1835{
 
 
 
 
 
 
1836	/*
1837	 * CTS/RTS is handled in hardware when supported, while nothing
1838	 * else is wired up. Keep it simple and simply assert DSR/CAR.
1839	 */
1840	return TIOCM_DSR | TIOCM_CAR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1841}
1842
1843static void sci_break_ctl(struct uart_port *port, int break_state)
1844{
1845	struct sci_port *s = to_sci_port(port);
1846	const struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1847	unsigned short scscr, scsptr;
 
1848
1849	/* check wheter the port has SCSPTR */
1850	if (!reg->size) {
1851		/*
1852		 * Not supported by hardware. Most parts couple break and rx
1853		 * interrupts together, with break detection always enabled.
1854		 */
1855		return;
1856	}
1857
 
1858	scsptr = serial_port_in(port, SCSPTR);
1859	scscr = serial_port_in(port, SCSCR);
1860
1861	if (break_state == -1) {
1862		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1863		scscr &= ~SCSCR_TE;
1864	} else {
1865		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1866		scscr |= SCSCR_TE;
1867	}
1868
1869	serial_port_out(port, SCSPTR, scsptr);
1870	serial_port_out(port, SCSCR, scscr);
 
1871}
1872
1873static int sci_startup(struct uart_port *port)
1874{
1875	struct sci_port *s = to_sci_port(port);
1876	unsigned long flags;
1877	int ret;
1878
1879	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1880
1881	ret = sci_request_irq(s);
1882	if (unlikely(ret < 0))
1883		return ret;
1884
1885	sci_request_dma(port);
1886
1887	spin_lock_irqsave(&port->lock, flags);
1888	sci_start_tx(port);
1889	sci_start_rx(port);
1890	spin_unlock_irqrestore(&port->lock, flags);
 
1891
1892	return 0;
1893}
1894
1895static void sci_shutdown(struct uart_port *port)
1896{
1897	struct sci_port *s = to_sci_port(port);
1898	unsigned long flags;
 
1899
1900	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1901
 
 
 
1902	spin_lock_irqsave(&port->lock, flags);
1903	sci_stop_rx(port);
1904	sci_stop_tx(port);
 
 
 
 
 
 
 
1905	spin_unlock_irqrestore(&port->lock, flags);
1906
1907#ifdef CONFIG_SERIAL_SH_SCI_DMA
1908	if (s->chan_rx) {
1909		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
1910			port->line);
1911		del_timer_sync(&s->rx_timer);
1912	}
1913#endif
1914
1915	sci_free_dma(port);
1916	sci_free_irq(s);
 
1917}
1918
1919static int sci_sck_calc(struct sci_port *s, unsigned int bps,
1920			unsigned int *srr)
1921{
1922	unsigned long freq = s->clk_rates[SCI_SCK];
1923	int err, min_err = INT_MAX;
1924	unsigned int sr;
1925
1926	if (s->port.type != PORT_HSCIF)
1927		freq *= 2;
1928
1929	for_each_sr(sr, s) {
1930		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
1931		if (abs(err) >= abs(min_err))
1932			continue;
1933
1934		min_err = err;
1935		*srr = sr - 1;
1936
1937		if (!err)
1938			break;
1939	}
1940
1941	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
1942		*srr + 1);
1943	return min_err;
1944}
1945
1946static int sci_brg_calc(struct sci_port *s, unsigned int bps,
1947			unsigned long freq, unsigned int *dlr,
1948			unsigned int *srr)
1949{
1950	int err, min_err = INT_MAX;
1951	unsigned int sr, dl;
1952
1953	if (s->port.type != PORT_HSCIF)
1954		freq *= 2;
1955
1956	for_each_sr(sr, s) {
1957		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
1958		dl = clamp(dl, 1U, 65535U);
1959
1960		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
1961		if (abs(err) >= abs(min_err))
1962			continue;
1963
1964		min_err = err;
1965		*dlr = dl;
1966		*srr = sr - 1;
1967
1968		if (!err)
1969			break;
1970	}
1971
1972	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
1973		min_err, *dlr, *srr + 1);
1974	return min_err;
1975}
1976
1977/* calculate sample rate, BRR, and clock select */
1978static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
1979			  unsigned int *brr, unsigned int *srr,
1980			  unsigned int *cks)
1981{
1982	unsigned long freq = s->clk_rates[SCI_FCK];
1983	unsigned int sr, br, prediv, scrate, c;
1984	int err, min_err = INT_MAX;
1985
1986	if (s->port.type != PORT_HSCIF)
1987		freq *= 2;
1988
1989	/*
1990	 * Find the combination of sample rate and clock select with the
1991	 * smallest deviation from the desired baud rate.
1992	 * Prefer high sample rates to maximise the receive margin.
1993	 *
1994	 * M: Receive margin (%)
1995	 * N: Ratio of bit rate to clock (N = sampling rate)
1996	 * D: Clock duty (D = 0 to 1.0)
1997	 * L: Frame length (L = 9 to 12)
1998	 * F: Absolute value of clock frequency deviation
1999	 *
2000	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2001	 *      (|D - 0.5| / N * (1 + F))|
2002	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2003	 */
2004	for_each_sr(sr, s) {
2005		for (c = 0; c <= 3; c++) {
2006			/* integerized formulas from HSCIF documentation */
2007			prediv = sr * (1 << (2 * c + 1));
2008
2009			/*
2010			 * We need to calculate:
2011			 *
2012			 *     br = freq / (prediv * bps) clamped to [1..256]
2013			 *     err = freq / (br * prediv) - bps
2014			 *
2015			 * Watch out for overflow when calculating the desired
2016			 * sampling clock rate!
2017			 */
2018			if (bps > UINT_MAX / prediv)
2019				break;
2020
2021			scrate = prediv * bps;
2022			br = DIV_ROUND_CLOSEST(freq, scrate);
2023			br = clamp(br, 1U, 256U);
2024
2025			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2026			if (abs(err) >= abs(min_err))
2027				continue;
2028
2029			min_err = err;
2030			*brr = br - 1;
2031			*srr = sr - 1;
2032			*cks = c;
2033
2034			if (!err)
2035				goto found;
2036		}
2037	}
2038
2039found:
2040	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2041		min_err, *brr, *srr + 1, *cks);
2042	return min_err;
2043}
2044
2045static void sci_reset(struct uart_port *port)
2046{
2047	const struct plat_sci_reg *reg;
2048	unsigned int status;
 
2049
2050	do {
2051		status = serial_port_in(port, SCxSR);
2052	} while (!(status & SCxSR_TEND(port)));
2053
2054	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
2055
2056	reg = sci_getreg(port, SCFCR);
2057	if (reg->size)
2058		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2059}
2060
2061static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2062			    struct ktermios *old)
2063{
2064	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i;
2065	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2066	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2067	struct sci_port *s = to_sci_port(port);
2068	const struct plat_sci_reg *reg;
2069	int min_err = INT_MAX, err;
2070	unsigned long max_freq = 0;
2071	int best_clk = -1;
 
2072
2073	if ((termios->c_cflag & CSIZE) == CS7)
2074		smr_val |= SCSMR_CHR;
2075	if (termios->c_cflag & PARENB)
2076		smr_val |= SCSMR_PE;
2077	if (termios->c_cflag & PARODD)
2078		smr_val |= SCSMR_PE | SCSMR_ODD;
2079	if (termios->c_cflag & CSTOPB)
2080		smr_val |= SCSMR_STOP;
2081
2082	/*
2083	 * earlyprintk comes here early on with port->uartclk set to zero.
2084	 * the clock framework is not up and running at this point so here
2085	 * we assume that 115200 is the maximum baud rate. please note that
2086	 * the baud rate is not programmed during earlyprintk - it is assumed
2087	 * that the previous boot loader has enabled required clocks and
2088	 * setup the baud rate generator hardware for us already.
2089	 */
2090	if (!port->uartclk) {
2091		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2092		goto done;
2093	}
2094
2095	for (i = 0; i < SCI_NUM_CLKS; i++)
2096		max_freq = max(max_freq, s->clk_rates[i]);
2097
2098	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2099	if (!baud)
2100		goto done;
2101
2102	/*
2103	 * There can be multiple sources for the sampling clock.  Find the one
2104	 * that gives us the smallest deviation from the desired baud rate.
2105	 */
2106
2107	/* Optional Undivided External Clock */
2108	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2109	    port->type != PORT_SCIFB) {
2110		err = sci_sck_calc(s, baud, &srr1);
2111		if (abs(err) < abs(min_err)) {
2112			best_clk = SCI_SCK;
2113			scr_val = SCSCR_CKE1;
2114			sccks = SCCKS_CKS;
2115			min_err = err;
2116			srr = srr1;
2117			if (!err)
2118				goto done;
2119		}
2120	}
2121
2122	/* Optional BRG Frequency Divided External Clock */
2123	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2124		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2125				   &srr1);
2126		if (abs(err) < abs(min_err)) {
2127			best_clk = SCI_SCIF_CLK;
2128			scr_val = SCSCR_CKE1;
2129			sccks = 0;
2130			min_err = err;
2131			dl = dl1;
2132			srr = srr1;
2133			if (!err)
2134				goto done;
2135		}
2136	}
2137
2138	/* Optional BRG Frequency Divided Internal Clock */
2139	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2140		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2141				   &srr1);
2142		if (abs(err) < abs(min_err)) {
2143			best_clk = SCI_BRG_INT;
2144			scr_val = SCSCR_CKE1;
2145			sccks = SCCKS_XIN;
2146			min_err = err;
2147			dl = dl1;
2148			srr = srr1;
2149			if (!min_err)
2150				goto done;
2151		}
2152	}
2153
2154	/* Divided Functional Clock using standard Bit Rate Register */
2155	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2156	if (abs(err) < abs(min_err)) {
2157		best_clk = SCI_FCK;
2158		scr_val = 0;
2159		min_err = err;
2160		brr = brr1;
2161		srr = srr1;
2162		cks = cks1;
2163	}
2164
2165done:
2166	if (best_clk >= 0)
2167		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2168			s->clks[best_clk], baud, min_err);
2169
2170	sci_port_enable(s);
2171
2172	/*
2173	 * Program the optional External Baud Rate Generator (BRG) first.
2174	 * It controls the mux to select (H)SCK or frequency divided clock.
2175	 */
2176	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2177		serial_port_out(port, SCDL, dl);
2178		serial_port_out(port, SCCKS, sccks);
2179	}
2180
 
 
2181	sci_reset(port);
2182
2183	uart_update_timeout(port, termios->c_cflag, baud);
2184
2185	if (best_clk >= 0) {
2186		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2187			switch (srr + 1) {
2188			case 5:  smr_val |= SCSMR_SRC_5;  break;
2189			case 7:  smr_val |= SCSMR_SRC_7;  break;
2190			case 11: smr_val |= SCSMR_SRC_11; break;
2191			case 13: smr_val |= SCSMR_SRC_13; break;
2192			case 16: smr_val |= SCSMR_SRC_16; break;
2193			case 17: smr_val |= SCSMR_SRC_17; break;
2194			case 19: smr_val |= SCSMR_SRC_19; break;
2195			case 27: smr_val |= SCSMR_SRC_27; break;
2196			}
2197		smr_val |= cks;
2198		dev_dbg(port->dev,
2199			 "SCR 0x%x SMR 0x%x BRR %u CKS 0x%x DL %u SRR %u\n",
2200			 scr_val, smr_val, brr, sccks, dl, srr);
2201		serial_port_out(port, SCSCR, scr_val);
2202		serial_port_out(port, SCSMR, smr_val);
2203		serial_port_out(port, SCBRR, brr);
2204		if (sci_getreg(port, HSSRR)->size)
2205			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
2206
2207		/* Wait one bit interval */
2208		udelay((1000000 + (baud - 1)) / baud);
2209	} else {
2210		/* Don't touch the bit rate configuration */
2211		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2212		smr_val |= serial_port_in(port, SCSMR) &
2213			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2214		dev_dbg(port->dev, "SCR 0x%x SMR 0x%x\n", scr_val, smr_val);
2215		serial_port_out(port, SCSCR, scr_val);
2216		serial_port_out(port, SCSMR, smr_val);
2217	}
2218
2219	sci_init_pins(port, termios->c_cflag);
2220
 
 
2221	reg = sci_getreg(port, SCFCR);
2222	if (reg->size) {
2223		unsigned short ctrl = serial_port_in(port, SCFCR);
2224
2225		if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
2226			if (termios->c_cflag & CRTSCTS)
2227				ctrl |= SCFCR_MCE;
2228			else
2229				ctrl &= ~SCFCR_MCE;
 
2230		}
2231
2232		/*
2233		 * As we've done a sci_reset() above, ensure we don't
2234		 * interfere with the FIFOs while toggling MCE. As the
2235		 * reset values could still be set, simply mask them out.
2236		 */
2237		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2238
2239		serial_port_out(port, SCFCR, ctrl);
2240	}
 
 
 
 
2241
2242	scr_val |= s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0);
2243	dev_dbg(port->dev, "SCSCR 0x%x\n", scr_val);
2244	serial_port_out(port, SCSCR, scr_val);
2245	if ((srr + 1 == 5) &&
2246	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2247		/*
2248		 * In asynchronous mode, when the sampling rate is 1/5, first
2249		 * received data may become invalid on some SCIFA and SCIFB.
2250		 * To avoid this problem wait more than 1 serial data time (1
2251		 * bit time x serial data number) after setting SCSCR.RE = 1.
2252		 */
2253		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2254	}
2255
2256#ifdef CONFIG_SERIAL_SH_SCI_DMA
2257	/*
2258	 * Calculate delay for 2 DMA buffers (4 FIFO).
2259	 * See serial_core.c::uart_update_timeout().
2260	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2261	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2262	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2263	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2264	 * value obtained by this formula is too small. Therefore, if the value
2265	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2266	 */
2267	if (s->chan_rx) {
2268		unsigned int bits;
 
 
 
 
 
 
 
 
 
 
 
 
 
2269
2270		/* byte size and parity */
2271		switch (termios->c_cflag & CSIZE) {
2272		case CS5:
2273			bits = 7;
2274			break;
2275		case CS6:
2276			bits = 8;
2277			break;
2278		case CS7:
2279			bits = 9;
2280			break;
2281		default:
2282			bits = 10;
2283			break;
2284		}
2285
2286		if (termios->c_cflag & CSTOPB)
2287			bits++;
2288		if (termios->c_cflag & PARENB)
2289			bits++;
2290		s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) /
2291					     (baud / 10), 10);
2292		dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
2293			s->rx_timeout * 1000 / HZ, port->timeout);
2294		if (s->rx_timeout < msecs_to_jiffies(20))
2295			s->rx_timeout = msecs_to_jiffies(20);
2296	}
2297#endif
2298
2299	if ((termios->c_cflag & CREAD) != 0)
2300		sci_start_rx(port);
2301
 
 
2302	sci_port_disable(s);
 
 
 
2303}
2304
2305static void sci_pm(struct uart_port *port, unsigned int state,
2306		   unsigned int oldstate)
2307{
2308	struct sci_port *sci_port = to_sci_port(port);
2309
2310	switch (state) {
2311	case UART_PM_STATE_OFF:
2312		sci_port_disable(sci_port);
2313		break;
2314	default:
2315		sci_port_enable(sci_port);
2316		break;
2317	}
2318}
2319
2320static const char *sci_type(struct uart_port *port)
2321{
2322	switch (port->type) {
2323	case PORT_IRDA:
2324		return "irda";
2325	case PORT_SCI:
2326		return "sci";
2327	case PORT_SCIF:
2328		return "scif";
2329	case PORT_SCIFA:
2330		return "scifa";
2331	case PORT_SCIFB:
2332		return "scifb";
2333	case PORT_HSCIF:
2334		return "hscif";
2335	}
2336
2337	return NULL;
2338}
2339
2340static int sci_remap_port(struct uart_port *port)
2341{
2342	struct sci_port *sport = to_sci_port(port);
2343
2344	/*
2345	 * Nothing to do if there's already an established membase.
2346	 */
2347	if (port->membase)
2348		return 0;
2349
2350	if (port->flags & UPF_IOREMAP) {
2351		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2352		if (unlikely(!port->membase)) {
2353			dev_err(port->dev, "can't remap port#%d\n", port->line);
2354			return -ENXIO;
2355		}
2356	} else {
2357		/*
2358		 * For the simple (and majority of) cases where we don't
2359		 * need to do any remapping, just cast the cookie
2360		 * directly.
2361		 */
2362		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2363	}
2364
2365	return 0;
2366}
2367
2368static void sci_release_port(struct uart_port *port)
2369{
2370	struct sci_port *sport = to_sci_port(port);
2371
2372	if (port->flags & UPF_IOREMAP) {
2373		iounmap(port->membase);
2374		port->membase = NULL;
2375	}
2376
2377	release_mem_region(port->mapbase, sport->reg_size);
2378}
2379
2380static int sci_request_port(struct uart_port *port)
2381{
2382	struct resource *res;
2383	struct sci_port *sport = to_sci_port(port);
2384	int ret;
2385
2386	res = request_mem_region(port->mapbase, sport->reg_size,
2387				 dev_name(port->dev));
2388	if (unlikely(res == NULL)) {
2389		dev_err(port->dev, "request_mem_region failed.");
2390		return -EBUSY;
2391	}
2392
2393	ret = sci_remap_port(port);
2394	if (unlikely(ret != 0)) {
2395		release_resource(res);
2396		return ret;
2397	}
2398
2399	return 0;
2400}
2401
2402static void sci_config_port(struct uart_port *port, int flags)
2403{
2404	if (flags & UART_CONFIG_TYPE) {
2405		struct sci_port *sport = to_sci_port(port);
2406
2407		port->type = sport->cfg->type;
2408		sci_request_port(port);
2409	}
2410}
2411
2412static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2413{
2414	if (ser->baud_base < 2400)
2415		/* No paper tape reader for Mitch.. */
2416		return -EINVAL;
2417
2418	return 0;
2419}
2420
2421static struct uart_ops sci_uart_ops = {
2422	.tx_empty	= sci_tx_empty,
2423	.set_mctrl	= sci_set_mctrl,
2424	.get_mctrl	= sci_get_mctrl,
2425	.start_tx	= sci_start_tx,
2426	.stop_tx	= sci_stop_tx,
2427	.stop_rx	= sci_stop_rx,
 
2428	.break_ctl	= sci_break_ctl,
2429	.startup	= sci_startup,
2430	.shutdown	= sci_shutdown,
 
2431	.set_termios	= sci_set_termios,
2432	.pm		= sci_pm,
2433	.type		= sci_type,
2434	.release_port	= sci_release_port,
2435	.request_port	= sci_request_port,
2436	.config_port	= sci_config_port,
2437	.verify_port	= sci_verify_port,
2438#ifdef CONFIG_CONSOLE_POLL
2439	.poll_get_char	= sci_poll_get_char,
2440	.poll_put_char	= sci_poll_put_char,
2441#endif
2442};
2443
2444static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2445{
2446	const char *clk_names[] = {
2447		[SCI_FCK] = "fck",
2448		[SCI_SCK] = "sck",
2449		[SCI_BRG_INT] = "brg_int",
2450		[SCI_SCIF_CLK] = "scif_clk",
2451	};
2452	struct clk *clk;
2453	unsigned int i;
2454
2455	if (sci_port->cfg->type == PORT_HSCIF)
2456		clk_names[SCI_SCK] = "hsck";
2457
2458	for (i = 0; i < SCI_NUM_CLKS; i++) {
2459		clk = devm_clk_get(dev, clk_names[i]);
2460		if (PTR_ERR(clk) == -EPROBE_DEFER)
2461			return -EPROBE_DEFER;
2462
2463		if (IS_ERR(clk) && i == SCI_FCK) {
2464			/*
2465			 * "fck" used to be called "sci_ick", and we need to
2466			 * maintain DT backward compatibility.
2467			 */
2468			clk = devm_clk_get(dev, "sci_ick");
2469			if (PTR_ERR(clk) == -EPROBE_DEFER)
2470				return -EPROBE_DEFER;
2471
2472			if (!IS_ERR(clk))
2473				goto found;
2474
2475			/*
2476			 * Not all SH platforms declare a clock lookup entry
2477			 * for SCI devices, in which case we need to get the
2478			 * global "peripheral_clk" clock.
2479			 */
2480			clk = devm_clk_get(dev, "peripheral_clk");
2481			if (!IS_ERR(clk))
2482				goto found;
2483
2484			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2485				PTR_ERR(clk));
2486			return PTR_ERR(clk);
2487		}
2488
2489found:
2490		if (IS_ERR(clk))
2491			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2492				PTR_ERR(clk));
2493		else
2494			dev_dbg(dev, "clk %s is %pC rate %pCr\n", clk_names[i],
2495				clk, clk);
2496		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2497	}
2498	return 0;
2499}
2500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2501static int sci_init_single(struct platform_device *dev,
2502			   struct sci_port *sci_port, unsigned int index,
2503			   struct plat_sci_port *p, bool early)
2504{
2505	struct uart_port *port = &sci_port->port;
2506	const struct resource *res;
2507	unsigned int i;
2508	int ret;
2509
2510	sci_port->cfg	= p;
2511
2512	port->ops	= &sci_uart_ops;
2513	port->iotype	= UPIO_MEM;
2514	port->line	= index;
2515
2516	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2517	if (res == NULL)
2518		return -ENOMEM;
2519
2520	port->mapbase = res->start;
2521	sci_port->reg_size = resource_size(res);
2522
2523	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2524		sci_port->irqs[i] = platform_get_irq(dev, i);
2525
2526	/* The SCI generates several interrupts. They can be muxed together or
2527	 * connected to different interrupt lines. In the muxed case only one
2528	 * interrupt resource is specified. In the non-muxed case three or four
2529	 * interrupt resources are specified, as the BRI interrupt is optional.
2530	 */
2531	if (sci_port->irqs[0] < 0)
2532		return -ENXIO;
2533
2534	if (sci_port->irqs[1] < 0) {
2535		sci_port->irqs[1] = sci_port->irqs[0];
2536		sci_port->irqs[2] = sci_port->irqs[0];
2537		sci_port->irqs[3] = sci_port->irqs[0];
2538	}
2539
2540	if (p->regtype == SCIx_PROBE_REGTYPE) {
2541		ret = sci_probe_regmap(p);
2542		if (unlikely(ret))
2543			return ret;
2544	}
2545
2546	switch (p->type) {
2547	case PORT_SCIFB:
2548		port->fifosize = 256;
2549		sci_port->overrun_reg = SCxSR;
2550		sci_port->overrun_mask = SCIFA_ORER;
2551		sci_port->sampling_rate_mask = SCI_SR_SCIFAB;
2552		break;
2553	case PORT_HSCIF:
2554		port->fifosize = 128;
2555		sci_port->overrun_reg = SCLSR;
2556		sci_port->overrun_mask = SCLSR_ORER;
2557		sci_port->sampling_rate_mask = SCI_SR_RANGE(8, 32);
2558		break;
2559	case PORT_SCIFA:
2560		port->fifosize = 64;
2561		sci_port->overrun_reg = SCxSR;
2562		sci_port->overrun_mask = SCIFA_ORER;
2563		sci_port->sampling_rate_mask = SCI_SR_SCIFAB;
2564		break;
2565	case PORT_SCIF:
2566		port->fifosize = 16;
2567		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2568			sci_port->overrun_reg = SCxSR;
2569			sci_port->overrun_mask = SCIFA_ORER;
2570			sci_port->sampling_rate_mask = SCI_SR(16);
2571		} else {
2572			sci_port->overrun_reg = SCLSR;
2573			sci_port->overrun_mask = SCLSR_ORER;
2574			sci_port->sampling_rate_mask = SCI_SR(32);
2575		}
2576		break;
2577	default:
2578		port->fifosize = 1;
2579		sci_port->overrun_reg = SCxSR;
2580		sci_port->overrun_mask = SCI_ORER;
2581		sci_port->sampling_rate_mask = SCI_SR(32);
2582		break;
2583	}
2584
 
 
 
2585	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2586	 * match the SoC datasheet, this should be investigated. Let platform
2587	 * data override the sampling rate for now.
2588	 */
2589	if (p->sampling_rate)
2590		sci_port->sampling_rate_mask = SCI_SR(p->sampling_rate);
 
2591
2592	if (!early) {
2593		ret = sci_init_clocks(sci_port, &dev->dev);
2594		if (ret < 0)
2595			return ret;
2596
2597		port->dev = &dev->dev;
2598
2599		pm_runtime_enable(&dev->dev);
2600	}
2601
2602	sci_port->break_timer.data = (unsigned long)sci_port;
2603	sci_port->break_timer.function = sci_break_timer;
2604	init_timer(&sci_port->break_timer);
2605
2606	/*
2607	 * Establish some sensible defaults for the error detection.
2608	 */
2609	if (p->type == PORT_SCI) {
2610		sci_port->error_mask = SCI_DEFAULT_ERROR_MASK;
2611		sci_port->error_clear = SCI_ERROR_CLEAR;
2612	} else {
2613		sci_port->error_mask = SCIF_DEFAULT_ERROR_MASK;
2614		sci_port->error_clear = SCIF_ERROR_CLEAR;
2615	}
2616
2617	/*
2618	 * Make the error mask inclusive of overrun detection, if
2619	 * supported.
2620	 */
2621	if (sci_port->overrun_reg == SCxSR) {
2622		sci_port->error_mask |= sci_port->overrun_mask;
2623		sci_port->error_clear &= ~sci_port->overrun_mask;
2624	}
2625
2626	port->type		= p->type;
2627	port->flags		= UPF_FIXED_PORT | p->flags;
2628	port->regshift		= p->regshift;
2629
2630	/*
2631	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2632	 * for the multi-IRQ ports, which is where we are primarily
2633	 * concerned with the shutdown path synchronization.
2634	 *
2635	 * For the muxed case there's nothing more to do.
2636	 */
2637	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2638	port->irqflags		= 0;
2639
2640	port->serial_in		= sci_serial_in;
2641	port->serial_out	= sci_serial_out;
2642
2643	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2644		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2645			p->dma_slave_tx, p->dma_slave_rx);
2646
2647	return 0;
2648}
2649
2650static void sci_cleanup_single(struct sci_port *port)
2651{
2652	pm_runtime_disable(port->port.dev);
2653}
2654
2655#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2656    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2657static void serial_console_putchar(struct uart_port *port, int ch)
2658{
2659	sci_poll_put_char(port, ch);
2660}
2661
2662/*
2663 *	Print a string to the serial port trying not to disturb
2664 *	any possible real use of the port...
2665 */
2666static void serial_console_write(struct console *co, const char *s,
2667				 unsigned count)
2668{
2669	struct sci_port *sci_port = &sci_ports[co->index];
2670	struct uart_port *port = &sci_port->port;
2671	unsigned short bits, ctrl, ctrl_temp;
2672	unsigned long flags;
2673	int locked = 1;
2674
2675	local_irq_save(flags);
2676#if defined(SUPPORT_SYSRQ)
2677	if (port->sysrq)
2678		locked = 0;
2679	else
2680#endif
2681	if (oops_in_progress)
2682		locked = spin_trylock(&port->lock);
2683	else
2684		spin_lock(&port->lock);
2685
2686	/* first save SCSCR then disable interrupts, keep clock source */
2687	ctrl = serial_port_in(port, SCSCR);
2688	ctrl_temp = (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
 
2689		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2690	serial_port_out(port, SCSCR, ctrl_temp);
2691
2692	uart_console_write(port, s, count, serial_console_putchar);
2693
2694	/* wait until fifo is empty and last bit has been transmitted */
2695	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2696	while ((serial_port_in(port, SCxSR) & bits) != bits)
2697		cpu_relax();
2698
2699	/* restore the SCSCR */
2700	serial_port_out(port, SCSCR, ctrl);
2701
2702	if (locked)
2703		spin_unlock(&port->lock);
2704	local_irq_restore(flags);
2705}
2706
2707static int serial_console_setup(struct console *co, char *options)
2708{
2709	struct sci_port *sci_port;
2710	struct uart_port *port;
2711	int baud = 115200;
2712	int bits = 8;
2713	int parity = 'n';
2714	int flow = 'n';
2715	int ret;
2716
2717	/*
2718	 * Refuse to handle any bogus ports.
2719	 */
2720	if (co->index < 0 || co->index >= SCI_NPORTS)
2721		return -ENODEV;
2722
2723	sci_port = &sci_ports[co->index];
2724	port = &sci_port->port;
2725
2726	/*
2727	 * Refuse to handle uninitialized ports.
2728	 */
2729	if (!port->ops)
2730		return -ENODEV;
2731
2732	ret = sci_remap_port(port);
2733	if (unlikely(ret != 0))
2734		return ret;
2735
2736	if (options)
2737		uart_parse_options(options, &baud, &parity, &bits, &flow);
2738
2739	return uart_set_options(port, co, baud, parity, bits, flow);
2740}
2741
2742static struct console serial_console = {
2743	.name		= "ttySC",
2744	.device		= uart_console_device,
2745	.write		= serial_console_write,
2746	.setup		= serial_console_setup,
2747	.flags		= CON_PRINTBUFFER,
2748	.index		= -1,
2749	.data		= &sci_uart_driver,
2750};
2751
2752static struct console early_serial_console = {
2753	.name           = "early_ttySC",
2754	.write          = serial_console_write,
2755	.flags          = CON_PRINTBUFFER,
2756	.index		= -1,
2757};
2758
2759static char early_serial_buf[32];
2760
2761static int sci_probe_earlyprintk(struct platform_device *pdev)
2762{
2763	struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2764
2765	if (early_serial_console.data)
2766		return -EEXIST;
2767
2768	early_serial_console.index = pdev->id;
2769
2770	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2771
2772	serial_console_setup(&early_serial_console, early_serial_buf);
2773
2774	if (!strstr(early_serial_buf, "keep"))
2775		early_serial_console.flags |= CON_BOOT;
2776
2777	register_console(&early_serial_console);
2778	return 0;
2779}
2780
2781#define SCI_CONSOLE	(&serial_console)
2782
2783#else
2784static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2785{
2786	return -EINVAL;
2787}
2788
2789#define SCI_CONSOLE	NULL
2790
2791#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
2792
2793static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2794
 
2795static struct uart_driver sci_uart_driver = {
2796	.owner		= THIS_MODULE,
2797	.driver_name	= "sci",
2798	.dev_name	= "ttySC",
2799	.major		= SCI_MAJOR,
2800	.minor		= SCI_MINOR_START,
2801	.nr		= SCI_NPORTS,
2802	.cons		= SCI_CONSOLE,
2803};
2804
2805static int sci_remove(struct platform_device *dev)
2806{
2807	struct sci_port *port = platform_get_drvdata(dev);
2808
2809	uart_remove_one_port(&sci_uart_driver, &port->port);
2810
2811	sci_cleanup_single(port);
2812
 
 
 
 
 
 
 
 
 
 
2813	return 0;
2814}
2815
2816
2817#define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
2818#define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
2819#define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
2820
2821static const struct of_device_id of_sci_match[] = {
2822	/* SoC-specific types */
2823	{
2824		.compatible = "renesas,scif-r7s72100",
2825		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
2826	},
2827	/* Family-specific types */
2828	{
2829		.compatible = "renesas,rcar-gen1-scif",
2830		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2831	}, {
2832		.compatible = "renesas,rcar-gen2-scif",
2833		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2834	}, {
2835		.compatible = "renesas,rcar-gen3-scif",
2836		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2837	},
2838	/* Generic types */
2839	{
2840		.compatible = "renesas,scif",
2841		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
2842	}, {
2843		.compatible = "renesas,scifa",
2844		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
2845	}, {
2846		.compatible = "renesas,scifb",
2847		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
2848	}, {
2849		.compatible = "renesas,hscif",
2850		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
2851	}, {
2852		.compatible = "renesas,sci",
2853		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
2854	}, {
2855		/* Terminator */
2856	},
2857};
2858MODULE_DEVICE_TABLE(of, of_sci_match);
2859
2860static struct plat_sci_port *
2861sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2862{
2863	struct device_node *np = pdev->dev.of_node;
2864	const struct of_device_id *match;
2865	struct plat_sci_port *p;
 
 
2866	int id;
2867
2868	if (!IS_ENABLED(CONFIG_OF) || !np)
2869		return NULL;
2870
2871	match = of_match_node(of_sci_match, np);
2872	if (!match)
2873		return NULL;
2874
2875	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2876	if (!p)
2877		return NULL;
2878
2879	/* Get the line number from the aliases node. */
2880	id = of_alias_get_id(np, "serial");
2881	if (id < 0) {
2882		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2883		return NULL;
2884	}
 
 
 
 
2885
 
2886	*dev_id = id;
2887
2888	p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
2889	p->type = SCI_OF_TYPE(match->data);
2890	p->regtype = SCI_OF_REGTYPE(match->data);
2891	p->scscr = SCSCR_RE | SCSCR_TE;
2892
2893	return p;
2894}
2895
2896static int sci_probe_single(struct platform_device *dev,
2897				      unsigned int index,
2898				      struct plat_sci_port *p,
2899				      struct sci_port *sciport)
2900{
2901	int ret;
2902
2903	/* Sanity check */
2904	if (unlikely(index >= SCI_NPORTS)) {
2905		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
2906			   index+1, SCI_NPORTS);
2907		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2908		return -EINVAL;
2909	}
2910
 
 
 
 
 
 
 
 
 
 
2911	ret = sci_init_single(dev, sciport, index, p, false);
2912	if (ret)
2913		return ret;
2914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2915	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2916	if (ret) {
2917		sci_cleanup_single(sciport);
2918		return ret;
2919	}
2920
2921	return 0;
2922}
2923
2924static int sci_probe(struct platform_device *dev)
2925{
2926	struct plat_sci_port *p;
2927	struct sci_port *sp;
2928	unsigned int dev_id;
2929	int ret;
2930
2931	/*
2932	 * If we've come here via earlyprintk initialization, head off to
2933	 * the special early probe. We don't have sufficient device state
2934	 * to make it beyond this yet.
2935	 */
2936	if (is_early_platform_device(dev))
2937		return sci_probe_earlyprintk(dev);
2938
2939	if (dev->dev.of_node) {
2940		p = sci_parse_dt(dev, &dev_id);
2941		if (p == NULL)
2942			return -EINVAL;
2943	} else {
2944		p = dev->dev.platform_data;
2945		if (p == NULL) {
2946			dev_err(&dev->dev, "no platform data supplied\n");
2947			return -EINVAL;
2948		}
2949
2950		dev_id = dev->id;
2951	}
2952
2953	sp = &sci_ports[dev_id];
2954	platform_set_drvdata(dev, sp);
2955
2956	ret = sci_probe_single(dev, dev_id, p, sp);
2957	if (ret)
2958		return ret;
2959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2960#ifdef CONFIG_SH_STANDARD_BIOS
2961	sh_bios_gdb_detach();
2962#endif
2963
2964	return 0;
2965}
2966
2967static __maybe_unused int sci_suspend(struct device *dev)
2968{
2969	struct sci_port *sport = dev_get_drvdata(dev);
2970
2971	if (sport)
2972		uart_suspend_port(&sci_uart_driver, &sport->port);
2973
2974	return 0;
2975}
2976
2977static __maybe_unused int sci_resume(struct device *dev)
2978{
2979	struct sci_port *sport = dev_get_drvdata(dev);
2980
2981	if (sport)
2982		uart_resume_port(&sci_uart_driver, &sport->port);
2983
2984	return 0;
2985}
2986
2987static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
2988
2989static struct platform_driver sci_driver = {
2990	.probe		= sci_probe,
2991	.remove		= sci_remove,
2992	.driver		= {
2993		.name	= "sh-sci",
2994		.pm	= &sci_dev_pm_ops,
2995		.of_match_table = of_match_ptr(of_sci_match),
2996	},
2997};
2998
2999static int __init sci_init(void)
3000{
3001	int ret;
3002
3003	pr_info("%s\n", banner);
3004
3005	ret = uart_register_driver(&sci_uart_driver);
3006	if (likely(ret == 0)) {
3007		ret = platform_driver_register(&sci_driver);
3008		if (unlikely(ret))
3009			uart_unregister_driver(&sci_uart_driver);
3010	}
3011
3012	return ret;
3013}
3014
3015static void __exit sci_exit(void)
3016{
3017	platform_driver_unregister(&sci_driver);
3018	uart_unregister_driver(&sci_uart_driver);
 
 
3019}
3020
3021#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3022early_platform_init_buffer("earlyprintk", &sci_driver,
3023			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3024#endif
3025#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3026static struct __init plat_sci_port port_cfg;
3027
3028static int __init early_console_setup(struct earlycon_device *device,
3029				      int type)
3030{
3031	if (!device->port.membase)
3032		return -ENODEV;
3033
3034	device->port.serial_in = sci_serial_in;
3035	device->port.serial_out	= sci_serial_out;
3036	device->port.type = type;
3037	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
 
3038	sci_ports[0].cfg = &port_cfg;
3039	sci_ports[0].cfg->type = type;
3040	sci_probe_regmap(sci_ports[0].cfg);
3041	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR) |
3042			 SCSCR_RE | SCSCR_TE;
3043	sci_serial_out(&sci_ports[0].port, SCSCR, port_cfg.scscr);
3044
3045	device->con->write = serial_console_write;
3046	return 0;
3047}
3048static int __init sci_early_console_setup(struct earlycon_device *device,
3049					  const char *opt)
3050{
3051	return early_console_setup(device, PORT_SCI);
3052}
3053static int __init scif_early_console_setup(struct earlycon_device *device,
3054					  const char *opt)
3055{
3056	return early_console_setup(device, PORT_SCIF);
3057}
3058static int __init scifa_early_console_setup(struct earlycon_device *device,
3059					  const char *opt)
3060{
3061	return early_console_setup(device, PORT_SCIFA);
3062}
3063static int __init scifb_early_console_setup(struct earlycon_device *device,
3064					  const char *opt)
3065{
3066	return early_console_setup(device, PORT_SCIFB);
3067}
3068static int __init hscif_early_console_setup(struct earlycon_device *device,
3069					  const char *opt)
3070{
3071	return early_console_setup(device, PORT_HSCIF);
3072}
3073
3074OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3075OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3076OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3077OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3078OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3079#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3080
3081module_init(sci_init);
3082module_exit(sci_exit);
3083
3084MODULE_LICENSE("GPL");
3085MODULE_ALIAS("platform:sh-sci");
3086MODULE_AUTHOR("Paul Mundt");
3087MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
   4 *
   5 *  Copyright (C) 2002 - 2011  Paul Mundt
   6 *  Copyright (C) 2015 Glider bvba
   7 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
   8 *
   9 * based off of the old drivers/char/sh-sci.c by:
  10 *
  11 *   Copyright (C) 1999, 2000  Niibe Yutaka
  12 *   Copyright (C) 2000  Sugioka Toshinobu
  13 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
  14 *   Modified to support SecureEdge. David McCullough (2002)
  15 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
  16 *   Removed SH7300 support (Jul 2007).
 
 
 
 
  17 */
  18#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  19#define SUPPORT_SYSRQ
  20#endif
  21
  22#undef DEBUG
  23
  24#include <linux/clk.h>
  25#include <linux/console.h>
  26#include <linux/ctype.h>
  27#include <linux/cpufreq.h>
  28#include <linux/delay.h>
  29#include <linux/dmaengine.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/err.h>
  32#include <linux/errno.h>
  33#include <linux/init.h>
  34#include <linux/interrupt.h>
  35#include <linux/ioport.h>
  36#include <linux/ktime.h>
  37#include <linux/major.h>
  38#include <linux/module.h>
  39#include <linux/mm.h>
  40#include <linux/of.h>
  41#include <linux/of_device.h>
  42#include <linux/platform_device.h>
  43#include <linux/pm_runtime.h>
  44#include <linux/scatterlist.h>
  45#include <linux/serial.h>
  46#include <linux/serial_sci.h>
  47#include <linux/sh_dma.h>
  48#include <linux/slab.h>
  49#include <linux/string.h>
  50#include <linux/sysrq.h>
  51#include <linux/timer.h>
  52#include <linux/tty.h>
  53#include <linux/tty_flip.h>
  54
  55#ifdef CONFIG_SUPERH
  56#include <asm/sh_bios.h>
  57#endif
  58
  59#include "serial_mctrl_gpio.h"
  60#include "sh-sci.h"
  61
  62/* Offsets into the sci_port->irqs array */
  63enum {
  64	SCIx_ERI_IRQ,
  65	SCIx_RXI_IRQ,
  66	SCIx_TXI_IRQ,
  67	SCIx_BRI_IRQ,
  68	SCIx_NR_IRQS,
  69
  70	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
  71};
  72
  73#define SCIx_IRQ_IS_MUXED(port)			\
  74	((port)->irqs[SCIx_ERI_IRQ] ==	\
  75	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
  76	((port)->irqs[SCIx_ERI_IRQ] &&	\
  77	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
  78
  79enum SCI_CLKS {
  80	SCI_FCK,		/* Functional Clock */
  81	SCI_SCK,		/* Optional External Clock */
  82	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
  83	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
  84	SCI_NUM_CLKS
  85};
  86
  87/* Bit x set means sampling rate x + 1 is supported */
  88#define SCI_SR(x)		BIT((x) - 1)
  89#define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
  90
  91#define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
  92				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
  93				SCI_SR(19) | SCI_SR(27)
  94
  95#define min_sr(_port)		ffs((_port)->sampling_rate_mask)
  96#define max_sr(_port)		fls((_port)->sampling_rate_mask)
  97
  98/* Iterate over all supported sampling rates, from high to low */
  99#define for_each_sr(_sr, _port)						\
 100	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
 101		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
 102
 103struct plat_sci_reg {
 104	u8 offset, size;
 105};
 106
 107struct sci_port_params {
 108	const struct plat_sci_reg regs[SCIx_NR_REGS];
 109	unsigned int fifosize;
 110	unsigned int overrun_reg;
 111	unsigned int overrun_mask;
 112	unsigned int sampling_rate_mask;
 113	unsigned int error_mask;
 114	unsigned int error_clear;
 115};
 116
 117struct sci_port {
 118	struct uart_port	port;
 119
 120	/* Platform configuration */
 121	const struct sci_port_params *params;
 122	const struct plat_sci_port *cfg;
 
 
 
 123	unsigned int		sampling_rate_mask;
 124	resource_size_t		reg_size;
 125	struct mctrl_gpios	*gpios;
 
 
 
 126
 127	/* Clocks */
 128	struct clk		*clks[SCI_NUM_CLKS];
 129	unsigned long		clk_rates[SCI_NUM_CLKS];
 130
 131	int			irqs[SCIx_NR_IRQS];
 132	char			*irqstr[SCIx_NR_IRQS];
 133
 134	struct dma_chan			*chan_tx;
 135	struct dma_chan			*chan_rx;
 136
 137#ifdef CONFIG_SERIAL_SH_SCI_DMA
 138	dma_cookie_t			cookie_tx;
 139	dma_cookie_t			cookie_rx[2];
 140	dma_cookie_t			active_rx;
 141	dma_addr_t			tx_dma_addr;
 142	unsigned int			tx_dma_len;
 143	struct scatterlist		sg_rx[2];
 144	void				*rx_buf[2];
 145	size_t				buf_len_rx;
 146	struct work_struct		work_tx;
 147	struct hrtimer			rx_timer;
 148	unsigned int			rx_timeout;	/* microseconds */
 149#endif
 150	unsigned int			rx_frame;
 151	int				rx_trigger;
 152	struct timer_list		rx_fifo_timer;
 153	int				rx_fifo_timeout;
 154	u16				hscif_tot;
 155
 156	bool has_rtscts;
 157	bool autorts;
 158};
 159
 160#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
 161
 162static struct sci_port sci_ports[SCI_NPORTS];
 163static struct uart_driver sci_uart_driver;
 164
 165static inline struct sci_port *
 166to_sci_port(struct uart_port *uart)
 167{
 168	return container_of(uart, struct sci_port, port);
 169}
 170
 171static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
 
 
 
 
 
 
 
 
 
 
 
 172	/*
 173	 * Common SCI definitions, dependent on the port's regshift
 174	 * value.
 175	 */
 176	[SCIx_SCI_REGTYPE] = {
 177		.regs = {
 178			[SCSMR]		= { 0x00,  8 },
 179			[SCBRR]		= { 0x01,  8 },
 180			[SCSCR]		= { 0x02,  8 },
 181			[SCxTDR]	= { 0x03,  8 },
 182			[SCxSR]		= { 0x04,  8 },
 183			[SCxRDR]	= { 0x05,  8 },
 184		},
 185		.fifosize = 1,
 186		.overrun_reg = SCxSR,
 187		.overrun_mask = SCI_ORER,
 188		.sampling_rate_mask = SCI_SR(32),
 189		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 190		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 
 
 
 191	},
 192
 193	/*
 194	 * Common definitions for legacy IrDA ports.
 
 195	 */
 196	[SCIx_IRDA_REGTYPE] = {
 197		.regs = {
 198			[SCSMR]		= { 0x00,  8 },
 199			[SCBRR]		= { 0x02,  8 },
 200			[SCSCR]		= { 0x04,  8 },
 201			[SCxTDR]	= { 0x06,  8 },
 202			[SCxSR]		= { 0x08, 16 },
 203			[SCxRDR]	= { 0x0a,  8 },
 204			[SCFCR]		= { 0x0c,  8 },
 205			[SCFDR]		= { 0x0e, 16 },
 206		},
 207		.fifosize = 1,
 208		.overrun_reg = SCxSR,
 209		.overrun_mask = SCI_ORER,
 210		.sampling_rate_mask = SCI_SR(32),
 211		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 212		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 
 213	},
 214
 215	/*
 216	 * Common SCIFA definitions.
 217	 */
 218	[SCIx_SCIFA_REGTYPE] = {
 219		.regs = {
 220			[SCSMR]		= { 0x00, 16 },
 221			[SCBRR]		= { 0x04,  8 },
 222			[SCSCR]		= { 0x08, 16 },
 223			[SCxTDR]	= { 0x20,  8 },
 224			[SCxSR]		= { 0x14, 16 },
 225			[SCxRDR]	= { 0x24,  8 },
 226			[SCFCR]		= { 0x18, 16 },
 227			[SCFDR]		= { 0x1c, 16 },
 228			[SCPCR]		= { 0x30, 16 },
 229			[SCPDR]		= { 0x34, 16 },
 230		},
 231		.fifosize = 64,
 232		.overrun_reg = SCxSR,
 233		.overrun_mask = SCIFA_ORER,
 234		.sampling_rate_mask = SCI_SR_SCIFAB,
 235		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 236		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 237	},
 238
 239	/*
 240	 * Common SCIFB definitions.
 241	 */
 242	[SCIx_SCIFB_REGTYPE] = {
 243		.regs = {
 244			[SCSMR]		= { 0x00, 16 },
 245			[SCBRR]		= { 0x04,  8 },
 246			[SCSCR]		= { 0x08, 16 },
 247			[SCxTDR]	= { 0x40,  8 },
 248			[SCxSR]		= { 0x14, 16 },
 249			[SCxRDR]	= { 0x60,  8 },
 250			[SCFCR]		= { 0x18, 16 },
 251			[SCTFDR]	= { 0x38, 16 },
 252			[SCRFDR]	= { 0x3c, 16 },
 253			[SCPCR]		= { 0x30, 16 },
 254			[SCPDR]		= { 0x34, 16 },
 255		},
 256		.fifosize = 256,
 257		.overrun_reg = SCxSR,
 258		.overrun_mask = SCIFA_ORER,
 259		.sampling_rate_mask = SCI_SR_SCIFAB,
 260		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 261		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 262	},
 263
 264	/*
 265	 * Common SH-2(A) SCIF definitions for ports with FIFO data
 266	 * count registers.
 267	 */
 268	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
 269		.regs = {
 270			[SCSMR]		= { 0x00, 16 },
 271			[SCBRR]		= { 0x04,  8 },
 272			[SCSCR]		= { 0x08, 16 },
 273			[SCxTDR]	= { 0x0c,  8 },
 274			[SCxSR]		= { 0x10, 16 },
 275			[SCxRDR]	= { 0x14,  8 },
 276			[SCFCR]		= { 0x18, 16 },
 277			[SCFDR]		= { 0x1c, 16 },
 278			[SCSPTR]	= { 0x20, 16 },
 279			[SCLSR]		= { 0x24, 16 },
 280		},
 281		.fifosize = 16,
 282		.overrun_reg = SCLSR,
 283		.overrun_mask = SCLSR_ORER,
 284		.sampling_rate_mask = SCI_SR(32),
 285		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 286		.error_clear = SCIF_ERROR_CLEAR,
 287	},
 288
 289	/*
 290	 * Common SH-3 SCIF definitions.
 291	 */
 292	[SCIx_SH3_SCIF_REGTYPE] = {
 293		.regs = {
 294			[SCSMR]		= { 0x00,  8 },
 295			[SCBRR]		= { 0x02,  8 },
 296			[SCSCR]		= { 0x04,  8 },
 297			[SCxTDR]	= { 0x06,  8 },
 298			[SCxSR]		= { 0x08, 16 },
 299			[SCxRDR]	= { 0x0a,  8 },
 300			[SCFCR]		= { 0x0c,  8 },
 301			[SCFDR]		= { 0x0e, 16 },
 302		},
 303		.fifosize = 16,
 304		.overrun_reg = SCLSR,
 305		.overrun_mask = SCLSR_ORER,
 306		.sampling_rate_mask = SCI_SR(32),
 307		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 308		.error_clear = SCIF_ERROR_CLEAR,
 
 309	},
 310
 311	/*
 312	 * Common SH-4(A) SCIF(B) definitions.
 313	 */
 314	[SCIx_SH4_SCIF_REGTYPE] = {
 315		.regs = {
 316			[SCSMR]		= { 0x00, 16 },
 317			[SCBRR]		= { 0x04,  8 },
 318			[SCSCR]		= { 0x08, 16 },
 319			[SCxTDR]	= { 0x0c,  8 },
 320			[SCxSR]		= { 0x10, 16 },
 321			[SCxRDR]	= { 0x14,  8 },
 322			[SCFCR]		= { 0x18, 16 },
 323			[SCFDR]		= { 0x1c, 16 },
 324			[SCSPTR]	= { 0x20, 16 },
 325			[SCLSR]		= { 0x24, 16 },
 326		},
 327		.fifosize = 16,
 328		.overrun_reg = SCLSR,
 329		.overrun_mask = SCLSR_ORER,
 330		.sampling_rate_mask = SCI_SR(32),
 331		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 332		.error_clear = SCIF_ERROR_CLEAR,
 333	},
 334
 335	/*
 336	 * Common SCIF definitions for ports with a Baud Rate Generator for
 337	 * External Clock (BRG).
 338	 */
 339	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
 340		.regs = {
 341			[SCSMR]		= { 0x00, 16 },
 342			[SCBRR]		= { 0x04,  8 },
 343			[SCSCR]		= { 0x08, 16 },
 344			[SCxTDR]	= { 0x0c,  8 },
 345			[SCxSR]		= { 0x10, 16 },
 346			[SCxRDR]	= { 0x14,  8 },
 347			[SCFCR]		= { 0x18, 16 },
 348			[SCFDR]		= { 0x1c, 16 },
 349			[SCSPTR]	= { 0x20, 16 },
 350			[SCLSR]		= { 0x24, 16 },
 351			[SCDL]		= { 0x30, 16 },
 352			[SCCKS]		= { 0x34, 16 },
 353		},
 354		.fifosize = 16,
 355		.overrun_reg = SCLSR,
 356		.overrun_mask = SCLSR_ORER,
 357		.sampling_rate_mask = SCI_SR(32),
 358		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 359		.error_clear = SCIF_ERROR_CLEAR,
 360	},
 361
 362	/*
 363	 * Common HSCIF definitions.
 364	 */
 365	[SCIx_HSCIF_REGTYPE] = {
 366		.regs = {
 367			[SCSMR]		= { 0x00, 16 },
 368			[SCBRR]		= { 0x04,  8 },
 369			[SCSCR]		= { 0x08, 16 },
 370			[SCxTDR]	= { 0x0c,  8 },
 371			[SCxSR]		= { 0x10, 16 },
 372			[SCxRDR]	= { 0x14,  8 },
 373			[SCFCR]		= { 0x18, 16 },
 374			[SCFDR]		= { 0x1c, 16 },
 375			[SCSPTR]	= { 0x20, 16 },
 376			[SCLSR]		= { 0x24, 16 },
 377			[HSSRR]		= { 0x40, 16 },
 378			[SCDL]		= { 0x30, 16 },
 379			[SCCKS]		= { 0x34, 16 },
 380			[HSRTRGR]	= { 0x54, 16 },
 381			[HSTTRGR]	= { 0x58, 16 },
 382		},
 383		.fifosize = 128,
 384		.overrun_reg = SCLSR,
 385		.overrun_mask = SCLSR_ORER,
 386		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
 387		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 388		.error_clear = SCIF_ERROR_CLEAR,
 389	},
 390
 391	/*
 392	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
 393	 * register.
 394	 */
 395	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
 396		.regs = {
 397			[SCSMR]		= { 0x00, 16 },
 398			[SCBRR]		= { 0x04,  8 },
 399			[SCSCR]		= { 0x08, 16 },
 400			[SCxTDR]	= { 0x0c,  8 },
 401			[SCxSR]		= { 0x10, 16 },
 402			[SCxRDR]	= { 0x14,  8 },
 403			[SCFCR]		= { 0x18, 16 },
 404			[SCFDR]		= { 0x1c, 16 },
 405			[SCLSR]		= { 0x24, 16 },
 406		},
 407		.fifosize = 16,
 408		.overrun_reg = SCLSR,
 409		.overrun_mask = SCLSR_ORER,
 410		.sampling_rate_mask = SCI_SR(32),
 411		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 412		.error_clear = SCIF_ERROR_CLEAR,
 413	},
 414
 415	/*
 416	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
 417	 * count registers.
 418	 */
 419	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
 420		.regs = {
 421			[SCSMR]		= { 0x00, 16 },
 422			[SCBRR]		= { 0x04,  8 },
 423			[SCSCR]		= { 0x08, 16 },
 424			[SCxTDR]	= { 0x0c,  8 },
 425			[SCxSR]		= { 0x10, 16 },
 426			[SCxRDR]	= { 0x14,  8 },
 427			[SCFCR]		= { 0x18, 16 },
 428			[SCFDR]		= { 0x1c, 16 },
 429			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
 430			[SCRFDR]	= { 0x20, 16 },
 431			[SCSPTR]	= { 0x24, 16 },
 432			[SCLSR]		= { 0x28, 16 },
 433		},
 434		.fifosize = 16,
 435		.overrun_reg = SCLSR,
 436		.overrun_mask = SCLSR_ORER,
 437		.sampling_rate_mask = SCI_SR(32),
 438		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 439		.error_clear = SCIF_ERROR_CLEAR,
 440	},
 441
 442	/*
 443	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
 444	 * registers.
 445	 */
 446	[SCIx_SH7705_SCIF_REGTYPE] = {
 447		.regs = {
 448			[SCSMR]		= { 0x00, 16 },
 449			[SCBRR]		= { 0x04,  8 },
 450			[SCSCR]		= { 0x08, 16 },
 451			[SCxTDR]	= { 0x20,  8 },
 452			[SCxSR]		= { 0x14, 16 },
 453			[SCxRDR]	= { 0x24,  8 },
 454			[SCFCR]		= { 0x18, 16 },
 455			[SCFDR]		= { 0x1c, 16 },
 456		},
 457		.fifosize = 64,
 458		.overrun_reg = SCxSR,
 459		.overrun_mask = SCIFA_ORER,
 460		.sampling_rate_mask = SCI_SR(16),
 461		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 462		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 
 463	},
 464};
 465
 466#define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
 467
 468/*
 469 * The "offset" here is rather misleading, in that it refers to an enum
 470 * value relative to the port mapping rather than the fixed offset
 471 * itself, which needs to be manually retrieved from the platform's
 472 * register map for the given port.
 473 */
 474static unsigned int sci_serial_in(struct uart_port *p, int offset)
 475{
 476	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 477
 478	if (reg->size == 8)
 479		return ioread8(p->membase + (reg->offset << p->regshift));
 480	else if (reg->size == 16)
 481		return ioread16(p->membase + (reg->offset << p->regshift));
 482	else
 483		WARN(1, "Invalid register access\n");
 484
 485	return 0;
 486}
 487
 488static void sci_serial_out(struct uart_port *p, int offset, int value)
 489{
 490	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 491
 492	if (reg->size == 8)
 493		iowrite8(value, p->membase + (reg->offset << p->regshift));
 494	else if (reg->size == 16)
 495		iowrite16(value, p->membase + (reg->offset << p->regshift));
 496	else
 497		WARN(1, "Invalid register access\n");
 498}
 499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 500static void sci_port_enable(struct sci_port *sci_port)
 501{
 502	unsigned int i;
 503
 504	if (!sci_port->port.dev)
 505		return;
 506
 507	pm_runtime_get_sync(sci_port->port.dev);
 508
 509	for (i = 0; i < SCI_NUM_CLKS; i++) {
 510		clk_prepare_enable(sci_port->clks[i]);
 511		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
 512	}
 513	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
 514}
 515
 516static void sci_port_disable(struct sci_port *sci_port)
 517{
 518	unsigned int i;
 519
 520	if (!sci_port->port.dev)
 521		return;
 522
 
 
 
 
 
 
 
 
 523	for (i = SCI_NUM_CLKS; i-- > 0; )
 524		clk_disable_unprepare(sci_port->clks[i]);
 525
 526	pm_runtime_put_sync(sci_port->port.dev);
 527}
 528
 529static inline unsigned long port_rx_irq_mask(struct uart_port *port)
 530{
 531	/*
 532	 * Not all ports (such as SCIFA) will support REIE. Rather than
 533	 * special-casing the port type, we check the port initialization
 534	 * IRQ enable mask to see whether the IRQ is desired at all. If
 535	 * it's unset, it's logically inferred that there's no point in
 536	 * testing for it.
 537	 */
 538	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
 539}
 540
 541static void sci_start_tx(struct uart_port *port)
 542{
 543	struct sci_port *s = to_sci_port(port);
 544	unsigned short ctrl;
 545
 546#ifdef CONFIG_SERIAL_SH_SCI_DMA
 547	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 548		u16 new, scr = serial_port_in(port, SCSCR);
 549		if (s->chan_tx)
 550			new = scr | SCSCR_TDRQE;
 551		else
 552			new = scr & ~SCSCR_TDRQE;
 553		if (new != scr)
 554			serial_port_out(port, SCSCR, new);
 555	}
 556
 557	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
 558	    dma_submit_error(s->cookie_tx)) {
 559		s->cookie_tx = 0;
 560		schedule_work(&s->work_tx);
 561	}
 562#endif
 563
 564	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 565		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
 566		ctrl = serial_port_in(port, SCSCR);
 567		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
 568	}
 569}
 570
 571static void sci_stop_tx(struct uart_port *port)
 572{
 573	unsigned short ctrl;
 574
 575	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
 576	ctrl = serial_port_in(port, SCSCR);
 577
 578	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 579		ctrl &= ~SCSCR_TDRQE;
 580
 581	ctrl &= ~SCSCR_TIE;
 582
 583	serial_port_out(port, SCSCR, ctrl);
 584}
 585
 586static void sci_start_rx(struct uart_port *port)
 587{
 588	unsigned short ctrl;
 589
 590	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
 591
 592	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 593		ctrl &= ~SCSCR_RDRQE;
 594
 595	serial_port_out(port, SCSCR, ctrl);
 596}
 597
 598static void sci_stop_rx(struct uart_port *port)
 599{
 600	unsigned short ctrl;
 601
 602	ctrl = serial_port_in(port, SCSCR);
 603
 604	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 605		ctrl &= ~SCSCR_RDRQE;
 606
 607	ctrl &= ~port_rx_irq_mask(port);
 608
 609	serial_port_out(port, SCSCR, ctrl);
 610}
 611
 612static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
 613{
 614	if (port->type == PORT_SCI) {
 615		/* Just store the mask */
 616		serial_port_out(port, SCxSR, mask);
 617	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
 618		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
 619		/* Only clear the status bits we want to clear */
 620		serial_port_out(port, SCxSR,
 621				serial_port_in(port, SCxSR) & mask);
 622	} else {
 623		/* Store the mask, clear parity/framing errors */
 624		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
 625	}
 626}
 627
 628#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
 629    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
 630
 631#ifdef CONFIG_CONSOLE_POLL
 632static int sci_poll_get_char(struct uart_port *port)
 633{
 634	unsigned short status;
 635	int c;
 636
 637	do {
 638		status = serial_port_in(port, SCxSR);
 639		if (status & SCxSR_ERRORS(port)) {
 640			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
 641			continue;
 642		}
 643		break;
 644	} while (1);
 645
 646	if (!(status & SCxSR_RDxF(port)))
 647		return NO_POLL_CHAR;
 648
 649	c = serial_port_in(port, SCxRDR);
 650
 651	/* Dummy read */
 652	serial_port_in(port, SCxSR);
 653	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 654
 655	return c;
 656}
 657#endif
 658
 659static void sci_poll_put_char(struct uart_port *port, unsigned char c)
 660{
 661	unsigned short status;
 662
 663	do {
 664		status = serial_port_in(port, SCxSR);
 665	} while (!(status & SCxSR_TDxE(port)));
 666
 667	serial_port_out(port, SCxTDR, c);
 668	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
 669}
 670#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
 671	  CONFIG_SERIAL_SH_SCI_EARLYCON */
 672
 673static void sci_init_pins(struct uart_port *port, unsigned int cflag)
 674{
 675	struct sci_port *s = to_sci_port(port);
 
 676
 677	/*
 678	 * Use port-specific handler if provided.
 679	 */
 680	if (s->cfg->ops && s->cfg->ops->init_pins) {
 681		s->cfg->ops->init_pins(port, cflag);
 682		return;
 683	}
 684
 685	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 686		u16 data = serial_port_in(port, SCPDR);
 687		u16 ctrl = serial_port_in(port, SCPCR);
 
 
 
 688
 689		/* Enable RXD and TXD pin functions */
 690		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
 691		if (to_sci_port(port)->has_rtscts) {
 692			/* RTS# is output, active low, unless autorts */
 693			if (!(port->mctrl & TIOCM_RTS)) {
 694				ctrl |= SCPCR_RTSC;
 695				data |= SCPDR_RTSD;
 696			} else if (!s->autorts) {
 697				ctrl |= SCPCR_RTSC;
 698				data &= ~SCPDR_RTSD;
 699			} else {
 700				/* Enable RTS# pin function */
 701				ctrl &= ~SCPCR_RTSC;
 702			}
 703			/* Enable CTS# pin function */
 704			ctrl &= ~SCPCR_CTSC;
 705		}
 706		serial_port_out(port, SCPDR, data);
 707		serial_port_out(port, SCPCR, ctrl);
 708	} else if (sci_getreg(port, SCSPTR)->size) {
 709		u16 status = serial_port_in(port, SCSPTR);
 710
 711		/* RTS# is always output; and active low, unless autorts */
 
 712		status |= SCSPTR_RTSIO;
 713		if (!(port->mctrl & TIOCM_RTS))
 714			status |= SCSPTR_RTSDT;
 715		else if (!s->autorts)
 716			status &= ~SCSPTR_RTSDT;
 717		/* CTS# and SCK are inputs */
 718		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
 719		serial_port_out(port, SCSPTR, status);
 720	}
 721}
 722
 723static int sci_txfill(struct uart_port *port)
 724{
 725	struct sci_port *s = to_sci_port(port);
 726	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 727	const struct plat_sci_reg *reg;
 728
 729	reg = sci_getreg(port, SCTFDR);
 730	if (reg->size)
 731		return serial_port_in(port, SCTFDR) & fifo_mask;
 732
 733	reg = sci_getreg(port, SCFDR);
 734	if (reg->size)
 735		return serial_port_in(port, SCFDR) >> 8;
 736
 737	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
 738}
 739
 740static int sci_txroom(struct uart_port *port)
 741{
 742	return port->fifosize - sci_txfill(port);
 743}
 744
 745static int sci_rxfill(struct uart_port *port)
 746{
 747	struct sci_port *s = to_sci_port(port);
 748	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 749	const struct plat_sci_reg *reg;
 750
 751	reg = sci_getreg(port, SCRFDR);
 752	if (reg->size)
 753		return serial_port_in(port, SCRFDR) & fifo_mask;
 754
 755	reg = sci_getreg(port, SCFDR);
 756	if (reg->size)
 757		return serial_port_in(port, SCFDR) & fifo_mask;
 758
 759	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
 760}
 761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 762/* ********************************************************************** *
 763 *                   the interrupt related routines                       *
 764 * ********************************************************************** */
 765
 766static void sci_transmit_chars(struct uart_port *port)
 767{
 768	struct circ_buf *xmit = &port->state->xmit;
 769	unsigned int stopped = uart_tx_stopped(port);
 770	unsigned short status;
 771	unsigned short ctrl;
 772	int count;
 773
 774	status = serial_port_in(port, SCxSR);
 775	if (!(status & SCxSR_TDxE(port))) {
 776		ctrl = serial_port_in(port, SCSCR);
 777		if (uart_circ_empty(xmit))
 778			ctrl &= ~SCSCR_TIE;
 779		else
 780			ctrl |= SCSCR_TIE;
 781		serial_port_out(port, SCSCR, ctrl);
 782		return;
 783	}
 784
 785	count = sci_txroom(port);
 786
 787	do {
 788		unsigned char c;
 789
 790		if (port->x_char) {
 791			c = port->x_char;
 792			port->x_char = 0;
 793		} else if (!uart_circ_empty(xmit) && !stopped) {
 794			c = xmit->buf[xmit->tail];
 795			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 796		} else {
 797			break;
 798		}
 799
 800		serial_port_out(port, SCxTDR, c);
 801
 802		port->icount.tx++;
 803	} while (--count > 0);
 804
 805	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 806
 807	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 808		uart_write_wakeup(port);
 809	if (uart_circ_empty(xmit)) {
 810		sci_stop_tx(port);
 811	} else {
 812		ctrl = serial_port_in(port, SCSCR);
 813
 814		if (port->type != PORT_SCI) {
 815			serial_port_in(port, SCxSR); /* Dummy read */
 816			sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 817		}
 818
 819		ctrl |= SCSCR_TIE;
 820		serial_port_out(port, SCSCR, ctrl);
 821	}
 822}
 823
 824/* On SH3, SCIF may read end-of-break as a space->mark char */
 825#define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
 826
 827static void sci_receive_chars(struct uart_port *port)
 828{
 
 829	struct tty_port *tport = &port->state->port;
 830	int i, count, copied = 0;
 831	unsigned short status;
 832	unsigned char flag;
 833
 834	status = serial_port_in(port, SCxSR);
 835	if (!(status & SCxSR_RDxF(port)))
 836		return;
 837
 838	while (1) {
 839		/* Don't copy more bytes than there is room for in the buffer */
 840		count = tty_buffer_request_room(tport, sci_rxfill(port));
 841
 842		/* If for any reason we can't copy more data, we're done! */
 843		if (count == 0)
 844			break;
 845
 846		if (port->type == PORT_SCI) {
 847			char c = serial_port_in(port, SCxRDR);
 848			if (uart_handle_sysrq_char(port, c))
 
 849				count = 0;
 850			else
 851				tty_insert_flip_char(tport, c, TTY_NORMAL);
 852		} else {
 853			for (i = 0; i < count; i++) {
 854				char c = serial_port_in(port, SCxRDR);
 855
 856				status = serial_port_in(port, SCxSR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857				if (uart_handle_sysrq_char(port, c)) {
 858					count--; i--;
 859					continue;
 860				}
 861
 862				/* Store data and status */
 863				if (status & SCxSR_FER(port)) {
 864					flag = TTY_FRAME;
 865					port->icount.frame++;
 866					dev_notice(port->dev, "frame error\n");
 867				} else if (status & SCxSR_PER(port)) {
 868					flag = TTY_PARITY;
 869					port->icount.parity++;
 870					dev_notice(port->dev, "parity error\n");
 871				} else
 872					flag = TTY_NORMAL;
 873
 874				tty_insert_flip_char(tport, c, flag);
 875			}
 876		}
 877
 878		serial_port_in(port, SCxSR); /* dummy read */
 879		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 880
 881		copied += count;
 882		port->icount.rx += count;
 883	}
 884
 885	if (copied) {
 886		/* Tell the rest of the system the news. New characters! */
 887		tty_flip_buffer_push(tport);
 888	} else {
 889		/* TTY buffers full; read from RX reg to prevent lockup */
 890		serial_port_in(port, SCxRDR);
 891		serial_port_in(port, SCxSR); /* dummy read */
 892		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 893	}
 894}
 895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 896static int sci_handle_errors(struct uart_port *port)
 897{
 898	int copied = 0;
 899	unsigned short status = serial_port_in(port, SCxSR);
 900	struct tty_port *tport = &port->state->port;
 901	struct sci_port *s = to_sci_port(port);
 902
 903	/* Handle overruns */
 904	if (status & s->params->overrun_mask) {
 905		port->icount.overrun++;
 906
 907		/* overrun error */
 908		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
 909			copied++;
 910
 911		dev_notice(port->dev, "overrun error\n");
 912	}
 913
 914	if (status & SCxSR_FER(port)) {
 915		/* frame error */
 916		port->icount.frame++;
 
 
 
 
 
 
 
 917
 918		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
 919			copied++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 920
 921		dev_notice(port->dev, "frame error\n");
 
 922	}
 923
 924	if (status & SCxSR_PER(port)) {
 925		/* parity error */
 926		port->icount.parity++;
 927
 928		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
 929			copied++;
 930
 931		dev_notice(port->dev, "parity error\n");
 932	}
 933
 934	if (copied)
 935		tty_flip_buffer_push(tport);
 936
 937	return copied;
 938}
 939
 940static int sci_handle_fifo_overrun(struct uart_port *port)
 941{
 942	struct tty_port *tport = &port->state->port;
 943	struct sci_port *s = to_sci_port(port);
 944	const struct plat_sci_reg *reg;
 945	int copied = 0;
 946	u16 status;
 947
 948	reg = sci_getreg(port, s->params->overrun_reg);
 949	if (!reg->size)
 950		return 0;
 951
 952	status = serial_port_in(port, s->params->overrun_reg);
 953	if (status & s->params->overrun_mask) {
 954		status &= ~s->params->overrun_mask;
 955		serial_port_out(port, s->params->overrun_reg, status);
 956
 957		port->icount.overrun++;
 958
 959		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
 960		tty_flip_buffer_push(tport);
 961
 962		dev_dbg(port->dev, "overrun error\n");
 963		copied++;
 964	}
 965
 966	return copied;
 967}
 968
 969static int sci_handle_breaks(struct uart_port *port)
 970{
 971	int copied = 0;
 972	unsigned short status = serial_port_in(port, SCxSR);
 973	struct tty_port *tport = &port->state->port;
 
 974
 975	if (uart_handle_break(port))
 976		return 0;
 977
 978	if (status & SCxSR_BRK(port)) {
 
 
 
 
 
 979		port->icount.brk++;
 980
 981		/* Notify of BREAK */
 982		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
 983			copied++;
 984
 985		dev_dbg(port->dev, "BREAK detected\n");
 986	}
 987
 988	if (copied)
 989		tty_flip_buffer_push(tport);
 990
 991	copied += sci_handle_fifo_overrun(port);
 992
 993	return copied;
 994}
 995
 996static int scif_set_rtrg(struct uart_port *port, int rx_trig)
 997{
 998	unsigned int bits;
 999
1000	if (rx_trig < 1)
1001		rx_trig = 1;
1002	if (rx_trig >= port->fifosize)
1003		rx_trig = port->fifosize;
1004
1005	/* HSCIF can be set to an arbitrary level. */
1006	if (sci_getreg(port, HSRTRGR)->size) {
1007		serial_port_out(port, HSRTRGR, rx_trig);
1008		return rx_trig;
1009	}
1010
1011	switch (port->type) {
1012	case PORT_SCIF:
1013		if (rx_trig < 4) {
1014			bits = 0;
1015			rx_trig = 1;
1016		} else if (rx_trig < 8) {
1017			bits = SCFCR_RTRG0;
1018			rx_trig = 4;
1019		} else if (rx_trig < 14) {
1020			bits = SCFCR_RTRG1;
1021			rx_trig = 8;
1022		} else {
1023			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1024			rx_trig = 14;
1025		}
1026		break;
1027	case PORT_SCIFA:
1028	case PORT_SCIFB:
1029		if (rx_trig < 16) {
1030			bits = 0;
1031			rx_trig = 1;
1032		} else if (rx_trig < 32) {
1033			bits = SCFCR_RTRG0;
1034			rx_trig = 16;
1035		} else if (rx_trig < 48) {
1036			bits = SCFCR_RTRG1;
1037			rx_trig = 32;
1038		} else {
1039			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1040			rx_trig = 48;
1041		}
1042		break;
1043	default:
1044		WARN(1, "unknown FIFO configuration");
1045		return 1;
1046	}
1047
1048	serial_port_out(port, SCFCR,
1049		(serial_port_in(port, SCFCR) &
1050		~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1051
1052	return rx_trig;
1053}
1054
1055static int scif_rtrg_enabled(struct uart_port *port)
1056{
1057	if (sci_getreg(port, HSRTRGR)->size)
1058		return serial_port_in(port, HSRTRGR) != 0;
1059	else
1060		return (serial_port_in(port, SCFCR) &
1061			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1062}
1063
1064static void rx_fifo_timer_fn(struct timer_list *t)
1065{
1066	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1067	struct uart_port *port = &s->port;
1068
1069	dev_dbg(port->dev, "Rx timed out\n");
1070	scif_set_rtrg(port, 1);
1071}
1072
1073static ssize_t rx_trigger_show(struct device *dev,
1074			       struct device_attribute *attr,
1075			       char *buf)
1076{
1077	struct uart_port *port = dev_get_drvdata(dev);
1078	struct sci_port *sci = to_sci_port(port);
1079
1080	return sprintf(buf, "%d\n", sci->rx_trigger);
1081}
1082
1083static ssize_t rx_trigger_store(struct device *dev,
1084				struct device_attribute *attr,
1085				const char *buf,
1086				size_t count)
1087{
1088	struct uart_port *port = dev_get_drvdata(dev);
1089	struct sci_port *sci = to_sci_port(port);
1090	int ret;
1091	long r;
1092
1093	ret = kstrtol(buf, 0, &r);
1094	if (ret)
1095		return ret;
1096
1097	sci->rx_trigger = scif_set_rtrg(port, r);
1098	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1099		scif_set_rtrg(port, 1);
1100
1101	return count;
1102}
1103
1104static DEVICE_ATTR(rx_fifo_trigger, 0644, rx_trigger_show, rx_trigger_store);
1105
1106static ssize_t rx_fifo_timeout_show(struct device *dev,
1107			       struct device_attribute *attr,
1108			       char *buf)
1109{
1110	struct uart_port *port = dev_get_drvdata(dev);
1111	struct sci_port *sci = to_sci_port(port);
1112	int v;
1113
1114	if (port->type == PORT_HSCIF)
1115		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1116	else
1117		v = sci->rx_fifo_timeout;
1118
1119	return sprintf(buf, "%d\n", v);
1120}
1121
1122static ssize_t rx_fifo_timeout_store(struct device *dev,
1123				struct device_attribute *attr,
1124				const char *buf,
1125				size_t count)
1126{
1127	struct uart_port *port = dev_get_drvdata(dev);
1128	struct sci_port *sci = to_sci_port(port);
1129	int ret;
1130	long r;
1131
1132	ret = kstrtol(buf, 0, &r);
1133	if (ret)
1134		return ret;
1135
1136	if (port->type == PORT_HSCIF) {
1137		if (r < 0 || r > 3)
1138			return -EINVAL;
1139		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1140	} else {
1141		sci->rx_fifo_timeout = r;
1142		scif_set_rtrg(port, 1);
1143		if (r > 0)
1144			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1145	}
1146
1147	return count;
1148}
1149
1150static DEVICE_ATTR_RW(rx_fifo_timeout);
1151
1152
1153#ifdef CONFIG_SERIAL_SH_SCI_DMA
1154static void sci_dma_tx_complete(void *arg)
1155{
1156	struct sci_port *s = arg;
1157	struct uart_port *port = &s->port;
1158	struct circ_buf *xmit = &port->state->xmit;
1159	unsigned long flags;
1160
1161	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1162
1163	spin_lock_irqsave(&port->lock, flags);
1164
1165	xmit->tail += s->tx_dma_len;
1166	xmit->tail &= UART_XMIT_SIZE - 1;
1167
1168	port->icount.tx += s->tx_dma_len;
1169
1170	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1171		uart_write_wakeup(port);
1172
1173	if (!uart_circ_empty(xmit)) {
1174		s->cookie_tx = 0;
1175		schedule_work(&s->work_tx);
1176	} else {
1177		s->cookie_tx = -EINVAL;
1178		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1179			u16 ctrl = serial_port_in(port, SCSCR);
1180			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1181		}
1182	}
1183
1184	spin_unlock_irqrestore(&port->lock, flags);
1185}
1186
1187/* Locking: called with port lock held */
1188static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1189{
1190	struct uart_port *port = &s->port;
1191	struct tty_port *tport = &port->state->port;
1192	int copied;
1193
1194	copied = tty_insert_flip_string(tport, buf, count);
1195	if (copied < count)
 
 
1196		port->icount.buf_overrun++;
 
1197
1198	port->icount.rx += copied;
1199
1200	return copied;
1201}
1202
1203static int sci_dma_rx_find_active(struct sci_port *s)
1204{
1205	unsigned int i;
1206
1207	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1208		if (s->active_rx == s->cookie_rx[i])
1209			return i;
1210
 
 
1211	return -1;
1212}
1213
1214static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1215{
1216	struct dma_chan *chan = s->chan_rx;
1217	struct uart_port *port = &s->port;
1218	unsigned long flags;
1219
1220	spin_lock_irqsave(&port->lock, flags);
1221	s->chan_rx = NULL;
1222	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1223	spin_unlock_irqrestore(&port->lock, flags);
1224	dmaengine_terminate_all(chan);
1225	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1226			  sg_dma_address(&s->sg_rx[0]));
1227	dma_release_channel(chan);
1228	if (enable_pio) {
1229		spin_lock_irqsave(&port->lock, flags);
1230		sci_start_rx(port);
1231		spin_unlock_irqrestore(&port->lock, flags);
1232	}
1233}
1234
1235static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1236{
1237	long sec = usec / 1000000;
1238	long nsec = (usec % 1000000) * 1000;
1239	ktime_t t = ktime_set(sec, nsec);
1240
1241	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1242}
1243
1244static void sci_dma_rx_complete(void *arg)
1245{
1246	struct sci_port *s = arg;
1247	struct dma_chan *chan = s->chan_rx;
1248	struct uart_port *port = &s->port;
1249	struct dma_async_tx_descriptor *desc;
1250	unsigned long flags;
1251	int active, count = 0;
1252
1253	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1254		s->active_rx);
1255
1256	spin_lock_irqsave(&port->lock, flags);
1257
1258	active = sci_dma_rx_find_active(s);
1259	if (active >= 0)
1260		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1261
1262	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1263
1264	if (count)
1265		tty_flip_buffer_push(&port->state->port);
1266
1267	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1268				       DMA_DEV_TO_MEM,
1269				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1270	if (!desc)
1271		goto fail;
1272
1273	desc->callback = sci_dma_rx_complete;
1274	desc->callback_param = s;
1275	s->cookie_rx[active] = dmaengine_submit(desc);
1276	if (dma_submit_error(s->cookie_rx[active]))
1277		goto fail;
1278
1279	s->active_rx = s->cookie_rx[!active];
1280
1281	dma_async_issue_pending(chan);
1282
1283	spin_unlock_irqrestore(&port->lock, flags);
1284	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1285		__func__, s->cookie_rx[active], active, s->active_rx);
 
1286	return;
1287
1288fail:
1289	spin_unlock_irqrestore(&port->lock, flags);
1290	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1291	sci_rx_dma_release(s, true);
1292}
1293
1294static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1295{
1296	struct dma_chan *chan = s->chan_tx;
1297	struct uart_port *port = &s->port;
1298	unsigned long flags;
1299
1300	spin_lock_irqsave(&port->lock, flags);
1301	s->chan_tx = NULL;
1302	s->cookie_tx = -EINVAL;
1303	spin_unlock_irqrestore(&port->lock, flags);
1304	dmaengine_terminate_all(chan);
1305	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1306			 DMA_TO_DEVICE);
1307	dma_release_channel(chan);
1308	if (enable_pio) {
1309		spin_lock_irqsave(&port->lock, flags);
1310		sci_start_tx(port);
1311		spin_unlock_irqrestore(&port->lock, flags);
1312	}
1313}
1314
1315static void sci_submit_rx(struct sci_port *s)
1316{
1317	struct dma_chan *chan = s->chan_rx;
1318	int i;
1319
1320	for (i = 0; i < 2; i++) {
1321		struct scatterlist *sg = &s->sg_rx[i];
1322		struct dma_async_tx_descriptor *desc;
1323
1324		desc = dmaengine_prep_slave_sg(chan,
1325			sg, 1, DMA_DEV_TO_MEM,
1326			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1327		if (!desc)
1328			goto fail;
1329
1330		desc->callback = sci_dma_rx_complete;
1331		desc->callback_param = s;
1332		s->cookie_rx[i] = dmaengine_submit(desc);
1333		if (dma_submit_error(s->cookie_rx[i]))
1334			goto fail;
1335
 
 
1336	}
1337
1338	s->active_rx = s->cookie_rx[0];
1339
1340	dma_async_issue_pending(chan);
1341	return;
1342
1343fail:
1344	if (i)
1345		dmaengine_terminate_all(chan);
1346	for (i = 0; i < 2; i++)
1347		s->cookie_rx[i] = -EINVAL;
1348	s->active_rx = -EINVAL;
 
1349	sci_rx_dma_release(s, true);
1350}
1351
1352static void work_fn_tx(struct work_struct *work)
1353{
1354	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1355	struct dma_async_tx_descriptor *desc;
1356	struct dma_chan *chan = s->chan_tx;
1357	struct uart_port *port = &s->port;
1358	struct circ_buf *xmit = &port->state->xmit;
1359	dma_addr_t buf;
1360
1361	/*
1362	 * DMA is idle now.
1363	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1364	 * offsets and lengths. Since it is a circular buffer, we have to
1365	 * transmit till the end, and then the rest. Take the port lock to get a
1366	 * consistent xmit buffer state.
1367	 */
1368	spin_lock_irq(&port->lock);
1369	buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1370	s->tx_dma_len = min_t(unsigned int,
1371		CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1372		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1373	spin_unlock_irq(&port->lock);
1374
1375	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1376					   DMA_MEM_TO_DEV,
1377					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1378	if (!desc) {
1379		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1380		/* switch to PIO */
1381		sci_tx_dma_release(s, true);
1382		return;
1383	}
1384
1385	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1386				   DMA_TO_DEVICE);
1387
1388	spin_lock_irq(&port->lock);
1389	desc->callback = sci_dma_tx_complete;
1390	desc->callback_param = s;
1391	spin_unlock_irq(&port->lock);
1392	s->cookie_tx = dmaengine_submit(desc);
1393	if (dma_submit_error(s->cookie_tx)) {
1394		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1395		/* switch to PIO */
1396		sci_tx_dma_release(s, true);
1397		return;
1398	}
1399
1400	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1401		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1402
1403	dma_async_issue_pending(chan);
1404}
1405
1406static enum hrtimer_restart rx_timer_fn(struct hrtimer *t)
1407{
1408	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1409	struct dma_chan *chan = s->chan_rx;
1410	struct uart_port *port = &s->port;
1411	struct dma_tx_state state;
1412	enum dma_status status;
1413	unsigned long flags;
1414	unsigned int read;
1415	int active, count;
1416	u16 scr;
1417
 
 
1418	dev_dbg(port->dev, "DMA Rx timed out\n");
1419
1420	spin_lock_irqsave(&port->lock, flags);
1421
1422	active = sci_dma_rx_find_active(s);
1423	if (active < 0) {
1424		spin_unlock_irqrestore(&port->lock, flags);
1425		return HRTIMER_NORESTART;
1426	}
1427
1428	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1429	if (status == DMA_COMPLETE) {
1430		spin_unlock_irqrestore(&port->lock, flags);
1431		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1432			s->active_rx, active);
 
1433
1434		/* Let packet complete handler take care of the packet */
1435		return HRTIMER_NORESTART;
1436	}
1437
1438	dmaengine_pause(chan);
1439
1440	/*
1441	 * sometimes DMA transfer doesn't stop even if it is stopped and
1442	 * data keeps on coming until transaction is complete so check
1443	 * for DMA_COMPLETE again
1444	 * Let packet complete handler take care of the packet
1445	 */
1446	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1447	if (status == DMA_COMPLETE) {
1448		spin_unlock_irqrestore(&port->lock, flags);
1449		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1450		return HRTIMER_NORESTART;
1451	}
1452
1453	/* Handle incomplete DMA receive */
1454	dmaengine_terminate_all(s->chan_rx);
1455	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
 
 
1456
1457	if (read) {
1458		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1459		if (count)
1460			tty_flip_buffer_push(&port->state->port);
1461	}
1462
1463	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1464		sci_submit_rx(s);
1465
1466	/* Direct new serial port interrupts back to CPU */
1467	scr = serial_port_in(port, SCSCR);
1468	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1469		scr &= ~SCSCR_RDRQE;
1470		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1471	}
1472	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1473
1474	spin_unlock_irqrestore(&port->lock, flags);
1475
1476	return HRTIMER_NORESTART;
1477}
1478
1479static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1480					     enum dma_transfer_direction dir)
 
1481{
 
1482	struct dma_chan *chan;
1483	struct dma_slave_config cfg;
1484	int ret;
1485
1486	chan = dma_request_slave_channel(port->dev,
1487					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
 
 
 
 
1488	if (!chan) {
1489		dev_warn(port->dev, "dma_request_slave_channel failed\n");
 
1490		return NULL;
1491	}
1492
1493	memset(&cfg, 0, sizeof(cfg));
1494	cfg.direction = dir;
1495	if (dir == DMA_MEM_TO_DEV) {
1496		cfg.dst_addr = port->mapbase +
1497			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1498		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1499	} else {
1500		cfg.src_addr = port->mapbase +
1501			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1502		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1503	}
1504
1505	ret = dmaengine_slave_config(chan, &cfg);
1506	if (ret) {
1507		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1508		dma_release_channel(chan);
1509		return NULL;
1510	}
1511
1512	return chan;
1513}
1514
1515static void sci_request_dma(struct uart_port *port)
1516{
1517	struct sci_port *s = to_sci_port(port);
1518	struct dma_chan *chan;
1519
1520	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1521
1522	if (!port->dev->of_node)
 
1523		return;
1524
1525	s->cookie_tx = -EINVAL;
1526
1527	/*
1528	 * Don't request a dma channel if no channel was specified
1529	 * in the device tree.
1530	 */
1531	if (!of_find_property(port->dev->of_node, "dmas", NULL))
1532		return;
1533
1534	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1535	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1536	if (chan) {
1537		s->chan_tx = chan;
1538		/* UART circular tx buffer is an aligned page. */
1539		s->tx_dma_addr = dma_map_single(chan->device->dev,
1540						port->state->xmit.buf,
1541						UART_XMIT_SIZE,
1542						DMA_TO_DEVICE);
1543		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1544			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1545			dma_release_channel(chan);
1546			s->chan_tx = NULL;
1547		} else {
1548			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1549				__func__, UART_XMIT_SIZE,
1550				port->state->xmit.buf, &s->tx_dma_addr);
1551		}
1552
1553		INIT_WORK(&s->work_tx, work_fn_tx);
1554	}
1555
1556	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1557	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1558	if (chan) {
1559		unsigned int i;
1560		dma_addr_t dma;
1561		void *buf;
1562
1563		s->chan_rx = chan;
1564
1565		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1566		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1567					 &dma, GFP_KERNEL);
1568		if (!buf) {
1569			dev_warn(port->dev,
1570				 "Failed to allocate Rx dma buffer, using PIO\n");
1571			dma_release_channel(chan);
1572			s->chan_rx = NULL;
1573			return;
1574		}
1575
1576		for (i = 0; i < 2; i++) {
1577			struct scatterlist *sg = &s->sg_rx[i];
1578
1579			sg_init_table(sg, 1);
1580			s->rx_buf[i] = buf;
1581			sg_dma_address(sg) = dma;
1582			sg_dma_len(sg) = s->buf_len_rx;
1583
1584			buf += s->buf_len_rx;
1585			dma += s->buf_len_rx;
1586		}
1587
1588		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1589		s->rx_timer.function = rx_timer_fn;
1590
1591		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1592			sci_submit_rx(s);
1593	}
1594}
1595
1596static void sci_free_dma(struct uart_port *port)
1597{
1598	struct sci_port *s = to_sci_port(port);
1599
1600	if (s->chan_tx)
1601		sci_tx_dma_release(s, false);
1602	if (s->chan_rx)
1603		sci_rx_dma_release(s, false);
1604}
1605
1606static void sci_flush_buffer(struct uart_port *port)
1607{
1608	/*
1609	 * In uart_flush_buffer(), the xmit circular buffer has just been
1610	 * cleared, so we have to reset tx_dma_len accordingly.
1611	 */
1612	to_sci_port(port)->tx_dma_len = 0;
1613}
1614#else /* !CONFIG_SERIAL_SH_SCI_DMA */
1615static inline void sci_request_dma(struct uart_port *port)
1616{
1617}
1618
1619static inline void sci_free_dma(struct uart_port *port)
1620{
1621}
1622
1623#define sci_flush_buffer	NULL
1624#endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1625
1626static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1627{
 
1628	struct uart_port *port = ptr;
1629	struct sci_port *s = to_sci_port(port);
1630
1631#ifdef CONFIG_SERIAL_SH_SCI_DMA
1632	if (s->chan_rx) {
1633		u16 scr = serial_port_in(port, SCSCR);
1634		u16 ssr = serial_port_in(port, SCxSR);
1635
1636		/* Disable future Rx interrupts */
1637		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1638			disable_irq_nosync(irq);
1639			scr |= SCSCR_RDRQE;
1640		} else {
1641			scr &= ~SCSCR_RIE;
1642			sci_submit_rx(s);
1643		}
1644		serial_port_out(port, SCSCR, scr);
1645		/* Clear current interrupt */
1646		serial_port_out(port, SCxSR,
1647				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1648		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1649			jiffies, s->rx_timeout);
1650		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1651
1652		return IRQ_HANDLED;
1653	}
1654#endif
1655
1656	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1657		if (!scif_rtrg_enabled(port))
1658			scif_set_rtrg(port, s->rx_trigger);
1659
1660		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1661			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1662	}
1663
1664	/* I think sci_receive_chars has to be called irrespective
1665	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1666	 * to be disabled?
1667	 */
1668	sci_receive_chars(ptr);
1669
1670	return IRQ_HANDLED;
1671}
1672
1673static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1674{
1675	struct uart_port *port = ptr;
1676	unsigned long flags;
1677
1678	spin_lock_irqsave(&port->lock, flags);
1679	sci_transmit_chars(port);
1680	spin_unlock_irqrestore(&port->lock, flags);
1681
1682	return IRQ_HANDLED;
1683}
1684
1685static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1686{
1687	struct uart_port *port = ptr;
1688	struct sci_port *s = to_sci_port(port);
1689
1690	/* Handle errors */
1691	if (port->type == PORT_SCI) {
1692		if (sci_handle_errors(port)) {
1693			/* discard character in rx buffer */
1694			serial_port_in(port, SCxSR);
1695			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1696		}
1697	} else {
1698		sci_handle_fifo_overrun(port);
1699		if (!s->chan_rx)
1700			sci_receive_chars(ptr);
1701	}
1702
1703	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1704
1705	/* Kick the transmission */
1706	if (!s->chan_tx)
1707		sci_tx_interrupt(irq, ptr);
1708
1709	return IRQ_HANDLED;
1710}
1711
1712static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1713{
1714	struct uart_port *port = ptr;
1715
1716	/* Handle BREAKs */
1717	sci_handle_breaks(port);
1718	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1719
1720	return IRQ_HANDLED;
1721}
1722
1723static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1724{
1725	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1726	struct uart_port *port = ptr;
1727	struct sci_port *s = to_sci_port(port);
1728	irqreturn_t ret = IRQ_NONE;
1729
1730	ssr_status = serial_port_in(port, SCxSR);
1731	scr_status = serial_port_in(port, SCSCR);
1732	if (s->params->overrun_reg == SCxSR)
1733		orer_status = ssr_status;
1734	else if (sci_getreg(port, s->params->overrun_reg)->size)
1735		orer_status = serial_port_in(port, s->params->overrun_reg);
 
 
1736
1737	err_enabled = scr_status & port_rx_irq_mask(port);
1738
1739	/* Tx Interrupt */
1740	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1741	    !s->chan_tx)
1742		ret = sci_tx_interrupt(irq, ptr);
1743
1744	/*
1745	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1746	 * DR flags
1747	 */
1748	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1749	    (scr_status & SCSCR_RIE))
1750		ret = sci_rx_interrupt(irq, ptr);
1751
1752	/* Error Interrupt */
1753	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1754		ret = sci_er_interrupt(irq, ptr);
1755
1756	/* Break Interrupt */
1757	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1758		ret = sci_br_interrupt(irq, ptr);
1759
1760	/* Overrun Interrupt */
1761	if (orer_status & s->params->overrun_mask) {
1762		sci_handle_fifo_overrun(port);
1763		ret = IRQ_HANDLED;
1764	}
1765
1766	return ret;
1767}
1768
1769static const struct sci_irq_desc {
1770	const char	*desc;
1771	irq_handler_t	handler;
1772} sci_irq_desc[] = {
1773	/*
1774	 * Split out handlers, the default case.
1775	 */
1776	[SCIx_ERI_IRQ] = {
1777		.desc = "rx err",
1778		.handler = sci_er_interrupt,
1779	},
1780
1781	[SCIx_RXI_IRQ] = {
1782		.desc = "rx full",
1783		.handler = sci_rx_interrupt,
1784	},
1785
1786	[SCIx_TXI_IRQ] = {
1787		.desc = "tx empty",
1788		.handler = sci_tx_interrupt,
1789	},
1790
1791	[SCIx_BRI_IRQ] = {
1792		.desc = "break",
1793		.handler = sci_br_interrupt,
1794	},
1795
1796	/*
1797	 * Special muxed handler.
1798	 */
1799	[SCIx_MUX_IRQ] = {
1800		.desc = "mux",
1801		.handler = sci_mpxed_interrupt,
1802	},
1803};
1804
1805static int sci_request_irq(struct sci_port *port)
1806{
1807	struct uart_port *up = &port->port;
1808	int i, j, ret = 0;
1809
1810	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1811		const struct sci_irq_desc *desc;
1812		int irq;
1813
1814		if (SCIx_IRQ_IS_MUXED(port)) {
1815			i = SCIx_MUX_IRQ;
1816			irq = up->irq;
1817		} else {
1818			irq = port->irqs[i];
1819
1820			/*
1821			 * Certain port types won't support all of the
1822			 * available interrupt sources.
1823			 */
1824			if (unlikely(irq < 0))
1825				continue;
1826		}
1827
1828		desc = sci_irq_desc + i;
1829		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1830					    dev_name(up->dev), desc->desc);
1831		if (!port->irqstr[j]) {
1832			ret = -ENOMEM;
1833			goto out_nomem;
1834		}
1835
1836		ret = request_irq(irq, desc->handler, up->irqflags,
1837				  port->irqstr[j], port);
1838		if (unlikely(ret)) {
1839			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1840			goto out_noirq;
1841		}
1842	}
1843
1844	return 0;
1845
1846out_noirq:
1847	while (--i >= 0)
1848		free_irq(port->irqs[i], port);
1849
1850out_nomem:
1851	while (--j >= 0)
1852		kfree(port->irqstr[j]);
1853
1854	return ret;
1855}
1856
1857static void sci_free_irq(struct sci_port *port)
1858{
1859	int i;
1860
1861	/*
1862	 * Intentionally in reverse order so we iterate over the muxed
1863	 * IRQ first.
1864	 */
1865	for (i = 0; i < SCIx_NR_IRQS; i++) {
1866		int irq = port->irqs[i];
1867
1868		/*
1869		 * Certain port types won't support all of the available
1870		 * interrupt sources.
1871		 */
1872		if (unlikely(irq < 0))
1873			continue;
1874
1875		free_irq(port->irqs[i], port);
1876		kfree(port->irqstr[i]);
1877
1878		if (SCIx_IRQ_IS_MUXED(port)) {
1879			/* If there's only one IRQ, we're done. */
1880			return;
1881		}
1882	}
1883}
1884
1885static unsigned int sci_tx_empty(struct uart_port *port)
1886{
1887	unsigned short status = serial_port_in(port, SCxSR);
1888	unsigned short in_tx_fifo = sci_txfill(port);
1889
1890	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1891}
1892
1893static void sci_set_rts(struct uart_port *port, bool state)
1894{
1895	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1896		u16 data = serial_port_in(port, SCPDR);
1897
1898		/* Active low */
1899		if (state)
1900			data &= ~SCPDR_RTSD;
1901		else
1902			data |= SCPDR_RTSD;
1903		serial_port_out(port, SCPDR, data);
1904
1905		/* RTS# is output */
1906		serial_port_out(port, SCPCR,
1907				serial_port_in(port, SCPCR) | SCPCR_RTSC);
1908	} else if (sci_getreg(port, SCSPTR)->size) {
1909		u16 ctrl = serial_port_in(port, SCSPTR);
1910
1911		/* Active low */
1912		if (state)
1913			ctrl &= ~SCSPTR_RTSDT;
1914		else
1915			ctrl |= SCSPTR_RTSDT;
1916		serial_port_out(port, SCSPTR, ctrl);
1917	}
1918}
1919
1920static bool sci_get_cts(struct uart_port *port)
1921{
1922	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1923		/* Active low */
1924		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
1925	} else if (sci_getreg(port, SCSPTR)->size) {
1926		/* Active low */
1927		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
1928	}
1929
1930	return true;
1931}
1932
1933/*
1934 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1935 * CTS/RTS is supported in hardware by at least one port and controlled
1936 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1937 * handled via the ->init_pins() op, which is a bit of a one-way street,
1938 * lacking any ability to defer pin control -- this will later be
1939 * converted over to the GPIO framework).
1940 *
1941 * Other modes (such as loopback) are supported generically on certain
1942 * port types, but not others. For these it's sufficient to test for the
1943 * existence of the support register and simply ignore the port type.
1944 */
1945static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1946{
1947	struct sci_port *s = to_sci_port(port);
1948
1949	if (mctrl & TIOCM_LOOP) {
1950		const struct plat_sci_reg *reg;
1951
1952		/*
1953		 * Standard loopback mode for SCFCR ports.
1954		 */
1955		reg = sci_getreg(port, SCFCR);
1956		if (reg->size)
1957			serial_port_out(port, SCFCR,
1958					serial_port_in(port, SCFCR) |
1959					SCFCR_LOOP);
1960	}
1961
1962	mctrl_gpio_set(s->gpios, mctrl);
1963
1964	if (!s->has_rtscts)
1965		return;
1966
1967	if (!(mctrl & TIOCM_RTS)) {
1968		/* Disable Auto RTS */
1969		serial_port_out(port, SCFCR,
1970				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
1971
1972		/* Clear RTS */
1973		sci_set_rts(port, 0);
1974	} else if (s->autorts) {
1975		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1976			/* Enable RTS# pin function */
1977			serial_port_out(port, SCPCR,
1978				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
1979		}
1980
1981		/* Enable Auto RTS */
1982		serial_port_out(port, SCFCR,
1983				serial_port_in(port, SCFCR) | SCFCR_MCE);
1984	} else {
1985		/* Set RTS */
1986		sci_set_rts(port, 1);
1987	}
1988}
1989
1990static unsigned int sci_get_mctrl(struct uart_port *port)
1991{
1992	struct sci_port *s = to_sci_port(port);
1993	struct mctrl_gpios *gpios = s->gpios;
1994	unsigned int mctrl = 0;
1995
1996	mctrl_gpio_get(gpios, &mctrl);
1997
1998	/*
1999	 * CTS/RTS is handled in hardware when supported, while nothing
2000	 * else is wired up.
2001	 */
2002	if (s->autorts) {
2003		if (sci_get_cts(port))
2004			mctrl |= TIOCM_CTS;
2005	} else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) {
2006		mctrl |= TIOCM_CTS;
2007	}
2008	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR)))
2009		mctrl |= TIOCM_DSR;
2010	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD)))
2011		mctrl |= TIOCM_CAR;
2012
2013	return mctrl;
2014}
2015
2016static void sci_enable_ms(struct uart_port *port)
2017{
2018	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2019}
2020
2021static void sci_break_ctl(struct uart_port *port, int break_state)
2022{
 
 
2023	unsigned short scscr, scsptr;
2024	unsigned long flags;
2025
2026	/* check wheter the port has SCSPTR */
2027	if (!sci_getreg(port, SCSPTR)->size) {
2028		/*
2029		 * Not supported by hardware. Most parts couple break and rx
2030		 * interrupts together, with break detection always enabled.
2031		 */
2032		return;
2033	}
2034
2035	spin_lock_irqsave(&port->lock, flags);
2036	scsptr = serial_port_in(port, SCSPTR);
2037	scscr = serial_port_in(port, SCSCR);
2038
2039	if (break_state == -1) {
2040		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2041		scscr &= ~SCSCR_TE;
2042	} else {
2043		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2044		scscr |= SCSCR_TE;
2045	}
2046
2047	serial_port_out(port, SCSPTR, scsptr);
2048	serial_port_out(port, SCSCR, scscr);
2049	spin_unlock_irqrestore(&port->lock, flags);
2050}
2051
2052static int sci_startup(struct uart_port *port)
2053{
2054	struct sci_port *s = to_sci_port(port);
 
2055	int ret;
2056
2057	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2058
 
 
 
 
2059	sci_request_dma(port);
2060
2061	ret = sci_request_irq(s);
2062	if (unlikely(ret < 0)) {
2063		sci_free_dma(port);
2064		return ret;
2065	}
2066
2067	return 0;
2068}
2069
2070static void sci_shutdown(struct uart_port *port)
2071{
2072	struct sci_port *s = to_sci_port(port);
2073	unsigned long flags;
2074	u16 scr;
2075
2076	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2077
2078	s->autorts = false;
2079	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2080
2081	spin_lock_irqsave(&port->lock, flags);
2082	sci_stop_rx(port);
2083	sci_stop_tx(port);
2084	/*
2085	 * Stop RX and TX, disable related interrupts, keep clock source
2086	 * and HSCIF TOT bits
2087	 */
2088	scr = serial_port_in(port, SCSCR);
2089	serial_port_out(port, SCSCR, scr &
2090			(SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2091	spin_unlock_irqrestore(&port->lock, flags);
2092
2093#ifdef CONFIG_SERIAL_SH_SCI_DMA
2094	if (s->chan_rx) {
2095		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2096			port->line);
2097		hrtimer_cancel(&s->rx_timer);
2098	}
2099#endif
2100
 
2101	sci_free_irq(s);
2102	sci_free_dma(port);
2103}
2104
2105static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2106			unsigned int *srr)
2107{
2108	unsigned long freq = s->clk_rates[SCI_SCK];
2109	int err, min_err = INT_MAX;
2110	unsigned int sr;
2111
2112	if (s->port.type != PORT_HSCIF)
2113		freq *= 2;
2114
2115	for_each_sr(sr, s) {
2116		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2117		if (abs(err) >= abs(min_err))
2118			continue;
2119
2120		min_err = err;
2121		*srr = sr - 1;
2122
2123		if (!err)
2124			break;
2125	}
2126
2127	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2128		*srr + 1);
2129	return min_err;
2130}
2131
2132static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2133			unsigned long freq, unsigned int *dlr,
2134			unsigned int *srr)
2135{
2136	int err, min_err = INT_MAX;
2137	unsigned int sr, dl;
2138
2139	if (s->port.type != PORT_HSCIF)
2140		freq *= 2;
2141
2142	for_each_sr(sr, s) {
2143		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2144		dl = clamp(dl, 1U, 65535U);
2145
2146		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2147		if (abs(err) >= abs(min_err))
2148			continue;
2149
2150		min_err = err;
2151		*dlr = dl;
2152		*srr = sr - 1;
2153
2154		if (!err)
2155			break;
2156	}
2157
2158	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2159		min_err, *dlr, *srr + 1);
2160	return min_err;
2161}
2162
2163/* calculate sample rate, BRR, and clock select */
2164static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2165			  unsigned int *brr, unsigned int *srr,
2166			  unsigned int *cks)
2167{
2168	unsigned long freq = s->clk_rates[SCI_FCK];
2169	unsigned int sr, br, prediv, scrate, c;
2170	int err, min_err = INT_MAX;
2171
2172	if (s->port.type != PORT_HSCIF)
2173		freq *= 2;
2174
2175	/*
2176	 * Find the combination of sample rate and clock select with the
2177	 * smallest deviation from the desired baud rate.
2178	 * Prefer high sample rates to maximise the receive margin.
2179	 *
2180	 * M: Receive margin (%)
2181	 * N: Ratio of bit rate to clock (N = sampling rate)
2182	 * D: Clock duty (D = 0 to 1.0)
2183	 * L: Frame length (L = 9 to 12)
2184	 * F: Absolute value of clock frequency deviation
2185	 *
2186	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2187	 *      (|D - 0.5| / N * (1 + F))|
2188	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2189	 */
2190	for_each_sr(sr, s) {
2191		for (c = 0; c <= 3; c++) {
2192			/* integerized formulas from HSCIF documentation */
2193			prediv = sr * (1 << (2 * c + 1));
2194
2195			/*
2196			 * We need to calculate:
2197			 *
2198			 *     br = freq / (prediv * bps) clamped to [1..256]
2199			 *     err = freq / (br * prediv) - bps
2200			 *
2201			 * Watch out for overflow when calculating the desired
2202			 * sampling clock rate!
2203			 */
2204			if (bps > UINT_MAX / prediv)
2205				break;
2206
2207			scrate = prediv * bps;
2208			br = DIV_ROUND_CLOSEST(freq, scrate);
2209			br = clamp(br, 1U, 256U);
2210
2211			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2212			if (abs(err) >= abs(min_err))
2213				continue;
2214
2215			min_err = err;
2216			*brr = br - 1;
2217			*srr = sr - 1;
2218			*cks = c;
2219
2220			if (!err)
2221				goto found;
2222		}
2223	}
2224
2225found:
2226	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2227		min_err, *brr, *srr + 1, *cks);
2228	return min_err;
2229}
2230
2231static void sci_reset(struct uart_port *port)
2232{
2233	const struct plat_sci_reg *reg;
2234	unsigned int status;
2235	struct sci_port *s = to_sci_port(port);
2236
2237	serial_port_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
 
 
 
 
2238
2239	reg = sci_getreg(port, SCFCR);
2240	if (reg->size)
2241		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2242
2243	sci_clear_SCxSR(port,
2244			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2245			SCxSR_BREAK_CLEAR(port));
2246	if (sci_getreg(port, SCLSR)->size) {
2247		status = serial_port_in(port, SCLSR);
2248		status &= ~(SCLSR_TO | SCLSR_ORER);
2249		serial_port_out(port, SCLSR, status);
2250	}
2251
2252	if (s->rx_trigger > 1) {
2253		if (s->rx_fifo_timeout) {
2254			scif_set_rtrg(port, 1);
2255			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2256		} else {
2257			if (port->type == PORT_SCIFA ||
2258			    port->type == PORT_SCIFB)
2259				scif_set_rtrg(port, 1);
2260			else
2261				scif_set_rtrg(port, s->rx_trigger);
2262		}
2263	}
2264}
2265
2266static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2267			    struct ktermios *old)
2268{
2269	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2270	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2271	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2272	struct sci_port *s = to_sci_port(port);
2273	const struct plat_sci_reg *reg;
2274	int min_err = INT_MAX, err;
2275	unsigned long max_freq = 0;
2276	int best_clk = -1;
2277	unsigned long flags;
2278
2279	if ((termios->c_cflag & CSIZE) == CS7)
2280		smr_val |= SCSMR_CHR;
2281	if (termios->c_cflag & PARENB)
2282		smr_val |= SCSMR_PE;
2283	if (termios->c_cflag & PARODD)
2284		smr_val |= SCSMR_PE | SCSMR_ODD;
2285	if (termios->c_cflag & CSTOPB)
2286		smr_val |= SCSMR_STOP;
2287
2288	/*
2289	 * earlyprintk comes here early on with port->uartclk set to zero.
2290	 * the clock framework is not up and running at this point so here
2291	 * we assume that 115200 is the maximum baud rate. please note that
2292	 * the baud rate is not programmed during earlyprintk - it is assumed
2293	 * that the previous boot loader has enabled required clocks and
2294	 * setup the baud rate generator hardware for us already.
2295	 */
2296	if (!port->uartclk) {
2297		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2298		goto done;
2299	}
2300
2301	for (i = 0; i < SCI_NUM_CLKS; i++)
2302		max_freq = max(max_freq, s->clk_rates[i]);
2303
2304	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2305	if (!baud)
2306		goto done;
2307
2308	/*
2309	 * There can be multiple sources for the sampling clock.  Find the one
2310	 * that gives us the smallest deviation from the desired baud rate.
2311	 */
2312
2313	/* Optional Undivided External Clock */
2314	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2315	    port->type != PORT_SCIFB) {
2316		err = sci_sck_calc(s, baud, &srr1);
2317		if (abs(err) < abs(min_err)) {
2318			best_clk = SCI_SCK;
2319			scr_val = SCSCR_CKE1;
2320			sccks = SCCKS_CKS;
2321			min_err = err;
2322			srr = srr1;
2323			if (!err)
2324				goto done;
2325		}
2326	}
2327
2328	/* Optional BRG Frequency Divided External Clock */
2329	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2330		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2331				   &srr1);
2332		if (abs(err) < abs(min_err)) {
2333			best_clk = SCI_SCIF_CLK;
2334			scr_val = SCSCR_CKE1;
2335			sccks = 0;
2336			min_err = err;
2337			dl = dl1;
2338			srr = srr1;
2339			if (!err)
2340				goto done;
2341		}
2342	}
2343
2344	/* Optional BRG Frequency Divided Internal Clock */
2345	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2346		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2347				   &srr1);
2348		if (abs(err) < abs(min_err)) {
2349			best_clk = SCI_BRG_INT;
2350			scr_val = SCSCR_CKE1;
2351			sccks = SCCKS_XIN;
2352			min_err = err;
2353			dl = dl1;
2354			srr = srr1;
2355			if (!min_err)
2356				goto done;
2357		}
2358	}
2359
2360	/* Divided Functional Clock using standard Bit Rate Register */
2361	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2362	if (abs(err) < abs(min_err)) {
2363		best_clk = SCI_FCK;
2364		scr_val = 0;
2365		min_err = err;
2366		brr = brr1;
2367		srr = srr1;
2368		cks = cks1;
2369	}
2370
2371done:
2372	if (best_clk >= 0)
2373		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2374			s->clks[best_clk], baud, min_err);
2375
2376	sci_port_enable(s);
2377
2378	/*
2379	 * Program the optional External Baud Rate Generator (BRG) first.
2380	 * It controls the mux to select (H)SCK or frequency divided clock.
2381	 */
2382	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2383		serial_port_out(port, SCDL, dl);
2384		serial_port_out(port, SCCKS, sccks);
2385	}
2386
2387	spin_lock_irqsave(&port->lock, flags);
2388
2389	sci_reset(port);
2390
2391	uart_update_timeout(port, termios->c_cflag, baud);
2392
2393	if (best_clk >= 0) {
2394		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2395			switch (srr + 1) {
2396			case 5:  smr_val |= SCSMR_SRC_5;  break;
2397			case 7:  smr_val |= SCSMR_SRC_7;  break;
2398			case 11: smr_val |= SCSMR_SRC_11; break;
2399			case 13: smr_val |= SCSMR_SRC_13; break;
2400			case 16: smr_val |= SCSMR_SRC_16; break;
2401			case 17: smr_val |= SCSMR_SRC_17; break;
2402			case 19: smr_val |= SCSMR_SRC_19; break;
2403			case 27: smr_val |= SCSMR_SRC_27; break;
2404			}
2405		smr_val |= cks;
2406		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
 
 
 
2407		serial_port_out(port, SCSMR, smr_val);
2408		serial_port_out(port, SCBRR, brr);
2409		if (sci_getreg(port, HSSRR)->size)
2410			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
2411
2412		/* Wait one bit interval */
2413		udelay((1000000 + (baud - 1)) / baud);
2414	} else {
2415		/* Don't touch the bit rate configuration */
2416		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2417		smr_val |= serial_port_in(port, SCSMR) &
2418			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2419		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
 
2420		serial_port_out(port, SCSMR, smr_val);
2421	}
2422
2423	sci_init_pins(port, termios->c_cflag);
2424
2425	port->status &= ~UPSTAT_AUTOCTS;
2426	s->autorts = false;
2427	reg = sci_getreg(port, SCFCR);
2428	if (reg->size) {
2429		unsigned short ctrl = serial_port_in(port, SCFCR);
2430
2431		if ((port->flags & UPF_HARD_FLOW) &&
2432		    (termios->c_cflag & CRTSCTS)) {
2433			/* There is no CTS interrupt to restart the hardware */
2434			port->status |= UPSTAT_AUTOCTS;
2435			/* MCE is enabled when RTS is raised */
2436			s->autorts = true;
2437		}
2438
2439		/*
2440		 * As we've done a sci_reset() above, ensure we don't
2441		 * interfere with the FIFOs while toggling MCE. As the
2442		 * reset values could still be set, simply mask them out.
2443		 */
2444		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2445
2446		serial_port_out(port, SCFCR, ctrl);
2447	}
2448	if (port->flags & UPF_HARD_FLOW) {
2449		/* Refresh (Auto) RTS */
2450		sci_set_mctrl(port, port->mctrl);
2451	}
2452
2453	scr_val |= SCSCR_RE | SCSCR_TE |
2454		   (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2455	serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2456	if ((srr + 1 == 5) &&
2457	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2458		/*
2459		 * In asynchronous mode, when the sampling rate is 1/5, first
2460		 * received data may become invalid on some SCIFA and SCIFB.
2461		 * To avoid this problem wait more than 1 serial data time (1
2462		 * bit time x serial data number) after setting SCSCR.RE = 1.
2463		 */
2464		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2465	}
2466
 
2467	/*
2468	 * Calculate delay for 2 DMA buffers (4 FIFO).
2469	 * See serial_core.c::uart_update_timeout().
2470	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2471	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2472	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2473	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2474	 * value obtained by this formula is too small. Therefore, if the value
2475	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2476	 */
2477	/* byte size and parity */
2478	switch (termios->c_cflag & CSIZE) {
2479	case CS5:
2480		bits = 7;
2481		break;
2482	case CS6:
2483		bits = 8;
2484		break;
2485	case CS7:
2486		bits = 9;
2487		break;
2488	default:
2489		bits = 10;
2490		break;
2491	}
2492
2493	if (termios->c_cflag & CSTOPB)
2494		bits++;
2495	if (termios->c_cflag & PARENB)
2496		bits++;
 
 
 
 
 
 
 
 
 
 
 
2497
2498	s->rx_frame = (10000 * bits) / (baud / 100);
2499#ifdef CONFIG_SERIAL_SH_SCI_DMA
2500	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2501	if (s->rx_timeout < 20)
2502		s->rx_timeout = 20;
 
 
 
 
 
 
2503#endif
2504
2505	if ((termios->c_cflag & CREAD) != 0)
2506		sci_start_rx(port);
2507
2508	spin_unlock_irqrestore(&port->lock, flags);
2509
2510	sci_port_disable(s);
2511
2512	if (UART_ENABLE_MS(port, termios->c_cflag))
2513		sci_enable_ms(port);
2514}
2515
2516static void sci_pm(struct uart_port *port, unsigned int state,
2517		   unsigned int oldstate)
2518{
2519	struct sci_port *sci_port = to_sci_port(port);
2520
2521	switch (state) {
2522	case UART_PM_STATE_OFF:
2523		sci_port_disable(sci_port);
2524		break;
2525	default:
2526		sci_port_enable(sci_port);
2527		break;
2528	}
2529}
2530
2531static const char *sci_type(struct uart_port *port)
2532{
2533	switch (port->type) {
2534	case PORT_IRDA:
2535		return "irda";
2536	case PORT_SCI:
2537		return "sci";
2538	case PORT_SCIF:
2539		return "scif";
2540	case PORT_SCIFA:
2541		return "scifa";
2542	case PORT_SCIFB:
2543		return "scifb";
2544	case PORT_HSCIF:
2545		return "hscif";
2546	}
2547
2548	return NULL;
2549}
2550
2551static int sci_remap_port(struct uart_port *port)
2552{
2553	struct sci_port *sport = to_sci_port(port);
2554
2555	/*
2556	 * Nothing to do if there's already an established membase.
2557	 */
2558	if (port->membase)
2559		return 0;
2560
2561	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2562		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2563		if (unlikely(!port->membase)) {
2564			dev_err(port->dev, "can't remap port#%d\n", port->line);
2565			return -ENXIO;
2566		}
2567	} else {
2568		/*
2569		 * For the simple (and majority of) cases where we don't
2570		 * need to do any remapping, just cast the cookie
2571		 * directly.
2572		 */
2573		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2574	}
2575
2576	return 0;
2577}
2578
2579static void sci_release_port(struct uart_port *port)
2580{
2581	struct sci_port *sport = to_sci_port(port);
2582
2583	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2584		iounmap(port->membase);
2585		port->membase = NULL;
2586	}
2587
2588	release_mem_region(port->mapbase, sport->reg_size);
2589}
2590
2591static int sci_request_port(struct uart_port *port)
2592{
2593	struct resource *res;
2594	struct sci_port *sport = to_sci_port(port);
2595	int ret;
2596
2597	res = request_mem_region(port->mapbase, sport->reg_size,
2598				 dev_name(port->dev));
2599	if (unlikely(res == NULL)) {
2600		dev_err(port->dev, "request_mem_region failed.");
2601		return -EBUSY;
2602	}
2603
2604	ret = sci_remap_port(port);
2605	if (unlikely(ret != 0)) {
2606		release_resource(res);
2607		return ret;
2608	}
2609
2610	return 0;
2611}
2612
2613static void sci_config_port(struct uart_port *port, int flags)
2614{
2615	if (flags & UART_CONFIG_TYPE) {
2616		struct sci_port *sport = to_sci_port(port);
2617
2618		port->type = sport->cfg->type;
2619		sci_request_port(port);
2620	}
2621}
2622
2623static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2624{
2625	if (ser->baud_base < 2400)
2626		/* No paper tape reader for Mitch.. */
2627		return -EINVAL;
2628
2629	return 0;
2630}
2631
2632static const struct uart_ops sci_uart_ops = {
2633	.tx_empty	= sci_tx_empty,
2634	.set_mctrl	= sci_set_mctrl,
2635	.get_mctrl	= sci_get_mctrl,
2636	.start_tx	= sci_start_tx,
2637	.stop_tx	= sci_stop_tx,
2638	.stop_rx	= sci_stop_rx,
2639	.enable_ms	= sci_enable_ms,
2640	.break_ctl	= sci_break_ctl,
2641	.startup	= sci_startup,
2642	.shutdown	= sci_shutdown,
2643	.flush_buffer	= sci_flush_buffer,
2644	.set_termios	= sci_set_termios,
2645	.pm		= sci_pm,
2646	.type		= sci_type,
2647	.release_port	= sci_release_port,
2648	.request_port	= sci_request_port,
2649	.config_port	= sci_config_port,
2650	.verify_port	= sci_verify_port,
2651#ifdef CONFIG_CONSOLE_POLL
2652	.poll_get_char	= sci_poll_get_char,
2653	.poll_put_char	= sci_poll_put_char,
2654#endif
2655};
2656
2657static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2658{
2659	const char *clk_names[] = {
2660		[SCI_FCK] = "fck",
2661		[SCI_SCK] = "sck",
2662		[SCI_BRG_INT] = "brg_int",
2663		[SCI_SCIF_CLK] = "scif_clk",
2664	};
2665	struct clk *clk;
2666	unsigned int i;
2667
2668	if (sci_port->cfg->type == PORT_HSCIF)
2669		clk_names[SCI_SCK] = "hsck";
2670
2671	for (i = 0; i < SCI_NUM_CLKS; i++) {
2672		clk = devm_clk_get(dev, clk_names[i]);
2673		if (PTR_ERR(clk) == -EPROBE_DEFER)
2674			return -EPROBE_DEFER;
2675
2676		if (IS_ERR(clk) && i == SCI_FCK) {
2677			/*
2678			 * "fck" used to be called "sci_ick", and we need to
2679			 * maintain DT backward compatibility.
2680			 */
2681			clk = devm_clk_get(dev, "sci_ick");
2682			if (PTR_ERR(clk) == -EPROBE_DEFER)
2683				return -EPROBE_DEFER;
2684
2685			if (!IS_ERR(clk))
2686				goto found;
2687
2688			/*
2689			 * Not all SH platforms declare a clock lookup entry
2690			 * for SCI devices, in which case we need to get the
2691			 * global "peripheral_clk" clock.
2692			 */
2693			clk = devm_clk_get(dev, "peripheral_clk");
2694			if (!IS_ERR(clk))
2695				goto found;
2696
2697			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2698				PTR_ERR(clk));
2699			return PTR_ERR(clk);
2700		}
2701
2702found:
2703		if (IS_ERR(clk))
2704			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2705				PTR_ERR(clk));
2706		else
2707			dev_dbg(dev, "clk %s is %pC rate %pCr\n", clk_names[i],
2708				clk, clk);
2709		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2710	}
2711	return 0;
2712}
2713
2714static const struct sci_port_params *
2715sci_probe_regmap(const struct plat_sci_port *cfg)
2716{
2717	unsigned int regtype;
2718
2719	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2720		return &sci_port_params[cfg->regtype];
2721
2722	switch (cfg->type) {
2723	case PORT_SCI:
2724		regtype = SCIx_SCI_REGTYPE;
2725		break;
2726	case PORT_IRDA:
2727		regtype = SCIx_IRDA_REGTYPE;
2728		break;
2729	case PORT_SCIFA:
2730		regtype = SCIx_SCIFA_REGTYPE;
2731		break;
2732	case PORT_SCIFB:
2733		regtype = SCIx_SCIFB_REGTYPE;
2734		break;
2735	case PORT_SCIF:
2736		/*
2737		 * The SH-4 is a bit of a misnomer here, although that's
2738		 * where this particular port layout originated. This
2739		 * configuration (or some slight variation thereof)
2740		 * remains the dominant model for all SCIFs.
2741		 */
2742		regtype = SCIx_SH4_SCIF_REGTYPE;
2743		break;
2744	case PORT_HSCIF:
2745		regtype = SCIx_HSCIF_REGTYPE;
2746		break;
2747	default:
2748		pr_err("Can't probe register map for given port\n");
2749		return NULL;
2750	}
2751
2752	return &sci_port_params[regtype];
2753}
2754
2755static int sci_init_single(struct platform_device *dev,
2756			   struct sci_port *sci_port, unsigned int index,
2757			   const struct plat_sci_port *p, bool early)
2758{
2759	struct uart_port *port = &sci_port->port;
2760	const struct resource *res;
2761	unsigned int i;
2762	int ret;
2763
2764	sci_port->cfg	= p;
2765
2766	port->ops	= &sci_uart_ops;
2767	port->iotype	= UPIO_MEM;
2768	port->line	= index;
2769
2770	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2771	if (res == NULL)
2772		return -ENOMEM;
2773
2774	port->mapbase = res->start;
2775	sci_port->reg_size = resource_size(res);
2776
2777	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2778		sci_port->irqs[i] = platform_get_irq(dev, i);
2779
2780	/* The SCI generates several interrupts. They can be muxed together or
2781	 * connected to different interrupt lines. In the muxed case only one
2782	 * interrupt resource is specified. In the non-muxed case three or four
2783	 * interrupt resources are specified, as the BRI interrupt is optional.
2784	 */
2785	if (sci_port->irqs[0] < 0)
2786		return -ENXIO;
2787
2788	if (sci_port->irqs[1] < 0) {
2789		sci_port->irqs[1] = sci_port->irqs[0];
2790		sci_port->irqs[2] = sci_port->irqs[0];
2791		sci_port->irqs[3] = sci_port->irqs[0];
2792	}
2793
2794	sci_port->params = sci_probe_regmap(p);
2795	if (unlikely(sci_port->params == NULL))
2796		return -EINVAL;
 
 
2797
2798	switch (p->type) {
2799	case PORT_SCIFB:
2800		sci_port->rx_trigger = 48;
 
 
 
2801		break;
2802	case PORT_HSCIF:
2803		sci_port->rx_trigger = 64;
 
 
 
2804		break;
2805	case PORT_SCIFA:
2806		sci_port->rx_trigger = 32;
 
 
 
2807		break;
2808	case PORT_SCIF:
2809		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2810			/* RX triggering not implemented for this IP */
2811			sci_port->rx_trigger = 1;
2812		else
2813			sci_port->rx_trigger = 8;
 
 
 
 
 
2814		break;
2815	default:
2816		sci_port->rx_trigger = 1;
 
 
 
2817		break;
2818	}
2819
2820	sci_port->rx_fifo_timeout = 0;
2821	sci_port->hscif_tot = 0;
2822
2823	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2824	 * match the SoC datasheet, this should be investigated. Let platform
2825	 * data override the sampling rate for now.
2826	 */
2827	sci_port->sampling_rate_mask = p->sampling_rate
2828				     ? SCI_SR(p->sampling_rate)
2829				     : sci_port->params->sampling_rate_mask;
2830
2831	if (!early) {
2832		ret = sci_init_clocks(sci_port, &dev->dev);
2833		if (ret < 0)
2834			return ret;
2835
2836		port->dev = &dev->dev;
2837
2838		pm_runtime_enable(&dev->dev);
2839	}
2840
2841	port->type		= p->type;
2842	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2843	port->fifosize		= sci_port->params->fifosize;
 
 
 
 
 
 
 
 
 
 
 
2844
2845	if (port->type == PORT_SCI) {
2846		if (sci_port->reg_size >= 0x20)
2847			port->regshift = 2;
2848		else
2849			port->regshift = 1;
 
 
2850	}
2851
 
 
 
 
2852	/*
2853	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2854	 * for the multi-IRQ ports, which is where we are primarily
2855	 * concerned with the shutdown path synchronization.
2856	 *
2857	 * For the muxed case there's nothing more to do.
2858	 */
2859	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2860	port->irqflags		= 0;
2861
2862	port->serial_in		= sci_serial_in;
2863	port->serial_out	= sci_serial_out;
2864
 
 
 
 
2865	return 0;
2866}
2867
2868static void sci_cleanup_single(struct sci_port *port)
2869{
2870	pm_runtime_disable(port->port.dev);
2871}
2872
2873#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2874    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2875static void serial_console_putchar(struct uart_port *port, int ch)
2876{
2877	sci_poll_put_char(port, ch);
2878}
2879
2880/*
2881 *	Print a string to the serial port trying not to disturb
2882 *	any possible real use of the port...
2883 */
2884static void serial_console_write(struct console *co, const char *s,
2885				 unsigned count)
2886{
2887	struct sci_port *sci_port = &sci_ports[co->index];
2888	struct uart_port *port = &sci_port->port;
2889	unsigned short bits, ctrl, ctrl_temp;
2890	unsigned long flags;
2891	int locked = 1;
2892
2893	local_irq_save(flags);
2894#if defined(SUPPORT_SYSRQ)
2895	if (port->sysrq)
2896		locked = 0;
2897	else
2898#endif
2899	if (oops_in_progress)
2900		locked = spin_trylock(&port->lock);
2901	else
2902		spin_lock(&port->lock);
2903
2904	/* first save SCSCR then disable interrupts, keep clock source */
2905	ctrl = serial_port_in(port, SCSCR);
2906	ctrl_temp = SCSCR_RE | SCSCR_TE |
2907		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2908		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2909	serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
2910
2911	uart_console_write(port, s, count, serial_console_putchar);
2912
2913	/* wait until fifo is empty and last bit has been transmitted */
2914	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2915	while ((serial_port_in(port, SCxSR) & bits) != bits)
2916		cpu_relax();
2917
2918	/* restore the SCSCR */
2919	serial_port_out(port, SCSCR, ctrl);
2920
2921	if (locked)
2922		spin_unlock(&port->lock);
2923	local_irq_restore(flags);
2924}
2925
2926static int serial_console_setup(struct console *co, char *options)
2927{
2928	struct sci_port *sci_port;
2929	struct uart_port *port;
2930	int baud = 115200;
2931	int bits = 8;
2932	int parity = 'n';
2933	int flow = 'n';
2934	int ret;
2935
2936	/*
2937	 * Refuse to handle any bogus ports.
2938	 */
2939	if (co->index < 0 || co->index >= SCI_NPORTS)
2940		return -ENODEV;
2941
2942	sci_port = &sci_ports[co->index];
2943	port = &sci_port->port;
2944
2945	/*
2946	 * Refuse to handle uninitialized ports.
2947	 */
2948	if (!port->ops)
2949		return -ENODEV;
2950
2951	ret = sci_remap_port(port);
2952	if (unlikely(ret != 0))
2953		return ret;
2954
2955	if (options)
2956		uart_parse_options(options, &baud, &parity, &bits, &flow);
2957
2958	return uart_set_options(port, co, baud, parity, bits, flow);
2959}
2960
2961static struct console serial_console = {
2962	.name		= "ttySC",
2963	.device		= uart_console_device,
2964	.write		= serial_console_write,
2965	.setup		= serial_console_setup,
2966	.flags		= CON_PRINTBUFFER,
2967	.index		= -1,
2968	.data		= &sci_uart_driver,
2969};
2970
2971static struct console early_serial_console = {
2972	.name           = "early_ttySC",
2973	.write          = serial_console_write,
2974	.flags          = CON_PRINTBUFFER,
2975	.index		= -1,
2976};
2977
2978static char early_serial_buf[32];
2979
2980static int sci_probe_earlyprintk(struct platform_device *pdev)
2981{
2982	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2983
2984	if (early_serial_console.data)
2985		return -EEXIST;
2986
2987	early_serial_console.index = pdev->id;
2988
2989	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2990
2991	serial_console_setup(&early_serial_console, early_serial_buf);
2992
2993	if (!strstr(early_serial_buf, "keep"))
2994		early_serial_console.flags |= CON_BOOT;
2995
2996	register_console(&early_serial_console);
2997	return 0;
2998}
2999
3000#define SCI_CONSOLE	(&serial_console)
3001
3002#else
3003static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3004{
3005	return -EINVAL;
3006}
3007
3008#define SCI_CONSOLE	NULL
3009
3010#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3011
3012static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3013
3014static DEFINE_MUTEX(sci_uart_registration_lock);
3015static struct uart_driver sci_uart_driver = {
3016	.owner		= THIS_MODULE,
3017	.driver_name	= "sci",
3018	.dev_name	= "ttySC",
3019	.major		= SCI_MAJOR,
3020	.minor		= SCI_MINOR_START,
3021	.nr		= SCI_NPORTS,
3022	.cons		= SCI_CONSOLE,
3023};
3024
3025static int sci_remove(struct platform_device *dev)
3026{
3027	struct sci_port *port = platform_get_drvdata(dev);
3028
3029	uart_remove_one_port(&sci_uart_driver, &port->port);
3030
3031	sci_cleanup_single(port);
3032
3033	if (port->port.fifosize > 1) {
3034		sysfs_remove_file(&dev->dev.kobj,
3035				  &dev_attr_rx_fifo_trigger.attr);
3036	}
3037	if (port->port.type == PORT_SCIFA || port->port.type == PORT_SCIFB ||
3038	    port->port.type == PORT_HSCIF) {
3039		sysfs_remove_file(&dev->dev.kobj,
3040				  &dev_attr_rx_fifo_timeout.attr);
3041	}
3042
3043	return 0;
3044}
3045
3046
3047#define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3048#define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3049#define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3050
3051static const struct of_device_id of_sci_match[] = {
3052	/* SoC-specific types */
3053	{
3054		.compatible = "renesas,scif-r7s72100",
3055		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3056	},
3057	/* Family-specific types */
3058	{
3059		.compatible = "renesas,rcar-gen1-scif",
3060		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3061	}, {
3062		.compatible = "renesas,rcar-gen2-scif",
3063		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3064	}, {
3065		.compatible = "renesas,rcar-gen3-scif",
3066		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3067	},
3068	/* Generic types */
3069	{
3070		.compatible = "renesas,scif",
3071		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3072	}, {
3073		.compatible = "renesas,scifa",
3074		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3075	}, {
3076		.compatible = "renesas,scifb",
3077		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3078	}, {
3079		.compatible = "renesas,hscif",
3080		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3081	}, {
3082		.compatible = "renesas,sci",
3083		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3084	}, {
3085		/* Terminator */
3086	},
3087};
3088MODULE_DEVICE_TABLE(of, of_sci_match);
3089
3090static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3091					  unsigned int *dev_id)
3092{
3093	struct device_node *np = pdev->dev.of_node;
 
3094	struct plat_sci_port *p;
3095	struct sci_port *sp;
3096	const void *data;
3097	int id;
3098
3099	if (!IS_ENABLED(CONFIG_OF) || !np)
3100		return NULL;
3101
3102	data = of_device_get_match_data(&pdev->dev);
 
 
3103
3104	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3105	if (!p)
3106		return NULL;
3107
3108	/* Get the line number from the aliases node. */
3109	id = of_alias_get_id(np, "serial");
3110	if (id < 0) {
3111		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3112		return NULL;
3113	}
3114	if (id >= ARRAY_SIZE(sci_ports)) {
3115		dev_err(&pdev->dev, "serial%d out of range\n", id);
3116		return NULL;
3117	}
3118
3119	sp = &sci_ports[id];
3120	*dev_id = id;
3121
3122	p->type = SCI_OF_TYPE(data);
3123	p->regtype = SCI_OF_REGTYPE(data);
3124
3125	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3126
3127	return p;
3128}
3129
3130static int sci_probe_single(struct platform_device *dev,
3131				      unsigned int index,
3132				      struct plat_sci_port *p,
3133				      struct sci_port *sciport)
3134{
3135	int ret;
3136
3137	/* Sanity check */
3138	if (unlikely(index >= SCI_NPORTS)) {
3139		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3140			   index+1, SCI_NPORTS);
3141		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3142		return -EINVAL;
3143	}
3144
3145	mutex_lock(&sci_uart_registration_lock);
3146	if (!sci_uart_driver.state) {
3147		ret = uart_register_driver(&sci_uart_driver);
3148		if (ret) {
3149			mutex_unlock(&sci_uart_registration_lock);
3150			return ret;
3151		}
3152	}
3153	mutex_unlock(&sci_uart_registration_lock);
3154
3155	ret = sci_init_single(dev, sciport, index, p, false);
3156	if (ret)
3157		return ret;
3158
3159	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3160	if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS)
3161		return PTR_ERR(sciport->gpios);
3162
3163	if (sciport->has_rtscts) {
3164		if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3165							UART_GPIO_CTS)) ||
3166		    !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3167							UART_GPIO_RTS))) {
3168			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3169			return -EINVAL;
3170		}
3171		sciport->port.flags |= UPF_HARD_FLOW;
3172	}
3173
3174	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3175	if (ret) {
3176		sci_cleanup_single(sciport);
3177		return ret;
3178	}
3179
3180	return 0;
3181}
3182
3183static int sci_probe(struct platform_device *dev)
3184{
3185	struct plat_sci_port *p;
3186	struct sci_port *sp;
3187	unsigned int dev_id;
3188	int ret;
3189
3190	/*
3191	 * If we've come here via earlyprintk initialization, head off to
3192	 * the special early probe. We don't have sufficient device state
3193	 * to make it beyond this yet.
3194	 */
3195	if (is_early_platform_device(dev))
3196		return sci_probe_earlyprintk(dev);
3197
3198	if (dev->dev.of_node) {
3199		p = sci_parse_dt(dev, &dev_id);
3200		if (p == NULL)
3201			return -EINVAL;
3202	} else {
3203		p = dev->dev.platform_data;
3204		if (p == NULL) {
3205			dev_err(&dev->dev, "no platform data supplied\n");
3206			return -EINVAL;
3207		}
3208
3209		dev_id = dev->id;
3210	}
3211
3212	sp = &sci_ports[dev_id];
3213	platform_set_drvdata(dev, sp);
3214
3215	ret = sci_probe_single(dev, dev_id, p, sp);
3216	if (ret)
3217		return ret;
3218
3219	if (sp->port.fifosize > 1) {
3220		ret = sysfs_create_file(&dev->dev.kobj,
3221				&dev_attr_rx_fifo_trigger.attr);
3222		if (ret)
3223			return ret;
3224	}
3225	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3226	    sp->port.type == PORT_HSCIF) {
3227		ret = sysfs_create_file(&dev->dev.kobj,
3228				&dev_attr_rx_fifo_timeout.attr);
3229		if (ret) {
3230			if (sp->port.fifosize > 1) {
3231				sysfs_remove_file(&dev->dev.kobj,
3232					&dev_attr_rx_fifo_trigger.attr);
3233			}
3234			return ret;
3235		}
3236	}
3237
3238#ifdef CONFIG_SH_STANDARD_BIOS
3239	sh_bios_gdb_detach();
3240#endif
3241
3242	return 0;
3243}
3244
3245static __maybe_unused int sci_suspend(struct device *dev)
3246{
3247	struct sci_port *sport = dev_get_drvdata(dev);
3248
3249	if (sport)
3250		uart_suspend_port(&sci_uart_driver, &sport->port);
3251
3252	return 0;
3253}
3254
3255static __maybe_unused int sci_resume(struct device *dev)
3256{
3257	struct sci_port *sport = dev_get_drvdata(dev);
3258
3259	if (sport)
3260		uart_resume_port(&sci_uart_driver, &sport->port);
3261
3262	return 0;
3263}
3264
3265static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3266
3267static struct platform_driver sci_driver = {
3268	.probe		= sci_probe,
3269	.remove		= sci_remove,
3270	.driver		= {
3271		.name	= "sh-sci",
3272		.pm	= &sci_dev_pm_ops,
3273		.of_match_table = of_match_ptr(of_sci_match),
3274	},
3275};
3276
3277static int __init sci_init(void)
3278{
 
 
3279	pr_info("%s\n", banner);
3280
3281	return platform_driver_register(&sci_driver);
 
 
 
 
 
 
 
3282}
3283
3284static void __exit sci_exit(void)
3285{
3286	platform_driver_unregister(&sci_driver);
3287
3288	if (sci_uart_driver.state)
3289		uart_unregister_driver(&sci_uart_driver);
3290}
3291
3292#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3293early_platform_init_buffer("earlyprintk", &sci_driver,
3294			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3295#endif
3296#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3297static struct plat_sci_port port_cfg __initdata;
3298
3299static int __init early_console_setup(struct earlycon_device *device,
3300				      int type)
3301{
3302	if (!device->port.membase)
3303		return -ENODEV;
3304
3305	device->port.serial_in = sci_serial_in;
3306	device->port.serial_out	= sci_serial_out;
3307	device->port.type = type;
3308	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3309	port_cfg.type = type;
3310	sci_ports[0].cfg = &port_cfg;
3311	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3312	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3313	sci_serial_out(&sci_ports[0].port, SCSCR,
3314		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
 
3315
3316	device->con->write = serial_console_write;
3317	return 0;
3318}
3319static int __init sci_early_console_setup(struct earlycon_device *device,
3320					  const char *opt)
3321{
3322	return early_console_setup(device, PORT_SCI);
3323}
3324static int __init scif_early_console_setup(struct earlycon_device *device,
3325					  const char *opt)
3326{
3327	return early_console_setup(device, PORT_SCIF);
3328}
3329static int __init scifa_early_console_setup(struct earlycon_device *device,
3330					  const char *opt)
3331{
3332	return early_console_setup(device, PORT_SCIFA);
3333}
3334static int __init scifb_early_console_setup(struct earlycon_device *device,
3335					  const char *opt)
3336{
3337	return early_console_setup(device, PORT_SCIFB);
3338}
3339static int __init hscif_early_console_setup(struct earlycon_device *device,
3340					  const char *opt)
3341{
3342	return early_console_setup(device, PORT_HSCIF);
3343}
3344
3345OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3346OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3347OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3348OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3349OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3350#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3351
3352module_init(sci_init);
3353module_exit(sci_exit);
3354
3355MODULE_LICENSE("GPL");
3356MODULE_ALIAS("platform:sh-sci");
3357MODULE_AUTHOR("Paul Mundt");
3358MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");