Linux Audio

Check our new training course

Loading...
v4.6
  1/* n2-drv.c: Niagara-2 RNG driver.
  2 *
  3 * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
  4 */
  5
  6#include <linux/kernel.h>
  7#include <linux/module.h>
  8#include <linux/types.h>
  9#include <linux/delay.h>
 10#include <linux/slab.h>
 11#include <linux/workqueue.h>
 12#include <linux/preempt.h>
 13#include <linux/hw_random.h>
 14
 15#include <linux/of.h>
 16#include <linux/of_device.h>
 17
 18#include <asm/hypervisor.h>
 19
 20#include "n2rng.h"
 21
 22#define DRV_MODULE_NAME		"n2rng"
 23#define PFX DRV_MODULE_NAME	": "
 24#define DRV_MODULE_VERSION	"0.2"
 25#define DRV_MODULE_RELDATE	"July 27, 2011"
 26
 27static char version[] =
 28	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
 29
 30MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
 31MODULE_DESCRIPTION("Niagara2 RNG driver");
 32MODULE_LICENSE("GPL");
 33MODULE_VERSION(DRV_MODULE_VERSION);
 34
 35/* The Niagara2 RNG provides a 64-bit read-only random number
 36 * register, plus a control register.  Access to the RNG is
 37 * virtualized through the hypervisor so that both guests and control
 38 * nodes can access the device.
 39 *
 40 * The entropy source consists of raw entropy sources, each
 41 * constructed from a voltage controlled oscillator whose phase is
 42 * jittered by thermal noise sources.
 43 *
 44 * The oscillator in each of the three raw entropy sources run at
 45 * different frequencies.  Normally, all three generator outputs are
 46 * gathered, xored together, and fed into a CRC circuit, the output of
 47 * which is the 64-bit read-only register.
 48 *
 49 * Some time is necessary for all the necessary entropy to build up
 50 * such that a full 64-bits of entropy are available in the register.
 51 * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
 52 * an interlock which blocks register reads until sufficient entropy
 53 * is available.
 54 *
 55 * A control register is provided for adjusting various aspects of RNG
 56 * operation, and to enable diagnostic modes.  Each of the three raw
 57 * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}).  Also
 58 * provided are fields for controlling the minimum time in cycles
 59 * between read accesses to the register (RNG_CTL_WAIT, this controls
 60 * the interlock described in the previous paragraph).
 61 *
 62 * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
 63 * all three entropy sources enabled, and the interlock time set
 64 * appropriately.
 65 *
 66 * The CRC polynomial used by the chip is:
 67 *
 68 * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
 69 *        x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
 70 *        x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
 71 *
 72 * The RNG_CTL_VCO value of each noise cell must be programmed
 73 * separately.  This is why 4 control register values must be provided
 74 * to the hypervisor.  During a write, the hypervisor writes them all,
 75 * one at a time, to the actual RNG_CTL register.  The first three
 76 * values are used to setup the desired RNG_CTL_VCO for each entropy
 77 * source, for example:
 78 *
 79 *	control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
 80 *	control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
 81 *	control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
 82 *
 83 * And then the fourth value sets the final chip state and enables
 84 * desired.
 85 */
 86
 87static int n2rng_hv_err_trans(unsigned long hv_err)
 88{
 89	switch (hv_err) {
 90	case HV_EOK:
 91		return 0;
 92	case HV_EWOULDBLOCK:
 93		return -EAGAIN;
 94	case HV_ENOACCESS:
 95		return -EPERM;
 96	case HV_EIO:
 97		return -EIO;
 98	case HV_EBUSY:
 99		return -EBUSY;
100	case HV_EBADALIGN:
101	case HV_ENORADDR:
102		return -EFAULT;
103	default:
104		return -EINVAL;
105	}
106}
107
108static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
109						   unsigned long unit)
110{
111	unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
112	int block = 0, busy = 0;
113
114	while (1) {
115		hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
116					       &ticks,
117					       &watchdog_delta,
118					       &watchdog_status);
119		if (hv_err == HV_EOK)
120			break;
121
122		if (hv_err == HV_EBUSY) {
123			if (++busy >= N2RNG_BUSY_LIMIT)
124				break;
125
126			udelay(1);
127		} else if (hv_err == HV_EWOULDBLOCK) {
128			if (++block >= N2RNG_BLOCK_LIMIT)
129				break;
130
131			__delay(ticks);
132		} else
133			break;
134	}
135
136	return hv_err;
137}
138
139/* In multi-socket situations, the hypervisor might need to
140 * queue up the RNG control register write if it's for a unit
141 * that is on a cpu socket other than the one we are executing on.
142 *
143 * We poll here waiting for a successful read of that control
144 * register to make sure the write has been actually performed.
145 */
146static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
147{
148	unsigned long ra = __pa(&np->scratch_control[0]);
149
150	return n2rng_generic_read_control_v2(ra, unit);
151}
152
153static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
154					 unsigned long state,
155					 unsigned long control_ra,
156					 unsigned long watchdog_timeout,
157					 unsigned long *ticks)
158{
159	unsigned long hv_err;
160
161	if (np->hvapi_major == 1) {
162		hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
163						watchdog_timeout, ticks);
164	} else {
165		hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
166						watchdog_timeout, unit);
167		if (hv_err == HV_EOK)
168			hv_err = n2rng_control_settle_v2(np, unit);
169		*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
170	}
171
172	return hv_err;
173}
174
175static int n2rng_generic_read_data(unsigned long data_ra)
176{
177	unsigned long ticks, hv_err;
178	int block = 0, hcheck = 0;
179
180	while (1) {
181		hv_err = sun4v_rng_data_read(data_ra, &ticks);
182		if (hv_err == HV_EOK)
183			return 0;
184
185		if (hv_err == HV_EWOULDBLOCK) {
186			if (++block >= N2RNG_BLOCK_LIMIT)
187				return -EWOULDBLOCK;
188			__delay(ticks);
189		} else if (hv_err == HV_ENOACCESS) {
190			return -EPERM;
191		} else if (hv_err == HV_EIO) {
192			if (++hcheck >= N2RNG_HCHECK_LIMIT)
193				return -EIO;
194			udelay(10000);
195		} else
196			return -ENODEV;
197	}
198}
199
200static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
201					      unsigned long unit,
202					      unsigned long data_ra,
203					      unsigned long data_len,
204					      unsigned long *ticks)
205{
206	unsigned long hv_err;
207
208	if (np->hvapi_major == 1) {
209		hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
210	} else {
211		hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
212						     unit, ticks);
213		if (!*ticks)
214			*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
215	}
216	return hv_err;
217}
218
219static int n2rng_generic_read_diag_data(struct n2rng *np,
220					unsigned long unit,
221					unsigned long data_ra,
222					unsigned long data_len)
223{
224	unsigned long ticks, hv_err;
225	int block = 0;
226
227	while (1) {
228		hv_err = n2rng_read_diag_data_one(np, unit,
229						  data_ra, data_len,
230						  &ticks);
231		if (hv_err == HV_EOK)
232			return 0;
233
234		if (hv_err == HV_EWOULDBLOCK) {
235			if (++block >= N2RNG_BLOCK_LIMIT)
236				return -EWOULDBLOCK;
237			__delay(ticks);
238		} else if (hv_err == HV_ENOACCESS) {
239			return -EPERM;
240		} else if (hv_err == HV_EIO) {
241			return -EIO;
242		} else
243			return -ENODEV;
244	}
245}
246
247
248static int n2rng_generic_write_control(struct n2rng *np,
249				       unsigned long control_ra,
250				       unsigned long unit,
251				       unsigned long state)
252{
253	unsigned long hv_err, ticks;
254	int block = 0, busy = 0;
255
256	while (1) {
257		hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
258					     np->wd_timeo, &ticks);
259		if (hv_err == HV_EOK)
260			return 0;
261
262		if (hv_err == HV_EWOULDBLOCK) {
263			if (++block >= N2RNG_BLOCK_LIMIT)
264				return -EWOULDBLOCK;
265			__delay(ticks);
266		} else if (hv_err == HV_EBUSY) {
267			if (++busy >= N2RNG_BUSY_LIMIT)
268				return -EBUSY;
269			udelay(1);
270		} else
271			return -ENODEV;
272	}
273}
274
275/* Just try to see if we can successfully access the control register
276 * of the RNG on the domain on which we are currently executing.
277 */
278static int n2rng_try_read_ctl(struct n2rng *np)
279{
280	unsigned long hv_err;
281	unsigned long x;
282
283	if (np->hvapi_major == 1) {
284		hv_err = sun4v_rng_get_diag_ctl();
285	} else {
286		/* We purposefully give invalid arguments, HV_NOACCESS
287		 * is higher priority than the errors we'd get from
288		 * these other cases, and that's the error we are
289		 * truly interested in.
290		 */
291		hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
292		switch (hv_err) {
293		case HV_EWOULDBLOCK:
294		case HV_ENOACCESS:
295			break;
296		default:
297			hv_err = HV_EOK;
298			break;
299		}
300	}
301
302	return n2rng_hv_err_trans(hv_err);
303}
304
305#define CONTROL_DEFAULT_BASE		\
306	((2 << RNG_CTL_ASEL_SHIFT) |	\
307	 (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) |	\
308	 RNG_CTL_LFSR)
309
310#define CONTROL_DEFAULT_0		\
311	(CONTROL_DEFAULT_BASE |		\
312	 (1 << RNG_CTL_VCO_SHIFT) |	\
313	 RNG_CTL_ES1)
314#define CONTROL_DEFAULT_1		\
315	(CONTROL_DEFAULT_BASE |		\
316	 (2 << RNG_CTL_VCO_SHIFT) |	\
317	 RNG_CTL_ES2)
318#define CONTROL_DEFAULT_2		\
319	(CONTROL_DEFAULT_BASE |		\
320	 (3 << RNG_CTL_VCO_SHIFT) |	\
321	 RNG_CTL_ES3)
322#define CONTROL_DEFAULT_3		\
323	(CONTROL_DEFAULT_BASE |		\
324	 RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325
326static void n2rng_control_swstate_init(struct n2rng *np)
327{
328	int i;
329
330	np->flags |= N2RNG_FLAG_CONTROL;
331
332	np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
333	np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
334	np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
335
336	for (i = 0; i < np->num_units; i++) {
337		struct n2rng_unit *up = &np->units[i];
338
339		up->control[0] = CONTROL_DEFAULT_0;
340		up->control[1] = CONTROL_DEFAULT_1;
341		up->control[2] = CONTROL_DEFAULT_2;
342		up->control[3] = CONTROL_DEFAULT_3;
343	}
344
345	np->hv_state = HV_RNG_STATE_UNCONFIGURED;
346}
347
348static int n2rng_grab_diag_control(struct n2rng *np)
349{
350	int i, busy_count, err = -ENODEV;
351
352	busy_count = 0;
353	for (i = 0; i < 100; i++) {
354		err = n2rng_try_read_ctl(np);
355		if (err != -EAGAIN)
356			break;
357
358		if (++busy_count > 100) {
359			dev_err(&np->op->dev,
360				"Grab diag control timeout.\n");
361			return -ENODEV;
362		}
363
364		udelay(1);
365	}
366
367	return err;
368}
369
370static int n2rng_init_control(struct n2rng *np)
371{
372	int err = n2rng_grab_diag_control(np);
373
374	/* Not in the control domain, that's OK we are only a consumer
375	 * of the RNG data, we don't setup and program it.
376	 */
377	if (err == -EPERM)
378		return 0;
379	if (err)
380		return err;
381
382	n2rng_control_swstate_init(np);
383
384	return 0;
385}
386
387static int n2rng_data_read(struct hwrng *rng, u32 *data)
388{
389	struct n2rng *np = (struct n2rng *) rng->priv;
390	unsigned long ra = __pa(&np->test_data);
391	int len;
392
393	if (!(np->flags & N2RNG_FLAG_READY)) {
394		len = 0;
395	} else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
396		np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
397		*data = np->buffer;
398		len = 4;
399	} else {
400		int err = n2rng_generic_read_data(ra);
401		if (!err) {
 
402			np->buffer = np->test_data >> 32;
403			*data = np->test_data & 0xffffffff;
404			len = 4;
405		} else {
406			dev_err(&np->op->dev, "RNG error, restesting\n");
407			np->flags &= ~N2RNG_FLAG_READY;
408			if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
409				schedule_delayed_work(&np->work, 0);
410			len = 0;
411		}
412	}
413
414	return len;
415}
416
417/* On a guest node, just make sure we can read random data properly.
418 * If a control node reboots or reloads it's n2rng driver, this won't
419 * work during that time.  So we have to keep probing until the device
420 * becomes usable.
421 */
422static int n2rng_guest_check(struct n2rng *np)
423{
424	unsigned long ra = __pa(&np->test_data);
425
426	return n2rng_generic_read_data(ra);
427}
428
429static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
430				   u64 *pre_control, u64 pre_state,
431				   u64 *buffer, unsigned long buf_len,
432				   u64 *post_control, u64 post_state)
433{
434	unsigned long post_ctl_ra = __pa(post_control);
435	unsigned long pre_ctl_ra = __pa(pre_control);
436	unsigned long buffer_ra = __pa(buffer);
437	int err;
438
439	err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
440	if (err)
441		return err;
442
443	err = n2rng_generic_read_diag_data(np, unit,
444					   buffer_ra, buf_len);
445
446	(void) n2rng_generic_write_control(np, post_ctl_ra, unit,
447					   post_state);
448
449	return err;
450}
451
452static u64 advance_polynomial(u64 poly, u64 val, int count)
453{
454	int i;
455
456	for (i = 0; i < count; i++) {
457		int highbit_set = ((s64)val < 0);
458
459		val <<= 1;
460		if (highbit_set)
461			val ^= poly;
462	}
463
464	return val;
465}
466
467static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
468{
469	int i, count = 0;
470
471	/* Purposefully skip over the first word.  */
472	for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
473		if (np->test_buffer[i] == val)
474			count++;
475	}
476	return count;
477}
478
479static void n2rng_dump_test_buffer(struct n2rng *np)
480{
481	int i;
482
483	for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
484		dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
485			i, np->test_buffer[i]);
486}
487
488static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
489{
490	u64 val = SELFTEST_VAL;
491	int err, matches, limit;
492
 
 
 
 
 
 
 
 
 
 
 
 
493	matches = 0;
494	for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
495		matches += n2rng_test_buffer_find(np, val);
496		if (matches >= SELFTEST_MATCH_GOAL)
497			break;
498		val = advance_polynomial(SELFTEST_POLY, val, 1);
499	}
500
501	err = 0;
502	if (limit >= SELFTEST_LOOPS_MAX) {
503		err = -ENODEV;
504		dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
505		n2rng_dump_test_buffer(np);
506	} else
507		dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
508
509	return err;
510}
511
512static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
513{
514	int err;
 
515
516	np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT);
517	np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT);
518	np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT);
519	np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) |
520			       RNG_CTL_LFSR |
521			       ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT));
 
 
 
 
 
 
 
 
 
 
 
 
 
522
 
 
 
 
523
524	err = n2rng_entropy_diag_read(np, unit, np->test_control,
525				      HV_RNG_STATE_HEALTHCHECK,
526				      np->test_buffer,
527				      sizeof(np->test_buffer),
528				      &np->units[unit].control[0],
529				      np->hv_state);
530	if (err)
531		return err;
532
533	return n2rng_check_selftest_buffer(np, unit);
534}
535
536static int n2rng_control_check(struct n2rng *np)
537{
538	int i;
539
540	for (i = 0; i < np->num_units; i++) {
541		int err = n2rng_control_selftest(np, i);
542		if (err)
543			return err;
544	}
545	return 0;
546}
547
548/* The sanity checks passed, install the final configuration into the
549 * chip, it's ready to use.
550 */
551static int n2rng_control_configure_units(struct n2rng *np)
552{
553	int unit, err;
554
555	err = 0;
556	for (unit = 0; unit < np->num_units; unit++) {
557		struct n2rng_unit *up = &np->units[unit];
558		unsigned long ctl_ra = __pa(&up->control[0]);
559		int esrc;
560		u64 base;
561
562		base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) |
563			(2 << RNG_CTL_ASEL_SHIFT) |
564			RNG_CTL_LFSR);
 
 
 
 
 
 
 
 
565
566		/* XXX This isn't the best.  We should fetch a bunch
567		 * XXX of words using each entropy source combined XXX
568		 * with each VCO setting, and see which combinations
569		 * XXX give the best random data.
570		 */
571		for (esrc = 0; esrc < 3; esrc++)
572			up->control[esrc] = base |
573				(esrc << RNG_CTL_VCO_SHIFT) |
574				(RNG_CTL_ES1 << esrc);
575
576		up->control[3] = base |
577			(RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
578
579		err = n2rng_generic_write_control(np, ctl_ra, unit,
580						  HV_RNG_STATE_CONFIGURED);
581		if (err)
582			break;
583	}
584
585	return err;
586}
587
588static void n2rng_work(struct work_struct *work)
589{
590	struct n2rng *np = container_of(work, struct n2rng, work.work);
591	int err = 0;
 
592
593	if (!(np->flags & N2RNG_FLAG_CONTROL)) {
594		err = n2rng_guest_check(np);
595	} else {
596		preempt_disable();
597		err = n2rng_control_check(np);
598		preempt_enable();
599
600		if (!err)
601			err = n2rng_control_configure_units(np);
602	}
603
604	if (!err) {
605		np->flags |= N2RNG_FLAG_READY;
606		dev_info(&np->op->dev, "RNG ready\n");
607	}
608
609	if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
 
 
610		schedule_delayed_work(&np->work, HZ * 2);
611}
612
613static void n2rng_driver_version(void)
614{
615	static int n2rng_version_printed;
616
617	if (n2rng_version_printed++ == 0)
618		pr_info("%s", version);
619}
620
621static const struct of_device_id n2rng_match[];
622static int n2rng_probe(struct platform_device *op)
623{
624	const struct of_device_id *match;
625	int multi_capable;
626	int err = -ENOMEM;
627	struct n2rng *np;
628
629	match = of_match_device(n2rng_match, &op->dev);
630	if (!match)
631		return -EINVAL;
632	multi_capable = (match->data != NULL);
633
634	n2rng_driver_version();
635	np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
636	if (!np)
637		goto out;
638	np->op = op;
 
639
640	INIT_DELAYED_WORK(&np->work, n2rng_work);
641
642	if (multi_capable)
643		np->flags |= N2RNG_FLAG_MULTI;
644
645	err = -ENODEV;
646	np->hvapi_major = 2;
647	if (sun4v_hvapi_register(HV_GRP_RNG,
648				 np->hvapi_major,
649				 &np->hvapi_minor)) {
650		np->hvapi_major = 1;
651		if (sun4v_hvapi_register(HV_GRP_RNG,
652					 np->hvapi_major,
653					 &np->hvapi_minor)) {
654			dev_err(&op->dev, "Cannot register suitable "
655				"HVAPI version.\n");
656			goto out;
657		}
658	}
659
660	if (np->flags & N2RNG_FLAG_MULTI) {
661		if (np->hvapi_major < 2) {
662			dev_err(&op->dev, "multi-unit-capable RNG requires "
663				"HVAPI major version 2 or later, got %lu\n",
664				np->hvapi_major);
665			goto out_hvapi_unregister;
666		}
667		np->num_units = of_getintprop_default(op->dev.of_node,
668						      "rng-#units", 0);
669		if (!np->num_units) {
670			dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
671			goto out_hvapi_unregister;
672		}
673	} else
674		np->num_units = 1;
 
675
676	dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
677		 np->hvapi_major, np->hvapi_minor);
678
679	np->units = devm_kzalloc(&op->dev,
680				 sizeof(struct n2rng_unit) * np->num_units,
681				 GFP_KERNEL);
682	err = -ENOMEM;
683	if (!np->units)
684		goto out_hvapi_unregister;
685
686	err = n2rng_init_control(np);
687	if (err)
688		goto out_hvapi_unregister;
689
690	dev_info(&op->dev, "Found %s RNG, units: %d\n",
691		 ((np->flags & N2RNG_FLAG_MULTI) ?
692		  "multi-unit-capable" : "single-unit"),
693		 np->num_units);
694
695	np->hwrng.name = "n2rng";
696	np->hwrng.data_read = n2rng_data_read;
697	np->hwrng.priv = (unsigned long) np;
698
699	err = hwrng_register(&np->hwrng);
700	if (err)
701		goto out_hvapi_unregister;
702
703	platform_set_drvdata(op, np);
704
705	schedule_delayed_work(&np->work, 0);
706
707	return 0;
708
709out_hvapi_unregister:
710	sun4v_hvapi_unregister(HV_GRP_RNG);
711
712out:
713	return err;
714}
715
716static int n2rng_remove(struct platform_device *op)
717{
718	struct n2rng *np = platform_get_drvdata(op);
719
720	np->flags |= N2RNG_FLAG_SHUTDOWN;
721
722	cancel_delayed_work_sync(&np->work);
723
724	hwrng_unregister(&np->hwrng);
725
726	sun4v_hvapi_unregister(HV_GRP_RNG);
727
728	return 0;
729}
730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731static const struct of_device_id n2rng_match[] = {
732	{
733		.name		= "random-number-generator",
734		.compatible	= "SUNW,n2-rng",
 
735	},
736	{
737		.name		= "random-number-generator",
738		.compatible	= "SUNW,vf-rng",
739		.data		= (void *) 1,
740	},
741	{
742		.name		= "random-number-generator",
743		.compatible	= "SUNW,kt-rng",
744		.data		= (void *) 1,
745	},
746	{
747		.name		= "random-number-generator",
748		.compatible	= "ORCL,m4-rng",
749		.data		= (void *) 1,
750	},
751	{
752		.name		= "random-number-generator",
753		.compatible	= "ORCL,m7-rng",
754		.data		= (void *) 1,
755	},
756	{},
757};
758MODULE_DEVICE_TABLE(of, n2rng_match);
759
760static struct platform_driver n2rng_driver = {
761	.driver = {
762		.name = "n2rng",
763		.of_match_table = n2rng_match,
764	},
765	.probe		= n2rng_probe,
766	.remove		= n2rng_remove,
767};
768
769module_platform_driver(n2rng_driver);
v4.17
  1/* n2-drv.c: Niagara-2 RNG driver.
  2 *
  3 * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
  4 */
  5
  6#include <linux/kernel.h>
  7#include <linux/module.h>
  8#include <linux/types.h>
  9#include <linux/delay.h>
 10#include <linux/slab.h>
 11#include <linux/workqueue.h>
 12#include <linux/preempt.h>
 13#include <linux/hw_random.h>
 14
 15#include <linux/of.h>
 16#include <linux/of_device.h>
 17
 18#include <asm/hypervisor.h>
 19
 20#include "n2rng.h"
 21
 22#define DRV_MODULE_NAME		"n2rng"
 23#define PFX DRV_MODULE_NAME	": "
 24#define DRV_MODULE_VERSION	"0.3"
 25#define DRV_MODULE_RELDATE	"Jan 7, 2017"
 26
 27static char version[] =
 28	DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
 29
 30MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
 31MODULE_DESCRIPTION("Niagara2 RNG driver");
 32MODULE_LICENSE("GPL");
 33MODULE_VERSION(DRV_MODULE_VERSION);
 34
 35/* The Niagara2 RNG provides a 64-bit read-only random number
 36 * register, plus a control register.  Access to the RNG is
 37 * virtualized through the hypervisor so that both guests and control
 38 * nodes can access the device.
 39 *
 40 * The entropy source consists of raw entropy sources, each
 41 * constructed from a voltage controlled oscillator whose phase is
 42 * jittered by thermal noise sources.
 43 *
 44 * The oscillator in each of the three raw entropy sources run at
 45 * different frequencies.  Normally, all three generator outputs are
 46 * gathered, xored together, and fed into a CRC circuit, the output of
 47 * which is the 64-bit read-only register.
 48 *
 49 * Some time is necessary for all the necessary entropy to build up
 50 * such that a full 64-bits of entropy are available in the register.
 51 * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
 52 * an interlock which blocks register reads until sufficient entropy
 53 * is available.
 54 *
 55 * A control register is provided for adjusting various aspects of RNG
 56 * operation, and to enable diagnostic modes.  Each of the three raw
 57 * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}).  Also
 58 * provided are fields for controlling the minimum time in cycles
 59 * between read accesses to the register (RNG_CTL_WAIT, this controls
 60 * the interlock described in the previous paragraph).
 61 *
 62 * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
 63 * all three entropy sources enabled, and the interlock time set
 64 * appropriately.
 65 *
 66 * The CRC polynomial used by the chip is:
 67 *
 68 * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
 69 *        x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
 70 *        x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
 71 *
 72 * The RNG_CTL_VCO value of each noise cell must be programmed
 73 * separately.  This is why 4 control register values must be provided
 74 * to the hypervisor.  During a write, the hypervisor writes them all,
 75 * one at a time, to the actual RNG_CTL register.  The first three
 76 * values are used to setup the desired RNG_CTL_VCO for each entropy
 77 * source, for example:
 78 *
 79 *	control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
 80 *	control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
 81 *	control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
 82 *
 83 * And then the fourth value sets the final chip state and enables
 84 * desired.
 85 */
 86
 87static int n2rng_hv_err_trans(unsigned long hv_err)
 88{
 89	switch (hv_err) {
 90	case HV_EOK:
 91		return 0;
 92	case HV_EWOULDBLOCK:
 93		return -EAGAIN;
 94	case HV_ENOACCESS:
 95		return -EPERM;
 96	case HV_EIO:
 97		return -EIO;
 98	case HV_EBUSY:
 99		return -EBUSY;
100	case HV_EBADALIGN:
101	case HV_ENORADDR:
102		return -EFAULT;
103	default:
104		return -EINVAL;
105	}
106}
107
108static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
109						   unsigned long unit)
110{
111	unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
112	int block = 0, busy = 0;
113
114	while (1) {
115		hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
116					       &ticks,
117					       &watchdog_delta,
118					       &watchdog_status);
119		if (hv_err == HV_EOK)
120			break;
121
122		if (hv_err == HV_EBUSY) {
123			if (++busy >= N2RNG_BUSY_LIMIT)
124				break;
125
126			udelay(1);
127		} else if (hv_err == HV_EWOULDBLOCK) {
128			if (++block >= N2RNG_BLOCK_LIMIT)
129				break;
130
131			__delay(ticks);
132		} else
133			break;
134	}
135
136	return hv_err;
137}
138
139/* In multi-socket situations, the hypervisor might need to
140 * queue up the RNG control register write if it's for a unit
141 * that is on a cpu socket other than the one we are executing on.
142 *
143 * We poll here waiting for a successful read of that control
144 * register to make sure the write has been actually performed.
145 */
146static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
147{
148	unsigned long ra = __pa(&np->scratch_control[0]);
149
150	return n2rng_generic_read_control_v2(ra, unit);
151}
152
153static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
154					 unsigned long state,
155					 unsigned long control_ra,
156					 unsigned long watchdog_timeout,
157					 unsigned long *ticks)
158{
159	unsigned long hv_err;
160
161	if (np->hvapi_major == 1) {
162		hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
163						watchdog_timeout, ticks);
164	} else {
165		hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
166						watchdog_timeout, unit);
167		if (hv_err == HV_EOK)
168			hv_err = n2rng_control_settle_v2(np, unit);
169		*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
170	}
171
172	return hv_err;
173}
174
175static int n2rng_generic_read_data(unsigned long data_ra)
176{
177	unsigned long ticks, hv_err;
178	int block = 0, hcheck = 0;
179
180	while (1) {
181		hv_err = sun4v_rng_data_read(data_ra, &ticks);
182		if (hv_err == HV_EOK)
183			return 0;
184
185		if (hv_err == HV_EWOULDBLOCK) {
186			if (++block >= N2RNG_BLOCK_LIMIT)
187				return -EWOULDBLOCK;
188			__delay(ticks);
189		} else if (hv_err == HV_ENOACCESS) {
190			return -EPERM;
191		} else if (hv_err == HV_EIO) {
192			if (++hcheck >= N2RNG_HCHECK_LIMIT)
193				return -EIO;
194			udelay(10000);
195		} else
196			return -ENODEV;
197	}
198}
199
200static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
201					      unsigned long unit,
202					      unsigned long data_ra,
203					      unsigned long data_len,
204					      unsigned long *ticks)
205{
206	unsigned long hv_err;
207
208	if (np->hvapi_major == 1) {
209		hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
210	} else {
211		hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
212						     unit, ticks);
213		if (!*ticks)
214			*ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
215	}
216	return hv_err;
217}
218
219static int n2rng_generic_read_diag_data(struct n2rng *np,
220					unsigned long unit,
221					unsigned long data_ra,
222					unsigned long data_len)
223{
224	unsigned long ticks, hv_err;
225	int block = 0;
226
227	while (1) {
228		hv_err = n2rng_read_diag_data_one(np, unit,
229						  data_ra, data_len,
230						  &ticks);
231		if (hv_err == HV_EOK)
232			return 0;
233
234		if (hv_err == HV_EWOULDBLOCK) {
235			if (++block >= N2RNG_BLOCK_LIMIT)
236				return -EWOULDBLOCK;
237			__delay(ticks);
238		} else if (hv_err == HV_ENOACCESS) {
239			return -EPERM;
240		} else if (hv_err == HV_EIO) {
241			return -EIO;
242		} else
243			return -ENODEV;
244	}
245}
246
247
248static int n2rng_generic_write_control(struct n2rng *np,
249				       unsigned long control_ra,
250				       unsigned long unit,
251				       unsigned long state)
252{
253	unsigned long hv_err, ticks;
254	int block = 0, busy = 0;
255
256	while (1) {
257		hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
258					     np->wd_timeo, &ticks);
259		if (hv_err == HV_EOK)
260			return 0;
261
262		if (hv_err == HV_EWOULDBLOCK) {
263			if (++block >= N2RNG_BLOCK_LIMIT)
264				return -EWOULDBLOCK;
265			__delay(ticks);
266		} else if (hv_err == HV_EBUSY) {
267			if (++busy >= N2RNG_BUSY_LIMIT)
268				return -EBUSY;
269			udelay(1);
270		} else
271			return -ENODEV;
272	}
273}
274
275/* Just try to see if we can successfully access the control register
276 * of the RNG on the domain on which we are currently executing.
277 */
278static int n2rng_try_read_ctl(struct n2rng *np)
279{
280	unsigned long hv_err;
281	unsigned long x;
282
283	if (np->hvapi_major == 1) {
284		hv_err = sun4v_rng_get_diag_ctl();
285	} else {
286		/* We purposefully give invalid arguments, HV_NOACCESS
287		 * is higher priority than the errors we'd get from
288		 * these other cases, and that's the error we are
289		 * truly interested in.
290		 */
291		hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
292		switch (hv_err) {
293		case HV_EWOULDBLOCK:
294		case HV_ENOACCESS:
295			break;
296		default:
297			hv_err = HV_EOK;
298			break;
299		}
300	}
301
302	return n2rng_hv_err_trans(hv_err);
303}
304
305static u64 n2rng_control_default(struct n2rng *np, int ctl)
306{
307	u64 val = 0;
308
309	if (np->data->chip_version == 1) {
310		val = ((2 << RNG_v1_CTL_ASEL_SHIFT) |
311			(N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v1_CTL_WAIT_SHIFT) |
312			 RNG_CTL_LFSR);
313
314		switch (ctl) {
315		case 0:
316			val |= (1 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES1;
317			break;
318		case 1:
319			val |= (2 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES2;
320			break;
321		case 2:
322			val |= (3 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES3;
323			break;
324		case 3:
325			val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
326			break;
327		default:
328			break;
329		}
330
331	} else {
332		val = ((2 << RNG_v2_CTL_ASEL_SHIFT) |
333			(N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v2_CTL_WAIT_SHIFT) |
334			 RNG_CTL_LFSR);
335
336		switch (ctl) {
337		case 0:
338			val |= (1 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES1;
339			break;
340		case 1:
341			val |= (2 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES2;
342			break;
343		case 2:
344			val |= (3 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES3;
345			break;
346		case 3:
347			val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
348			break;
349		default:
350			break;
351		}
352	}
353
354	return val;
355}
356
357static void n2rng_control_swstate_init(struct n2rng *np)
358{
359	int i;
360
361	np->flags |= N2RNG_FLAG_CONTROL;
362
363	np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
364	np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
365	np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
366
367	for (i = 0; i < np->num_units; i++) {
368		struct n2rng_unit *up = &np->units[i];
369
370		up->control[0] = n2rng_control_default(np, 0);
371		up->control[1] = n2rng_control_default(np, 1);
372		up->control[2] = n2rng_control_default(np, 2);
373		up->control[3] = n2rng_control_default(np, 3);
374	}
375
376	np->hv_state = HV_RNG_STATE_UNCONFIGURED;
377}
378
379static int n2rng_grab_diag_control(struct n2rng *np)
380{
381	int i, busy_count, err = -ENODEV;
382
383	busy_count = 0;
384	for (i = 0; i < 100; i++) {
385		err = n2rng_try_read_ctl(np);
386		if (err != -EAGAIN)
387			break;
388
389		if (++busy_count > 100) {
390			dev_err(&np->op->dev,
391				"Grab diag control timeout.\n");
392			return -ENODEV;
393		}
394
395		udelay(1);
396	}
397
398	return err;
399}
400
401static int n2rng_init_control(struct n2rng *np)
402{
403	int err = n2rng_grab_diag_control(np);
404
405	/* Not in the control domain, that's OK we are only a consumer
406	 * of the RNG data, we don't setup and program it.
407	 */
408	if (err == -EPERM)
409		return 0;
410	if (err)
411		return err;
412
413	n2rng_control_swstate_init(np);
414
415	return 0;
416}
417
418static int n2rng_data_read(struct hwrng *rng, u32 *data)
419{
420	struct n2rng *np = (struct n2rng *) rng->priv;
421	unsigned long ra = __pa(&np->test_data);
422	int len;
423
424	if (!(np->flags & N2RNG_FLAG_READY)) {
425		len = 0;
426	} else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
427		np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
428		*data = np->buffer;
429		len = 4;
430	} else {
431		int err = n2rng_generic_read_data(ra);
432		if (!err) {
433			np->flags |= N2RNG_FLAG_BUFFER_VALID;
434			np->buffer = np->test_data >> 32;
435			*data = np->test_data & 0xffffffff;
436			len = 4;
437		} else {
438			dev_err(&np->op->dev, "RNG error, restesting\n");
439			np->flags &= ~N2RNG_FLAG_READY;
440			if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
441				schedule_delayed_work(&np->work, 0);
442			len = 0;
443		}
444	}
445
446	return len;
447}
448
449/* On a guest node, just make sure we can read random data properly.
450 * If a control node reboots or reloads it's n2rng driver, this won't
451 * work during that time.  So we have to keep probing until the device
452 * becomes usable.
453 */
454static int n2rng_guest_check(struct n2rng *np)
455{
456	unsigned long ra = __pa(&np->test_data);
457
458	return n2rng_generic_read_data(ra);
459}
460
461static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
462				   u64 *pre_control, u64 pre_state,
463				   u64 *buffer, unsigned long buf_len,
464				   u64 *post_control, u64 post_state)
465{
466	unsigned long post_ctl_ra = __pa(post_control);
467	unsigned long pre_ctl_ra = __pa(pre_control);
468	unsigned long buffer_ra = __pa(buffer);
469	int err;
470
471	err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
472	if (err)
473		return err;
474
475	err = n2rng_generic_read_diag_data(np, unit,
476					   buffer_ra, buf_len);
477
478	(void) n2rng_generic_write_control(np, post_ctl_ra, unit,
479					   post_state);
480
481	return err;
482}
483
484static u64 advance_polynomial(u64 poly, u64 val, int count)
485{
486	int i;
487
488	for (i = 0; i < count; i++) {
489		int highbit_set = ((s64)val < 0);
490
491		val <<= 1;
492		if (highbit_set)
493			val ^= poly;
494	}
495
496	return val;
497}
498
499static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
500{
501	int i, count = 0;
502
503	/* Purposefully skip over the first word.  */
504	for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
505		if (np->test_buffer[i] == val)
506			count++;
507	}
508	return count;
509}
510
511static void n2rng_dump_test_buffer(struct n2rng *np)
512{
513	int i;
514
515	for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
516		dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
517			i, np->test_buffer[i]);
518}
519
520static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
521{
522	u64 val;
523	int err, matches, limit;
524
525	switch (np->data->id) {
526	case N2_n2_rng:
527	case N2_vf_rng:
528	case N2_kt_rng:
529	case N2_m4_rng:  /* yes, m4 uses the old value */
530		val = RNG_v1_SELFTEST_VAL;
531		break;
532	default:
533		val = RNG_v2_SELFTEST_VAL;
534		break;
535	}
536
537	matches = 0;
538	for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
539		matches += n2rng_test_buffer_find(np, val);
540		if (matches >= SELFTEST_MATCH_GOAL)
541			break;
542		val = advance_polynomial(SELFTEST_POLY, val, 1);
543	}
544
545	err = 0;
546	if (limit >= SELFTEST_LOOPS_MAX) {
547		err = -ENODEV;
548		dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
549		n2rng_dump_test_buffer(np);
550	} else
551		dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
552
553	return err;
554}
555
556static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
557{
558	int err;
559	u64 base, base3;
560
561	switch (np->data->id) {
562	case N2_n2_rng:
563	case N2_vf_rng:
564	case N2_kt_rng:
565		base = RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT;
566		base3 = base | RNG_CTL_LFSR |
567			((RNG_v1_SELFTEST_TICKS - 2) << RNG_v1_CTL_WAIT_SHIFT);
568		break;
569	case N2_m4_rng:
570		base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
571		base3 = base | RNG_CTL_LFSR |
572			((RNG_v1_SELFTEST_TICKS - 2) << RNG_v2_CTL_WAIT_SHIFT);
573		break;
574	default:
575		base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
576		base3 = base | RNG_CTL_LFSR |
577			(RNG_v2_SELFTEST_TICKS << RNG_v2_CTL_WAIT_SHIFT);
578		break;
579	}
580
581	np->test_control[0] = base;
582	np->test_control[1] = base;
583	np->test_control[2] = base;
584	np->test_control[3] = base3;
585
586	err = n2rng_entropy_diag_read(np, unit, np->test_control,
587				      HV_RNG_STATE_HEALTHCHECK,
588				      np->test_buffer,
589				      sizeof(np->test_buffer),
590				      &np->units[unit].control[0],
591				      np->hv_state);
592	if (err)
593		return err;
594
595	return n2rng_check_selftest_buffer(np, unit);
596}
597
598static int n2rng_control_check(struct n2rng *np)
599{
600	int i;
601
602	for (i = 0; i < np->num_units; i++) {
603		int err = n2rng_control_selftest(np, i);
604		if (err)
605			return err;
606	}
607	return 0;
608}
609
610/* The sanity checks passed, install the final configuration into the
611 * chip, it's ready to use.
612 */
613static int n2rng_control_configure_units(struct n2rng *np)
614{
615	int unit, err;
616
617	err = 0;
618	for (unit = 0; unit < np->num_units; unit++) {
619		struct n2rng_unit *up = &np->units[unit];
620		unsigned long ctl_ra = __pa(&up->control[0]);
621		int esrc;
622		u64 base, shift;
623
624		if (np->data->chip_version == 1) {
625			base = ((np->accum_cycles << RNG_v1_CTL_WAIT_SHIFT) |
626			      (RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT) |
627			      RNG_CTL_LFSR);
628			shift = RNG_v1_CTL_VCO_SHIFT;
629		} else {
630			base = ((np->accum_cycles << RNG_v2_CTL_WAIT_SHIFT) |
631			      (RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT) |
632			      RNG_CTL_LFSR);
633			shift = RNG_v2_CTL_VCO_SHIFT;
634		}
635
636		/* XXX This isn't the best.  We should fetch a bunch
637		 * XXX of words using each entropy source combined XXX
638		 * with each VCO setting, and see which combinations
639		 * XXX give the best random data.
640		 */
641		for (esrc = 0; esrc < 3; esrc++)
642			up->control[esrc] = base |
643				(esrc << shift) |
644				(RNG_CTL_ES1 << esrc);
645
646		up->control[3] = base |
647			(RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
648
649		err = n2rng_generic_write_control(np, ctl_ra, unit,
650						  HV_RNG_STATE_CONFIGURED);
651		if (err)
652			break;
653	}
654
655	return err;
656}
657
658static void n2rng_work(struct work_struct *work)
659{
660	struct n2rng *np = container_of(work, struct n2rng, work.work);
661	int err = 0;
662	static int retries = 4;
663
664	if (!(np->flags & N2RNG_FLAG_CONTROL)) {
665		err = n2rng_guest_check(np);
666	} else {
667		preempt_disable();
668		err = n2rng_control_check(np);
669		preempt_enable();
670
671		if (!err)
672			err = n2rng_control_configure_units(np);
673	}
674
675	if (!err) {
676		np->flags |= N2RNG_FLAG_READY;
677		dev_info(&np->op->dev, "RNG ready\n");
678	}
679
680	if (--retries == 0)
681		dev_err(&np->op->dev, "Self-test retries failed, RNG not ready\n");
682	else if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
683		schedule_delayed_work(&np->work, HZ * 2);
684}
685
686static void n2rng_driver_version(void)
687{
688	static int n2rng_version_printed;
689
690	if (n2rng_version_printed++ == 0)
691		pr_info("%s", version);
692}
693
694static const struct of_device_id n2rng_match[];
695static int n2rng_probe(struct platform_device *op)
696{
697	const struct of_device_id *match;
 
698	int err = -ENOMEM;
699	struct n2rng *np;
700
701	match = of_match_device(n2rng_match, &op->dev);
702	if (!match)
703		return -EINVAL;
 
704
705	n2rng_driver_version();
706	np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
707	if (!np)
708		goto out;
709	np->op = op;
710	np->data = (struct n2rng_template *)match->data;
711
712	INIT_DELAYED_WORK(&np->work, n2rng_work);
713
714	if (np->data->multi_capable)
715		np->flags |= N2RNG_FLAG_MULTI;
716
717	err = -ENODEV;
718	np->hvapi_major = 2;
719	if (sun4v_hvapi_register(HV_GRP_RNG,
720				 np->hvapi_major,
721				 &np->hvapi_minor)) {
722		np->hvapi_major = 1;
723		if (sun4v_hvapi_register(HV_GRP_RNG,
724					 np->hvapi_major,
725					 &np->hvapi_minor)) {
726			dev_err(&op->dev, "Cannot register suitable "
727				"HVAPI version.\n");
728			goto out;
729		}
730	}
731
732	if (np->flags & N2RNG_FLAG_MULTI) {
733		if (np->hvapi_major < 2) {
734			dev_err(&op->dev, "multi-unit-capable RNG requires "
735				"HVAPI major version 2 or later, got %lu\n",
736				np->hvapi_major);
737			goto out_hvapi_unregister;
738		}
739		np->num_units = of_getintprop_default(op->dev.of_node,
740						      "rng-#units", 0);
741		if (!np->num_units) {
742			dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
743			goto out_hvapi_unregister;
744		}
745	} else {
746		np->num_units = 1;
747	}
748
749	dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
750		 np->hvapi_major, np->hvapi_minor);
751	np->units = devm_kcalloc(&op->dev, np->num_units, sizeof(*np->units),
 
 
752				 GFP_KERNEL);
753	err = -ENOMEM;
754	if (!np->units)
755		goto out_hvapi_unregister;
756
757	err = n2rng_init_control(np);
758	if (err)
759		goto out_hvapi_unregister;
760
761	dev_info(&op->dev, "Found %s RNG, units: %d\n",
762		 ((np->flags & N2RNG_FLAG_MULTI) ?
763		  "multi-unit-capable" : "single-unit"),
764		 np->num_units);
765
766	np->hwrng.name = DRV_MODULE_NAME;
767	np->hwrng.data_read = n2rng_data_read;
768	np->hwrng.priv = (unsigned long) np;
769
770	err = hwrng_register(&np->hwrng);
771	if (err)
772		goto out_hvapi_unregister;
773
774	platform_set_drvdata(op, np);
775
776	schedule_delayed_work(&np->work, 0);
777
778	return 0;
779
780out_hvapi_unregister:
781	sun4v_hvapi_unregister(HV_GRP_RNG);
782
783out:
784	return err;
785}
786
787static int n2rng_remove(struct platform_device *op)
788{
789	struct n2rng *np = platform_get_drvdata(op);
790
791	np->flags |= N2RNG_FLAG_SHUTDOWN;
792
793	cancel_delayed_work_sync(&np->work);
794
795	hwrng_unregister(&np->hwrng);
796
797	sun4v_hvapi_unregister(HV_GRP_RNG);
798
799	return 0;
800}
801
802static struct n2rng_template n2_template = {
803	.id = N2_n2_rng,
804	.multi_capable = 0,
805	.chip_version = 1,
806};
807
808static struct n2rng_template vf_template = {
809	.id = N2_vf_rng,
810	.multi_capable = 1,
811	.chip_version = 1,
812};
813
814static struct n2rng_template kt_template = {
815	.id = N2_kt_rng,
816	.multi_capable = 1,
817	.chip_version = 1,
818};
819
820static struct n2rng_template m4_template = {
821	.id = N2_m4_rng,
822	.multi_capable = 1,
823	.chip_version = 2,
824};
825
826static struct n2rng_template m7_template = {
827	.id = N2_m7_rng,
828	.multi_capable = 1,
829	.chip_version = 2,
830};
831
832static const struct of_device_id n2rng_match[] = {
833	{
834		.name		= "random-number-generator",
835		.compatible	= "SUNW,n2-rng",
836		.data		= &n2_template,
837	},
838	{
839		.name		= "random-number-generator",
840		.compatible	= "SUNW,vf-rng",
841		.data		= &vf_template,
842	},
843	{
844		.name		= "random-number-generator",
845		.compatible	= "SUNW,kt-rng",
846		.data		= &kt_template,
847	},
848	{
849		.name		= "random-number-generator",
850		.compatible	= "ORCL,m4-rng",
851		.data		= &m4_template,
852	},
853	{
854		.name		= "random-number-generator",
855		.compatible	= "ORCL,m7-rng",
856		.data		= &m7_template,
857	},
858	{},
859};
860MODULE_DEVICE_TABLE(of, n2rng_match);
861
862static struct platform_driver n2rng_driver = {
863	.driver = {
864		.name = "n2rng",
865		.of_match_table = n2rng_match,
866	},
867	.probe		= n2rng_probe,
868	.remove		= n2rng_remove,
869};
870
871module_platform_driver(n2rng_driver);