Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   3 *
   4 *	PDC == Processor Dependent Code
   5 *
   6 * See http://www.parisc-linux.org/documentation/index.html
   7 * for documentation describing the entry points and calling
   8 * conventions defined below.
   9 *
  10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  15 *
  16 *    This program is free software; you can redistribute it and/or modify
  17 *    it under the terms of the GNU General Public License as published by
  18 *    the Free Software Foundation; either version 2 of the License, or
  19 *    (at your option) any later version.
  20 *
  21 */
  22
  23/*	I think it would be in everyone's best interest to follow this
  24 *	guidelines when writing PDC wrappers:
  25 *
  26 *	 - the name of the pdc wrapper should match one of the macros
  27 *	   used for the first two arguments
  28 *	 - don't use caps for random parts of the name
  29 *	 - use the static PDC result buffers and "copyout" to structs
  30 *	   supplied by the caller to encapsulate alignment restrictions
  31 *	 - hold pdc_lock while in PDC or using static result buffers
  32 *	 - use __pa() to convert virtual (kernel) pointers to physical
  33 *	   ones.
  34 *	 - the name of the struct used for pdc return values should equal
  35 *	   one of the macros used for the first two arguments to the
  36 *	   corresponding PDC call
  37 *	 - keep the order of arguments
  38 *	 - don't be smart (setting trailing NUL bytes for strings, return
  39 *	   something useful even if the call failed) unless you are sure
  40 *	   it's not going to affect functionality or performance
  41 *
  42 *	Example:
  43 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  44 *	{
  45 *		int retval;
  46 *
  47 *		spin_lock_irq(&pdc_lock);
  48 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  49 *		convert_to_wide(pdc_result);
  50 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  51 *		spin_unlock_irq(&pdc_lock);
  52 *
  53 *		return retval;
  54 *	}
  55 *					prumpf	991016	
  56 */
  57
  58#include <stdarg.h>
  59
  60#include <linux/delay.h>
  61#include <linux/init.h>
  62#include <linux/kernel.h>
  63#include <linux/module.h>
  64#include <linux/string.h>
  65#include <linux/spinlock.h>
  66
  67#include <asm/page.h>
  68#include <asm/pdc.h>
  69#include <asm/pdcpat.h>
  70#include <asm/processor.h>	/* for boot_cpu_data */
  71
 
 
 
 
 
 
  72static DEFINE_SPINLOCK(pdc_lock);
 
 
  73extern unsigned long pdc_result[NUM_PDC_RESULT];
  74extern unsigned long pdc_result2[NUM_PDC_RESULT];
  75
  76#ifdef CONFIG_64BIT
  77#define WIDE_FIRMWARE 0x1
  78#define NARROW_FIRMWARE 0x2
  79
  80/* Firmware needs to be initially set to narrow to determine the 
  81 * actual firmware width. */
  82int parisc_narrow_firmware __read_mostly = 1;
  83#endif
  84
  85/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  86 * and MEM_PDC calls are always the same width as the OS.
  87 * Some PAT boxes may have 64-bit IODC I/O.
  88 *
  89 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  90 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  91 * This allowed wide kernels to run on Cxxx boxes.
  92 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  93 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  94 */
  95
  96#ifdef CONFIG_64BIT
  97long real64_call(unsigned long function, ...);
  98#endif
  99long real32_call(unsigned long function, ...);
 100
 101#ifdef CONFIG_64BIT
 102#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 103#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 104#else
 105#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 106#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 107#endif
 108
 109
 110/**
 111 * f_extend - Convert PDC addresses to kernel addresses.
 112 * @address: Address returned from PDC.
 113 *
 114 * This function is used to convert PDC addresses into kernel addresses
 115 * when the PDC address size and kernel address size are different.
 116 */
 117static unsigned long f_extend(unsigned long address)
 118{
 119#ifdef CONFIG_64BIT
 120	if(unlikely(parisc_narrow_firmware)) {
 121		if((address & 0xff000000) == 0xf0000000)
 122			return 0xf0f0f0f000000000UL | (u32)address;
 123
 124		if((address & 0xf0000000) == 0xf0000000)
 125			return 0xffffffff00000000UL | (u32)address;
 126	}
 127#endif
 128	return address;
 129}
 130
 131/**
 132 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 133 * @address: The return buffer from PDC.
 134 *
 135 * This function is used to convert the return buffer addresses retrieved from PDC
 136 * into kernel addresses when the PDC address size and kernel address size are
 137 * different.
 138 */
 139static void convert_to_wide(unsigned long *addr)
 140{
 141#ifdef CONFIG_64BIT
 142	int i;
 143	unsigned int *p = (unsigned int *)addr;
 144
 145	if(unlikely(parisc_narrow_firmware)) {
 146		for(i = 31; i >= 0; --i)
 147			addr[i] = p[i];
 148	}
 149#endif
 150}
 151
 152#ifdef CONFIG_64BIT
 153void set_firmware_width_unlocked(void)
 154{
 155	int ret;
 156
 157	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 158		__pa(pdc_result), 0);
 159	convert_to_wide(pdc_result);
 160	if (pdc_result[0] != NARROW_FIRMWARE)
 161		parisc_narrow_firmware = 0;
 162}
 163	
 164/**
 165 * set_firmware_width - Determine if the firmware is wide or narrow.
 166 * 
 167 * This function must be called before any pdc_* function that uses the
 168 * convert_to_wide function.
 169 */
 170void set_firmware_width(void)
 171{
 172	unsigned long flags;
 173	spin_lock_irqsave(&pdc_lock, flags);
 174	set_firmware_width_unlocked();
 175	spin_unlock_irqrestore(&pdc_lock, flags);
 176}
 177#else
 178void set_firmware_width_unlocked(void)
 179{
 180	return;
 181}
 182
 183void set_firmware_width(void)
 184{
 185	return;
 186}
 187#endif /*CONFIG_64BIT*/
 188
 
 
 189/**
 190 * pdc_emergency_unlock - Unlock the linux pdc lock
 191 *
 192 * This call unlocks the linux pdc lock in case we need some PDC functions
 193 * (like pdc_add_valid) during kernel stack dump.
 194 */
 195void pdc_emergency_unlock(void)
 196{
 197 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 198        if (spin_is_locked(&pdc_lock))
 199		spin_unlock(&pdc_lock);
 200}
 201
 202
 203/**
 204 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 205 * @address: Address to be verified.
 206 *
 207 * This PDC call attempts to read from the specified address and verifies
 208 * if the address is valid.
 209 * 
 210 * The return value is PDC_OK (0) in case accessing this address is valid.
 211 */
 212int pdc_add_valid(unsigned long address)
 213{
 214        int retval;
 215	unsigned long flags;
 216
 217        spin_lock_irqsave(&pdc_lock, flags);
 218        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 219        spin_unlock_irqrestore(&pdc_lock, flags);
 220
 221        return retval;
 222}
 223EXPORT_SYMBOL(pdc_add_valid);
 224
 225/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226 * pdc_chassis_info - Return chassis information.
 227 * @result: The return buffer.
 228 * @chassis_info: The memory buffer address.
 229 * @len: The size of the memory buffer address.
 230 *
 231 * An HVERSION dependent call for returning the chassis information.
 232 */
 233int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 234{
 235        int retval;
 236	unsigned long flags;
 237
 238        spin_lock_irqsave(&pdc_lock, flags);
 239        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 240        memcpy(&pdc_result2, led_info, len);
 241        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 242                              __pa(pdc_result), __pa(pdc_result2), len);
 243        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 244        memcpy(led_info, pdc_result2, len);
 245        spin_unlock_irqrestore(&pdc_lock, flags);
 246
 247        return retval;
 248}
 249
 250/**
 251 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 252 * @retval: -1 on error, 0 on success. Other value are PDC errors
 253 * 
 254 * Must be correctly formatted or expect system crash
 255 */
 256#ifdef CONFIG_64BIT
 257int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 258{
 259	int retval = 0;
 260	unsigned long flags;
 261        
 262	if (!is_pdc_pat())
 263		return -1;
 264
 265	spin_lock_irqsave(&pdc_lock, flags);
 266	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 267	spin_unlock_irqrestore(&pdc_lock, flags);
 268
 269	return retval;
 270}
 271#endif
 272
 273/**
 274 * pdc_chassis_disp - Updates chassis code
 275 * @retval: -1 on error, 0 on success
 276 */
 277int pdc_chassis_disp(unsigned long disp)
 278{
 279	int retval = 0;
 280	unsigned long flags;
 281
 282	spin_lock_irqsave(&pdc_lock, flags);
 283	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 284	spin_unlock_irqrestore(&pdc_lock, flags);
 285
 286	return retval;
 287}
 288
 289/**
 290 * pdc_chassis_warn - Fetches chassis warnings
 291 * @retval: -1 on error, 0 on success
 292 */
 293int pdc_chassis_warn(unsigned long *warn)
 294{
 295	int retval = 0;
 296	unsigned long flags;
 297
 298	spin_lock_irqsave(&pdc_lock, flags);
 299	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 300	*warn = pdc_result[0];
 301	spin_unlock_irqrestore(&pdc_lock, flags);
 302
 303	return retval;
 304}
 305
 306int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 307{
 308	int ret;
 309
 310	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 311	convert_to_wide(pdc_result);
 312	pdc_coproc_info->ccr_functional = pdc_result[0];
 313	pdc_coproc_info->ccr_present = pdc_result[1];
 314	pdc_coproc_info->revision = pdc_result[17];
 315	pdc_coproc_info->model = pdc_result[18];
 316
 317	return ret;
 318}
 319
 320/**
 321 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 322 * @pdc_coproc_info: Return buffer address.
 323 *
 324 * This PDC call returns the presence and status of all the coprocessors
 325 * attached to the processor.
 326 */
 327int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 328{
 329	int ret;
 330	unsigned long flags;
 331
 332	spin_lock_irqsave(&pdc_lock, flags);
 333	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 334	spin_unlock_irqrestore(&pdc_lock, flags);
 335
 336	return ret;
 337}
 338
 339/**
 340 * pdc_iodc_read - Read data from the modules IODC.
 341 * @actcnt: The actual number of bytes.
 342 * @hpa: The HPA of the module for the iodc read.
 343 * @index: The iodc entry point.
 344 * @iodc_data: A buffer memory for the iodc options.
 345 * @iodc_data_size: Size of the memory buffer.
 346 *
 347 * This PDC call reads from the IODC of the module specified by the hpa
 348 * argument.
 349 */
 350int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 351		  void *iodc_data, unsigned int iodc_data_size)
 352{
 353	int retval;
 354	unsigned long flags;
 355
 356	spin_lock_irqsave(&pdc_lock, flags);
 357	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 358			      index, __pa(pdc_result2), iodc_data_size);
 359	convert_to_wide(pdc_result);
 360	*actcnt = pdc_result[0];
 361	memcpy(iodc_data, pdc_result2, iodc_data_size);
 362	spin_unlock_irqrestore(&pdc_lock, flags);
 363
 364	return retval;
 365}
 366EXPORT_SYMBOL(pdc_iodc_read);
 367
 368/**
 369 * pdc_system_map_find_mods - Locate unarchitected modules.
 370 * @pdc_mod_info: Return buffer address.
 371 * @mod_path: pointer to dev path structure.
 372 * @mod_index: fixed address module index.
 373 *
 374 * To locate and identify modules which reside at fixed I/O addresses, which
 375 * do not self-identify via architected bus walks.
 376 */
 377int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 378			     struct pdc_module_path *mod_path, long mod_index)
 379{
 380	int retval;
 381	unsigned long flags;
 382
 383	spin_lock_irqsave(&pdc_lock, flags);
 384	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 385			      __pa(pdc_result2), mod_index);
 386	convert_to_wide(pdc_result);
 387	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 388	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 389	spin_unlock_irqrestore(&pdc_lock, flags);
 390
 391	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 392	return retval;
 393}
 394
 395/**
 396 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 397 * @pdc_addr_info: Return buffer address.
 398 * @mod_index: Fixed address module index.
 399 * @addr_index: Address range index.
 400 * 
 401 * Retrieve additional information about subsequent address ranges for modules
 402 * with multiple address ranges.  
 403 */
 404int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 405			      long mod_index, long addr_index)
 406{
 407	int retval;
 408	unsigned long flags;
 409
 410	spin_lock_irqsave(&pdc_lock, flags);
 411	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 412			      mod_index, addr_index);
 413	convert_to_wide(pdc_result);
 414	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 415	spin_unlock_irqrestore(&pdc_lock, flags);
 416
 417	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 418	return retval;
 419}
 420
 421/**
 422 * pdc_model_info - Return model information about the processor.
 423 * @model: The return buffer.
 424 *
 425 * Returns the version numbers, identifiers, and capabilities from the processor module.
 426 */
 427int pdc_model_info(struct pdc_model *model) 
 428{
 429	int retval;
 430	unsigned long flags;
 431
 432	spin_lock_irqsave(&pdc_lock, flags);
 433	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 434	convert_to_wide(pdc_result);
 435	memcpy(model, pdc_result, sizeof(*model));
 436	spin_unlock_irqrestore(&pdc_lock, flags);
 437
 438	return retval;
 439}
 440
 441/**
 442 * pdc_model_sysmodel - Get the system model name.
 443 * @name: A char array of at least 81 characters.
 444 *
 445 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 446 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 447 * on HP/UX.
 448 */
 449int pdc_model_sysmodel(char *name)
 450{
 451        int retval;
 452	unsigned long flags;
 453
 454        spin_lock_irqsave(&pdc_lock, flags);
 455        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 456                              OS_ID_HPUX, __pa(name));
 457        convert_to_wide(pdc_result);
 458
 459        if (retval == PDC_OK) {
 460                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 461        } else {
 462                name[0] = 0;
 463        }
 464        spin_unlock_irqrestore(&pdc_lock, flags);
 465
 466        return retval;
 467}
 468
 469/**
 470 * pdc_model_versions - Identify the version number of each processor.
 471 * @cpu_id: The return buffer.
 472 * @id: The id of the processor to check.
 473 *
 474 * Returns the version number for each processor component.
 475 *
 476 * This comment was here before, but I do not know what it means :( -RB
 477 * id: 0 = cpu revision, 1 = boot-rom-version
 478 */
 479int pdc_model_versions(unsigned long *versions, int id)
 480{
 481        int retval;
 482	unsigned long flags;
 483
 484        spin_lock_irqsave(&pdc_lock, flags);
 485        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 486        convert_to_wide(pdc_result);
 487        *versions = pdc_result[0];
 488        spin_unlock_irqrestore(&pdc_lock, flags);
 489
 490        return retval;
 491}
 492
 493/**
 494 * pdc_model_cpuid - Returns the CPU_ID.
 495 * @cpu_id: The return buffer.
 496 *
 497 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 498 * the processor module.
 499 */
 500int pdc_model_cpuid(unsigned long *cpu_id)
 501{
 502        int retval;
 503	unsigned long flags;
 504
 505        spin_lock_irqsave(&pdc_lock, flags);
 506        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 507        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 508        convert_to_wide(pdc_result);
 509        *cpu_id = pdc_result[0];
 510        spin_unlock_irqrestore(&pdc_lock, flags);
 511
 512        return retval;
 513}
 514
 515/**
 516 * pdc_model_capabilities - Returns the platform capabilities.
 517 * @capabilities: The return buffer.
 518 *
 519 * Returns information about platform support for 32- and/or 64-bit
 520 * OSes, IO-PDIR coherency, and virtual aliasing.
 521 */
 522int pdc_model_capabilities(unsigned long *capabilities)
 523{
 524        int retval;
 525	unsigned long flags;
 526
 527        spin_lock_irqsave(&pdc_lock, flags);
 528        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 529        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 530        convert_to_wide(pdc_result);
 531        if (retval == PDC_OK) {
 532                *capabilities = pdc_result[0];
 533        } else {
 534                *capabilities = PDC_MODEL_OS32;
 535        }
 536        spin_unlock_irqrestore(&pdc_lock, flags);
 537
 538        return retval;
 539}
 540
 541/**
 542 * pdc_cache_info - Return cache and TLB information.
 543 * @cache_info: The return buffer.
 544 *
 545 * Returns information about the processor's cache and TLB.
 546 */
 547int pdc_cache_info(struct pdc_cache_info *cache_info)
 548{
 549        int retval;
 550	unsigned long flags;
 551
 552        spin_lock_irqsave(&pdc_lock, flags);
 553        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 554        convert_to_wide(pdc_result);
 555        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 556        spin_unlock_irqrestore(&pdc_lock, flags);
 557
 558        return retval;
 559}
 560
 561/**
 562 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 563 * @space_bits: Should be 0, if not, bad mojo!
 564 *
 565 * Returns information about Space ID hashing.
 566 */
 567int pdc_spaceid_bits(unsigned long *space_bits)
 568{
 569	int retval;
 570	unsigned long flags;
 571
 572	spin_lock_irqsave(&pdc_lock, flags);
 573	pdc_result[0] = 0;
 574	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 575	convert_to_wide(pdc_result);
 576	*space_bits = pdc_result[0];
 577	spin_unlock_irqrestore(&pdc_lock, flags);
 578
 579	return retval;
 580}
 581
 582#ifndef CONFIG_PA20
 583/**
 584 * pdc_btlb_info - Return block TLB information.
 585 * @btlb: The return buffer.
 586 *
 587 * Returns information about the hardware Block TLB.
 588 */
 589int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 590{
 591        int retval;
 592	unsigned long flags;
 593
 594        spin_lock_irqsave(&pdc_lock, flags);
 595        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 596        memcpy(btlb, pdc_result, sizeof(*btlb));
 597        spin_unlock_irqrestore(&pdc_lock, flags);
 598
 599        if(retval < 0) {
 600                btlb->max_size = 0;
 601        }
 602        return retval;
 603}
 604
 605/**
 606 * pdc_mem_map_hpa - Find fixed module information.  
 607 * @address: The return buffer
 608 * @mod_path: pointer to dev path structure.
 609 *
 610 * This call was developed for S700 workstations to allow the kernel to find
 611 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 612 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 613 * call.
 614 *
 615 * This call is supported by all existing S700 workstations (up to  Gecko).
 616 */
 617int pdc_mem_map_hpa(struct pdc_memory_map *address,
 618		struct pdc_module_path *mod_path)
 619{
 620        int retval;
 621	unsigned long flags;
 622
 623        spin_lock_irqsave(&pdc_lock, flags);
 624        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 625        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 626				__pa(pdc_result2));
 627        memcpy(address, pdc_result, sizeof(*address));
 628        spin_unlock_irqrestore(&pdc_lock, flags);
 629
 630        return retval;
 631}
 632#endif	/* !CONFIG_PA20 */
 633
 634/**
 635 * pdc_lan_station_id - Get the LAN address.
 636 * @lan_addr: The return buffer.
 637 * @hpa: The network device HPA.
 638 *
 639 * Get the LAN station address when it is not directly available from the LAN hardware.
 640 */
 641int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 642{
 643	int retval;
 644	unsigned long flags;
 645
 646	spin_lock_irqsave(&pdc_lock, flags);
 647	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 648			__pa(pdc_result), hpa);
 649	if (retval < 0) {
 650		/* FIXME: else read MAC from NVRAM */
 651		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 652	} else {
 653		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 654	}
 655	spin_unlock_irqrestore(&pdc_lock, flags);
 656
 657	return retval;
 658}
 659EXPORT_SYMBOL(pdc_lan_station_id);
 660
 661/**
 662 * pdc_stable_read - Read data from Stable Storage.
 663 * @staddr: Stable Storage address to access.
 664 * @memaddr: The memory address where Stable Storage data shall be copied.
 665 * @count: number of bytes to transfer. count is multiple of 4.
 666 *
 667 * This PDC call reads from the Stable Storage address supplied in staddr
 668 * and copies count bytes to the memory address memaddr.
 669 * The call will fail if staddr+count > PDC_STABLE size.
 670 */
 671int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 672{
 673       int retval;
 674	unsigned long flags;
 675
 676       spin_lock_irqsave(&pdc_lock, flags);
 677       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 678               __pa(pdc_result), count);
 679       convert_to_wide(pdc_result);
 680       memcpy(memaddr, pdc_result, count);
 681       spin_unlock_irqrestore(&pdc_lock, flags);
 682
 683       return retval;
 684}
 685EXPORT_SYMBOL(pdc_stable_read);
 686
 687/**
 688 * pdc_stable_write - Write data to Stable Storage.
 689 * @staddr: Stable Storage address to access.
 690 * @memaddr: The memory address where Stable Storage data shall be read from.
 691 * @count: number of bytes to transfer. count is multiple of 4.
 692 *
 693 * This PDC call reads count bytes from the supplied memaddr address,
 694 * and copies count bytes to the Stable Storage address staddr.
 695 * The call will fail if staddr+count > PDC_STABLE size.
 696 */
 697int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 698{
 699       int retval;
 700	unsigned long flags;
 701
 702       spin_lock_irqsave(&pdc_lock, flags);
 703       memcpy(pdc_result, memaddr, count);
 704       convert_to_wide(pdc_result);
 705       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 706               __pa(pdc_result), count);
 707       spin_unlock_irqrestore(&pdc_lock, flags);
 708
 709       return retval;
 710}
 711EXPORT_SYMBOL(pdc_stable_write);
 712
 713/**
 714 * pdc_stable_get_size - Get Stable Storage size in bytes.
 715 * @size: pointer where the size will be stored.
 716 *
 717 * This PDC call returns the number of bytes in the processor's Stable
 718 * Storage, which is the number of contiguous bytes implemented in Stable
 719 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 720 * which is a multiple of four.
 721 */
 722int pdc_stable_get_size(unsigned long *size)
 723{
 724       int retval;
 725	unsigned long flags;
 726
 727       spin_lock_irqsave(&pdc_lock, flags);
 728       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 729       *size = pdc_result[0];
 730       spin_unlock_irqrestore(&pdc_lock, flags);
 731
 732       return retval;
 733}
 734EXPORT_SYMBOL(pdc_stable_get_size);
 735
 736/**
 737 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 738 *
 739 * This PDC call is meant to be used to check the integrity of the current
 740 * contents of Stable Storage.
 741 */
 742int pdc_stable_verify_contents(void)
 743{
 744       int retval;
 745	unsigned long flags;
 746
 747       spin_lock_irqsave(&pdc_lock, flags);
 748       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 749       spin_unlock_irqrestore(&pdc_lock, flags);
 750
 751       return retval;
 752}
 753EXPORT_SYMBOL(pdc_stable_verify_contents);
 754
 755/**
 756 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 757 * the validity indicator.
 758 *
 759 * This PDC call will erase all contents of Stable Storage. Use with care!
 760 */
 761int pdc_stable_initialize(void)
 762{
 763       int retval;
 764	unsigned long flags;
 765
 766       spin_lock_irqsave(&pdc_lock, flags);
 767       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 768       spin_unlock_irqrestore(&pdc_lock, flags);
 769
 770       return retval;
 771}
 772EXPORT_SYMBOL(pdc_stable_initialize);
 773
 774/**
 775 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 776 * @hwpath: fully bc.mod style path to the device.
 777 * @initiator: the array to return the result into
 778 *
 779 * Get the SCSI operational parameters from PDC.
 780 * Needed since HPUX never used BIOS or symbios card NVRAM.
 781 * Most ncr/sym cards won't have an entry and just use whatever
 782 * capabilities of the card are (eg Ultra, LVD). But there are
 783 * several cases where it's useful:
 784 *    o set SCSI id for Multi-initiator clusters,
 785 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 786 *    o bus width exported is less than what the interface chip supports.
 787 */
 788int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 789{
 790	int retval;
 791	unsigned long flags;
 792
 793	spin_lock_irqsave(&pdc_lock, flags);
 794
 795/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 796#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 797	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 798
 799	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 800			      __pa(pdc_result), __pa(hwpath));
 801	if (retval < PDC_OK)
 802		goto out;
 803
 804	if (pdc_result[0] < 16) {
 805		initiator->host_id = pdc_result[0];
 806	} else {
 807		initiator->host_id = -1;
 808	}
 809
 810	/*
 811	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 812	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 813	 */
 814	switch (pdc_result[1]) {
 815		case  1: initiator->factor = 50; break;
 816		case  2: initiator->factor = 25; break;
 817		case  5: initiator->factor = 12; break;
 818		case 25: initiator->factor = 10; break;
 819		case 20: initiator->factor = 12; break;
 820		case 40: initiator->factor = 10; break;
 821		default: initiator->factor = -1; break;
 822	}
 823
 824	if (IS_SPROCKETS()) {
 825		initiator->width = pdc_result[4];
 826		initiator->mode = pdc_result[5];
 827	} else {
 828		initiator->width = -1;
 829		initiator->mode = -1;
 830	}
 831
 832 out:
 833	spin_unlock_irqrestore(&pdc_lock, flags);
 834
 835	return (retval >= PDC_OK);
 836}
 837EXPORT_SYMBOL(pdc_get_initiator);
 838
 839
 840/**
 841 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 842 * @num_entries: The return value.
 843 * @hpa: The HPA for the device.
 844 *
 845 * This PDC function returns the number of entries in the specified cell's
 846 * interrupt table.
 847 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 848 */ 
 849int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 850{
 851	int retval;
 852	unsigned long flags;
 853
 854	spin_lock_irqsave(&pdc_lock, flags);
 855	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 856			      __pa(pdc_result), hpa);
 857	convert_to_wide(pdc_result);
 858	*num_entries = pdc_result[0];
 859	spin_unlock_irqrestore(&pdc_lock, flags);
 860
 861	return retval;
 862}
 863
 864/** 
 865 * pdc_pci_irt - Get the PCI interrupt routing table.
 866 * @num_entries: The number of entries in the table.
 867 * @hpa: The Hard Physical Address of the device.
 868 * @tbl: 
 869 *
 870 * Get the PCI interrupt routing table for the device at the given HPA.
 871 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 872 */
 873int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 874{
 875	int retval;
 876	unsigned long flags;
 877
 878	BUG_ON((unsigned long)tbl & 0x7);
 879
 880	spin_lock_irqsave(&pdc_lock, flags);
 881	pdc_result[0] = num_entries;
 882	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 883			      __pa(pdc_result), hpa, __pa(tbl));
 884	spin_unlock_irqrestore(&pdc_lock, flags);
 885
 886	return retval;
 887}
 888
 889
 890#if 0	/* UNTEST CODE - left here in case someone needs it */
 891
 892/** 
 893 * pdc_pci_config_read - read PCI config space.
 894 * @hpa		token from PDC to indicate which PCI device
 895 * @pci_addr	configuration space address to read from
 896 *
 897 * Read PCI Configuration space *before* linux PCI subsystem is running.
 898 */
 899unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 900{
 901	int retval;
 902	unsigned long flags;
 903
 904	spin_lock_irqsave(&pdc_lock, flags);
 905	pdc_result[0] = 0;
 906	pdc_result[1] = 0;
 907	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 908			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 909	spin_unlock_irqrestore(&pdc_lock, flags);
 910
 911	return retval ? ~0 : (unsigned int) pdc_result[0];
 912}
 913
 914
 915/** 
 916 * pdc_pci_config_write - read PCI config space.
 917 * @hpa		token from PDC to indicate which PCI device
 918 * @pci_addr	configuration space address to write
 919 * @val		value we want in the 32-bit register
 920 *
 921 * Write PCI Configuration space *before* linux PCI subsystem is running.
 922 */
 923void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 924{
 925	int retval;
 926	unsigned long flags;
 927
 928	spin_lock_irqsave(&pdc_lock, flags);
 929	pdc_result[0] = 0;
 930	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 931			      __pa(pdc_result), hpa,
 932			      cfg_addr&~3UL, 4UL, (unsigned long) val);
 933	spin_unlock_irqrestore(&pdc_lock, flags);
 934
 935	return retval;
 936}
 937#endif /* UNTESTED CODE */
 938
 939/**
 940 * pdc_tod_read - Read the Time-Of-Day clock.
 941 * @tod: The return buffer:
 942 *
 943 * Read the Time-Of-Day clock
 944 */
 945int pdc_tod_read(struct pdc_tod *tod)
 946{
 947        int retval;
 948	unsigned long flags;
 949
 950        spin_lock_irqsave(&pdc_lock, flags);
 951        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
 952        convert_to_wide(pdc_result);
 953        memcpy(tod, pdc_result, sizeof(*tod));
 954        spin_unlock_irqrestore(&pdc_lock, flags);
 955
 956        return retval;
 957}
 958EXPORT_SYMBOL(pdc_tod_read);
 959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960/**
 961 * pdc_tod_set - Set the Time-Of-Day clock.
 962 * @sec: The number of seconds since epoch.
 963 * @usec: The number of micro seconds.
 964 *
 965 * Set the Time-Of-Day clock.
 966 */ 
 967int pdc_tod_set(unsigned long sec, unsigned long usec)
 968{
 969        int retval;
 970	unsigned long flags;
 971
 972        spin_lock_irqsave(&pdc_lock, flags);
 973        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
 974        spin_unlock_irqrestore(&pdc_lock, flags);
 975
 976        return retval;
 977}
 978EXPORT_SYMBOL(pdc_tod_set);
 979
 980#ifdef CONFIG_64BIT
 981int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
 982		struct pdc_memory_table *tbl, unsigned long entries)
 983{
 984	int retval;
 985	unsigned long flags;
 986
 987	spin_lock_irqsave(&pdc_lock, flags);
 988	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
 989	convert_to_wide(pdc_result);
 990	memcpy(r_addr, pdc_result, sizeof(*r_addr));
 991	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
 992	spin_unlock_irqrestore(&pdc_lock, flags);
 993
 994	return retval;
 995}
 996#endif /* CONFIG_64BIT */
 997
 998/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
 999 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1000 * it later. :)
1001 */
1002int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1003{
1004        int retval;
1005	unsigned long flags;
1006
1007        spin_lock_irqsave(&pdc_lock, flags);
1008        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1009                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1010        spin_unlock_irqrestore(&pdc_lock, flags);
1011
1012        return retval;
1013}
1014
1015/*
1016 * pdc_do_reset - Reset the system.
1017 *
1018 * Reset the system.
1019 */
1020int pdc_do_reset(void)
1021{
1022        int retval;
1023	unsigned long flags;
1024
1025        spin_lock_irqsave(&pdc_lock, flags);
1026        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1027        spin_unlock_irqrestore(&pdc_lock, flags);
1028
1029        return retval;
1030}
1031
1032/*
1033 * pdc_soft_power_info - Enable soft power switch.
1034 * @power_reg: address of soft power register
1035 *
1036 * Return the absolute address of the soft power switch register
1037 */
1038int __init pdc_soft_power_info(unsigned long *power_reg)
1039{
1040	int retval;
1041	unsigned long flags;
1042
1043	*power_reg = (unsigned long) (-1);
1044	
1045	spin_lock_irqsave(&pdc_lock, flags);
1046	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1047	if (retval == PDC_OK) {
1048                convert_to_wide(pdc_result);
1049                *power_reg = f_extend(pdc_result[0]);
1050	}
1051	spin_unlock_irqrestore(&pdc_lock, flags);
1052
1053	return retval;
1054}
1055
1056/*
1057 * pdc_soft_power_button - Control the soft power button behaviour
1058 * @sw_control: 0 for hardware control, 1 for software control 
1059 *
1060 *
1061 * This PDC function places the soft power button under software or
1062 * hardware control.
1063 * Under software control the OS may control to when to allow to shut 
1064 * down the system. Under hardware control pressing the power button 
1065 * powers off the system immediately.
1066 */
1067int pdc_soft_power_button(int sw_control)
1068{
1069	int retval;
1070	unsigned long flags;
1071
1072	spin_lock_irqsave(&pdc_lock, flags);
1073	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1074	spin_unlock_irqrestore(&pdc_lock, flags);
1075
1076	return retval;
1077}
1078
1079/*
1080 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1081 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1082 * who knows what other platform firmware might do with this OS "hook".
1083 */
1084void pdc_io_reset(void)
1085{
1086	unsigned long flags;
1087
1088	spin_lock_irqsave(&pdc_lock, flags);
1089	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1090	spin_unlock_irqrestore(&pdc_lock, flags);
1091}
1092
1093/*
1094 * pdc_io_reset_devices - Hack to Stop USB controller
1095 *
1096 * If PDC used the usb controller, the usb controller
1097 * is still running and will crash the machines during iommu 
1098 * setup, because of still running DMA. This PDC call
1099 * stops the USB controller.
1100 * Normally called after calling pdc_io_reset().
1101 */
1102void pdc_io_reset_devices(void)
1103{
1104	unsigned long flags;
1105
1106	spin_lock_irqsave(&pdc_lock, flags);
1107	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1108	spin_unlock_irqrestore(&pdc_lock, flags);
1109}
1110
 
 
1111/* locked by pdc_console_lock */
1112static int __attribute__((aligned(8)))   iodc_retbuf[32];
1113static char __attribute__((aligned(64))) iodc_dbuf[4096];
1114
1115/**
1116 * pdc_iodc_print - Console print using IODC.
1117 * @str: the string to output.
1118 * @count: length of str
1119 *
1120 * Note that only these special chars are architected for console IODC io:
1121 * BEL, BS, CR, and LF. Others are passed through.
1122 * Since the HP console requires CR+LF to perform a 'newline', we translate
1123 * "\n" to "\r\n".
1124 */
1125int pdc_iodc_print(const unsigned char *str, unsigned count)
1126{
1127	unsigned int i;
1128	unsigned long flags;
1129
1130	for (i = 0; i < count;) {
1131		switch(str[i]) {
1132		case '\n':
1133			iodc_dbuf[i+0] = '\r';
1134			iodc_dbuf[i+1] = '\n';
1135			i += 2;
1136			goto print;
1137		default:
1138			iodc_dbuf[i] = str[i];
1139			i++;
1140			break;
1141		}
1142	}
1143
1144print:
1145        spin_lock_irqsave(&pdc_lock, flags);
1146        real32_call(PAGE0->mem_cons.iodc_io,
1147                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1148                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1149                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1150        spin_unlock_irqrestore(&pdc_lock, flags);
1151
1152	return i;
1153}
1154
 
1155/**
1156 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1157 *
1158 * Read a character (non-blocking) from the PDC console, returns -1 if
1159 * key is not present.
1160 */
1161int pdc_iodc_getc(void)
1162{
1163	int ch;
1164	int status;
1165	unsigned long flags;
1166
1167	/* Bail if no console input device. */
1168	if (!PAGE0->mem_kbd.iodc_io)
1169		return 0;
1170	
1171	/* wait for a keyboard (rs232)-input */
1172	spin_lock_irqsave(&pdc_lock, flags);
1173	real32_call(PAGE0->mem_kbd.iodc_io,
1174		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1175		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1176		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1177
1178	ch = *iodc_dbuf;
1179	status = *iodc_retbuf;
1180	spin_unlock_irqrestore(&pdc_lock, flags);
1181
1182	if (status == 0)
1183	    return -1;
1184	
1185	return ch;
1186}
1187
1188int pdc_sti_call(unsigned long func, unsigned long flags,
1189                 unsigned long inptr, unsigned long outputr,
1190                 unsigned long glob_cfg)
1191{
1192        int retval;
1193	unsigned long irqflags;
1194
1195        spin_lock_irqsave(&pdc_lock, irqflags);  
1196        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1197        spin_unlock_irqrestore(&pdc_lock, irqflags);
1198
1199        return retval;
1200}
1201EXPORT_SYMBOL(pdc_sti_call);
1202
1203#ifdef CONFIG_64BIT
1204/**
1205 * pdc_pat_cell_get_number - Returns the cell number.
1206 * @cell_info: The return buffer.
1207 *
1208 * This PDC call returns the cell number of the cell from which the call
1209 * is made.
1210 */
1211int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1212{
1213	int retval;
1214	unsigned long flags;
1215
1216	spin_lock_irqsave(&pdc_lock, flags);
1217	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1218	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1219	spin_unlock_irqrestore(&pdc_lock, flags);
1220
1221	return retval;
1222}
1223
1224/**
1225 * pdc_pat_cell_module - Retrieve the cell's module information.
1226 * @actcnt: The number of bytes written to mem_addr.
1227 * @ploc: The physical location.
1228 * @mod: The module index.
1229 * @view_type: The view of the address type.
1230 * @mem_addr: The return buffer.
1231 *
1232 * This PDC call returns information about each module attached to the cell
1233 * at the specified location.
1234 */
1235int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1236			unsigned long view_type, void *mem_addr)
1237{
1238	int retval;
1239	unsigned long flags;
1240	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1241
1242	spin_lock_irqsave(&pdc_lock, flags);
1243	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1244			      ploc, mod, view_type, __pa(&result));
1245	if(!retval) {
1246		*actcnt = pdc_result[0];
1247		memcpy(mem_addr, &result, *actcnt);
1248	}
1249	spin_unlock_irqrestore(&pdc_lock, flags);
1250
1251	return retval;
1252}
1253
1254/**
1255 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1256 * @cpu_info: The return buffer.
1257 * @hpa: The Hard Physical Address of the CPU.
1258 *
1259 * Retrieve the cpu number for the cpu at the specified HPA.
1260 */
1261int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1262{
1263	int retval;
1264	unsigned long flags;
1265
1266	spin_lock_irqsave(&pdc_lock, flags);
1267	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1268			      __pa(&pdc_result), hpa);
1269	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1270	spin_unlock_irqrestore(&pdc_lock, flags);
1271
1272	return retval;
1273}
1274
1275/**
1276 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1277 * @num_entries: The return value.
1278 * @cell_num: The target cell.
1279 *
1280 * This PDC function returns the number of entries in the specified cell's
1281 * interrupt table.
1282 */
1283int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1284{
1285	int retval;
1286	unsigned long flags;
1287
1288	spin_lock_irqsave(&pdc_lock, flags);
1289	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1290			      __pa(pdc_result), cell_num);
1291	*num_entries = pdc_result[0];
1292	spin_unlock_irqrestore(&pdc_lock, flags);
1293
1294	return retval;
1295}
1296
1297/**
1298 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1299 * @r_addr: The return buffer.
1300 * @cell_num: The target cell.
1301 *
1302 * This PDC function returns the actual interrupt table for the specified cell.
1303 */
1304int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1305{
1306	int retval;
1307	unsigned long flags;
1308
1309	spin_lock_irqsave(&pdc_lock, flags);
1310	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1311			      __pa(r_addr), cell_num);
1312	spin_unlock_irqrestore(&pdc_lock, flags);
1313
1314	return retval;
1315}
1316
1317/**
1318 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1319 * @actlen: The return buffer.
1320 * @mem_addr: Pointer to the memory buffer.
1321 * @count: The number of bytes to read from the buffer.
1322 * @offset: The offset with respect to the beginning of the buffer.
1323 *
1324 */
1325int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1326			    unsigned long count, unsigned long offset)
1327{
1328	int retval;
1329	unsigned long flags;
1330
1331	spin_lock_irqsave(&pdc_lock, flags);
1332	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1333			      __pa(pdc_result2), count, offset);
1334	*actual_len = pdc_result[0];
1335	memcpy(mem_addr, pdc_result2, *actual_len);
1336	spin_unlock_irqrestore(&pdc_lock, flags);
1337
1338	return retval;
1339}
1340
1341/**
1342 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1343 * @pci_addr: PCI configuration space address for which the read request is being made.
1344 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1345 * @mem_addr: Pointer to return memory buffer.
1346 *
1347 */
1348int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1349{
1350	int retval;
1351	unsigned long flags;
1352
1353	spin_lock_irqsave(&pdc_lock, flags);
1354	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1355					__pa(pdc_result), pci_addr, pci_size);
1356	switch(pci_size) {
1357		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1358		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1359		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1360	}
1361	spin_unlock_irqrestore(&pdc_lock, flags);
1362
1363	return retval;
1364}
1365
1366/**
1367 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1368 * @pci_addr: PCI configuration space address for which the write  request is being made.
1369 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1370 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1371 *         written to PCI Config space.
1372 *
1373 */
1374int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1375{
1376	int retval;
1377	unsigned long flags;
1378
1379	spin_lock_irqsave(&pdc_lock, flags);
1380	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1381				pci_addr, pci_size, val);
1382	spin_unlock_irqrestore(&pdc_lock, flags);
1383
1384	return retval;
1385}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1386#endif /* CONFIG_64BIT */
 
1387
1388
1389/***************** 32-bit real-mode calls ***********/
1390/* The struct below is used
1391 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1392 * real32_call_asm() then uses this stack in narrow real mode
1393 */
1394
1395struct narrow_stack {
1396	/* use int, not long which is 64 bits */
1397	unsigned int arg13;
1398	unsigned int arg12;
1399	unsigned int arg11;
1400	unsigned int arg10;
1401	unsigned int arg9;
1402	unsigned int arg8;
1403	unsigned int arg7;
1404	unsigned int arg6;
1405	unsigned int arg5;
1406	unsigned int arg4;
1407	unsigned int arg3;
1408	unsigned int arg2;
1409	unsigned int arg1;
1410	unsigned int arg0;
1411	unsigned int frame_marker[8];
1412	unsigned int sp;
1413	/* in reality, there's nearly 8k of stack after this */
1414};
1415
1416long real32_call(unsigned long fn, ...)
1417{
1418	va_list args;
1419	extern struct narrow_stack real_stack;
1420	extern unsigned long real32_call_asm(unsigned int *,
1421					     unsigned int *, 
1422					     unsigned int);
1423	
1424	va_start(args, fn);
1425	real_stack.arg0 = va_arg(args, unsigned int);
1426	real_stack.arg1 = va_arg(args, unsigned int);
1427	real_stack.arg2 = va_arg(args, unsigned int);
1428	real_stack.arg3 = va_arg(args, unsigned int);
1429	real_stack.arg4 = va_arg(args, unsigned int);
1430	real_stack.arg5 = va_arg(args, unsigned int);
1431	real_stack.arg6 = va_arg(args, unsigned int);
1432	real_stack.arg7 = va_arg(args, unsigned int);
1433	real_stack.arg8 = va_arg(args, unsigned int);
1434	real_stack.arg9 = va_arg(args, unsigned int);
1435	real_stack.arg10 = va_arg(args, unsigned int);
1436	real_stack.arg11 = va_arg(args, unsigned int);
1437	real_stack.arg12 = va_arg(args, unsigned int);
1438	real_stack.arg13 = va_arg(args, unsigned int);
1439	va_end(args);
1440	
1441	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1442}
1443
1444#ifdef CONFIG_64BIT
1445/***************** 64-bit real-mode calls ***********/
1446
1447struct wide_stack {
1448	unsigned long arg0;
1449	unsigned long arg1;
1450	unsigned long arg2;
1451	unsigned long arg3;
1452	unsigned long arg4;
1453	unsigned long arg5;
1454	unsigned long arg6;
1455	unsigned long arg7;
1456	unsigned long arg8;
1457	unsigned long arg9;
1458	unsigned long arg10;
1459	unsigned long arg11;
1460	unsigned long arg12;
1461	unsigned long arg13;
1462	unsigned long frame_marker[2];	/* rp, previous sp */
1463	unsigned long sp;
1464	/* in reality, there's nearly 8k of stack after this */
1465};
1466
1467long real64_call(unsigned long fn, ...)
1468{
1469	va_list args;
1470	extern struct wide_stack real64_stack;
1471	extern unsigned long real64_call_asm(unsigned long *,
1472					     unsigned long *, 
1473					     unsigned long);
1474    
1475	va_start(args, fn);
1476	real64_stack.arg0 = va_arg(args, unsigned long);
1477	real64_stack.arg1 = va_arg(args, unsigned long);
1478	real64_stack.arg2 = va_arg(args, unsigned long);
1479	real64_stack.arg3 = va_arg(args, unsigned long);
1480	real64_stack.arg4 = va_arg(args, unsigned long);
1481	real64_stack.arg5 = va_arg(args, unsigned long);
1482	real64_stack.arg6 = va_arg(args, unsigned long);
1483	real64_stack.arg7 = va_arg(args, unsigned long);
1484	real64_stack.arg8 = va_arg(args, unsigned long);
1485	real64_stack.arg9 = va_arg(args, unsigned long);
1486	real64_stack.arg10 = va_arg(args, unsigned long);
1487	real64_stack.arg11 = va_arg(args, unsigned long);
1488	real64_stack.arg12 = va_arg(args, unsigned long);
1489	real64_stack.arg13 = va_arg(args, unsigned long);
1490	va_end(args);
1491	
1492	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1493}
1494
1495#endif /* CONFIG_64BIT */
1496
v4.17
   1/*
   2 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   3 *
   4 *	PDC == Processor Dependent Code
   5 *
   6 * See http://www.parisc-linux.org/documentation/index.html
   7 * for documentation describing the entry points and calling
   8 * conventions defined below.
   9 *
  10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  15 *
  16 *    This program is free software; you can redistribute it and/or modify
  17 *    it under the terms of the GNU General Public License as published by
  18 *    the Free Software Foundation; either version 2 of the License, or
  19 *    (at your option) any later version.
  20 *
  21 */
  22
  23/*	I think it would be in everyone's best interest to follow this
  24 *	guidelines when writing PDC wrappers:
  25 *
  26 *	 - the name of the pdc wrapper should match one of the macros
  27 *	   used for the first two arguments
  28 *	 - don't use caps for random parts of the name
  29 *	 - use the static PDC result buffers and "copyout" to structs
  30 *	   supplied by the caller to encapsulate alignment restrictions
  31 *	 - hold pdc_lock while in PDC or using static result buffers
  32 *	 - use __pa() to convert virtual (kernel) pointers to physical
  33 *	   ones.
  34 *	 - the name of the struct used for pdc return values should equal
  35 *	   one of the macros used for the first two arguments to the
  36 *	   corresponding PDC call
  37 *	 - keep the order of arguments
  38 *	 - don't be smart (setting trailing NUL bytes for strings, return
  39 *	   something useful even if the call failed) unless you are sure
  40 *	   it's not going to affect functionality or performance
  41 *
  42 *	Example:
  43 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  44 *	{
  45 *		int retval;
  46 *
  47 *		spin_lock_irq(&pdc_lock);
  48 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  49 *		convert_to_wide(pdc_result);
  50 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  51 *		spin_unlock_irq(&pdc_lock);
  52 *
  53 *		return retval;
  54 *	}
  55 *					prumpf	991016	
  56 */
  57
  58#include <stdarg.h>
  59
  60#include <linux/delay.h>
  61#include <linux/init.h>
  62#include <linux/kernel.h>
  63#include <linux/module.h>
  64#include <linux/string.h>
  65#include <linux/spinlock.h>
  66
  67#include <asm/page.h>
  68#include <asm/pdc.h>
  69#include <asm/pdcpat.h>
  70#include <asm/processor.h>	/* for boot_cpu_data */
  71
  72#if defined(BOOTLOADER)
  73# undef  spin_lock_irqsave
  74# define spin_lock_irqsave(a, b) { b = 1; }
  75# undef  spin_unlock_irqrestore
  76# define spin_unlock_irqrestore(a, b)
  77#else
  78static DEFINE_SPINLOCK(pdc_lock);
  79#endif
  80
  81extern unsigned long pdc_result[NUM_PDC_RESULT];
  82extern unsigned long pdc_result2[NUM_PDC_RESULT];
  83
  84#ifdef CONFIG_64BIT
  85#define WIDE_FIRMWARE 0x1
  86#define NARROW_FIRMWARE 0x2
  87
  88/* Firmware needs to be initially set to narrow to determine the 
  89 * actual firmware width. */
  90int parisc_narrow_firmware __read_mostly = 1;
  91#endif
  92
  93/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  94 * and MEM_PDC calls are always the same width as the OS.
  95 * Some PAT boxes may have 64-bit IODC I/O.
  96 *
  97 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  98 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  99 * This allowed wide kernels to run on Cxxx boxes.
 100 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
 101 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
 102 */
 103
 104#ifdef CONFIG_64BIT
 105long real64_call(unsigned long function, ...);
 106#endif
 107long real32_call(unsigned long function, ...);
 108
 109#ifdef CONFIG_64BIT
 110#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 111#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 112#else
 113#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 114#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 115#endif
 116
 117
 118/**
 119 * f_extend - Convert PDC addresses to kernel addresses.
 120 * @address: Address returned from PDC.
 121 *
 122 * This function is used to convert PDC addresses into kernel addresses
 123 * when the PDC address size and kernel address size are different.
 124 */
 125static unsigned long f_extend(unsigned long address)
 126{
 127#ifdef CONFIG_64BIT
 128	if(unlikely(parisc_narrow_firmware)) {
 129		if((address & 0xff000000) == 0xf0000000)
 130			return 0xf0f0f0f000000000UL | (u32)address;
 131
 132		if((address & 0xf0000000) == 0xf0000000)
 133			return 0xffffffff00000000UL | (u32)address;
 134	}
 135#endif
 136	return address;
 137}
 138
 139/**
 140 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 141 * @address: The return buffer from PDC.
 142 *
 143 * This function is used to convert the return buffer addresses retrieved from PDC
 144 * into kernel addresses when the PDC address size and kernel address size are
 145 * different.
 146 */
 147static void convert_to_wide(unsigned long *addr)
 148{
 149#ifdef CONFIG_64BIT
 150	int i;
 151	unsigned int *p = (unsigned int *)addr;
 152
 153	if (unlikely(parisc_narrow_firmware)) {
 154		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
 155			addr[i] = p[i];
 156	}
 157#endif
 158}
 159
 160#ifdef CONFIG_64BIT
 161void set_firmware_width_unlocked(void)
 162{
 163	int ret;
 164
 165	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 166		__pa(pdc_result), 0);
 167	convert_to_wide(pdc_result);
 168	if (pdc_result[0] != NARROW_FIRMWARE)
 169		parisc_narrow_firmware = 0;
 170}
 171	
 172/**
 173 * set_firmware_width - Determine if the firmware is wide or narrow.
 174 * 
 175 * This function must be called before any pdc_* function that uses the
 176 * convert_to_wide function.
 177 */
 178void set_firmware_width(void)
 179{
 180	unsigned long flags;
 181	spin_lock_irqsave(&pdc_lock, flags);
 182	set_firmware_width_unlocked();
 183	spin_unlock_irqrestore(&pdc_lock, flags);
 184}
 185#else
 186void set_firmware_width_unlocked(void)
 187{
 188	return;
 189}
 190
 191void set_firmware_width(void)
 192{
 193	return;
 194}
 195#endif /*CONFIG_64BIT*/
 196
 197
 198#if !defined(BOOTLOADER)
 199/**
 200 * pdc_emergency_unlock - Unlock the linux pdc lock
 201 *
 202 * This call unlocks the linux pdc lock in case we need some PDC functions
 203 * (like pdc_add_valid) during kernel stack dump.
 204 */
 205void pdc_emergency_unlock(void)
 206{
 207 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 208        if (spin_is_locked(&pdc_lock))
 209		spin_unlock(&pdc_lock);
 210}
 211
 212
 213/**
 214 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 215 * @address: Address to be verified.
 216 *
 217 * This PDC call attempts to read from the specified address and verifies
 218 * if the address is valid.
 219 * 
 220 * The return value is PDC_OK (0) in case accessing this address is valid.
 221 */
 222int pdc_add_valid(unsigned long address)
 223{
 224        int retval;
 225	unsigned long flags;
 226
 227        spin_lock_irqsave(&pdc_lock, flags);
 228        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 229        spin_unlock_irqrestore(&pdc_lock, flags);
 230
 231        return retval;
 232}
 233EXPORT_SYMBOL(pdc_add_valid);
 234
 235/**
 236 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
 237 * @instr: Pointer to variable which will get instruction opcode.
 238 *
 239 * The return value is PDC_OK (0) in case call succeeded.
 240 */
 241int __init pdc_instr(unsigned int *instr)
 242{
 243	int retval;
 244	unsigned long flags;
 245
 246	spin_lock_irqsave(&pdc_lock, flags);
 247	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
 248	convert_to_wide(pdc_result);
 249	*instr = pdc_result[0];
 250	spin_unlock_irqrestore(&pdc_lock, flags);
 251
 252	return retval;
 253}
 254
 255/**
 256 * pdc_chassis_info - Return chassis information.
 257 * @result: The return buffer.
 258 * @chassis_info: The memory buffer address.
 259 * @len: The size of the memory buffer address.
 260 *
 261 * An HVERSION dependent call for returning the chassis information.
 262 */
 263int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 264{
 265        int retval;
 266	unsigned long flags;
 267
 268        spin_lock_irqsave(&pdc_lock, flags);
 269        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 270        memcpy(&pdc_result2, led_info, len);
 271        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 272                              __pa(pdc_result), __pa(pdc_result2), len);
 273        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 274        memcpy(led_info, pdc_result2, len);
 275        spin_unlock_irqrestore(&pdc_lock, flags);
 276
 277        return retval;
 278}
 279
 280/**
 281 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 282 * @retval: -1 on error, 0 on success. Other value are PDC errors
 283 * 
 284 * Must be correctly formatted or expect system crash
 285 */
 286#ifdef CONFIG_64BIT
 287int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 288{
 289	int retval = 0;
 290	unsigned long flags;
 291        
 292	if (!is_pdc_pat())
 293		return -1;
 294
 295	spin_lock_irqsave(&pdc_lock, flags);
 296	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 297	spin_unlock_irqrestore(&pdc_lock, flags);
 298
 299	return retval;
 300}
 301#endif
 302
 303/**
 304 * pdc_chassis_disp - Updates chassis code
 305 * @retval: -1 on error, 0 on success
 306 */
 307int pdc_chassis_disp(unsigned long disp)
 308{
 309	int retval = 0;
 310	unsigned long flags;
 311
 312	spin_lock_irqsave(&pdc_lock, flags);
 313	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 314	spin_unlock_irqrestore(&pdc_lock, flags);
 315
 316	return retval;
 317}
 318
 319/**
 320 * pdc_chassis_warn - Fetches chassis warnings
 321 * @retval: -1 on error, 0 on success
 322 */
 323int pdc_chassis_warn(unsigned long *warn)
 324{
 325	int retval = 0;
 326	unsigned long flags;
 327
 328	spin_lock_irqsave(&pdc_lock, flags);
 329	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 330	*warn = pdc_result[0];
 331	spin_unlock_irqrestore(&pdc_lock, flags);
 332
 333	return retval;
 334}
 335
 336int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 337{
 338	int ret;
 339
 340	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 341	convert_to_wide(pdc_result);
 342	pdc_coproc_info->ccr_functional = pdc_result[0];
 343	pdc_coproc_info->ccr_present = pdc_result[1];
 344	pdc_coproc_info->revision = pdc_result[17];
 345	pdc_coproc_info->model = pdc_result[18];
 346
 347	return ret;
 348}
 349
 350/**
 351 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 352 * @pdc_coproc_info: Return buffer address.
 353 *
 354 * This PDC call returns the presence and status of all the coprocessors
 355 * attached to the processor.
 356 */
 357int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 358{
 359	int ret;
 360	unsigned long flags;
 361
 362	spin_lock_irqsave(&pdc_lock, flags);
 363	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 364	spin_unlock_irqrestore(&pdc_lock, flags);
 365
 366	return ret;
 367}
 368
 369/**
 370 * pdc_iodc_read - Read data from the modules IODC.
 371 * @actcnt: The actual number of bytes.
 372 * @hpa: The HPA of the module for the iodc read.
 373 * @index: The iodc entry point.
 374 * @iodc_data: A buffer memory for the iodc options.
 375 * @iodc_data_size: Size of the memory buffer.
 376 *
 377 * This PDC call reads from the IODC of the module specified by the hpa
 378 * argument.
 379 */
 380int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 381		  void *iodc_data, unsigned int iodc_data_size)
 382{
 383	int retval;
 384	unsigned long flags;
 385
 386	spin_lock_irqsave(&pdc_lock, flags);
 387	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 388			      index, __pa(pdc_result2), iodc_data_size);
 389	convert_to_wide(pdc_result);
 390	*actcnt = pdc_result[0];
 391	memcpy(iodc_data, pdc_result2, iodc_data_size);
 392	spin_unlock_irqrestore(&pdc_lock, flags);
 393
 394	return retval;
 395}
 396EXPORT_SYMBOL(pdc_iodc_read);
 397
 398/**
 399 * pdc_system_map_find_mods - Locate unarchitected modules.
 400 * @pdc_mod_info: Return buffer address.
 401 * @mod_path: pointer to dev path structure.
 402 * @mod_index: fixed address module index.
 403 *
 404 * To locate and identify modules which reside at fixed I/O addresses, which
 405 * do not self-identify via architected bus walks.
 406 */
 407int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 408			     struct pdc_module_path *mod_path, long mod_index)
 409{
 410	int retval;
 411	unsigned long flags;
 412
 413	spin_lock_irqsave(&pdc_lock, flags);
 414	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 415			      __pa(pdc_result2), mod_index);
 416	convert_to_wide(pdc_result);
 417	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 418	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 419	spin_unlock_irqrestore(&pdc_lock, flags);
 420
 421	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 422	return retval;
 423}
 424
 425/**
 426 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 427 * @pdc_addr_info: Return buffer address.
 428 * @mod_index: Fixed address module index.
 429 * @addr_index: Address range index.
 430 * 
 431 * Retrieve additional information about subsequent address ranges for modules
 432 * with multiple address ranges.  
 433 */
 434int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 435			      long mod_index, long addr_index)
 436{
 437	int retval;
 438	unsigned long flags;
 439
 440	spin_lock_irqsave(&pdc_lock, flags);
 441	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 442			      mod_index, addr_index);
 443	convert_to_wide(pdc_result);
 444	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 445	spin_unlock_irqrestore(&pdc_lock, flags);
 446
 447	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 448	return retval;
 449}
 450
 451/**
 452 * pdc_model_info - Return model information about the processor.
 453 * @model: The return buffer.
 454 *
 455 * Returns the version numbers, identifiers, and capabilities from the processor module.
 456 */
 457int pdc_model_info(struct pdc_model *model) 
 458{
 459	int retval;
 460	unsigned long flags;
 461
 462	spin_lock_irqsave(&pdc_lock, flags);
 463	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 464	convert_to_wide(pdc_result);
 465	memcpy(model, pdc_result, sizeof(*model));
 466	spin_unlock_irqrestore(&pdc_lock, flags);
 467
 468	return retval;
 469}
 470
 471/**
 472 * pdc_model_sysmodel - Get the system model name.
 473 * @name: A char array of at least 81 characters.
 474 *
 475 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 476 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 477 * on HP/UX.
 478 */
 479int pdc_model_sysmodel(char *name)
 480{
 481        int retval;
 482	unsigned long flags;
 483
 484        spin_lock_irqsave(&pdc_lock, flags);
 485        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 486                              OS_ID_HPUX, __pa(name));
 487        convert_to_wide(pdc_result);
 488
 489        if (retval == PDC_OK) {
 490                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 491        } else {
 492                name[0] = 0;
 493        }
 494        spin_unlock_irqrestore(&pdc_lock, flags);
 495
 496        return retval;
 497}
 498
 499/**
 500 * pdc_model_versions - Identify the version number of each processor.
 501 * @cpu_id: The return buffer.
 502 * @id: The id of the processor to check.
 503 *
 504 * Returns the version number for each processor component.
 505 *
 506 * This comment was here before, but I do not know what it means :( -RB
 507 * id: 0 = cpu revision, 1 = boot-rom-version
 508 */
 509int pdc_model_versions(unsigned long *versions, int id)
 510{
 511        int retval;
 512	unsigned long flags;
 513
 514        spin_lock_irqsave(&pdc_lock, flags);
 515        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 516        convert_to_wide(pdc_result);
 517        *versions = pdc_result[0];
 518        spin_unlock_irqrestore(&pdc_lock, flags);
 519
 520        return retval;
 521}
 522
 523/**
 524 * pdc_model_cpuid - Returns the CPU_ID.
 525 * @cpu_id: The return buffer.
 526 *
 527 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 528 * the processor module.
 529 */
 530int pdc_model_cpuid(unsigned long *cpu_id)
 531{
 532        int retval;
 533	unsigned long flags;
 534
 535        spin_lock_irqsave(&pdc_lock, flags);
 536        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 537        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 538        convert_to_wide(pdc_result);
 539        *cpu_id = pdc_result[0];
 540        spin_unlock_irqrestore(&pdc_lock, flags);
 541
 542        return retval;
 543}
 544
 545/**
 546 * pdc_model_capabilities - Returns the platform capabilities.
 547 * @capabilities: The return buffer.
 548 *
 549 * Returns information about platform support for 32- and/or 64-bit
 550 * OSes, IO-PDIR coherency, and virtual aliasing.
 551 */
 552int pdc_model_capabilities(unsigned long *capabilities)
 553{
 554        int retval;
 555	unsigned long flags;
 556
 557        spin_lock_irqsave(&pdc_lock, flags);
 558        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 559        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 560        convert_to_wide(pdc_result);
 561        if (retval == PDC_OK) {
 562                *capabilities = pdc_result[0];
 563        } else {
 564                *capabilities = PDC_MODEL_OS32;
 565        }
 566        spin_unlock_irqrestore(&pdc_lock, flags);
 567
 568        return retval;
 569}
 570
 571/**
 572 * pdc_cache_info - Return cache and TLB information.
 573 * @cache_info: The return buffer.
 574 *
 575 * Returns information about the processor's cache and TLB.
 576 */
 577int pdc_cache_info(struct pdc_cache_info *cache_info)
 578{
 579        int retval;
 580	unsigned long flags;
 581
 582        spin_lock_irqsave(&pdc_lock, flags);
 583        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 584        convert_to_wide(pdc_result);
 585        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 586        spin_unlock_irqrestore(&pdc_lock, flags);
 587
 588        return retval;
 589}
 590
 591/**
 592 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 593 * @space_bits: Should be 0, if not, bad mojo!
 594 *
 595 * Returns information about Space ID hashing.
 596 */
 597int pdc_spaceid_bits(unsigned long *space_bits)
 598{
 599	int retval;
 600	unsigned long flags;
 601
 602	spin_lock_irqsave(&pdc_lock, flags);
 603	pdc_result[0] = 0;
 604	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 605	convert_to_wide(pdc_result);
 606	*space_bits = pdc_result[0];
 607	spin_unlock_irqrestore(&pdc_lock, flags);
 608
 609	return retval;
 610}
 611
 612#ifndef CONFIG_PA20
 613/**
 614 * pdc_btlb_info - Return block TLB information.
 615 * @btlb: The return buffer.
 616 *
 617 * Returns information about the hardware Block TLB.
 618 */
 619int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 620{
 621        int retval;
 622	unsigned long flags;
 623
 624        spin_lock_irqsave(&pdc_lock, flags);
 625        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 626        memcpy(btlb, pdc_result, sizeof(*btlb));
 627        spin_unlock_irqrestore(&pdc_lock, flags);
 628
 629        if(retval < 0) {
 630                btlb->max_size = 0;
 631        }
 632        return retval;
 633}
 634
 635/**
 636 * pdc_mem_map_hpa - Find fixed module information.  
 637 * @address: The return buffer
 638 * @mod_path: pointer to dev path structure.
 639 *
 640 * This call was developed for S700 workstations to allow the kernel to find
 641 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 642 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 643 * call.
 644 *
 645 * This call is supported by all existing S700 workstations (up to  Gecko).
 646 */
 647int pdc_mem_map_hpa(struct pdc_memory_map *address,
 648		struct pdc_module_path *mod_path)
 649{
 650        int retval;
 651	unsigned long flags;
 652
 653        spin_lock_irqsave(&pdc_lock, flags);
 654        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 655        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 656				__pa(pdc_result2));
 657        memcpy(address, pdc_result, sizeof(*address));
 658        spin_unlock_irqrestore(&pdc_lock, flags);
 659
 660        return retval;
 661}
 662#endif	/* !CONFIG_PA20 */
 663
 664/**
 665 * pdc_lan_station_id - Get the LAN address.
 666 * @lan_addr: The return buffer.
 667 * @hpa: The network device HPA.
 668 *
 669 * Get the LAN station address when it is not directly available from the LAN hardware.
 670 */
 671int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 672{
 673	int retval;
 674	unsigned long flags;
 675
 676	spin_lock_irqsave(&pdc_lock, flags);
 677	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 678			__pa(pdc_result), hpa);
 679	if (retval < 0) {
 680		/* FIXME: else read MAC from NVRAM */
 681		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 682	} else {
 683		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 684	}
 685	spin_unlock_irqrestore(&pdc_lock, flags);
 686
 687	return retval;
 688}
 689EXPORT_SYMBOL(pdc_lan_station_id);
 690
 691/**
 692 * pdc_stable_read - Read data from Stable Storage.
 693 * @staddr: Stable Storage address to access.
 694 * @memaddr: The memory address where Stable Storage data shall be copied.
 695 * @count: number of bytes to transfer. count is multiple of 4.
 696 *
 697 * This PDC call reads from the Stable Storage address supplied in staddr
 698 * and copies count bytes to the memory address memaddr.
 699 * The call will fail if staddr+count > PDC_STABLE size.
 700 */
 701int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 702{
 703       int retval;
 704	unsigned long flags;
 705
 706       spin_lock_irqsave(&pdc_lock, flags);
 707       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 708               __pa(pdc_result), count);
 709       convert_to_wide(pdc_result);
 710       memcpy(memaddr, pdc_result, count);
 711       spin_unlock_irqrestore(&pdc_lock, flags);
 712
 713       return retval;
 714}
 715EXPORT_SYMBOL(pdc_stable_read);
 716
 717/**
 718 * pdc_stable_write - Write data to Stable Storage.
 719 * @staddr: Stable Storage address to access.
 720 * @memaddr: The memory address where Stable Storage data shall be read from.
 721 * @count: number of bytes to transfer. count is multiple of 4.
 722 *
 723 * This PDC call reads count bytes from the supplied memaddr address,
 724 * and copies count bytes to the Stable Storage address staddr.
 725 * The call will fail if staddr+count > PDC_STABLE size.
 726 */
 727int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 728{
 729       int retval;
 730	unsigned long flags;
 731
 732       spin_lock_irqsave(&pdc_lock, flags);
 733       memcpy(pdc_result, memaddr, count);
 734       convert_to_wide(pdc_result);
 735       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 736               __pa(pdc_result), count);
 737       spin_unlock_irqrestore(&pdc_lock, flags);
 738
 739       return retval;
 740}
 741EXPORT_SYMBOL(pdc_stable_write);
 742
 743/**
 744 * pdc_stable_get_size - Get Stable Storage size in bytes.
 745 * @size: pointer where the size will be stored.
 746 *
 747 * This PDC call returns the number of bytes in the processor's Stable
 748 * Storage, which is the number of contiguous bytes implemented in Stable
 749 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 750 * which is a multiple of four.
 751 */
 752int pdc_stable_get_size(unsigned long *size)
 753{
 754       int retval;
 755	unsigned long flags;
 756
 757       spin_lock_irqsave(&pdc_lock, flags);
 758       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 759       *size = pdc_result[0];
 760       spin_unlock_irqrestore(&pdc_lock, flags);
 761
 762       return retval;
 763}
 764EXPORT_SYMBOL(pdc_stable_get_size);
 765
 766/**
 767 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 768 *
 769 * This PDC call is meant to be used to check the integrity of the current
 770 * contents of Stable Storage.
 771 */
 772int pdc_stable_verify_contents(void)
 773{
 774       int retval;
 775	unsigned long flags;
 776
 777       spin_lock_irqsave(&pdc_lock, flags);
 778       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 779       spin_unlock_irqrestore(&pdc_lock, flags);
 780
 781       return retval;
 782}
 783EXPORT_SYMBOL(pdc_stable_verify_contents);
 784
 785/**
 786 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 787 * the validity indicator.
 788 *
 789 * This PDC call will erase all contents of Stable Storage. Use with care!
 790 */
 791int pdc_stable_initialize(void)
 792{
 793       int retval;
 794	unsigned long flags;
 795
 796       spin_lock_irqsave(&pdc_lock, flags);
 797       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 798       spin_unlock_irqrestore(&pdc_lock, flags);
 799
 800       return retval;
 801}
 802EXPORT_SYMBOL(pdc_stable_initialize);
 803
 804/**
 805 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 806 * @hwpath: fully bc.mod style path to the device.
 807 * @initiator: the array to return the result into
 808 *
 809 * Get the SCSI operational parameters from PDC.
 810 * Needed since HPUX never used BIOS or symbios card NVRAM.
 811 * Most ncr/sym cards won't have an entry and just use whatever
 812 * capabilities of the card are (eg Ultra, LVD). But there are
 813 * several cases where it's useful:
 814 *    o set SCSI id for Multi-initiator clusters,
 815 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 816 *    o bus width exported is less than what the interface chip supports.
 817 */
 818int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 819{
 820	int retval;
 821	unsigned long flags;
 822
 823	spin_lock_irqsave(&pdc_lock, flags);
 824
 825/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 826#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 827	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 828
 829	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 830			      __pa(pdc_result), __pa(hwpath));
 831	if (retval < PDC_OK)
 832		goto out;
 833
 834	if (pdc_result[0] < 16) {
 835		initiator->host_id = pdc_result[0];
 836	} else {
 837		initiator->host_id = -1;
 838	}
 839
 840	/*
 841	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 842	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 843	 */
 844	switch (pdc_result[1]) {
 845		case  1: initiator->factor = 50; break;
 846		case  2: initiator->factor = 25; break;
 847		case  5: initiator->factor = 12; break;
 848		case 25: initiator->factor = 10; break;
 849		case 20: initiator->factor = 12; break;
 850		case 40: initiator->factor = 10; break;
 851		default: initiator->factor = -1; break;
 852	}
 853
 854	if (IS_SPROCKETS()) {
 855		initiator->width = pdc_result[4];
 856		initiator->mode = pdc_result[5];
 857	} else {
 858		initiator->width = -1;
 859		initiator->mode = -1;
 860	}
 861
 862 out:
 863	spin_unlock_irqrestore(&pdc_lock, flags);
 864
 865	return (retval >= PDC_OK);
 866}
 867EXPORT_SYMBOL(pdc_get_initiator);
 868
 869
 870/**
 871 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 872 * @num_entries: The return value.
 873 * @hpa: The HPA for the device.
 874 *
 875 * This PDC function returns the number of entries in the specified cell's
 876 * interrupt table.
 877 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 878 */ 
 879int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 880{
 881	int retval;
 882	unsigned long flags;
 883
 884	spin_lock_irqsave(&pdc_lock, flags);
 885	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 886			      __pa(pdc_result), hpa);
 887	convert_to_wide(pdc_result);
 888	*num_entries = pdc_result[0];
 889	spin_unlock_irqrestore(&pdc_lock, flags);
 890
 891	return retval;
 892}
 893
 894/** 
 895 * pdc_pci_irt - Get the PCI interrupt routing table.
 896 * @num_entries: The number of entries in the table.
 897 * @hpa: The Hard Physical Address of the device.
 898 * @tbl: 
 899 *
 900 * Get the PCI interrupt routing table for the device at the given HPA.
 901 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 902 */
 903int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 904{
 905	int retval;
 906	unsigned long flags;
 907
 908	BUG_ON((unsigned long)tbl & 0x7);
 909
 910	spin_lock_irqsave(&pdc_lock, flags);
 911	pdc_result[0] = num_entries;
 912	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 913			      __pa(pdc_result), hpa, __pa(tbl));
 914	spin_unlock_irqrestore(&pdc_lock, flags);
 915
 916	return retval;
 917}
 918
 919
 920#if 0	/* UNTEST CODE - left here in case someone needs it */
 921
 922/** 
 923 * pdc_pci_config_read - read PCI config space.
 924 * @hpa		token from PDC to indicate which PCI device
 925 * @pci_addr	configuration space address to read from
 926 *
 927 * Read PCI Configuration space *before* linux PCI subsystem is running.
 928 */
 929unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 930{
 931	int retval;
 932	unsigned long flags;
 933
 934	spin_lock_irqsave(&pdc_lock, flags);
 935	pdc_result[0] = 0;
 936	pdc_result[1] = 0;
 937	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 938			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 939	spin_unlock_irqrestore(&pdc_lock, flags);
 940
 941	return retval ? ~0 : (unsigned int) pdc_result[0];
 942}
 943
 944
 945/** 
 946 * pdc_pci_config_write - read PCI config space.
 947 * @hpa		token from PDC to indicate which PCI device
 948 * @pci_addr	configuration space address to write
 949 * @val		value we want in the 32-bit register
 950 *
 951 * Write PCI Configuration space *before* linux PCI subsystem is running.
 952 */
 953void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 954{
 955	int retval;
 956	unsigned long flags;
 957
 958	spin_lock_irqsave(&pdc_lock, flags);
 959	pdc_result[0] = 0;
 960	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 961			      __pa(pdc_result), hpa,
 962			      cfg_addr&~3UL, 4UL, (unsigned long) val);
 963	spin_unlock_irqrestore(&pdc_lock, flags);
 964
 965	return retval;
 966}
 967#endif /* UNTESTED CODE */
 968
 969/**
 970 * pdc_tod_read - Read the Time-Of-Day clock.
 971 * @tod: The return buffer:
 972 *
 973 * Read the Time-Of-Day clock
 974 */
 975int pdc_tod_read(struct pdc_tod *tod)
 976{
 977        int retval;
 978	unsigned long flags;
 979
 980        spin_lock_irqsave(&pdc_lock, flags);
 981        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
 982        convert_to_wide(pdc_result);
 983        memcpy(tod, pdc_result, sizeof(*tod));
 984        spin_unlock_irqrestore(&pdc_lock, flags);
 985
 986        return retval;
 987}
 988EXPORT_SYMBOL(pdc_tod_read);
 989
 990int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
 991{
 992	int retval;
 993	unsigned long flags;
 994
 995	spin_lock_irqsave(&pdc_lock, flags);
 996	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
 997	convert_to_wide(pdc_result);
 998	memcpy(rinfo, pdc_result, sizeof(*rinfo));
 999	spin_unlock_irqrestore(&pdc_lock, flags);
1000
1001	return retval;
1002}
1003
1004int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1005		unsigned long *pdt_entries_ptr)
1006{
1007	int retval;
1008	unsigned long flags;
1009
1010	spin_lock_irqsave(&pdc_lock, flags);
1011	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1012			__pa(pdt_entries_ptr));
1013	if (retval == PDC_OK) {
1014		convert_to_wide(pdc_result);
1015		memcpy(pret, pdc_result, sizeof(*pret));
1016	}
1017	spin_unlock_irqrestore(&pdc_lock, flags);
1018
1019#ifdef CONFIG_64BIT
1020	/*
1021	 * 64-bit kernels should not call this PDT function in narrow mode.
1022	 * The pdt_entries_ptr array above will now contain 32-bit values
1023	 */
1024	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1025		return PDC_ERROR;
1026#endif
1027
1028	return retval;
1029}
1030
1031/**
1032 * pdc_tod_set - Set the Time-Of-Day clock.
1033 * @sec: The number of seconds since epoch.
1034 * @usec: The number of micro seconds.
1035 *
1036 * Set the Time-Of-Day clock.
1037 */ 
1038int pdc_tod_set(unsigned long sec, unsigned long usec)
1039{
1040        int retval;
1041	unsigned long flags;
1042
1043        spin_lock_irqsave(&pdc_lock, flags);
1044        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1045        spin_unlock_irqrestore(&pdc_lock, flags);
1046
1047        return retval;
1048}
1049EXPORT_SYMBOL(pdc_tod_set);
1050
1051#ifdef CONFIG_64BIT
1052int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1053		struct pdc_memory_table *tbl, unsigned long entries)
1054{
1055	int retval;
1056	unsigned long flags;
1057
1058	spin_lock_irqsave(&pdc_lock, flags);
1059	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1060	convert_to_wide(pdc_result);
1061	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1062	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1063	spin_unlock_irqrestore(&pdc_lock, flags);
1064
1065	return retval;
1066}
1067#endif /* CONFIG_64BIT */
1068
1069/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1070 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1071 * it later. :)
1072 */
1073int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1074{
1075        int retval;
1076	unsigned long flags;
1077
1078        spin_lock_irqsave(&pdc_lock, flags);
1079        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1080                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1081        spin_unlock_irqrestore(&pdc_lock, flags);
1082
1083        return retval;
1084}
1085
1086/*
1087 * pdc_do_reset - Reset the system.
1088 *
1089 * Reset the system.
1090 */
1091int pdc_do_reset(void)
1092{
1093        int retval;
1094	unsigned long flags;
1095
1096        spin_lock_irqsave(&pdc_lock, flags);
1097        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1098        spin_unlock_irqrestore(&pdc_lock, flags);
1099
1100        return retval;
1101}
1102
1103/*
1104 * pdc_soft_power_info - Enable soft power switch.
1105 * @power_reg: address of soft power register
1106 *
1107 * Return the absolute address of the soft power switch register
1108 */
1109int __init pdc_soft_power_info(unsigned long *power_reg)
1110{
1111	int retval;
1112	unsigned long flags;
1113
1114	*power_reg = (unsigned long) (-1);
1115	
1116	spin_lock_irqsave(&pdc_lock, flags);
1117	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1118	if (retval == PDC_OK) {
1119                convert_to_wide(pdc_result);
1120                *power_reg = f_extend(pdc_result[0]);
1121	}
1122	spin_unlock_irqrestore(&pdc_lock, flags);
1123
1124	return retval;
1125}
1126
1127/*
1128 * pdc_soft_power_button - Control the soft power button behaviour
1129 * @sw_control: 0 for hardware control, 1 for software control 
1130 *
1131 *
1132 * This PDC function places the soft power button under software or
1133 * hardware control.
1134 * Under software control the OS may control to when to allow to shut 
1135 * down the system. Under hardware control pressing the power button 
1136 * powers off the system immediately.
1137 */
1138int pdc_soft_power_button(int sw_control)
1139{
1140	int retval;
1141	unsigned long flags;
1142
1143	spin_lock_irqsave(&pdc_lock, flags);
1144	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1145	spin_unlock_irqrestore(&pdc_lock, flags);
1146
1147	return retval;
1148}
1149
1150/*
1151 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1152 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1153 * who knows what other platform firmware might do with this OS "hook".
1154 */
1155void pdc_io_reset(void)
1156{
1157	unsigned long flags;
1158
1159	spin_lock_irqsave(&pdc_lock, flags);
1160	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1161	spin_unlock_irqrestore(&pdc_lock, flags);
1162}
1163
1164/*
1165 * pdc_io_reset_devices - Hack to Stop USB controller
1166 *
1167 * If PDC used the usb controller, the usb controller
1168 * is still running and will crash the machines during iommu 
1169 * setup, because of still running DMA. This PDC call
1170 * stops the USB controller.
1171 * Normally called after calling pdc_io_reset().
1172 */
1173void pdc_io_reset_devices(void)
1174{
1175	unsigned long flags;
1176
1177	spin_lock_irqsave(&pdc_lock, flags);
1178	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1179	spin_unlock_irqrestore(&pdc_lock, flags);
1180}
1181
1182#endif /* defined(BOOTLOADER) */
1183
1184/* locked by pdc_console_lock */
1185static int __attribute__((aligned(8)))   iodc_retbuf[32];
1186static char __attribute__((aligned(64))) iodc_dbuf[4096];
1187
1188/**
1189 * pdc_iodc_print - Console print using IODC.
1190 * @str: the string to output.
1191 * @count: length of str
1192 *
1193 * Note that only these special chars are architected for console IODC io:
1194 * BEL, BS, CR, and LF. Others are passed through.
1195 * Since the HP console requires CR+LF to perform a 'newline', we translate
1196 * "\n" to "\r\n".
1197 */
1198int pdc_iodc_print(const unsigned char *str, unsigned count)
1199{
1200	unsigned int i;
1201	unsigned long flags;
1202
1203	for (i = 0; i < count;) {
1204		switch(str[i]) {
1205		case '\n':
1206			iodc_dbuf[i+0] = '\r';
1207			iodc_dbuf[i+1] = '\n';
1208			i += 2;
1209			goto print;
1210		default:
1211			iodc_dbuf[i] = str[i];
1212			i++;
1213			break;
1214		}
1215	}
1216
1217print:
1218        spin_lock_irqsave(&pdc_lock, flags);
1219        real32_call(PAGE0->mem_cons.iodc_io,
1220                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1221                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1222                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1223        spin_unlock_irqrestore(&pdc_lock, flags);
1224
1225	return i;
1226}
1227
1228#if !defined(BOOTLOADER)
1229/**
1230 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1231 *
1232 * Read a character (non-blocking) from the PDC console, returns -1 if
1233 * key is not present.
1234 */
1235int pdc_iodc_getc(void)
1236{
1237	int ch;
1238	int status;
1239	unsigned long flags;
1240
1241	/* Bail if no console input device. */
1242	if (!PAGE0->mem_kbd.iodc_io)
1243		return 0;
1244	
1245	/* wait for a keyboard (rs232)-input */
1246	spin_lock_irqsave(&pdc_lock, flags);
1247	real32_call(PAGE0->mem_kbd.iodc_io,
1248		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1249		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1250		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1251
1252	ch = *iodc_dbuf;
1253	status = *iodc_retbuf;
1254	spin_unlock_irqrestore(&pdc_lock, flags);
1255
1256	if (status == 0)
1257	    return -1;
1258	
1259	return ch;
1260}
1261
1262int pdc_sti_call(unsigned long func, unsigned long flags,
1263                 unsigned long inptr, unsigned long outputr,
1264                 unsigned long glob_cfg)
1265{
1266        int retval;
1267	unsigned long irqflags;
1268
1269        spin_lock_irqsave(&pdc_lock, irqflags);  
1270        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1271        spin_unlock_irqrestore(&pdc_lock, irqflags);
1272
1273        return retval;
1274}
1275EXPORT_SYMBOL(pdc_sti_call);
1276
1277#ifdef CONFIG_64BIT
1278/**
1279 * pdc_pat_cell_get_number - Returns the cell number.
1280 * @cell_info: The return buffer.
1281 *
1282 * This PDC call returns the cell number of the cell from which the call
1283 * is made.
1284 */
1285int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1286{
1287	int retval;
1288	unsigned long flags;
1289
1290	spin_lock_irqsave(&pdc_lock, flags);
1291	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1292	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1293	spin_unlock_irqrestore(&pdc_lock, flags);
1294
1295	return retval;
1296}
1297
1298/**
1299 * pdc_pat_cell_module - Retrieve the cell's module information.
1300 * @actcnt: The number of bytes written to mem_addr.
1301 * @ploc: The physical location.
1302 * @mod: The module index.
1303 * @view_type: The view of the address type.
1304 * @mem_addr: The return buffer.
1305 *
1306 * This PDC call returns information about each module attached to the cell
1307 * at the specified location.
1308 */
1309int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1310			unsigned long view_type, void *mem_addr)
1311{
1312	int retval;
1313	unsigned long flags;
1314	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1315
1316	spin_lock_irqsave(&pdc_lock, flags);
1317	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1318			      ploc, mod, view_type, __pa(&result));
1319	if(!retval) {
1320		*actcnt = pdc_result[0];
1321		memcpy(mem_addr, &result, *actcnt);
1322	}
1323	spin_unlock_irqrestore(&pdc_lock, flags);
1324
1325	return retval;
1326}
1327
1328/**
1329 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1330 * @cpu_info: The return buffer.
1331 * @hpa: The Hard Physical Address of the CPU.
1332 *
1333 * Retrieve the cpu number for the cpu at the specified HPA.
1334 */
1335int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1336{
1337	int retval;
1338	unsigned long flags;
1339
1340	spin_lock_irqsave(&pdc_lock, flags);
1341	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1342			      __pa(&pdc_result), hpa);
1343	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1344	spin_unlock_irqrestore(&pdc_lock, flags);
1345
1346	return retval;
1347}
1348
1349/**
1350 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1351 * @num_entries: The return value.
1352 * @cell_num: The target cell.
1353 *
1354 * This PDC function returns the number of entries in the specified cell's
1355 * interrupt table.
1356 */
1357int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1358{
1359	int retval;
1360	unsigned long flags;
1361
1362	spin_lock_irqsave(&pdc_lock, flags);
1363	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1364			      __pa(pdc_result), cell_num);
1365	*num_entries = pdc_result[0];
1366	spin_unlock_irqrestore(&pdc_lock, flags);
1367
1368	return retval;
1369}
1370
1371/**
1372 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1373 * @r_addr: The return buffer.
1374 * @cell_num: The target cell.
1375 *
1376 * This PDC function returns the actual interrupt table for the specified cell.
1377 */
1378int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1379{
1380	int retval;
1381	unsigned long flags;
1382
1383	spin_lock_irqsave(&pdc_lock, flags);
1384	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1385			      __pa(r_addr), cell_num);
1386	spin_unlock_irqrestore(&pdc_lock, flags);
1387
1388	return retval;
1389}
1390
1391/**
1392 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1393 * @actlen: The return buffer.
1394 * @mem_addr: Pointer to the memory buffer.
1395 * @count: The number of bytes to read from the buffer.
1396 * @offset: The offset with respect to the beginning of the buffer.
1397 *
1398 */
1399int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1400			    unsigned long count, unsigned long offset)
1401{
1402	int retval;
1403	unsigned long flags;
1404
1405	spin_lock_irqsave(&pdc_lock, flags);
1406	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1407			      __pa(pdc_result2), count, offset);
1408	*actual_len = pdc_result[0];
1409	memcpy(mem_addr, pdc_result2, *actual_len);
1410	spin_unlock_irqrestore(&pdc_lock, flags);
1411
1412	return retval;
1413}
1414
1415/**
1416 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1417 * @pci_addr: PCI configuration space address for which the read request is being made.
1418 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1419 * @mem_addr: Pointer to return memory buffer.
1420 *
1421 */
1422int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1423{
1424	int retval;
1425	unsigned long flags;
1426
1427	spin_lock_irqsave(&pdc_lock, flags);
1428	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1429					__pa(pdc_result), pci_addr, pci_size);
1430	switch(pci_size) {
1431		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1432		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1433		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1434	}
1435	spin_unlock_irqrestore(&pdc_lock, flags);
1436
1437	return retval;
1438}
1439
1440/**
1441 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1442 * @pci_addr: PCI configuration space address for which the write  request is being made.
1443 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1444 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1445 *         written to PCI Config space.
1446 *
1447 */
1448int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1449{
1450	int retval;
1451	unsigned long flags;
1452
1453	spin_lock_irqsave(&pdc_lock, flags);
1454	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1455				pci_addr, pci_size, val);
1456	spin_unlock_irqrestore(&pdc_lock, flags);
1457
1458	return retval;
1459}
1460
1461/**
1462 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1463 * @rinfo: memory pdt information
1464 *
1465 */
1466int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1467{
1468	int retval;
1469	unsigned long flags;
1470
1471	spin_lock_irqsave(&pdc_lock, flags);
1472	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1473			__pa(&pdc_result));
1474	if (retval == PDC_OK)
1475		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1476	spin_unlock_irqrestore(&pdc_lock, flags);
1477
1478	return retval;
1479}
1480
1481/**
1482 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1483 *				table of a cell
1484 * @rinfo: memory pdt information
1485 * @cell: cell number
1486 *
1487 */
1488int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1489		unsigned long cell)
1490{
1491	int retval;
1492	unsigned long flags;
1493
1494	spin_lock_irqsave(&pdc_lock, flags);
1495	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1496			__pa(&pdc_result), cell);
1497	if (retval == PDC_OK)
1498		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1499	spin_unlock_irqrestore(&pdc_lock, flags);
1500
1501	return retval;
1502}
1503
1504/**
1505 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1506 * @pret: array of PDT entries
1507 * @pdt_entries_ptr: ptr to hold number of PDT entries
1508 * @max_entries: maximum number of entries to be read
1509 *
1510 */
1511int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1512		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1513{
1514	int retval;
1515	unsigned long flags, entries;
1516
1517	spin_lock_irqsave(&pdc_lock, flags);
1518	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1519	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1520			__pa(&pdc_result), parisc_cell_num,
1521			__pa(pdt_entries_ptr));
1522
1523	if (retval == PDC_OK) {
1524		/* build up return value as for PDC_PAT_MEM_PD_READ */
1525		entries = min(pdc_result[0], max_entries);
1526		pret->pdt_entries = entries;
1527		pret->actual_count_bytes = entries * sizeof(unsigned long);
1528	}
1529
1530	spin_unlock_irqrestore(&pdc_lock, flags);
1531	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1532
1533	return retval;
1534}
1535/**
1536 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1537 * @pret: array of PDT entries
1538 * @pdt_entries_ptr: ptr to hold number of PDT entries
1539 * @count: number of bytes to read
1540 * @offset: offset to start (in bytes)
1541 *
1542 */
1543int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1544		unsigned long *pdt_entries_ptr, unsigned long count,
1545		unsigned long offset)
1546{
1547	int retval;
1548	unsigned long flags, entries;
1549
1550	spin_lock_irqsave(&pdc_lock, flags);
1551	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1552		__pa(&pdc_result), __pa(pdt_entries_ptr),
1553		count, offset);
1554
1555	if (retval == PDC_OK) {
1556		entries = min(pdc_result[0], count);
1557		pret->actual_count_bytes = entries;
1558		pret->pdt_entries = entries / sizeof(unsigned long);
1559	}
1560
1561	spin_unlock_irqrestore(&pdc_lock, flags);
1562
1563	return retval;
1564}
1565
1566/**
1567 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1568 * @pret: ptr to hold returned information
1569 * @phys_addr: physical address to examine
1570 *
1571 */
1572int pdc_pat_mem_get_dimm_phys_location(
1573		struct pdc_pat_mem_phys_mem_location *pret,
1574		unsigned long phys_addr)
1575{
1576	int retval;
1577	unsigned long flags;
1578
1579	spin_lock_irqsave(&pdc_lock, flags);
1580	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1581		__pa(&pdc_result), phys_addr);
1582
1583	if (retval == PDC_OK)
1584		memcpy(pret, &pdc_result, sizeof(*pret));
1585
1586	spin_unlock_irqrestore(&pdc_lock, flags);
1587
1588	return retval;
1589}
1590#endif /* CONFIG_64BIT */
1591#endif /* defined(BOOTLOADER) */
1592
1593
1594/***************** 32-bit real-mode calls ***********/
1595/* The struct below is used
1596 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1597 * real32_call_asm() then uses this stack in narrow real mode
1598 */
1599
1600struct narrow_stack {
1601	/* use int, not long which is 64 bits */
1602	unsigned int arg13;
1603	unsigned int arg12;
1604	unsigned int arg11;
1605	unsigned int arg10;
1606	unsigned int arg9;
1607	unsigned int arg8;
1608	unsigned int arg7;
1609	unsigned int arg6;
1610	unsigned int arg5;
1611	unsigned int arg4;
1612	unsigned int arg3;
1613	unsigned int arg2;
1614	unsigned int arg1;
1615	unsigned int arg0;
1616	unsigned int frame_marker[8];
1617	unsigned int sp;
1618	/* in reality, there's nearly 8k of stack after this */
1619};
1620
1621long real32_call(unsigned long fn, ...)
1622{
1623	va_list args;
1624	extern struct narrow_stack real_stack;
1625	extern unsigned long real32_call_asm(unsigned int *,
1626					     unsigned int *, 
1627					     unsigned int);
1628	
1629	va_start(args, fn);
1630	real_stack.arg0 = va_arg(args, unsigned int);
1631	real_stack.arg1 = va_arg(args, unsigned int);
1632	real_stack.arg2 = va_arg(args, unsigned int);
1633	real_stack.arg3 = va_arg(args, unsigned int);
1634	real_stack.arg4 = va_arg(args, unsigned int);
1635	real_stack.arg5 = va_arg(args, unsigned int);
1636	real_stack.arg6 = va_arg(args, unsigned int);
1637	real_stack.arg7 = va_arg(args, unsigned int);
1638	real_stack.arg8 = va_arg(args, unsigned int);
1639	real_stack.arg9 = va_arg(args, unsigned int);
1640	real_stack.arg10 = va_arg(args, unsigned int);
1641	real_stack.arg11 = va_arg(args, unsigned int);
1642	real_stack.arg12 = va_arg(args, unsigned int);
1643	real_stack.arg13 = va_arg(args, unsigned int);
1644	va_end(args);
1645	
1646	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1647}
1648
1649#ifdef CONFIG_64BIT
1650/***************** 64-bit real-mode calls ***********/
1651
1652struct wide_stack {
1653	unsigned long arg0;
1654	unsigned long arg1;
1655	unsigned long arg2;
1656	unsigned long arg3;
1657	unsigned long arg4;
1658	unsigned long arg5;
1659	unsigned long arg6;
1660	unsigned long arg7;
1661	unsigned long arg8;
1662	unsigned long arg9;
1663	unsigned long arg10;
1664	unsigned long arg11;
1665	unsigned long arg12;
1666	unsigned long arg13;
1667	unsigned long frame_marker[2];	/* rp, previous sp */
1668	unsigned long sp;
1669	/* in reality, there's nearly 8k of stack after this */
1670};
1671
1672long real64_call(unsigned long fn, ...)
1673{
1674	va_list args;
1675	extern struct wide_stack real64_stack;
1676	extern unsigned long real64_call_asm(unsigned long *,
1677					     unsigned long *, 
1678					     unsigned long);
1679    
1680	va_start(args, fn);
1681	real64_stack.arg0 = va_arg(args, unsigned long);
1682	real64_stack.arg1 = va_arg(args, unsigned long);
1683	real64_stack.arg2 = va_arg(args, unsigned long);
1684	real64_stack.arg3 = va_arg(args, unsigned long);
1685	real64_stack.arg4 = va_arg(args, unsigned long);
1686	real64_stack.arg5 = va_arg(args, unsigned long);
1687	real64_stack.arg6 = va_arg(args, unsigned long);
1688	real64_stack.arg7 = va_arg(args, unsigned long);
1689	real64_stack.arg8 = va_arg(args, unsigned long);
1690	real64_stack.arg9 = va_arg(args, unsigned long);
1691	real64_stack.arg10 = va_arg(args, unsigned long);
1692	real64_stack.arg11 = va_arg(args, unsigned long);
1693	real64_stack.arg12 = va_arg(args, unsigned long);
1694	real64_stack.arg13 = va_arg(args, unsigned long);
1695	va_end(args);
1696	
1697	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1698}
1699
1700#endif /* CONFIG_64BIT */