Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *  S390 version
  3 *    Copyright IBM Corp. 1999
  4 *    Author(s): Hartmut Penner (hp@de.ibm.com)
  5 *               Ulrich Weigand (uweigand@de.ibm.com)
  6 *
  7 *  Derived from "arch/i386/mm/fault.c"
  8 *    Copyright (C) 1995  Linus Torvalds
  9 */
 10
 11#include <linux/kernel_stat.h>
 12#include <linux/perf_event.h>
 13#include <linux/signal.h>
 14#include <linux/sched.h>
 
 15#include <linux/kernel.h>
 16#include <linux/errno.h>
 17#include <linux/string.h>
 18#include <linux/types.h>
 19#include <linux/ptrace.h>
 20#include <linux/mman.h>
 21#include <linux/mm.h>
 22#include <linux/compat.h>
 23#include <linux/smp.h>
 24#include <linux/kdebug.h>
 25#include <linux/init.h>
 26#include <linux/console.h>
 27#include <linux/module.h>
 28#include <linux/hardirq.h>
 29#include <linux/kprobes.h>
 30#include <linux/uaccess.h>
 31#include <linux/hugetlb.h>
 32#include <asm/asm-offsets.h>
 33#include <asm/diag.h>
 34#include <asm/pgtable.h>
 35#include <asm/gmap.h>
 36#include <asm/irq.h>
 37#include <asm/mmu_context.h>
 38#include <asm/facility.h>
 39#include "../kernel/entry.h"
 40
 41#define __FAIL_ADDR_MASK -4096L
 42#define __SUBCODE_MASK 0x0600
 43#define __PF_RES_FIELD 0x8000000000000000ULL
 44
 45#define VM_FAULT_BADCONTEXT	0x010000
 46#define VM_FAULT_BADMAP		0x020000
 47#define VM_FAULT_BADACCESS	0x040000
 48#define VM_FAULT_SIGNAL		0x080000
 49#define VM_FAULT_PFAULT		0x100000
 50
 
 
 
 
 
 
 
 51static unsigned long store_indication __read_mostly;
 52
 53static int __init fault_init(void)
 54{
 55	if (test_facility(75))
 56		store_indication = 0xc00;
 57	return 0;
 58}
 59early_initcall(fault_init);
 60
 61static inline int notify_page_fault(struct pt_regs *regs)
 62{
 63	int ret = 0;
 64
 65	/* kprobe_running() needs smp_processor_id() */
 66	if (kprobes_built_in() && !user_mode(regs)) {
 67		preempt_disable();
 68		if (kprobe_running() && kprobe_fault_handler(regs, 14))
 69			ret = 1;
 70		preempt_enable();
 71	}
 72	return ret;
 73}
 74
 75
 76/*
 77 * Unlock any spinlocks which will prevent us from getting the
 78 * message out.
 79 */
 80void bust_spinlocks(int yes)
 81{
 82	if (yes) {
 83		oops_in_progress = 1;
 84	} else {
 85		int loglevel_save = console_loglevel;
 86		console_unblank();
 87		oops_in_progress = 0;
 88		/*
 89		 * OK, the message is on the console.  Now we call printk()
 90		 * without oops_in_progress set so that printk will give klogd
 91		 * a poke.  Hold onto your hats...
 92		 */
 93		console_loglevel = 15;
 94		printk(" ");
 95		console_loglevel = loglevel_save;
 96	}
 97}
 98
 99/*
100 * Returns the address space associated with the fault.
101 * Returns 0 for kernel space and 1 for user space.
102 */
103static inline int user_space_fault(struct pt_regs *regs)
104{
105	unsigned long trans_exc_code;
106
107	/*
108	 * The lowest two bits of the translation exception
109	 * identification indicate which paging table was used.
110	 */
111	trans_exc_code = regs->int_parm_long & 3;
112	if (trans_exc_code == 3) /* home space -> kernel */
113		return 0;
114	if (user_mode(regs))
115		return 1;
116	if (trans_exc_code == 2) /* secondary space -> set_fs */
117		return current->thread.mm_segment.ar4;
118	if (current->flags & PF_VCPU)
119		return 1;
120	return 0;
 
 
 
 
 
 
 
 
 
 
 
121}
122
123static int bad_address(void *p)
124{
125	unsigned long dummy;
126
127	return probe_kernel_address((unsigned long *)p, dummy);
128}
129
130static void dump_pagetable(unsigned long asce, unsigned long address)
131{
132	unsigned long *table = __va(asce & PAGE_MASK);
133
134	pr_alert("AS:%016lx ", asce);
135	switch (asce & _ASCE_TYPE_MASK) {
136	case _ASCE_TYPE_REGION1:
137		table = table + ((address >> 53) & 0x7ff);
138		if (bad_address(table))
139			goto bad;
140		pr_cont("R1:%016lx ", *table);
141		if (*table & _REGION_ENTRY_INVALID)
142			goto out;
143		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
144		/* fallthrough */
145	case _ASCE_TYPE_REGION2:
146		table = table + ((address >> 42) & 0x7ff);
147		if (bad_address(table))
148			goto bad;
149		pr_cont("R2:%016lx ", *table);
150		if (*table & _REGION_ENTRY_INVALID)
151			goto out;
152		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
153		/* fallthrough */
154	case _ASCE_TYPE_REGION3:
155		table = table + ((address >> 31) & 0x7ff);
156		if (bad_address(table))
157			goto bad;
158		pr_cont("R3:%016lx ", *table);
159		if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
160			goto out;
161		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
162		/* fallthrough */
163	case _ASCE_TYPE_SEGMENT:
164		table = table + ((address >> 20) & 0x7ff);
165		if (bad_address(table))
166			goto bad;
167		pr_cont("S:%016lx ", *table);
168		if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
169			goto out;
170		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
171	}
172	table = table + ((address >> 12) & 0xff);
173	if (bad_address(table))
174		goto bad;
175	pr_cont("P:%016lx ", *table);
176out:
177	pr_cont("\n");
178	return;
179bad:
180	pr_cont("BAD\n");
181}
182
183static void dump_fault_info(struct pt_regs *regs)
184{
185	unsigned long asce;
186
187	pr_alert("Failing address: %016lx TEID: %016lx\n",
188		 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
189	pr_alert("Fault in ");
190	switch (regs->int_parm_long & 3) {
191	case 3:
192		pr_cont("home space ");
193		break;
194	case 2:
195		pr_cont("secondary space ");
196		break;
197	case 1:
198		pr_cont("access register ");
199		break;
200	case 0:
201		pr_cont("primary space ");
202		break;
203	}
204	pr_cont("mode while using ");
205	if (!user_space_fault(regs)) {
206		asce = S390_lowcore.kernel_asce;
207		pr_cont("kernel ");
208	}
209#ifdef CONFIG_PGSTE
210	else if ((current->flags & PF_VCPU) && S390_lowcore.gmap) {
211		struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
212		asce = gmap->asce;
213		pr_cont("gmap ");
214	}
215#endif
216	else {
217		asce = S390_lowcore.user_asce;
218		pr_cont("user ");
 
 
 
 
 
 
 
 
 
 
 
 
 
219	}
220	pr_cont("ASCE.\n");
221	dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
222}
223
224int show_unhandled_signals = 1;
225
226void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
227{
228	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
229		return;
230	if (!unhandled_signal(current, signr))
231		return;
232	if (!printk_ratelimit())
233		return;
234	printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
235	       regs->int_code & 0xffff, regs->int_code >> 17);
236	print_vma_addr(KERN_CONT "in ", regs->psw.addr);
237	printk(KERN_CONT "\n");
238	if (is_mm_fault)
239		dump_fault_info(regs);
240	show_regs(regs);
241}
242
243/*
244 * Send SIGSEGV to task.  This is an external routine
245 * to keep the stack usage of do_page_fault small.
246 */
247static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
248{
249	struct siginfo si;
250
251	report_user_fault(regs, SIGSEGV, 1);
252	si.si_signo = SIGSEGV;
 
253	si.si_code = si_code;
254	si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
255	force_sig_info(SIGSEGV, &si, current);
256}
257
258static noinline void do_no_context(struct pt_regs *regs)
259{
260	const struct exception_table_entry *fixup;
261
262	/* Are we prepared to handle this kernel fault?  */
263	fixup = search_exception_tables(regs->psw.addr);
264	if (fixup) {
265		regs->psw.addr = extable_fixup(fixup);
266		return;
267	}
268
269	/*
270	 * Oops. The kernel tried to access some bad page. We'll have to
271	 * terminate things with extreme prejudice.
272	 */
273	if (!user_space_fault(regs))
274		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
275		       " in virtual kernel address space\n");
276	else
277		printk(KERN_ALERT "Unable to handle kernel paging request"
278		       " in virtual user address space\n");
279	dump_fault_info(regs);
280	die(regs, "Oops");
281	do_exit(SIGKILL);
282}
283
284static noinline void do_low_address(struct pt_regs *regs)
285{
286	/* Low-address protection hit in kernel mode means
287	   NULL pointer write access in kernel mode.  */
288	if (regs->psw.mask & PSW_MASK_PSTATE) {
289		/* Low-address protection hit in user mode 'cannot happen'. */
290		die (regs, "Low-address protection");
291		do_exit(SIGKILL);
292	}
293
294	do_no_context(regs);
295}
296
297static noinline void do_sigbus(struct pt_regs *regs)
298{
299	struct task_struct *tsk = current;
300	struct siginfo si;
301
302	/*
303	 * Send a sigbus, regardless of whether we were in kernel
304	 * or user mode.
305	 */
306	si.si_signo = SIGBUS;
307	si.si_errno = 0;
308	si.si_code = BUS_ADRERR;
309	si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
310	force_sig_info(SIGBUS, &si, tsk);
311}
312
313static noinline void do_fault_error(struct pt_regs *regs, int fault)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314{
315	int si_code;
316
317	switch (fault) {
318	case VM_FAULT_BADACCESS:
 
 
319	case VM_FAULT_BADMAP:
320		/* Bad memory access. Check if it is kernel or user space. */
321		if (user_mode(regs)) {
322			/* User mode accesses just cause a SIGSEGV */
323			si_code = (fault == VM_FAULT_BADMAP) ?
324				SEGV_MAPERR : SEGV_ACCERR;
325			do_sigsegv(regs, si_code);
326			return;
327		}
328	case VM_FAULT_BADCONTEXT:
329	case VM_FAULT_PFAULT:
330		do_no_context(regs);
331		break;
332	case VM_FAULT_SIGNAL:
333		if (!user_mode(regs))
334			do_no_context(regs);
335		break;
336	default: /* fault & VM_FAULT_ERROR */
337		if (fault & VM_FAULT_OOM) {
338			if (!user_mode(regs))
339				do_no_context(regs);
340			else
341				pagefault_out_of_memory();
342		} else if (fault & VM_FAULT_SIGSEGV) {
343			/* Kernel mode? Handle exceptions or die */
344			if (!user_mode(regs))
345				do_no_context(regs);
346			else
347				do_sigsegv(regs, SEGV_MAPERR);
348		} else if (fault & VM_FAULT_SIGBUS) {
349			/* Kernel mode? Handle exceptions or die */
350			if (!user_mode(regs))
351				do_no_context(regs);
352			else
353				do_sigbus(regs);
354		} else
355			BUG();
356		break;
357	}
358}
359
360/*
361 * This routine handles page faults.  It determines the address,
362 * and the problem, and then passes it off to one of the appropriate
363 * routines.
364 *
365 * interruption code (int_code):
366 *   04       Protection           ->  Write-Protection  (suprression)
367 *   10       Segment translation  ->  Not present       (nullification)
368 *   11       Page translation     ->  Not present       (nullification)
369 *   3b       Region third trans.  ->  Not present       (nullification)
370 */
371static inline int do_exception(struct pt_regs *regs, int access)
372{
373#ifdef CONFIG_PGSTE
374	struct gmap *gmap;
375#endif
376	struct task_struct *tsk;
377	struct mm_struct *mm;
378	struct vm_area_struct *vma;
 
379	unsigned long trans_exc_code;
380	unsigned long address;
381	unsigned int flags;
382	int fault;
383
384	tsk = current;
385	/*
386	 * The instruction that caused the program check has
387	 * been nullified. Don't signal single step via SIGTRAP.
388	 */
389	clear_pt_regs_flag(regs, PIF_PER_TRAP);
390
391	if (notify_page_fault(regs))
392		return 0;
393
394	mm = tsk->mm;
395	trans_exc_code = regs->int_parm_long;
396
397	/*
398	 * Verify that the fault happened in user space, that
399	 * we are not in an interrupt and that there is a 
400	 * user context.
401	 */
402	fault = VM_FAULT_BADCONTEXT;
403	if (unlikely(!user_space_fault(regs) || faulthandler_disabled() || !mm))
 
 
404		goto out;
 
 
 
 
 
 
 
 
 
405
406	address = trans_exc_code & __FAIL_ADDR_MASK;
407	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
408	flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
409	if (user_mode(regs))
410		flags |= FAULT_FLAG_USER;
411	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
412		flags |= FAULT_FLAG_WRITE;
413	down_read(&mm->mmap_sem);
414
415#ifdef CONFIG_PGSTE
416	gmap = (current->flags & PF_VCPU) ?
417		(struct gmap *) S390_lowcore.gmap : NULL;
418	if (gmap) {
419		current->thread.gmap_addr = address;
 
 
420		address = __gmap_translate(gmap, address);
421		if (address == -EFAULT) {
422			fault = VM_FAULT_BADMAP;
423			goto out_up;
424		}
425		if (gmap->pfault_enabled)
426			flags |= FAULT_FLAG_RETRY_NOWAIT;
427	}
428#endif
429
430retry:
431	fault = VM_FAULT_BADMAP;
432	vma = find_vma(mm, address);
433	if (!vma)
434		goto out_up;
435
436	if (unlikely(vma->vm_start > address)) {
437		if (!(vma->vm_flags & VM_GROWSDOWN))
438			goto out_up;
439		if (expand_stack(vma, address))
440			goto out_up;
441	}
442
443	/*
444	 * Ok, we have a good vm_area for this memory access, so
445	 * we can handle it..
446	 */
447	fault = VM_FAULT_BADACCESS;
448	if (unlikely(!(vma->vm_flags & access)))
449		goto out_up;
450
451	if (is_vm_hugetlb_page(vma))
452		address &= HPAGE_MASK;
453	/*
454	 * If for any reason at all we couldn't handle the fault,
455	 * make sure we exit gracefully rather than endlessly redo
456	 * the fault.
457	 */
458	fault = handle_mm_fault(mm, vma, address, flags);
459	/* No reason to continue if interrupted by SIGKILL. */
460	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
461		fault = VM_FAULT_SIGNAL;
462		goto out;
463	}
464	if (unlikely(fault & VM_FAULT_ERROR))
465		goto out_up;
466
467	/*
468	 * Major/minor page fault accounting is only done on the
469	 * initial attempt. If we go through a retry, it is extremely
470	 * likely that the page will be found in page cache at that point.
471	 */
472	if (flags & FAULT_FLAG_ALLOW_RETRY) {
473		if (fault & VM_FAULT_MAJOR) {
474			tsk->maj_flt++;
475			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
476				      regs, address);
477		} else {
478			tsk->min_flt++;
479			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
480				      regs, address);
481		}
482		if (fault & VM_FAULT_RETRY) {
483#ifdef CONFIG_PGSTE
484			if (gmap && (flags & FAULT_FLAG_RETRY_NOWAIT)) {
485				/* FAULT_FLAG_RETRY_NOWAIT has been set,
486				 * mmap_sem has not been released */
487				current->thread.gmap_pfault = 1;
488				fault = VM_FAULT_PFAULT;
489				goto out_up;
490			}
491#endif
492			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
493			 * of starvation. */
494			flags &= ~(FAULT_FLAG_ALLOW_RETRY |
495				   FAULT_FLAG_RETRY_NOWAIT);
496			flags |= FAULT_FLAG_TRIED;
497			down_read(&mm->mmap_sem);
498			goto retry;
499		}
500	}
501#ifdef CONFIG_PGSTE
502	if (gmap) {
503		address =  __gmap_link(gmap, current->thread.gmap_addr,
504				       address);
505		if (address == -EFAULT) {
506			fault = VM_FAULT_BADMAP;
507			goto out_up;
508		}
509		if (address == -ENOMEM) {
510			fault = VM_FAULT_OOM;
511			goto out_up;
512		}
513	}
514#endif
515	fault = 0;
516out_up:
517	up_read(&mm->mmap_sem);
518out:
519	return fault;
520}
521
522void do_protection_exception(struct pt_regs *regs)
523{
524	unsigned long trans_exc_code;
525	int fault;
526
527	trans_exc_code = regs->int_parm_long;
528	/*
529	 * Protection exceptions are suppressing, decrement psw address.
530	 * The exception to this rule are aborted transactions, for these
531	 * the PSW already points to the correct location.
532	 */
533	if (!(regs->int_code & 0x200))
534		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
535	/*
536	 * Check for low-address protection.  This needs to be treated
537	 * as a special case because the translation exception code
538	 * field is not guaranteed to contain valid data in this case.
539	 */
540	if (unlikely(!(trans_exc_code & 4))) {
541		do_low_address(regs);
542		return;
543	}
544	fault = do_exception(regs, VM_WRITE);
 
 
 
 
 
 
 
 
545	if (unlikely(fault))
546		do_fault_error(regs, fault);
547}
548NOKPROBE_SYMBOL(do_protection_exception);
549
550void do_dat_exception(struct pt_regs *regs)
551{
552	int access, fault;
553
554	access = VM_READ | VM_EXEC | VM_WRITE;
555	fault = do_exception(regs, access);
556	if (unlikely(fault))
557		do_fault_error(regs, fault);
558}
559NOKPROBE_SYMBOL(do_dat_exception);
560
561#ifdef CONFIG_PFAULT 
562/*
563 * 'pfault' pseudo page faults routines.
564 */
565static int pfault_disable;
566
567static int __init nopfault(char *str)
568{
569	pfault_disable = 1;
570	return 1;
571}
572
573__setup("nopfault", nopfault);
574
575struct pfault_refbk {
576	u16 refdiagc;
577	u16 reffcode;
578	u16 refdwlen;
579	u16 refversn;
580	u64 refgaddr;
581	u64 refselmk;
582	u64 refcmpmk;
583	u64 reserved;
584} __attribute__ ((packed, aligned(8)));
585
586int pfault_init(void)
587{
588	struct pfault_refbk refbk = {
589		.refdiagc = 0x258,
590		.reffcode = 0,
591		.refdwlen = 5,
592		.refversn = 2,
593		.refgaddr = __LC_LPP,
594		.refselmk = 1ULL << 48,
595		.refcmpmk = 1ULL << 48,
596		.reserved = __PF_RES_FIELD };
597        int rc;
598
599	if (pfault_disable)
600		return -1;
601	diag_stat_inc(DIAG_STAT_X258);
602	asm volatile(
603		"	diag	%1,%0,0x258\n"
604		"0:	j	2f\n"
605		"1:	la	%0,8\n"
606		"2:\n"
607		EX_TABLE(0b,1b)
608		: "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
609        return rc;
610}
611
612void pfault_fini(void)
613{
614	struct pfault_refbk refbk = {
615		.refdiagc = 0x258,
616		.reffcode = 1,
617		.refdwlen = 5,
618		.refversn = 2,
619	};
620
621	if (pfault_disable)
622		return;
623	diag_stat_inc(DIAG_STAT_X258);
624	asm volatile(
625		"	diag	%0,0,0x258\n"
626		"0:\n"
627		EX_TABLE(0b,0b)
628		: : "a" (&refbk), "m" (refbk) : "cc");
629}
630
631static DEFINE_SPINLOCK(pfault_lock);
632static LIST_HEAD(pfault_list);
633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634static void pfault_interrupt(struct ext_code ext_code,
635			     unsigned int param32, unsigned long param64)
636{
637	struct task_struct *tsk;
638	__u16 subcode;
639	pid_t pid;
640
641	/*
642	 * Get the external interruption subcode & pfault
643	 * initial/completion signal bit. VM stores this 
644	 * in the 'cpu address' field associated with the
645         * external interrupt. 
646	 */
647	subcode = ext_code.subcode;
648	if ((subcode & 0xff00) != __SUBCODE_MASK)
649		return;
650	inc_irq_stat(IRQEXT_PFL);
651	/* Get the token (= pid of the affected task). */
652	pid = param64 & LPP_PFAULT_PID_MASK;
653	rcu_read_lock();
654	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
655	if (tsk)
656		get_task_struct(tsk);
657	rcu_read_unlock();
658	if (!tsk)
659		return;
660	spin_lock(&pfault_lock);
661	if (subcode & 0x0080) {
662		/* signal bit is set -> a page has been swapped in by VM */
663		if (tsk->thread.pfault_wait == 1) {
664			/* Initial interrupt was faster than the completion
665			 * interrupt. pfault_wait is valid. Set pfault_wait
666			 * back to zero and wake up the process. This can
667			 * safely be done because the task is still sleeping
668			 * and can't produce new pfaults. */
669			tsk->thread.pfault_wait = 0;
670			list_del(&tsk->thread.list);
671			wake_up_process(tsk);
672			put_task_struct(tsk);
673		} else {
674			/* Completion interrupt was faster than initial
675			 * interrupt. Set pfault_wait to -1 so the initial
676			 * interrupt doesn't put the task to sleep.
677			 * If the task is not running, ignore the completion
678			 * interrupt since it must be a leftover of a PFAULT
679			 * CANCEL operation which didn't remove all pending
680			 * completion interrupts. */
681			if (tsk->state == TASK_RUNNING)
682				tsk->thread.pfault_wait = -1;
683		}
684	} else {
685		/* signal bit not set -> a real page is missing. */
686		if (WARN_ON_ONCE(tsk != current))
687			goto out;
688		if (tsk->thread.pfault_wait == 1) {
689			/* Already on the list with a reference: put to sleep */
690			__set_task_state(tsk, TASK_UNINTERRUPTIBLE);
691			set_tsk_need_resched(tsk);
692		} else if (tsk->thread.pfault_wait == -1) {
693			/* Completion interrupt was faster than the initial
694			 * interrupt (pfault_wait == -1). Set pfault_wait
695			 * back to zero and exit. */
696			tsk->thread.pfault_wait = 0;
697		} else {
698			/* Initial interrupt arrived before completion
699			 * interrupt. Let the task sleep.
700			 * An extra task reference is needed since a different
701			 * cpu may set the task state to TASK_RUNNING again
702			 * before the scheduler is reached. */
703			get_task_struct(tsk);
704			tsk->thread.pfault_wait = 1;
705			list_add(&tsk->thread.list, &pfault_list);
706			__set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 
 
 
 
707			set_tsk_need_resched(tsk);
 
708		}
709	}
710out:
711	spin_unlock(&pfault_lock);
712	put_task_struct(tsk);
713}
714
715static int pfault_cpu_notify(struct notifier_block *self, unsigned long action,
716			     void *hcpu)
717{
718	struct thread_struct *thread, *next;
719	struct task_struct *tsk;
720
721	switch (action & ~CPU_TASKS_FROZEN) {
722	case CPU_DEAD:
723		spin_lock_irq(&pfault_lock);
724		list_for_each_entry_safe(thread, next, &pfault_list, list) {
725			thread->pfault_wait = 0;
726			list_del(&thread->list);
727			tsk = container_of(thread, struct task_struct, thread);
728			wake_up_process(tsk);
729			put_task_struct(tsk);
730		}
731		spin_unlock_irq(&pfault_lock);
732		break;
733	default:
734		break;
735	}
736	return NOTIFY_OK;
 
737}
738
739static int __init pfault_irq_init(void)
740{
741	int rc;
742
743	rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
744	if (rc)
745		goto out_extint;
746	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
747	if (rc)
748		goto out_pfault;
749	irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
750	hotcpu_notifier(pfault_cpu_notify, 0);
 
751	return 0;
752
753out_pfault:
754	unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
755out_extint:
756	pfault_disable = 1;
757	return rc;
758}
759early_initcall(pfault_irq_init);
760
761#endif /* CONFIG_PFAULT */
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  S390 version
  4 *    Copyright IBM Corp. 1999
  5 *    Author(s): Hartmut Penner (hp@de.ibm.com)
  6 *               Ulrich Weigand (uweigand@de.ibm.com)
  7 *
  8 *  Derived from "arch/i386/mm/fault.c"
  9 *    Copyright (C) 1995  Linus Torvalds
 10 */
 11
 12#include <linux/kernel_stat.h>
 13#include <linux/perf_event.h>
 14#include <linux/signal.h>
 15#include <linux/sched.h>
 16#include <linux/sched/debug.h>
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/ptrace.h>
 22#include <linux/mman.h>
 23#include <linux/mm.h>
 24#include <linux/compat.h>
 25#include <linux/smp.h>
 26#include <linux/kdebug.h>
 27#include <linux/init.h>
 28#include <linux/console.h>
 29#include <linux/extable.h>
 30#include <linux/hardirq.h>
 31#include <linux/kprobes.h>
 32#include <linux/uaccess.h>
 33#include <linux/hugetlb.h>
 34#include <asm/asm-offsets.h>
 35#include <asm/diag.h>
 36#include <asm/pgtable.h>
 37#include <asm/gmap.h>
 38#include <asm/irq.h>
 39#include <asm/mmu_context.h>
 40#include <asm/facility.h>
 41#include "../kernel/entry.h"
 42
 43#define __FAIL_ADDR_MASK -4096L
 44#define __SUBCODE_MASK 0x0600
 45#define __PF_RES_FIELD 0x8000000000000000ULL
 46
 47#define VM_FAULT_BADCONTEXT	0x010000
 48#define VM_FAULT_BADMAP		0x020000
 49#define VM_FAULT_BADACCESS	0x040000
 50#define VM_FAULT_SIGNAL		0x080000
 51#define VM_FAULT_PFAULT		0x100000
 52
 53enum fault_type {
 54	KERNEL_FAULT,
 55	USER_FAULT,
 56	VDSO_FAULT,
 57	GMAP_FAULT,
 58};
 59
 60static unsigned long store_indication __read_mostly;
 61
 62static int __init fault_init(void)
 63{
 64	if (test_facility(75))
 65		store_indication = 0xc00;
 66	return 0;
 67}
 68early_initcall(fault_init);
 69
 70static inline int notify_page_fault(struct pt_regs *regs)
 71{
 72	int ret = 0;
 73
 74	/* kprobe_running() needs smp_processor_id() */
 75	if (kprobes_built_in() && !user_mode(regs)) {
 76		preempt_disable();
 77		if (kprobe_running() && kprobe_fault_handler(regs, 14))
 78			ret = 1;
 79		preempt_enable();
 80	}
 81	return ret;
 82}
 83
 84
 85/*
 86 * Unlock any spinlocks which will prevent us from getting the
 87 * message out.
 88 */
 89void bust_spinlocks(int yes)
 90{
 91	if (yes) {
 92		oops_in_progress = 1;
 93	} else {
 94		int loglevel_save = console_loglevel;
 95		console_unblank();
 96		oops_in_progress = 0;
 97		/*
 98		 * OK, the message is on the console.  Now we call printk()
 99		 * without oops_in_progress set so that printk will give klogd
100		 * a poke.  Hold onto your hats...
101		 */
102		console_loglevel = 15;
103		printk(" ");
104		console_loglevel = loglevel_save;
105	}
106}
107
108/*
109 * Find out which address space caused the exception.
110 * Access register mode is impossible, ignore space == 3.
111 */
112static inline enum fault_type get_fault_type(struct pt_regs *regs)
113{
114	unsigned long trans_exc_code;
115
 
 
 
 
116	trans_exc_code = regs->int_parm_long & 3;
117	if (likely(trans_exc_code == 0)) {
118		/* primary space exception */
119		if (IS_ENABLED(CONFIG_PGSTE) &&
120		    test_pt_regs_flag(regs, PIF_GUEST_FAULT))
121			return GMAP_FAULT;
122		if (current->thread.mm_segment == USER_DS)
123			return USER_FAULT;
124		return KERNEL_FAULT;
125	}
126	if (trans_exc_code == 2) {
127		/* secondary space exception */
128		if (current->thread.mm_segment & 1) {
129			if (current->thread.mm_segment == USER_DS_SACF)
130				return USER_FAULT;
131			return KERNEL_FAULT;
132		}
133		return VDSO_FAULT;
134	}
135	/* home space exception -> access via kernel ASCE */
136	return KERNEL_FAULT;
137}
138
139static int bad_address(void *p)
140{
141	unsigned long dummy;
142
143	return probe_kernel_address((unsigned long *)p, dummy);
144}
145
146static void dump_pagetable(unsigned long asce, unsigned long address)
147{
148	unsigned long *table = __va(asce & _ASCE_ORIGIN);
149
150	pr_alert("AS:%016lx ", asce);
151	switch (asce & _ASCE_TYPE_MASK) {
152	case _ASCE_TYPE_REGION1:
153		table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
154		if (bad_address(table))
155			goto bad;
156		pr_cont("R1:%016lx ", *table);
157		if (*table & _REGION_ENTRY_INVALID)
158			goto out;
159		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
160		/* fallthrough */
161	case _ASCE_TYPE_REGION2:
162		table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
163		if (bad_address(table))
164			goto bad;
165		pr_cont("R2:%016lx ", *table);
166		if (*table & _REGION_ENTRY_INVALID)
167			goto out;
168		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
169		/* fallthrough */
170	case _ASCE_TYPE_REGION3:
171		table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
172		if (bad_address(table))
173			goto bad;
174		pr_cont("R3:%016lx ", *table);
175		if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
176			goto out;
177		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
178		/* fallthrough */
179	case _ASCE_TYPE_SEGMENT:
180		table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
181		if (bad_address(table))
182			goto bad;
183		pr_cont("S:%016lx ", *table);
184		if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
185			goto out;
186		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
187	}
188	table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
189	if (bad_address(table))
190		goto bad;
191	pr_cont("P:%016lx ", *table);
192out:
193	pr_cont("\n");
194	return;
195bad:
196	pr_cont("BAD\n");
197}
198
199static void dump_fault_info(struct pt_regs *regs)
200{
201	unsigned long asce;
202
203	pr_alert("Failing address: %016lx TEID: %016lx\n",
204		 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
205	pr_alert("Fault in ");
206	switch (regs->int_parm_long & 3) {
207	case 3:
208		pr_cont("home space ");
209		break;
210	case 2:
211		pr_cont("secondary space ");
212		break;
213	case 1:
214		pr_cont("access register ");
215		break;
216	case 0:
217		pr_cont("primary space ");
218		break;
219	}
220	pr_cont("mode while using ");
221	switch (get_fault_type(regs)) {
222	case USER_FAULT:
 
 
 
 
 
 
 
 
 
 
223		asce = S390_lowcore.user_asce;
224		pr_cont("user ");
225		break;
226	case VDSO_FAULT:
227		asce = S390_lowcore.vdso_asce;
228		pr_cont("vdso ");
229		break;
230	case GMAP_FAULT:
231		asce = ((struct gmap *) S390_lowcore.gmap)->asce;
232		pr_cont("gmap ");
233		break;
234	case KERNEL_FAULT:
235		asce = S390_lowcore.kernel_asce;
236		pr_cont("kernel ");
237		break;
238	}
239	pr_cont("ASCE.\n");
240	dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
241}
242
243int show_unhandled_signals = 1;
244
245void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
246{
247	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
248		return;
249	if (!unhandled_signal(current, signr))
250		return;
251	if (!printk_ratelimit())
252		return;
253	printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
254	       regs->int_code & 0xffff, regs->int_code >> 17);
255	print_vma_addr(KERN_CONT "in ", regs->psw.addr);
256	printk(KERN_CONT "\n");
257	if (is_mm_fault)
258		dump_fault_info(regs);
259	show_regs(regs);
260}
261
262/*
263 * Send SIGSEGV to task.  This is an external routine
264 * to keep the stack usage of do_page_fault small.
265 */
266static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
267{
268	struct siginfo si;
269
270	report_user_fault(regs, SIGSEGV, 1);
271	si.si_signo = SIGSEGV;
272	si.si_errno = 0;
273	si.si_code = si_code;
274	si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
275	force_sig_info(SIGSEGV, &si, current);
276}
277
278static noinline void do_no_context(struct pt_regs *regs)
279{
280	const struct exception_table_entry *fixup;
281
282	/* Are we prepared to handle this kernel fault?  */
283	fixup = search_exception_tables(regs->psw.addr);
284	if (fixup) {
285		regs->psw.addr = extable_fixup(fixup);
286		return;
287	}
288
289	/*
290	 * Oops. The kernel tried to access some bad page. We'll have to
291	 * terminate things with extreme prejudice.
292	 */
293	if (get_fault_type(regs) == KERNEL_FAULT)
294		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
295		       " in virtual kernel address space\n");
296	else
297		printk(KERN_ALERT "Unable to handle kernel paging request"
298		       " in virtual user address space\n");
299	dump_fault_info(regs);
300	die(regs, "Oops");
301	do_exit(SIGKILL);
302}
303
304static noinline void do_low_address(struct pt_regs *regs)
305{
306	/* Low-address protection hit in kernel mode means
307	   NULL pointer write access in kernel mode.  */
308	if (regs->psw.mask & PSW_MASK_PSTATE) {
309		/* Low-address protection hit in user mode 'cannot happen'. */
310		die (regs, "Low-address protection");
311		do_exit(SIGKILL);
312	}
313
314	do_no_context(regs);
315}
316
317static noinline void do_sigbus(struct pt_regs *regs)
318{
319	struct task_struct *tsk = current;
320	struct siginfo si;
321
322	/*
323	 * Send a sigbus, regardless of whether we were in kernel
324	 * or user mode.
325	 */
326	si.si_signo = SIGBUS;
327	si.si_errno = 0;
328	si.si_code = BUS_ADRERR;
329	si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
330	force_sig_info(SIGBUS, &si, tsk);
331}
332
333static noinline int signal_return(struct pt_regs *regs)
334{
335	u16 instruction;
336	int rc;
337
338	rc = __get_user(instruction, (u16 __user *) regs->psw.addr);
339	if (rc)
340		return rc;
341	if (instruction == 0x0a77) {
342		set_pt_regs_flag(regs, PIF_SYSCALL);
343		regs->int_code = 0x00040077;
344		return 0;
345	} else if (instruction == 0x0aad) {
346		set_pt_regs_flag(regs, PIF_SYSCALL);
347		regs->int_code = 0x000400ad;
348		return 0;
349	}
350	return -EACCES;
351}
352
353static noinline void do_fault_error(struct pt_regs *regs, int access, int fault)
354{
355	int si_code;
356
357	switch (fault) {
358	case VM_FAULT_BADACCESS:
359		if (access == VM_EXEC && signal_return(regs) == 0)
360			break;
361	case VM_FAULT_BADMAP:
362		/* Bad memory access. Check if it is kernel or user space. */
363		if (user_mode(regs)) {
364			/* User mode accesses just cause a SIGSEGV */
365			si_code = (fault == VM_FAULT_BADMAP) ?
366				SEGV_MAPERR : SEGV_ACCERR;
367			do_sigsegv(regs, si_code);
368			break;
369		}
370	case VM_FAULT_BADCONTEXT:
371	case VM_FAULT_PFAULT:
372		do_no_context(regs);
373		break;
374	case VM_FAULT_SIGNAL:
375		if (!user_mode(regs))
376			do_no_context(regs);
377		break;
378	default: /* fault & VM_FAULT_ERROR */
379		if (fault & VM_FAULT_OOM) {
380			if (!user_mode(regs))
381				do_no_context(regs);
382			else
383				pagefault_out_of_memory();
384		} else if (fault & VM_FAULT_SIGSEGV) {
385			/* Kernel mode? Handle exceptions or die */
386			if (!user_mode(regs))
387				do_no_context(regs);
388			else
389				do_sigsegv(regs, SEGV_MAPERR);
390		} else if (fault & VM_FAULT_SIGBUS) {
391			/* Kernel mode? Handle exceptions or die */
392			if (!user_mode(regs))
393				do_no_context(regs);
394			else
395				do_sigbus(regs);
396		} else
397			BUG();
398		break;
399	}
400}
401
402/*
403 * This routine handles page faults.  It determines the address,
404 * and the problem, and then passes it off to one of the appropriate
405 * routines.
406 *
407 * interruption code (int_code):
408 *   04       Protection           ->  Write-Protection  (suprression)
409 *   10       Segment translation  ->  Not present       (nullification)
410 *   11       Page translation     ->  Not present       (nullification)
411 *   3b       Region third trans.  ->  Not present       (nullification)
412 */
413static inline int do_exception(struct pt_regs *regs, int access)
414{
 
415	struct gmap *gmap;
 
416	struct task_struct *tsk;
417	struct mm_struct *mm;
418	struct vm_area_struct *vma;
419	enum fault_type type;
420	unsigned long trans_exc_code;
421	unsigned long address;
422	unsigned int flags;
423	int fault;
424
425	tsk = current;
426	/*
427	 * The instruction that caused the program check has
428	 * been nullified. Don't signal single step via SIGTRAP.
429	 */
430	clear_pt_regs_flag(regs, PIF_PER_TRAP);
431
432	if (notify_page_fault(regs))
433		return 0;
434
435	mm = tsk->mm;
436	trans_exc_code = regs->int_parm_long;
437
438	/*
439	 * Verify that the fault happened in user space, that
440	 * we are not in an interrupt and that there is a 
441	 * user context.
442	 */
443	fault = VM_FAULT_BADCONTEXT;
444	type = get_fault_type(regs);
445	switch (type) {
446	case KERNEL_FAULT:
447		goto out;
448	case VDSO_FAULT:
449		fault = VM_FAULT_BADMAP;
450		goto out;
451	case USER_FAULT:
452	case GMAP_FAULT:
453		if (faulthandler_disabled() || !mm)
454			goto out;
455		break;
456	}
457
458	address = trans_exc_code & __FAIL_ADDR_MASK;
459	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
460	flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
461	if (user_mode(regs))
462		flags |= FAULT_FLAG_USER;
463	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
464		flags |= FAULT_FLAG_WRITE;
465	down_read(&mm->mmap_sem);
466
467	gmap = NULL;
468	if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
469		gmap = (struct gmap *) S390_lowcore.gmap;
 
470		current->thread.gmap_addr = address;
471		current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
472		current->thread.gmap_int_code = regs->int_code & 0xffff;
473		address = __gmap_translate(gmap, address);
474		if (address == -EFAULT) {
475			fault = VM_FAULT_BADMAP;
476			goto out_up;
477		}
478		if (gmap->pfault_enabled)
479			flags |= FAULT_FLAG_RETRY_NOWAIT;
480	}
 
481
482retry:
483	fault = VM_FAULT_BADMAP;
484	vma = find_vma(mm, address);
485	if (!vma)
486		goto out_up;
487
488	if (unlikely(vma->vm_start > address)) {
489		if (!(vma->vm_flags & VM_GROWSDOWN))
490			goto out_up;
491		if (expand_stack(vma, address))
492			goto out_up;
493	}
494
495	/*
496	 * Ok, we have a good vm_area for this memory access, so
497	 * we can handle it..
498	 */
499	fault = VM_FAULT_BADACCESS;
500	if (unlikely(!(vma->vm_flags & access)))
501		goto out_up;
502
503	if (is_vm_hugetlb_page(vma))
504		address &= HPAGE_MASK;
505	/*
506	 * If for any reason at all we couldn't handle the fault,
507	 * make sure we exit gracefully rather than endlessly redo
508	 * the fault.
509	 */
510	fault = handle_mm_fault(vma, address, flags);
511	/* No reason to continue if interrupted by SIGKILL. */
512	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
513		fault = VM_FAULT_SIGNAL;
514		goto out;
515	}
516	if (unlikely(fault & VM_FAULT_ERROR))
517		goto out_up;
518
519	/*
520	 * Major/minor page fault accounting is only done on the
521	 * initial attempt. If we go through a retry, it is extremely
522	 * likely that the page will be found in page cache at that point.
523	 */
524	if (flags & FAULT_FLAG_ALLOW_RETRY) {
525		if (fault & VM_FAULT_MAJOR) {
526			tsk->maj_flt++;
527			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
528				      regs, address);
529		} else {
530			tsk->min_flt++;
531			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
532				      regs, address);
533		}
534		if (fault & VM_FAULT_RETRY) {
535			if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
536			    (flags & FAULT_FLAG_RETRY_NOWAIT)) {
537				/* FAULT_FLAG_RETRY_NOWAIT has been set,
538				 * mmap_sem has not been released */
539				current->thread.gmap_pfault = 1;
540				fault = VM_FAULT_PFAULT;
541				goto out_up;
542			}
 
543			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
544			 * of starvation. */
545			flags &= ~(FAULT_FLAG_ALLOW_RETRY |
546				   FAULT_FLAG_RETRY_NOWAIT);
547			flags |= FAULT_FLAG_TRIED;
548			down_read(&mm->mmap_sem);
549			goto retry;
550		}
551	}
552	if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
 
553		address =  __gmap_link(gmap, current->thread.gmap_addr,
554				       address);
555		if (address == -EFAULT) {
556			fault = VM_FAULT_BADMAP;
557			goto out_up;
558		}
559		if (address == -ENOMEM) {
560			fault = VM_FAULT_OOM;
561			goto out_up;
562		}
563	}
 
564	fault = 0;
565out_up:
566	up_read(&mm->mmap_sem);
567out:
568	return fault;
569}
570
571void do_protection_exception(struct pt_regs *regs)
572{
573	unsigned long trans_exc_code;
574	int access, fault;
575
576	trans_exc_code = regs->int_parm_long;
577	/*
578	 * Protection exceptions are suppressing, decrement psw address.
579	 * The exception to this rule are aborted transactions, for these
580	 * the PSW already points to the correct location.
581	 */
582	if (!(regs->int_code & 0x200))
583		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
584	/*
585	 * Check for low-address protection.  This needs to be treated
586	 * as a special case because the translation exception code
587	 * field is not guaranteed to contain valid data in this case.
588	 */
589	if (unlikely(!(trans_exc_code & 4))) {
590		do_low_address(regs);
591		return;
592	}
593	if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
594		regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
595					(regs->psw.addr & PAGE_MASK);
596		access = VM_EXEC;
597		fault = VM_FAULT_BADACCESS;
598	} else {
599		access = VM_WRITE;
600		fault = do_exception(regs, access);
601	}
602	if (unlikely(fault))
603		do_fault_error(regs, access, fault);
604}
605NOKPROBE_SYMBOL(do_protection_exception);
606
607void do_dat_exception(struct pt_regs *regs)
608{
609	int access, fault;
610
611	access = VM_READ | VM_EXEC | VM_WRITE;
612	fault = do_exception(regs, access);
613	if (unlikely(fault))
614		do_fault_error(regs, access, fault);
615}
616NOKPROBE_SYMBOL(do_dat_exception);
617
618#ifdef CONFIG_PFAULT 
619/*
620 * 'pfault' pseudo page faults routines.
621 */
622static int pfault_disable;
623
624static int __init nopfault(char *str)
625{
626	pfault_disable = 1;
627	return 1;
628}
629
630__setup("nopfault", nopfault);
631
632struct pfault_refbk {
633	u16 refdiagc;
634	u16 reffcode;
635	u16 refdwlen;
636	u16 refversn;
637	u64 refgaddr;
638	u64 refselmk;
639	u64 refcmpmk;
640	u64 reserved;
641} __attribute__ ((packed, aligned(8)));
642
643int pfault_init(void)
644{
645	struct pfault_refbk refbk = {
646		.refdiagc = 0x258,
647		.reffcode = 0,
648		.refdwlen = 5,
649		.refversn = 2,
650		.refgaddr = __LC_LPP,
651		.refselmk = 1ULL << 48,
652		.refcmpmk = 1ULL << 48,
653		.reserved = __PF_RES_FIELD };
654        int rc;
655
656	if (pfault_disable)
657		return -1;
658	diag_stat_inc(DIAG_STAT_X258);
659	asm volatile(
660		"	diag	%1,%0,0x258\n"
661		"0:	j	2f\n"
662		"1:	la	%0,8\n"
663		"2:\n"
664		EX_TABLE(0b,1b)
665		: "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
666        return rc;
667}
668
669void pfault_fini(void)
670{
671	struct pfault_refbk refbk = {
672		.refdiagc = 0x258,
673		.reffcode = 1,
674		.refdwlen = 5,
675		.refversn = 2,
676	};
677
678	if (pfault_disable)
679		return;
680	diag_stat_inc(DIAG_STAT_X258);
681	asm volatile(
682		"	diag	%0,0,0x258\n"
683		"0:	nopr	%%r7\n"
684		EX_TABLE(0b,0b)
685		: : "a" (&refbk), "m" (refbk) : "cc");
686}
687
688static DEFINE_SPINLOCK(pfault_lock);
689static LIST_HEAD(pfault_list);
690
691#define PF_COMPLETE	0x0080
692
693/*
694 * The mechanism of our pfault code: if Linux is running as guest, runs a user
695 * space process and the user space process accesses a page that the host has
696 * paged out we get a pfault interrupt.
697 *
698 * This allows us, within the guest, to schedule a different process. Without
699 * this mechanism the host would have to suspend the whole virtual cpu until
700 * the page has been paged in.
701 *
702 * So when we get such an interrupt then we set the state of the current task
703 * to uninterruptible and also set the need_resched flag. Both happens within
704 * interrupt context(!). If we later on want to return to user space we
705 * recognize the need_resched flag and then call schedule().  It's not very
706 * obvious how this works...
707 *
708 * Of course we have a lot of additional fun with the completion interrupt (->
709 * host signals that a page of a process has been paged in and the process can
710 * continue to run). This interrupt can arrive on any cpu and, since we have
711 * virtual cpus, actually appear before the interrupt that signals that a page
712 * is missing.
713 */
714static void pfault_interrupt(struct ext_code ext_code,
715			     unsigned int param32, unsigned long param64)
716{
717	struct task_struct *tsk;
718	__u16 subcode;
719	pid_t pid;
720
721	/*
722	 * Get the external interruption subcode & pfault initial/completion
723	 * signal bit. VM stores this in the 'cpu address' field associated
724	 * with the external interrupt.
 
725	 */
726	subcode = ext_code.subcode;
727	if ((subcode & 0xff00) != __SUBCODE_MASK)
728		return;
729	inc_irq_stat(IRQEXT_PFL);
730	/* Get the token (= pid of the affected task). */
731	pid = param64 & LPP_PID_MASK;
732	rcu_read_lock();
733	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
734	if (tsk)
735		get_task_struct(tsk);
736	rcu_read_unlock();
737	if (!tsk)
738		return;
739	spin_lock(&pfault_lock);
740	if (subcode & PF_COMPLETE) {
741		/* signal bit is set -> a page has been swapped in by VM */
742		if (tsk->thread.pfault_wait == 1) {
743			/* Initial interrupt was faster than the completion
744			 * interrupt. pfault_wait is valid. Set pfault_wait
745			 * back to zero and wake up the process. This can
746			 * safely be done because the task is still sleeping
747			 * and can't produce new pfaults. */
748			tsk->thread.pfault_wait = 0;
749			list_del(&tsk->thread.list);
750			wake_up_process(tsk);
751			put_task_struct(tsk);
752		} else {
753			/* Completion interrupt was faster than initial
754			 * interrupt. Set pfault_wait to -1 so the initial
755			 * interrupt doesn't put the task to sleep.
756			 * If the task is not running, ignore the completion
757			 * interrupt since it must be a leftover of a PFAULT
758			 * CANCEL operation which didn't remove all pending
759			 * completion interrupts. */
760			if (tsk->state == TASK_RUNNING)
761				tsk->thread.pfault_wait = -1;
762		}
763	} else {
764		/* signal bit not set -> a real page is missing. */
765		if (WARN_ON_ONCE(tsk != current))
766			goto out;
767		if (tsk->thread.pfault_wait == 1) {
768			/* Already on the list with a reference: put to sleep */
769			goto block;
 
770		} else if (tsk->thread.pfault_wait == -1) {
771			/* Completion interrupt was faster than the initial
772			 * interrupt (pfault_wait == -1). Set pfault_wait
773			 * back to zero and exit. */
774			tsk->thread.pfault_wait = 0;
775		} else {
776			/* Initial interrupt arrived before completion
777			 * interrupt. Let the task sleep.
778			 * An extra task reference is needed since a different
779			 * cpu may set the task state to TASK_RUNNING again
780			 * before the scheduler is reached. */
781			get_task_struct(tsk);
782			tsk->thread.pfault_wait = 1;
783			list_add(&tsk->thread.list, &pfault_list);
784block:
785			/* Since this must be a userspace fault, there
786			 * is no kernel task state to trample. Rely on the
787			 * return to userspace schedule() to block. */
788			__set_current_state(TASK_UNINTERRUPTIBLE);
789			set_tsk_need_resched(tsk);
790			set_preempt_need_resched();
791		}
792	}
793out:
794	spin_unlock(&pfault_lock);
795	put_task_struct(tsk);
796}
797
798static int pfault_cpu_dead(unsigned int cpu)
 
799{
800	struct thread_struct *thread, *next;
801	struct task_struct *tsk;
802
803	spin_lock_irq(&pfault_lock);
804	list_for_each_entry_safe(thread, next, &pfault_list, list) {
805		thread->pfault_wait = 0;
806		list_del(&thread->list);
807		tsk = container_of(thread, struct task_struct, thread);
808		wake_up_process(tsk);
809		put_task_struct(tsk);
 
 
 
 
 
 
 
810	}
811	spin_unlock_irq(&pfault_lock);
812	return 0;
813}
814
815static int __init pfault_irq_init(void)
816{
817	int rc;
818
819	rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
820	if (rc)
821		goto out_extint;
822	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
823	if (rc)
824		goto out_pfault;
825	irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
826	cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
827				  NULL, pfault_cpu_dead);
828	return 0;
829
830out_pfault:
831	unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
832out_extint:
833	pfault_disable = 1;
834	return rc;
835}
836early_initcall(pfault_irq_init);
837
838#endif /* CONFIG_PFAULT */