Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v4.6
   1/*
   2 * Copyright (c) 2011-2016 Synaptics Incorporated
   3 * Copyright (c) 2011 Unixphere
   4 *
   5 * This driver provides the core support for a single RMI4-based device.
   6 *
   7 * The RMI4 specification can be found here (URL split for line length):
   8 *
   9 * http://www.synaptics.com/sites/default/files/
  10 *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
  11 *
  12 * This program is free software; you can redistribute it and/or modify it
  13 * under the terms of the GNU General Public License version 2 as published by
  14 * the Free Software Foundation.
  15 */
  16
  17#include <linux/bitmap.h>
  18#include <linux/delay.h>
  19#include <linux/fs.h>
  20#include <linux/kconfig.h>
  21#include <linux/pm.h>
  22#include <linux/slab.h>
  23#include <linux/of.h>
  24#include <uapi/linux/input.h>
  25#include <linux/rmi.h>
  26#include "rmi_bus.h"
  27#include "rmi_driver.h"
  28
  29#define HAS_NONSTANDARD_PDT_MASK 0x40
  30#define RMI4_MAX_PAGE 0xff
  31#define RMI4_PAGE_SIZE 0x100
  32#define RMI4_PAGE_MASK 0xFF00
  33
  34#define RMI_DEVICE_RESET_CMD	0x01
  35#define DEFAULT_RESET_DELAY_MS	100
  36
  37static void rmi_free_function_list(struct rmi_device *rmi_dev)
  38{
  39	struct rmi_function *fn, *tmp;
  40	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  41
  42	data->f01_container = NULL;
  43
  44	/* Doing it in the reverse order so F01 will be removed last */
  45	list_for_each_entry_safe_reverse(fn, tmp,
  46					 &data->function_list, node) {
  47		list_del(&fn->node);
  48		rmi_unregister_function(fn);
  49	}
 
 
 
 
 
 
 
 
 
 
  50}
  51
  52static int reset_one_function(struct rmi_function *fn)
  53{
  54	struct rmi_function_handler *fh;
  55	int retval = 0;
  56
  57	if (!fn || !fn->dev.driver)
  58		return 0;
  59
  60	fh = to_rmi_function_handler(fn->dev.driver);
  61	if (fh->reset) {
  62		retval = fh->reset(fn);
  63		if (retval < 0)
  64			dev_err(&fn->dev, "Reset failed with code %d.\n",
  65				retval);
  66	}
  67
  68	return retval;
  69}
  70
  71static int configure_one_function(struct rmi_function *fn)
  72{
  73	struct rmi_function_handler *fh;
  74	int retval = 0;
  75
  76	if (!fn || !fn->dev.driver)
  77		return 0;
  78
  79	fh = to_rmi_function_handler(fn->dev.driver);
  80	if (fh->config) {
  81		retval = fh->config(fn);
  82		if (retval < 0)
  83			dev_err(&fn->dev, "Config failed with code %d.\n",
  84				retval);
  85	}
  86
  87	return retval;
  88}
  89
  90static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
  91{
  92	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  93	struct rmi_function *entry;
  94	int retval;
  95
  96	list_for_each_entry(entry, &data->function_list, node) {
  97		retval = reset_one_function(entry);
  98		if (retval < 0)
  99			return retval;
 100	}
 101
 102	return 0;
 103}
 104
 105static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
 106{
 107	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 108	struct rmi_function *entry;
 109	int retval;
 110
 111	list_for_each_entry(entry, &data->function_list, node) {
 112		retval = configure_one_function(entry);
 113		if (retval < 0)
 114			return retval;
 115	}
 116
 117	return 0;
 118}
 119
 120static void process_one_interrupt(struct rmi_driver_data *data,
 121				  struct rmi_function *fn)
 122{
 123	struct rmi_function_handler *fh;
 124
 125	if (!fn || !fn->dev.driver)
 126		return;
 127
 128	fh = to_rmi_function_handler(fn->dev.driver);
 129	if (fh->attention) {
 130		bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
 131				data->irq_count);
 132		if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
 133			fh->attention(fn, data->fn_irq_bits);
 134	}
 135}
 136
 137int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
 138{
 139	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 140	struct device *dev = &rmi_dev->dev;
 141	struct rmi_function *entry;
 142	int error;
 143
 144	if (!data)
 145		return 0;
 146
 147	if (!rmi_dev->xport->attn_data) {
 148		error = rmi_read_block(rmi_dev,
 149				data->f01_container->fd.data_base_addr + 1,
 150				data->irq_status, data->num_of_irq_regs);
 151		if (error < 0) {
 152			dev_err(dev, "Failed to read irqs, code=%d\n", error);
 153			return error;
 154		}
 155	}
 156
 157	mutex_lock(&data->irq_mutex);
 158	bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
 159	       data->irq_count);
 160	/*
 161	 * At this point, irq_status has all bits that are set in the
 162	 * interrupt status register and are enabled.
 163	 */
 164	mutex_unlock(&data->irq_mutex);
 165
 166	/*
 167	 * It would be nice to be able to use irq_chip to handle these
 168	 * nested IRQs.  Unfortunately, most of the current customers for
 169	 * this driver are using older kernels (3.0.x) that don't support
 170	 * the features required for that.  Once they've shifted to more
 171	 * recent kernels (say, 3.3 and higher), this should be switched to
 172	 * use irq_chip.
 173	 */
 174	list_for_each_entry(entry, &data->function_list, node)
 175		process_one_interrupt(data, entry);
 176
 177	if (data->input)
 178		input_sync(data->input);
 179
 180	return 0;
 181}
 182EXPORT_SYMBOL_GPL(rmi_process_interrupt_requests);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 183
 184static int suspend_one_function(struct rmi_function *fn)
 185{
 186	struct rmi_function_handler *fh;
 187	int retval = 0;
 188
 189	if (!fn || !fn->dev.driver)
 190		return 0;
 191
 192	fh = to_rmi_function_handler(fn->dev.driver);
 193	if (fh->suspend) {
 194		retval = fh->suspend(fn);
 195		if (retval < 0)
 196			dev_err(&fn->dev, "Suspend failed with code %d.\n",
 197				retval);
 198	}
 199
 200	return retval;
 201}
 202
 203static int rmi_suspend_functions(struct rmi_device *rmi_dev)
 204{
 205	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 206	struct rmi_function *entry;
 207	int retval;
 208
 209	list_for_each_entry(entry, &data->function_list, node) {
 210		retval = suspend_one_function(entry);
 211		if (retval < 0)
 212			return retval;
 213	}
 214
 215	return 0;
 216}
 217
 218static int resume_one_function(struct rmi_function *fn)
 219{
 220	struct rmi_function_handler *fh;
 221	int retval = 0;
 222
 223	if (!fn || !fn->dev.driver)
 224		return 0;
 225
 226	fh = to_rmi_function_handler(fn->dev.driver);
 227	if (fh->resume) {
 228		retval = fh->resume(fn);
 229		if (retval < 0)
 230			dev_err(&fn->dev, "Resume failed with code %d.\n",
 231				retval);
 232	}
 233
 234	return retval;
 235}
 236
 237static int rmi_resume_functions(struct rmi_device *rmi_dev)
 238{
 239	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 240	struct rmi_function *entry;
 241	int retval;
 242
 243	list_for_each_entry(entry, &data->function_list, node) {
 244		retval = resume_one_function(entry);
 245		if (retval < 0)
 246			return retval;
 247	}
 248
 249	return 0;
 250}
 251
 252static int enable_sensor(struct rmi_device *rmi_dev)
 253{
 254	int retval = 0;
 255
 256	retval = rmi_driver_process_config_requests(rmi_dev);
 257	if (retval < 0)
 258		return retval;
 259
 260	return rmi_process_interrupt_requests(rmi_dev);
 261}
 262
 263/**
 264 * rmi_driver_set_input_params - set input device id and other data.
 265 *
 266 * @rmi_dev: Pointer to an RMI device
 267 * @input: Pointer to input device
 268 *
 269 */
 270static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
 271				struct input_dev *input)
 272{
 273	input->name = SYNAPTICS_INPUT_DEVICE_NAME;
 274	input->id.vendor  = SYNAPTICS_VENDOR_ID;
 275	input->id.bustype = BUS_RMI;
 276	return 0;
 277}
 278
 279static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
 280				struct input_dev *input)
 281{
 282	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 283	char *device_name = rmi_f01_get_product_ID(data->f01_container);
 284	char *name;
 285
 286	name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
 287			      "Synaptics %s", device_name);
 288	if (!name)
 289		return;
 290
 291	input->name = name;
 292}
 293
 294static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
 295				   unsigned long *mask)
 296{
 297	int error = 0;
 298	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 299	struct device *dev = &rmi_dev->dev;
 300
 301	mutex_lock(&data->irq_mutex);
 302	bitmap_or(data->new_irq_mask,
 303		  data->current_irq_mask, mask, data->irq_count);
 304
 305	error = rmi_write_block(rmi_dev,
 306			data->f01_container->fd.control_base_addr + 1,
 307			data->new_irq_mask, data->num_of_irq_regs);
 308	if (error < 0) {
 309		dev_err(dev, "%s: Failed to change enabled interrupts!",
 310							__func__);
 311		goto error_unlock;
 312	}
 313	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
 314		    data->num_of_irq_regs);
 315
 316error_unlock:
 317	mutex_unlock(&data->irq_mutex);
 318	return error;
 319}
 320
 321static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
 322				     unsigned long *mask)
 323{
 324	int error = 0;
 325	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 326	struct device *dev = &rmi_dev->dev;
 327
 328	mutex_lock(&data->irq_mutex);
 329	bitmap_andnot(data->new_irq_mask,
 330		  data->current_irq_mask, mask, data->irq_count);
 331
 332	error = rmi_write_block(rmi_dev,
 333			data->f01_container->fd.control_base_addr + 1,
 334			data->new_irq_mask, data->num_of_irq_regs);
 335	if (error < 0) {
 336		dev_err(dev, "%s: Failed to change enabled interrupts!",
 337							__func__);
 338		goto error_unlock;
 339	}
 340	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
 341		    data->num_of_irq_regs);
 342
 343error_unlock:
 344	mutex_unlock(&data->irq_mutex);
 345	return error;
 346}
 347
 348static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
 349{
 350	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 351	int error;
 352
 353	/*
 354	 * Can get called before the driver is fully ready to deal with
 355	 * this situation.
 356	 */
 357	if (!data || !data->f01_container) {
 358		dev_warn(&rmi_dev->dev,
 359			 "Not ready to handle reset yet!\n");
 360		return 0;
 361	}
 362
 363	error = rmi_read_block(rmi_dev,
 364			       data->f01_container->fd.control_base_addr + 1,
 365			       data->current_irq_mask, data->num_of_irq_regs);
 366	if (error < 0) {
 367		dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
 368			__func__);
 369		return error;
 370	}
 371
 372	error = rmi_driver_process_reset_requests(rmi_dev);
 373	if (error < 0)
 374		return error;
 375
 376	error = rmi_driver_process_config_requests(rmi_dev);
 377	if (error < 0)
 378		return error;
 379
 380	return 0;
 381}
 382
 383int rmi_read_pdt_entry(struct rmi_device *rmi_dev, struct pdt_entry *entry,
 384			u16 pdt_address)
 385{
 386	u8 buf[RMI_PDT_ENTRY_SIZE];
 387	int error;
 388
 389	error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
 390	if (error) {
 391		dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
 392				pdt_address, error);
 393		return error;
 394	}
 395
 396	entry->page_start = pdt_address & RMI4_PAGE_MASK;
 397	entry->query_base_addr = buf[0];
 398	entry->command_base_addr = buf[1];
 399	entry->control_base_addr = buf[2];
 400	entry->data_base_addr = buf[3];
 401	entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
 402	entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
 403	entry->function_number = buf[5];
 404
 405	return 0;
 406}
 407EXPORT_SYMBOL_GPL(rmi_read_pdt_entry);
 408
 409static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
 410				      struct rmi_function_descriptor *fd)
 411{
 412	fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
 413	fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
 414	fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
 415	fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
 416	fd->function_number = pdt->function_number;
 417	fd->interrupt_source_count = pdt->interrupt_source_count;
 418	fd->function_version = pdt->function_version;
 419}
 420
 421#define RMI_SCAN_CONTINUE	0
 422#define RMI_SCAN_DONE		1
 423
 424static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
 425			     int page,
 
 426			     void *ctx,
 427			     int (*callback)(struct rmi_device *rmi_dev,
 428					     void *ctx,
 429					     const struct pdt_entry *entry))
 430{
 431	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 432	struct pdt_entry pdt_entry;
 433	u16 page_start = RMI4_PAGE_SIZE * page;
 434	u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
 435	u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
 436	u16 addr;
 437	int error;
 438	int retval;
 439
 440	for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
 441		error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
 442		if (error)
 443			return error;
 444
 445		if (RMI4_END_OF_PDT(pdt_entry.function_number))
 446			break;
 447
 448		retval = callback(rmi_dev, ctx, &pdt_entry);
 449		if (retval != RMI_SCAN_CONTINUE)
 450			return retval;
 451	}
 452
 453	return (data->f01_bootloader_mode || addr == pdt_start) ?
 
 
 
 
 
 
 
 
 
 454					RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
 455}
 456
 457static int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
 458			int (*callback)(struct rmi_device *rmi_dev,
 459					void *ctx,
 460					const struct pdt_entry *entry))
 461{
 462	int page;
 
 463	int retval = RMI_SCAN_DONE;
 464
 465	for (page = 0; page <= RMI4_MAX_PAGE; page++) {
 466		retval = rmi_scan_pdt_page(rmi_dev, page, ctx, callback);
 
 467		if (retval != RMI_SCAN_CONTINUE)
 468			break;
 469	}
 470
 471	return retval < 0 ? retval : 0;
 472}
 473
 474int rmi_read_register_desc(struct rmi_device *d, u16 addr,
 475				struct rmi_register_descriptor *rdesc)
 476{
 477	int ret;
 478	u8 size_presence_reg;
 479	u8 buf[35];
 480	int presense_offset = 1;
 481	u8 *struct_buf;
 482	int reg;
 483	int offset = 0;
 484	int map_offset = 0;
 485	int i;
 486	int b;
 487
 488	/*
 489	 * The first register of the register descriptor is the size of
 490	 * the register descriptor's presense register.
 491	 */
 492	ret = rmi_read(d, addr, &size_presence_reg);
 493	if (ret)
 494		return ret;
 495	++addr;
 496
 497	if (size_presence_reg < 0 || size_presence_reg > 35)
 498		return -EIO;
 499
 500	memset(buf, 0, sizeof(buf));
 501
 502	/*
 503	 * The presence register contains the size of the register structure
 504	 * and a bitmap which identified which packet registers are present
 505	 * for this particular register type (ie query, control, or data).
 506	 */
 507	ret = rmi_read_block(d, addr, buf, size_presence_reg);
 508	if (ret)
 509		return ret;
 510	++addr;
 511
 512	if (buf[0] == 0) {
 513		presense_offset = 3;
 514		rdesc->struct_size = buf[1] | (buf[2] << 8);
 515	} else {
 516		rdesc->struct_size = buf[0];
 517	}
 518
 519	for (i = presense_offset; i < size_presence_reg; i++) {
 520		for (b = 0; b < 8; b++) {
 521			if (buf[i] & (0x1 << b))
 522				bitmap_set(rdesc->presense_map, map_offset, 1);
 523			++map_offset;
 524		}
 525	}
 526
 527	rdesc->num_registers = bitmap_weight(rdesc->presense_map,
 528						RMI_REG_DESC_PRESENSE_BITS);
 529
 530	rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
 531				sizeof(struct rmi_register_desc_item),
 532				GFP_KERNEL);
 533	if (!rdesc->registers)
 534		return -ENOMEM;
 535
 536	/*
 537	 * Allocate a temporary buffer to hold the register structure.
 538	 * I'm not using devm_kzalloc here since it will not be retained
 539	 * after exiting this function
 540	 */
 541	struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
 542	if (!struct_buf)
 543		return -ENOMEM;
 544
 545	/*
 546	 * The register structure contains information about every packet
 547	 * register of this type. This includes the size of the packet
 548	 * register and a bitmap of all subpackets contained in the packet
 549	 * register.
 550	 */
 551	ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
 552	if (ret)
 553		goto free_struct_buff;
 554
 555	reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
 556	map_offset = 0;
 557	for (i = 0; i < rdesc->num_registers; i++) {
 558		struct rmi_register_desc_item *item = &rdesc->registers[i];
 559		int reg_size = struct_buf[offset];
 560
 561		++offset;
 562		if (reg_size == 0) {
 563			reg_size = struct_buf[offset] |
 564					(struct_buf[offset + 1] << 8);
 565			offset += 2;
 566		}
 567
 568		if (reg_size == 0) {
 569			reg_size = struct_buf[offset] |
 570					(struct_buf[offset + 1] << 8) |
 571					(struct_buf[offset + 2] << 16) |
 572					(struct_buf[offset + 3] << 24);
 573			offset += 4;
 574		}
 575
 576		item->reg = reg;
 577		item->reg_size = reg_size;
 578
 
 
 579		do {
 580			for (b = 0; b < 7; b++) {
 581				if (struct_buf[offset] & (0x1 << b))
 582					bitmap_set(item->subpacket_map,
 583						map_offset, 1);
 584				++map_offset;
 585			}
 586		} while (struct_buf[offset++] & 0x80);
 587
 588		item->num_subpackets = bitmap_weight(item->subpacket_map,
 589						RMI_REG_DESC_SUBPACKET_BITS);
 590
 591		rmi_dbg(RMI_DEBUG_CORE, &d->dev,
 592			"%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
 593			item->reg, item->reg_size, item->num_subpackets);
 594
 595		reg = find_next_bit(rdesc->presense_map,
 596				RMI_REG_DESC_PRESENSE_BITS, reg + 1);
 597	}
 598
 599free_struct_buff:
 600	kfree(struct_buf);
 601	return ret;
 602}
 603EXPORT_SYMBOL_GPL(rmi_read_register_desc);
 604
 605const struct rmi_register_desc_item *rmi_get_register_desc_item(
 606				struct rmi_register_descriptor *rdesc, u16 reg)
 607{
 608	const struct rmi_register_desc_item *item;
 609	int i;
 610
 611	for (i = 0; i < rdesc->num_registers; i++) {
 612		item = &rdesc->registers[i];
 613		if (item->reg == reg)
 614			return item;
 615	}
 616
 617	return NULL;
 618}
 619EXPORT_SYMBOL_GPL(rmi_get_register_desc_item);
 620
 621size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
 622{
 623	const struct rmi_register_desc_item *item;
 624	int i;
 625	size_t size = 0;
 626
 627	for (i = 0; i < rdesc->num_registers; i++) {
 628		item = &rdesc->registers[i];
 629		size += item->reg_size;
 630	}
 631	return size;
 632}
 633EXPORT_SYMBOL_GPL(rmi_register_desc_calc_size);
 634
 635/* Compute the register offset relative to the base address */
 636int rmi_register_desc_calc_reg_offset(
 637		struct rmi_register_descriptor *rdesc, u16 reg)
 638{
 639	const struct rmi_register_desc_item *item;
 640	int offset = 0;
 641	int i;
 642
 643	for (i = 0; i < rdesc->num_registers; i++) {
 644		item = &rdesc->registers[i];
 645		if (item->reg == reg)
 646			return offset;
 647		++offset;
 648	}
 649	return -1;
 650}
 651EXPORT_SYMBOL_GPL(rmi_register_desc_calc_reg_offset);
 652
 653bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
 654	u8 subpacket)
 655{
 656	return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
 657				subpacket) == subpacket;
 658}
 659
 660/* Indicates that flash programming is enabled (bootloader mode). */
 661#define RMI_F01_STATUS_BOOTLOADER(status)	(!!((status) & 0x40))
 662
 663/*
 664 * Given the PDT entry for F01, read the device status register to determine
 665 * if we're stuck in bootloader mode or not.
 666 *
 667 */
 668static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
 669				     const struct pdt_entry *pdt)
 670{
 671	int error;
 672	u8 device_status;
 
 673
 674	error = rmi_read(rmi_dev, pdt->data_base_addr + pdt->page_start,
 675			 &device_status);
 676	if (error) {
 677		dev_err(&rmi_dev->dev,
 678			"Failed to read device status: %d.\n", error);
 679		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 680	}
 681
 682	return RMI_F01_STATUS_BOOTLOADER(device_status);
 683}
 684
 685static int rmi_count_irqs(struct rmi_device *rmi_dev,
 686			 void *ctx, const struct pdt_entry *pdt)
 687{
 688	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 689	int *irq_count = ctx;
 
 690
 691	*irq_count += pdt->interrupt_source_count;
 692	if (pdt->function_number == 0x01) {
 693		data->f01_bootloader_mode =
 694			rmi_check_bootloader_mode(rmi_dev, pdt);
 695		if (data->f01_bootloader_mode)
 696			dev_warn(&rmi_dev->dev,
 697				"WARNING: RMI4 device is in bootloader mode!\n");
 698	}
 699
 700	return RMI_SCAN_CONTINUE;
 701}
 702
 703static int rmi_initial_reset(struct rmi_device *rmi_dev,
 704			     void *ctx, const struct pdt_entry *pdt)
 705{
 706	int error;
 707
 708	if (pdt->function_number == 0x01) {
 709		u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
 710		u8 cmd_buf = RMI_DEVICE_RESET_CMD;
 711		const struct rmi_device_platform_data *pdata =
 712				rmi_get_platform_data(rmi_dev);
 713
 714		if (rmi_dev->xport->ops->reset) {
 715			error = rmi_dev->xport->ops->reset(rmi_dev->xport,
 716								cmd_addr);
 717			if (error)
 718				return error;
 719
 720			return RMI_SCAN_DONE;
 721		}
 722
 
 723		error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
 724		if (error) {
 725			dev_err(&rmi_dev->dev,
 726				"Initial reset failed. Code = %d.\n", error);
 727			return error;
 728		}
 729
 730		mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
 731
 732		return RMI_SCAN_DONE;
 733	}
 734
 735	/* F01 should always be on page 0. If we don't find it there, fail. */
 736	return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
 737}
 738
 739static int rmi_create_function(struct rmi_device *rmi_dev,
 740			       void *ctx, const struct pdt_entry *pdt)
 741{
 742	struct device *dev = &rmi_dev->dev;
 743	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 744	int *current_irq_count = ctx;
 745	struct rmi_function *fn;
 746	int i;
 747	int error;
 748
 749	rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
 750			pdt->function_number);
 751
 752	fn = kzalloc(sizeof(struct rmi_function) +
 753			BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
 754		     GFP_KERNEL);
 755	if (!fn) {
 756		dev_err(dev, "Failed to allocate memory for F%02X\n",
 757			pdt->function_number);
 758		return -ENOMEM;
 759	}
 760
 761	INIT_LIST_HEAD(&fn->node);
 762	rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
 763
 764	fn->rmi_dev = rmi_dev;
 765
 766	fn->num_of_irqs = pdt->interrupt_source_count;
 767	fn->irq_pos = *current_irq_count;
 768	*current_irq_count += fn->num_of_irqs;
 769
 770	for (i = 0; i < fn->num_of_irqs; i++)
 771		set_bit(fn->irq_pos + i, fn->irq_mask);
 772
 773	error = rmi_register_function(fn);
 774	if (error)
 775		goto err_put_fn;
 776
 777	if (pdt->function_number == 0x01)
 778		data->f01_container = fn;
 
 
 779
 780	list_add_tail(&fn->node, &data->function_list);
 781
 782	return RMI_SCAN_CONTINUE;
 783
 784err_put_fn:
 785	put_device(&fn->dev);
 786	return error;
 787}
 788
 789int rmi_driver_suspend(struct rmi_device *rmi_dev)
 790{
 791	int retval = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792
 793	retval = rmi_suspend_functions(rmi_dev);
 794	if (retval)
 795		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
 796			retval);
 797
 
 798	return retval;
 799}
 800EXPORT_SYMBOL_GPL(rmi_driver_suspend);
 801
 802int rmi_driver_resume(struct rmi_device *rmi_dev)
 803{
 804	int retval;
 805
 
 
 806	retval = rmi_resume_functions(rmi_dev);
 807	if (retval)
 808		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
 809			retval);
 810
 811	return retval;
 812}
 813EXPORT_SYMBOL_GPL(rmi_driver_resume);
 814
 815static int rmi_driver_remove(struct device *dev)
 816{
 817	struct rmi_device *rmi_dev = to_rmi_device(dev);
 818
 
 
 
 819	rmi_free_function_list(rmi_dev);
 820
 821	return 0;
 822}
 823
 824#ifdef CONFIG_OF
 825static int rmi_driver_of_probe(struct device *dev,
 826				struct rmi_device_platform_data *pdata)
 827{
 828	int retval;
 829
 830	retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
 831					"syna,reset-delay-ms", 1);
 832	if (retval)
 833		return retval;
 834
 835	return 0;
 836}
 837#else
 838static inline int rmi_driver_of_probe(struct device *dev,
 839					struct rmi_device_platform_data *pdata)
 840{
 841	return -ENODEV;
 842}
 843#endif
 844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845static int rmi_driver_probe(struct device *dev)
 846{
 847	struct rmi_driver *rmi_driver;
 848	struct rmi_driver_data *data;
 849	struct rmi_device_platform_data *pdata;
 850	struct rmi_device *rmi_dev;
 851	size_t size;
 852	void *irq_memory;
 853	int irq_count;
 854	int retval;
 855
 856	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
 857			__func__);
 858
 859	if (!rmi_is_physical_device(dev)) {
 860		rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
 861		return -ENODEV;
 862	}
 863
 864	rmi_dev = to_rmi_device(dev);
 865	rmi_driver = to_rmi_driver(dev->driver);
 866	rmi_dev->driver = rmi_driver;
 867
 868	pdata = rmi_get_platform_data(rmi_dev);
 869
 870	if (rmi_dev->xport->dev->of_node) {
 871		retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
 872		if (retval)
 873			return retval;
 874	}
 875
 876	data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
 877	if (!data)
 878		return -ENOMEM;
 879
 880	INIT_LIST_HEAD(&data->function_list);
 881	data->rmi_dev = rmi_dev;
 882	dev_set_drvdata(&rmi_dev->dev, data);
 883
 884	/*
 885	 * Right before a warm boot, the sensor might be in some unusual state,
 886	 * such as F54 diagnostics, or F34 bootloader mode after a firmware
 887	 * or configuration update.  In order to clear the sensor to a known
 888	 * state and/or apply any updates, we issue a initial reset to clear any
 889	 * previous settings and force it into normal operation.
 890	 *
 891	 * We have to do this before actually building the PDT because
 892	 * the reflash updates (if any) might cause various registers to move
 893	 * around.
 894	 *
 895	 * For a number of reasons, this initial reset may fail to return
 896	 * within the specified time, but we'll still be able to bring up the
 897	 * driver normally after that failure.  This occurs most commonly in
 898	 * a cold boot situation (where then firmware takes longer to come up
 899	 * than from a warm boot) and the reset_delay_ms in the platform data
 900	 * has been set too short to accommodate that.  Since the sensor will
 901	 * eventually come up and be usable, we don't want to just fail here
 902	 * and leave the customer's device unusable.  So we warn them, and
 903	 * continue processing.
 904	 */
 905	retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
 906	if (retval < 0)
 907		dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
 908
 909	retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
 910	if (retval < 0) {
 911		/*
 912		 * we'll print out a warning and continue since
 913		 * failure to get the PDT properties is not a cause to fail
 914		 */
 915		dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
 916			 PDT_PROPERTIES_LOCATION, retval);
 917	}
 918
 919	/*
 920	 * We need to count the IRQs and allocate their storage before scanning
 921	 * the PDT and creating the function entries, because adding a new
 922	 * function can trigger events that result in the IRQ related storage
 923	 * being accessed.
 924	 */
 925	rmi_dbg(RMI_DEBUG_CORE, dev, "Counting IRQs.\n");
 926	irq_count = 0;
 927	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
 928	if (retval < 0) {
 929		dev_err(dev, "IRQ counting failed with code %d.\n", retval);
 930		goto err;
 931	}
 932	data->irq_count = irq_count;
 933	data->num_of_irq_regs = (data->irq_count + 7) / 8;
 934
 935	mutex_init(&data->irq_mutex);
 
 936
 937	size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
 938	irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
 939	if (!irq_memory) {
 940		dev_err(dev, "Failed to allocate memory for irq masks.\n");
 941		goto err;
 942	}
 943
 944	data->irq_status	= irq_memory + size * 0;
 945	data->fn_irq_bits	= irq_memory + size * 1;
 946	data->current_irq_mask	= irq_memory + size * 2;
 947	data->new_irq_mask	= irq_memory + size * 3;
 948
 949	if (rmi_dev->xport->input) {
 950		/*
 951		 * The transport driver already has an input device.
 952		 * In some cases it is preferable to reuse the transport
 953		 * devices input device instead of creating a new one here.
 954		 * One example is some HID touchpads report "pass-through"
 955		 * button events are not reported by rmi registers.
 956		 */
 957		data->input = rmi_dev->xport->input;
 958	} else {
 959		data->input = devm_input_allocate_device(dev);
 960		if (!data->input) {
 961			dev_err(dev, "%s: Failed to allocate input device.\n",
 962				__func__);
 963			retval = -ENOMEM;
 964			goto err_destroy_functions;
 965		}
 966		rmi_driver_set_input_params(rmi_dev, data->input);
 967		data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
 968						"%s/input0", dev_name(dev));
 969	}
 970
 971	irq_count = 0;
 972	rmi_dbg(RMI_DEBUG_CORE, dev, "Creating functions.");
 973	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
 974	if (retval < 0) {
 975		dev_err(dev, "Function creation failed with code %d.\n",
 976			retval);
 977		goto err_destroy_functions;
 978	}
 979
 980	if (!data->f01_container) {
 981		dev_err(dev, "Missing F01 container!\n");
 982		retval = -EINVAL;
 983		goto err_destroy_functions;
 984	}
 985
 986	retval = rmi_read_block(rmi_dev,
 987				data->f01_container->fd.control_base_addr + 1,
 988				data->current_irq_mask, data->num_of_irq_regs);
 989	if (retval < 0) {
 990		dev_err(dev, "%s: Failed to read current IRQ mask.\n",
 991			__func__);
 992		goto err_destroy_functions;
 993	}
 994
 995	if (data->input) {
 996		rmi_driver_set_input_name(rmi_dev, data->input);
 997		if (!rmi_dev->xport->input) {
 998			if (input_register_device(data->input)) {
 999				dev_err(dev, "%s: Failed to register input device.\n",
1000					__func__);
1001				goto err_destroy_functions;
1002			}
1003		}
1004	}
1005
1006	if (data->f01_container->dev.driver)
 
 
 
 
1007		/* Driver already bound, so enable ATTN now. */
1008		return enable_sensor(rmi_dev);
 
 
 
1009
1010	return 0;
1011
 
 
1012err_destroy_functions:
1013	rmi_free_function_list(rmi_dev);
1014err:
1015	return retval < 0 ? retval : 0;
1016}
1017
1018static struct rmi_driver rmi_physical_driver = {
1019	.driver = {
1020		.owner	= THIS_MODULE,
1021		.name	= "rmi4_physical",
1022		.bus	= &rmi_bus_type,
1023		.probe = rmi_driver_probe,
1024		.remove = rmi_driver_remove,
1025	},
1026	.reset_handler = rmi_driver_reset_handler,
1027	.clear_irq_bits = rmi_driver_clear_irq_bits,
1028	.set_irq_bits = rmi_driver_set_irq_bits,
1029	.set_input_params = rmi_driver_set_input_params,
1030};
1031
1032bool rmi_is_physical_driver(struct device_driver *drv)
1033{
1034	return drv == &rmi_physical_driver.driver;
1035}
1036
1037int __init rmi_register_physical_driver(void)
1038{
1039	int error;
1040
1041	error = driver_register(&rmi_physical_driver.driver);
1042	if (error) {
1043		pr_err("%s: driver register failed, code=%d.\n", __func__,
1044		       error);
1045		return error;
1046	}
1047
1048	return 0;
1049}
1050
1051void __exit rmi_unregister_physical_driver(void)
1052{
1053	driver_unregister(&rmi_physical_driver.driver);
1054}
v4.17
   1/*
   2 * Copyright (c) 2011-2016 Synaptics Incorporated
   3 * Copyright (c) 2011 Unixphere
   4 *
   5 * This driver provides the core support for a single RMI4-based device.
   6 *
   7 * The RMI4 specification can be found here (URL split for line length):
   8 *
   9 * http://www.synaptics.com/sites/default/files/
  10 *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
  11 *
  12 * This program is free software; you can redistribute it and/or modify it
  13 * under the terms of the GNU General Public License version 2 as published by
  14 * the Free Software Foundation.
  15 */
  16
  17#include <linux/bitmap.h>
  18#include <linux/delay.h>
  19#include <linux/fs.h>
  20#include <linux/irq.h>
  21#include <linux/pm.h>
  22#include <linux/slab.h>
  23#include <linux/of.h>
  24#include <uapi/linux/input.h>
  25#include <linux/rmi.h>
  26#include "rmi_bus.h"
  27#include "rmi_driver.h"
  28
  29#define HAS_NONSTANDARD_PDT_MASK 0x40
  30#define RMI4_MAX_PAGE 0xff
  31#define RMI4_PAGE_SIZE 0x100
  32#define RMI4_PAGE_MASK 0xFF00
  33
  34#define RMI_DEVICE_RESET_CMD	0x01
  35#define DEFAULT_RESET_DELAY_MS	100
  36
  37void rmi_free_function_list(struct rmi_device *rmi_dev)
  38{
  39	struct rmi_function *fn, *tmp;
  40	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  41
  42	rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
  43
  44	/* Doing it in the reverse order so F01 will be removed last */
  45	list_for_each_entry_safe_reverse(fn, tmp,
  46					 &data->function_list, node) {
  47		list_del(&fn->node);
  48		rmi_unregister_function(fn);
  49	}
  50
  51	devm_kfree(&rmi_dev->dev, data->irq_memory);
  52	data->irq_memory = NULL;
  53	data->irq_status = NULL;
  54	data->fn_irq_bits = NULL;
  55	data->current_irq_mask = NULL;
  56	data->new_irq_mask = NULL;
  57
  58	data->f01_container = NULL;
  59	data->f34_container = NULL;
  60}
  61
  62static int reset_one_function(struct rmi_function *fn)
  63{
  64	struct rmi_function_handler *fh;
  65	int retval = 0;
  66
  67	if (!fn || !fn->dev.driver)
  68		return 0;
  69
  70	fh = to_rmi_function_handler(fn->dev.driver);
  71	if (fh->reset) {
  72		retval = fh->reset(fn);
  73		if (retval < 0)
  74			dev_err(&fn->dev, "Reset failed with code %d.\n",
  75				retval);
  76	}
  77
  78	return retval;
  79}
  80
  81static int configure_one_function(struct rmi_function *fn)
  82{
  83	struct rmi_function_handler *fh;
  84	int retval = 0;
  85
  86	if (!fn || !fn->dev.driver)
  87		return 0;
  88
  89	fh = to_rmi_function_handler(fn->dev.driver);
  90	if (fh->config) {
  91		retval = fh->config(fn);
  92		if (retval < 0)
  93			dev_err(&fn->dev, "Config failed with code %d.\n",
  94				retval);
  95	}
  96
  97	return retval;
  98}
  99
 100static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
 101{
 102	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 103	struct rmi_function *entry;
 104	int retval;
 105
 106	list_for_each_entry(entry, &data->function_list, node) {
 107		retval = reset_one_function(entry);
 108		if (retval < 0)
 109			return retval;
 110	}
 111
 112	return 0;
 113}
 114
 115static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
 116{
 117	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 118	struct rmi_function *entry;
 119	int retval;
 120
 121	list_for_each_entry(entry, &data->function_list, node) {
 122		retval = configure_one_function(entry);
 123		if (retval < 0)
 124			return retval;
 125	}
 126
 127	return 0;
 128}
 129
 130static void process_one_interrupt(struct rmi_driver_data *data,
 131				  struct rmi_function *fn)
 132{
 133	struct rmi_function_handler *fh;
 134
 135	if (!fn || !fn->dev.driver)
 136		return;
 137
 138	fh = to_rmi_function_handler(fn->dev.driver);
 139	if (fh->attention) {
 140		bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
 141				data->irq_count);
 142		if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
 143			fh->attention(fn, data->fn_irq_bits);
 144	}
 145}
 146
 147static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
 148{
 149	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 150	struct device *dev = &rmi_dev->dev;
 151	struct rmi_function *entry;
 152	int error;
 153
 154	if (!data)
 155		return 0;
 156
 157	if (!data->attn_data.data) {
 158		error = rmi_read_block(rmi_dev,
 159				data->f01_container->fd.data_base_addr + 1,
 160				data->irq_status, data->num_of_irq_regs);
 161		if (error < 0) {
 162			dev_err(dev, "Failed to read irqs, code=%d\n", error);
 163			return error;
 164		}
 165	}
 166
 167	mutex_lock(&data->irq_mutex);
 168	bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
 169	       data->irq_count);
 170	/*
 171	 * At this point, irq_status has all bits that are set in the
 172	 * interrupt status register and are enabled.
 173	 */
 174	mutex_unlock(&data->irq_mutex);
 175
 176	/*
 177	 * It would be nice to be able to use irq_chip to handle these
 178	 * nested IRQs.  Unfortunately, most of the current customers for
 179	 * this driver are using older kernels (3.0.x) that don't support
 180	 * the features required for that.  Once they've shifted to more
 181	 * recent kernels (say, 3.3 and higher), this should be switched to
 182	 * use irq_chip.
 183	 */
 184	list_for_each_entry(entry, &data->function_list, node)
 185		process_one_interrupt(data, entry);
 186
 187	if (data->input)
 188		input_sync(data->input);
 189
 190	return 0;
 191}
 192
 193void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
 194		       void *data, size_t size)
 195{
 196	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
 197	struct rmi4_attn_data attn_data;
 198	void *fifo_data;
 199
 200	if (!drvdata->enabled)
 201		return;
 202
 203	fifo_data = kmemdup(data, size, GFP_ATOMIC);
 204	if (!fifo_data)
 205		return;
 206
 207	attn_data.irq_status = irq_status;
 208	attn_data.size = size;
 209	attn_data.data = fifo_data;
 210
 211	kfifo_put(&drvdata->attn_fifo, attn_data);
 212}
 213EXPORT_SYMBOL_GPL(rmi_set_attn_data);
 214
 215static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
 216{
 217	struct rmi_device *rmi_dev = dev_id;
 218	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
 219	struct rmi4_attn_data attn_data = {0};
 220	int ret, count;
 221
 222	count = kfifo_get(&drvdata->attn_fifo, &attn_data);
 223	if (count) {
 224		*(drvdata->irq_status) = attn_data.irq_status;
 225		drvdata->attn_data = attn_data;
 226	}
 227
 228	ret = rmi_process_interrupt_requests(rmi_dev);
 229	if (ret)
 230		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
 231			"Failed to process interrupt request: %d\n", ret);
 232
 233	if (count) {
 234		kfree(attn_data.data);
 235		attn_data.data = NULL;
 236	}
 237
 238	if (!kfifo_is_empty(&drvdata->attn_fifo))
 239		return rmi_irq_fn(irq, dev_id);
 240
 241	return IRQ_HANDLED;
 242}
 243
 244static int rmi_irq_init(struct rmi_device *rmi_dev)
 245{
 246	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
 247	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 248	int irq_flags = irq_get_trigger_type(pdata->irq);
 249	int ret;
 250
 251	if (!irq_flags)
 252		irq_flags = IRQF_TRIGGER_LOW;
 253
 254	ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
 255					rmi_irq_fn, irq_flags | IRQF_ONESHOT,
 256					dev_driver_string(rmi_dev->xport->dev),
 257					rmi_dev);
 258	if (ret < 0) {
 259		dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
 260			pdata->irq);
 261
 262		return ret;
 263	}
 264
 265	data->enabled = true;
 266
 267	return 0;
 268}
 269
 270struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
 271{
 272	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 273	struct rmi_function *entry;
 274
 275	list_for_each_entry(entry, &data->function_list, node) {
 276		if (entry->fd.function_number == number)
 277			return entry;
 278	}
 279
 280	return NULL;
 281}
 282
 283static int suspend_one_function(struct rmi_function *fn)
 284{
 285	struct rmi_function_handler *fh;
 286	int retval = 0;
 287
 288	if (!fn || !fn->dev.driver)
 289		return 0;
 290
 291	fh = to_rmi_function_handler(fn->dev.driver);
 292	if (fh->suspend) {
 293		retval = fh->suspend(fn);
 294		if (retval < 0)
 295			dev_err(&fn->dev, "Suspend failed with code %d.\n",
 296				retval);
 297	}
 298
 299	return retval;
 300}
 301
 302static int rmi_suspend_functions(struct rmi_device *rmi_dev)
 303{
 304	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 305	struct rmi_function *entry;
 306	int retval;
 307
 308	list_for_each_entry(entry, &data->function_list, node) {
 309		retval = suspend_one_function(entry);
 310		if (retval < 0)
 311			return retval;
 312	}
 313
 314	return 0;
 315}
 316
 317static int resume_one_function(struct rmi_function *fn)
 318{
 319	struct rmi_function_handler *fh;
 320	int retval = 0;
 321
 322	if (!fn || !fn->dev.driver)
 323		return 0;
 324
 325	fh = to_rmi_function_handler(fn->dev.driver);
 326	if (fh->resume) {
 327		retval = fh->resume(fn);
 328		if (retval < 0)
 329			dev_err(&fn->dev, "Resume failed with code %d.\n",
 330				retval);
 331	}
 332
 333	return retval;
 334}
 335
 336static int rmi_resume_functions(struct rmi_device *rmi_dev)
 337{
 338	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 339	struct rmi_function *entry;
 340	int retval;
 341
 342	list_for_each_entry(entry, &data->function_list, node) {
 343		retval = resume_one_function(entry);
 344		if (retval < 0)
 345			return retval;
 346	}
 347
 348	return 0;
 349}
 350
 351int rmi_enable_sensor(struct rmi_device *rmi_dev)
 352{
 353	int retval = 0;
 354
 355	retval = rmi_driver_process_config_requests(rmi_dev);
 356	if (retval < 0)
 357		return retval;
 358
 359	return rmi_process_interrupt_requests(rmi_dev);
 360}
 361
 362/**
 363 * rmi_driver_set_input_params - set input device id and other data.
 364 *
 365 * @rmi_dev: Pointer to an RMI device
 366 * @input: Pointer to input device
 367 *
 368 */
 369static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
 370				struct input_dev *input)
 371{
 372	input->name = SYNAPTICS_INPUT_DEVICE_NAME;
 373	input->id.vendor  = SYNAPTICS_VENDOR_ID;
 374	input->id.bustype = BUS_RMI;
 375	return 0;
 376}
 377
 378static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
 379				struct input_dev *input)
 380{
 381	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 382	const char *device_name = rmi_f01_get_product_ID(data->f01_container);
 383	char *name;
 384
 385	name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
 386			      "Synaptics %s", device_name);
 387	if (!name)
 388		return;
 389
 390	input->name = name;
 391}
 392
 393static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
 394				   unsigned long *mask)
 395{
 396	int error = 0;
 397	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 398	struct device *dev = &rmi_dev->dev;
 399
 400	mutex_lock(&data->irq_mutex);
 401	bitmap_or(data->new_irq_mask,
 402		  data->current_irq_mask, mask, data->irq_count);
 403
 404	error = rmi_write_block(rmi_dev,
 405			data->f01_container->fd.control_base_addr + 1,
 406			data->new_irq_mask, data->num_of_irq_regs);
 407	if (error < 0) {
 408		dev_err(dev, "%s: Failed to change enabled interrupts!",
 409							__func__);
 410		goto error_unlock;
 411	}
 412	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
 413		    data->num_of_irq_regs);
 414
 415error_unlock:
 416	mutex_unlock(&data->irq_mutex);
 417	return error;
 418}
 419
 420static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
 421				     unsigned long *mask)
 422{
 423	int error = 0;
 424	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 425	struct device *dev = &rmi_dev->dev;
 426
 427	mutex_lock(&data->irq_mutex);
 428	bitmap_andnot(data->new_irq_mask,
 429		  data->current_irq_mask, mask, data->irq_count);
 430
 431	error = rmi_write_block(rmi_dev,
 432			data->f01_container->fd.control_base_addr + 1,
 433			data->new_irq_mask, data->num_of_irq_regs);
 434	if (error < 0) {
 435		dev_err(dev, "%s: Failed to change enabled interrupts!",
 436							__func__);
 437		goto error_unlock;
 438	}
 439	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
 440		    data->num_of_irq_regs);
 441
 442error_unlock:
 443	mutex_unlock(&data->irq_mutex);
 444	return error;
 445}
 446
 447static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
 448{
 449	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 450	int error;
 451
 452	/*
 453	 * Can get called before the driver is fully ready to deal with
 454	 * this situation.
 455	 */
 456	if (!data || !data->f01_container) {
 457		dev_warn(&rmi_dev->dev,
 458			 "Not ready to handle reset yet!\n");
 459		return 0;
 460	}
 461
 462	error = rmi_read_block(rmi_dev,
 463			       data->f01_container->fd.control_base_addr + 1,
 464			       data->current_irq_mask, data->num_of_irq_regs);
 465	if (error < 0) {
 466		dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
 467			__func__);
 468		return error;
 469	}
 470
 471	error = rmi_driver_process_reset_requests(rmi_dev);
 472	if (error < 0)
 473		return error;
 474
 475	error = rmi_driver_process_config_requests(rmi_dev);
 476	if (error < 0)
 477		return error;
 478
 479	return 0;
 480}
 481
 482static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
 483			      struct pdt_entry *entry, u16 pdt_address)
 484{
 485	u8 buf[RMI_PDT_ENTRY_SIZE];
 486	int error;
 487
 488	error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
 489	if (error) {
 490		dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
 491				pdt_address, error);
 492		return error;
 493	}
 494
 495	entry->page_start = pdt_address & RMI4_PAGE_MASK;
 496	entry->query_base_addr = buf[0];
 497	entry->command_base_addr = buf[1];
 498	entry->control_base_addr = buf[2];
 499	entry->data_base_addr = buf[3];
 500	entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
 501	entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
 502	entry->function_number = buf[5];
 503
 504	return 0;
 505}
 
 506
 507static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
 508				      struct rmi_function_descriptor *fd)
 509{
 510	fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
 511	fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
 512	fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
 513	fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
 514	fd->function_number = pdt->function_number;
 515	fd->interrupt_source_count = pdt->interrupt_source_count;
 516	fd->function_version = pdt->function_version;
 517}
 518
 519#define RMI_SCAN_CONTINUE	0
 520#define RMI_SCAN_DONE		1
 521
 522static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
 523			     int page,
 524			     int *empty_pages,
 525			     void *ctx,
 526			     int (*callback)(struct rmi_device *rmi_dev,
 527					     void *ctx,
 528					     const struct pdt_entry *entry))
 529{
 530	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 531	struct pdt_entry pdt_entry;
 532	u16 page_start = RMI4_PAGE_SIZE * page;
 533	u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
 534	u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
 535	u16 addr;
 536	int error;
 537	int retval;
 538
 539	for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
 540		error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
 541		if (error)
 542			return error;
 543
 544		if (RMI4_END_OF_PDT(pdt_entry.function_number))
 545			break;
 546
 547		retval = callback(rmi_dev, ctx, &pdt_entry);
 548		if (retval != RMI_SCAN_CONTINUE)
 549			return retval;
 550	}
 551
 552	/*
 553	 * Count number of empty PDT pages. If a gap of two pages
 554	 * or more is found, stop scanning.
 555	 */
 556	if (addr == pdt_start)
 557		++*empty_pages;
 558	else
 559		*empty_pages = 0;
 560
 561	return (data->bootloader_mode || *empty_pages >= 2) ?
 562					RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
 563}
 564
 565int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
 566		 int (*callback)(struct rmi_device *rmi_dev,
 567		 void *ctx, const struct pdt_entry *entry))
 
 568{
 569	int page;
 570	int empty_pages = 0;
 571	int retval = RMI_SCAN_DONE;
 572
 573	for (page = 0; page <= RMI4_MAX_PAGE; page++) {
 574		retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
 575					   ctx, callback);
 576		if (retval != RMI_SCAN_CONTINUE)
 577			break;
 578	}
 579
 580	return retval < 0 ? retval : 0;
 581}
 582
 583int rmi_read_register_desc(struct rmi_device *d, u16 addr,
 584				struct rmi_register_descriptor *rdesc)
 585{
 586	int ret;
 587	u8 size_presence_reg;
 588	u8 buf[35];
 589	int presense_offset = 1;
 590	u8 *struct_buf;
 591	int reg;
 592	int offset = 0;
 593	int map_offset = 0;
 594	int i;
 595	int b;
 596
 597	/*
 598	 * The first register of the register descriptor is the size of
 599	 * the register descriptor's presense register.
 600	 */
 601	ret = rmi_read(d, addr, &size_presence_reg);
 602	if (ret)
 603		return ret;
 604	++addr;
 605
 606	if (size_presence_reg < 0 || size_presence_reg > 35)
 607		return -EIO;
 608
 609	memset(buf, 0, sizeof(buf));
 610
 611	/*
 612	 * The presence register contains the size of the register structure
 613	 * and a bitmap which identified which packet registers are present
 614	 * for this particular register type (ie query, control, or data).
 615	 */
 616	ret = rmi_read_block(d, addr, buf, size_presence_reg);
 617	if (ret)
 618		return ret;
 619	++addr;
 620
 621	if (buf[0] == 0) {
 622		presense_offset = 3;
 623		rdesc->struct_size = buf[1] | (buf[2] << 8);
 624	} else {
 625		rdesc->struct_size = buf[0];
 626	}
 627
 628	for (i = presense_offset; i < size_presence_reg; i++) {
 629		for (b = 0; b < 8; b++) {
 630			if (buf[i] & (0x1 << b))
 631				bitmap_set(rdesc->presense_map, map_offset, 1);
 632			++map_offset;
 633		}
 634	}
 635
 636	rdesc->num_registers = bitmap_weight(rdesc->presense_map,
 637						RMI_REG_DESC_PRESENSE_BITS);
 638
 639	rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
 640				sizeof(struct rmi_register_desc_item),
 641				GFP_KERNEL);
 642	if (!rdesc->registers)
 643		return -ENOMEM;
 644
 645	/*
 646	 * Allocate a temporary buffer to hold the register structure.
 647	 * I'm not using devm_kzalloc here since it will not be retained
 648	 * after exiting this function
 649	 */
 650	struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
 651	if (!struct_buf)
 652		return -ENOMEM;
 653
 654	/*
 655	 * The register structure contains information about every packet
 656	 * register of this type. This includes the size of the packet
 657	 * register and a bitmap of all subpackets contained in the packet
 658	 * register.
 659	 */
 660	ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
 661	if (ret)
 662		goto free_struct_buff;
 663
 664	reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
 
 665	for (i = 0; i < rdesc->num_registers; i++) {
 666		struct rmi_register_desc_item *item = &rdesc->registers[i];
 667		int reg_size = struct_buf[offset];
 668
 669		++offset;
 670		if (reg_size == 0) {
 671			reg_size = struct_buf[offset] |
 672					(struct_buf[offset + 1] << 8);
 673			offset += 2;
 674		}
 675
 676		if (reg_size == 0) {
 677			reg_size = struct_buf[offset] |
 678					(struct_buf[offset + 1] << 8) |
 679					(struct_buf[offset + 2] << 16) |
 680					(struct_buf[offset + 3] << 24);
 681			offset += 4;
 682		}
 683
 684		item->reg = reg;
 685		item->reg_size = reg_size;
 686
 687		map_offset = 0;
 688
 689		do {
 690			for (b = 0; b < 7; b++) {
 691				if (struct_buf[offset] & (0x1 << b))
 692					bitmap_set(item->subpacket_map,
 693						map_offset, 1);
 694				++map_offset;
 695			}
 696		} while (struct_buf[offset++] & 0x80);
 697
 698		item->num_subpackets = bitmap_weight(item->subpacket_map,
 699						RMI_REG_DESC_SUBPACKET_BITS);
 700
 701		rmi_dbg(RMI_DEBUG_CORE, &d->dev,
 702			"%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
 703			item->reg, item->reg_size, item->num_subpackets);
 704
 705		reg = find_next_bit(rdesc->presense_map,
 706				RMI_REG_DESC_PRESENSE_BITS, reg + 1);
 707	}
 708
 709free_struct_buff:
 710	kfree(struct_buf);
 711	return ret;
 712}
 
 713
 714const struct rmi_register_desc_item *rmi_get_register_desc_item(
 715				struct rmi_register_descriptor *rdesc, u16 reg)
 716{
 717	const struct rmi_register_desc_item *item;
 718	int i;
 719
 720	for (i = 0; i < rdesc->num_registers; i++) {
 721		item = &rdesc->registers[i];
 722		if (item->reg == reg)
 723			return item;
 724	}
 725
 726	return NULL;
 727}
 
 728
 729size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
 730{
 731	const struct rmi_register_desc_item *item;
 732	int i;
 733	size_t size = 0;
 734
 735	for (i = 0; i < rdesc->num_registers; i++) {
 736		item = &rdesc->registers[i];
 737		size += item->reg_size;
 738	}
 739	return size;
 740}
 
 741
 742/* Compute the register offset relative to the base address */
 743int rmi_register_desc_calc_reg_offset(
 744		struct rmi_register_descriptor *rdesc, u16 reg)
 745{
 746	const struct rmi_register_desc_item *item;
 747	int offset = 0;
 748	int i;
 749
 750	for (i = 0; i < rdesc->num_registers; i++) {
 751		item = &rdesc->registers[i];
 752		if (item->reg == reg)
 753			return offset;
 754		++offset;
 755	}
 756	return -1;
 757}
 
 758
 759bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
 760	u8 subpacket)
 761{
 762	return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
 763				subpacket) == subpacket;
 764}
 765
 
 
 
 
 
 
 
 
 766static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
 767				     const struct pdt_entry *pdt)
 768{
 769	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 770	int ret;
 771	u8 status;
 772
 773	if (pdt->function_number == 0x34 && pdt->function_version > 1) {
 774		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
 775		if (ret) {
 776			dev_err(&rmi_dev->dev,
 777				"Failed to read F34 status: %d.\n", ret);
 778			return ret;
 779		}
 780
 781		if (status & BIT(7))
 782			data->bootloader_mode = true;
 783	} else if (pdt->function_number == 0x01) {
 784		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
 785		if (ret) {
 786			dev_err(&rmi_dev->dev,
 787				"Failed to read F01 status: %d.\n", ret);
 788			return ret;
 789		}
 790
 791		if (status & BIT(6))
 792			data->bootloader_mode = true;
 793	}
 794
 795	return 0;
 796}
 797
 798static int rmi_count_irqs(struct rmi_device *rmi_dev,
 799			 void *ctx, const struct pdt_entry *pdt)
 800{
 
 801	int *irq_count = ctx;
 802	int ret;
 803
 804	*irq_count += pdt->interrupt_source_count;
 805
 806	ret = rmi_check_bootloader_mode(rmi_dev, pdt);
 807	if (ret < 0)
 808		return ret;
 
 
 
 809
 810	return RMI_SCAN_CONTINUE;
 811}
 812
 813int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
 814		      const struct pdt_entry *pdt)
 815{
 816	int error;
 817
 818	if (pdt->function_number == 0x01) {
 819		u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
 820		u8 cmd_buf = RMI_DEVICE_RESET_CMD;
 821		const struct rmi_device_platform_data *pdata =
 822				rmi_get_platform_data(rmi_dev);
 823
 824		if (rmi_dev->xport->ops->reset) {
 825			error = rmi_dev->xport->ops->reset(rmi_dev->xport,
 826								cmd_addr);
 827			if (error)
 828				return error;
 829
 830			return RMI_SCAN_DONE;
 831		}
 832
 833		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
 834		error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
 835		if (error) {
 836			dev_err(&rmi_dev->dev,
 837				"Initial reset failed. Code = %d.\n", error);
 838			return error;
 839		}
 840
 841		mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
 842
 843		return RMI_SCAN_DONE;
 844	}
 845
 846	/* F01 should always be on page 0. If we don't find it there, fail. */
 847	return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
 848}
 849
 850static int rmi_create_function(struct rmi_device *rmi_dev,
 851			       void *ctx, const struct pdt_entry *pdt)
 852{
 853	struct device *dev = &rmi_dev->dev;
 854	struct rmi_driver_data *data = dev_get_drvdata(dev);
 855	int *current_irq_count = ctx;
 856	struct rmi_function *fn;
 857	int i;
 858	int error;
 859
 860	rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
 861			pdt->function_number);
 862
 863	fn = kzalloc(sizeof(struct rmi_function) +
 864			BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
 865		     GFP_KERNEL);
 866	if (!fn) {
 867		dev_err(dev, "Failed to allocate memory for F%02X\n",
 868			pdt->function_number);
 869		return -ENOMEM;
 870	}
 871
 872	INIT_LIST_HEAD(&fn->node);
 873	rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
 874
 875	fn->rmi_dev = rmi_dev;
 876
 877	fn->num_of_irqs = pdt->interrupt_source_count;
 878	fn->irq_pos = *current_irq_count;
 879	*current_irq_count += fn->num_of_irqs;
 880
 881	for (i = 0; i < fn->num_of_irqs; i++)
 882		set_bit(fn->irq_pos + i, fn->irq_mask);
 883
 884	error = rmi_register_function(fn);
 885	if (error)
 886		goto err_put_fn;
 887
 888	if (pdt->function_number == 0x01)
 889		data->f01_container = fn;
 890	else if (pdt->function_number == 0x34)
 891		data->f34_container = fn;
 892
 893	list_add_tail(&fn->node, &data->function_list);
 894
 895	return RMI_SCAN_CONTINUE;
 896
 897err_put_fn:
 898	put_device(&fn->dev);
 899	return error;
 900}
 901
 902void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
 903{
 904	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
 905	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 906	int irq = pdata->irq;
 907	int irq_flags;
 908	int retval;
 909
 910	mutex_lock(&data->enabled_mutex);
 911
 912	if (data->enabled)
 913		goto out;
 914
 915	enable_irq(irq);
 916	data->enabled = true;
 917	if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
 918		retval = disable_irq_wake(irq);
 919		if (retval)
 920			dev_warn(&rmi_dev->dev,
 921				 "Failed to disable irq for wake: %d\n",
 922				 retval);
 923	}
 924
 925	/*
 926	 * Call rmi_process_interrupt_requests() after enabling irq,
 927	 * otherwise we may lose interrupt on edge-triggered systems.
 928	 */
 929	irq_flags = irq_get_trigger_type(pdata->irq);
 930	if (irq_flags & IRQ_TYPE_EDGE_BOTH)
 931		rmi_process_interrupt_requests(rmi_dev);
 932
 933out:
 934	mutex_unlock(&data->enabled_mutex);
 935}
 936
 937void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
 938{
 939	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
 940	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
 941	struct rmi4_attn_data attn_data = {0};
 942	int irq = pdata->irq;
 943	int retval, count;
 944
 945	mutex_lock(&data->enabled_mutex);
 946
 947	if (!data->enabled)
 948		goto out;
 949
 950	data->enabled = false;
 951	disable_irq(irq);
 952	if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
 953		retval = enable_irq_wake(irq);
 954		if (retval)
 955			dev_warn(&rmi_dev->dev,
 956				 "Failed to enable irq for wake: %d\n",
 957				 retval);
 958	}
 959
 960	/* make sure the fifo is clean */
 961	while (!kfifo_is_empty(&data->attn_fifo)) {
 962		count = kfifo_get(&data->attn_fifo, &attn_data);
 963		if (count)
 964			kfree(attn_data.data);
 965	}
 966
 967out:
 968	mutex_unlock(&data->enabled_mutex);
 969}
 970
 971int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
 972{
 973	int retval;
 974
 975	retval = rmi_suspend_functions(rmi_dev);
 976	if (retval)
 977		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
 978			retval);
 979
 980	rmi_disable_irq(rmi_dev, enable_wake);
 981	return retval;
 982}
 983EXPORT_SYMBOL_GPL(rmi_driver_suspend);
 984
 985int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
 986{
 987	int retval;
 988
 989	rmi_enable_irq(rmi_dev, clear_wake);
 990
 991	retval = rmi_resume_functions(rmi_dev);
 992	if (retval)
 993		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
 994			retval);
 995
 996	return retval;
 997}
 998EXPORT_SYMBOL_GPL(rmi_driver_resume);
 999
1000static int rmi_driver_remove(struct device *dev)
1001{
1002	struct rmi_device *rmi_dev = to_rmi_device(dev);
1003
1004	rmi_disable_irq(rmi_dev, false);
1005
1006	rmi_f34_remove_sysfs(rmi_dev);
1007	rmi_free_function_list(rmi_dev);
1008
1009	return 0;
1010}
1011
1012#ifdef CONFIG_OF
1013static int rmi_driver_of_probe(struct device *dev,
1014				struct rmi_device_platform_data *pdata)
1015{
1016	int retval;
1017
1018	retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
1019					"syna,reset-delay-ms", 1);
1020	if (retval)
1021		return retval;
1022
1023	return 0;
1024}
1025#else
1026static inline int rmi_driver_of_probe(struct device *dev,
1027					struct rmi_device_platform_data *pdata)
1028{
1029	return -ENODEV;
1030}
1031#endif
1032
1033int rmi_probe_interrupts(struct rmi_driver_data *data)
1034{
1035	struct rmi_device *rmi_dev = data->rmi_dev;
1036	struct device *dev = &rmi_dev->dev;
1037	int irq_count;
1038	size_t size;
1039	int retval;
1040
1041	/*
1042	 * We need to count the IRQs and allocate their storage before scanning
1043	 * the PDT and creating the function entries, because adding a new
1044	 * function can trigger events that result in the IRQ related storage
1045	 * being accessed.
1046	 */
1047	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1048	irq_count = 0;
1049	data->bootloader_mode = false;
1050
1051	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1052	if (retval < 0) {
1053		dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1054		return retval;
1055	}
1056
1057	if (data->bootloader_mode)
1058		dev_warn(dev, "Device in bootloader mode.\n");
1059
1060	data->irq_count = irq_count;
1061	data->num_of_irq_regs = (data->irq_count + 7) / 8;
1062
1063	size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1064	data->irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
1065	if (!data->irq_memory) {
1066		dev_err(dev, "Failed to allocate memory for irq masks.\n");
1067		return -ENOMEM;
1068	}
1069
1070	data->irq_status	= data->irq_memory + size * 0;
1071	data->fn_irq_bits	= data->irq_memory + size * 1;
1072	data->current_irq_mask	= data->irq_memory + size * 2;
1073	data->new_irq_mask	= data->irq_memory + size * 3;
1074
1075	return retval;
1076}
1077
1078int rmi_init_functions(struct rmi_driver_data *data)
1079{
1080	struct rmi_device *rmi_dev = data->rmi_dev;
1081	struct device *dev = &rmi_dev->dev;
1082	int irq_count;
1083	int retval;
1084
1085	irq_count = 0;
1086	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1087	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1088	if (retval < 0) {
1089		dev_err(dev, "Function creation failed with code %d.\n",
1090			retval);
1091		goto err_destroy_functions;
1092	}
1093
1094	if (!data->f01_container) {
1095		dev_err(dev, "Missing F01 container!\n");
1096		retval = -EINVAL;
1097		goto err_destroy_functions;
1098	}
1099
1100	retval = rmi_read_block(rmi_dev,
1101				data->f01_container->fd.control_base_addr + 1,
1102				data->current_irq_mask, data->num_of_irq_regs);
1103	if (retval < 0) {
1104		dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1105			__func__);
1106		goto err_destroy_functions;
1107	}
1108
1109	return 0;
1110
1111err_destroy_functions:
1112	rmi_free_function_list(rmi_dev);
1113	return retval;
1114}
1115
1116static int rmi_driver_probe(struct device *dev)
1117{
1118	struct rmi_driver *rmi_driver;
1119	struct rmi_driver_data *data;
1120	struct rmi_device_platform_data *pdata;
1121	struct rmi_device *rmi_dev;
 
 
 
1122	int retval;
1123
1124	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1125			__func__);
1126
1127	if (!rmi_is_physical_device(dev)) {
1128		rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1129		return -ENODEV;
1130	}
1131
1132	rmi_dev = to_rmi_device(dev);
1133	rmi_driver = to_rmi_driver(dev->driver);
1134	rmi_dev->driver = rmi_driver;
1135
1136	pdata = rmi_get_platform_data(rmi_dev);
1137
1138	if (rmi_dev->xport->dev->of_node) {
1139		retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1140		if (retval)
1141			return retval;
1142	}
1143
1144	data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1145	if (!data)
1146		return -ENOMEM;
1147
1148	INIT_LIST_HEAD(&data->function_list);
1149	data->rmi_dev = rmi_dev;
1150	dev_set_drvdata(&rmi_dev->dev, data);
1151
1152	/*
1153	 * Right before a warm boot, the sensor might be in some unusual state,
1154	 * such as F54 diagnostics, or F34 bootloader mode after a firmware
1155	 * or configuration update.  In order to clear the sensor to a known
1156	 * state and/or apply any updates, we issue a initial reset to clear any
1157	 * previous settings and force it into normal operation.
1158	 *
1159	 * We have to do this before actually building the PDT because
1160	 * the reflash updates (if any) might cause various registers to move
1161	 * around.
1162	 *
1163	 * For a number of reasons, this initial reset may fail to return
1164	 * within the specified time, but we'll still be able to bring up the
1165	 * driver normally after that failure.  This occurs most commonly in
1166	 * a cold boot situation (where then firmware takes longer to come up
1167	 * than from a warm boot) and the reset_delay_ms in the platform data
1168	 * has been set too short to accommodate that.  Since the sensor will
1169	 * eventually come up and be usable, we don't want to just fail here
1170	 * and leave the customer's device unusable.  So we warn them, and
1171	 * continue processing.
1172	 */
1173	retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1174	if (retval < 0)
1175		dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1176
1177	retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1178	if (retval < 0) {
1179		/*
1180		 * we'll print out a warning and continue since
1181		 * failure to get the PDT properties is not a cause to fail
1182		 */
1183		dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1184			 PDT_PROPERTIES_LOCATION, retval);
1185	}
1186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1187	mutex_init(&data->irq_mutex);
1188	mutex_init(&data->enabled_mutex);
1189
1190	retval = rmi_probe_interrupts(data);
1191	if (retval)
 
 
1192		goto err;
 
 
 
 
 
 
1193
1194	if (rmi_dev->xport->input) {
1195		/*
1196		 * The transport driver already has an input device.
1197		 * In some cases it is preferable to reuse the transport
1198		 * devices input device instead of creating a new one here.
1199		 * One example is some HID touchpads report "pass-through"
1200		 * button events are not reported by rmi registers.
1201		 */
1202		data->input = rmi_dev->xport->input;
1203	} else {
1204		data->input = devm_input_allocate_device(dev);
1205		if (!data->input) {
1206			dev_err(dev, "%s: Failed to allocate input device.\n",
1207				__func__);
1208			retval = -ENOMEM;
1209			goto err;
1210		}
1211		rmi_driver_set_input_params(rmi_dev, data->input);
1212		data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1213						"%s/input0", dev_name(dev));
1214	}
1215
1216	retval = rmi_init_functions(data);
1217	if (retval)
1218		goto err;
 
 
 
 
 
 
 
 
 
 
 
1219
1220	retval = rmi_f34_create_sysfs(rmi_dev);
1221	if (retval)
1222		goto err;
 
 
 
 
 
1223
1224	if (data->input) {
1225		rmi_driver_set_input_name(rmi_dev, data->input);
1226		if (!rmi_dev->xport->input) {
1227			if (input_register_device(data->input)) {
1228				dev_err(dev, "%s: Failed to register input device.\n",
1229					__func__);
1230				goto err_destroy_functions;
1231			}
1232		}
1233	}
1234
1235	retval = rmi_irq_init(rmi_dev);
1236	if (retval < 0)
1237		goto err_destroy_functions;
1238
1239	if (data->f01_container->dev.driver) {
1240		/* Driver already bound, so enable ATTN now. */
1241		retval = rmi_enable_sensor(rmi_dev);
1242		if (retval)
1243			goto err_disable_irq;
1244	}
1245
1246	return 0;
1247
1248err_disable_irq:
1249	rmi_disable_irq(rmi_dev, false);
1250err_destroy_functions:
1251	rmi_free_function_list(rmi_dev);
1252err:
1253	return retval;
1254}
1255
1256static struct rmi_driver rmi_physical_driver = {
1257	.driver = {
1258		.owner	= THIS_MODULE,
1259		.name	= "rmi4_physical",
1260		.bus	= &rmi_bus_type,
1261		.probe = rmi_driver_probe,
1262		.remove = rmi_driver_remove,
1263	},
1264	.reset_handler = rmi_driver_reset_handler,
1265	.clear_irq_bits = rmi_driver_clear_irq_bits,
1266	.set_irq_bits = rmi_driver_set_irq_bits,
1267	.set_input_params = rmi_driver_set_input_params,
1268};
1269
1270bool rmi_is_physical_driver(struct device_driver *drv)
1271{
1272	return drv == &rmi_physical_driver.driver;
1273}
1274
1275int __init rmi_register_physical_driver(void)
1276{
1277	int error;
1278
1279	error = driver_register(&rmi_physical_driver.driver);
1280	if (error) {
1281		pr_err("%s: driver register failed, code=%d.\n", __func__,
1282		       error);
1283		return error;
1284	}
1285
1286	return 0;
1287}
1288
1289void __exit rmi_unregister_physical_driver(void)
1290{
1291	driver_unregister(&rmi_physical_driver.driver);
1292}