Loading...
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34#ifndef __I915_GEM_GTT_H__
35#define __I915_GEM_GTT_H__
36
37struct drm_i915_file_private;
38
39typedef uint32_t gen6_pte_t;
40typedef uint64_t gen8_pte_t;
41typedef uint64_t gen8_pde_t;
42typedef uint64_t gen8_ppgtt_pdpe_t;
43typedef uint64_t gen8_ppgtt_pml4e_t;
44
45#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
46
47/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
48#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
49#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
50#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
51#define GEN6_PTE_CACHE_LLC (2 << 1)
52#define GEN6_PTE_UNCACHED (1 << 1)
53#define GEN6_PTE_VALID (1 << 0)
54
55#define I915_PTES(pte_len) (PAGE_SIZE / (pte_len))
56#define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
57#define I915_PDES 512
58#define I915_PDE_MASK (I915_PDES - 1)
59#define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
60
61#define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
62#define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
63#define GEN6_PD_ALIGN (PAGE_SIZE * 16)
64#define GEN6_PDE_SHIFT 22
65#define GEN6_PDE_VALID (1 << 0)
66
67#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
68
69#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
70#define BYT_PTE_WRITEABLE (1 << 1)
71
72/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
73 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
74 */
75#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
76 (((bits) & 0x8) << (11 - 3)))
77#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
78#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
79#define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
80#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
81#define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
82#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
83#define HSW_PTE_UNCACHED (0)
84#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
85#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
86
87/* GEN8 legacy style address is defined as a 3 level page table:
88 * 31:30 | 29:21 | 20:12 | 11:0
89 * PDPE | PDE | PTE | offset
90 * The difference as compared to normal x86 3 level page table is the PDPEs are
91 * programmed via register.
92 *
93 * GEN8 48b legacy style address is defined as a 4 level page table:
94 * 47:39 | 38:30 | 29:21 | 20:12 | 11:0
95 * PML4E | PDPE | PDE | PTE | offset
96 */
97#define GEN8_PML4ES_PER_PML4 512
98#define GEN8_PML4E_SHIFT 39
99#define GEN8_PML4E_MASK (GEN8_PML4ES_PER_PML4 - 1)
100#define GEN8_PDPE_SHIFT 30
101/* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
102 * tables */
103#define GEN8_PDPE_MASK 0x1ff
104#define GEN8_PDE_SHIFT 21
105#define GEN8_PDE_MASK 0x1ff
106#define GEN8_PTE_SHIFT 12
107#define GEN8_PTE_MASK 0x1ff
108#define GEN8_LEGACY_PDPES 4
109#define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
110
111#define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
112 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
113
114#define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
115#define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
116#define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
117#define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
118
119#define CHV_PPAT_SNOOP (1<<6)
120#define GEN8_PPAT_AGE(x) (x<<4)
121#define GEN8_PPAT_LLCeLLC (3<<2)
122#define GEN8_PPAT_LLCELLC (2<<2)
123#define GEN8_PPAT_LLC (1<<2)
124#define GEN8_PPAT_WB (3<<0)
125#define GEN8_PPAT_WT (2<<0)
126#define GEN8_PPAT_WC (1<<0)
127#define GEN8_PPAT_UC (0<<0)
128#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
129#define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
130
131enum i915_ggtt_view_type {
132 I915_GGTT_VIEW_NORMAL = 0,
133 I915_GGTT_VIEW_ROTATED,
134 I915_GGTT_VIEW_PARTIAL,
135};
136
137struct intel_rotation_info {
138 unsigned int height;
139 unsigned int pitch;
140 unsigned int uv_offset;
141 uint32_t pixel_format;
142 uint64_t fb_modifier;
143 unsigned int width_pages, height_pages;
144 uint64_t size;
145 unsigned int width_pages_uv, height_pages_uv;
146 uint64_t size_uv;
147 unsigned int uv_start_page;
148};
149
150struct i915_ggtt_view {
151 enum i915_ggtt_view_type type;
152
153 union {
154 struct {
155 u64 offset;
156 unsigned int size;
157 } partial;
158 struct intel_rotation_info rotated;
159 } params;
160
161 struct sg_table *pages;
162};
163
164extern const struct i915_ggtt_view i915_ggtt_view_normal;
165extern const struct i915_ggtt_view i915_ggtt_view_rotated;
166
167enum i915_cache_level;
168
169/**
170 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
171 * VMA's presence cannot be guaranteed before binding, or after unbinding the
172 * object into/from the address space.
173 *
174 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
175 * will always be <= an objects lifetime. So object refcounting should cover us.
176 */
177struct i915_vma {
178 struct drm_mm_node node;
179 struct drm_i915_gem_object *obj;
180 struct i915_address_space *vm;
181
182 /** Flags and address space this VMA is bound to */
183#define GLOBAL_BIND (1<<0)
184#define LOCAL_BIND (1<<1)
185 unsigned int bound : 4;
186 bool is_ggtt : 1;
187
188 /**
189 * Support different GGTT views into the same object.
190 * This means there can be multiple VMA mappings per object and per VM.
191 * i915_ggtt_view_type is used to distinguish between those entries.
192 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
193 * assumed in GEM functions which take no ggtt view parameter.
194 */
195 struct i915_ggtt_view ggtt_view;
196
197 /** This object's place on the active/inactive lists */
198 struct list_head vm_link;
199
200 struct list_head obj_link; /* Link in the object's VMA list */
201
202 /** This vma's place in the batchbuffer or on the eviction list */
203 struct list_head exec_list;
204
205 /**
206 * Used for performing relocations during execbuffer insertion.
207 */
208 struct hlist_node exec_node;
209 unsigned long exec_handle;
210 struct drm_i915_gem_exec_object2 *exec_entry;
211
212 /**
213 * How many users have pinned this object in GTT space. The following
214 * users can each hold at most one reference: pwrite/pread, execbuffer
215 * (objects are not allowed multiple times for the same batchbuffer),
216 * and the framebuffer code. When switching/pageflipping, the
217 * framebuffer code has at most two buffers pinned per crtc.
218 *
219 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
220 * bits with absolutely no headroom. So use 4 bits. */
221 unsigned int pin_count:4;
222#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
223};
224
225struct i915_page_dma {
226 struct page *page;
227 union {
228 dma_addr_t daddr;
229
230 /* For gen6/gen7 only. This is the offset in the GGTT
231 * where the page directory entries for PPGTT begin
232 */
233 uint32_t ggtt_offset;
234 };
235};
236
237#define px_base(px) (&(px)->base)
238#define px_page(px) (px_base(px)->page)
239#define px_dma(px) (px_base(px)->daddr)
240
241struct i915_page_scratch {
242 struct i915_page_dma base;
243};
244
245struct i915_page_table {
246 struct i915_page_dma base;
247
248 unsigned long *used_ptes;
249};
250
251struct i915_page_directory {
252 struct i915_page_dma base;
253
254 unsigned long *used_pdes;
255 struct i915_page_table *page_table[I915_PDES]; /* PDEs */
256};
257
258struct i915_page_directory_pointer {
259 struct i915_page_dma base;
260
261 unsigned long *used_pdpes;
262 struct i915_page_directory **page_directory;
263};
264
265struct i915_pml4 {
266 struct i915_page_dma base;
267
268 DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
269 struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
270};
271
272struct i915_address_space {
273 struct drm_mm mm;
274 struct drm_device *dev;
275 struct list_head global_link;
276 u64 start; /* Start offset always 0 for dri2 */
277 u64 total; /* size addr space maps (ex. 2GB for ggtt) */
278
279 bool is_ggtt;
280
281 struct i915_page_scratch *scratch_page;
282 struct i915_page_table *scratch_pt;
283 struct i915_page_directory *scratch_pd;
284 struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
285
286 /**
287 * List of objects currently involved in rendering.
288 *
289 * Includes buffers having the contents of their GPU caches
290 * flushed, not necessarily primitives. last_read_req
291 * represents when the rendering involved will be completed.
292 *
293 * A reference is held on the buffer while on this list.
294 */
295 struct list_head active_list;
296
297 /**
298 * LRU list of objects which are not in the ringbuffer and
299 * are ready to unbind, but are still in the GTT.
300 *
301 * last_read_req is NULL while an object is in this list.
302 *
303 * A reference is not held on the buffer while on this list,
304 * as merely being GTT-bound shouldn't prevent its being
305 * freed, and we'll pull it off the list in the free path.
306 */
307 struct list_head inactive_list;
308
309 /* FIXME: Need a more generic return type */
310 gen6_pte_t (*pte_encode)(dma_addr_t addr,
311 enum i915_cache_level level,
312 bool valid, u32 flags); /* Create a valid PTE */
313 /* flags for pte_encode */
314#define PTE_READ_ONLY (1<<0)
315 int (*allocate_va_range)(struct i915_address_space *vm,
316 uint64_t start,
317 uint64_t length);
318 void (*clear_range)(struct i915_address_space *vm,
319 uint64_t start,
320 uint64_t length,
321 bool use_scratch);
322 void (*insert_entries)(struct i915_address_space *vm,
323 struct sg_table *st,
324 uint64_t start,
325 enum i915_cache_level cache_level, u32 flags);
326 void (*cleanup)(struct i915_address_space *vm);
327 /** Unmap an object from an address space. This usually consists of
328 * setting the valid PTE entries to a reserved scratch page. */
329 void (*unbind_vma)(struct i915_vma *vma);
330 /* Map an object into an address space with the given cache flags. */
331 int (*bind_vma)(struct i915_vma *vma,
332 enum i915_cache_level cache_level,
333 u32 flags);
334};
335
336#define i915_is_ggtt(V) ((V)->is_ggtt)
337
338/* The Graphics Translation Table is the way in which GEN hardware translates a
339 * Graphics Virtual Address into a Physical Address. In addition to the normal
340 * collateral associated with any va->pa translations GEN hardware also has a
341 * portion of the GTT which can be mapped by the CPU and remain both coherent
342 * and correct (in cases like swizzling). That region is referred to as GMADR in
343 * the spec.
344 */
345struct i915_gtt {
346 struct i915_address_space base;
347
348 size_t stolen_size; /* Total size of stolen memory */
349 size_t stolen_usable_size; /* Total size minus BIOS reserved */
350 size_t stolen_reserved_base;
351 size_t stolen_reserved_size;
352 u64 mappable_end; /* End offset that we can CPU map */
353 struct io_mapping *mappable; /* Mapping to our CPU mappable region */
354 phys_addr_t mappable_base; /* PA of our GMADR */
355
356 /** "Graphics Stolen Memory" holds the global PTEs */
357 void __iomem *gsm;
358
359 bool do_idle_maps;
360
361 int mtrr;
362
363 /* global gtt ops */
364 int (*gtt_probe)(struct drm_device *dev, u64 *gtt_total,
365 size_t *stolen, phys_addr_t *mappable_base,
366 u64 *mappable_end);
367};
368
369struct i915_hw_ppgtt {
370 struct i915_address_space base;
371 struct kref ref;
372 struct drm_mm_node node;
373 unsigned long pd_dirty_rings;
374 union {
375 struct i915_pml4 pml4; /* GEN8+ & 48b PPGTT */
376 struct i915_page_directory_pointer pdp; /* GEN8+ */
377 struct i915_page_directory pd; /* GEN6-7 */
378 };
379
380 struct drm_i915_file_private *file_priv;
381
382 gen6_pte_t __iomem *pd_addr;
383
384 int (*enable)(struct i915_hw_ppgtt *ppgtt);
385 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
386 struct drm_i915_gem_request *req);
387 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
388};
389
390/* For each pde iterates over every pde between from start until start + length.
391 * If start, and start+length are not perfectly divisible, the macro will round
392 * down, and up as needed. The macro modifies pde, start, and length. Dev is
393 * only used to differentiate shift values. Temp is temp. On gen6/7, start = 0,
394 * and length = 2G effectively iterates over every PDE in the system.
395 *
396 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
397 */
398#define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
399 for (iter = gen6_pde_index(start); \
400 length > 0 && iter < I915_PDES ? \
401 (pt = (pd)->page_table[iter]), 1 : 0; \
402 iter++, \
403 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
404 temp = min_t(unsigned, temp, length), \
405 start += temp, length -= temp)
406
407#define gen6_for_all_pdes(pt, ppgtt, iter) \
408 for (iter = 0; \
409 pt = ppgtt->pd.page_table[iter], iter < I915_PDES; \
410 iter++)
411
412static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
413{
414 const uint32_t mask = NUM_PTE(pde_shift) - 1;
415
416 return (address >> PAGE_SHIFT) & mask;
417}
418
419/* Helper to counts the number of PTEs within the given length. This count
420 * does not cross a page table boundary, so the max value would be
421 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
422*/
423static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
424 uint32_t pde_shift)
425{
426 const uint64_t mask = ~((1ULL << pde_shift) - 1);
427 uint64_t end;
428
429 WARN_ON(length == 0);
430 WARN_ON(offset_in_page(addr|length));
431
432 end = addr + length;
433
434 if ((addr & mask) != (end & mask))
435 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
436
437 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
438}
439
440static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
441{
442 return (addr >> shift) & I915_PDE_MASK;
443}
444
445static inline uint32_t gen6_pte_index(uint32_t addr)
446{
447 return i915_pte_index(addr, GEN6_PDE_SHIFT);
448}
449
450static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
451{
452 return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
453}
454
455static inline uint32_t gen6_pde_index(uint32_t addr)
456{
457 return i915_pde_index(addr, GEN6_PDE_SHIFT);
458}
459
460/* Equivalent to the gen6 version, For each pde iterates over every pde
461 * between from start until start + length. On gen8+ it simply iterates
462 * over every page directory entry in a page directory.
463 */
464#define gen8_for_each_pde(pt, pd, start, length, iter) \
465 for (iter = gen8_pde_index(start); \
466 length > 0 && iter < I915_PDES && \
467 (pt = (pd)->page_table[iter], true); \
468 ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT); \
469 temp = min(temp - start, length); \
470 start += temp, length -= temp; }), ++iter)
471
472#define gen8_for_each_pdpe(pd, pdp, start, length, iter) \
473 for (iter = gen8_pdpe_index(start); \
474 length > 0 && iter < I915_PDPES_PER_PDP(dev) && \
475 (pd = (pdp)->page_directory[iter], true); \
476 ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT); \
477 temp = min(temp - start, length); \
478 start += temp, length -= temp; }), ++iter)
479
480#define gen8_for_each_pml4e(pdp, pml4, start, length, iter) \
481 for (iter = gen8_pml4e_index(start); \
482 length > 0 && iter < GEN8_PML4ES_PER_PML4 && \
483 (pdp = (pml4)->pdps[iter], true); \
484 ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT); \
485 temp = min(temp - start, length); \
486 start += temp, length -= temp; }), ++iter)
487
488static inline uint32_t gen8_pte_index(uint64_t address)
489{
490 return i915_pte_index(address, GEN8_PDE_SHIFT);
491}
492
493static inline uint32_t gen8_pde_index(uint64_t address)
494{
495 return i915_pde_index(address, GEN8_PDE_SHIFT);
496}
497
498static inline uint32_t gen8_pdpe_index(uint64_t address)
499{
500 return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
501}
502
503static inline uint32_t gen8_pml4e_index(uint64_t address)
504{
505 return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
506}
507
508static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
509{
510 return i915_pte_count(address, length, GEN8_PDE_SHIFT);
511}
512
513static inline dma_addr_t
514i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
515{
516 return test_bit(n, ppgtt->pdp.used_pdpes) ?
517 px_dma(ppgtt->pdp.page_directory[n]) :
518 px_dma(ppgtt->base.scratch_pd);
519}
520
521int i915_gem_gtt_init(struct drm_device *dev);
522void i915_gem_init_global_gtt(struct drm_device *dev);
523void i915_global_gtt_cleanup(struct drm_device *dev);
524
525
526int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
527int i915_ppgtt_init_hw(struct drm_device *dev);
528int i915_ppgtt_init_ring(struct drm_i915_gem_request *req);
529void i915_ppgtt_release(struct kref *kref);
530struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
531 struct drm_i915_file_private *fpriv);
532static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
533{
534 if (ppgtt)
535 kref_get(&ppgtt->ref);
536}
537static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
538{
539 if (ppgtt)
540 kref_put(&ppgtt->ref, i915_ppgtt_release);
541}
542
543void i915_check_and_clear_faults(struct drm_device *dev);
544void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
545void i915_gem_restore_gtt_mappings(struct drm_device *dev);
546
547int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
548void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
549
550static inline bool
551i915_ggtt_view_equal(const struct i915_ggtt_view *a,
552 const struct i915_ggtt_view *b)
553{
554 if (WARN_ON(!a || !b))
555 return false;
556
557 if (a->type != b->type)
558 return false;
559 if (a->type != I915_GGTT_VIEW_NORMAL)
560 return !memcmp(&a->params, &b->params, sizeof(a->params));
561 return true;
562}
563
564size_t
565i915_ggtt_view_size(struct drm_i915_gem_object *obj,
566 const struct i915_ggtt_view *view);
567
568#endif
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34#ifndef __I915_GEM_GTT_H__
35#define __I915_GEM_GTT_H__
36
37#include <linux/io-mapping.h>
38#include <linux/mm.h>
39#include <linux/pagevec.h>
40
41#include "i915_gem_timeline.h"
42
43#include "i915_request.h"
44#include "i915_selftest.h"
45
46#define I915_GTT_PAGE_SIZE_4K BIT(12)
47#define I915_GTT_PAGE_SIZE_64K BIT(16)
48#define I915_GTT_PAGE_SIZE_2M BIT(21)
49
50#define I915_GTT_PAGE_SIZE I915_GTT_PAGE_SIZE_4K
51#define I915_GTT_MAX_PAGE_SIZE I915_GTT_PAGE_SIZE_2M
52
53#define I915_GTT_MIN_ALIGNMENT I915_GTT_PAGE_SIZE
54
55#define I915_FENCE_REG_NONE -1
56#define I915_MAX_NUM_FENCES 32
57/* 32 fences + sign bit for FENCE_REG_NONE */
58#define I915_MAX_NUM_FENCE_BITS 6
59
60struct drm_i915_file_private;
61struct drm_i915_fence_reg;
62
63typedef u32 gen6_pte_t;
64typedef u64 gen8_pte_t;
65typedef u64 gen8_pde_t;
66typedef u64 gen8_ppgtt_pdpe_t;
67typedef u64 gen8_ppgtt_pml4e_t;
68
69#define ggtt_total_entries(ggtt) ((ggtt)->base.total >> PAGE_SHIFT)
70
71/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
72#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
73#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
74#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
75#define GEN6_PTE_CACHE_LLC (2 << 1)
76#define GEN6_PTE_UNCACHED (1 << 1)
77#define GEN6_PTE_VALID (1 << 0)
78
79#define I915_PTES(pte_len) ((unsigned int)(PAGE_SIZE / (pte_len)))
80#define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
81#define I915_PDES 512
82#define I915_PDE_MASK (I915_PDES - 1)
83#define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
84
85#define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
86#define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
87#define GEN6_PD_ALIGN (PAGE_SIZE * 16)
88#define GEN6_PDE_SHIFT 22
89#define GEN6_PDE_VALID (1 << 0)
90
91#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
92
93#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
94#define BYT_PTE_WRITEABLE (1 << 1)
95
96/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
97 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
98 */
99#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
100 (((bits) & 0x8) << (11 - 3)))
101#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
102#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
103#define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
104#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
105#define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
106#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
107#define HSW_PTE_UNCACHED (0)
108#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
109#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
110
111/* GEN8 32b style address is defined as a 3 level page table:
112 * 31:30 | 29:21 | 20:12 | 11:0
113 * PDPE | PDE | PTE | offset
114 * The difference as compared to normal x86 3 level page table is the PDPEs are
115 * programmed via register.
116 */
117#define GEN8_3LVL_PDPES 4
118#define GEN8_PDE_SHIFT 21
119#define GEN8_PDE_MASK 0x1ff
120#define GEN8_PTE_SHIFT 12
121#define GEN8_PTE_MASK 0x1ff
122#define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
123
124/* GEN8 48b style address is defined as a 4 level page table:
125 * 47:39 | 38:30 | 29:21 | 20:12 | 11:0
126 * PML4E | PDPE | PDE | PTE | offset
127 */
128#define GEN8_PML4ES_PER_PML4 512
129#define GEN8_PML4E_SHIFT 39
130#define GEN8_PML4E_MASK (GEN8_PML4ES_PER_PML4 - 1)
131#define GEN8_PDPE_SHIFT 30
132/* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
133 * tables */
134#define GEN8_PDPE_MASK 0x1ff
135
136#define PPAT_UNCACHED (_PAGE_PWT | _PAGE_PCD)
137#define PPAT_CACHED_PDE 0 /* WB LLC */
138#define PPAT_CACHED _PAGE_PAT /* WB LLCeLLC */
139#define PPAT_DISPLAY_ELLC _PAGE_PCD /* WT eLLC */
140
141#define CHV_PPAT_SNOOP (1<<6)
142#define GEN8_PPAT_AGE(x) ((x)<<4)
143#define GEN8_PPAT_LLCeLLC (3<<2)
144#define GEN8_PPAT_LLCELLC (2<<2)
145#define GEN8_PPAT_LLC (1<<2)
146#define GEN8_PPAT_WB (3<<0)
147#define GEN8_PPAT_WT (2<<0)
148#define GEN8_PPAT_WC (1<<0)
149#define GEN8_PPAT_UC (0<<0)
150#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
151#define GEN8_PPAT(i, x) ((u64)(x) << ((i) * 8))
152
153#define GEN8_PPAT_GET_CA(x) ((x) & 3)
154#define GEN8_PPAT_GET_TC(x) ((x) & (3 << 2))
155#define GEN8_PPAT_GET_AGE(x) ((x) & (3 << 4))
156#define CHV_PPAT_GET_SNOOP(x) ((x) & (1 << 6))
157
158#define GEN8_PDE_IPS_64K BIT(11)
159#define GEN8_PDE_PS_2M BIT(7)
160
161struct sg_table;
162
163struct intel_rotation_info {
164 struct intel_rotation_plane_info {
165 /* tiles */
166 unsigned int width, height, stride, offset;
167 } plane[2];
168} __packed;
169
170static inline void assert_intel_rotation_info_is_packed(void)
171{
172 BUILD_BUG_ON(sizeof(struct intel_rotation_info) != 8*sizeof(unsigned int));
173}
174
175struct intel_partial_info {
176 u64 offset;
177 unsigned int size;
178} __packed;
179
180static inline void assert_intel_partial_info_is_packed(void)
181{
182 BUILD_BUG_ON(sizeof(struct intel_partial_info) != sizeof(u64) + sizeof(unsigned int));
183}
184
185enum i915_ggtt_view_type {
186 I915_GGTT_VIEW_NORMAL = 0,
187 I915_GGTT_VIEW_ROTATED = sizeof(struct intel_rotation_info),
188 I915_GGTT_VIEW_PARTIAL = sizeof(struct intel_partial_info),
189};
190
191static inline void assert_i915_ggtt_view_type_is_unique(void)
192{
193 /* As we encode the size of each branch inside the union into its type,
194 * we have to be careful that each branch has a unique size.
195 */
196 switch ((enum i915_ggtt_view_type)0) {
197 case I915_GGTT_VIEW_NORMAL:
198 case I915_GGTT_VIEW_PARTIAL:
199 case I915_GGTT_VIEW_ROTATED:
200 /* gcc complains if these are identical cases */
201 break;
202 }
203}
204
205struct i915_ggtt_view {
206 enum i915_ggtt_view_type type;
207 union {
208 /* Members need to contain no holes/padding */
209 struct intel_partial_info partial;
210 struct intel_rotation_info rotated;
211 };
212};
213
214enum i915_cache_level;
215
216struct i915_vma;
217
218struct i915_page_dma {
219 struct page *page;
220 int order;
221 union {
222 dma_addr_t daddr;
223
224 /* For gen6/gen7 only. This is the offset in the GGTT
225 * where the page directory entries for PPGTT begin
226 */
227 u32 ggtt_offset;
228 };
229};
230
231#define px_base(px) (&(px)->base)
232#define px_page(px) (px_base(px)->page)
233#define px_dma(px) (px_base(px)->daddr)
234
235struct i915_page_table {
236 struct i915_page_dma base;
237 unsigned int used_ptes;
238};
239
240struct i915_page_directory {
241 struct i915_page_dma base;
242
243 struct i915_page_table *page_table[I915_PDES]; /* PDEs */
244 unsigned int used_pdes;
245};
246
247struct i915_page_directory_pointer {
248 struct i915_page_dma base;
249 struct i915_page_directory **page_directory;
250 unsigned int used_pdpes;
251};
252
253struct i915_pml4 {
254 struct i915_page_dma base;
255 struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
256};
257
258struct i915_address_space {
259 struct drm_mm mm;
260 struct i915_gem_timeline timeline;
261 struct drm_i915_private *i915;
262 struct device *dma;
263 /* Every address space belongs to a struct file - except for the global
264 * GTT that is owned by the driver (and so @file is set to NULL). In
265 * principle, no information should leak from one context to another
266 * (or between files/processes etc) unless explicitly shared by the
267 * owner. Tracking the owner is important in order to free up per-file
268 * objects along with the file, to aide resource tracking, and to
269 * assign blame.
270 */
271 struct drm_i915_file_private *file;
272 struct list_head global_link;
273 u64 total; /* size addr space maps (ex. 2GB for ggtt) */
274 u64 reserved; /* size addr space reserved */
275
276 bool closed;
277
278 struct i915_page_dma scratch_page;
279 struct i915_page_table *scratch_pt;
280 struct i915_page_directory *scratch_pd;
281 struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
282
283 /**
284 * List of objects currently involved in rendering.
285 *
286 * Includes buffers having the contents of their GPU caches
287 * flushed, not necessarily primitives. last_read_req
288 * represents when the rendering involved will be completed.
289 *
290 * A reference is held on the buffer while on this list.
291 */
292 struct list_head active_list;
293
294 /**
295 * LRU list of objects which are not in the ringbuffer and
296 * are ready to unbind, but are still in the GTT.
297 *
298 * last_read_req is NULL while an object is in this list.
299 *
300 * A reference is not held on the buffer while on this list,
301 * as merely being GTT-bound shouldn't prevent its being
302 * freed, and we'll pull it off the list in the free path.
303 */
304 struct list_head inactive_list;
305
306 /**
307 * List of vma that have been unbound.
308 *
309 * A reference is not held on the buffer while on this list.
310 */
311 struct list_head unbound_list;
312
313 struct pagevec free_pages;
314 bool pt_kmap_wc;
315
316 /* FIXME: Need a more generic return type */
317 gen6_pte_t (*pte_encode)(dma_addr_t addr,
318 enum i915_cache_level level,
319 u32 flags); /* Create a valid PTE */
320 /* flags for pte_encode */
321#define PTE_READ_ONLY (1<<0)
322 int (*allocate_va_range)(struct i915_address_space *vm,
323 u64 start, u64 length);
324 void (*clear_range)(struct i915_address_space *vm,
325 u64 start, u64 length);
326 void (*insert_page)(struct i915_address_space *vm,
327 dma_addr_t addr,
328 u64 offset,
329 enum i915_cache_level cache_level,
330 u32 flags);
331 void (*insert_entries)(struct i915_address_space *vm,
332 struct i915_vma *vma,
333 enum i915_cache_level cache_level,
334 u32 flags);
335 void (*cleanup)(struct i915_address_space *vm);
336 /** Unmap an object from an address space. This usually consists of
337 * setting the valid PTE entries to a reserved scratch page. */
338 void (*unbind_vma)(struct i915_vma *vma);
339 /* Map an object into an address space with the given cache flags. */
340 int (*bind_vma)(struct i915_vma *vma,
341 enum i915_cache_level cache_level,
342 u32 flags);
343 int (*set_pages)(struct i915_vma *vma);
344 void (*clear_pages)(struct i915_vma *vma);
345
346 I915_SELFTEST_DECLARE(struct fault_attr fault_attr);
347};
348
349#define i915_is_ggtt(V) (!(V)->file)
350
351static inline bool
352i915_vm_is_48bit(const struct i915_address_space *vm)
353{
354 return (vm->total - 1) >> 32;
355}
356
357static inline bool
358i915_vm_has_scratch_64K(struct i915_address_space *vm)
359{
360 return vm->scratch_page.order == get_order(I915_GTT_PAGE_SIZE_64K);
361}
362
363/* The Graphics Translation Table is the way in which GEN hardware translates a
364 * Graphics Virtual Address into a Physical Address. In addition to the normal
365 * collateral associated with any va->pa translations GEN hardware also has a
366 * portion of the GTT which can be mapped by the CPU and remain both coherent
367 * and correct (in cases like swizzling). That region is referred to as GMADR in
368 * the spec.
369 */
370struct i915_ggtt {
371 struct i915_address_space base;
372
373 struct io_mapping iomap; /* Mapping to our CPU mappable region */
374 struct resource gmadr; /* GMADR resource */
375 resource_size_t mappable_end; /* End offset that we can CPU map */
376
377 /** "Graphics Stolen Memory" holds the global PTEs */
378 void __iomem *gsm;
379 void (*invalidate)(struct drm_i915_private *dev_priv);
380
381 bool do_idle_maps;
382
383 int mtrr;
384
385 struct drm_mm_node error_capture;
386};
387
388struct i915_hw_ppgtt {
389 struct i915_address_space base;
390 struct kref ref;
391 struct drm_mm_node node;
392 unsigned long pd_dirty_rings;
393 union {
394 struct i915_pml4 pml4; /* GEN8+ & 48b PPGTT */
395 struct i915_page_directory_pointer pdp; /* GEN8+ */
396 struct i915_page_directory pd; /* GEN6-7 */
397 };
398
399 gen6_pte_t __iomem *pd_addr;
400
401 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
402 struct i915_request *rq);
403 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
404};
405
406/*
407 * gen6_for_each_pde() iterates over every pde from start until start+length.
408 * If start and start+length are not perfectly divisible, the macro will round
409 * down and up as needed. Start=0 and length=2G effectively iterates over
410 * every PDE in the system. The macro modifies ALL its parameters except 'pd',
411 * so each of the other parameters should preferably be a simple variable, or
412 * at most an lvalue with no side-effects!
413 */
414#define gen6_for_each_pde(pt, pd, start, length, iter) \
415 for (iter = gen6_pde_index(start); \
416 length > 0 && iter < I915_PDES && \
417 (pt = (pd)->page_table[iter], true); \
418 ({ u32 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT); \
419 temp = min(temp - start, length); \
420 start += temp, length -= temp; }), ++iter)
421
422#define gen6_for_all_pdes(pt, pd, iter) \
423 for (iter = 0; \
424 iter < I915_PDES && \
425 (pt = (pd)->page_table[iter], true); \
426 ++iter)
427
428static inline u32 i915_pte_index(u64 address, unsigned int pde_shift)
429{
430 const u32 mask = NUM_PTE(pde_shift) - 1;
431
432 return (address >> PAGE_SHIFT) & mask;
433}
434
435/* Helper to counts the number of PTEs within the given length. This count
436 * does not cross a page table boundary, so the max value would be
437 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
438*/
439static inline u32 i915_pte_count(u64 addr, u64 length, unsigned int pde_shift)
440{
441 const u64 mask = ~((1ULL << pde_shift) - 1);
442 u64 end;
443
444 WARN_ON(length == 0);
445 WARN_ON(offset_in_page(addr|length));
446
447 end = addr + length;
448
449 if ((addr & mask) != (end & mask))
450 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
451
452 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
453}
454
455static inline u32 i915_pde_index(u64 addr, u32 shift)
456{
457 return (addr >> shift) & I915_PDE_MASK;
458}
459
460static inline u32 gen6_pte_index(u32 addr)
461{
462 return i915_pte_index(addr, GEN6_PDE_SHIFT);
463}
464
465static inline u32 gen6_pte_count(u32 addr, u32 length)
466{
467 return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
468}
469
470static inline u32 gen6_pde_index(u32 addr)
471{
472 return i915_pde_index(addr, GEN6_PDE_SHIFT);
473}
474
475static inline unsigned int
476i915_pdpes_per_pdp(const struct i915_address_space *vm)
477{
478 if (i915_vm_is_48bit(vm))
479 return GEN8_PML4ES_PER_PML4;
480
481 return GEN8_3LVL_PDPES;
482}
483
484/* Equivalent to the gen6 version, For each pde iterates over every pde
485 * between from start until start + length. On gen8+ it simply iterates
486 * over every page directory entry in a page directory.
487 */
488#define gen8_for_each_pde(pt, pd, start, length, iter) \
489 for (iter = gen8_pde_index(start); \
490 length > 0 && iter < I915_PDES && \
491 (pt = (pd)->page_table[iter], true); \
492 ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT); \
493 temp = min(temp - start, length); \
494 start += temp, length -= temp; }), ++iter)
495
496#define gen8_for_each_pdpe(pd, pdp, start, length, iter) \
497 for (iter = gen8_pdpe_index(start); \
498 length > 0 && iter < i915_pdpes_per_pdp(vm) && \
499 (pd = (pdp)->page_directory[iter], true); \
500 ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT); \
501 temp = min(temp - start, length); \
502 start += temp, length -= temp; }), ++iter)
503
504#define gen8_for_each_pml4e(pdp, pml4, start, length, iter) \
505 for (iter = gen8_pml4e_index(start); \
506 length > 0 && iter < GEN8_PML4ES_PER_PML4 && \
507 (pdp = (pml4)->pdps[iter], true); \
508 ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT); \
509 temp = min(temp - start, length); \
510 start += temp, length -= temp; }), ++iter)
511
512static inline u32 gen8_pte_index(u64 address)
513{
514 return i915_pte_index(address, GEN8_PDE_SHIFT);
515}
516
517static inline u32 gen8_pde_index(u64 address)
518{
519 return i915_pde_index(address, GEN8_PDE_SHIFT);
520}
521
522static inline u32 gen8_pdpe_index(u64 address)
523{
524 return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
525}
526
527static inline u32 gen8_pml4e_index(u64 address)
528{
529 return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
530}
531
532static inline u64 gen8_pte_count(u64 address, u64 length)
533{
534 return i915_pte_count(address, length, GEN8_PDE_SHIFT);
535}
536
537static inline dma_addr_t
538i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
539{
540 return px_dma(ppgtt->pdp.page_directory[n]);
541}
542
543static inline struct i915_ggtt *
544i915_vm_to_ggtt(struct i915_address_space *vm)
545{
546 GEM_BUG_ON(!i915_is_ggtt(vm));
547 return container_of(vm, struct i915_ggtt, base);
548}
549
550#define INTEL_MAX_PPAT_ENTRIES 8
551#define INTEL_PPAT_PERFECT_MATCH (~0U)
552
553struct intel_ppat;
554
555struct intel_ppat_entry {
556 struct intel_ppat *ppat;
557 struct kref ref;
558 u8 value;
559};
560
561struct intel_ppat {
562 struct intel_ppat_entry entries[INTEL_MAX_PPAT_ENTRIES];
563 DECLARE_BITMAP(used, INTEL_MAX_PPAT_ENTRIES);
564 DECLARE_BITMAP(dirty, INTEL_MAX_PPAT_ENTRIES);
565 unsigned int max_entries;
566 u8 clear_value;
567 /*
568 * Return a score to show how two PPAT values match,
569 * a INTEL_PPAT_PERFECT_MATCH indicates a perfect match
570 */
571 unsigned int (*match)(u8 src, u8 dst);
572 void (*update_hw)(struct drm_i915_private *i915);
573
574 struct drm_i915_private *i915;
575};
576
577const struct intel_ppat_entry *
578intel_ppat_get(struct drm_i915_private *i915, u8 value);
579void intel_ppat_put(const struct intel_ppat_entry *entry);
580
581int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915);
582void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915);
583
584int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv);
585int i915_ggtt_init_hw(struct drm_i915_private *dev_priv);
586int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv);
587void i915_ggtt_enable_guc(struct drm_i915_private *i915);
588void i915_ggtt_disable_guc(struct drm_i915_private *i915);
589int i915_gem_init_ggtt(struct drm_i915_private *dev_priv);
590void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv);
591
592int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv);
593void i915_ppgtt_release(struct kref *kref);
594struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_i915_private *dev_priv,
595 struct drm_i915_file_private *fpriv,
596 const char *name);
597void i915_ppgtt_close(struct i915_address_space *vm);
598static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
599{
600 if (ppgtt)
601 kref_get(&ppgtt->ref);
602}
603static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
604{
605 if (ppgtt)
606 kref_put(&ppgtt->ref, i915_ppgtt_release);
607}
608
609void i915_check_and_clear_faults(struct drm_i915_private *dev_priv);
610void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv);
611void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv);
612
613int __must_check i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
614 struct sg_table *pages);
615void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
616 struct sg_table *pages);
617
618int i915_gem_gtt_reserve(struct i915_address_space *vm,
619 struct drm_mm_node *node,
620 u64 size, u64 offset, unsigned long color,
621 unsigned int flags);
622
623int i915_gem_gtt_insert(struct i915_address_space *vm,
624 struct drm_mm_node *node,
625 u64 size, u64 alignment, unsigned long color,
626 u64 start, u64 end, unsigned int flags);
627
628/* Flags used by pin/bind&friends. */
629#define PIN_NONBLOCK BIT(0)
630#define PIN_MAPPABLE BIT(1)
631#define PIN_ZONE_4G BIT(2)
632#define PIN_NONFAULT BIT(3)
633#define PIN_NOEVICT BIT(4)
634
635#define PIN_MBZ BIT(5) /* I915_VMA_PIN_OVERFLOW */
636#define PIN_GLOBAL BIT(6) /* I915_VMA_GLOBAL_BIND */
637#define PIN_USER BIT(7) /* I915_VMA_LOCAL_BIND */
638#define PIN_UPDATE BIT(8)
639
640#define PIN_HIGH BIT(9)
641#define PIN_OFFSET_BIAS BIT(10)
642#define PIN_OFFSET_FIXED BIT(11)
643#define PIN_OFFSET_MASK (-I915_GTT_PAGE_SIZE)
644
645#endif