Loading...
1/* n2-drv.c: Niagara-2 RNG driver.
2 *
3 * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
4 */
5
6#include <linux/kernel.h>
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/delay.h>
10#include <linux/slab.h>
11#include <linux/workqueue.h>
12#include <linux/preempt.h>
13#include <linux/hw_random.h>
14
15#include <linux/of.h>
16#include <linux/of_device.h>
17
18#include <asm/hypervisor.h>
19
20#include "n2rng.h"
21
22#define DRV_MODULE_NAME "n2rng"
23#define PFX DRV_MODULE_NAME ": "
24#define DRV_MODULE_VERSION "0.2"
25#define DRV_MODULE_RELDATE "July 27, 2011"
26
27static char version[] =
28 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
29
30MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
31MODULE_DESCRIPTION("Niagara2 RNG driver");
32MODULE_LICENSE("GPL");
33MODULE_VERSION(DRV_MODULE_VERSION);
34
35/* The Niagara2 RNG provides a 64-bit read-only random number
36 * register, plus a control register. Access to the RNG is
37 * virtualized through the hypervisor so that both guests and control
38 * nodes can access the device.
39 *
40 * The entropy source consists of raw entropy sources, each
41 * constructed from a voltage controlled oscillator whose phase is
42 * jittered by thermal noise sources.
43 *
44 * The oscillator in each of the three raw entropy sources run at
45 * different frequencies. Normally, all three generator outputs are
46 * gathered, xored together, and fed into a CRC circuit, the output of
47 * which is the 64-bit read-only register.
48 *
49 * Some time is necessary for all the necessary entropy to build up
50 * such that a full 64-bits of entropy are available in the register.
51 * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
52 * an interlock which blocks register reads until sufficient entropy
53 * is available.
54 *
55 * A control register is provided for adjusting various aspects of RNG
56 * operation, and to enable diagnostic modes. Each of the three raw
57 * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}). Also
58 * provided are fields for controlling the minimum time in cycles
59 * between read accesses to the register (RNG_CTL_WAIT, this controls
60 * the interlock described in the previous paragraph).
61 *
62 * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
63 * all three entropy sources enabled, and the interlock time set
64 * appropriately.
65 *
66 * The CRC polynomial used by the chip is:
67 *
68 * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
69 * x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
70 * x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
71 *
72 * The RNG_CTL_VCO value of each noise cell must be programmed
73 * separately. This is why 4 control register values must be provided
74 * to the hypervisor. During a write, the hypervisor writes them all,
75 * one at a time, to the actual RNG_CTL register. The first three
76 * values are used to setup the desired RNG_CTL_VCO for each entropy
77 * source, for example:
78 *
79 * control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
80 * control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
81 * control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
82 *
83 * And then the fourth value sets the final chip state and enables
84 * desired.
85 */
86
87static int n2rng_hv_err_trans(unsigned long hv_err)
88{
89 switch (hv_err) {
90 case HV_EOK:
91 return 0;
92 case HV_EWOULDBLOCK:
93 return -EAGAIN;
94 case HV_ENOACCESS:
95 return -EPERM;
96 case HV_EIO:
97 return -EIO;
98 case HV_EBUSY:
99 return -EBUSY;
100 case HV_EBADALIGN:
101 case HV_ENORADDR:
102 return -EFAULT;
103 default:
104 return -EINVAL;
105 }
106}
107
108static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
109 unsigned long unit)
110{
111 unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
112 int block = 0, busy = 0;
113
114 while (1) {
115 hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
116 &ticks,
117 &watchdog_delta,
118 &watchdog_status);
119 if (hv_err == HV_EOK)
120 break;
121
122 if (hv_err == HV_EBUSY) {
123 if (++busy >= N2RNG_BUSY_LIMIT)
124 break;
125
126 udelay(1);
127 } else if (hv_err == HV_EWOULDBLOCK) {
128 if (++block >= N2RNG_BLOCK_LIMIT)
129 break;
130
131 __delay(ticks);
132 } else
133 break;
134 }
135
136 return hv_err;
137}
138
139/* In multi-socket situations, the hypervisor might need to
140 * queue up the RNG control register write if it's for a unit
141 * that is on a cpu socket other than the one we are executing on.
142 *
143 * We poll here waiting for a successful read of that control
144 * register to make sure the write has been actually performed.
145 */
146static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
147{
148 unsigned long ra = __pa(&np->scratch_control[0]);
149
150 return n2rng_generic_read_control_v2(ra, unit);
151}
152
153static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
154 unsigned long state,
155 unsigned long control_ra,
156 unsigned long watchdog_timeout,
157 unsigned long *ticks)
158{
159 unsigned long hv_err;
160
161 if (np->hvapi_major == 1) {
162 hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
163 watchdog_timeout, ticks);
164 } else {
165 hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
166 watchdog_timeout, unit);
167 if (hv_err == HV_EOK)
168 hv_err = n2rng_control_settle_v2(np, unit);
169 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
170 }
171
172 return hv_err;
173}
174
175static int n2rng_generic_read_data(unsigned long data_ra)
176{
177 unsigned long ticks, hv_err;
178 int block = 0, hcheck = 0;
179
180 while (1) {
181 hv_err = sun4v_rng_data_read(data_ra, &ticks);
182 if (hv_err == HV_EOK)
183 return 0;
184
185 if (hv_err == HV_EWOULDBLOCK) {
186 if (++block >= N2RNG_BLOCK_LIMIT)
187 return -EWOULDBLOCK;
188 __delay(ticks);
189 } else if (hv_err == HV_ENOACCESS) {
190 return -EPERM;
191 } else if (hv_err == HV_EIO) {
192 if (++hcheck >= N2RNG_HCHECK_LIMIT)
193 return -EIO;
194 udelay(10000);
195 } else
196 return -ENODEV;
197 }
198}
199
200static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
201 unsigned long unit,
202 unsigned long data_ra,
203 unsigned long data_len,
204 unsigned long *ticks)
205{
206 unsigned long hv_err;
207
208 if (np->hvapi_major == 1) {
209 hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
210 } else {
211 hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
212 unit, ticks);
213 if (!*ticks)
214 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
215 }
216 return hv_err;
217}
218
219static int n2rng_generic_read_diag_data(struct n2rng *np,
220 unsigned long unit,
221 unsigned long data_ra,
222 unsigned long data_len)
223{
224 unsigned long ticks, hv_err;
225 int block = 0;
226
227 while (1) {
228 hv_err = n2rng_read_diag_data_one(np, unit,
229 data_ra, data_len,
230 &ticks);
231 if (hv_err == HV_EOK)
232 return 0;
233
234 if (hv_err == HV_EWOULDBLOCK) {
235 if (++block >= N2RNG_BLOCK_LIMIT)
236 return -EWOULDBLOCK;
237 __delay(ticks);
238 } else if (hv_err == HV_ENOACCESS) {
239 return -EPERM;
240 } else if (hv_err == HV_EIO) {
241 return -EIO;
242 } else
243 return -ENODEV;
244 }
245}
246
247
248static int n2rng_generic_write_control(struct n2rng *np,
249 unsigned long control_ra,
250 unsigned long unit,
251 unsigned long state)
252{
253 unsigned long hv_err, ticks;
254 int block = 0, busy = 0;
255
256 while (1) {
257 hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
258 np->wd_timeo, &ticks);
259 if (hv_err == HV_EOK)
260 return 0;
261
262 if (hv_err == HV_EWOULDBLOCK) {
263 if (++block >= N2RNG_BLOCK_LIMIT)
264 return -EWOULDBLOCK;
265 __delay(ticks);
266 } else if (hv_err == HV_EBUSY) {
267 if (++busy >= N2RNG_BUSY_LIMIT)
268 return -EBUSY;
269 udelay(1);
270 } else
271 return -ENODEV;
272 }
273}
274
275/* Just try to see if we can successfully access the control register
276 * of the RNG on the domain on which we are currently executing.
277 */
278static int n2rng_try_read_ctl(struct n2rng *np)
279{
280 unsigned long hv_err;
281 unsigned long x;
282
283 if (np->hvapi_major == 1) {
284 hv_err = sun4v_rng_get_diag_ctl();
285 } else {
286 /* We purposefully give invalid arguments, HV_NOACCESS
287 * is higher priority than the errors we'd get from
288 * these other cases, and that's the error we are
289 * truly interested in.
290 */
291 hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
292 switch (hv_err) {
293 case HV_EWOULDBLOCK:
294 case HV_ENOACCESS:
295 break;
296 default:
297 hv_err = HV_EOK;
298 break;
299 }
300 }
301
302 return n2rng_hv_err_trans(hv_err);
303}
304
305#define CONTROL_DEFAULT_BASE \
306 ((2 << RNG_CTL_ASEL_SHIFT) | \
307 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) | \
308 RNG_CTL_LFSR)
309
310#define CONTROL_DEFAULT_0 \
311 (CONTROL_DEFAULT_BASE | \
312 (1 << RNG_CTL_VCO_SHIFT) | \
313 RNG_CTL_ES1)
314#define CONTROL_DEFAULT_1 \
315 (CONTROL_DEFAULT_BASE | \
316 (2 << RNG_CTL_VCO_SHIFT) | \
317 RNG_CTL_ES2)
318#define CONTROL_DEFAULT_2 \
319 (CONTROL_DEFAULT_BASE | \
320 (3 << RNG_CTL_VCO_SHIFT) | \
321 RNG_CTL_ES3)
322#define CONTROL_DEFAULT_3 \
323 (CONTROL_DEFAULT_BASE | \
324 RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3)
325
326static void n2rng_control_swstate_init(struct n2rng *np)
327{
328 int i;
329
330 np->flags |= N2RNG_FLAG_CONTROL;
331
332 np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
333 np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
334 np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
335
336 for (i = 0; i < np->num_units; i++) {
337 struct n2rng_unit *up = &np->units[i];
338
339 up->control[0] = CONTROL_DEFAULT_0;
340 up->control[1] = CONTROL_DEFAULT_1;
341 up->control[2] = CONTROL_DEFAULT_2;
342 up->control[3] = CONTROL_DEFAULT_3;
343 }
344
345 np->hv_state = HV_RNG_STATE_UNCONFIGURED;
346}
347
348static int n2rng_grab_diag_control(struct n2rng *np)
349{
350 int i, busy_count, err = -ENODEV;
351
352 busy_count = 0;
353 for (i = 0; i < 100; i++) {
354 err = n2rng_try_read_ctl(np);
355 if (err != -EAGAIN)
356 break;
357
358 if (++busy_count > 100) {
359 dev_err(&np->op->dev,
360 "Grab diag control timeout.\n");
361 return -ENODEV;
362 }
363
364 udelay(1);
365 }
366
367 return err;
368}
369
370static int n2rng_init_control(struct n2rng *np)
371{
372 int err = n2rng_grab_diag_control(np);
373
374 /* Not in the control domain, that's OK we are only a consumer
375 * of the RNG data, we don't setup and program it.
376 */
377 if (err == -EPERM)
378 return 0;
379 if (err)
380 return err;
381
382 n2rng_control_swstate_init(np);
383
384 return 0;
385}
386
387static int n2rng_data_read(struct hwrng *rng, u32 *data)
388{
389 struct n2rng *np = (struct n2rng *) rng->priv;
390 unsigned long ra = __pa(&np->test_data);
391 int len;
392
393 if (!(np->flags & N2RNG_FLAG_READY)) {
394 len = 0;
395 } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
396 np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
397 *data = np->buffer;
398 len = 4;
399 } else {
400 int err = n2rng_generic_read_data(ra);
401 if (!err) {
402 np->buffer = np->test_data >> 32;
403 *data = np->test_data & 0xffffffff;
404 len = 4;
405 } else {
406 dev_err(&np->op->dev, "RNG error, restesting\n");
407 np->flags &= ~N2RNG_FLAG_READY;
408 if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
409 schedule_delayed_work(&np->work, 0);
410 len = 0;
411 }
412 }
413
414 return len;
415}
416
417/* On a guest node, just make sure we can read random data properly.
418 * If a control node reboots or reloads it's n2rng driver, this won't
419 * work during that time. So we have to keep probing until the device
420 * becomes usable.
421 */
422static int n2rng_guest_check(struct n2rng *np)
423{
424 unsigned long ra = __pa(&np->test_data);
425
426 return n2rng_generic_read_data(ra);
427}
428
429static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
430 u64 *pre_control, u64 pre_state,
431 u64 *buffer, unsigned long buf_len,
432 u64 *post_control, u64 post_state)
433{
434 unsigned long post_ctl_ra = __pa(post_control);
435 unsigned long pre_ctl_ra = __pa(pre_control);
436 unsigned long buffer_ra = __pa(buffer);
437 int err;
438
439 err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
440 if (err)
441 return err;
442
443 err = n2rng_generic_read_diag_data(np, unit,
444 buffer_ra, buf_len);
445
446 (void) n2rng_generic_write_control(np, post_ctl_ra, unit,
447 post_state);
448
449 return err;
450}
451
452static u64 advance_polynomial(u64 poly, u64 val, int count)
453{
454 int i;
455
456 for (i = 0; i < count; i++) {
457 int highbit_set = ((s64)val < 0);
458
459 val <<= 1;
460 if (highbit_set)
461 val ^= poly;
462 }
463
464 return val;
465}
466
467static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
468{
469 int i, count = 0;
470
471 /* Purposefully skip over the first word. */
472 for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
473 if (np->test_buffer[i] == val)
474 count++;
475 }
476 return count;
477}
478
479static void n2rng_dump_test_buffer(struct n2rng *np)
480{
481 int i;
482
483 for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
484 dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
485 i, np->test_buffer[i]);
486}
487
488static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
489{
490 u64 val = SELFTEST_VAL;
491 int err, matches, limit;
492
493 matches = 0;
494 for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
495 matches += n2rng_test_buffer_find(np, val);
496 if (matches >= SELFTEST_MATCH_GOAL)
497 break;
498 val = advance_polynomial(SELFTEST_POLY, val, 1);
499 }
500
501 err = 0;
502 if (limit >= SELFTEST_LOOPS_MAX) {
503 err = -ENODEV;
504 dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
505 n2rng_dump_test_buffer(np);
506 } else
507 dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
508
509 return err;
510}
511
512static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
513{
514 int err;
515
516 np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT);
517 np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT);
518 np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT);
519 np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) |
520 RNG_CTL_LFSR |
521 ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT));
522
523
524 err = n2rng_entropy_diag_read(np, unit, np->test_control,
525 HV_RNG_STATE_HEALTHCHECK,
526 np->test_buffer,
527 sizeof(np->test_buffer),
528 &np->units[unit].control[0],
529 np->hv_state);
530 if (err)
531 return err;
532
533 return n2rng_check_selftest_buffer(np, unit);
534}
535
536static int n2rng_control_check(struct n2rng *np)
537{
538 int i;
539
540 for (i = 0; i < np->num_units; i++) {
541 int err = n2rng_control_selftest(np, i);
542 if (err)
543 return err;
544 }
545 return 0;
546}
547
548/* The sanity checks passed, install the final configuration into the
549 * chip, it's ready to use.
550 */
551static int n2rng_control_configure_units(struct n2rng *np)
552{
553 int unit, err;
554
555 err = 0;
556 for (unit = 0; unit < np->num_units; unit++) {
557 struct n2rng_unit *up = &np->units[unit];
558 unsigned long ctl_ra = __pa(&up->control[0]);
559 int esrc;
560 u64 base;
561
562 base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) |
563 (2 << RNG_CTL_ASEL_SHIFT) |
564 RNG_CTL_LFSR);
565
566 /* XXX This isn't the best. We should fetch a bunch
567 * XXX of words using each entropy source combined XXX
568 * with each VCO setting, and see which combinations
569 * XXX give the best random data.
570 */
571 for (esrc = 0; esrc < 3; esrc++)
572 up->control[esrc] = base |
573 (esrc << RNG_CTL_VCO_SHIFT) |
574 (RNG_CTL_ES1 << esrc);
575
576 up->control[3] = base |
577 (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
578
579 err = n2rng_generic_write_control(np, ctl_ra, unit,
580 HV_RNG_STATE_CONFIGURED);
581 if (err)
582 break;
583 }
584
585 return err;
586}
587
588static void n2rng_work(struct work_struct *work)
589{
590 struct n2rng *np = container_of(work, struct n2rng, work.work);
591 int err = 0;
592
593 if (!(np->flags & N2RNG_FLAG_CONTROL)) {
594 err = n2rng_guest_check(np);
595 } else {
596 preempt_disable();
597 err = n2rng_control_check(np);
598 preempt_enable();
599
600 if (!err)
601 err = n2rng_control_configure_units(np);
602 }
603
604 if (!err) {
605 np->flags |= N2RNG_FLAG_READY;
606 dev_info(&np->op->dev, "RNG ready\n");
607 }
608
609 if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
610 schedule_delayed_work(&np->work, HZ * 2);
611}
612
613static void n2rng_driver_version(void)
614{
615 static int n2rng_version_printed;
616
617 if (n2rng_version_printed++ == 0)
618 pr_info("%s", version);
619}
620
621static const struct of_device_id n2rng_match[];
622static int n2rng_probe(struct platform_device *op)
623{
624 const struct of_device_id *match;
625 int multi_capable;
626 int err = -ENOMEM;
627 struct n2rng *np;
628
629 match = of_match_device(n2rng_match, &op->dev);
630 if (!match)
631 return -EINVAL;
632 multi_capable = (match->data != NULL);
633
634 n2rng_driver_version();
635 np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
636 if (!np)
637 goto out;
638 np->op = op;
639
640 INIT_DELAYED_WORK(&np->work, n2rng_work);
641
642 if (multi_capable)
643 np->flags |= N2RNG_FLAG_MULTI;
644
645 err = -ENODEV;
646 np->hvapi_major = 2;
647 if (sun4v_hvapi_register(HV_GRP_RNG,
648 np->hvapi_major,
649 &np->hvapi_minor)) {
650 np->hvapi_major = 1;
651 if (sun4v_hvapi_register(HV_GRP_RNG,
652 np->hvapi_major,
653 &np->hvapi_minor)) {
654 dev_err(&op->dev, "Cannot register suitable "
655 "HVAPI version.\n");
656 goto out;
657 }
658 }
659
660 if (np->flags & N2RNG_FLAG_MULTI) {
661 if (np->hvapi_major < 2) {
662 dev_err(&op->dev, "multi-unit-capable RNG requires "
663 "HVAPI major version 2 or later, got %lu\n",
664 np->hvapi_major);
665 goto out_hvapi_unregister;
666 }
667 np->num_units = of_getintprop_default(op->dev.of_node,
668 "rng-#units", 0);
669 if (!np->num_units) {
670 dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
671 goto out_hvapi_unregister;
672 }
673 } else
674 np->num_units = 1;
675
676 dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
677 np->hvapi_major, np->hvapi_minor);
678
679 np->units = devm_kzalloc(&op->dev,
680 sizeof(struct n2rng_unit) * np->num_units,
681 GFP_KERNEL);
682 err = -ENOMEM;
683 if (!np->units)
684 goto out_hvapi_unregister;
685
686 err = n2rng_init_control(np);
687 if (err)
688 goto out_hvapi_unregister;
689
690 dev_info(&op->dev, "Found %s RNG, units: %d\n",
691 ((np->flags & N2RNG_FLAG_MULTI) ?
692 "multi-unit-capable" : "single-unit"),
693 np->num_units);
694
695 np->hwrng.name = "n2rng";
696 np->hwrng.data_read = n2rng_data_read;
697 np->hwrng.priv = (unsigned long) np;
698
699 err = hwrng_register(&np->hwrng);
700 if (err)
701 goto out_hvapi_unregister;
702
703 platform_set_drvdata(op, np);
704
705 schedule_delayed_work(&np->work, 0);
706
707 return 0;
708
709out_hvapi_unregister:
710 sun4v_hvapi_unregister(HV_GRP_RNG);
711
712out:
713 return err;
714}
715
716static int n2rng_remove(struct platform_device *op)
717{
718 struct n2rng *np = platform_get_drvdata(op);
719
720 np->flags |= N2RNG_FLAG_SHUTDOWN;
721
722 cancel_delayed_work_sync(&np->work);
723
724 hwrng_unregister(&np->hwrng);
725
726 sun4v_hvapi_unregister(HV_GRP_RNG);
727
728 return 0;
729}
730
731static const struct of_device_id n2rng_match[] = {
732 {
733 .name = "random-number-generator",
734 .compatible = "SUNW,n2-rng",
735 },
736 {
737 .name = "random-number-generator",
738 .compatible = "SUNW,vf-rng",
739 .data = (void *) 1,
740 },
741 {
742 .name = "random-number-generator",
743 .compatible = "SUNW,kt-rng",
744 .data = (void *) 1,
745 },
746 {
747 .name = "random-number-generator",
748 .compatible = "ORCL,m4-rng",
749 .data = (void *) 1,
750 },
751 {
752 .name = "random-number-generator",
753 .compatible = "ORCL,m7-rng",
754 .data = (void *) 1,
755 },
756 {},
757};
758MODULE_DEVICE_TABLE(of, n2rng_match);
759
760static struct platform_driver n2rng_driver = {
761 .driver = {
762 .name = "n2rng",
763 .of_match_table = n2rng_match,
764 },
765 .probe = n2rng_probe,
766 .remove = n2rng_remove,
767};
768
769module_platform_driver(n2rng_driver);
1/* n2-drv.c: Niagara-2 RNG driver.
2 *
3 * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
4 */
5
6#include <linux/kernel.h>
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/delay.h>
10#include <linux/slab.h>
11#include <linux/workqueue.h>
12#include <linux/preempt.h>
13#include <linux/hw_random.h>
14
15#include <linux/of.h>
16#include <linux/of_device.h>
17
18#include <asm/hypervisor.h>
19
20#include "n2rng.h"
21
22#define DRV_MODULE_NAME "n2rng"
23#define PFX DRV_MODULE_NAME ": "
24#define DRV_MODULE_VERSION "0.3"
25#define DRV_MODULE_RELDATE "Jan 7, 2017"
26
27static char version[] =
28 DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
29
30MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
31MODULE_DESCRIPTION("Niagara2 RNG driver");
32MODULE_LICENSE("GPL");
33MODULE_VERSION(DRV_MODULE_VERSION);
34
35/* The Niagara2 RNG provides a 64-bit read-only random number
36 * register, plus a control register. Access to the RNG is
37 * virtualized through the hypervisor so that both guests and control
38 * nodes can access the device.
39 *
40 * The entropy source consists of raw entropy sources, each
41 * constructed from a voltage controlled oscillator whose phase is
42 * jittered by thermal noise sources.
43 *
44 * The oscillator in each of the three raw entropy sources run at
45 * different frequencies. Normally, all three generator outputs are
46 * gathered, xored together, and fed into a CRC circuit, the output of
47 * which is the 64-bit read-only register.
48 *
49 * Some time is necessary for all the necessary entropy to build up
50 * such that a full 64-bits of entropy are available in the register.
51 * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
52 * an interlock which blocks register reads until sufficient entropy
53 * is available.
54 *
55 * A control register is provided for adjusting various aspects of RNG
56 * operation, and to enable diagnostic modes. Each of the three raw
57 * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}). Also
58 * provided are fields for controlling the minimum time in cycles
59 * between read accesses to the register (RNG_CTL_WAIT, this controls
60 * the interlock described in the previous paragraph).
61 *
62 * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
63 * all three entropy sources enabled, and the interlock time set
64 * appropriately.
65 *
66 * The CRC polynomial used by the chip is:
67 *
68 * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
69 * x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
70 * x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
71 *
72 * The RNG_CTL_VCO value of each noise cell must be programmed
73 * separately. This is why 4 control register values must be provided
74 * to the hypervisor. During a write, the hypervisor writes them all,
75 * one at a time, to the actual RNG_CTL register. The first three
76 * values are used to setup the desired RNG_CTL_VCO for each entropy
77 * source, for example:
78 *
79 * control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
80 * control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
81 * control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
82 *
83 * And then the fourth value sets the final chip state and enables
84 * desired.
85 */
86
87static int n2rng_hv_err_trans(unsigned long hv_err)
88{
89 switch (hv_err) {
90 case HV_EOK:
91 return 0;
92 case HV_EWOULDBLOCK:
93 return -EAGAIN;
94 case HV_ENOACCESS:
95 return -EPERM;
96 case HV_EIO:
97 return -EIO;
98 case HV_EBUSY:
99 return -EBUSY;
100 case HV_EBADALIGN:
101 case HV_ENORADDR:
102 return -EFAULT;
103 default:
104 return -EINVAL;
105 }
106}
107
108static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
109 unsigned long unit)
110{
111 unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
112 int block = 0, busy = 0;
113
114 while (1) {
115 hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
116 &ticks,
117 &watchdog_delta,
118 &watchdog_status);
119 if (hv_err == HV_EOK)
120 break;
121
122 if (hv_err == HV_EBUSY) {
123 if (++busy >= N2RNG_BUSY_LIMIT)
124 break;
125
126 udelay(1);
127 } else if (hv_err == HV_EWOULDBLOCK) {
128 if (++block >= N2RNG_BLOCK_LIMIT)
129 break;
130
131 __delay(ticks);
132 } else
133 break;
134 }
135
136 return hv_err;
137}
138
139/* In multi-socket situations, the hypervisor might need to
140 * queue up the RNG control register write if it's for a unit
141 * that is on a cpu socket other than the one we are executing on.
142 *
143 * We poll here waiting for a successful read of that control
144 * register to make sure the write has been actually performed.
145 */
146static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
147{
148 unsigned long ra = __pa(&np->scratch_control[0]);
149
150 return n2rng_generic_read_control_v2(ra, unit);
151}
152
153static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
154 unsigned long state,
155 unsigned long control_ra,
156 unsigned long watchdog_timeout,
157 unsigned long *ticks)
158{
159 unsigned long hv_err;
160
161 if (np->hvapi_major == 1) {
162 hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
163 watchdog_timeout, ticks);
164 } else {
165 hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
166 watchdog_timeout, unit);
167 if (hv_err == HV_EOK)
168 hv_err = n2rng_control_settle_v2(np, unit);
169 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
170 }
171
172 return hv_err;
173}
174
175static int n2rng_generic_read_data(unsigned long data_ra)
176{
177 unsigned long ticks, hv_err;
178 int block = 0, hcheck = 0;
179
180 while (1) {
181 hv_err = sun4v_rng_data_read(data_ra, &ticks);
182 if (hv_err == HV_EOK)
183 return 0;
184
185 if (hv_err == HV_EWOULDBLOCK) {
186 if (++block >= N2RNG_BLOCK_LIMIT)
187 return -EWOULDBLOCK;
188 __delay(ticks);
189 } else if (hv_err == HV_ENOACCESS) {
190 return -EPERM;
191 } else if (hv_err == HV_EIO) {
192 if (++hcheck >= N2RNG_HCHECK_LIMIT)
193 return -EIO;
194 udelay(10000);
195 } else
196 return -ENODEV;
197 }
198}
199
200static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
201 unsigned long unit,
202 unsigned long data_ra,
203 unsigned long data_len,
204 unsigned long *ticks)
205{
206 unsigned long hv_err;
207
208 if (np->hvapi_major == 1) {
209 hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
210 } else {
211 hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
212 unit, ticks);
213 if (!*ticks)
214 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
215 }
216 return hv_err;
217}
218
219static int n2rng_generic_read_diag_data(struct n2rng *np,
220 unsigned long unit,
221 unsigned long data_ra,
222 unsigned long data_len)
223{
224 unsigned long ticks, hv_err;
225 int block = 0;
226
227 while (1) {
228 hv_err = n2rng_read_diag_data_one(np, unit,
229 data_ra, data_len,
230 &ticks);
231 if (hv_err == HV_EOK)
232 return 0;
233
234 if (hv_err == HV_EWOULDBLOCK) {
235 if (++block >= N2RNG_BLOCK_LIMIT)
236 return -EWOULDBLOCK;
237 __delay(ticks);
238 } else if (hv_err == HV_ENOACCESS) {
239 return -EPERM;
240 } else if (hv_err == HV_EIO) {
241 return -EIO;
242 } else
243 return -ENODEV;
244 }
245}
246
247
248static int n2rng_generic_write_control(struct n2rng *np,
249 unsigned long control_ra,
250 unsigned long unit,
251 unsigned long state)
252{
253 unsigned long hv_err, ticks;
254 int block = 0, busy = 0;
255
256 while (1) {
257 hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
258 np->wd_timeo, &ticks);
259 if (hv_err == HV_EOK)
260 return 0;
261
262 if (hv_err == HV_EWOULDBLOCK) {
263 if (++block >= N2RNG_BLOCK_LIMIT)
264 return -EWOULDBLOCK;
265 __delay(ticks);
266 } else if (hv_err == HV_EBUSY) {
267 if (++busy >= N2RNG_BUSY_LIMIT)
268 return -EBUSY;
269 udelay(1);
270 } else
271 return -ENODEV;
272 }
273}
274
275/* Just try to see if we can successfully access the control register
276 * of the RNG on the domain on which we are currently executing.
277 */
278static int n2rng_try_read_ctl(struct n2rng *np)
279{
280 unsigned long hv_err;
281 unsigned long x;
282
283 if (np->hvapi_major == 1) {
284 hv_err = sun4v_rng_get_diag_ctl();
285 } else {
286 /* We purposefully give invalid arguments, HV_NOACCESS
287 * is higher priority than the errors we'd get from
288 * these other cases, and that's the error we are
289 * truly interested in.
290 */
291 hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
292 switch (hv_err) {
293 case HV_EWOULDBLOCK:
294 case HV_ENOACCESS:
295 break;
296 default:
297 hv_err = HV_EOK;
298 break;
299 }
300 }
301
302 return n2rng_hv_err_trans(hv_err);
303}
304
305static u64 n2rng_control_default(struct n2rng *np, int ctl)
306{
307 u64 val = 0;
308
309 if (np->data->chip_version == 1) {
310 val = ((2 << RNG_v1_CTL_ASEL_SHIFT) |
311 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v1_CTL_WAIT_SHIFT) |
312 RNG_CTL_LFSR);
313
314 switch (ctl) {
315 case 0:
316 val |= (1 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES1;
317 break;
318 case 1:
319 val |= (2 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES2;
320 break;
321 case 2:
322 val |= (3 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES3;
323 break;
324 case 3:
325 val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
326 break;
327 default:
328 break;
329 }
330
331 } else {
332 val = ((2 << RNG_v2_CTL_ASEL_SHIFT) |
333 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v2_CTL_WAIT_SHIFT) |
334 RNG_CTL_LFSR);
335
336 switch (ctl) {
337 case 0:
338 val |= (1 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES1;
339 break;
340 case 1:
341 val |= (2 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES2;
342 break;
343 case 2:
344 val |= (3 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES3;
345 break;
346 case 3:
347 val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
348 break;
349 default:
350 break;
351 }
352 }
353
354 return val;
355}
356
357static void n2rng_control_swstate_init(struct n2rng *np)
358{
359 int i;
360
361 np->flags |= N2RNG_FLAG_CONTROL;
362
363 np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
364 np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
365 np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
366
367 for (i = 0; i < np->num_units; i++) {
368 struct n2rng_unit *up = &np->units[i];
369
370 up->control[0] = n2rng_control_default(np, 0);
371 up->control[1] = n2rng_control_default(np, 1);
372 up->control[2] = n2rng_control_default(np, 2);
373 up->control[3] = n2rng_control_default(np, 3);
374 }
375
376 np->hv_state = HV_RNG_STATE_UNCONFIGURED;
377}
378
379static int n2rng_grab_diag_control(struct n2rng *np)
380{
381 int i, busy_count, err = -ENODEV;
382
383 busy_count = 0;
384 for (i = 0; i < 100; i++) {
385 err = n2rng_try_read_ctl(np);
386 if (err != -EAGAIN)
387 break;
388
389 if (++busy_count > 100) {
390 dev_err(&np->op->dev,
391 "Grab diag control timeout.\n");
392 return -ENODEV;
393 }
394
395 udelay(1);
396 }
397
398 return err;
399}
400
401static int n2rng_init_control(struct n2rng *np)
402{
403 int err = n2rng_grab_diag_control(np);
404
405 /* Not in the control domain, that's OK we are only a consumer
406 * of the RNG data, we don't setup and program it.
407 */
408 if (err == -EPERM)
409 return 0;
410 if (err)
411 return err;
412
413 n2rng_control_swstate_init(np);
414
415 return 0;
416}
417
418static int n2rng_data_read(struct hwrng *rng, u32 *data)
419{
420 struct n2rng *np = (struct n2rng *) rng->priv;
421 unsigned long ra = __pa(&np->test_data);
422 int len;
423
424 if (!(np->flags & N2RNG_FLAG_READY)) {
425 len = 0;
426 } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
427 np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
428 *data = np->buffer;
429 len = 4;
430 } else {
431 int err = n2rng_generic_read_data(ra);
432 if (!err) {
433 np->flags |= N2RNG_FLAG_BUFFER_VALID;
434 np->buffer = np->test_data >> 32;
435 *data = np->test_data & 0xffffffff;
436 len = 4;
437 } else {
438 dev_err(&np->op->dev, "RNG error, restesting\n");
439 np->flags &= ~N2RNG_FLAG_READY;
440 if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
441 schedule_delayed_work(&np->work, 0);
442 len = 0;
443 }
444 }
445
446 return len;
447}
448
449/* On a guest node, just make sure we can read random data properly.
450 * If a control node reboots or reloads it's n2rng driver, this won't
451 * work during that time. So we have to keep probing until the device
452 * becomes usable.
453 */
454static int n2rng_guest_check(struct n2rng *np)
455{
456 unsigned long ra = __pa(&np->test_data);
457
458 return n2rng_generic_read_data(ra);
459}
460
461static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
462 u64 *pre_control, u64 pre_state,
463 u64 *buffer, unsigned long buf_len,
464 u64 *post_control, u64 post_state)
465{
466 unsigned long post_ctl_ra = __pa(post_control);
467 unsigned long pre_ctl_ra = __pa(pre_control);
468 unsigned long buffer_ra = __pa(buffer);
469 int err;
470
471 err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
472 if (err)
473 return err;
474
475 err = n2rng_generic_read_diag_data(np, unit,
476 buffer_ra, buf_len);
477
478 (void) n2rng_generic_write_control(np, post_ctl_ra, unit,
479 post_state);
480
481 return err;
482}
483
484static u64 advance_polynomial(u64 poly, u64 val, int count)
485{
486 int i;
487
488 for (i = 0; i < count; i++) {
489 int highbit_set = ((s64)val < 0);
490
491 val <<= 1;
492 if (highbit_set)
493 val ^= poly;
494 }
495
496 return val;
497}
498
499static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
500{
501 int i, count = 0;
502
503 /* Purposefully skip over the first word. */
504 for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
505 if (np->test_buffer[i] == val)
506 count++;
507 }
508 return count;
509}
510
511static void n2rng_dump_test_buffer(struct n2rng *np)
512{
513 int i;
514
515 for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
516 dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
517 i, np->test_buffer[i]);
518}
519
520static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
521{
522 u64 val;
523 int err, matches, limit;
524
525 switch (np->data->id) {
526 case N2_n2_rng:
527 case N2_vf_rng:
528 case N2_kt_rng:
529 case N2_m4_rng: /* yes, m4 uses the old value */
530 val = RNG_v1_SELFTEST_VAL;
531 break;
532 default:
533 val = RNG_v2_SELFTEST_VAL;
534 break;
535 }
536
537 matches = 0;
538 for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
539 matches += n2rng_test_buffer_find(np, val);
540 if (matches >= SELFTEST_MATCH_GOAL)
541 break;
542 val = advance_polynomial(SELFTEST_POLY, val, 1);
543 }
544
545 err = 0;
546 if (limit >= SELFTEST_LOOPS_MAX) {
547 err = -ENODEV;
548 dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
549 n2rng_dump_test_buffer(np);
550 } else
551 dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
552
553 return err;
554}
555
556static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
557{
558 int err;
559 u64 base, base3;
560
561 switch (np->data->id) {
562 case N2_n2_rng:
563 case N2_vf_rng:
564 case N2_kt_rng:
565 base = RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT;
566 base3 = base | RNG_CTL_LFSR |
567 ((RNG_v1_SELFTEST_TICKS - 2) << RNG_v1_CTL_WAIT_SHIFT);
568 break;
569 case N2_m4_rng:
570 base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
571 base3 = base | RNG_CTL_LFSR |
572 ((RNG_v1_SELFTEST_TICKS - 2) << RNG_v2_CTL_WAIT_SHIFT);
573 break;
574 default:
575 base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
576 base3 = base | RNG_CTL_LFSR |
577 (RNG_v2_SELFTEST_TICKS << RNG_v2_CTL_WAIT_SHIFT);
578 break;
579 }
580
581 np->test_control[0] = base;
582 np->test_control[1] = base;
583 np->test_control[2] = base;
584 np->test_control[3] = base3;
585
586 err = n2rng_entropy_diag_read(np, unit, np->test_control,
587 HV_RNG_STATE_HEALTHCHECK,
588 np->test_buffer,
589 sizeof(np->test_buffer),
590 &np->units[unit].control[0],
591 np->hv_state);
592 if (err)
593 return err;
594
595 return n2rng_check_selftest_buffer(np, unit);
596}
597
598static int n2rng_control_check(struct n2rng *np)
599{
600 int i;
601
602 for (i = 0; i < np->num_units; i++) {
603 int err = n2rng_control_selftest(np, i);
604 if (err)
605 return err;
606 }
607 return 0;
608}
609
610/* The sanity checks passed, install the final configuration into the
611 * chip, it's ready to use.
612 */
613static int n2rng_control_configure_units(struct n2rng *np)
614{
615 int unit, err;
616
617 err = 0;
618 for (unit = 0; unit < np->num_units; unit++) {
619 struct n2rng_unit *up = &np->units[unit];
620 unsigned long ctl_ra = __pa(&up->control[0]);
621 int esrc;
622 u64 base, shift;
623
624 if (np->data->chip_version == 1) {
625 base = ((np->accum_cycles << RNG_v1_CTL_WAIT_SHIFT) |
626 (RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT) |
627 RNG_CTL_LFSR);
628 shift = RNG_v1_CTL_VCO_SHIFT;
629 } else {
630 base = ((np->accum_cycles << RNG_v2_CTL_WAIT_SHIFT) |
631 (RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT) |
632 RNG_CTL_LFSR);
633 shift = RNG_v2_CTL_VCO_SHIFT;
634 }
635
636 /* XXX This isn't the best. We should fetch a bunch
637 * XXX of words using each entropy source combined XXX
638 * with each VCO setting, and see which combinations
639 * XXX give the best random data.
640 */
641 for (esrc = 0; esrc < 3; esrc++)
642 up->control[esrc] = base |
643 (esrc << shift) |
644 (RNG_CTL_ES1 << esrc);
645
646 up->control[3] = base |
647 (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
648
649 err = n2rng_generic_write_control(np, ctl_ra, unit,
650 HV_RNG_STATE_CONFIGURED);
651 if (err)
652 break;
653 }
654
655 return err;
656}
657
658static void n2rng_work(struct work_struct *work)
659{
660 struct n2rng *np = container_of(work, struct n2rng, work.work);
661 int err = 0;
662 static int retries = 4;
663
664 if (!(np->flags & N2RNG_FLAG_CONTROL)) {
665 err = n2rng_guest_check(np);
666 } else {
667 preempt_disable();
668 err = n2rng_control_check(np);
669 preempt_enable();
670
671 if (!err)
672 err = n2rng_control_configure_units(np);
673 }
674
675 if (!err) {
676 np->flags |= N2RNG_FLAG_READY;
677 dev_info(&np->op->dev, "RNG ready\n");
678 }
679
680 if (--retries == 0)
681 dev_err(&np->op->dev, "Self-test retries failed, RNG not ready\n");
682 else if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
683 schedule_delayed_work(&np->work, HZ * 2);
684}
685
686static void n2rng_driver_version(void)
687{
688 static int n2rng_version_printed;
689
690 if (n2rng_version_printed++ == 0)
691 pr_info("%s", version);
692}
693
694static const struct of_device_id n2rng_match[];
695static int n2rng_probe(struct platform_device *op)
696{
697 const struct of_device_id *match;
698 int err = -ENOMEM;
699 struct n2rng *np;
700
701 match = of_match_device(n2rng_match, &op->dev);
702 if (!match)
703 return -EINVAL;
704
705 n2rng_driver_version();
706 np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
707 if (!np)
708 goto out;
709 np->op = op;
710 np->data = (struct n2rng_template *)match->data;
711
712 INIT_DELAYED_WORK(&np->work, n2rng_work);
713
714 if (np->data->multi_capable)
715 np->flags |= N2RNG_FLAG_MULTI;
716
717 err = -ENODEV;
718 np->hvapi_major = 2;
719 if (sun4v_hvapi_register(HV_GRP_RNG,
720 np->hvapi_major,
721 &np->hvapi_minor)) {
722 np->hvapi_major = 1;
723 if (sun4v_hvapi_register(HV_GRP_RNG,
724 np->hvapi_major,
725 &np->hvapi_minor)) {
726 dev_err(&op->dev, "Cannot register suitable "
727 "HVAPI version.\n");
728 goto out;
729 }
730 }
731
732 if (np->flags & N2RNG_FLAG_MULTI) {
733 if (np->hvapi_major < 2) {
734 dev_err(&op->dev, "multi-unit-capable RNG requires "
735 "HVAPI major version 2 or later, got %lu\n",
736 np->hvapi_major);
737 goto out_hvapi_unregister;
738 }
739 np->num_units = of_getintprop_default(op->dev.of_node,
740 "rng-#units", 0);
741 if (!np->num_units) {
742 dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
743 goto out_hvapi_unregister;
744 }
745 } else {
746 np->num_units = 1;
747 }
748
749 dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
750 np->hvapi_major, np->hvapi_minor);
751 np->units = devm_kcalloc(&op->dev, np->num_units, sizeof(*np->units),
752 GFP_KERNEL);
753 err = -ENOMEM;
754 if (!np->units)
755 goto out_hvapi_unregister;
756
757 err = n2rng_init_control(np);
758 if (err)
759 goto out_hvapi_unregister;
760
761 dev_info(&op->dev, "Found %s RNG, units: %d\n",
762 ((np->flags & N2RNG_FLAG_MULTI) ?
763 "multi-unit-capable" : "single-unit"),
764 np->num_units);
765
766 np->hwrng.name = DRV_MODULE_NAME;
767 np->hwrng.data_read = n2rng_data_read;
768 np->hwrng.priv = (unsigned long) np;
769
770 err = hwrng_register(&np->hwrng);
771 if (err)
772 goto out_hvapi_unregister;
773
774 platform_set_drvdata(op, np);
775
776 schedule_delayed_work(&np->work, 0);
777
778 return 0;
779
780out_hvapi_unregister:
781 sun4v_hvapi_unregister(HV_GRP_RNG);
782
783out:
784 return err;
785}
786
787static int n2rng_remove(struct platform_device *op)
788{
789 struct n2rng *np = platform_get_drvdata(op);
790
791 np->flags |= N2RNG_FLAG_SHUTDOWN;
792
793 cancel_delayed_work_sync(&np->work);
794
795 hwrng_unregister(&np->hwrng);
796
797 sun4v_hvapi_unregister(HV_GRP_RNG);
798
799 return 0;
800}
801
802static struct n2rng_template n2_template = {
803 .id = N2_n2_rng,
804 .multi_capable = 0,
805 .chip_version = 1,
806};
807
808static struct n2rng_template vf_template = {
809 .id = N2_vf_rng,
810 .multi_capable = 1,
811 .chip_version = 1,
812};
813
814static struct n2rng_template kt_template = {
815 .id = N2_kt_rng,
816 .multi_capable = 1,
817 .chip_version = 1,
818};
819
820static struct n2rng_template m4_template = {
821 .id = N2_m4_rng,
822 .multi_capable = 1,
823 .chip_version = 2,
824};
825
826static struct n2rng_template m7_template = {
827 .id = N2_m7_rng,
828 .multi_capable = 1,
829 .chip_version = 2,
830};
831
832static const struct of_device_id n2rng_match[] = {
833 {
834 .name = "random-number-generator",
835 .compatible = "SUNW,n2-rng",
836 .data = &n2_template,
837 },
838 {
839 .name = "random-number-generator",
840 .compatible = "SUNW,vf-rng",
841 .data = &vf_template,
842 },
843 {
844 .name = "random-number-generator",
845 .compatible = "SUNW,kt-rng",
846 .data = &kt_template,
847 },
848 {
849 .name = "random-number-generator",
850 .compatible = "ORCL,m4-rng",
851 .data = &m4_template,
852 },
853 {
854 .name = "random-number-generator",
855 .compatible = "ORCL,m7-rng",
856 .data = &m7_template,
857 },
858 {},
859};
860MODULE_DEVICE_TABLE(of, n2rng_match);
861
862static struct platform_driver n2rng_driver = {
863 .driver = {
864 .name = "n2rng",
865 .of_match_table = n2rng_match,
866 },
867 .probe = n2rng_probe,
868 .remove = n2rng_remove,
869};
870
871module_platform_driver(n2rng_driver);