Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1/*
  2 * Copyright © 2015 Intel Corporation
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 21 * IN THE SOFTWARE.
 22 *
 23 */
 24
 25#include <linux/kthread.h>
 26#include <uapi/linux/sched/types.h>
 27
 28#include "i915_drv.h"
 29
 30#ifdef CONFIG_SMP
 31#define task_asleep(tsk) ((tsk)->state & TASK_NORMAL && !(tsk)->on_cpu)
 32#else
 33#define task_asleep(tsk) ((tsk)->state & TASK_NORMAL)
 34#endif
 35
 36static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
 37{
 38	struct intel_wait *wait;
 39	unsigned int result = 0;
 40
 41	lockdep_assert_held(&b->irq_lock);
 42
 43	wait = b->irq_wait;
 44	if (wait) {
 45		/*
 46		 * N.B. Since task_asleep() and ttwu are not atomic, the
 47		 * waiter may actually go to sleep after the check, causing
 48		 * us to suppress a valid wakeup. We prefer to reduce the
 49		 * number of false positive missed_breadcrumb() warnings
 50		 * at the expense of a few false negatives, as it it easy
 51		 * to trigger a false positive under heavy load. Enough
 52		 * signal should remain from genuine missed_breadcrumb()
 53		 * for us to detect in CI.
 54		 */
 55		bool was_asleep = task_asleep(wait->tsk);
 56
 57		result = ENGINE_WAKEUP_WAITER;
 58		if (wake_up_process(wait->tsk) && was_asleep)
 59			result |= ENGINE_WAKEUP_ASLEEP;
 60	}
 61
 62	return result;
 63}
 64
 65unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
 66{
 67	struct intel_breadcrumbs *b = &engine->breadcrumbs;
 68	unsigned long flags;
 69	unsigned int result;
 70
 71	spin_lock_irqsave(&b->irq_lock, flags);
 72	result = __intel_breadcrumbs_wakeup(b);
 73	spin_unlock_irqrestore(&b->irq_lock, flags);
 74
 75	return result;
 76}
 77
 78static unsigned long wait_timeout(void)
 79{
 80	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
 81}
 82
 83static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
 84{
 85	if (drm_debug & DRM_UT_DRIVER) {
 86		struct drm_printer p = drm_debug_printer(__func__);
 87
 88		intel_engine_dump(engine, &p,
 89				  "%s missed breadcrumb at %pS\n",
 90				  engine->name, __builtin_return_address(0));
 91	}
 92
 93	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
 94}
 95
 96static void intel_breadcrumbs_hangcheck(struct timer_list *t)
 97{
 98	struct intel_engine_cs *engine =
 99		from_timer(engine, t, breadcrumbs.hangcheck);
100	struct intel_breadcrumbs *b = &engine->breadcrumbs;
101
102	if (!b->irq_armed)
103		return;
104
105	if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
106		b->hangcheck_interrupts = atomic_read(&engine->irq_count);
107		mod_timer(&b->hangcheck, wait_timeout());
108		return;
109	}
110
111	/* We keep the hangcheck timer alive until we disarm the irq, even
112	 * if there are no waiters at present.
113	 *
114	 * If the waiter was currently running, assume it hasn't had a chance
115	 * to process the pending interrupt (e.g, low priority task on a loaded
116	 * system) and wait until it sleeps before declaring a missed interrupt.
117	 *
118	 * If the waiter was asleep (and not even pending a wakeup), then we
119	 * must have missed an interrupt as the GPU has stopped advancing
120	 * but we still have a waiter. Assuming all batches complete within
121	 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
122	 */
123	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
124		missed_breadcrumb(engine);
125		mod_timer(&b->fake_irq, jiffies + 1);
126	} else {
127		mod_timer(&b->hangcheck, wait_timeout());
128	}
129}
130
131static void intel_breadcrumbs_fake_irq(struct timer_list *t)
132{
133	struct intel_engine_cs *engine = from_timer(engine, t,
134						    breadcrumbs.fake_irq);
135	struct intel_breadcrumbs *b = &engine->breadcrumbs;
136
137	/* The timer persists in case we cannot enable interrupts,
138	 * or if we have previously seen seqno/interrupt incoherency
139	 * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
140	 * Here the worker will wake up every jiffie in order to kick the
141	 * oldest waiter to do the coherent seqno check.
142	 */
143
144	spin_lock_irq(&b->irq_lock);
145	if (b->irq_armed && !__intel_breadcrumbs_wakeup(b))
146		__intel_engine_disarm_breadcrumbs(engine);
147	spin_unlock_irq(&b->irq_lock);
148	if (!b->irq_armed)
149		return;
150
151	mod_timer(&b->fake_irq, jiffies + 1);
152}
153
154static void irq_enable(struct intel_engine_cs *engine)
155{
156	/*
157	 * FIXME: Ideally we want this on the API boundary, but for the
158	 * sake of testing with mock breadcrumbs (no HW so unable to
159	 * enable irqs) we place it deep within the bowels, at the point
160	 * of no return.
161	 */
162	GEM_BUG_ON(!intel_irqs_enabled(engine->i915));
163
164	/* Enabling the IRQ may miss the generation of the interrupt, but
165	 * we still need to force the barrier before reading the seqno,
166	 * just in case.
167	 */
168	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
169
170	/* Caller disables interrupts */
171	if (engine->irq_enable) {
172		spin_lock(&engine->i915->irq_lock);
173		engine->irq_enable(engine);
174		spin_unlock(&engine->i915->irq_lock);
175	}
176}
177
178static void irq_disable(struct intel_engine_cs *engine)
179{
180	/* Caller disables interrupts */
181	if (engine->irq_disable) {
182		spin_lock(&engine->i915->irq_lock);
183		engine->irq_disable(engine);
184		spin_unlock(&engine->i915->irq_lock);
185	}
186}
187
188void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
189{
190	struct intel_breadcrumbs *b = &engine->breadcrumbs;
191
192	lockdep_assert_held(&b->irq_lock);
193	GEM_BUG_ON(b->irq_wait);
194	GEM_BUG_ON(!b->irq_armed);
195
196	GEM_BUG_ON(!b->irq_enabled);
197	if (!--b->irq_enabled)
198		irq_disable(engine);
199
200	b->irq_armed = false;
201}
202
203void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine)
204{
205	struct intel_breadcrumbs *b = &engine->breadcrumbs;
206
207	spin_lock_irq(&b->irq_lock);
208	if (!b->irq_enabled++)
209		irq_enable(engine);
210	GEM_BUG_ON(!b->irq_enabled); /* no overflow! */
211	spin_unlock_irq(&b->irq_lock);
212}
213
214void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine)
215{
216	struct intel_breadcrumbs *b = &engine->breadcrumbs;
217
218	spin_lock_irq(&b->irq_lock);
219	GEM_BUG_ON(!b->irq_enabled); /* no underflow! */
220	if (!--b->irq_enabled)
221		irq_disable(engine);
222	spin_unlock_irq(&b->irq_lock);
223}
224
225void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
226{
227	struct intel_breadcrumbs *b = &engine->breadcrumbs;
228	struct intel_wait *wait, *n;
229
230	if (!b->irq_armed)
231		return;
232
233	/*
234	 * We only disarm the irq when we are idle (all requests completed),
235	 * so if the bottom-half remains asleep, it missed the request
236	 * completion.
237	 */
238	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP)
239		missed_breadcrumb(engine);
240
241	spin_lock_irq(&b->rb_lock);
242
243	spin_lock(&b->irq_lock);
244	b->irq_wait = NULL;
245	if (b->irq_armed)
246		__intel_engine_disarm_breadcrumbs(engine);
247	spin_unlock(&b->irq_lock);
248
249	rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
250		GEM_BUG_ON(!i915_seqno_passed(intel_engine_get_seqno(engine),
251					      wait->seqno));
252		RB_CLEAR_NODE(&wait->node);
253		wake_up_process(wait->tsk);
254	}
255	b->waiters = RB_ROOT;
256
257	spin_unlock_irq(&b->rb_lock);
258}
259
260static bool use_fake_irq(const struct intel_breadcrumbs *b)
261{
262	const struct intel_engine_cs *engine =
263		container_of(b, struct intel_engine_cs, breadcrumbs);
264
265	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
266		return false;
267
268	/* Only start with the heavy weight fake irq timer if we have not
269	 * seen any interrupts since enabling it the first time. If the
270	 * interrupts are still arriving, it means we made a mistake in our
271	 * engine->seqno_barrier(), a timing error that should be transient
272	 * and unlikely to reoccur.
273	 */
274	return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
275}
276
277static void enable_fake_irq(struct intel_breadcrumbs *b)
278{
279	/* Ensure we never sleep indefinitely */
280	if (!b->irq_enabled || use_fake_irq(b))
281		mod_timer(&b->fake_irq, jiffies + 1);
282	else
283		mod_timer(&b->hangcheck, wait_timeout());
284}
285
286static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
287{
288	struct intel_engine_cs *engine =
289		container_of(b, struct intel_engine_cs, breadcrumbs);
290	struct drm_i915_private *i915 = engine->i915;
291	bool enabled;
292
293	lockdep_assert_held(&b->irq_lock);
294	if (b->irq_armed)
295		return false;
296
297	/* The breadcrumb irq will be disarmed on the interrupt after the
298	 * waiters are signaled. This gives us a single interrupt window in
299	 * which we can add a new waiter and avoid the cost of re-enabling
300	 * the irq.
301	 */
302	b->irq_armed = true;
303
304	if (I915_SELFTEST_ONLY(b->mock)) {
305		/* For our mock objects we want to avoid interaction
306		 * with the real hardware (which is not set up). So
307		 * we simply pretend we have enabled the powerwell
308		 * and the irq, and leave it up to the mock
309		 * implementation to call intel_engine_wakeup()
310		 * itself when it wants to simulate a user interrupt,
311		 */
312		return true;
313	}
314
315	/* Since we are waiting on a request, the GPU should be busy
316	 * and should have its own rpm reference. This is tracked
317	 * by i915->gt.awake, we can forgo holding our own wakref
318	 * for the interrupt as before i915->gt.awake is released (when
319	 * the driver is idle) we disarm the breadcrumbs.
320	 */
321
322	/* No interrupts? Kick the waiter every jiffie! */
323	enabled = false;
324	if (!b->irq_enabled++ &&
325	    !test_bit(engine->id, &i915->gpu_error.test_irq_rings)) {
326		irq_enable(engine);
327		enabled = true;
328	}
329
330	enable_fake_irq(b);
331	return enabled;
332}
333
334static inline struct intel_wait *to_wait(struct rb_node *node)
335{
336	return rb_entry(node, struct intel_wait, node);
337}
338
339static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
340					      struct intel_wait *wait)
341{
342	lockdep_assert_held(&b->rb_lock);
343	GEM_BUG_ON(b->irq_wait == wait);
344
345	/*
346	 * This request is completed, so remove it from the tree, mark it as
347	 * complete, and *then* wake up the associated task. N.B. when the
348	 * task wakes up, it will find the empty rb_node, discern that it
349	 * has already been removed from the tree and skip the serialisation
350	 * of the b->rb_lock and b->irq_lock. This means that the destruction
351	 * of the intel_wait is not serialised with the interrupt handler
352	 * by the waiter - it must instead be serialised by the caller.
353	 */
354	rb_erase(&wait->node, &b->waiters);
355	RB_CLEAR_NODE(&wait->node);
356
357	if (wait->tsk->state != TASK_RUNNING)
358		wake_up_process(wait->tsk); /* implicit smp_wmb() */
359}
360
361static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
362					    struct rb_node *next)
363{
364	struct intel_breadcrumbs *b = &engine->breadcrumbs;
365
366	spin_lock(&b->irq_lock);
367	GEM_BUG_ON(!b->irq_armed);
368	GEM_BUG_ON(!b->irq_wait);
369	b->irq_wait = to_wait(next);
370	spin_unlock(&b->irq_lock);
371
372	/* We always wake up the next waiter that takes over as the bottom-half
373	 * as we may delegate not only the irq-seqno barrier to the next waiter
374	 * but also the task of waking up concurrent waiters.
375	 */
376	if (next)
377		wake_up_process(to_wait(next)->tsk);
378}
379
380static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
381				    struct intel_wait *wait)
382{
383	struct intel_breadcrumbs *b = &engine->breadcrumbs;
384	struct rb_node **p, *parent, *completed;
385	bool first, armed;
386	u32 seqno;
387
388	GEM_BUG_ON(!wait->seqno);
389
390	/* Insert the request into the retirement ordered list
391	 * of waiters by walking the rbtree. If we are the oldest
392	 * seqno in the tree (the first to be retired), then
393	 * set ourselves as the bottom-half.
394	 *
395	 * As we descend the tree, prune completed branches since we hold the
396	 * spinlock we know that the first_waiter must be delayed and can
397	 * reduce some of the sequential wake up latency if we take action
398	 * ourselves and wake up the completed tasks in parallel. Also, by
399	 * removing stale elements in the tree, we may be able to reduce the
400	 * ping-pong between the old bottom-half and ourselves as first-waiter.
401	 */
402	armed = false;
403	first = true;
404	parent = NULL;
405	completed = NULL;
406	seqno = intel_engine_get_seqno(engine);
407
408	 /* If the request completed before we managed to grab the spinlock,
409	  * return now before adding ourselves to the rbtree. We let the
410	  * current bottom-half handle any pending wakeups and instead
411	  * try and get out of the way quickly.
412	  */
413	if (i915_seqno_passed(seqno, wait->seqno)) {
414		RB_CLEAR_NODE(&wait->node);
415		return first;
416	}
417
418	p = &b->waiters.rb_node;
419	while (*p) {
420		parent = *p;
421		if (wait->seqno == to_wait(parent)->seqno) {
422			/* We have multiple waiters on the same seqno, select
423			 * the highest priority task (that with the smallest
424			 * task->prio) to serve as the bottom-half for this
425			 * group.
426			 */
427			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
428				p = &parent->rb_right;
429				first = false;
430			} else {
431				p = &parent->rb_left;
432			}
433		} else if (i915_seqno_passed(wait->seqno,
434					     to_wait(parent)->seqno)) {
435			p = &parent->rb_right;
436			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
437				completed = parent;
438			else
439				first = false;
440		} else {
441			p = &parent->rb_left;
442		}
443	}
444	rb_link_node(&wait->node, parent, p);
445	rb_insert_color(&wait->node, &b->waiters);
446
447	if (first) {
448		spin_lock(&b->irq_lock);
449		b->irq_wait = wait;
450		/* After assigning ourselves as the new bottom-half, we must
451		 * perform a cursory check to prevent a missed interrupt.
452		 * Either we miss the interrupt whilst programming the hardware,
453		 * or if there was a previous waiter (for a later seqno) they
454		 * may be woken instead of us (due to the inherent race
455		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
456		 * and so we miss the wake up.
457		 */
458		armed = __intel_breadcrumbs_enable_irq(b);
459		spin_unlock(&b->irq_lock);
460	}
461
462	if (completed) {
463		/* Advance the bottom-half (b->irq_wait) before we wake up
464		 * the waiters who may scribble over their intel_wait
465		 * just as the interrupt handler is dereferencing it via
466		 * b->irq_wait.
467		 */
468		if (!first) {
469			struct rb_node *next = rb_next(completed);
470			GEM_BUG_ON(next == &wait->node);
471			__intel_breadcrumbs_next(engine, next);
472		}
473
474		do {
475			struct intel_wait *crumb = to_wait(completed);
476			completed = rb_prev(completed);
477			__intel_breadcrumbs_finish(b, crumb);
478		} while (completed);
479	}
480
481	GEM_BUG_ON(!b->irq_wait);
482	GEM_BUG_ON(!b->irq_armed);
483	GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
484
485	return armed;
486}
487
488bool intel_engine_add_wait(struct intel_engine_cs *engine,
489			   struct intel_wait *wait)
490{
491	struct intel_breadcrumbs *b = &engine->breadcrumbs;
492	bool armed;
493
494	spin_lock_irq(&b->rb_lock);
495	armed = __intel_engine_add_wait(engine, wait);
496	spin_unlock_irq(&b->rb_lock);
497	if (armed)
498		return armed;
499
500	/* Make the caller recheck if its request has already started. */
501	return i915_seqno_passed(intel_engine_get_seqno(engine),
502				 wait->seqno - 1);
503}
504
505static inline bool chain_wakeup(struct rb_node *rb, int priority)
506{
507	return rb && to_wait(rb)->tsk->prio <= priority;
508}
509
510static inline int wakeup_priority(struct intel_breadcrumbs *b,
511				  struct task_struct *tsk)
512{
513	if (tsk == b->signaler)
514		return INT_MIN;
515	else
516		return tsk->prio;
517}
518
519static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
520				       struct intel_wait *wait)
521{
522	struct intel_breadcrumbs *b = &engine->breadcrumbs;
523
524	lockdep_assert_held(&b->rb_lock);
525
526	if (RB_EMPTY_NODE(&wait->node))
527		goto out;
528
529	if (b->irq_wait == wait) {
530		const int priority = wakeup_priority(b, wait->tsk);
531		struct rb_node *next;
532
533		/* We are the current bottom-half. Find the next candidate,
534		 * the first waiter in the queue on the remaining oldest
535		 * request. As multiple seqnos may complete in the time it
536		 * takes us to wake up and find the next waiter, we have to
537		 * wake up that waiter for it to perform its own coherent
538		 * completion check.
539		 */
540		next = rb_next(&wait->node);
541		if (chain_wakeup(next, priority)) {
542			/* If the next waiter is already complete,
543			 * wake it up and continue onto the next waiter. So
544			 * if have a small herd, they will wake up in parallel
545			 * rather than sequentially, which should reduce
546			 * the overall latency in waking all the completed
547			 * clients.
548			 *
549			 * However, waking up a chain adds extra latency to
550			 * the first_waiter. This is undesirable if that
551			 * waiter is a high priority task.
552			 */
553			u32 seqno = intel_engine_get_seqno(engine);
554
555			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
556				struct rb_node *n = rb_next(next);
557
558				__intel_breadcrumbs_finish(b, to_wait(next));
559				next = n;
560				if (!chain_wakeup(next, priority))
561					break;
562			}
563		}
564
565		__intel_breadcrumbs_next(engine, next);
566	} else {
567		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
568	}
569
570	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
571	rb_erase(&wait->node, &b->waiters);
572	RB_CLEAR_NODE(&wait->node);
573
574out:
575	GEM_BUG_ON(b->irq_wait == wait);
576	GEM_BUG_ON(rb_first(&b->waiters) !=
577		   (b->irq_wait ? &b->irq_wait->node : NULL));
578}
579
580void intel_engine_remove_wait(struct intel_engine_cs *engine,
581			      struct intel_wait *wait)
582{
583	struct intel_breadcrumbs *b = &engine->breadcrumbs;
584
585	/* Quick check to see if this waiter was already decoupled from
586	 * the tree by the bottom-half to avoid contention on the spinlock
587	 * by the herd.
588	 */
589	if (RB_EMPTY_NODE(&wait->node)) {
590		GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
591		return;
592	}
593
594	spin_lock_irq(&b->rb_lock);
595	__intel_engine_remove_wait(engine, wait);
596	spin_unlock_irq(&b->rb_lock);
597}
598
599static void signaler_set_rtpriority(void)
600{
601	 struct sched_param param = { .sched_priority = 1 };
602
603	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
604}
605
606static int intel_breadcrumbs_signaler(void *arg)
607{
608	struct intel_engine_cs *engine = arg;
609	struct intel_breadcrumbs *b = &engine->breadcrumbs;
610	struct i915_request *rq, *n;
611
612	/* Install ourselves with high priority to reduce signalling latency */
613	signaler_set_rtpriority();
614
615	do {
616		bool do_schedule = true;
617		LIST_HEAD(list);
618		u32 seqno;
619
620		set_current_state(TASK_INTERRUPTIBLE);
621		if (list_empty(&b->signals))
622			goto sleep;
623
624		/*
625		 * We are either woken up by the interrupt bottom-half,
626		 * or by a client adding a new signaller. In both cases,
627		 * the GPU seqno may have advanced beyond our oldest signal.
628		 * If it has, propagate the signal, remove the waiter and
629		 * check again with the next oldest signal. Otherwise we
630		 * need to wait for a new interrupt from the GPU or for
631		 * a new client.
632		 */
633		seqno = intel_engine_get_seqno(engine);
634
635		spin_lock_irq(&b->rb_lock);
636		list_for_each_entry_safe(rq, n, &b->signals, signaling.link) {
637			u32 this = rq->signaling.wait.seqno;
638
639			GEM_BUG_ON(!rq->signaling.wait.seqno);
640
641			if (!i915_seqno_passed(seqno, this))
642				break;
643
644			if (likely(this == i915_request_global_seqno(rq))) {
645				__intel_engine_remove_wait(engine,
646							   &rq->signaling.wait);
647
648				rq->signaling.wait.seqno = 0;
649				__list_del_entry(&rq->signaling.link);
650
651				if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
652					      &rq->fence.flags)) {
653					list_add_tail(&rq->signaling.link,
654						      &list);
655					i915_request_get(rq);
656				}
657			}
658		}
659		spin_unlock_irq(&b->rb_lock);
660
661		if (!list_empty(&list)) {
662			local_bh_disable();
663			list_for_each_entry_safe(rq, n, &list, signaling.link) {
664				dma_fence_signal(&rq->fence);
665				GEM_BUG_ON(!i915_request_completed(rq));
666				i915_request_put(rq);
667			}
668			local_bh_enable(); /* kick start the tasklets */
669
670			/*
671			 * If the engine is saturated we may be continually
672			 * processing completed requests. This angers the
673			 * NMI watchdog if we never let anything else
674			 * have access to the CPU. Let's pretend to be nice
675			 * and relinquish the CPU if we burn through the
676			 * entire RT timeslice!
677			 */
678			do_schedule = need_resched();
679		}
680
681		if (unlikely(do_schedule)) {
682			/* Before we sleep, check for a missed seqno */
683			if (current->state & TASK_NORMAL &&
684			    !list_empty(&b->signals) &&
685			    engine->irq_seqno_barrier &&
686			    test_and_clear_bit(ENGINE_IRQ_BREADCRUMB,
687					       &engine->irq_posted)) {
688				engine->irq_seqno_barrier(engine);
689				intel_engine_wakeup(engine);
690			}
691
692sleep:
693			if (kthread_should_park())
694				kthread_parkme();
695
696			if (unlikely(kthread_should_stop()))
697				break;
698
699			schedule();
700		}
701	} while (1);
702	__set_current_state(TASK_RUNNING);
703
704	return 0;
705}
706
707static void insert_signal(struct intel_breadcrumbs *b,
708			  struct i915_request *request,
709			  const u32 seqno)
710{
711	struct i915_request *iter;
712
713	lockdep_assert_held(&b->rb_lock);
714
715	/*
716	 * A reasonable assumption is that we are called to add signals
717	 * in sequence, as the requests are submitted for execution and
718	 * assigned a global_seqno. This will be the case for the majority
719	 * of internally generated signals (inter-engine signaling).
720	 *
721	 * Out of order waiters triggering random signaling enabling will
722	 * be more problematic, but hopefully rare enough and the list
723	 * small enough that the O(N) insertion sort is not an issue.
724	 */
725
726	list_for_each_entry_reverse(iter, &b->signals, signaling.link)
727		if (i915_seqno_passed(seqno, iter->signaling.wait.seqno))
728			break;
729
730	list_add(&request->signaling.link, &iter->signaling.link);
731}
732
733void intel_engine_enable_signaling(struct i915_request *request, bool wakeup)
734{
735	struct intel_engine_cs *engine = request->engine;
736	struct intel_breadcrumbs *b = &engine->breadcrumbs;
737	u32 seqno;
738
739	/*
740	 * Note that we may be called from an interrupt handler on another
741	 * device (e.g. nouveau signaling a fence completion causing us
742	 * to submit a request, and so enable signaling). As such,
743	 * we need to make sure that all other users of b->rb_lock protect
744	 * against interrupts, i.e. use spin_lock_irqsave.
745	 */
746
747	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
748	GEM_BUG_ON(!irqs_disabled());
749	lockdep_assert_held(&request->lock);
750
751	seqno = i915_request_global_seqno(request);
752	if (!seqno) /* will be enabled later upon execution */
753		return;
754
755	GEM_BUG_ON(request->signaling.wait.seqno);
756	request->signaling.wait.tsk = b->signaler;
757	request->signaling.wait.request = request;
758	request->signaling.wait.seqno = seqno;
759
760	/*
761	 * Add ourselves into the list of waiters, but registering our
762	 * bottom-half as the signaller thread. As per usual, only the oldest
763	 * waiter (not just signaller) is tasked as the bottom-half waking
764	 * up all completed waiters after the user interrupt.
765	 *
766	 * If we are the oldest waiter, enable the irq (after which we
767	 * must double check that the seqno did not complete).
768	 */
769	spin_lock(&b->rb_lock);
770	insert_signal(b, request, seqno);
771	wakeup &= __intel_engine_add_wait(engine, &request->signaling.wait);
772	spin_unlock(&b->rb_lock);
773
774	if (wakeup)
775		wake_up_process(b->signaler);
776}
777
778void intel_engine_cancel_signaling(struct i915_request *request)
779{
780	struct intel_engine_cs *engine = request->engine;
781	struct intel_breadcrumbs *b = &engine->breadcrumbs;
782
783	GEM_BUG_ON(!irqs_disabled());
784	lockdep_assert_held(&request->lock);
785
786	if (!READ_ONCE(request->signaling.wait.seqno))
787		return;
788
789	spin_lock(&b->rb_lock);
790	__intel_engine_remove_wait(engine, &request->signaling.wait);
791	if (fetch_and_zero(&request->signaling.wait.seqno))
792		__list_del_entry(&request->signaling.link);
793	spin_unlock(&b->rb_lock);
794}
795
796int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
797{
798	struct intel_breadcrumbs *b = &engine->breadcrumbs;
799	struct task_struct *tsk;
800
801	spin_lock_init(&b->rb_lock);
802	spin_lock_init(&b->irq_lock);
803
804	timer_setup(&b->fake_irq, intel_breadcrumbs_fake_irq, 0);
805	timer_setup(&b->hangcheck, intel_breadcrumbs_hangcheck, 0);
806
807	INIT_LIST_HEAD(&b->signals);
808
809	/* Spawn a thread to provide a common bottom-half for all signals.
810	 * As this is an asynchronous interface we cannot steal the current
811	 * task for handling the bottom-half to the user interrupt, therefore
812	 * we create a thread to do the coherent seqno dance after the
813	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
814	 */
815	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
816			  "i915/signal:%d", engine->id);
817	if (IS_ERR(tsk))
818		return PTR_ERR(tsk);
819
820	b->signaler = tsk;
821
822	return 0;
823}
824
825static void cancel_fake_irq(struct intel_engine_cs *engine)
826{
827	struct intel_breadcrumbs *b = &engine->breadcrumbs;
828
829	del_timer_sync(&b->hangcheck);
830	del_timer_sync(&b->fake_irq);
831	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
832}
833
834void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
835{
836	struct intel_breadcrumbs *b = &engine->breadcrumbs;
837
838	cancel_fake_irq(engine);
839	spin_lock_irq(&b->irq_lock);
840
841	if (b->irq_enabled)
842		irq_enable(engine);
843	else
844		irq_disable(engine);
845
846	/* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
847	 * GPU is active and may have already executed the MI_USER_INTERRUPT
848	 * before the CPU is ready to receive. However, the engine is currently
849	 * idle (we haven't started it yet), there is no possibility for a
850	 * missed interrupt as we enabled the irq and so we can clear the
851	 * immediate wakeup (until a real interrupt arrives for the waiter).
852	 */
853	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
854
855	if (b->irq_armed)
856		enable_fake_irq(b);
857
858	spin_unlock_irq(&b->irq_lock);
859}
860
861void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
862{
863	struct intel_breadcrumbs *b = &engine->breadcrumbs;
864
865	/* The engines should be idle and all requests accounted for! */
866	WARN_ON(READ_ONCE(b->irq_wait));
867	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
868	WARN_ON(!list_empty(&b->signals));
869
870	if (!IS_ERR_OR_NULL(b->signaler))
871		kthread_stop(b->signaler);
872
873	cancel_fake_irq(engine);
874}
875
876#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
877#include "selftests/intel_breadcrumbs.c"
878#endif