Loading...
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21#include <linux/blk-mq.h>
22#include <linux/mount.h>
23
24#define DM_MSG_PREFIX "table"
25
26#define MAX_DEPTH 16
27#define NODE_SIZE L1_CACHE_BYTES
28#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31struct dm_table {
32 struct mapped_device *md;
33 unsigned type;
34
35 /* btree table */
36 unsigned int depth;
37 unsigned int counts[MAX_DEPTH]; /* in nodes */
38 sector_t *index[MAX_DEPTH];
39
40 unsigned int num_targets;
41 unsigned int num_allocated;
42 sector_t *highs;
43 struct dm_target *targets;
44
45 struct target_type *immutable_target_type;
46 unsigned integrity_supported:1;
47 unsigned singleton:1;
48
49 /*
50 * Indicates the rw permissions for the new logical
51 * device. This should be a combination of FMODE_READ
52 * and FMODE_WRITE.
53 */
54 fmode_t mode;
55
56 /* a list of devices used by this table */
57 struct list_head devices;
58
59 /* events get handed up using this callback */
60 void (*event_fn)(void *);
61 void *event_context;
62
63 struct dm_md_mempools *mempools;
64
65 struct list_head target_callbacks;
66};
67
68/*
69 * Similar to ceiling(log_size(n))
70 */
71static unsigned int int_log(unsigned int n, unsigned int base)
72{
73 int result = 0;
74
75 while (n > 1) {
76 n = dm_div_up(n, base);
77 result++;
78 }
79
80 return result;
81}
82
83/*
84 * Calculate the index of the child node of the n'th node k'th key.
85 */
86static inline unsigned int get_child(unsigned int n, unsigned int k)
87{
88 return (n * CHILDREN_PER_NODE) + k;
89}
90
91/*
92 * Return the n'th node of level l from table t.
93 */
94static inline sector_t *get_node(struct dm_table *t,
95 unsigned int l, unsigned int n)
96{
97 return t->index[l] + (n * KEYS_PER_NODE);
98}
99
100/*
101 * Return the highest key that you could lookup from the n'th
102 * node on level l of the btree.
103 */
104static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
105{
106 for (; l < t->depth - 1; l++)
107 n = get_child(n, CHILDREN_PER_NODE - 1);
108
109 if (n >= t->counts[l])
110 return (sector_t) - 1;
111
112 return get_node(t, l, n)[KEYS_PER_NODE - 1];
113}
114
115/*
116 * Fills in a level of the btree based on the highs of the level
117 * below it.
118 */
119static int setup_btree_index(unsigned int l, struct dm_table *t)
120{
121 unsigned int n, k;
122 sector_t *node;
123
124 for (n = 0U; n < t->counts[l]; n++) {
125 node = get_node(t, l, n);
126
127 for (k = 0U; k < KEYS_PER_NODE; k++)
128 node[k] = high(t, l + 1, get_child(n, k));
129 }
130
131 return 0;
132}
133
134void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
135{
136 unsigned long size;
137 void *addr;
138
139 /*
140 * Check that we're not going to overflow.
141 */
142 if (nmemb > (ULONG_MAX / elem_size))
143 return NULL;
144
145 size = nmemb * elem_size;
146 addr = vzalloc(size);
147
148 return addr;
149}
150EXPORT_SYMBOL(dm_vcalloc);
151
152/*
153 * highs, and targets are managed as dynamic arrays during a
154 * table load.
155 */
156static int alloc_targets(struct dm_table *t, unsigned int num)
157{
158 sector_t *n_highs;
159 struct dm_target *n_targets;
160
161 /*
162 * Allocate both the target array and offset array at once.
163 * Append an empty entry to catch sectors beyond the end of
164 * the device.
165 */
166 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
167 sizeof(sector_t));
168 if (!n_highs)
169 return -ENOMEM;
170
171 n_targets = (struct dm_target *) (n_highs + num);
172
173 memset(n_highs, -1, sizeof(*n_highs) * num);
174 vfree(t->highs);
175
176 t->num_allocated = num;
177 t->highs = n_highs;
178 t->targets = n_targets;
179
180 return 0;
181}
182
183int dm_table_create(struct dm_table **result, fmode_t mode,
184 unsigned num_targets, struct mapped_device *md)
185{
186 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
187
188 if (!t)
189 return -ENOMEM;
190
191 INIT_LIST_HEAD(&t->devices);
192 INIT_LIST_HEAD(&t->target_callbacks);
193
194 if (!num_targets)
195 num_targets = KEYS_PER_NODE;
196
197 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
198
199 if (!num_targets) {
200 kfree(t);
201 return -ENOMEM;
202 }
203
204 if (alloc_targets(t, num_targets)) {
205 kfree(t);
206 return -ENOMEM;
207 }
208
209 t->mode = mode;
210 t->md = md;
211 *result = t;
212 return 0;
213}
214
215static void free_devices(struct list_head *devices, struct mapped_device *md)
216{
217 struct list_head *tmp, *next;
218
219 list_for_each_safe(tmp, next, devices) {
220 struct dm_dev_internal *dd =
221 list_entry(tmp, struct dm_dev_internal, list);
222 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
223 dm_device_name(md), dd->dm_dev->name);
224 dm_put_table_device(md, dd->dm_dev);
225 kfree(dd);
226 }
227}
228
229void dm_table_destroy(struct dm_table *t)
230{
231 unsigned int i;
232
233 if (!t)
234 return;
235
236 /* free the indexes */
237 if (t->depth >= 2)
238 vfree(t->index[t->depth - 2]);
239
240 /* free the targets */
241 for (i = 0; i < t->num_targets; i++) {
242 struct dm_target *tgt = t->targets + i;
243
244 if (tgt->type->dtr)
245 tgt->type->dtr(tgt);
246
247 dm_put_target_type(tgt->type);
248 }
249
250 vfree(t->highs);
251
252 /* free the device list */
253 free_devices(&t->devices, t->md);
254
255 dm_free_md_mempools(t->mempools);
256
257 kfree(t);
258}
259
260/*
261 * See if we've already got a device in the list.
262 */
263static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
264{
265 struct dm_dev_internal *dd;
266
267 list_for_each_entry (dd, l, list)
268 if (dd->dm_dev->bdev->bd_dev == dev)
269 return dd;
270
271 return NULL;
272}
273
274/*
275 * If possible, this checks an area of a destination device is invalid.
276 */
277static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
278 sector_t start, sector_t len, void *data)
279{
280 struct request_queue *q;
281 struct queue_limits *limits = data;
282 struct block_device *bdev = dev->bdev;
283 sector_t dev_size =
284 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
285 unsigned short logical_block_size_sectors =
286 limits->logical_block_size >> SECTOR_SHIFT;
287 char b[BDEVNAME_SIZE];
288
289 /*
290 * Some devices exist without request functions,
291 * such as loop devices not yet bound to backing files.
292 * Forbid the use of such devices.
293 */
294 q = bdev_get_queue(bdev);
295 if (!q || !q->make_request_fn) {
296 DMWARN("%s: %s is not yet initialised: "
297 "start=%llu, len=%llu, dev_size=%llu",
298 dm_device_name(ti->table->md), bdevname(bdev, b),
299 (unsigned long long)start,
300 (unsigned long long)len,
301 (unsigned long long)dev_size);
302 return 1;
303 }
304
305 if (!dev_size)
306 return 0;
307
308 if ((start >= dev_size) || (start + len > dev_size)) {
309 DMWARN("%s: %s too small for target: "
310 "start=%llu, len=%llu, dev_size=%llu",
311 dm_device_name(ti->table->md), bdevname(bdev, b),
312 (unsigned long long)start,
313 (unsigned long long)len,
314 (unsigned long long)dev_size);
315 return 1;
316 }
317
318 if (logical_block_size_sectors <= 1)
319 return 0;
320
321 if (start & (logical_block_size_sectors - 1)) {
322 DMWARN("%s: start=%llu not aligned to h/w "
323 "logical block size %u of %s",
324 dm_device_name(ti->table->md),
325 (unsigned long long)start,
326 limits->logical_block_size, bdevname(bdev, b));
327 return 1;
328 }
329
330 if (len & (logical_block_size_sectors - 1)) {
331 DMWARN("%s: len=%llu not aligned to h/w "
332 "logical block size %u of %s",
333 dm_device_name(ti->table->md),
334 (unsigned long long)len,
335 limits->logical_block_size, bdevname(bdev, b));
336 return 1;
337 }
338
339 return 0;
340}
341
342/*
343 * This upgrades the mode on an already open dm_dev, being
344 * careful to leave things as they were if we fail to reopen the
345 * device and not to touch the existing bdev field in case
346 * it is accessed concurrently inside dm_table_any_congested().
347 */
348static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
349 struct mapped_device *md)
350{
351 int r;
352 struct dm_dev *old_dev, *new_dev;
353
354 old_dev = dd->dm_dev;
355
356 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
357 dd->dm_dev->mode | new_mode, &new_dev);
358 if (r)
359 return r;
360
361 dd->dm_dev = new_dev;
362 dm_put_table_device(md, old_dev);
363
364 return 0;
365}
366
367/*
368 * Convert the path to a device
369 */
370dev_t dm_get_dev_t(const char *path)
371{
372 dev_t uninitialized_var(dev);
373 struct block_device *bdev;
374
375 bdev = lookup_bdev(path);
376 if (IS_ERR(bdev))
377 dev = name_to_dev_t(path);
378 else {
379 dev = bdev->bd_dev;
380 bdput(bdev);
381 }
382
383 return dev;
384}
385EXPORT_SYMBOL_GPL(dm_get_dev_t);
386
387/*
388 * Add a device to the list, or just increment the usage count if
389 * it's already present.
390 */
391int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
392 struct dm_dev **result)
393{
394 int r;
395 dev_t dev;
396 struct dm_dev_internal *dd;
397 struct dm_table *t = ti->table;
398
399 BUG_ON(!t);
400
401 dev = dm_get_dev_t(path);
402 if (!dev)
403 return -ENODEV;
404
405 dd = find_device(&t->devices, dev);
406 if (!dd) {
407 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
408 if (!dd)
409 return -ENOMEM;
410
411 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
412 kfree(dd);
413 return r;
414 }
415
416 atomic_set(&dd->count, 0);
417 list_add(&dd->list, &t->devices);
418
419 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
420 r = upgrade_mode(dd, mode, t->md);
421 if (r)
422 return r;
423 }
424 atomic_inc(&dd->count);
425
426 *result = dd->dm_dev;
427 return 0;
428}
429EXPORT_SYMBOL(dm_get_device);
430
431static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
432 sector_t start, sector_t len, void *data)
433{
434 struct queue_limits *limits = data;
435 struct block_device *bdev = dev->bdev;
436 struct request_queue *q = bdev_get_queue(bdev);
437 char b[BDEVNAME_SIZE];
438
439 if (unlikely(!q)) {
440 DMWARN("%s: Cannot set limits for nonexistent device %s",
441 dm_device_name(ti->table->md), bdevname(bdev, b));
442 return 0;
443 }
444
445 if (bdev_stack_limits(limits, bdev, start) < 0)
446 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
447 "physical_block_size=%u, logical_block_size=%u, "
448 "alignment_offset=%u, start=%llu",
449 dm_device_name(ti->table->md), bdevname(bdev, b),
450 q->limits.physical_block_size,
451 q->limits.logical_block_size,
452 q->limits.alignment_offset,
453 (unsigned long long) start << SECTOR_SHIFT);
454
455 return 0;
456}
457
458/*
459 * Decrement a device's use count and remove it if necessary.
460 */
461void dm_put_device(struct dm_target *ti, struct dm_dev *d)
462{
463 int found = 0;
464 struct list_head *devices = &ti->table->devices;
465 struct dm_dev_internal *dd;
466
467 list_for_each_entry(dd, devices, list) {
468 if (dd->dm_dev == d) {
469 found = 1;
470 break;
471 }
472 }
473 if (!found) {
474 DMWARN("%s: device %s not in table devices list",
475 dm_device_name(ti->table->md), d->name);
476 return;
477 }
478 if (atomic_dec_and_test(&dd->count)) {
479 dm_put_table_device(ti->table->md, d);
480 list_del(&dd->list);
481 kfree(dd);
482 }
483}
484EXPORT_SYMBOL(dm_put_device);
485
486/*
487 * Checks to see if the target joins onto the end of the table.
488 */
489static int adjoin(struct dm_table *table, struct dm_target *ti)
490{
491 struct dm_target *prev;
492
493 if (!table->num_targets)
494 return !ti->begin;
495
496 prev = &table->targets[table->num_targets - 1];
497 return (ti->begin == (prev->begin + prev->len));
498}
499
500/*
501 * Used to dynamically allocate the arg array.
502 *
503 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
504 * process messages even if some device is suspended. These messages have a
505 * small fixed number of arguments.
506 *
507 * On the other hand, dm-switch needs to process bulk data using messages and
508 * excessive use of GFP_NOIO could cause trouble.
509 */
510static char **realloc_argv(unsigned *array_size, char **old_argv)
511{
512 char **argv;
513 unsigned new_size;
514 gfp_t gfp;
515
516 if (*array_size) {
517 new_size = *array_size * 2;
518 gfp = GFP_KERNEL;
519 } else {
520 new_size = 8;
521 gfp = GFP_NOIO;
522 }
523 argv = kmalloc(new_size * sizeof(*argv), gfp);
524 if (argv) {
525 memcpy(argv, old_argv, *array_size * sizeof(*argv));
526 *array_size = new_size;
527 }
528
529 kfree(old_argv);
530 return argv;
531}
532
533/*
534 * Destructively splits up the argument list to pass to ctr.
535 */
536int dm_split_args(int *argc, char ***argvp, char *input)
537{
538 char *start, *end = input, *out, **argv = NULL;
539 unsigned array_size = 0;
540
541 *argc = 0;
542
543 if (!input) {
544 *argvp = NULL;
545 return 0;
546 }
547
548 argv = realloc_argv(&array_size, argv);
549 if (!argv)
550 return -ENOMEM;
551
552 while (1) {
553 /* Skip whitespace */
554 start = skip_spaces(end);
555
556 if (!*start)
557 break; /* success, we hit the end */
558
559 /* 'out' is used to remove any back-quotes */
560 end = out = start;
561 while (*end) {
562 /* Everything apart from '\0' can be quoted */
563 if (*end == '\\' && *(end + 1)) {
564 *out++ = *(end + 1);
565 end += 2;
566 continue;
567 }
568
569 if (isspace(*end))
570 break; /* end of token */
571
572 *out++ = *end++;
573 }
574
575 /* have we already filled the array ? */
576 if ((*argc + 1) > array_size) {
577 argv = realloc_argv(&array_size, argv);
578 if (!argv)
579 return -ENOMEM;
580 }
581
582 /* we know this is whitespace */
583 if (*end)
584 end++;
585
586 /* terminate the string and put it in the array */
587 *out = '\0';
588 argv[*argc] = start;
589 (*argc)++;
590 }
591
592 *argvp = argv;
593 return 0;
594}
595
596/*
597 * Impose necessary and sufficient conditions on a devices's table such
598 * that any incoming bio which respects its logical_block_size can be
599 * processed successfully. If it falls across the boundary between
600 * two or more targets, the size of each piece it gets split into must
601 * be compatible with the logical_block_size of the target processing it.
602 */
603static int validate_hardware_logical_block_alignment(struct dm_table *table,
604 struct queue_limits *limits)
605{
606 /*
607 * This function uses arithmetic modulo the logical_block_size
608 * (in units of 512-byte sectors).
609 */
610 unsigned short device_logical_block_size_sects =
611 limits->logical_block_size >> SECTOR_SHIFT;
612
613 /*
614 * Offset of the start of the next table entry, mod logical_block_size.
615 */
616 unsigned short next_target_start = 0;
617
618 /*
619 * Given an aligned bio that extends beyond the end of a
620 * target, how many sectors must the next target handle?
621 */
622 unsigned short remaining = 0;
623
624 struct dm_target *uninitialized_var(ti);
625 struct queue_limits ti_limits;
626 unsigned i = 0;
627
628 /*
629 * Check each entry in the table in turn.
630 */
631 while (i < dm_table_get_num_targets(table)) {
632 ti = dm_table_get_target(table, i++);
633
634 blk_set_stacking_limits(&ti_limits);
635
636 /* combine all target devices' limits */
637 if (ti->type->iterate_devices)
638 ti->type->iterate_devices(ti, dm_set_device_limits,
639 &ti_limits);
640
641 /*
642 * If the remaining sectors fall entirely within this
643 * table entry are they compatible with its logical_block_size?
644 */
645 if (remaining < ti->len &&
646 remaining & ((ti_limits.logical_block_size >>
647 SECTOR_SHIFT) - 1))
648 break; /* Error */
649
650 next_target_start =
651 (unsigned short) ((next_target_start + ti->len) &
652 (device_logical_block_size_sects - 1));
653 remaining = next_target_start ?
654 device_logical_block_size_sects - next_target_start : 0;
655 }
656
657 if (remaining) {
658 DMWARN("%s: table line %u (start sect %llu len %llu) "
659 "not aligned to h/w logical block size %u",
660 dm_device_name(table->md), i,
661 (unsigned long long) ti->begin,
662 (unsigned long long) ti->len,
663 limits->logical_block_size);
664 return -EINVAL;
665 }
666
667 return 0;
668}
669
670int dm_table_add_target(struct dm_table *t, const char *type,
671 sector_t start, sector_t len, char *params)
672{
673 int r = -EINVAL, argc;
674 char **argv;
675 struct dm_target *tgt;
676
677 if (t->singleton) {
678 DMERR("%s: target type %s must appear alone in table",
679 dm_device_name(t->md), t->targets->type->name);
680 return -EINVAL;
681 }
682
683 BUG_ON(t->num_targets >= t->num_allocated);
684
685 tgt = t->targets + t->num_targets;
686 memset(tgt, 0, sizeof(*tgt));
687
688 if (!len) {
689 DMERR("%s: zero-length target", dm_device_name(t->md));
690 return -EINVAL;
691 }
692
693 tgt->type = dm_get_target_type(type);
694 if (!tgt->type) {
695 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
696 type);
697 return -EINVAL;
698 }
699
700 if (dm_target_needs_singleton(tgt->type)) {
701 if (t->num_targets) {
702 DMERR("%s: target type %s must appear alone in table",
703 dm_device_name(t->md), type);
704 return -EINVAL;
705 }
706 t->singleton = 1;
707 }
708
709 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
710 DMERR("%s: target type %s may not be included in read-only tables",
711 dm_device_name(t->md), type);
712 return -EINVAL;
713 }
714
715 if (t->immutable_target_type) {
716 if (t->immutable_target_type != tgt->type) {
717 DMERR("%s: immutable target type %s cannot be mixed with other target types",
718 dm_device_name(t->md), t->immutable_target_type->name);
719 return -EINVAL;
720 }
721 } else if (dm_target_is_immutable(tgt->type)) {
722 if (t->num_targets) {
723 DMERR("%s: immutable target type %s cannot be mixed with other target types",
724 dm_device_name(t->md), tgt->type->name);
725 return -EINVAL;
726 }
727 t->immutable_target_type = tgt->type;
728 }
729
730 tgt->table = t;
731 tgt->begin = start;
732 tgt->len = len;
733 tgt->error = "Unknown error";
734
735 /*
736 * Does this target adjoin the previous one ?
737 */
738 if (!adjoin(t, tgt)) {
739 tgt->error = "Gap in table";
740 r = -EINVAL;
741 goto bad;
742 }
743
744 r = dm_split_args(&argc, &argv, params);
745 if (r) {
746 tgt->error = "couldn't split parameters (insufficient memory)";
747 goto bad;
748 }
749
750 r = tgt->type->ctr(tgt, argc, argv);
751 kfree(argv);
752 if (r)
753 goto bad;
754
755 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
756
757 if (!tgt->num_discard_bios && tgt->discards_supported)
758 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
759 dm_device_name(t->md), type);
760
761 return 0;
762
763 bad:
764 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
765 dm_put_target_type(tgt->type);
766 return r;
767}
768
769/*
770 * Target argument parsing helpers.
771 */
772static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
773 unsigned *value, char **error, unsigned grouped)
774{
775 const char *arg_str = dm_shift_arg(arg_set);
776 char dummy;
777
778 if (!arg_str ||
779 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
780 (*value < arg->min) ||
781 (*value > arg->max) ||
782 (grouped && arg_set->argc < *value)) {
783 *error = arg->error;
784 return -EINVAL;
785 }
786
787 return 0;
788}
789
790int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
791 unsigned *value, char **error)
792{
793 return validate_next_arg(arg, arg_set, value, error, 0);
794}
795EXPORT_SYMBOL(dm_read_arg);
796
797int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
798 unsigned *value, char **error)
799{
800 return validate_next_arg(arg, arg_set, value, error, 1);
801}
802EXPORT_SYMBOL(dm_read_arg_group);
803
804const char *dm_shift_arg(struct dm_arg_set *as)
805{
806 char *r;
807
808 if (as->argc) {
809 as->argc--;
810 r = *as->argv;
811 as->argv++;
812 return r;
813 }
814
815 return NULL;
816}
817EXPORT_SYMBOL(dm_shift_arg);
818
819void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
820{
821 BUG_ON(as->argc < num_args);
822 as->argc -= num_args;
823 as->argv += num_args;
824}
825EXPORT_SYMBOL(dm_consume_args);
826
827static bool __table_type_request_based(unsigned table_type)
828{
829 return (table_type == DM_TYPE_REQUEST_BASED ||
830 table_type == DM_TYPE_MQ_REQUEST_BASED);
831}
832
833static int dm_table_set_type(struct dm_table *t)
834{
835 unsigned i;
836 unsigned bio_based = 0, request_based = 0, hybrid = 0;
837 bool use_blk_mq = false;
838 struct dm_target *tgt;
839 struct dm_dev_internal *dd;
840 struct list_head *devices;
841 unsigned live_md_type = dm_get_md_type(t->md);
842
843 for (i = 0; i < t->num_targets; i++) {
844 tgt = t->targets + i;
845 if (dm_target_hybrid(tgt))
846 hybrid = 1;
847 else if (dm_target_request_based(tgt))
848 request_based = 1;
849 else
850 bio_based = 1;
851
852 if (bio_based && request_based) {
853 DMWARN("Inconsistent table: different target types"
854 " can't be mixed up");
855 return -EINVAL;
856 }
857 }
858
859 if (hybrid && !bio_based && !request_based) {
860 /*
861 * The targets can work either way.
862 * Determine the type from the live device.
863 * Default to bio-based if device is new.
864 */
865 if (__table_type_request_based(live_md_type))
866 request_based = 1;
867 else
868 bio_based = 1;
869 }
870
871 if (bio_based) {
872 /* We must use this table as bio-based */
873 t->type = DM_TYPE_BIO_BASED;
874 return 0;
875 }
876
877 BUG_ON(!request_based); /* No targets in this table */
878
879 /*
880 * Request-based dm supports only tables that have a single target now.
881 * To support multiple targets, request splitting support is needed,
882 * and that needs lots of changes in the block-layer.
883 * (e.g. request completion process for partial completion.)
884 */
885 if (t->num_targets > 1) {
886 DMWARN("Request-based dm doesn't support multiple targets yet");
887 return -EINVAL;
888 }
889
890 /* Non-request-stackable devices can't be used for request-based dm */
891 devices = dm_table_get_devices(t);
892 list_for_each_entry(dd, devices, list) {
893 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
894
895 if (!blk_queue_stackable(q)) {
896 DMERR("table load rejected: including"
897 " non-request-stackable devices");
898 return -EINVAL;
899 }
900
901 if (q->mq_ops)
902 use_blk_mq = true;
903 }
904
905 if (use_blk_mq) {
906 /* verify _all_ devices in the table are blk-mq devices */
907 list_for_each_entry(dd, devices, list)
908 if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
909 DMERR("table load rejected: not all devices"
910 " are blk-mq request-stackable");
911 return -EINVAL;
912 }
913 t->type = DM_TYPE_MQ_REQUEST_BASED;
914
915 } else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
916 /* inherit live MD type */
917 t->type = live_md_type;
918
919 } else
920 t->type = DM_TYPE_REQUEST_BASED;
921
922 return 0;
923}
924
925unsigned dm_table_get_type(struct dm_table *t)
926{
927 return t->type;
928}
929
930struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
931{
932 return t->immutable_target_type;
933}
934
935struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
936{
937 /* Immutable target is implicitly a singleton */
938 if (t->num_targets > 1 ||
939 !dm_target_is_immutable(t->targets[0].type))
940 return NULL;
941
942 return t->targets;
943}
944
945struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
946{
947 struct dm_target *uninitialized_var(ti);
948 unsigned i = 0;
949
950 while (i < dm_table_get_num_targets(t)) {
951 ti = dm_table_get_target(t, i++);
952 if (dm_target_is_wildcard(ti->type))
953 return ti;
954 }
955
956 return NULL;
957}
958
959bool dm_table_request_based(struct dm_table *t)
960{
961 return __table_type_request_based(dm_table_get_type(t));
962}
963
964bool dm_table_mq_request_based(struct dm_table *t)
965{
966 return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
967}
968
969static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
970{
971 unsigned type = dm_table_get_type(t);
972 unsigned per_io_data_size = 0;
973 struct dm_target *tgt;
974 unsigned i;
975
976 if (unlikely(type == DM_TYPE_NONE)) {
977 DMWARN("no table type is set, can't allocate mempools");
978 return -EINVAL;
979 }
980
981 if (type == DM_TYPE_BIO_BASED)
982 for (i = 0; i < t->num_targets; i++) {
983 tgt = t->targets + i;
984 per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
985 }
986
987 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
988 if (!t->mempools)
989 return -ENOMEM;
990
991 return 0;
992}
993
994void dm_table_free_md_mempools(struct dm_table *t)
995{
996 dm_free_md_mempools(t->mempools);
997 t->mempools = NULL;
998}
999
1000struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1001{
1002 return t->mempools;
1003}
1004
1005static int setup_indexes(struct dm_table *t)
1006{
1007 int i;
1008 unsigned int total = 0;
1009 sector_t *indexes;
1010
1011 /* allocate the space for *all* the indexes */
1012 for (i = t->depth - 2; i >= 0; i--) {
1013 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1014 total += t->counts[i];
1015 }
1016
1017 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1018 if (!indexes)
1019 return -ENOMEM;
1020
1021 /* set up internal nodes, bottom-up */
1022 for (i = t->depth - 2; i >= 0; i--) {
1023 t->index[i] = indexes;
1024 indexes += (KEYS_PER_NODE * t->counts[i]);
1025 setup_btree_index(i, t);
1026 }
1027
1028 return 0;
1029}
1030
1031/*
1032 * Builds the btree to index the map.
1033 */
1034static int dm_table_build_index(struct dm_table *t)
1035{
1036 int r = 0;
1037 unsigned int leaf_nodes;
1038
1039 /* how many indexes will the btree have ? */
1040 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1041 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1042
1043 /* leaf layer has already been set up */
1044 t->counts[t->depth - 1] = leaf_nodes;
1045 t->index[t->depth - 1] = t->highs;
1046
1047 if (t->depth >= 2)
1048 r = setup_indexes(t);
1049
1050 return r;
1051}
1052
1053static bool integrity_profile_exists(struct gendisk *disk)
1054{
1055 return !!blk_get_integrity(disk);
1056}
1057
1058/*
1059 * Get a disk whose integrity profile reflects the table's profile.
1060 * Returns NULL if integrity support was inconsistent or unavailable.
1061 */
1062static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1063{
1064 struct list_head *devices = dm_table_get_devices(t);
1065 struct dm_dev_internal *dd = NULL;
1066 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1067
1068 list_for_each_entry(dd, devices, list) {
1069 template_disk = dd->dm_dev->bdev->bd_disk;
1070 if (!integrity_profile_exists(template_disk))
1071 goto no_integrity;
1072 else if (prev_disk &&
1073 blk_integrity_compare(prev_disk, template_disk) < 0)
1074 goto no_integrity;
1075 prev_disk = template_disk;
1076 }
1077
1078 return template_disk;
1079
1080no_integrity:
1081 if (prev_disk)
1082 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1083 dm_device_name(t->md),
1084 prev_disk->disk_name,
1085 template_disk->disk_name);
1086 return NULL;
1087}
1088
1089/*
1090 * Register the mapped device for blk_integrity support if the
1091 * underlying devices have an integrity profile. But all devices may
1092 * not have matching profiles (checking all devices isn't reliable
1093 * during table load because this table may use other DM device(s) which
1094 * must be resumed before they will have an initialized integity
1095 * profile). Consequently, stacked DM devices force a 2 stage integrity
1096 * profile validation: First pass during table load, final pass during
1097 * resume.
1098 */
1099static int dm_table_register_integrity(struct dm_table *t)
1100{
1101 struct mapped_device *md = t->md;
1102 struct gendisk *template_disk = NULL;
1103
1104 template_disk = dm_table_get_integrity_disk(t);
1105 if (!template_disk)
1106 return 0;
1107
1108 if (!integrity_profile_exists(dm_disk(md))) {
1109 t->integrity_supported = 1;
1110 /*
1111 * Register integrity profile during table load; we can do
1112 * this because the final profile must match during resume.
1113 */
1114 blk_integrity_register(dm_disk(md),
1115 blk_get_integrity(template_disk));
1116 return 0;
1117 }
1118
1119 /*
1120 * If DM device already has an initialized integrity
1121 * profile the new profile should not conflict.
1122 */
1123 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1124 DMWARN("%s: conflict with existing integrity profile: "
1125 "%s profile mismatch",
1126 dm_device_name(t->md),
1127 template_disk->disk_name);
1128 return 1;
1129 }
1130
1131 /* Preserve existing integrity profile */
1132 t->integrity_supported = 1;
1133 return 0;
1134}
1135
1136/*
1137 * Prepares the table for use by building the indices,
1138 * setting the type, and allocating mempools.
1139 */
1140int dm_table_complete(struct dm_table *t)
1141{
1142 int r;
1143
1144 r = dm_table_set_type(t);
1145 if (r) {
1146 DMERR("unable to set table type");
1147 return r;
1148 }
1149
1150 r = dm_table_build_index(t);
1151 if (r) {
1152 DMERR("unable to build btrees");
1153 return r;
1154 }
1155
1156 r = dm_table_register_integrity(t);
1157 if (r) {
1158 DMERR("could not register integrity profile.");
1159 return r;
1160 }
1161
1162 r = dm_table_alloc_md_mempools(t, t->md);
1163 if (r)
1164 DMERR("unable to allocate mempools");
1165
1166 return r;
1167}
1168
1169static DEFINE_MUTEX(_event_lock);
1170void dm_table_event_callback(struct dm_table *t,
1171 void (*fn)(void *), void *context)
1172{
1173 mutex_lock(&_event_lock);
1174 t->event_fn = fn;
1175 t->event_context = context;
1176 mutex_unlock(&_event_lock);
1177}
1178
1179void dm_table_event(struct dm_table *t)
1180{
1181 /*
1182 * You can no longer call dm_table_event() from interrupt
1183 * context, use a bottom half instead.
1184 */
1185 BUG_ON(in_interrupt());
1186
1187 mutex_lock(&_event_lock);
1188 if (t->event_fn)
1189 t->event_fn(t->event_context);
1190 mutex_unlock(&_event_lock);
1191}
1192EXPORT_SYMBOL(dm_table_event);
1193
1194sector_t dm_table_get_size(struct dm_table *t)
1195{
1196 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1197}
1198EXPORT_SYMBOL(dm_table_get_size);
1199
1200struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1201{
1202 if (index >= t->num_targets)
1203 return NULL;
1204
1205 return t->targets + index;
1206}
1207
1208/*
1209 * Search the btree for the correct target.
1210 *
1211 * Caller should check returned pointer with dm_target_is_valid()
1212 * to trap I/O beyond end of device.
1213 */
1214struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1215{
1216 unsigned int l, n = 0, k = 0;
1217 sector_t *node;
1218
1219 for (l = 0; l < t->depth; l++) {
1220 n = get_child(n, k);
1221 node = get_node(t, l, n);
1222
1223 for (k = 0; k < KEYS_PER_NODE; k++)
1224 if (node[k] >= sector)
1225 break;
1226 }
1227
1228 return &t->targets[(KEYS_PER_NODE * n) + k];
1229}
1230
1231static int count_device(struct dm_target *ti, struct dm_dev *dev,
1232 sector_t start, sector_t len, void *data)
1233{
1234 unsigned *num_devices = data;
1235
1236 (*num_devices)++;
1237
1238 return 0;
1239}
1240
1241/*
1242 * Check whether a table has no data devices attached using each
1243 * target's iterate_devices method.
1244 * Returns false if the result is unknown because a target doesn't
1245 * support iterate_devices.
1246 */
1247bool dm_table_has_no_data_devices(struct dm_table *table)
1248{
1249 struct dm_target *uninitialized_var(ti);
1250 unsigned i = 0, num_devices = 0;
1251
1252 while (i < dm_table_get_num_targets(table)) {
1253 ti = dm_table_get_target(table, i++);
1254
1255 if (!ti->type->iterate_devices)
1256 return false;
1257
1258 ti->type->iterate_devices(ti, count_device, &num_devices);
1259 if (num_devices)
1260 return false;
1261 }
1262
1263 return true;
1264}
1265
1266/*
1267 * Establish the new table's queue_limits and validate them.
1268 */
1269int dm_calculate_queue_limits(struct dm_table *table,
1270 struct queue_limits *limits)
1271{
1272 struct dm_target *uninitialized_var(ti);
1273 struct queue_limits ti_limits;
1274 unsigned i = 0;
1275
1276 blk_set_stacking_limits(limits);
1277
1278 while (i < dm_table_get_num_targets(table)) {
1279 blk_set_stacking_limits(&ti_limits);
1280
1281 ti = dm_table_get_target(table, i++);
1282
1283 if (!ti->type->iterate_devices)
1284 goto combine_limits;
1285
1286 /*
1287 * Combine queue limits of all the devices this target uses.
1288 */
1289 ti->type->iterate_devices(ti, dm_set_device_limits,
1290 &ti_limits);
1291
1292 /* Set I/O hints portion of queue limits */
1293 if (ti->type->io_hints)
1294 ti->type->io_hints(ti, &ti_limits);
1295
1296 /*
1297 * Check each device area is consistent with the target's
1298 * overall queue limits.
1299 */
1300 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1301 &ti_limits))
1302 return -EINVAL;
1303
1304combine_limits:
1305 /*
1306 * Merge this target's queue limits into the overall limits
1307 * for the table.
1308 */
1309 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1310 DMWARN("%s: adding target device "
1311 "(start sect %llu len %llu) "
1312 "caused an alignment inconsistency",
1313 dm_device_name(table->md),
1314 (unsigned long long) ti->begin,
1315 (unsigned long long) ti->len);
1316 }
1317
1318 return validate_hardware_logical_block_alignment(table, limits);
1319}
1320
1321/*
1322 * Verify that all devices have an integrity profile that matches the
1323 * DM device's registered integrity profile. If the profiles don't
1324 * match then unregister the DM device's integrity profile.
1325 */
1326static void dm_table_verify_integrity(struct dm_table *t)
1327{
1328 struct gendisk *template_disk = NULL;
1329
1330 if (t->integrity_supported) {
1331 /*
1332 * Verify that the original integrity profile
1333 * matches all the devices in this table.
1334 */
1335 template_disk = dm_table_get_integrity_disk(t);
1336 if (template_disk &&
1337 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1338 return;
1339 }
1340
1341 if (integrity_profile_exists(dm_disk(t->md))) {
1342 DMWARN("%s: unable to establish an integrity profile",
1343 dm_device_name(t->md));
1344 blk_integrity_unregister(dm_disk(t->md));
1345 }
1346}
1347
1348static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1349 sector_t start, sector_t len, void *data)
1350{
1351 unsigned flush = (*(unsigned *)data);
1352 struct request_queue *q = bdev_get_queue(dev->bdev);
1353
1354 return q && (q->flush_flags & flush);
1355}
1356
1357static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1358{
1359 struct dm_target *ti;
1360 unsigned i = 0;
1361
1362 /*
1363 * Require at least one underlying device to support flushes.
1364 * t->devices includes internal dm devices such as mirror logs
1365 * so we need to use iterate_devices here, which targets
1366 * supporting flushes must provide.
1367 */
1368 while (i < dm_table_get_num_targets(t)) {
1369 ti = dm_table_get_target(t, i++);
1370
1371 if (!ti->num_flush_bios)
1372 continue;
1373
1374 if (ti->flush_supported)
1375 return true;
1376
1377 if (ti->type->iterate_devices &&
1378 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1379 return true;
1380 }
1381
1382 return false;
1383}
1384
1385static bool dm_table_discard_zeroes_data(struct dm_table *t)
1386{
1387 struct dm_target *ti;
1388 unsigned i = 0;
1389
1390 /* Ensure that all targets supports discard_zeroes_data. */
1391 while (i < dm_table_get_num_targets(t)) {
1392 ti = dm_table_get_target(t, i++);
1393
1394 if (ti->discard_zeroes_data_unsupported)
1395 return false;
1396 }
1397
1398 return true;
1399}
1400
1401static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1402 sector_t start, sector_t len, void *data)
1403{
1404 struct request_queue *q = bdev_get_queue(dev->bdev);
1405
1406 return q && blk_queue_nonrot(q);
1407}
1408
1409static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1410 sector_t start, sector_t len, void *data)
1411{
1412 struct request_queue *q = bdev_get_queue(dev->bdev);
1413
1414 return q && !blk_queue_add_random(q);
1415}
1416
1417static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1418 sector_t start, sector_t len, void *data)
1419{
1420 struct request_queue *q = bdev_get_queue(dev->bdev);
1421
1422 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1423}
1424
1425static bool dm_table_all_devices_attribute(struct dm_table *t,
1426 iterate_devices_callout_fn func)
1427{
1428 struct dm_target *ti;
1429 unsigned i = 0;
1430
1431 while (i < dm_table_get_num_targets(t)) {
1432 ti = dm_table_get_target(t, i++);
1433
1434 if (!ti->type->iterate_devices ||
1435 !ti->type->iterate_devices(ti, func, NULL))
1436 return false;
1437 }
1438
1439 return true;
1440}
1441
1442static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1443 sector_t start, sector_t len, void *data)
1444{
1445 struct request_queue *q = bdev_get_queue(dev->bdev);
1446
1447 return q && !q->limits.max_write_same_sectors;
1448}
1449
1450static bool dm_table_supports_write_same(struct dm_table *t)
1451{
1452 struct dm_target *ti;
1453 unsigned i = 0;
1454
1455 while (i < dm_table_get_num_targets(t)) {
1456 ti = dm_table_get_target(t, i++);
1457
1458 if (!ti->num_write_same_bios)
1459 return false;
1460
1461 if (!ti->type->iterate_devices ||
1462 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1463 return false;
1464 }
1465
1466 return true;
1467}
1468
1469static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1470 sector_t start, sector_t len, void *data)
1471{
1472 struct request_queue *q = bdev_get_queue(dev->bdev);
1473
1474 return q && blk_queue_discard(q);
1475}
1476
1477static bool dm_table_supports_discards(struct dm_table *t)
1478{
1479 struct dm_target *ti;
1480 unsigned i = 0;
1481
1482 /*
1483 * Unless any target used by the table set discards_supported,
1484 * require at least one underlying device to support discards.
1485 * t->devices includes internal dm devices such as mirror logs
1486 * so we need to use iterate_devices here, which targets
1487 * supporting discard selectively must provide.
1488 */
1489 while (i < dm_table_get_num_targets(t)) {
1490 ti = dm_table_get_target(t, i++);
1491
1492 if (!ti->num_discard_bios)
1493 continue;
1494
1495 if (ti->discards_supported)
1496 return true;
1497
1498 if (ti->type->iterate_devices &&
1499 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1500 return true;
1501 }
1502
1503 return false;
1504}
1505
1506void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1507 struct queue_limits *limits)
1508{
1509 unsigned flush = 0;
1510
1511 /*
1512 * Copy table's limits to the DM device's request_queue
1513 */
1514 q->limits = *limits;
1515
1516 if (!dm_table_supports_discards(t))
1517 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1518 else
1519 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1520
1521 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1522 flush |= REQ_FLUSH;
1523 if (dm_table_supports_flush(t, REQ_FUA))
1524 flush |= REQ_FUA;
1525 }
1526 blk_queue_flush(q, flush);
1527
1528 if (!dm_table_discard_zeroes_data(t))
1529 q->limits.discard_zeroes_data = 0;
1530
1531 /* Ensure that all underlying devices are non-rotational. */
1532 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1533 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1534 else
1535 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1536
1537 if (!dm_table_supports_write_same(t))
1538 q->limits.max_write_same_sectors = 0;
1539
1540 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1541 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1542 else
1543 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1544
1545 dm_table_verify_integrity(t);
1546
1547 /*
1548 * Determine whether or not this queue's I/O timings contribute
1549 * to the entropy pool, Only request-based targets use this.
1550 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1551 * have it set.
1552 */
1553 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1554 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1555
1556 /*
1557 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1558 * visible to other CPUs because, once the flag is set, incoming bios
1559 * are processed by request-based dm, which refers to the queue
1560 * settings.
1561 * Until the flag set, bios are passed to bio-based dm and queued to
1562 * md->deferred where queue settings are not needed yet.
1563 * Those bios are passed to request-based dm at the resume time.
1564 */
1565 smp_mb();
1566 if (dm_table_request_based(t))
1567 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1568}
1569
1570unsigned int dm_table_get_num_targets(struct dm_table *t)
1571{
1572 return t->num_targets;
1573}
1574
1575struct list_head *dm_table_get_devices(struct dm_table *t)
1576{
1577 return &t->devices;
1578}
1579
1580fmode_t dm_table_get_mode(struct dm_table *t)
1581{
1582 return t->mode;
1583}
1584EXPORT_SYMBOL(dm_table_get_mode);
1585
1586enum suspend_mode {
1587 PRESUSPEND,
1588 PRESUSPEND_UNDO,
1589 POSTSUSPEND,
1590};
1591
1592static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1593{
1594 int i = t->num_targets;
1595 struct dm_target *ti = t->targets;
1596
1597 while (i--) {
1598 switch (mode) {
1599 case PRESUSPEND:
1600 if (ti->type->presuspend)
1601 ti->type->presuspend(ti);
1602 break;
1603 case PRESUSPEND_UNDO:
1604 if (ti->type->presuspend_undo)
1605 ti->type->presuspend_undo(ti);
1606 break;
1607 case POSTSUSPEND:
1608 if (ti->type->postsuspend)
1609 ti->type->postsuspend(ti);
1610 break;
1611 }
1612 ti++;
1613 }
1614}
1615
1616void dm_table_presuspend_targets(struct dm_table *t)
1617{
1618 if (!t)
1619 return;
1620
1621 suspend_targets(t, PRESUSPEND);
1622}
1623
1624void dm_table_presuspend_undo_targets(struct dm_table *t)
1625{
1626 if (!t)
1627 return;
1628
1629 suspend_targets(t, PRESUSPEND_UNDO);
1630}
1631
1632void dm_table_postsuspend_targets(struct dm_table *t)
1633{
1634 if (!t)
1635 return;
1636
1637 suspend_targets(t, POSTSUSPEND);
1638}
1639
1640int dm_table_resume_targets(struct dm_table *t)
1641{
1642 int i, r = 0;
1643
1644 for (i = 0; i < t->num_targets; i++) {
1645 struct dm_target *ti = t->targets + i;
1646
1647 if (!ti->type->preresume)
1648 continue;
1649
1650 r = ti->type->preresume(ti);
1651 if (r) {
1652 DMERR("%s: %s: preresume failed, error = %d",
1653 dm_device_name(t->md), ti->type->name, r);
1654 return r;
1655 }
1656 }
1657
1658 for (i = 0; i < t->num_targets; i++) {
1659 struct dm_target *ti = t->targets + i;
1660
1661 if (ti->type->resume)
1662 ti->type->resume(ti);
1663 }
1664
1665 return 0;
1666}
1667
1668void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1669{
1670 list_add(&cb->list, &t->target_callbacks);
1671}
1672EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1673
1674int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1675{
1676 struct dm_dev_internal *dd;
1677 struct list_head *devices = dm_table_get_devices(t);
1678 struct dm_target_callbacks *cb;
1679 int r = 0;
1680
1681 list_for_each_entry(dd, devices, list) {
1682 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1683 char b[BDEVNAME_SIZE];
1684
1685 if (likely(q))
1686 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1687 else
1688 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1689 dm_device_name(t->md),
1690 bdevname(dd->dm_dev->bdev, b));
1691 }
1692
1693 list_for_each_entry(cb, &t->target_callbacks, list)
1694 if (cb->congested_fn)
1695 r |= cb->congested_fn(cb, bdi_bits);
1696
1697 return r;
1698}
1699
1700struct mapped_device *dm_table_get_md(struct dm_table *t)
1701{
1702 return t->md;
1703}
1704EXPORT_SYMBOL(dm_table_get_md);
1705
1706void dm_table_run_md_queue_async(struct dm_table *t)
1707{
1708 struct mapped_device *md;
1709 struct request_queue *queue;
1710 unsigned long flags;
1711
1712 if (!dm_table_request_based(t))
1713 return;
1714
1715 md = dm_table_get_md(t);
1716 queue = dm_get_md_queue(md);
1717 if (queue) {
1718 if (queue->mq_ops)
1719 blk_mq_run_hw_queues(queue, true);
1720 else {
1721 spin_lock_irqsave(queue->queue_lock, flags);
1722 blk_run_queue_async(queue);
1723 spin_unlock_irqrestore(queue->queue_lock, flags);
1724 }
1725 }
1726}
1727EXPORT_SYMBOL(dm_table_run_md_queue_async);
1728
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21#include <linux/blk-mq.h>
22#include <linux/mount.h>
23#include <linux/dax.h>
24
25#define DM_MSG_PREFIX "table"
26
27#define MAX_DEPTH 16
28#define NODE_SIZE L1_CACHE_BYTES
29#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32struct dm_table {
33 struct mapped_device *md;
34 enum dm_queue_mode type;
35
36 /* btree table */
37 unsigned int depth;
38 unsigned int counts[MAX_DEPTH]; /* in nodes */
39 sector_t *index[MAX_DEPTH];
40
41 unsigned int num_targets;
42 unsigned int num_allocated;
43 sector_t *highs;
44 struct dm_target *targets;
45
46 struct target_type *immutable_target_type;
47
48 bool integrity_supported:1;
49 bool singleton:1;
50 bool all_blk_mq:1;
51 unsigned integrity_added:1;
52
53 /*
54 * Indicates the rw permissions for the new logical
55 * device. This should be a combination of FMODE_READ
56 * and FMODE_WRITE.
57 */
58 fmode_t mode;
59
60 /* a list of devices used by this table */
61 struct list_head devices;
62
63 /* events get handed up using this callback */
64 void (*event_fn)(void *);
65 void *event_context;
66
67 struct dm_md_mempools *mempools;
68
69 struct list_head target_callbacks;
70};
71
72/*
73 * Similar to ceiling(log_size(n))
74 */
75static unsigned int int_log(unsigned int n, unsigned int base)
76{
77 int result = 0;
78
79 while (n > 1) {
80 n = dm_div_up(n, base);
81 result++;
82 }
83
84 return result;
85}
86
87/*
88 * Calculate the index of the child node of the n'th node k'th key.
89 */
90static inline unsigned int get_child(unsigned int n, unsigned int k)
91{
92 return (n * CHILDREN_PER_NODE) + k;
93}
94
95/*
96 * Return the n'th node of level l from table t.
97 */
98static inline sector_t *get_node(struct dm_table *t,
99 unsigned int l, unsigned int n)
100{
101 return t->index[l] + (n * KEYS_PER_NODE);
102}
103
104/*
105 * Return the highest key that you could lookup from the n'th
106 * node on level l of the btree.
107 */
108static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
109{
110 for (; l < t->depth - 1; l++)
111 n = get_child(n, CHILDREN_PER_NODE - 1);
112
113 if (n >= t->counts[l])
114 return (sector_t) - 1;
115
116 return get_node(t, l, n)[KEYS_PER_NODE - 1];
117}
118
119/*
120 * Fills in a level of the btree based on the highs of the level
121 * below it.
122 */
123static int setup_btree_index(unsigned int l, struct dm_table *t)
124{
125 unsigned int n, k;
126 sector_t *node;
127
128 for (n = 0U; n < t->counts[l]; n++) {
129 node = get_node(t, l, n);
130
131 for (k = 0U; k < KEYS_PER_NODE; k++)
132 node[k] = high(t, l + 1, get_child(n, k));
133 }
134
135 return 0;
136}
137
138void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
139{
140 unsigned long size;
141 void *addr;
142
143 /*
144 * Check that we're not going to overflow.
145 */
146 if (nmemb > (ULONG_MAX / elem_size))
147 return NULL;
148
149 size = nmemb * elem_size;
150 addr = vzalloc(size);
151
152 return addr;
153}
154EXPORT_SYMBOL(dm_vcalloc);
155
156/*
157 * highs, and targets are managed as dynamic arrays during a
158 * table load.
159 */
160static int alloc_targets(struct dm_table *t, unsigned int num)
161{
162 sector_t *n_highs;
163 struct dm_target *n_targets;
164
165 /*
166 * Allocate both the target array and offset array at once.
167 * Append an empty entry to catch sectors beyond the end of
168 * the device.
169 */
170 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
171 sizeof(sector_t));
172 if (!n_highs)
173 return -ENOMEM;
174
175 n_targets = (struct dm_target *) (n_highs + num);
176
177 memset(n_highs, -1, sizeof(*n_highs) * num);
178 vfree(t->highs);
179
180 t->num_allocated = num;
181 t->highs = n_highs;
182 t->targets = n_targets;
183
184 return 0;
185}
186
187int dm_table_create(struct dm_table **result, fmode_t mode,
188 unsigned num_targets, struct mapped_device *md)
189{
190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191
192 if (!t)
193 return -ENOMEM;
194
195 INIT_LIST_HEAD(&t->devices);
196 INIT_LIST_HEAD(&t->target_callbacks);
197
198 if (!num_targets)
199 num_targets = KEYS_PER_NODE;
200
201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202
203 if (!num_targets) {
204 kfree(t);
205 return -ENOMEM;
206 }
207
208 if (alloc_targets(t, num_targets)) {
209 kfree(t);
210 return -ENOMEM;
211 }
212
213 t->type = DM_TYPE_NONE;
214 t->mode = mode;
215 t->md = md;
216 *result = t;
217 return 0;
218}
219
220static void free_devices(struct list_head *devices, struct mapped_device *md)
221{
222 struct list_head *tmp, *next;
223
224 list_for_each_safe(tmp, next, devices) {
225 struct dm_dev_internal *dd =
226 list_entry(tmp, struct dm_dev_internal, list);
227 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
228 dm_device_name(md), dd->dm_dev->name);
229 dm_put_table_device(md, dd->dm_dev);
230 kfree(dd);
231 }
232}
233
234void dm_table_destroy(struct dm_table *t)
235{
236 unsigned int i;
237
238 if (!t)
239 return;
240
241 /* free the indexes */
242 if (t->depth >= 2)
243 vfree(t->index[t->depth - 2]);
244
245 /* free the targets */
246 for (i = 0; i < t->num_targets; i++) {
247 struct dm_target *tgt = t->targets + i;
248
249 if (tgt->type->dtr)
250 tgt->type->dtr(tgt);
251
252 dm_put_target_type(tgt->type);
253 }
254
255 vfree(t->highs);
256
257 /* free the device list */
258 free_devices(&t->devices, t->md);
259
260 dm_free_md_mempools(t->mempools);
261
262 kfree(t);
263}
264
265/*
266 * See if we've already got a device in the list.
267 */
268static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
269{
270 struct dm_dev_internal *dd;
271
272 list_for_each_entry (dd, l, list)
273 if (dd->dm_dev->bdev->bd_dev == dev)
274 return dd;
275
276 return NULL;
277}
278
279/*
280 * If possible, this checks an area of a destination device is invalid.
281 */
282static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
283 sector_t start, sector_t len, void *data)
284{
285 struct request_queue *q;
286 struct queue_limits *limits = data;
287 struct block_device *bdev = dev->bdev;
288 sector_t dev_size =
289 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
290 unsigned short logical_block_size_sectors =
291 limits->logical_block_size >> SECTOR_SHIFT;
292 char b[BDEVNAME_SIZE];
293
294 /*
295 * Some devices exist without request functions,
296 * such as loop devices not yet bound to backing files.
297 * Forbid the use of such devices.
298 */
299 q = bdev_get_queue(bdev);
300 if (!q || !q->make_request_fn) {
301 DMWARN("%s: %s is not yet initialised: "
302 "start=%llu, len=%llu, dev_size=%llu",
303 dm_device_name(ti->table->md), bdevname(bdev, b),
304 (unsigned long long)start,
305 (unsigned long long)len,
306 (unsigned long long)dev_size);
307 return 1;
308 }
309
310 if (!dev_size)
311 return 0;
312
313 if ((start >= dev_size) || (start + len > dev_size)) {
314 DMWARN("%s: %s too small for target: "
315 "start=%llu, len=%llu, dev_size=%llu",
316 dm_device_name(ti->table->md), bdevname(bdev, b),
317 (unsigned long long)start,
318 (unsigned long long)len,
319 (unsigned long long)dev_size);
320 return 1;
321 }
322
323 /*
324 * If the target is mapped to zoned block device(s), check
325 * that the zones are not partially mapped.
326 */
327 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
328 unsigned int zone_sectors = bdev_zone_sectors(bdev);
329
330 if (start & (zone_sectors - 1)) {
331 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
332 dm_device_name(ti->table->md),
333 (unsigned long long)start,
334 zone_sectors, bdevname(bdev, b));
335 return 1;
336 }
337
338 /*
339 * Note: The last zone of a zoned block device may be smaller
340 * than other zones. So for a target mapping the end of a
341 * zoned block device with such a zone, len would not be zone
342 * aligned. We do not allow such last smaller zone to be part
343 * of the mapping here to ensure that mappings with multiple
344 * devices do not end up with a smaller zone in the middle of
345 * the sector range.
346 */
347 if (len & (zone_sectors - 1)) {
348 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
349 dm_device_name(ti->table->md),
350 (unsigned long long)len,
351 zone_sectors, bdevname(bdev, b));
352 return 1;
353 }
354 }
355
356 if (logical_block_size_sectors <= 1)
357 return 0;
358
359 if (start & (logical_block_size_sectors - 1)) {
360 DMWARN("%s: start=%llu not aligned to h/w "
361 "logical block size %u of %s",
362 dm_device_name(ti->table->md),
363 (unsigned long long)start,
364 limits->logical_block_size, bdevname(bdev, b));
365 return 1;
366 }
367
368 if (len & (logical_block_size_sectors - 1)) {
369 DMWARN("%s: len=%llu not aligned to h/w "
370 "logical block size %u of %s",
371 dm_device_name(ti->table->md),
372 (unsigned long long)len,
373 limits->logical_block_size, bdevname(bdev, b));
374 return 1;
375 }
376
377 return 0;
378}
379
380/*
381 * This upgrades the mode on an already open dm_dev, being
382 * careful to leave things as they were if we fail to reopen the
383 * device and not to touch the existing bdev field in case
384 * it is accessed concurrently inside dm_table_any_congested().
385 */
386static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
387 struct mapped_device *md)
388{
389 int r;
390 struct dm_dev *old_dev, *new_dev;
391
392 old_dev = dd->dm_dev;
393
394 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
395 dd->dm_dev->mode | new_mode, &new_dev);
396 if (r)
397 return r;
398
399 dd->dm_dev = new_dev;
400 dm_put_table_device(md, old_dev);
401
402 return 0;
403}
404
405/*
406 * Convert the path to a device
407 */
408dev_t dm_get_dev_t(const char *path)
409{
410 dev_t dev;
411 struct block_device *bdev;
412
413 bdev = lookup_bdev(path);
414 if (IS_ERR(bdev))
415 dev = name_to_dev_t(path);
416 else {
417 dev = bdev->bd_dev;
418 bdput(bdev);
419 }
420
421 return dev;
422}
423EXPORT_SYMBOL_GPL(dm_get_dev_t);
424
425/*
426 * Add a device to the list, or just increment the usage count if
427 * it's already present.
428 */
429int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
430 struct dm_dev **result)
431{
432 int r;
433 dev_t dev;
434 struct dm_dev_internal *dd;
435 struct dm_table *t = ti->table;
436
437 BUG_ON(!t);
438
439 dev = dm_get_dev_t(path);
440 if (!dev)
441 return -ENODEV;
442
443 dd = find_device(&t->devices, dev);
444 if (!dd) {
445 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
446 if (!dd)
447 return -ENOMEM;
448
449 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
450 kfree(dd);
451 return r;
452 }
453
454 refcount_set(&dd->count, 1);
455 list_add(&dd->list, &t->devices);
456 goto out;
457
458 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
459 r = upgrade_mode(dd, mode, t->md);
460 if (r)
461 return r;
462 }
463 refcount_inc(&dd->count);
464out:
465 *result = dd->dm_dev;
466 return 0;
467}
468EXPORT_SYMBOL(dm_get_device);
469
470static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
471 sector_t start, sector_t len, void *data)
472{
473 struct queue_limits *limits = data;
474 struct block_device *bdev = dev->bdev;
475 struct request_queue *q = bdev_get_queue(bdev);
476 char b[BDEVNAME_SIZE];
477
478 if (unlikely(!q)) {
479 DMWARN("%s: Cannot set limits for nonexistent device %s",
480 dm_device_name(ti->table->md), bdevname(bdev, b));
481 return 0;
482 }
483
484 if (bdev_stack_limits(limits, bdev, start) < 0)
485 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
486 "physical_block_size=%u, logical_block_size=%u, "
487 "alignment_offset=%u, start=%llu",
488 dm_device_name(ti->table->md), bdevname(bdev, b),
489 q->limits.physical_block_size,
490 q->limits.logical_block_size,
491 q->limits.alignment_offset,
492 (unsigned long long) start << SECTOR_SHIFT);
493
494 limits->zoned = blk_queue_zoned_model(q);
495
496 return 0;
497}
498
499/*
500 * Decrement a device's use count and remove it if necessary.
501 */
502void dm_put_device(struct dm_target *ti, struct dm_dev *d)
503{
504 int found = 0;
505 struct list_head *devices = &ti->table->devices;
506 struct dm_dev_internal *dd;
507
508 list_for_each_entry(dd, devices, list) {
509 if (dd->dm_dev == d) {
510 found = 1;
511 break;
512 }
513 }
514 if (!found) {
515 DMWARN("%s: device %s not in table devices list",
516 dm_device_name(ti->table->md), d->name);
517 return;
518 }
519 if (refcount_dec_and_test(&dd->count)) {
520 dm_put_table_device(ti->table->md, d);
521 list_del(&dd->list);
522 kfree(dd);
523 }
524}
525EXPORT_SYMBOL(dm_put_device);
526
527/*
528 * Checks to see if the target joins onto the end of the table.
529 */
530static int adjoin(struct dm_table *table, struct dm_target *ti)
531{
532 struct dm_target *prev;
533
534 if (!table->num_targets)
535 return !ti->begin;
536
537 prev = &table->targets[table->num_targets - 1];
538 return (ti->begin == (prev->begin + prev->len));
539}
540
541/*
542 * Used to dynamically allocate the arg array.
543 *
544 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
545 * process messages even if some device is suspended. These messages have a
546 * small fixed number of arguments.
547 *
548 * On the other hand, dm-switch needs to process bulk data using messages and
549 * excessive use of GFP_NOIO could cause trouble.
550 */
551static char **realloc_argv(unsigned *array_size, char **old_argv)
552{
553 char **argv;
554 unsigned new_size;
555 gfp_t gfp;
556
557 if (*array_size) {
558 new_size = *array_size * 2;
559 gfp = GFP_KERNEL;
560 } else {
561 new_size = 8;
562 gfp = GFP_NOIO;
563 }
564 argv = kmalloc(new_size * sizeof(*argv), gfp);
565 if (argv) {
566 memcpy(argv, old_argv, *array_size * sizeof(*argv));
567 *array_size = new_size;
568 }
569
570 kfree(old_argv);
571 return argv;
572}
573
574/*
575 * Destructively splits up the argument list to pass to ctr.
576 */
577int dm_split_args(int *argc, char ***argvp, char *input)
578{
579 char *start, *end = input, *out, **argv = NULL;
580 unsigned array_size = 0;
581
582 *argc = 0;
583
584 if (!input) {
585 *argvp = NULL;
586 return 0;
587 }
588
589 argv = realloc_argv(&array_size, argv);
590 if (!argv)
591 return -ENOMEM;
592
593 while (1) {
594 /* Skip whitespace */
595 start = skip_spaces(end);
596
597 if (!*start)
598 break; /* success, we hit the end */
599
600 /* 'out' is used to remove any back-quotes */
601 end = out = start;
602 while (*end) {
603 /* Everything apart from '\0' can be quoted */
604 if (*end == '\\' && *(end + 1)) {
605 *out++ = *(end + 1);
606 end += 2;
607 continue;
608 }
609
610 if (isspace(*end))
611 break; /* end of token */
612
613 *out++ = *end++;
614 }
615
616 /* have we already filled the array ? */
617 if ((*argc + 1) > array_size) {
618 argv = realloc_argv(&array_size, argv);
619 if (!argv)
620 return -ENOMEM;
621 }
622
623 /* we know this is whitespace */
624 if (*end)
625 end++;
626
627 /* terminate the string and put it in the array */
628 *out = '\0';
629 argv[*argc] = start;
630 (*argc)++;
631 }
632
633 *argvp = argv;
634 return 0;
635}
636
637/*
638 * Impose necessary and sufficient conditions on a devices's table such
639 * that any incoming bio which respects its logical_block_size can be
640 * processed successfully. If it falls across the boundary between
641 * two or more targets, the size of each piece it gets split into must
642 * be compatible with the logical_block_size of the target processing it.
643 */
644static int validate_hardware_logical_block_alignment(struct dm_table *table,
645 struct queue_limits *limits)
646{
647 /*
648 * This function uses arithmetic modulo the logical_block_size
649 * (in units of 512-byte sectors).
650 */
651 unsigned short device_logical_block_size_sects =
652 limits->logical_block_size >> SECTOR_SHIFT;
653
654 /*
655 * Offset of the start of the next table entry, mod logical_block_size.
656 */
657 unsigned short next_target_start = 0;
658
659 /*
660 * Given an aligned bio that extends beyond the end of a
661 * target, how many sectors must the next target handle?
662 */
663 unsigned short remaining = 0;
664
665 struct dm_target *uninitialized_var(ti);
666 struct queue_limits ti_limits;
667 unsigned i;
668
669 /*
670 * Check each entry in the table in turn.
671 */
672 for (i = 0; i < dm_table_get_num_targets(table); i++) {
673 ti = dm_table_get_target(table, i);
674
675 blk_set_stacking_limits(&ti_limits);
676
677 /* combine all target devices' limits */
678 if (ti->type->iterate_devices)
679 ti->type->iterate_devices(ti, dm_set_device_limits,
680 &ti_limits);
681
682 /*
683 * If the remaining sectors fall entirely within this
684 * table entry are they compatible with its logical_block_size?
685 */
686 if (remaining < ti->len &&
687 remaining & ((ti_limits.logical_block_size >>
688 SECTOR_SHIFT) - 1))
689 break; /* Error */
690
691 next_target_start =
692 (unsigned short) ((next_target_start + ti->len) &
693 (device_logical_block_size_sects - 1));
694 remaining = next_target_start ?
695 device_logical_block_size_sects - next_target_start : 0;
696 }
697
698 if (remaining) {
699 DMWARN("%s: table line %u (start sect %llu len %llu) "
700 "not aligned to h/w logical block size %u",
701 dm_device_name(table->md), i,
702 (unsigned long long) ti->begin,
703 (unsigned long long) ti->len,
704 limits->logical_block_size);
705 return -EINVAL;
706 }
707
708 return 0;
709}
710
711int dm_table_add_target(struct dm_table *t, const char *type,
712 sector_t start, sector_t len, char *params)
713{
714 int r = -EINVAL, argc;
715 char **argv;
716 struct dm_target *tgt;
717
718 if (t->singleton) {
719 DMERR("%s: target type %s must appear alone in table",
720 dm_device_name(t->md), t->targets->type->name);
721 return -EINVAL;
722 }
723
724 BUG_ON(t->num_targets >= t->num_allocated);
725
726 tgt = t->targets + t->num_targets;
727 memset(tgt, 0, sizeof(*tgt));
728
729 if (!len) {
730 DMERR("%s: zero-length target", dm_device_name(t->md));
731 return -EINVAL;
732 }
733
734 tgt->type = dm_get_target_type(type);
735 if (!tgt->type) {
736 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
737 return -EINVAL;
738 }
739
740 if (dm_target_needs_singleton(tgt->type)) {
741 if (t->num_targets) {
742 tgt->error = "singleton target type must appear alone in table";
743 goto bad;
744 }
745 t->singleton = true;
746 }
747
748 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
749 tgt->error = "target type may not be included in a read-only table";
750 goto bad;
751 }
752
753 if (t->immutable_target_type) {
754 if (t->immutable_target_type != tgt->type) {
755 tgt->error = "immutable target type cannot be mixed with other target types";
756 goto bad;
757 }
758 } else if (dm_target_is_immutable(tgt->type)) {
759 if (t->num_targets) {
760 tgt->error = "immutable target type cannot be mixed with other target types";
761 goto bad;
762 }
763 t->immutable_target_type = tgt->type;
764 }
765
766 if (dm_target_has_integrity(tgt->type))
767 t->integrity_added = 1;
768
769 tgt->table = t;
770 tgt->begin = start;
771 tgt->len = len;
772 tgt->error = "Unknown error";
773
774 /*
775 * Does this target adjoin the previous one ?
776 */
777 if (!adjoin(t, tgt)) {
778 tgt->error = "Gap in table";
779 goto bad;
780 }
781
782 r = dm_split_args(&argc, &argv, params);
783 if (r) {
784 tgt->error = "couldn't split parameters (insufficient memory)";
785 goto bad;
786 }
787
788 r = tgt->type->ctr(tgt, argc, argv);
789 kfree(argv);
790 if (r)
791 goto bad;
792
793 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
794
795 if (!tgt->num_discard_bios && tgt->discards_supported)
796 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
797 dm_device_name(t->md), type);
798
799 return 0;
800
801 bad:
802 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
803 dm_put_target_type(tgt->type);
804 return r;
805}
806
807/*
808 * Target argument parsing helpers.
809 */
810static int validate_next_arg(const struct dm_arg *arg,
811 struct dm_arg_set *arg_set,
812 unsigned *value, char **error, unsigned grouped)
813{
814 const char *arg_str = dm_shift_arg(arg_set);
815 char dummy;
816
817 if (!arg_str ||
818 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
819 (*value < arg->min) ||
820 (*value > arg->max) ||
821 (grouped && arg_set->argc < *value)) {
822 *error = arg->error;
823 return -EINVAL;
824 }
825
826 return 0;
827}
828
829int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
830 unsigned *value, char **error)
831{
832 return validate_next_arg(arg, arg_set, value, error, 0);
833}
834EXPORT_SYMBOL(dm_read_arg);
835
836int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
837 unsigned *value, char **error)
838{
839 return validate_next_arg(arg, arg_set, value, error, 1);
840}
841EXPORT_SYMBOL(dm_read_arg_group);
842
843const char *dm_shift_arg(struct dm_arg_set *as)
844{
845 char *r;
846
847 if (as->argc) {
848 as->argc--;
849 r = *as->argv;
850 as->argv++;
851 return r;
852 }
853
854 return NULL;
855}
856EXPORT_SYMBOL(dm_shift_arg);
857
858void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
859{
860 BUG_ON(as->argc < num_args);
861 as->argc -= num_args;
862 as->argv += num_args;
863}
864EXPORT_SYMBOL(dm_consume_args);
865
866static bool __table_type_bio_based(enum dm_queue_mode table_type)
867{
868 return (table_type == DM_TYPE_BIO_BASED ||
869 table_type == DM_TYPE_DAX_BIO_BASED ||
870 table_type == DM_TYPE_NVME_BIO_BASED);
871}
872
873static bool __table_type_request_based(enum dm_queue_mode table_type)
874{
875 return (table_type == DM_TYPE_REQUEST_BASED ||
876 table_type == DM_TYPE_MQ_REQUEST_BASED);
877}
878
879void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
880{
881 t->type = type;
882}
883EXPORT_SYMBOL_GPL(dm_table_set_type);
884
885static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
886 sector_t start, sector_t len, void *data)
887{
888 struct request_queue *q = bdev_get_queue(dev->bdev);
889
890 return q && blk_queue_dax(q);
891}
892
893static bool dm_table_supports_dax(struct dm_table *t)
894{
895 struct dm_target *ti;
896 unsigned i;
897
898 /* Ensure that all targets support DAX. */
899 for (i = 0; i < dm_table_get_num_targets(t); i++) {
900 ti = dm_table_get_target(t, i);
901
902 if (!ti->type->direct_access)
903 return false;
904
905 if (!ti->type->iterate_devices ||
906 !ti->type->iterate_devices(ti, device_supports_dax, NULL))
907 return false;
908 }
909
910 return true;
911}
912
913static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
914
915struct verify_rq_based_data {
916 unsigned sq_count;
917 unsigned mq_count;
918};
919
920static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
921 sector_t start, sector_t len, void *data)
922{
923 struct request_queue *q = bdev_get_queue(dev->bdev);
924 struct verify_rq_based_data *v = data;
925
926 if (q->mq_ops)
927 v->mq_count++;
928 else
929 v->sq_count++;
930
931 return queue_is_rq_based(q);
932}
933
934static int dm_table_determine_type(struct dm_table *t)
935{
936 unsigned i;
937 unsigned bio_based = 0, request_based = 0, hybrid = 0;
938 struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
939 struct dm_target *tgt;
940 struct list_head *devices = dm_table_get_devices(t);
941 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
942
943 if (t->type != DM_TYPE_NONE) {
944 /* target already set the table's type */
945 if (t->type == DM_TYPE_BIO_BASED) {
946 /* possibly upgrade to a variant of bio-based */
947 goto verify_bio_based;
948 }
949 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
950 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
951 goto verify_rq_based;
952 }
953
954 for (i = 0; i < t->num_targets; i++) {
955 tgt = t->targets + i;
956 if (dm_target_hybrid(tgt))
957 hybrid = 1;
958 else if (dm_target_request_based(tgt))
959 request_based = 1;
960 else
961 bio_based = 1;
962
963 if (bio_based && request_based) {
964 DMERR("Inconsistent table: different target types"
965 " can't be mixed up");
966 return -EINVAL;
967 }
968 }
969
970 if (hybrid && !bio_based && !request_based) {
971 /*
972 * The targets can work either way.
973 * Determine the type from the live device.
974 * Default to bio-based if device is new.
975 */
976 if (__table_type_request_based(live_md_type))
977 request_based = 1;
978 else
979 bio_based = 1;
980 }
981
982 if (bio_based) {
983verify_bio_based:
984 /* We must use this table as bio-based */
985 t->type = DM_TYPE_BIO_BASED;
986 if (dm_table_supports_dax(t) ||
987 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
988 t->type = DM_TYPE_DAX_BIO_BASED;
989 } else {
990 /* Check if upgrading to NVMe bio-based is valid or required */
991 tgt = dm_table_get_immutable_target(t);
992 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
993 t->type = DM_TYPE_NVME_BIO_BASED;
994 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
995 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
996 t->type = DM_TYPE_NVME_BIO_BASED;
997 }
998 }
999 return 0;
1000 }
1001
1002 BUG_ON(!request_based); /* No targets in this table */
1003
1004 /*
1005 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
1006 * having a compatible target use dm_table_set_type.
1007 */
1008 t->type = DM_TYPE_REQUEST_BASED;
1009
1010verify_rq_based:
1011 /*
1012 * Request-based dm supports only tables that have a single target now.
1013 * To support multiple targets, request splitting support is needed,
1014 * and that needs lots of changes in the block-layer.
1015 * (e.g. request completion process for partial completion.)
1016 */
1017 if (t->num_targets > 1) {
1018 DMERR("%s DM doesn't support multiple targets",
1019 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1020 return -EINVAL;
1021 }
1022
1023 if (list_empty(devices)) {
1024 int srcu_idx;
1025 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1026
1027 /* inherit live table's type and all_blk_mq */
1028 if (live_table) {
1029 t->type = live_table->type;
1030 t->all_blk_mq = live_table->all_blk_mq;
1031 }
1032 dm_put_live_table(t->md, srcu_idx);
1033 return 0;
1034 }
1035
1036 tgt = dm_table_get_immutable_target(t);
1037 if (!tgt) {
1038 DMERR("table load rejected: immutable target is required");
1039 return -EINVAL;
1040 } else if (tgt->max_io_len) {
1041 DMERR("table load rejected: immutable target that splits IO is not supported");
1042 return -EINVAL;
1043 }
1044
1045 /* Non-request-stackable devices can't be used for request-based dm */
1046 if (!tgt->type->iterate_devices ||
1047 !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1048 DMERR("table load rejected: including non-request-stackable devices");
1049 return -EINVAL;
1050 }
1051 if (v.sq_count && v.mq_count) {
1052 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1053 return -EINVAL;
1054 }
1055 t->all_blk_mq = v.mq_count > 0;
1056
1057 if (!t->all_blk_mq &&
1058 (t->type == DM_TYPE_MQ_REQUEST_BASED || t->type == DM_TYPE_NVME_BIO_BASED)) {
1059 DMERR("table load rejected: all devices are not blk-mq request-stackable");
1060 return -EINVAL;
1061 }
1062
1063 return 0;
1064}
1065
1066enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1067{
1068 return t->type;
1069}
1070
1071struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1072{
1073 return t->immutable_target_type;
1074}
1075
1076struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1077{
1078 /* Immutable target is implicitly a singleton */
1079 if (t->num_targets > 1 ||
1080 !dm_target_is_immutable(t->targets[0].type))
1081 return NULL;
1082
1083 return t->targets;
1084}
1085
1086struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1087{
1088 struct dm_target *ti;
1089 unsigned i;
1090
1091 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1092 ti = dm_table_get_target(t, i);
1093 if (dm_target_is_wildcard(ti->type))
1094 return ti;
1095 }
1096
1097 return NULL;
1098}
1099
1100bool dm_table_bio_based(struct dm_table *t)
1101{
1102 return __table_type_bio_based(dm_table_get_type(t));
1103}
1104
1105bool dm_table_request_based(struct dm_table *t)
1106{
1107 return __table_type_request_based(dm_table_get_type(t));
1108}
1109
1110bool dm_table_all_blk_mq_devices(struct dm_table *t)
1111{
1112 return t->all_blk_mq;
1113}
1114
1115static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1116{
1117 enum dm_queue_mode type = dm_table_get_type(t);
1118 unsigned per_io_data_size = 0;
1119 unsigned min_pool_size = 0;
1120 struct dm_target *ti;
1121 unsigned i;
1122
1123 if (unlikely(type == DM_TYPE_NONE)) {
1124 DMWARN("no table type is set, can't allocate mempools");
1125 return -EINVAL;
1126 }
1127
1128 if (__table_type_bio_based(type))
1129 for (i = 0; i < t->num_targets; i++) {
1130 ti = t->targets + i;
1131 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1132 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1133 }
1134
1135 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1136 per_io_data_size, min_pool_size);
1137 if (!t->mempools)
1138 return -ENOMEM;
1139
1140 return 0;
1141}
1142
1143void dm_table_free_md_mempools(struct dm_table *t)
1144{
1145 dm_free_md_mempools(t->mempools);
1146 t->mempools = NULL;
1147}
1148
1149struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1150{
1151 return t->mempools;
1152}
1153
1154static int setup_indexes(struct dm_table *t)
1155{
1156 int i;
1157 unsigned int total = 0;
1158 sector_t *indexes;
1159
1160 /* allocate the space for *all* the indexes */
1161 for (i = t->depth - 2; i >= 0; i--) {
1162 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1163 total += t->counts[i];
1164 }
1165
1166 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1167 if (!indexes)
1168 return -ENOMEM;
1169
1170 /* set up internal nodes, bottom-up */
1171 for (i = t->depth - 2; i >= 0; i--) {
1172 t->index[i] = indexes;
1173 indexes += (KEYS_PER_NODE * t->counts[i]);
1174 setup_btree_index(i, t);
1175 }
1176
1177 return 0;
1178}
1179
1180/*
1181 * Builds the btree to index the map.
1182 */
1183static int dm_table_build_index(struct dm_table *t)
1184{
1185 int r = 0;
1186 unsigned int leaf_nodes;
1187
1188 /* how many indexes will the btree have ? */
1189 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1190 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1191
1192 /* leaf layer has already been set up */
1193 t->counts[t->depth - 1] = leaf_nodes;
1194 t->index[t->depth - 1] = t->highs;
1195
1196 if (t->depth >= 2)
1197 r = setup_indexes(t);
1198
1199 return r;
1200}
1201
1202static bool integrity_profile_exists(struct gendisk *disk)
1203{
1204 return !!blk_get_integrity(disk);
1205}
1206
1207/*
1208 * Get a disk whose integrity profile reflects the table's profile.
1209 * Returns NULL if integrity support was inconsistent or unavailable.
1210 */
1211static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1212{
1213 struct list_head *devices = dm_table_get_devices(t);
1214 struct dm_dev_internal *dd = NULL;
1215 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1216 unsigned i;
1217
1218 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1219 struct dm_target *ti = dm_table_get_target(t, i);
1220 if (!dm_target_passes_integrity(ti->type))
1221 goto no_integrity;
1222 }
1223
1224 list_for_each_entry(dd, devices, list) {
1225 template_disk = dd->dm_dev->bdev->bd_disk;
1226 if (!integrity_profile_exists(template_disk))
1227 goto no_integrity;
1228 else if (prev_disk &&
1229 blk_integrity_compare(prev_disk, template_disk) < 0)
1230 goto no_integrity;
1231 prev_disk = template_disk;
1232 }
1233
1234 return template_disk;
1235
1236no_integrity:
1237 if (prev_disk)
1238 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1239 dm_device_name(t->md),
1240 prev_disk->disk_name,
1241 template_disk->disk_name);
1242 return NULL;
1243}
1244
1245/*
1246 * Register the mapped device for blk_integrity support if the
1247 * underlying devices have an integrity profile. But all devices may
1248 * not have matching profiles (checking all devices isn't reliable
1249 * during table load because this table may use other DM device(s) which
1250 * must be resumed before they will have an initialized integity
1251 * profile). Consequently, stacked DM devices force a 2 stage integrity
1252 * profile validation: First pass during table load, final pass during
1253 * resume.
1254 */
1255static int dm_table_register_integrity(struct dm_table *t)
1256{
1257 struct mapped_device *md = t->md;
1258 struct gendisk *template_disk = NULL;
1259
1260 /* If target handles integrity itself do not register it here. */
1261 if (t->integrity_added)
1262 return 0;
1263
1264 template_disk = dm_table_get_integrity_disk(t);
1265 if (!template_disk)
1266 return 0;
1267
1268 if (!integrity_profile_exists(dm_disk(md))) {
1269 t->integrity_supported = true;
1270 /*
1271 * Register integrity profile during table load; we can do
1272 * this because the final profile must match during resume.
1273 */
1274 blk_integrity_register(dm_disk(md),
1275 blk_get_integrity(template_disk));
1276 return 0;
1277 }
1278
1279 /*
1280 * If DM device already has an initialized integrity
1281 * profile the new profile should not conflict.
1282 */
1283 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1284 DMWARN("%s: conflict with existing integrity profile: "
1285 "%s profile mismatch",
1286 dm_device_name(t->md),
1287 template_disk->disk_name);
1288 return 1;
1289 }
1290
1291 /* Preserve existing integrity profile */
1292 t->integrity_supported = true;
1293 return 0;
1294}
1295
1296/*
1297 * Prepares the table for use by building the indices,
1298 * setting the type, and allocating mempools.
1299 */
1300int dm_table_complete(struct dm_table *t)
1301{
1302 int r;
1303
1304 r = dm_table_determine_type(t);
1305 if (r) {
1306 DMERR("unable to determine table type");
1307 return r;
1308 }
1309
1310 r = dm_table_build_index(t);
1311 if (r) {
1312 DMERR("unable to build btrees");
1313 return r;
1314 }
1315
1316 r = dm_table_register_integrity(t);
1317 if (r) {
1318 DMERR("could not register integrity profile.");
1319 return r;
1320 }
1321
1322 r = dm_table_alloc_md_mempools(t, t->md);
1323 if (r)
1324 DMERR("unable to allocate mempools");
1325
1326 return r;
1327}
1328
1329static DEFINE_MUTEX(_event_lock);
1330void dm_table_event_callback(struct dm_table *t,
1331 void (*fn)(void *), void *context)
1332{
1333 mutex_lock(&_event_lock);
1334 t->event_fn = fn;
1335 t->event_context = context;
1336 mutex_unlock(&_event_lock);
1337}
1338
1339void dm_table_event(struct dm_table *t)
1340{
1341 /*
1342 * You can no longer call dm_table_event() from interrupt
1343 * context, use a bottom half instead.
1344 */
1345 BUG_ON(in_interrupt());
1346
1347 mutex_lock(&_event_lock);
1348 if (t->event_fn)
1349 t->event_fn(t->event_context);
1350 mutex_unlock(&_event_lock);
1351}
1352EXPORT_SYMBOL(dm_table_event);
1353
1354sector_t dm_table_get_size(struct dm_table *t)
1355{
1356 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1357}
1358EXPORT_SYMBOL(dm_table_get_size);
1359
1360struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1361{
1362 if (index >= t->num_targets)
1363 return NULL;
1364
1365 return t->targets + index;
1366}
1367
1368/*
1369 * Search the btree for the correct target.
1370 *
1371 * Caller should check returned pointer with dm_target_is_valid()
1372 * to trap I/O beyond end of device.
1373 */
1374struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1375{
1376 unsigned int l, n = 0, k = 0;
1377 sector_t *node;
1378
1379 for (l = 0; l < t->depth; l++) {
1380 n = get_child(n, k);
1381 node = get_node(t, l, n);
1382
1383 for (k = 0; k < KEYS_PER_NODE; k++)
1384 if (node[k] >= sector)
1385 break;
1386 }
1387
1388 return &t->targets[(KEYS_PER_NODE * n) + k];
1389}
1390
1391static int count_device(struct dm_target *ti, struct dm_dev *dev,
1392 sector_t start, sector_t len, void *data)
1393{
1394 unsigned *num_devices = data;
1395
1396 (*num_devices)++;
1397
1398 return 0;
1399}
1400
1401/*
1402 * Check whether a table has no data devices attached using each
1403 * target's iterate_devices method.
1404 * Returns false if the result is unknown because a target doesn't
1405 * support iterate_devices.
1406 */
1407bool dm_table_has_no_data_devices(struct dm_table *table)
1408{
1409 struct dm_target *ti;
1410 unsigned i, num_devices;
1411
1412 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1413 ti = dm_table_get_target(table, i);
1414
1415 if (!ti->type->iterate_devices)
1416 return false;
1417
1418 num_devices = 0;
1419 ti->type->iterate_devices(ti, count_device, &num_devices);
1420 if (num_devices)
1421 return false;
1422 }
1423
1424 return true;
1425}
1426
1427static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1428 sector_t start, sector_t len, void *data)
1429{
1430 struct request_queue *q = bdev_get_queue(dev->bdev);
1431 enum blk_zoned_model *zoned_model = data;
1432
1433 return q && blk_queue_zoned_model(q) == *zoned_model;
1434}
1435
1436static bool dm_table_supports_zoned_model(struct dm_table *t,
1437 enum blk_zoned_model zoned_model)
1438{
1439 struct dm_target *ti;
1440 unsigned i;
1441
1442 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1443 ti = dm_table_get_target(t, i);
1444
1445 if (zoned_model == BLK_ZONED_HM &&
1446 !dm_target_supports_zoned_hm(ti->type))
1447 return false;
1448
1449 if (!ti->type->iterate_devices ||
1450 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1451 return false;
1452 }
1453
1454 return true;
1455}
1456
1457static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1458 sector_t start, sector_t len, void *data)
1459{
1460 struct request_queue *q = bdev_get_queue(dev->bdev);
1461 unsigned int *zone_sectors = data;
1462
1463 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1464}
1465
1466static bool dm_table_matches_zone_sectors(struct dm_table *t,
1467 unsigned int zone_sectors)
1468{
1469 struct dm_target *ti;
1470 unsigned i;
1471
1472 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1473 ti = dm_table_get_target(t, i);
1474
1475 if (!ti->type->iterate_devices ||
1476 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1477 return false;
1478 }
1479
1480 return true;
1481}
1482
1483static int validate_hardware_zoned_model(struct dm_table *table,
1484 enum blk_zoned_model zoned_model,
1485 unsigned int zone_sectors)
1486{
1487 if (zoned_model == BLK_ZONED_NONE)
1488 return 0;
1489
1490 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1491 DMERR("%s: zoned model is not consistent across all devices",
1492 dm_device_name(table->md));
1493 return -EINVAL;
1494 }
1495
1496 /* Check zone size validity and compatibility */
1497 if (!zone_sectors || !is_power_of_2(zone_sectors))
1498 return -EINVAL;
1499
1500 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1501 DMERR("%s: zone sectors is not consistent across all devices",
1502 dm_device_name(table->md));
1503 return -EINVAL;
1504 }
1505
1506 return 0;
1507}
1508
1509/*
1510 * Establish the new table's queue_limits and validate them.
1511 */
1512int dm_calculate_queue_limits(struct dm_table *table,
1513 struct queue_limits *limits)
1514{
1515 struct dm_target *ti;
1516 struct queue_limits ti_limits;
1517 unsigned i;
1518 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1519 unsigned int zone_sectors = 0;
1520
1521 blk_set_stacking_limits(limits);
1522
1523 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1524 blk_set_stacking_limits(&ti_limits);
1525
1526 ti = dm_table_get_target(table, i);
1527
1528 if (!ti->type->iterate_devices)
1529 goto combine_limits;
1530
1531 /*
1532 * Combine queue limits of all the devices this target uses.
1533 */
1534 ti->type->iterate_devices(ti, dm_set_device_limits,
1535 &ti_limits);
1536
1537 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1538 /*
1539 * After stacking all limits, validate all devices
1540 * in table support this zoned model and zone sectors.
1541 */
1542 zoned_model = ti_limits.zoned;
1543 zone_sectors = ti_limits.chunk_sectors;
1544 }
1545
1546 /* Set I/O hints portion of queue limits */
1547 if (ti->type->io_hints)
1548 ti->type->io_hints(ti, &ti_limits);
1549
1550 /*
1551 * Check each device area is consistent with the target's
1552 * overall queue limits.
1553 */
1554 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1555 &ti_limits))
1556 return -EINVAL;
1557
1558combine_limits:
1559 /*
1560 * Merge this target's queue limits into the overall limits
1561 * for the table.
1562 */
1563 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1564 DMWARN("%s: adding target device "
1565 "(start sect %llu len %llu) "
1566 "caused an alignment inconsistency",
1567 dm_device_name(table->md),
1568 (unsigned long long) ti->begin,
1569 (unsigned long long) ti->len);
1570
1571 /*
1572 * FIXME: this should likely be moved to blk_stack_limits(), would
1573 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1574 */
1575 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1576 /*
1577 * By default, the stacked limits zoned model is set to
1578 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1579 * this model using the first target model reported
1580 * that is not BLK_ZONED_NONE. This will be either the
1581 * first target device zoned model or the model reported
1582 * by the target .io_hints.
1583 */
1584 limits->zoned = ti_limits.zoned;
1585 }
1586 }
1587
1588 /*
1589 * Verify that the zoned model and zone sectors, as determined before
1590 * any .io_hints override, are the same across all devices in the table.
1591 * - this is especially relevant if .io_hints is emulating a disk-managed
1592 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1593 * BUT...
1594 */
1595 if (limits->zoned != BLK_ZONED_NONE) {
1596 /*
1597 * ...IF the above limits stacking determined a zoned model
1598 * validate that all of the table's devices conform to it.
1599 */
1600 zoned_model = limits->zoned;
1601 zone_sectors = limits->chunk_sectors;
1602 }
1603 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1604 return -EINVAL;
1605
1606 return validate_hardware_logical_block_alignment(table, limits);
1607}
1608
1609/*
1610 * Verify that all devices have an integrity profile that matches the
1611 * DM device's registered integrity profile. If the profiles don't
1612 * match then unregister the DM device's integrity profile.
1613 */
1614static void dm_table_verify_integrity(struct dm_table *t)
1615{
1616 struct gendisk *template_disk = NULL;
1617
1618 if (t->integrity_added)
1619 return;
1620
1621 if (t->integrity_supported) {
1622 /*
1623 * Verify that the original integrity profile
1624 * matches all the devices in this table.
1625 */
1626 template_disk = dm_table_get_integrity_disk(t);
1627 if (template_disk &&
1628 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1629 return;
1630 }
1631
1632 if (integrity_profile_exists(dm_disk(t->md))) {
1633 DMWARN("%s: unable to establish an integrity profile",
1634 dm_device_name(t->md));
1635 blk_integrity_unregister(dm_disk(t->md));
1636 }
1637}
1638
1639static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1640 sector_t start, sector_t len, void *data)
1641{
1642 unsigned long flush = (unsigned long) data;
1643 struct request_queue *q = bdev_get_queue(dev->bdev);
1644
1645 return q && (q->queue_flags & flush);
1646}
1647
1648static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1649{
1650 struct dm_target *ti;
1651 unsigned i;
1652
1653 /*
1654 * Require at least one underlying device to support flushes.
1655 * t->devices includes internal dm devices such as mirror logs
1656 * so we need to use iterate_devices here, which targets
1657 * supporting flushes must provide.
1658 */
1659 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1660 ti = dm_table_get_target(t, i);
1661
1662 if (!ti->num_flush_bios)
1663 continue;
1664
1665 if (ti->flush_supported)
1666 return true;
1667
1668 if (ti->type->iterate_devices &&
1669 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1670 return true;
1671 }
1672
1673 return false;
1674}
1675
1676static int device_dax_write_cache_enabled(struct dm_target *ti,
1677 struct dm_dev *dev, sector_t start,
1678 sector_t len, void *data)
1679{
1680 struct dax_device *dax_dev = dev->dax_dev;
1681
1682 if (!dax_dev)
1683 return false;
1684
1685 if (dax_write_cache_enabled(dax_dev))
1686 return true;
1687 return false;
1688}
1689
1690static int dm_table_supports_dax_write_cache(struct dm_table *t)
1691{
1692 struct dm_target *ti;
1693 unsigned i;
1694
1695 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1696 ti = dm_table_get_target(t, i);
1697
1698 if (ti->type->iterate_devices &&
1699 ti->type->iterate_devices(ti,
1700 device_dax_write_cache_enabled, NULL))
1701 return true;
1702 }
1703
1704 return false;
1705}
1706
1707static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1708 sector_t start, sector_t len, void *data)
1709{
1710 struct request_queue *q = bdev_get_queue(dev->bdev);
1711
1712 return q && blk_queue_nonrot(q);
1713}
1714
1715static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1716 sector_t start, sector_t len, void *data)
1717{
1718 struct request_queue *q = bdev_get_queue(dev->bdev);
1719
1720 return q && !blk_queue_add_random(q);
1721}
1722
1723static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1724 sector_t start, sector_t len, void *data)
1725{
1726 struct request_queue *q = bdev_get_queue(dev->bdev);
1727
1728 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1729}
1730
1731static bool dm_table_all_devices_attribute(struct dm_table *t,
1732 iterate_devices_callout_fn func)
1733{
1734 struct dm_target *ti;
1735 unsigned i;
1736
1737 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1738 ti = dm_table_get_target(t, i);
1739
1740 if (!ti->type->iterate_devices ||
1741 !ti->type->iterate_devices(ti, func, NULL))
1742 return false;
1743 }
1744
1745 return true;
1746}
1747
1748static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1749 sector_t start, sector_t len, void *data)
1750{
1751 char b[BDEVNAME_SIZE];
1752
1753 /* For now, NVMe devices are the only devices of this class */
1754 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1755}
1756
1757static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1758{
1759 return dm_table_all_devices_attribute(t, device_no_partial_completion);
1760}
1761
1762static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1763 sector_t start, sector_t len, void *data)
1764{
1765 struct request_queue *q = bdev_get_queue(dev->bdev);
1766
1767 return q && !q->limits.max_write_same_sectors;
1768}
1769
1770static bool dm_table_supports_write_same(struct dm_table *t)
1771{
1772 struct dm_target *ti;
1773 unsigned i;
1774
1775 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1776 ti = dm_table_get_target(t, i);
1777
1778 if (!ti->num_write_same_bios)
1779 return false;
1780
1781 if (!ti->type->iterate_devices ||
1782 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1783 return false;
1784 }
1785
1786 return true;
1787}
1788
1789static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1790 sector_t start, sector_t len, void *data)
1791{
1792 struct request_queue *q = bdev_get_queue(dev->bdev);
1793
1794 return q && !q->limits.max_write_zeroes_sectors;
1795}
1796
1797static bool dm_table_supports_write_zeroes(struct dm_table *t)
1798{
1799 struct dm_target *ti;
1800 unsigned i = 0;
1801
1802 while (i < dm_table_get_num_targets(t)) {
1803 ti = dm_table_get_target(t, i++);
1804
1805 if (!ti->num_write_zeroes_bios)
1806 return false;
1807
1808 if (!ti->type->iterate_devices ||
1809 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1810 return false;
1811 }
1812
1813 return true;
1814}
1815
1816static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1817 sector_t start, sector_t len, void *data)
1818{
1819 struct request_queue *q = bdev_get_queue(dev->bdev);
1820
1821 return q && !blk_queue_discard(q);
1822}
1823
1824static bool dm_table_supports_discards(struct dm_table *t)
1825{
1826 struct dm_target *ti;
1827 unsigned i;
1828
1829 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1830 ti = dm_table_get_target(t, i);
1831
1832 if (!ti->num_discard_bios)
1833 return false;
1834
1835 /*
1836 * Either the target provides discard support (as implied by setting
1837 * 'discards_supported') or it relies on _all_ data devices having
1838 * discard support.
1839 */
1840 if (!ti->discards_supported &&
1841 (!ti->type->iterate_devices ||
1842 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1843 return false;
1844 }
1845
1846 return true;
1847}
1848
1849static int device_not_secure_erase_capable(struct dm_target *ti,
1850 struct dm_dev *dev, sector_t start,
1851 sector_t len, void *data)
1852{
1853 struct request_queue *q = bdev_get_queue(dev->bdev);
1854
1855 return q && !blk_queue_secure_erase(q);
1856}
1857
1858static bool dm_table_supports_secure_erase(struct dm_table *t)
1859{
1860 struct dm_target *ti;
1861 unsigned int i;
1862
1863 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1864 ti = dm_table_get_target(t, i);
1865
1866 if (!ti->num_secure_erase_bios)
1867 return false;
1868
1869 if (!ti->type->iterate_devices ||
1870 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1871 return false;
1872 }
1873
1874 return true;
1875}
1876
1877void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1878 struct queue_limits *limits)
1879{
1880 bool wc = false, fua = false;
1881
1882 /*
1883 * Copy table's limits to the DM device's request_queue
1884 */
1885 q->limits = *limits;
1886
1887 if (!dm_table_supports_discards(t)) {
1888 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1889 /* Must also clear discard limits... */
1890 q->limits.max_discard_sectors = 0;
1891 q->limits.max_hw_discard_sectors = 0;
1892 q->limits.discard_granularity = 0;
1893 q->limits.discard_alignment = 0;
1894 q->limits.discard_misaligned = 0;
1895 } else
1896 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1897
1898 if (dm_table_supports_secure_erase(t))
1899 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1900
1901 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1902 wc = true;
1903 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1904 fua = true;
1905 }
1906 blk_queue_write_cache(q, wc, fua);
1907
1908 if (dm_table_supports_dax(t))
1909 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1910 if (dm_table_supports_dax_write_cache(t))
1911 dax_write_cache(t->md->dax_dev, true);
1912
1913 /* Ensure that all underlying devices are non-rotational. */
1914 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1915 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1916 else
1917 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1918
1919 if (!dm_table_supports_write_same(t))
1920 q->limits.max_write_same_sectors = 0;
1921 if (!dm_table_supports_write_zeroes(t))
1922 q->limits.max_write_zeroes_sectors = 0;
1923
1924 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1925 blk_queue_flag_clear(QUEUE_FLAG_NO_SG_MERGE, q);
1926 else
1927 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
1928
1929 dm_table_verify_integrity(t);
1930
1931 /*
1932 * Determine whether or not this queue's I/O timings contribute
1933 * to the entropy pool, Only request-based targets use this.
1934 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1935 * have it set.
1936 */
1937 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1938 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1939}
1940
1941unsigned int dm_table_get_num_targets(struct dm_table *t)
1942{
1943 return t->num_targets;
1944}
1945
1946struct list_head *dm_table_get_devices(struct dm_table *t)
1947{
1948 return &t->devices;
1949}
1950
1951fmode_t dm_table_get_mode(struct dm_table *t)
1952{
1953 return t->mode;
1954}
1955EXPORT_SYMBOL(dm_table_get_mode);
1956
1957enum suspend_mode {
1958 PRESUSPEND,
1959 PRESUSPEND_UNDO,
1960 POSTSUSPEND,
1961};
1962
1963static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1964{
1965 int i = t->num_targets;
1966 struct dm_target *ti = t->targets;
1967
1968 lockdep_assert_held(&t->md->suspend_lock);
1969
1970 while (i--) {
1971 switch (mode) {
1972 case PRESUSPEND:
1973 if (ti->type->presuspend)
1974 ti->type->presuspend(ti);
1975 break;
1976 case PRESUSPEND_UNDO:
1977 if (ti->type->presuspend_undo)
1978 ti->type->presuspend_undo(ti);
1979 break;
1980 case POSTSUSPEND:
1981 if (ti->type->postsuspend)
1982 ti->type->postsuspend(ti);
1983 break;
1984 }
1985 ti++;
1986 }
1987}
1988
1989void dm_table_presuspend_targets(struct dm_table *t)
1990{
1991 if (!t)
1992 return;
1993
1994 suspend_targets(t, PRESUSPEND);
1995}
1996
1997void dm_table_presuspend_undo_targets(struct dm_table *t)
1998{
1999 if (!t)
2000 return;
2001
2002 suspend_targets(t, PRESUSPEND_UNDO);
2003}
2004
2005void dm_table_postsuspend_targets(struct dm_table *t)
2006{
2007 if (!t)
2008 return;
2009
2010 suspend_targets(t, POSTSUSPEND);
2011}
2012
2013int dm_table_resume_targets(struct dm_table *t)
2014{
2015 int i, r = 0;
2016
2017 lockdep_assert_held(&t->md->suspend_lock);
2018
2019 for (i = 0; i < t->num_targets; i++) {
2020 struct dm_target *ti = t->targets + i;
2021
2022 if (!ti->type->preresume)
2023 continue;
2024
2025 r = ti->type->preresume(ti);
2026 if (r) {
2027 DMERR("%s: %s: preresume failed, error = %d",
2028 dm_device_name(t->md), ti->type->name, r);
2029 return r;
2030 }
2031 }
2032
2033 for (i = 0; i < t->num_targets; i++) {
2034 struct dm_target *ti = t->targets + i;
2035
2036 if (ti->type->resume)
2037 ti->type->resume(ti);
2038 }
2039
2040 return 0;
2041}
2042
2043void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2044{
2045 list_add(&cb->list, &t->target_callbacks);
2046}
2047EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2048
2049int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2050{
2051 struct dm_dev_internal *dd;
2052 struct list_head *devices = dm_table_get_devices(t);
2053 struct dm_target_callbacks *cb;
2054 int r = 0;
2055
2056 list_for_each_entry(dd, devices, list) {
2057 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2058 char b[BDEVNAME_SIZE];
2059
2060 if (likely(q))
2061 r |= bdi_congested(q->backing_dev_info, bdi_bits);
2062 else
2063 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2064 dm_device_name(t->md),
2065 bdevname(dd->dm_dev->bdev, b));
2066 }
2067
2068 list_for_each_entry(cb, &t->target_callbacks, list)
2069 if (cb->congested_fn)
2070 r |= cb->congested_fn(cb, bdi_bits);
2071
2072 return r;
2073}
2074
2075struct mapped_device *dm_table_get_md(struct dm_table *t)
2076{
2077 return t->md;
2078}
2079EXPORT_SYMBOL(dm_table_get_md);
2080
2081void dm_table_run_md_queue_async(struct dm_table *t)
2082{
2083 struct mapped_device *md;
2084 struct request_queue *queue;
2085 unsigned long flags;
2086
2087 if (!dm_table_request_based(t))
2088 return;
2089
2090 md = dm_table_get_md(t);
2091 queue = dm_get_md_queue(md);
2092 if (queue) {
2093 if (queue->mq_ops)
2094 blk_mq_run_hw_queues(queue, true);
2095 else {
2096 spin_lock_irqsave(queue->queue_lock, flags);
2097 blk_run_queue_async(queue);
2098 spin_unlock_irqrestore(queue->queue_lock, flags);
2099 }
2100 }
2101}
2102EXPORT_SYMBOL(dm_table_run_md_queue_async);
2103