Loading...
1/*
2 * arch/parisc/kernel/firmware.c - safe PDC access routines
3 *
4 * PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 */
22
23/* I think it would be in everyone's best interest to follow this
24 * guidelines when writing PDC wrappers:
25 *
26 * - the name of the pdc wrapper should match one of the macros
27 * used for the first two arguments
28 * - don't use caps for random parts of the name
29 * - use the static PDC result buffers and "copyout" to structs
30 * supplied by the caller to encapsulate alignment restrictions
31 * - hold pdc_lock while in PDC or using static result buffers
32 * - use __pa() to convert virtual (kernel) pointers to physical
33 * ones.
34 * - the name of the struct used for pdc return values should equal
35 * one of the macros used for the first two arguments to the
36 * corresponding PDC call
37 * - keep the order of arguments
38 * - don't be smart (setting trailing NUL bytes for strings, return
39 * something useful even if the call failed) unless you are sure
40 * it's not going to affect functionality or performance
41 *
42 * Example:
43 * int pdc_cache_info(struct pdc_cache_info *cache_info )
44 * {
45 * int retval;
46 *
47 * spin_lock_irq(&pdc_lock);
48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 * convert_to_wide(pdc_result);
50 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 * spin_unlock_irq(&pdc_lock);
52 *
53 * return retval;
54 * }
55 * prumpf 991016
56 */
57
58#include <stdarg.h>
59
60#include <linux/delay.h>
61#include <linux/init.h>
62#include <linux/kernel.h>
63#include <linux/module.h>
64#include <linux/string.h>
65#include <linux/spinlock.h>
66
67#include <asm/page.h>
68#include <asm/pdc.h>
69#include <asm/pdcpat.h>
70#include <asm/processor.h> /* for boot_cpu_data */
71
72static DEFINE_SPINLOCK(pdc_lock);
73extern unsigned long pdc_result[NUM_PDC_RESULT];
74extern unsigned long pdc_result2[NUM_PDC_RESULT];
75
76#ifdef CONFIG_64BIT
77#define WIDE_FIRMWARE 0x1
78#define NARROW_FIRMWARE 0x2
79
80/* Firmware needs to be initially set to narrow to determine the
81 * actual firmware width. */
82int parisc_narrow_firmware __read_mostly = 1;
83#endif
84
85/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
86 * and MEM_PDC calls are always the same width as the OS.
87 * Some PAT boxes may have 64-bit IODC I/O.
88 *
89 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
90 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
91 * This allowed wide kernels to run on Cxxx boxes.
92 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
93 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
94 */
95
96#ifdef CONFIG_64BIT
97long real64_call(unsigned long function, ...);
98#endif
99long real32_call(unsigned long function, ...);
100
101#ifdef CONFIG_64BIT
102# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
103# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
104#else
105# define MEM_PDC (unsigned long)PAGE0->mem_pdc
106# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
107#endif
108
109
110/**
111 * f_extend - Convert PDC addresses to kernel addresses.
112 * @address: Address returned from PDC.
113 *
114 * This function is used to convert PDC addresses into kernel addresses
115 * when the PDC address size and kernel address size are different.
116 */
117static unsigned long f_extend(unsigned long address)
118{
119#ifdef CONFIG_64BIT
120 if(unlikely(parisc_narrow_firmware)) {
121 if((address & 0xff000000) == 0xf0000000)
122 return 0xf0f0f0f000000000UL | (u32)address;
123
124 if((address & 0xf0000000) == 0xf0000000)
125 return 0xffffffff00000000UL | (u32)address;
126 }
127#endif
128 return address;
129}
130
131/**
132 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
133 * @address: The return buffer from PDC.
134 *
135 * This function is used to convert the return buffer addresses retrieved from PDC
136 * into kernel addresses when the PDC address size and kernel address size are
137 * different.
138 */
139static void convert_to_wide(unsigned long *addr)
140{
141#ifdef CONFIG_64BIT
142 int i;
143 unsigned int *p = (unsigned int *)addr;
144
145 if(unlikely(parisc_narrow_firmware)) {
146 for(i = 31; i >= 0; --i)
147 addr[i] = p[i];
148 }
149#endif
150}
151
152#ifdef CONFIG_64BIT
153void set_firmware_width_unlocked(void)
154{
155 int ret;
156
157 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
158 __pa(pdc_result), 0);
159 convert_to_wide(pdc_result);
160 if (pdc_result[0] != NARROW_FIRMWARE)
161 parisc_narrow_firmware = 0;
162}
163
164/**
165 * set_firmware_width - Determine if the firmware is wide or narrow.
166 *
167 * This function must be called before any pdc_* function that uses the
168 * convert_to_wide function.
169 */
170void set_firmware_width(void)
171{
172 unsigned long flags;
173 spin_lock_irqsave(&pdc_lock, flags);
174 set_firmware_width_unlocked();
175 spin_unlock_irqrestore(&pdc_lock, flags);
176}
177#else
178void set_firmware_width_unlocked(void)
179{
180 return;
181}
182
183void set_firmware_width(void)
184{
185 return;
186}
187#endif /*CONFIG_64BIT*/
188
189/**
190 * pdc_emergency_unlock - Unlock the linux pdc lock
191 *
192 * This call unlocks the linux pdc lock in case we need some PDC functions
193 * (like pdc_add_valid) during kernel stack dump.
194 */
195void pdc_emergency_unlock(void)
196{
197 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
198 if (spin_is_locked(&pdc_lock))
199 spin_unlock(&pdc_lock);
200}
201
202
203/**
204 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
205 * @address: Address to be verified.
206 *
207 * This PDC call attempts to read from the specified address and verifies
208 * if the address is valid.
209 *
210 * The return value is PDC_OK (0) in case accessing this address is valid.
211 */
212int pdc_add_valid(unsigned long address)
213{
214 int retval;
215 unsigned long flags;
216
217 spin_lock_irqsave(&pdc_lock, flags);
218 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
219 spin_unlock_irqrestore(&pdc_lock, flags);
220
221 return retval;
222}
223EXPORT_SYMBOL(pdc_add_valid);
224
225/**
226 * pdc_chassis_info - Return chassis information.
227 * @result: The return buffer.
228 * @chassis_info: The memory buffer address.
229 * @len: The size of the memory buffer address.
230 *
231 * An HVERSION dependent call for returning the chassis information.
232 */
233int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
234{
235 int retval;
236 unsigned long flags;
237
238 spin_lock_irqsave(&pdc_lock, flags);
239 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
240 memcpy(&pdc_result2, led_info, len);
241 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
242 __pa(pdc_result), __pa(pdc_result2), len);
243 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
244 memcpy(led_info, pdc_result2, len);
245 spin_unlock_irqrestore(&pdc_lock, flags);
246
247 return retval;
248}
249
250/**
251 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
252 * @retval: -1 on error, 0 on success. Other value are PDC errors
253 *
254 * Must be correctly formatted or expect system crash
255 */
256#ifdef CONFIG_64BIT
257int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
258{
259 int retval = 0;
260 unsigned long flags;
261
262 if (!is_pdc_pat())
263 return -1;
264
265 spin_lock_irqsave(&pdc_lock, flags);
266 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
267 spin_unlock_irqrestore(&pdc_lock, flags);
268
269 return retval;
270}
271#endif
272
273/**
274 * pdc_chassis_disp - Updates chassis code
275 * @retval: -1 on error, 0 on success
276 */
277int pdc_chassis_disp(unsigned long disp)
278{
279 int retval = 0;
280 unsigned long flags;
281
282 spin_lock_irqsave(&pdc_lock, flags);
283 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
284 spin_unlock_irqrestore(&pdc_lock, flags);
285
286 return retval;
287}
288
289/**
290 * pdc_chassis_warn - Fetches chassis warnings
291 * @retval: -1 on error, 0 on success
292 */
293int pdc_chassis_warn(unsigned long *warn)
294{
295 int retval = 0;
296 unsigned long flags;
297
298 spin_lock_irqsave(&pdc_lock, flags);
299 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
300 *warn = pdc_result[0];
301 spin_unlock_irqrestore(&pdc_lock, flags);
302
303 return retval;
304}
305
306int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
307{
308 int ret;
309
310 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
311 convert_to_wide(pdc_result);
312 pdc_coproc_info->ccr_functional = pdc_result[0];
313 pdc_coproc_info->ccr_present = pdc_result[1];
314 pdc_coproc_info->revision = pdc_result[17];
315 pdc_coproc_info->model = pdc_result[18];
316
317 return ret;
318}
319
320/**
321 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
322 * @pdc_coproc_info: Return buffer address.
323 *
324 * This PDC call returns the presence and status of all the coprocessors
325 * attached to the processor.
326 */
327int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
328{
329 int ret;
330 unsigned long flags;
331
332 spin_lock_irqsave(&pdc_lock, flags);
333 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
334 spin_unlock_irqrestore(&pdc_lock, flags);
335
336 return ret;
337}
338
339/**
340 * pdc_iodc_read - Read data from the modules IODC.
341 * @actcnt: The actual number of bytes.
342 * @hpa: The HPA of the module for the iodc read.
343 * @index: The iodc entry point.
344 * @iodc_data: A buffer memory for the iodc options.
345 * @iodc_data_size: Size of the memory buffer.
346 *
347 * This PDC call reads from the IODC of the module specified by the hpa
348 * argument.
349 */
350int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
351 void *iodc_data, unsigned int iodc_data_size)
352{
353 int retval;
354 unsigned long flags;
355
356 spin_lock_irqsave(&pdc_lock, flags);
357 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
358 index, __pa(pdc_result2), iodc_data_size);
359 convert_to_wide(pdc_result);
360 *actcnt = pdc_result[0];
361 memcpy(iodc_data, pdc_result2, iodc_data_size);
362 spin_unlock_irqrestore(&pdc_lock, flags);
363
364 return retval;
365}
366EXPORT_SYMBOL(pdc_iodc_read);
367
368/**
369 * pdc_system_map_find_mods - Locate unarchitected modules.
370 * @pdc_mod_info: Return buffer address.
371 * @mod_path: pointer to dev path structure.
372 * @mod_index: fixed address module index.
373 *
374 * To locate and identify modules which reside at fixed I/O addresses, which
375 * do not self-identify via architected bus walks.
376 */
377int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
378 struct pdc_module_path *mod_path, long mod_index)
379{
380 int retval;
381 unsigned long flags;
382
383 spin_lock_irqsave(&pdc_lock, flags);
384 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
385 __pa(pdc_result2), mod_index);
386 convert_to_wide(pdc_result);
387 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
388 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
389 spin_unlock_irqrestore(&pdc_lock, flags);
390
391 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
392 return retval;
393}
394
395/**
396 * pdc_system_map_find_addrs - Retrieve additional address ranges.
397 * @pdc_addr_info: Return buffer address.
398 * @mod_index: Fixed address module index.
399 * @addr_index: Address range index.
400 *
401 * Retrieve additional information about subsequent address ranges for modules
402 * with multiple address ranges.
403 */
404int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
405 long mod_index, long addr_index)
406{
407 int retval;
408 unsigned long flags;
409
410 spin_lock_irqsave(&pdc_lock, flags);
411 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
412 mod_index, addr_index);
413 convert_to_wide(pdc_result);
414 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
415 spin_unlock_irqrestore(&pdc_lock, flags);
416
417 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
418 return retval;
419}
420
421/**
422 * pdc_model_info - Return model information about the processor.
423 * @model: The return buffer.
424 *
425 * Returns the version numbers, identifiers, and capabilities from the processor module.
426 */
427int pdc_model_info(struct pdc_model *model)
428{
429 int retval;
430 unsigned long flags;
431
432 spin_lock_irqsave(&pdc_lock, flags);
433 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
434 convert_to_wide(pdc_result);
435 memcpy(model, pdc_result, sizeof(*model));
436 spin_unlock_irqrestore(&pdc_lock, flags);
437
438 return retval;
439}
440
441/**
442 * pdc_model_sysmodel - Get the system model name.
443 * @name: A char array of at least 81 characters.
444 *
445 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
446 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
447 * on HP/UX.
448 */
449int pdc_model_sysmodel(char *name)
450{
451 int retval;
452 unsigned long flags;
453
454 spin_lock_irqsave(&pdc_lock, flags);
455 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
456 OS_ID_HPUX, __pa(name));
457 convert_to_wide(pdc_result);
458
459 if (retval == PDC_OK) {
460 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
461 } else {
462 name[0] = 0;
463 }
464 spin_unlock_irqrestore(&pdc_lock, flags);
465
466 return retval;
467}
468
469/**
470 * pdc_model_versions - Identify the version number of each processor.
471 * @cpu_id: The return buffer.
472 * @id: The id of the processor to check.
473 *
474 * Returns the version number for each processor component.
475 *
476 * This comment was here before, but I do not know what it means :( -RB
477 * id: 0 = cpu revision, 1 = boot-rom-version
478 */
479int pdc_model_versions(unsigned long *versions, int id)
480{
481 int retval;
482 unsigned long flags;
483
484 spin_lock_irqsave(&pdc_lock, flags);
485 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
486 convert_to_wide(pdc_result);
487 *versions = pdc_result[0];
488 spin_unlock_irqrestore(&pdc_lock, flags);
489
490 return retval;
491}
492
493/**
494 * pdc_model_cpuid - Returns the CPU_ID.
495 * @cpu_id: The return buffer.
496 *
497 * Returns the CPU_ID value which uniquely identifies the cpu portion of
498 * the processor module.
499 */
500int pdc_model_cpuid(unsigned long *cpu_id)
501{
502 int retval;
503 unsigned long flags;
504
505 spin_lock_irqsave(&pdc_lock, flags);
506 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
507 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
508 convert_to_wide(pdc_result);
509 *cpu_id = pdc_result[0];
510 spin_unlock_irqrestore(&pdc_lock, flags);
511
512 return retval;
513}
514
515/**
516 * pdc_model_capabilities - Returns the platform capabilities.
517 * @capabilities: The return buffer.
518 *
519 * Returns information about platform support for 32- and/or 64-bit
520 * OSes, IO-PDIR coherency, and virtual aliasing.
521 */
522int pdc_model_capabilities(unsigned long *capabilities)
523{
524 int retval;
525 unsigned long flags;
526
527 spin_lock_irqsave(&pdc_lock, flags);
528 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
529 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
530 convert_to_wide(pdc_result);
531 if (retval == PDC_OK) {
532 *capabilities = pdc_result[0];
533 } else {
534 *capabilities = PDC_MODEL_OS32;
535 }
536 spin_unlock_irqrestore(&pdc_lock, flags);
537
538 return retval;
539}
540
541/**
542 * pdc_cache_info - Return cache and TLB information.
543 * @cache_info: The return buffer.
544 *
545 * Returns information about the processor's cache and TLB.
546 */
547int pdc_cache_info(struct pdc_cache_info *cache_info)
548{
549 int retval;
550 unsigned long flags;
551
552 spin_lock_irqsave(&pdc_lock, flags);
553 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
554 convert_to_wide(pdc_result);
555 memcpy(cache_info, pdc_result, sizeof(*cache_info));
556 spin_unlock_irqrestore(&pdc_lock, flags);
557
558 return retval;
559}
560
561/**
562 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
563 * @space_bits: Should be 0, if not, bad mojo!
564 *
565 * Returns information about Space ID hashing.
566 */
567int pdc_spaceid_bits(unsigned long *space_bits)
568{
569 int retval;
570 unsigned long flags;
571
572 spin_lock_irqsave(&pdc_lock, flags);
573 pdc_result[0] = 0;
574 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
575 convert_to_wide(pdc_result);
576 *space_bits = pdc_result[0];
577 spin_unlock_irqrestore(&pdc_lock, flags);
578
579 return retval;
580}
581
582#ifndef CONFIG_PA20
583/**
584 * pdc_btlb_info - Return block TLB information.
585 * @btlb: The return buffer.
586 *
587 * Returns information about the hardware Block TLB.
588 */
589int pdc_btlb_info(struct pdc_btlb_info *btlb)
590{
591 int retval;
592 unsigned long flags;
593
594 spin_lock_irqsave(&pdc_lock, flags);
595 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
596 memcpy(btlb, pdc_result, sizeof(*btlb));
597 spin_unlock_irqrestore(&pdc_lock, flags);
598
599 if(retval < 0) {
600 btlb->max_size = 0;
601 }
602 return retval;
603}
604
605/**
606 * pdc_mem_map_hpa - Find fixed module information.
607 * @address: The return buffer
608 * @mod_path: pointer to dev path structure.
609 *
610 * This call was developed for S700 workstations to allow the kernel to find
611 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
612 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
613 * call.
614 *
615 * This call is supported by all existing S700 workstations (up to Gecko).
616 */
617int pdc_mem_map_hpa(struct pdc_memory_map *address,
618 struct pdc_module_path *mod_path)
619{
620 int retval;
621 unsigned long flags;
622
623 spin_lock_irqsave(&pdc_lock, flags);
624 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
625 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
626 __pa(pdc_result2));
627 memcpy(address, pdc_result, sizeof(*address));
628 spin_unlock_irqrestore(&pdc_lock, flags);
629
630 return retval;
631}
632#endif /* !CONFIG_PA20 */
633
634/**
635 * pdc_lan_station_id - Get the LAN address.
636 * @lan_addr: The return buffer.
637 * @hpa: The network device HPA.
638 *
639 * Get the LAN station address when it is not directly available from the LAN hardware.
640 */
641int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
642{
643 int retval;
644 unsigned long flags;
645
646 spin_lock_irqsave(&pdc_lock, flags);
647 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
648 __pa(pdc_result), hpa);
649 if (retval < 0) {
650 /* FIXME: else read MAC from NVRAM */
651 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
652 } else {
653 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
654 }
655 spin_unlock_irqrestore(&pdc_lock, flags);
656
657 return retval;
658}
659EXPORT_SYMBOL(pdc_lan_station_id);
660
661/**
662 * pdc_stable_read - Read data from Stable Storage.
663 * @staddr: Stable Storage address to access.
664 * @memaddr: The memory address where Stable Storage data shall be copied.
665 * @count: number of bytes to transfer. count is multiple of 4.
666 *
667 * This PDC call reads from the Stable Storage address supplied in staddr
668 * and copies count bytes to the memory address memaddr.
669 * The call will fail if staddr+count > PDC_STABLE size.
670 */
671int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
672{
673 int retval;
674 unsigned long flags;
675
676 spin_lock_irqsave(&pdc_lock, flags);
677 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
678 __pa(pdc_result), count);
679 convert_to_wide(pdc_result);
680 memcpy(memaddr, pdc_result, count);
681 spin_unlock_irqrestore(&pdc_lock, flags);
682
683 return retval;
684}
685EXPORT_SYMBOL(pdc_stable_read);
686
687/**
688 * pdc_stable_write - Write data to Stable Storage.
689 * @staddr: Stable Storage address to access.
690 * @memaddr: The memory address where Stable Storage data shall be read from.
691 * @count: number of bytes to transfer. count is multiple of 4.
692 *
693 * This PDC call reads count bytes from the supplied memaddr address,
694 * and copies count bytes to the Stable Storage address staddr.
695 * The call will fail if staddr+count > PDC_STABLE size.
696 */
697int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
698{
699 int retval;
700 unsigned long flags;
701
702 spin_lock_irqsave(&pdc_lock, flags);
703 memcpy(pdc_result, memaddr, count);
704 convert_to_wide(pdc_result);
705 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
706 __pa(pdc_result), count);
707 spin_unlock_irqrestore(&pdc_lock, flags);
708
709 return retval;
710}
711EXPORT_SYMBOL(pdc_stable_write);
712
713/**
714 * pdc_stable_get_size - Get Stable Storage size in bytes.
715 * @size: pointer where the size will be stored.
716 *
717 * This PDC call returns the number of bytes in the processor's Stable
718 * Storage, which is the number of contiguous bytes implemented in Stable
719 * Storage starting from staddr=0. size in an unsigned 64-bit integer
720 * which is a multiple of four.
721 */
722int pdc_stable_get_size(unsigned long *size)
723{
724 int retval;
725 unsigned long flags;
726
727 spin_lock_irqsave(&pdc_lock, flags);
728 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
729 *size = pdc_result[0];
730 spin_unlock_irqrestore(&pdc_lock, flags);
731
732 return retval;
733}
734EXPORT_SYMBOL(pdc_stable_get_size);
735
736/**
737 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
738 *
739 * This PDC call is meant to be used to check the integrity of the current
740 * contents of Stable Storage.
741 */
742int pdc_stable_verify_contents(void)
743{
744 int retval;
745 unsigned long flags;
746
747 spin_lock_irqsave(&pdc_lock, flags);
748 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
749 spin_unlock_irqrestore(&pdc_lock, flags);
750
751 return retval;
752}
753EXPORT_SYMBOL(pdc_stable_verify_contents);
754
755/**
756 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
757 * the validity indicator.
758 *
759 * This PDC call will erase all contents of Stable Storage. Use with care!
760 */
761int pdc_stable_initialize(void)
762{
763 int retval;
764 unsigned long flags;
765
766 spin_lock_irqsave(&pdc_lock, flags);
767 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
768 spin_unlock_irqrestore(&pdc_lock, flags);
769
770 return retval;
771}
772EXPORT_SYMBOL(pdc_stable_initialize);
773
774/**
775 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
776 * @hwpath: fully bc.mod style path to the device.
777 * @initiator: the array to return the result into
778 *
779 * Get the SCSI operational parameters from PDC.
780 * Needed since HPUX never used BIOS or symbios card NVRAM.
781 * Most ncr/sym cards won't have an entry and just use whatever
782 * capabilities of the card are (eg Ultra, LVD). But there are
783 * several cases where it's useful:
784 * o set SCSI id for Multi-initiator clusters,
785 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
786 * o bus width exported is less than what the interface chip supports.
787 */
788int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
789{
790 int retval;
791 unsigned long flags;
792
793 spin_lock_irqsave(&pdc_lock, flags);
794
795/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
796#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
797 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
798
799 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
800 __pa(pdc_result), __pa(hwpath));
801 if (retval < PDC_OK)
802 goto out;
803
804 if (pdc_result[0] < 16) {
805 initiator->host_id = pdc_result[0];
806 } else {
807 initiator->host_id = -1;
808 }
809
810 /*
811 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
812 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
813 */
814 switch (pdc_result[1]) {
815 case 1: initiator->factor = 50; break;
816 case 2: initiator->factor = 25; break;
817 case 5: initiator->factor = 12; break;
818 case 25: initiator->factor = 10; break;
819 case 20: initiator->factor = 12; break;
820 case 40: initiator->factor = 10; break;
821 default: initiator->factor = -1; break;
822 }
823
824 if (IS_SPROCKETS()) {
825 initiator->width = pdc_result[4];
826 initiator->mode = pdc_result[5];
827 } else {
828 initiator->width = -1;
829 initiator->mode = -1;
830 }
831
832 out:
833 spin_unlock_irqrestore(&pdc_lock, flags);
834
835 return (retval >= PDC_OK);
836}
837EXPORT_SYMBOL(pdc_get_initiator);
838
839
840/**
841 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
842 * @num_entries: The return value.
843 * @hpa: The HPA for the device.
844 *
845 * This PDC function returns the number of entries in the specified cell's
846 * interrupt table.
847 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
848 */
849int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
850{
851 int retval;
852 unsigned long flags;
853
854 spin_lock_irqsave(&pdc_lock, flags);
855 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
856 __pa(pdc_result), hpa);
857 convert_to_wide(pdc_result);
858 *num_entries = pdc_result[0];
859 spin_unlock_irqrestore(&pdc_lock, flags);
860
861 return retval;
862}
863
864/**
865 * pdc_pci_irt - Get the PCI interrupt routing table.
866 * @num_entries: The number of entries in the table.
867 * @hpa: The Hard Physical Address of the device.
868 * @tbl:
869 *
870 * Get the PCI interrupt routing table for the device at the given HPA.
871 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
872 */
873int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
874{
875 int retval;
876 unsigned long flags;
877
878 BUG_ON((unsigned long)tbl & 0x7);
879
880 spin_lock_irqsave(&pdc_lock, flags);
881 pdc_result[0] = num_entries;
882 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
883 __pa(pdc_result), hpa, __pa(tbl));
884 spin_unlock_irqrestore(&pdc_lock, flags);
885
886 return retval;
887}
888
889
890#if 0 /* UNTEST CODE - left here in case someone needs it */
891
892/**
893 * pdc_pci_config_read - read PCI config space.
894 * @hpa token from PDC to indicate which PCI device
895 * @pci_addr configuration space address to read from
896 *
897 * Read PCI Configuration space *before* linux PCI subsystem is running.
898 */
899unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
900{
901 int retval;
902 unsigned long flags;
903
904 spin_lock_irqsave(&pdc_lock, flags);
905 pdc_result[0] = 0;
906 pdc_result[1] = 0;
907 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
908 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
909 spin_unlock_irqrestore(&pdc_lock, flags);
910
911 return retval ? ~0 : (unsigned int) pdc_result[0];
912}
913
914
915/**
916 * pdc_pci_config_write - read PCI config space.
917 * @hpa token from PDC to indicate which PCI device
918 * @pci_addr configuration space address to write
919 * @val value we want in the 32-bit register
920 *
921 * Write PCI Configuration space *before* linux PCI subsystem is running.
922 */
923void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
924{
925 int retval;
926 unsigned long flags;
927
928 spin_lock_irqsave(&pdc_lock, flags);
929 pdc_result[0] = 0;
930 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
931 __pa(pdc_result), hpa,
932 cfg_addr&~3UL, 4UL, (unsigned long) val);
933 spin_unlock_irqrestore(&pdc_lock, flags);
934
935 return retval;
936}
937#endif /* UNTESTED CODE */
938
939/**
940 * pdc_tod_read - Read the Time-Of-Day clock.
941 * @tod: The return buffer:
942 *
943 * Read the Time-Of-Day clock
944 */
945int pdc_tod_read(struct pdc_tod *tod)
946{
947 int retval;
948 unsigned long flags;
949
950 spin_lock_irqsave(&pdc_lock, flags);
951 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
952 convert_to_wide(pdc_result);
953 memcpy(tod, pdc_result, sizeof(*tod));
954 spin_unlock_irqrestore(&pdc_lock, flags);
955
956 return retval;
957}
958EXPORT_SYMBOL(pdc_tod_read);
959
960/**
961 * pdc_tod_set - Set the Time-Of-Day clock.
962 * @sec: The number of seconds since epoch.
963 * @usec: The number of micro seconds.
964 *
965 * Set the Time-Of-Day clock.
966 */
967int pdc_tod_set(unsigned long sec, unsigned long usec)
968{
969 int retval;
970 unsigned long flags;
971
972 spin_lock_irqsave(&pdc_lock, flags);
973 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
974 spin_unlock_irqrestore(&pdc_lock, flags);
975
976 return retval;
977}
978EXPORT_SYMBOL(pdc_tod_set);
979
980#ifdef CONFIG_64BIT
981int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
982 struct pdc_memory_table *tbl, unsigned long entries)
983{
984 int retval;
985 unsigned long flags;
986
987 spin_lock_irqsave(&pdc_lock, flags);
988 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
989 convert_to_wide(pdc_result);
990 memcpy(r_addr, pdc_result, sizeof(*r_addr));
991 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
992 spin_unlock_irqrestore(&pdc_lock, flags);
993
994 return retval;
995}
996#endif /* CONFIG_64BIT */
997
998/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
999 * so I guessed at unsigned long. Someone who knows what this does, can fix
1000 * it later. :)
1001 */
1002int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1003{
1004 int retval;
1005 unsigned long flags;
1006
1007 spin_lock_irqsave(&pdc_lock, flags);
1008 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1009 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1010 spin_unlock_irqrestore(&pdc_lock, flags);
1011
1012 return retval;
1013}
1014
1015/*
1016 * pdc_do_reset - Reset the system.
1017 *
1018 * Reset the system.
1019 */
1020int pdc_do_reset(void)
1021{
1022 int retval;
1023 unsigned long flags;
1024
1025 spin_lock_irqsave(&pdc_lock, flags);
1026 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1027 spin_unlock_irqrestore(&pdc_lock, flags);
1028
1029 return retval;
1030}
1031
1032/*
1033 * pdc_soft_power_info - Enable soft power switch.
1034 * @power_reg: address of soft power register
1035 *
1036 * Return the absolute address of the soft power switch register
1037 */
1038int __init pdc_soft_power_info(unsigned long *power_reg)
1039{
1040 int retval;
1041 unsigned long flags;
1042
1043 *power_reg = (unsigned long) (-1);
1044
1045 spin_lock_irqsave(&pdc_lock, flags);
1046 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1047 if (retval == PDC_OK) {
1048 convert_to_wide(pdc_result);
1049 *power_reg = f_extend(pdc_result[0]);
1050 }
1051 spin_unlock_irqrestore(&pdc_lock, flags);
1052
1053 return retval;
1054}
1055
1056/*
1057 * pdc_soft_power_button - Control the soft power button behaviour
1058 * @sw_control: 0 for hardware control, 1 for software control
1059 *
1060 *
1061 * This PDC function places the soft power button under software or
1062 * hardware control.
1063 * Under software control the OS may control to when to allow to shut
1064 * down the system. Under hardware control pressing the power button
1065 * powers off the system immediately.
1066 */
1067int pdc_soft_power_button(int sw_control)
1068{
1069 int retval;
1070 unsigned long flags;
1071
1072 spin_lock_irqsave(&pdc_lock, flags);
1073 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1074 spin_unlock_irqrestore(&pdc_lock, flags);
1075
1076 return retval;
1077}
1078
1079/*
1080 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1081 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1082 * who knows what other platform firmware might do with this OS "hook".
1083 */
1084void pdc_io_reset(void)
1085{
1086 unsigned long flags;
1087
1088 spin_lock_irqsave(&pdc_lock, flags);
1089 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1090 spin_unlock_irqrestore(&pdc_lock, flags);
1091}
1092
1093/*
1094 * pdc_io_reset_devices - Hack to Stop USB controller
1095 *
1096 * If PDC used the usb controller, the usb controller
1097 * is still running and will crash the machines during iommu
1098 * setup, because of still running DMA. This PDC call
1099 * stops the USB controller.
1100 * Normally called after calling pdc_io_reset().
1101 */
1102void pdc_io_reset_devices(void)
1103{
1104 unsigned long flags;
1105
1106 spin_lock_irqsave(&pdc_lock, flags);
1107 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1108 spin_unlock_irqrestore(&pdc_lock, flags);
1109}
1110
1111/* locked by pdc_console_lock */
1112static int __attribute__((aligned(8))) iodc_retbuf[32];
1113static char __attribute__((aligned(64))) iodc_dbuf[4096];
1114
1115/**
1116 * pdc_iodc_print - Console print using IODC.
1117 * @str: the string to output.
1118 * @count: length of str
1119 *
1120 * Note that only these special chars are architected for console IODC io:
1121 * BEL, BS, CR, and LF. Others are passed through.
1122 * Since the HP console requires CR+LF to perform a 'newline', we translate
1123 * "\n" to "\r\n".
1124 */
1125int pdc_iodc_print(const unsigned char *str, unsigned count)
1126{
1127 unsigned int i;
1128 unsigned long flags;
1129
1130 for (i = 0; i < count;) {
1131 switch(str[i]) {
1132 case '\n':
1133 iodc_dbuf[i+0] = '\r';
1134 iodc_dbuf[i+1] = '\n';
1135 i += 2;
1136 goto print;
1137 default:
1138 iodc_dbuf[i] = str[i];
1139 i++;
1140 break;
1141 }
1142 }
1143
1144print:
1145 spin_lock_irqsave(&pdc_lock, flags);
1146 real32_call(PAGE0->mem_cons.iodc_io,
1147 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1148 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1149 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1150 spin_unlock_irqrestore(&pdc_lock, flags);
1151
1152 return i;
1153}
1154
1155/**
1156 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1157 *
1158 * Read a character (non-blocking) from the PDC console, returns -1 if
1159 * key is not present.
1160 */
1161int pdc_iodc_getc(void)
1162{
1163 int ch;
1164 int status;
1165 unsigned long flags;
1166
1167 /* Bail if no console input device. */
1168 if (!PAGE0->mem_kbd.iodc_io)
1169 return 0;
1170
1171 /* wait for a keyboard (rs232)-input */
1172 spin_lock_irqsave(&pdc_lock, flags);
1173 real32_call(PAGE0->mem_kbd.iodc_io,
1174 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1175 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1176 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1177
1178 ch = *iodc_dbuf;
1179 status = *iodc_retbuf;
1180 spin_unlock_irqrestore(&pdc_lock, flags);
1181
1182 if (status == 0)
1183 return -1;
1184
1185 return ch;
1186}
1187
1188int pdc_sti_call(unsigned long func, unsigned long flags,
1189 unsigned long inptr, unsigned long outputr,
1190 unsigned long glob_cfg)
1191{
1192 int retval;
1193 unsigned long irqflags;
1194
1195 spin_lock_irqsave(&pdc_lock, irqflags);
1196 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1197 spin_unlock_irqrestore(&pdc_lock, irqflags);
1198
1199 return retval;
1200}
1201EXPORT_SYMBOL(pdc_sti_call);
1202
1203#ifdef CONFIG_64BIT
1204/**
1205 * pdc_pat_cell_get_number - Returns the cell number.
1206 * @cell_info: The return buffer.
1207 *
1208 * This PDC call returns the cell number of the cell from which the call
1209 * is made.
1210 */
1211int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1212{
1213 int retval;
1214 unsigned long flags;
1215
1216 spin_lock_irqsave(&pdc_lock, flags);
1217 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1218 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1219 spin_unlock_irqrestore(&pdc_lock, flags);
1220
1221 return retval;
1222}
1223
1224/**
1225 * pdc_pat_cell_module - Retrieve the cell's module information.
1226 * @actcnt: The number of bytes written to mem_addr.
1227 * @ploc: The physical location.
1228 * @mod: The module index.
1229 * @view_type: The view of the address type.
1230 * @mem_addr: The return buffer.
1231 *
1232 * This PDC call returns information about each module attached to the cell
1233 * at the specified location.
1234 */
1235int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1236 unsigned long view_type, void *mem_addr)
1237{
1238 int retval;
1239 unsigned long flags;
1240 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1241
1242 spin_lock_irqsave(&pdc_lock, flags);
1243 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1244 ploc, mod, view_type, __pa(&result));
1245 if(!retval) {
1246 *actcnt = pdc_result[0];
1247 memcpy(mem_addr, &result, *actcnt);
1248 }
1249 spin_unlock_irqrestore(&pdc_lock, flags);
1250
1251 return retval;
1252}
1253
1254/**
1255 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1256 * @cpu_info: The return buffer.
1257 * @hpa: The Hard Physical Address of the CPU.
1258 *
1259 * Retrieve the cpu number for the cpu at the specified HPA.
1260 */
1261int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1262{
1263 int retval;
1264 unsigned long flags;
1265
1266 spin_lock_irqsave(&pdc_lock, flags);
1267 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1268 __pa(&pdc_result), hpa);
1269 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1270 spin_unlock_irqrestore(&pdc_lock, flags);
1271
1272 return retval;
1273}
1274
1275/**
1276 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1277 * @num_entries: The return value.
1278 * @cell_num: The target cell.
1279 *
1280 * This PDC function returns the number of entries in the specified cell's
1281 * interrupt table.
1282 */
1283int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1284{
1285 int retval;
1286 unsigned long flags;
1287
1288 spin_lock_irqsave(&pdc_lock, flags);
1289 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1290 __pa(pdc_result), cell_num);
1291 *num_entries = pdc_result[0];
1292 spin_unlock_irqrestore(&pdc_lock, flags);
1293
1294 return retval;
1295}
1296
1297/**
1298 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1299 * @r_addr: The return buffer.
1300 * @cell_num: The target cell.
1301 *
1302 * This PDC function returns the actual interrupt table for the specified cell.
1303 */
1304int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1305{
1306 int retval;
1307 unsigned long flags;
1308
1309 spin_lock_irqsave(&pdc_lock, flags);
1310 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1311 __pa(r_addr), cell_num);
1312 spin_unlock_irqrestore(&pdc_lock, flags);
1313
1314 return retval;
1315}
1316
1317/**
1318 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1319 * @actlen: The return buffer.
1320 * @mem_addr: Pointer to the memory buffer.
1321 * @count: The number of bytes to read from the buffer.
1322 * @offset: The offset with respect to the beginning of the buffer.
1323 *
1324 */
1325int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1326 unsigned long count, unsigned long offset)
1327{
1328 int retval;
1329 unsigned long flags;
1330
1331 spin_lock_irqsave(&pdc_lock, flags);
1332 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1333 __pa(pdc_result2), count, offset);
1334 *actual_len = pdc_result[0];
1335 memcpy(mem_addr, pdc_result2, *actual_len);
1336 spin_unlock_irqrestore(&pdc_lock, flags);
1337
1338 return retval;
1339}
1340
1341/**
1342 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1343 * @pci_addr: PCI configuration space address for which the read request is being made.
1344 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1345 * @mem_addr: Pointer to return memory buffer.
1346 *
1347 */
1348int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1349{
1350 int retval;
1351 unsigned long flags;
1352
1353 spin_lock_irqsave(&pdc_lock, flags);
1354 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1355 __pa(pdc_result), pci_addr, pci_size);
1356 switch(pci_size) {
1357 case 1: *(u8 *) mem_addr = (u8) pdc_result[0];
1358 case 2: *(u16 *)mem_addr = (u16) pdc_result[0];
1359 case 4: *(u32 *)mem_addr = (u32) pdc_result[0];
1360 }
1361 spin_unlock_irqrestore(&pdc_lock, flags);
1362
1363 return retval;
1364}
1365
1366/**
1367 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1368 * @pci_addr: PCI configuration space address for which the write request is being made.
1369 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1370 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1371 * written to PCI Config space.
1372 *
1373 */
1374int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1375{
1376 int retval;
1377 unsigned long flags;
1378
1379 spin_lock_irqsave(&pdc_lock, flags);
1380 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1381 pci_addr, pci_size, val);
1382 spin_unlock_irqrestore(&pdc_lock, flags);
1383
1384 return retval;
1385}
1386#endif /* CONFIG_64BIT */
1387
1388
1389/***************** 32-bit real-mode calls ***********/
1390/* The struct below is used
1391 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1392 * real32_call_asm() then uses this stack in narrow real mode
1393 */
1394
1395struct narrow_stack {
1396 /* use int, not long which is 64 bits */
1397 unsigned int arg13;
1398 unsigned int arg12;
1399 unsigned int arg11;
1400 unsigned int arg10;
1401 unsigned int arg9;
1402 unsigned int arg8;
1403 unsigned int arg7;
1404 unsigned int arg6;
1405 unsigned int arg5;
1406 unsigned int arg4;
1407 unsigned int arg3;
1408 unsigned int arg2;
1409 unsigned int arg1;
1410 unsigned int arg0;
1411 unsigned int frame_marker[8];
1412 unsigned int sp;
1413 /* in reality, there's nearly 8k of stack after this */
1414};
1415
1416long real32_call(unsigned long fn, ...)
1417{
1418 va_list args;
1419 extern struct narrow_stack real_stack;
1420 extern unsigned long real32_call_asm(unsigned int *,
1421 unsigned int *,
1422 unsigned int);
1423
1424 va_start(args, fn);
1425 real_stack.arg0 = va_arg(args, unsigned int);
1426 real_stack.arg1 = va_arg(args, unsigned int);
1427 real_stack.arg2 = va_arg(args, unsigned int);
1428 real_stack.arg3 = va_arg(args, unsigned int);
1429 real_stack.arg4 = va_arg(args, unsigned int);
1430 real_stack.arg5 = va_arg(args, unsigned int);
1431 real_stack.arg6 = va_arg(args, unsigned int);
1432 real_stack.arg7 = va_arg(args, unsigned int);
1433 real_stack.arg8 = va_arg(args, unsigned int);
1434 real_stack.arg9 = va_arg(args, unsigned int);
1435 real_stack.arg10 = va_arg(args, unsigned int);
1436 real_stack.arg11 = va_arg(args, unsigned int);
1437 real_stack.arg12 = va_arg(args, unsigned int);
1438 real_stack.arg13 = va_arg(args, unsigned int);
1439 va_end(args);
1440
1441 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1442}
1443
1444#ifdef CONFIG_64BIT
1445/***************** 64-bit real-mode calls ***********/
1446
1447struct wide_stack {
1448 unsigned long arg0;
1449 unsigned long arg1;
1450 unsigned long arg2;
1451 unsigned long arg3;
1452 unsigned long arg4;
1453 unsigned long arg5;
1454 unsigned long arg6;
1455 unsigned long arg7;
1456 unsigned long arg8;
1457 unsigned long arg9;
1458 unsigned long arg10;
1459 unsigned long arg11;
1460 unsigned long arg12;
1461 unsigned long arg13;
1462 unsigned long frame_marker[2]; /* rp, previous sp */
1463 unsigned long sp;
1464 /* in reality, there's nearly 8k of stack after this */
1465};
1466
1467long real64_call(unsigned long fn, ...)
1468{
1469 va_list args;
1470 extern struct wide_stack real64_stack;
1471 extern unsigned long real64_call_asm(unsigned long *,
1472 unsigned long *,
1473 unsigned long);
1474
1475 va_start(args, fn);
1476 real64_stack.arg0 = va_arg(args, unsigned long);
1477 real64_stack.arg1 = va_arg(args, unsigned long);
1478 real64_stack.arg2 = va_arg(args, unsigned long);
1479 real64_stack.arg3 = va_arg(args, unsigned long);
1480 real64_stack.arg4 = va_arg(args, unsigned long);
1481 real64_stack.arg5 = va_arg(args, unsigned long);
1482 real64_stack.arg6 = va_arg(args, unsigned long);
1483 real64_stack.arg7 = va_arg(args, unsigned long);
1484 real64_stack.arg8 = va_arg(args, unsigned long);
1485 real64_stack.arg9 = va_arg(args, unsigned long);
1486 real64_stack.arg10 = va_arg(args, unsigned long);
1487 real64_stack.arg11 = va_arg(args, unsigned long);
1488 real64_stack.arg12 = va_arg(args, unsigned long);
1489 real64_stack.arg13 = va_arg(args, unsigned long);
1490 va_end(args);
1491
1492 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1493}
1494
1495#endif /* CONFIG_64BIT */
1496
1/*
2 * arch/parisc/kernel/firmware.c - safe PDC access routines
3 *
4 * PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 */
22
23/* I think it would be in everyone's best interest to follow this
24 * guidelines when writing PDC wrappers:
25 *
26 * - the name of the pdc wrapper should match one of the macros
27 * used for the first two arguments
28 * - don't use caps for random parts of the name
29 * - use the static PDC result buffers and "copyout" to structs
30 * supplied by the caller to encapsulate alignment restrictions
31 * - hold pdc_lock while in PDC or using static result buffers
32 * - use __pa() to convert virtual (kernel) pointers to physical
33 * ones.
34 * - the name of the struct used for pdc return values should equal
35 * one of the macros used for the first two arguments to the
36 * corresponding PDC call
37 * - keep the order of arguments
38 * - don't be smart (setting trailing NUL bytes for strings, return
39 * something useful even if the call failed) unless you are sure
40 * it's not going to affect functionality or performance
41 *
42 * Example:
43 * int pdc_cache_info(struct pdc_cache_info *cache_info )
44 * {
45 * int retval;
46 *
47 * spin_lock_irq(&pdc_lock);
48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 * convert_to_wide(pdc_result);
50 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 * spin_unlock_irq(&pdc_lock);
52 *
53 * return retval;
54 * }
55 * prumpf 991016
56 */
57
58#include <stdarg.h>
59
60#include <linux/delay.h>
61#include <linux/init.h>
62#include <linux/kernel.h>
63#include <linux/module.h>
64#include <linux/string.h>
65#include <linux/spinlock.h>
66
67#include <asm/page.h>
68#include <asm/pdc.h>
69#include <asm/pdcpat.h>
70#include <asm/processor.h> /* for boot_cpu_data */
71
72#if defined(BOOTLOADER)
73# undef spin_lock_irqsave
74# define spin_lock_irqsave(a, b) { b = 1; }
75# undef spin_unlock_irqrestore
76# define spin_unlock_irqrestore(a, b)
77#else
78static DEFINE_SPINLOCK(pdc_lock);
79#endif
80
81extern unsigned long pdc_result[NUM_PDC_RESULT];
82extern unsigned long pdc_result2[NUM_PDC_RESULT];
83
84#ifdef CONFIG_64BIT
85#define WIDE_FIRMWARE 0x1
86#define NARROW_FIRMWARE 0x2
87
88/* Firmware needs to be initially set to narrow to determine the
89 * actual firmware width. */
90int parisc_narrow_firmware __read_mostly = 1;
91#endif
92
93/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
94 * and MEM_PDC calls are always the same width as the OS.
95 * Some PAT boxes may have 64-bit IODC I/O.
96 *
97 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
98 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
99 * This allowed wide kernels to run on Cxxx boxes.
100 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
101 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
102 */
103
104#ifdef CONFIG_64BIT
105long real64_call(unsigned long function, ...);
106#endif
107long real32_call(unsigned long function, ...);
108
109#ifdef CONFIG_64BIT
110# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
111# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
112#else
113# define MEM_PDC (unsigned long)PAGE0->mem_pdc
114# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
115#endif
116
117
118/**
119 * f_extend - Convert PDC addresses to kernel addresses.
120 * @address: Address returned from PDC.
121 *
122 * This function is used to convert PDC addresses into kernel addresses
123 * when the PDC address size and kernel address size are different.
124 */
125static unsigned long f_extend(unsigned long address)
126{
127#ifdef CONFIG_64BIT
128 if(unlikely(parisc_narrow_firmware)) {
129 if((address & 0xff000000) == 0xf0000000)
130 return 0xf0f0f0f000000000UL | (u32)address;
131
132 if((address & 0xf0000000) == 0xf0000000)
133 return 0xffffffff00000000UL | (u32)address;
134 }
135#endif
136 return address;
137}
138
139/**
140 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
141 * @address: The return buffer from PDC.
142 *
143 * This function is used to convert the return buffer addresses retrieved from PDC
144 * into kernel addresses when the PDC address size and kernel address size are
145 * different.
146 */
147static void convert_to_wide(unsigned long *addr)
148{
149#ifdef CONFIG_64BIT
150 int i;
151 unsigned int *p = (unsigned int *)addr;
152
153 if (unlikely(parisc_narrow_firmware)) {
154 for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
155 addr[i] = p[i];
156 }
157#endif
158}
159
160#ifdef CONFIG_64BIT
161void set_firmware_width_unlocked(void)
162{
163 int ret;
164
165 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
166 __pa(pdc_result), 0);
167 convert_to_wide(pdc_result);
168 if (pdc_result[0] != NARROW_FIRMWARE)
169 parisc_narrow_firmware = 0;
170}
171
172/**
173 * set_firmware_width - Determine if the firmware is wide or narrow.
174 *
175 * This function must be called before any pdc_* function that uses the
176 * convert_to_wide function.
177 */
178void set_firmware_width(void)
179{
180 unsigned long flags;
181 spin_lock_irqsave(&pdc_lock, flags);
182 set_firmware_width_unlocked();
183 spin_unlock_irqrestore(&pdc_lock, flags);
184}
185#else
186void set_firmware_width_unlocked(void)
187{
188 return;
189}
190
191void set_firmware_width(void)
192{
193 return;
194}
195#endif /*CONFIG_64BIT*/
196
197
198#if !defined(BOOTLOADER)
199/**
200 * pdc_emergency_unlock - Unlock the linux pdc lock
201 *
202 * This call unlocks the linux pdc lock in case we need some PDC functions
203 * (like pdc_add_valid) during kernel stack dump.
204 */
205void pdc_emergency_unlock(void)
206{
207 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
208 if (spin_is_locked(&pdc_lock))
209 spin_unlock(&pdc_lock);
210}
211
212
213/**
214 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
215 * @address: Address to be verified.
216 *
217 * This PDC call attempts to read from the specified address and verifies
218 * if the address is valid.
219 *
220 * The return value is PDC_OK (0) in case accessing this address is valid.
221 */
222int pdc_add_valid(unsigned long address)
223{
224 int retval;
225 unsigned long flags;
226
227 spin_lock_irqsave(&pdc_lock, flags);
228 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
229 spin_unlock_irqrestore(&pdc_lock, flags);
230
231 return retval;
232}
233EXPORT_SYMBOL(pdc_add_valid);
234
235/**
236 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
237 * @instr: Pointer to variable which will get instruction opcode.
238 *
239 * The return value is PDC_OK (0) in case call succeeded.
240 */
241int __init pdc_instr(unsigned int *instr)
242{
243 int retval;
244 unsigned long flags;
245
246 spin_lock_irqsave(&pdc_lock, flags);
247 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
248 convert_to_wide(pdc_result);
249 *instr = pdc_result[0];
250 spin_unlock_irqrestore(&pdc_lock, flags);
251
252 return retval;
253}
254
255/**
256 * pdc_chassis_info - Return chassis information.
257 * @result: The return buffer.
258 * @chassis_info: The memory buffer address.
259 * @len: The size of the memory buffer address.
260 *
261 * An HVERSION dependent call for returning the chassis information.
262 */
263int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
264{
265 int retval;
266 unsigned long flags;
267
268 spin_lock_irqsave(&pdc_lock, flags);
269 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
270 memcpy(&pdc_result2, led_info, len);
271 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
272 __pa(pdc_result), __pa(pdc_result2), len);
273 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
274 memcpy(led_info, pdc_result2, len);
275 spin_unlock_irqrestore(&pdc_lock, flags);
276
277 return retval;
278}
279
280/**
281 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
282 * @retval: -1 on error, 0 on success. Other value are PDC errors
283 *
284 * Must be correctly formatted or expect system crash
285 */
286#ifdef CONFIG_64BIT
287int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
288{
289 int retval = 0;
290 unsigned long flags;
291
292 if (!is_pdc_pat())
293 return -1;
294
295 spin_lock_irqsave(&pdc_lock, flags);
296 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
297 spin_unlock_irqrestore(&pdc_lock, flags);
298
299 return retval;
300}
301#endif
302
303/**
304 * pdc_chassis_disp - Updates chassis code
305 * @retval: -1 on error, 0 on success
306 */
307int pdc_chassis_disp(unsigned long disp)
308{
309 int retval = 0;
310 unsigned long flags;
311
312 spin_lock_irqsave(&pdc_lock, flags);
313 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
314 spin_unlock_irqrestore(&pdc_lock, flags);
315
316 return retval;
317}
318
319/**
320 * pdc_chassis_warn - Fetches chassis warnings
321 * @retval: -1 on error, 0 on success
322 */
323int pdc_chassis_warn(unsigned long *warn)
324{
325 int retval = 0;
326 unsigned long flags;
327
328 spin_lock_irqsave(&pdc_lock, flags);
329 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
330 *warn = pdc_result[0];
331 spin_unlock_irqrestore(&pdc_lock, flags);
332
333 return retval;
334}
335
336int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
337{
338 int ret;
339
340 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
341 convert_to_wide(pdc_result);
342 pdc_coproc_info->ccr_functional = pdc_result[0];
343 pdc_coproc_info->ccr_present = pdc_result[1];
344 pdc_coproc_info->revision = pdc_result[17];
345 pdc_coproc_info->model = pdc_result[18];
346
347 return ret;
348}
349
350/**
351 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
352 * @pdc_coproc_info: Return buffer address.
353 *
354 * This PDC call returns the presence and status of all the coprocessors
355 * attached to the processor.
356 */
357int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
358{
359 int ret;
360 unsigned long flags;
361
362 spin_lock_irqsave(&pdc_lock, flags);
363 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
364 spin_unlock_irqrestore(&pdc_lock, flags);
365
366 return ret;
367}
368
369/**
370 * pdc_iodc_read - Read data from the modules IODC.
371 * @actcnt: The actual number of bytes.
372 * @hpa: The HPA of the module for the iodc read.
373 * @index: The iodc entry point.
374 * @iodc_data: A buffer memory for the iodc options.
375 * @iodc_data_size: Size of the memory buffer.
376 *
377 * This PDC call reads from the IODC of the module specified by the hpa
378 * argument.
379 */
380int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
381 void *iodc_data, unsigned int iodc_data_size)
382{
383 int retval;
384 unsigned long flags;
385
386 spin_lock_irqsave(&pdc_lock, flags);
387 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
388 index, __pa(pdc_result2), iodc_data_size);
389 convert_to_wide(pdc_result);
390 *actcnt = pdc_result[0];
391 memcpy(iodc_data, pdc_result2, iodc_data_size);
392 spin_unlock_irqrestore(&pdc_lock, flags);
393
394 return retval;
395}
396EXPORT_SYMBOL(pdc_iodc_read);
397
398/**
399 * pdc_system_map_find_mods - Locate unarchitected modules.
400 * @pdc_mod_info: Return buffer address.
401 * @mod_path: pointer to dev path structure.
402 * @mod_index: fixed address module index.
403 *
404 * To locate and identify modules which reside at fixed I/O addresses, which
405 * do not self-identify via architected bus walks.
406 */
407int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
408 struct pdc_module_path *mod_path, long mod_index)
409{
410 int retval;
411 unsigned long flags;
412
413 spin_lock_irqsave(&pdc_lock, flags);
414 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
415 __pa(pdc_result2), mod_index);
416 convert_to_wide(pdc_result);
417 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
418 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
419 spin_unlock_irqrestore(&pdc_lock, flags);
420
421 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
422 return retval;
423}
424
425/**
426 * pdc_system_map_find_addrs - Retrieve additional address ranges.
427 * @pdc_addr_info: Return buffer address.
428 * @mod_index: Fixed address module index.
429 * @addr_index: Address range index.
430 *
431 * Retrieve additional information about subsequent address ranges for modules
432 * with multiple address ranges.
433 */
434int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
435 long mod_index, long addr_index)
436{
437 int retval;
438 unsigned long flags;
439
440 spin_lock_irqsave(&pdc_lock, flags);
441 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
442 mod_index, addr_index);
443 convert_to_wide(pdc_result);
444 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
445 spin_unlock_irqrestore(&pdc_lock, flags);
446
447 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
448 return retval;
449}
450
451/**
452 * pdc_model_info - Return model information about the processor.
453 * @model: The return buffer.
454 *
455 * Returns the version numbers, identifiers, and capabilities from the processor module.
456 */
457int pdc_model_info(struct pdc_model *model)
458{
459 int retval;
460 unsigned long flags;
461
462 spin_lock_irqsave(&pdc_lock, flags);
463 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
464 convert_to_wide(pdc_result);
465 memcpy(model, pdc_result, sizeof(*model));
466 spin_unlock_irqrestore(&pdc_lock, flags);
467
468 return retval;
469}
470
471/**
472 * pdc_model_sysmodel - Get the system model name.
473 * @name: A char array of at least 81 characters.
474 *
475 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
476 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
477 * on HP/UX.
478 */
479int pdc_model_sysmodel(char *name)
480{
481 int retval;
482 unsigned long flags;
483
484 spin_lock_irqsave(&pdc_lock, flags);
485 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
486 OS_ID_HPUX, __pa(name));
487 convert_to_wide(pdc_result);
488
489 if (retval == PDC_OK) {
490 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
491 } else {
492 name[0] = 0;
493 }
494 spin_unlock_irqrestore(&pdc_lock, flags);
495
496 return retval;
497}
498
499/**
500 * pdc_model_versions - Identify the version number of each processor.
501 * @cpu_id: The return buffer.
502 * @id: The id of the processor to check.
503 *
504 * Returns the version number for each processor component.
505 *
506 * This comment was here before, but I do not know what it means :( -RB
507 * id: 0 = cpu revision, 1 = boot-rom-version
508 */
509int pdc_model_versions(unsigned long *versions, int id)
510{
511 int retval;
512 unsigned long flags;
513
514 spin_lock_irqsave(&pdc_lock, flags);
515 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
516 convert_to_wide(pdc_result);
517 *versions = pdc_result[0];
518 spin_unlock_irqrestore(&pdc_lock, flags);
519
520 return retval;
521}
522
523/**
524 * pdc_model_cpuid - Returns the CPU_ID.
525 * @cpu_id: The return buffer.
526 *
527 * Returns the CPU_ID value which uniquely identifies the cpu portion of
528 * the processor module.
529 */
530int pdc_model_cpuid(unsigned long *cpu_id)
531{
532 int retval;
533 unsigned long flags;
534
535 spin_lock_irqsave(&pdc_lock, flags);
536 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
537 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
538 convert_to_wide(pdc_result);
539 *cpu_id = pdc_result[0];
540 spin_unlock_irqrestore(&pdc_lock, flags);
541
542 return retval;
543}
544
545/**
546 * pdc_model_capabilities - Returns the platform capabilities.
547 * @capabilities: The return buffer.
548 *
549 * Returns information about platform support for 32- and/or 64-bit
550 * OSes, IO-PDIR coherency, and virtual aliasing.
551 */
552int pdc_model_capabilities(unsigned long *capabilities)
553{
554 int retval;
555 unsigned long flags;
556
557 spin_lock_irqsave(&pdc_lock, flags);
558 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
559 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
560 convert_to_wide(pdc_result);
561 if (retval == PDC_OK) {
562 *capabilities = pdc_result[0];
563 } else {
564 *capabilities = PDC_MODEL_OS32;
565 }
566 spin_unlock_irqrestore(&pdc_lock, flags);
567
568 return retval;
569}
570
571/**
572 * pdc_cache_info - Return cache and TLB information.
573 * @cache_info: The return buffer.
574 *
575 * Returns information about the processor's cache and TLB.
576 */
577int pdc_cache_info(struct pdc_cache_info *cache_info)
578{
579 int retval;
580 unsigned long flags;
581
582 spin_lock_irqsave(&pdc_lock, flags);
583 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
584 convert_to_wide(pdc_result);
585 memcpy(cache_info, pdc_result, sizeof(*cache_info));
586 spin_unlock_irqrestore(&pdc_lock, flags);
587
588 return retval;
589}
590
591/**
592 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
593 * @space_bits: Should be 0, if not, bad mojo!
594 *
595 * Returns information about Space ID hashing.
596 */
597int pdc_spaceid_bits(unsigned long *space_bits)
598{
599 int retval;
600 unsigned long flags;
601
602 spin_lock_irqsave(&pdc_lock, flags);
603 pdc_result[0] = 0;
604 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
605 convert_to_wide(pdc_result);
606 *space_bits = pdc_result[0];
607 spin_unlock_irqrestore(&pdc_lock, flags);
608
609 return retval;
610}
611
612#ifndef CONFIG_PA20
613/**
614 * pdc_btlb_info - Return block TLB information.
615 * @btlb: The return buffer.
616 *
617 * Returns information about the hardware Block TLB.
618 */
619int pdc_btlb_info(struct pdc_btlb_info *btlb)
620{
621 int retval;
622 unsigned long flags;
623
624 spin_lock_irqsave(&pdc_lock, flags);
625 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
626 memcpy(btlb, pdc_result, sizeof(*btlb));
627 spin_unlock_irqrestore(&pdc_lock, flags);
628
629 if(retval < 0) {
630 btlb->max_size = 0;
631 }
632 return retval;
633}
634
635/**
636 * pdc_mem_map_hpa - Find fixed module information.
637 * @address: The return buffer
638 * @mod_path: pointer to dev path structure.
639 *
640 * This call was developed for S700 workstations to allow the kernel to find
641 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
642 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
643 * call.
644 *
645 * This call is supported by all existing S700 workstations (up to Gecko).
646 */
647int pdc_mem_map_hpa(struct pdc_memory_map *address,
648 struct pdc_module_path *mod_path)
649{
650 int retval;
651 unsigned long flags;
652
653 spin_lock_irqsave(&pdc_lock, flags);
654 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
655 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
656 __pa(pdc_result2));
657 memcpy(address, pdc_result, sizeof(*address));
658 spin_unlock_irqrestore(&pdc_lock, flags);
659
660 return retval;
661}
662#endif /* !CONFIG_PA20 */
663
664/**
665 * pdc_lan_station_id - Get the LAN address.
666 * @lan_addr: The return buffer.
667 * @hpa: The network device HPA.
668 *
669 * Get the LAN station address when it is not directly available from the LAN hardware.
670 */
671int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
672{
673 int retval;
674 unsigned long flags;
675
676 spin_lock_irqsave(&pdc_lock, flags);
677 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
678 __pa(pdc_result), hpa);
679 if (retval < 0) {
680 /* FIXME: else read MAC from NVRAM */
681 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
682 } else {
683 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
684 }
685 spin_unlock_irqrestore(&pdc_lock, flags);
686
687 return retval;
688}
689EXPORT_SYMBOL(pdc_lan_station_id);
690
691/**
692 * pdc_stable_read - Read data from Stable Storage.
693 * @staddr: Stable Storage address to access.
694 * @memaddr: The memory address where Stable Storage data shall be copied.
695 * @count: number of bytes to transfer. count is multiple of 4.
696 *
697 * This PDC call reads from the Stable Storage address supplied in staddr
698 * and copies count bytes to the memory address memaddr.
699 * The call will fail if staddr+count > PDC_STABLE size.
700 */
701int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
702{
703 int retval;
704 unsigned long flags;
705
706 spin_lock_irqsave(&pdc_lock, flags);
707 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
708 __pa(pdc_result), count);
709 convert_to_wide(pdc_result);
710 memcpy(memaddr, pdc_result, count);
711 spin_unlock_irqrestore(&pdc_lock, flags);
712
713 return retval;
714}
715EXPORT_SYMBOL(pdc_stable_read);
716
717/**
718 * pdc_stable_write - Write data to Stable Storage.
719 * @staddr: Stable Storage address to access.
720 * @memaddr: The memory address where Stable Storage data shall be read from.
721 * @count: number of bytes to transfer. count is multiple of 4.
722 *
723 * This PDC call reads count bytes from the supplied memaddr address,
724 * and copies count bytes to the Stable Storage address staddr.
725 * The call will fail if staddr+count > PDC_STABLE size.
726 */
727int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
728{
729 int retval;
730 unsigned long flags;
731
732 spin_lock_irqsave(&pdc_lock, flags);
733 memcpy(pdc_result, memaddr, count);
734 convert_to_wide(pdc_result);
735 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
736 __pa(pdc_result), count);
737 spin_unlock_irqrestore(&pdc_lock, flags);
738
739 return retval;
740}
741EXPORT_SYMBOL(pdc_stable_write);
742
743/**
744 * pdc_stable_get_size - Get Stable Storage size in bytes.
745 * @size: pointer where the size will be stored.
746 *
747 * This PDC call returns the number of bytes in the processor's Stable
748 * Storage, which is the number of contiguous bytes implemented in Stable
749 * Storage starting from staddr=0. size in an unsigned 64-bit integer
750 * which is a multiple of four.
751 */
752int pdc_stable_get_size(unsigned long *size)
753{
754 int retval;
755 unsigned long flags;
756
757 spin_lock_irqsave(&pdc_lock, flags);
758 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
759 *size = pdc_result[0];
760 spin_unlock_irqrestore(&pdc_lock, flags);
761
762 return retval;
763}
764EXPORT_SYMBOL(pdc_stable_get_size);
765
766/**
767 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
768 *
769 * This PDC call is meant to be used to check the integrity of the current
770 * contents of Stable Storage.
771 */
772int pdc_stable_verify_contents(void)
773{
774 int retval;
775 unsigned long flags;
776
777 spin_lock_irqsave(&pdc_lock, flags);
778 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
779 spin_unlock_irqrestore(&pdc_lock, flags);
780
781 return retval;
782}
783EXPORT_SYMBOL(pdc_stable_verify_contents);
784
785/**
786 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
787 * the validity indicator.
788 *
789 * This PDC call will erase all contents of Stable Storage. Use with care!
790 */
791int pdc_stable_initialize(void)
792{
793 int retval;
794 unsigned long flags;
795
796 spin_lock_irqsave(&pdc_lock, flags);
797 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
798 spin_unlock_irqrestore(&pdc_lock, flags);
799
800 return retval;
801}
802EXPORT_SYMBOL(pdc_stable_initialize);
803
804/**
805 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
806 * @hwpath: fully bc.mod style path to the device.
807 * @initiator: the array to return the result into
808 *
809 * Get the SCSI operational parameters from PDC.
810 * Needed since HPUX never used BIOS or symbios card NVRAM.
811 * Most ncr/sym cards won't have an entry and just use whatever
812 * capabilities of the card are (eg Ultra, LVD). But there are
813 * several cases where it's useful:
814 * o set SCSI id for Multi-initiator clusters,
815 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
816 * o bus width exported is less than what the interface chip supports.
817 */
818int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
819{
820 int retval;
821 unsigned long flags;
822
823 spin_lock_irqsave(&pdc_lock, flags);
824
825/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
826#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
827 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
828
829 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
830 __pa(pdc_result), __pa(hwpath));
831 if (retval < PDC_OK)
832 goto out;
833
834 if (pdc_result[0] < 16) {
835 initiator->host_id = pdc_result[0];
836 } else {
837 initiator->host_id = -1;
838 }
839
840 /*
841 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
842 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
843 */
844 switch (pdc_result[1]) {
845 case 1: initiator->factor = 50; break;
846 case 2: initiator->factor = 25; break;
847 case 5: initiator->factor = 12; break;
848 case 25: initiator->factor = 10; break;
849 case 20: initiator->factor = 12; break;
850 case 40: initiator->factor = 10; break;
851 default: initiator->factor = -1; break;
852 }
853
854 if (IS_SPROCKETS()) {
855 initiator->width = pdc_result[4];
856 initiator->mode = pdc_result[5];
857 } else {
858 initiator->width = -1;
859 initiator->mode = -1;
860 }
861
862 out:
863 spin_unlock_irqrestore(&pdc_lock, flags);
864
865 return (retval >= PDC_OK);
866}
867EXPORT_SYMBOL(pdc_get_initiator);
868
869
870/**
871 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
872 * @num_entries: The return value.
873 * @hpa: The HPA for the device.
874 *
875 * This PDC function returns the number of entries in the specified cell's
876 * interrupt table.
877 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
878 */
879int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
880{
881 int retval;
882 unsigned long flags;
883
884 spin_lock_irqsave(&pdc_lock, flags);
885 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
886 __pa(pdc_result), hpa);
887 convert_to_wide(pdc_result);
888 *num_entries = pdc_result[0];
889 spin_unlock_irqrestore(&pdc_lock, flags);
890
891 return retval;
892}
893
894/**
895 * pdc_pci_irt - Get the PCI interrupt routing table.
896 * @num_entries: The number of entries in the table.
897 * @hpa: The Hard Physical Address of the device.
898 * @tbl:
899 *
900 * Get the PCI interrupt routing table for the device at the given HPA.
901 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
902 */
903int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
904{
905 int retval;
906 unsigned long flags;
907
908 BUG_ON((unsigned long)tbl & 0x7);
909
910 spin_lock_irqsave(&pdc_lock, flags);
911 pdc_result[0] = num_entries;
912 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
913 __pa(pdc_result), hpa, __pa(tbl));
914 spin_unlock_irqrestore(&pdc_lock, flags);
915
916 return retval;
917}
918
919
920#if 0 /* UNTEST CODE - left here in case someone needs it */
921
922/**
923 * pdc_pci_config_read - read PCI config space.
924 * @hpa token from PDC to indicate which PCI device
925 * @pci_addr configuration space address to read from
926 *
927 * Read PCI Configuration space *before* linux PCI subsystem is running.
928 */
929unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
930{
931 int retval;
932 unsigned long flags;
933
934 spin_lock_irqsave(&pdc_lock, flags);
935 pdc_result[0] = 0;
936 pdc_result[1] = 0;
937 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
938 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
939 spin_unlock_irqrestore(&pdc_lock, flags);
940
941 return retval ? ~0 : (unsigned int) pdc_result[0];
942}
943
944
945/**
946 * pdc_pci_config_write - read PCI config space.
947 * @hpa token from PDC to indicate which PCI device
948 * @pci_addr configuration space address to write
949 * @val value we want in the 32-bit register
950 *
951 * Write PCI Configuration space *before* linux PCI subsystem is running.
952 */
953void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
954{
955 int retval;
956 unsigned long flags;
957
958 spin_lock_irqsave(&pdc_lock, flags);
959 pdc_result[0] = 0;
960 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
961 __pa(pdc_result), hpa,
962 cfg_addr&~3UL, 4UL, (unsigned long) val);
963 spin_unlock_irqrestore(&pdc_lock, flags);
964
965 return retval;
966}
967#endif /* UNTESTED CODE */
968
969/**
970 * pdc_tod_read - Read the Time-Of-Day clock.
971 * @tod: The return buffer:
972 *
973 * Read the Time-Of-Day clock
974 */
975int pdc_tod_read(struct pdc_tod *tod)
976{
977 int retval;
978 unsigned long flags;
979
980 spin_lock_irqsave(&pdc_lock, flags);
981 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
982 convert_to_wide(pdc_result);
983 memcpy(tod, pdc_result, sizeof(*tod));
984 spin_unlock_irqrestore(&pdc_lock, flags);
985
986 return retval;
987}
988EXPORT_SYMBOL(pdc_tod_read);
989
990int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
991{
992 int retval;
993 unsigned long flags;
994
995 spin_lock_irqsave(&pdc_lock, flags);
996 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
997 convert_to_wide(pdc_result);
998 memcpy(rinfo, pdc_result, sizeof(*rinfo));
999 spin_unlock_irqrestore(&pdc_lock, flags);
1000
1001 return retval;
1002}
1003
1004int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1005 unsigned long *pdt_entries_ptr)
1006{
1007 int retval;
1008 unsigned long flags;
1009
1010 spin_lock_irqsave(&pdc_lock, flags);
1011 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1012 __pa(pdt_entries_ptr));
1013 if (retval == PDC_OK) {
1014 convert_to_wide(pdc_result);
1015 memcpy(pret, pdc_result, sizeof(*pret));
1016 }
1017 spin_unlock_irqrestore(&pdc_lock, flags);
1018
1019#ifdef CONFIG_64BIT
1020 /*
1021 * 64-bit kernels should not call this PDT function in narrow mode.
1022 * The pdt_entries_ptr array above will now contain 32-bit values
1023 */
1024 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1025 return PDC_ERROR;
1026#endif
1027
1028 return retval;
1029}
1030
1031/**
1032 * pdc_tod_set - Set the Time-Of-Day clock.
1033 * @sec: The number of seconds since epoch.
1034 * @usec: The number of micro seconds.
1035 *
1036 * Set the Time-Of-Day clock.
1037 */
1038int pdc_tod_set(unsigned long sec, unsigned long usec)
1039{
1040 int retval;
1041 unsigned long flags;
1042
1043 spin_lock_irqsave(&pdc_lock, flags);
1044 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1045 spin_unlock_irqrestore(&pdc_lock, flags);
1046
1047 return retval;
1048}
1049EXPORT_SYMBOL(pdc_tod_set);
1050
1051#ifdef CONFIG_64BIT
1052int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1053 struct pdc_memory_table *tbl, unsigned long entries)
1054{
1055 int retval;
1056 unsigned long flags;
1057
1058 spin_lock_irqsave(&pdc_lock, flags);
1059 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1060 convert_to_wide(pdc_result);
1061 memcpy(r_addr, pdc_result, sizeof(*r_addr));
1062 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1063 spin_unlock_irqrestore(&pdc_lock, flags);
1064
1065 return retval;
1066}
1067#endif /* CONFIG_64BIT */
1068
1069/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
1070 * so I guessed at unsigned long. Someone who knows what this does, can fix
1071 * it later. :)
1072 */
1073int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1074{
1075 int retval;
1076 unsigned long flags;
1077
1078 spin_lock_irqsave(&pdc_lock, flags);
1079 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1080 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1081 spin_unlock_irqrestore(&pdc_lock, flags);
1082
1083 return retval;
1084}
1085
1086/*
1087 * pdc_do_reset - Reset the system.
1088 *
1089 * Reset the system.
1090 */
1091int pdc_do_reset(void)
1092{
1093 int retval;
1094 unsigned long flags;
1095
1096 spin_lock_irqsave(&pdc_lock, flags);
1097 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1098 spin_unlock_irqrestore(&pdc_lock, flags);
1099
1100 return retval;
1101}
1102
1103/*
1104 * pdc_soft_power_info - Enable soft power switch.
1105 * @power_reg: address of soft power register
1106 *
1107 * Return the absolute address of the soft power switch register
1108 */
1109int __init pdc_soft_power_info(unsigned long *power_reg)
1110{
1111 int retval;
1112 unsigned long flags;
1113
1114 *power_reg = (unsigned long) (-1);
1115
1116 spin_lock_irqsave(&pdc_lock, flags);
1117 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1118 if (retval == PDC_OK) {
1119 convert_to_wide(pdc_result);
1120 *power_reg = f_extend(pdc_result[0]);
1121 }
1122 spin_unlock_irqrestore(&pdc_lock, flags);
1123
1124 return retval;
1125}
1126
1127/*
1128 * pdc_soft_power_button - Control the soft power button behaviour
1129 * @sw_control: 0 for hardware control, 1 for software control
1130 *
1131 *
1132 * This PDC function places the soft power button under software or
1133 * hardware control.
1134 * Under software control the OS may control to when to allow to shut
1135 * down the system. Under hardware control pressing the power button
1136 * powers off the system immediately.
1137 */
1138int pdc_soft_power_button(int sw_control)
1139{
1140 int retval;
1141 unsigned long flags;
1142
1143 spin_lock_irqsave(&pdc_lock, flags);
1144 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1145 spin_unlock_irqrestore(&pdc_lock, flags);
1146
1147 return retval;
1148}
1149
1150/*
1151 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1152 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1153 * who knows what other platform firmware might do with this OS "hook".
1154 */
1155void pdc_io_reset(void)
1156{
1157 unsigned long flags;
1158
1159 spin_lock_irqsave(&pdc_lock, flags);
1160 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1161 spin_unlock_irqrestore(&pdc_lock, flags);
1162}
1163
1164/*
1165 * pdc_io_reset_devices - Hack to Stop USB controller
1166 *
1167 * If PDC used the usb controller, the usb controller
1168 * is still running and will crash the machines during iommu
1169 * setup, because of still running DMA. This PDC call
1170 * stops the USB controller.
1171 * Normally called after calling pdc_io_reset().
1172 */
1173void pdc_io_reset_devices(void)
1174{
1175 unsigned long flags;
1176
1177 spin_lock_irqsave(&pdc_lock, flags);
1178 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1179 spin_unlock_irqrestore(&pdc_lock, flags);
1180}
1181
1182#endif /* defined(BOOTLOADER) */
1183
1184/* locked by pdc_console_lock */
1185static int __attribute__((aligned(8))) iodc_retbuf[32];
1186static char __attribute__((aligned(64))) iodc_dbuf[4096];
1187
1188/**
1189 * pdc_iodc_print - Console print using IODC.
1190 * @str: the string to output.
1191 * @count: length of str
1192 *
1193 * Note that only these special chars are architected for console IODC io:
1194 * BEL, BS, CR, and LF. Others are passed through.
1195 * Since the HP console requires CR+LF to perform a 'newline', we translate
1196 * "\n" to "\r\n".
1197 */
1198int pdc_iodc_print(const unsigned char *str, unsigned count)
1199{
1200 unsigned int i;
1201 unsigned long flags;
1202
1203 for (i = 0; i < count;) {
1204 switch(str[i]) {
1205 case '\n':
1206 iodc_dbuf[i+0] = '\r';
1207 iodc_dbuf[i+1] = '\n';
1208 i += 2;
1209 goto print;
1210 default:
1211 iodc_dbuf[i] = str[i];
1212 i++;
1213 break;
1214 }
1215 }
1216
1217print:
1218 spin_lock_irqsave(&pdc_lock, flags);
1219 real32_call(PAGE0->mem_cons.iodc_io,
1220 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1221 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1222 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1223 spin_unlock_irqrestore(&pdc_lock, flags);
1224
1225 return i;
1226}
1227
1228#if !defined(BOOTLOADER)
1229/**
1230 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1231 *
1232 * Read a character (non-blocking) from the PDC console, returns -1 if
1233 * key is not present.
1234 */
1235int pdc_iodc_getc(void)
1236{
1237 int ch;
1238 int status;
1239 unsigned long flags;
1240
1241 /* Bail if no console input device. */
1242 if (!PAGE0->mem_kbd.iodc_io)
1243 return 0;
1244
1245 /* wait for a keyboard (rs232)-input */
1246 spin_lock_irqsave(&pdc_lock, flags);
1247 real32_call(PAGE0->mem_kbd.iodc_io,
1248 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1249 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1250 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1251
1252 ch = *iodc_dbuf;
1253 status = *iodc_retbuf;
1254 spin_unlock_irqrestore(&pdc_lock, flags);
1255
1256 if (status == 0)
1257 return -1;
1258
1259 return ch;
1260}
1261
1262int pdc_sti_call(unsigned long func, unsigned long flags,
1263 unsigned long inptr, unsigned long outputr,
1264 unsigned long glob_cfg)
1265{
1266 int retval;
1267 unsigned long irqflags;
1268
1269 spin_lock_irqsave(&pdc_lock, irqflags);
1270 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1271 spin_unlock_irqrestore(&pdc_lock, irqflags);
1272
1273 return retval;
1274}
1275EXPORT_SYMBOL(pdc_sti_call);
1276
1277#ifdef CONFIG_64BIT
1278/**
1279 * pdc_pat_cell_get_number - Returns the cell number.
1280 * @cell_info: The return buffer.
1281 *
1282 * This PDC call returns the cell number of the cell from which the call
1283 * is made.
1284 */
1285int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1286{
1287 int retval;
1288 unsigned long flags;
1289
1290 spin_lock_irqsave(&pdc_lock, flags);
1291 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1292 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1293 spin_unlock_irqrestore(&pdc_lock, flags);
1294
1295 return retval;
1296}
1297
1298/**
1299 * pdc_pat_cell_module - Retrieve the cell's module information.
1300 * @actcnt: The number of bytes written to mem_addr.
1301 * @ploc: The physical location.
1302 * @mod: The module index.
1303 * @view_type: The view of the address type.
1304 * @mem_addr: The return buffer.
1305 *
1306 * This PDC call returns information about each module attached to the cell
1307 * at the specified location.
1308 */
1309int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1310 unsigned long view_type, void *mem_addr)
1311{
1312 int retval;
1313 unsigned long flags;
1314 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1315
1316 spin_lock_irqsave(&pdc_lock, flags);
1317 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1318 ploc, mod, view_type, __pa(&result));
1319 if(!retval) {
1320 *actcnt = pdc_result[0];
1321 memcpy(mem_addr, &result, *actcnt);
1322 }
1323 spin_unlock_irqrestore(&pdc_lock, flags);
1324
1325 return retval;
1326}
1327
1328/**
1329 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1330 * @cpu_info: The return buffer.
1331 * @hpa: The Hard Physical Address of the CPU.
1332 *
1333 * Retrieve the cpu number for the cpu at the specified HPA.
1334 */
1335int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1336{
1337 int retval;
1338 unsigned long flags;
1339
1340 spin_lock_irqsave(&pdc_lock, flags);
1341 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1342 __pa(&pdc_result), hpa);
1343 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1344 spin_unlock_irqrestore(&pdc_lock, flags);
1345
1346 return retval;
1347}
1348
1349/**
1350 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1351 * @num_entries: The return value.
1352 * @cell_num: The target cell.
1353 *
1354 * This PDC function returns the number of entries in the specified cell's
1355 * interrupt table.
1356 */
1357int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1358{
1359 int retval;
1360 unsigned long flags;
1361
1362 spin_lock_irqsave(&pdc_lock, flags);
1363 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1364 __pa(pdc_result), cell_num);
1365 *num_entries = pdc_result[0];
1366 spin_unlock_irqrestore(&pdc_lock, flags);
1367
1368 return retval;
1369}
1370
1371/**
1372 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1373 * @r_addr: The return buffer.
1374 * @cell_num: The target cell.
1375 *
1376 * This PDC function returns the actual interrupt table for the specified cell.
1377 */
1378int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1379{
1380 int retval;
1381 unsigned long flags;
1382
1383 spin_lock_irqsave(&pdc_lock, flags);
1384 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1385 __pa(r_addr), cell_num);
1386 spin_unlock_irqrestore(&pdc_lock, flags);
1387
1388 return retval;
1389}
1390
1391/**
1392 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1393 * @actlen: The return buffer.
1394 * @mem_addr: Pointer to the memory buffer.
1395 * @count: The number of bytes to read from the buffer.
1396 * @offset: The offset with respect to the beginning of the buffer.
1397 *
1398 */
1399int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1400 unsigned long count, unsigned long offset)
1401{
1402 int retval;
1403 unsigned long flags;
1404
1405 spin_lock_irqsave(&pdc_lock, flags);
1406 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1407 __pa(pdc_result2), count, offset);
1408 *actual_len = pdc_result[0];
1409 memcpy(mem_addr, pdc_result2, *actual_len);
1410 spin_unlock_irqrestore(&pdc_lock, flags);
1411
1412 return retval;
1413}
1414
1415/**
1416 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1417 * @pci_addr: PCI configuration space address for which the read request is being made.
1418 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1419 * @mem_addr: Pointer to return memory buffer.
1420 *
1421 */
1422int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1423{
1424 int retval;
1425 unsigned long flags;
1426
1427 spin_lock_irqsave(&pdc_lock, flags);
1428 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1429 __pa(pdc_result), pci_addr, pci_size);
1430 switch(pci_size) {
1431 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break;
1432 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break;
1433 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break;
1434 }
1435 spin_unlock_irqrestore(&pdc_lock, flags);
1436
1437 return retval;
1438}
1439
1440/**
1441 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1442 * @pci_addr: PCI configuration space address for which the write request is being made.
1443 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1444 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1445 * written to PCI Config space.
1446 *
1447 */
1448int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1449{
1450 int retval;
1451 unsigned long flags;
1452
1453 spin_lock_irqsave(&pdc_lock, flags);
1454 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1455 pci_addr, pci_size, val);
1456 spin_unlock_irqrestore(&pdc_lock, flags);
1457
1458 return retval;
1459}
1460
1461/**
1462 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1463 * @rinfo: memory pdt information
1464 *
1465 */
1466int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1467{
1468 int retval;
1469 unsigned long flags;
1470
1471 spin_lock_irqsave(&pdc_lock, flags);
1472 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1473 __pa(&pdc_result));
1474 if (retval == PDC_OK)
1475 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1476 spin_unlock_irqrestore(&pdc_lock, flags);
1477
1478 return retval;
1479}
1480
1481/**
1482 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1483 * table of a cell
1484 * @rinfo: memory pdt information
1485 * @cell: cell number
1486 *
1487 */
1488int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1489 unsigned long cell)
1490{
1491 int retval;
1492 unsigned long flags;
1493
1494 spin_lock_irqsave(&pdc_lock, flags);
1495 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1496 __pa(&pdc_result), cell);
1497 if (retval == PDC_OK)
1498 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1499 spin_unlock_irqrestore(&pdc_lock, flags);
1500
1501 return retval;
1502}
1503
1504/**
1505 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1506 * @pret: array of PDT entries
1507 * @pdt_entries_ptr: ptr to hold number of PDT entries
1508 * @max_entries: maximum number of entries to be read
1509 *
1510 */
1511int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1512 unsigned long *pdt_entries_ptr, unsigned long max_entries)
1513{
1514 int retval;
1515 unsigned long flags, entries;
1516
1517 spin_lock_irqsave(&pdc_lock, flags);
1518 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1519 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1520 __pa(&pdc_result), parisc_cell_num,
1521 __pa(pdt_entries_ptr));
1522
1523 if (retval == PDC_OK) {
1524 /* build up return value as for PDC_PAT_MEM_PD_READ */
1525 entries = min(pdc_result[0], max_entries);
1526 pret->pdt_entries = entries;
1527 pret->actual_count_bytes = entries * sizeof(unsigned long);
1528 }
1529
1530 spin_unlock_irqrestore(&pdc_lock, flags);
1531 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1532
1533 return retval;
1534}
1535/**
1536 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1537 * @pret: array of PDT entries
1538 * @pdt_entries_ptr: ptr to hold number of PDT entries
1539 * @count: number of bytes to read
1540 * @offset: offset to start (in bytes)
1541 *
1542 */
1543int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1544 unsigned long *pdt_entries_ptr, unsigned long count,
1545 unsigned long offset)
1546{
1547 int retval;
1548 unsigned long flags, entries;
1549
1550 spin_lock_irqsave(&pdc_lock, flags);
1551 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1552 __pa(&pdc_result), __pa(pdt_entries_ptr),
1553 count, offset);
1554
1555 if (retval == PDC_OK) {
1556 entries = min(pdc_result[0], count);
1557 pret->actual_count_bytes = entries;
1558 pret->pdt_entries = entries / sizeof(unsigned long);
1559 }
1560
1561 spin_unlock_irqrestore(&pdc_lock, flags);
1562
1563 return retval;
1564}
1565
1566/**
1567 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1568 * @pret: ptr to hold returned information
1569 * @phys_addr: physical address to examine
1570 *
1571 */
1572int pdc_pat_mem_get_dimm_phys_location(
1573 struct pdc_pat_mem_phys_mem_location *pret,
1574 unsigned long phys_addr)
1575{
1576 int retval;
1577 unsigned long flags;
1578
1579 spin_lock_irqsave(&pdc_lock, flags);
1580 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1581 __pa(&pdc_result), phys_addr);
1582
1583 if (retval == PDC_OK)
1584 memcpy(pret, &pdc_result, sizeof(*pret));
1585
1586 spin_unlock_irqrestore(&pdc_lock, flags);
1587
1588 return retval;
1589}
1590#endif /* CONFIG_64BIT */
1591#endif /* defined(BOOTLOADER) */
1592
1593
1594/***************** 32-bit real-mode calls ***********/
1595/* The struct below is used
1596 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1597 * real32_call_asm() then uses this stack in narrow real mode
1598 */
1599
1600struct narrow_stack {
1601 /* use int, not long which is 64 bits */
1602 unsigned int arg13;
1603 unsigned int arg12;
1604 unsigned int arg11;
1605 unsigned int arg10;
1606 unsigned int arg9;
1607 unsigned int arg8;
1608 unsigned int arg7;
1609 unsigned int arg6;
1610 unsigned int arg5;
1611 unsigned int arg4;
1612 unsigned int arg3;
1613 unsigned int arg2;
1614 unsigned int arg1;
1615 unsigned int arg0;
1616 unsigned int frame_marker[8];
1617 unsigned int sp;
1618 /* in reality, there's nearly 8k of stack after this */
1619};
1620
1621long real32_call(unsigned long fn, ...)
1622{
1623 va_list args;
1624 extern struct narrow_stack real_stack;
1625 extern unsigned long real32_call_asm(unsigned int *,
1626 unsigned int *,
1627 unsigned int);
1628
1629 va_start(args, fn);
1630 real_stack.arg0 = va_arg(args, unsigned int);
1631 real_stack.arg1 = va_arg(args, unsigned int);
1632 real_stack.arg2 = va_arg(args, unsigned int);
1633 real_stack.arg3 = va_arg(args, unsigned int);
1634 real_stack.arg4 = va_arg(args, unsigned int);
1635 real_stack.arg5 = va_arg(args, unsigned int);
1636 real_stack.arg6 = va_arg(args, unsigned int);
1637 real_stack.arg7 = va_arg(args, unsigned int);
1638 real_stack.arg8 = va_arg(args, unsigned int);
1639 real_stack.arg9 = va_arg(args, unsigned int);
1640 real_stack.arg10 = va_arg(args, unsigned int);
1641 real_stack.arg11 = va_arg(args, unsigned int);
1642 real_stack.arg12 = va_arg(args, unsigned int);
1643 real_stack.arg13 = va_arg(args, unsigned int);
1644 va_end(args);
1645
1646 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1647}
1648
1649#ifdef CONFIG_64BIT
1650/***************** 64-bit real-mode calls ***********/
1651
1652struct wide_stack {
1653 unsigned long arg0;
1654 unsigned long arg1;
1655 unsigned long arg2;
1656 unsigned long arg3;
1657 unsigned long arg4;
1658 unsigned long arg5;
1659 unsigned long arg6;
1660 unsigned long arg7;
1661 unsigned long arg8;
1662 unsigned long arg9;
1663 unsigned long arg10;
1664 unsigned long arg11;
1665 unsigned long arg12;
1666 unsigned long arg13;
1667 unsigned long frame_marker[2]; /* rp, previous sp */
1668 unsigned long sp;
1669 /* in reality, there's nearly 8k of stack after this */
1670};
1671
1672long real64_call(unsigned long fn, ...)
1673{
1674 va_list args;
1675 extern struct wide_stack real64_stack;
1676 extern unsigned long real64_call_asm(unsigned long *,
1677 unsigned long *,
1678 unsigned long);
1679
1680 va_start(args, fn);
1681 real64_stack.arg0 = va_arg(args, unsigned long);
1682 real64_stack.arg1 = va_arg(args, unsigned long);
1683 real64_stack.arg2 = va_arg(args, unsigned long);
1684 real64_stack.arg3 = va_arg(args, unsigned long);
1685 real64_stack.arg4 = va_arg(args, unsigned long);
1686 real64_stack.arg5 = va_arg(args, unsigned long);
1687 real64_stack.arg6 = va_arg(args, unsigned long);
1688 real64_stack.arg7 = va_arg(args, unsigned long);
1689 real64_stack.arg8 = va_arg(args, unsigned long);
1690 real64_stack.arg9 = va_arg(args, unsigned long);
1691 real64_stack.arg10 = va_arg(args, unsigned long);
1692 real64_stack.arg11 = va_arg(args, unsigned long);
1693 real64_stack.arg12 = va_arg(args, unsigned long);
1694 real64_stack.arg13 = va_arg(args, unsigned long);
1695 va_end(args);
1696
1697 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1698}
1699
1700#endif /* CONFIG_64BIT */