Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1992 Ross Biro
7 * Copyright (C) Linus Torvalds
8 * Copyright (C) 1994, 95, 96, 97, 98, 2000 Ralf Baechle
9 * Copyright (C) 1996 David S. Miller
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 1999 MIPS Technologies, Inc.
12 * Copyright (C) 2000 Ulf Carlsson
13 *
14 * At this time Linux/MIPS64 only supports syscall tracing, even for 32-bit
15 * binaries.
16 */
17#include <linux/compiler.h>
18#include <linux/context_tracking.h>
19#include <linux/elf.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/mm.h>
23#include <linux/errno.h>
24#include <linux/ptrace.h>
25#include <linux/regset.h>
26#include <linux/smp.h>
27#include <linux/security.h>
28#include <linux/stddef.h>
29#include <linux/tracehook.h>
30#include <linux/audit.h>
31#include <linux/seccomp.h>
32#include <linux/ftrace.h>
33
34#include <asm/byteorder.h>
35#include <asm/cpu.h>
36#include <asm/cpu-info.h>
37#include <asm/dsp.h>
38#include <asm/fpu.h>
39#include <asm/mipsregs.h>
40#include <asm/mipsmtregs.h>
41#include <asm/pgtable.h>
42#include <asm/page.h>
43#include <asm/syscall.h>
44#include <asm/uaccess.h>
45#include <asm/bootinfo.h>
46#include <asm/reg.h>
47
48#define CREATE_TRACE_POINTS
49#include <trace/events/syscalls.h>
50
51static void init_fp_ctx(struct task_struct *target)
52{
53 /* If FP has been used then the target already has context */
54 if (tsk_used_math(target))
55 return;
56
57 /* Begin with data registers set to all 1s... */
58 memset(&target->thread.fpu.fpr, ~0, sizeof(target->thread.fpu.fpr));
59
60 /* ...and FCSR zeroed */
61 target->thread.fpu.fcr31 = 0;
62
63 /*
64 * Record that the target has "used" math, such that the context
65 * just initialised, and any modifications made by the caller,
66 * aren't discarded.
67 */
68 set_stopped_child_used_math(target);
69}
70
71/*
72 * Called by kernel/ptrace.c when detaching..
73 *
74 * Make sure single step bits etc are not set.
75 */
76void ptrace_disable(struct task_struct *child)
77{
78 /* Don't load the watchpoint registers for the ex-child. */
79 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
80}
81
82/*
83 * Read a general register set. We always use the 64-bit format, even
84 * for 32-bit kernels and for 32-bit processes on a 64-bit kernel.
85 * Registers are sign extended to fill the available space.
86 */
87int ptrace_getregs(struct task_struct *child, struct user_pt_regs __user *data)
88{
89 struct pt_regs *regs;
90 int i;
91
92 if (!access_ok(VERIFY_WRITE, data, 38 * 8))
93 return -EIO;
94
95 regs = task_pt_regs(child);
96
97 for (i = 0; i < 32; i++)
98 __put_user((long)regs->regs[i], (__s64 __user *)&data->regs[i]);
99 __put_user((long)regs->lo, (__s64 __user *)&data->lo);
100 __put_user((long)regs->hi, (__s64 __user *)&data->hi);
101 __put_user((long)regs->cp0_epc, (__s64 __user *)&data->cp0_epc);
102 __put_user((long)regs->cp0_badvaddr, (__s64 __user *)&data->cp0_badvaddr);
103 __put_user((long)regs->cp0_status, (__s64 __user *)&data->cp0_status);
104 __put_user((long)regs->cp0_cause, (__s64 __user *)&data->cp0_cause);
105
106 return 0;
107}
108
109/*
110 * Write a general register set. As for PTRACE_GETREGS, we always use
111 * the 64-bit format. On a 32-bit kernel only the lower order half
112 * (according to endianness) will be used.
113 */
114int ptrace_setregs(struct task_struct *child, struct user_pt_regs __user *data)
115{
116 struct pt_regs *regs;
117 int i;
118
119 if (!access_ok(VERIFY_READ, data, 38 * 8))
120 return -EIO;
121
122 regs = task_pt_regs(child);
123
124 for (i = 0; i < 32; i++)
125 __get_user(regs->regs[i], (__s64 __user *)&data->regs[i]);
126 __get_user(regs->lo, (__s64 __user *)&data->lo);
127 __get_user(regs->hi, (__s64 __user *)&data->hi);
128 __get_user(regs->cp0_epc, (__s64 __user *)&data->cp0_epc);
129
130 /* badvaddr, status, and cause may not be written. */
131
132 return 0;
133}
134
135int ptrace_getfpregs(struct task_struct *child, __u32 __user *data)
136{
137 int i;
138
139 if (!access_ok(VERIFY_WRITE, data, 33 * 8))
140 return -EIO;
141
142 if (tsk_used_math(child)) {
143 union fpureg *fregs = get_fpu_regs(child);
144 for (i = 0; i < 32; i++)
145 __put_user(get_fpr64(&fregs[i], 0),
146 i + (__u64 __user *)data);
147 } else {
148 for (i = 0; i < 32; i++)
149 __put_user((__u64) -1, i + (__u64 __user *) data);
150 }
151
152 __put_user(child->thread.fpu.fcr31, data + 64);
153 __put_user(boot_cpu_data.fpu_id, data + 65);
154
155 return 0;
156}
157
158int ptrace_setfpregs(struct task_struct *child, __u32 __user *data)
159{
160 union fpureg *fregs;
161 u64 fpr_val;
162 u32 fcr31;
163 u32 value;
164 u32 mask;
165 int i;
166
167 if (!access_ok(VERIFY_READ, data, 33 * 8))
168 return -EIO;
169
170 init_fp_ctx(child);
171 fregs = get_fpu_regs(child);
172
173 for (i = 0; i < 32; i++) {
174 __get_user(fpr_val, i + (__u64 __user *)data);
175 set_fpr64(&fregs[i], 0, fpr_val);
176 }
177
178 __get_user(value, data + 64);
179 fcr31 = child->thread.fpu.fcr31;
180 mask = boot_cpu_data.fpu_msk31;
181 child->thread.fpu.fcr31 = (value & ~mask) | (fcr31 & mask);
182
183 /* FIR may not be written. */
184
185 return 0;
186}
187
188int ptrace_get_watch_regs(struct task_struct *child,
189 struct pt_watch_regs __user *addr)
190{
191 enum pt_watch_style style;
192 int i;
193
194 if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0)
195 return -EIO;
196 if (!access_ok(VERIFY_WRITE, addr, sizeof(struct pt_watch_regs)))
197 return -EIO;
198
199#ifdef CONFIG_32BIT
200 style = pt_watch_style_mips32;
201#define WATCH_STYLE mips32
202#else
203 style = pt_watch_style_mips64;
204#define WATCH_STYLE mips64
205#endif
206
207 __put_user(style, &addr->style);
208 __put_user(boot_cpu_data.watch_reg_use_cnt,
209 &addr->WATCH_STYLE.num_valid);
210 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
211 __put_user(child->thread.watch.mips3264.watchlo[i],
212 &addr->WATCH_STYLE.watchlo[i]);
213 __put_user(child->thread.watch.mips3264.watchhi[i] & 0xfff,
214 &addr->WATCH_STYLE.watchhi[i]);
215 __put_user(boot_cpu_data.watch_reg_masks[i],
216 &addr->WATCH_STYLE.watch_masks[i]);
217 }
218 for (; i < 8; i++) {
219 __put_user(0, &addr->WATCH_STYLE.watchlo[i]);
220 __put_user(0, &addr->WATCH_STYLE.watchhi[i]);
221 __put_user(0, &addr->WATCH_STYLE.watch_masks[i]);
222 }
223
224 return 0;
225}
226
227int ptrace_set_watch_regs(struct task_struct *child,
228 struct pt_watch_regs __user *addr)
229{
230 int i;
231 int watch_active = 0;
232 unsigned long lt[NUM_WATCH_REGS];
233 u16 ht[NUM_WATCH_REGS];
234
235 if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0)
236 return -EIO;
237 if (!access_ok(VERIFY_READ, addr, sizeof(struct pt_watch_regs)))
238 return -EIO;
239 /* Check the values. */
240 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
241 __get_user(lt[i], &addr->WATCH_STYLE.watchlo[i]);
242#ifdef CONFIG_32BIT
243 if (lt[i] & __UA_LIMIT)
244 return -EINVAL;
245#else
246 if (test_tsk_thread_flag(child, TIF_32BIT_ADDR)) {
247 if (lt[i] & 0xffffffff80000000UL)
248 return -EINVAL;
249 } else {
250 if (lt[i] & __UA_LIMIT)
251 return -EINVAL;
252 }
253#endif
254 __get_user(ht[i], &addr->WATCH_STYLE.watchhi[i]);
255 if (ht[i] & ~0xff8)
256 return -EINVAL;
257 }
258 /* Install them. */
259 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
260 if (lt[i] & 7)
261 watch_active = 1;
262 child->thread.watch.mips3264.watchlo[i] = lt[i];
263 /* Set the G bit. */
264 child->thread.watch.mips3264.watchhi[i] = ht[i];
265 }
266
267 if (watch_active)
268 set_tsk_thread_flag(child, TIF_LOAD_WATCH);
269 else
270 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
271
272 return 0;
273}
274
275/* regset get/set implementations */
276
277#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
278
279static int gpr32_get(struct task_struct *target,
280 const struct user_regset *regset,
281 unsigned int pos, unsigned int count,
282 void *kbuf, void __user *ubuf)
283{
284 struct pt_regs *regs = task_pt_regs(target);
285 u32 uregs[ELF_NGREG] = {};
286 unsigned i;
287
288 for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
289 /* k0/k1 are copied as zero. */
290 if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
291 continue;
292
293 uregs[i] = regs->regs[i - MIPS32_EF_R0];
294 }
295
296 uregs[MIPS32_EF_LO] = regs->lo;
297 uregs[MIPS32_EF_HI] = regs->hi;
298 uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
299 uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
300 uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
301 uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
302
303 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0,
304 sizeof(uregs));
305}
306
307static int gpr32_set(struct task_struct *target,
308 const struct user_regset *regset,
309 unsigned int pos, unsigned int count,
310 const void *kbuf, const void __user *ubuf)
311{
312 struct pt_regs *regs = task_pt_regs(target);
313 u32 uregs[ELF_NGREG];
314 unsigned start, num_regs, i;
315 int err;
316
317 start = pos / sizeof(u32);
318 num_regs = count / sizeof(u32);
319
320 if (start + num_regs > ELF_NGREG)
321 return -EIO;
322
323 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
324 sizeof(uregs));
325 if (err)
326 return err;
327
328 for (i = start; i < num_regs; i++) {
329 /*
330 * Cast all values to signed here so that if this is a 64-bit
331 * kernel, the supplied 32-bit values will be sign extended.
332 */
333 switch (i) {
334 case MIPS32_EF_R1 ... MIPS32_EF_R25:
335 /* k0/k1 are ignored. */
336 case MIPS32_EF_R28 ... MIPS32_EF_R31:
337 regs->regs[i - MIPS32_EF_R0] = (s32)uregs[i];
338 break;
339 case MIPS32_EF_LO:
340 regs->lo = (s32)uregs[i];
341 break;
342 case MIPS32_EF_HI:
343 regs->hi = (s32)uregs[i];
344 break;
345 case MIPS32_EF_CP0_EPC:
346 regs->cp0_epc = (s32)uregs[i];
347 break;
348 }
349 }
350
351 return 0;
352}
353
354#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
355
356#ifdef CONFIG_64BIT
357
358static int gpr64_get(struct task_struct *target,
359 const struct user_regset *regset,
360 unsigned int pos, unsigned int count,
361 void *kbuf, void __user *ubuf)
362{
363 struct pt_regs *regs = task_pt_regs(target);
364 u64 uregs[ELF_NGREG] = {};
365 unsigned i;
366
367 for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
368 /* k0/k1 are copied as zero. */
369 if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
370 continue;
371
372 uregs[i] = regs->regs[i - MIPS64_EF_R0];
373 }
374
375 uregs[MIPS64_EF_LO] = regs->lo;
376 uregs[MIPS64_EF_HI] = regs->hi;
377 uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
378 uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
379 uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
380 uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
381
382 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0,
383 sizeof(uregs));
384}
385
386static int gpr64_set(struct task_struct *target,
387 const struct user_regset *regset,
388 unsigned int pos, unsigned int count,
389 const void *kbuf, const void __user *ubuf)
390{
391 struct pt_regs *regs = task_pt_regs(target);
392 u64 uregs[ELF_NGREG];
393 unsigned start, num_regs, i;
394 int err;
395
396 start = pos / sizeof(u64);
397 num_regs = count / sizeof(u64);
398
399 if (start + num_regs > ELF_NGREG)
400 return -EIO;
401
402 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
403 sizeof(uregs));
404 if (err)
405 return err;
406
407 for (i = start; i < num_regs; i++) {
408 switch (i) {
409 case MIPS64_EF_R1 ... MIPS64_EF_R25:
410 /* k0/k1 are ignored. */
411 case MIPS64_EF_R28 ... MIPS64_EF_R31:
412 regs->regs[i - MIPS64_EF_R0] = uregs[i];
413 break;
414 case MIPS64_EF_LO:
415 regs->lo = uregs[i];
416 break;
417 case MIPS64_EF_HI:
418 regs->hi = uregs[i];
419 break;
420 case MIPS64_EF_CP0_EPC:
421 regs->cp0_epc = uregs[i];
422 break;
423 }
424 }
425
426 return 0;
427}
428
429#endif /* CONFIG_64BIT */
430
431static int fpr_get(struct task_struct *target,
432 const struct user_regset *regset,
433 unsigned int pos, unsigned int count,
434 void *kbuf, void __user *ubuf)
435{
436 unsigned i;
437 int err;
438 u64 fpr_val;
439
440 /* XXX fcr31 */
441
442 if (sizeof(target->thread.fpu.fpr[i]) == sizeof(elf_fpreg_t))
443 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
444 &target->thread.fpu,
445 0, sizeof(elf_fpregset_t));
446
447 for (i = 0; i < NUM_FPU_REGS; i++) {
448 fpr_val = get_fpr64(&target->thread.fpu.fpr[i], 0);
449 err = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
450 &fpr_val, i * sizeof(elf_fpreg_t),
451 (i + 1) * sizeof(elf_fpreg_t));
452 if (err)
453 return err;
454 }
455
456 return 0;
457}
458
459static int fpr_set(struct task_struct *target,
460 const struct user_regset *regset,
461 unsigned int pos, unsigned int count,
462 const void *kbuf, const void __user *ubuf)
463{
464 unsigned i;
465 int err;
466 u64 fpr_val;
467
468 /* XXX fcr31 */
469
470 init_fp_ctx(target);
471
472 if (sizeof(target->thread.fpu.fpr[i]) == sizeof(elf_fpreg_t))
473 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
474 &target->thread.fpu,
475 0, sizeof(elf_fpregset_t));
476
477 for (i = 0; i < NUM_FPU_REGS; i++) {
478 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
479 &fpr_val, i * sizeof(elf_fpreg_t),
480 (i + 1) * sizeof(elf_fpreg_t));
481 if (err)
482 return err;
483 set_fpr64(&target->thread.fpu.fpr[i], 0, fpr_val);
484 }
485
486 return 0;
487}
488
489enum mips_regset {
490 REGSET_GPR,
491 REGSET_FPR,
492};
493
494struct pt_regs_offset {
495 const char *name;
496 int offset;
497};
498
499#define REG_OFFSET_NAME(reg, r) { \
500 .name = #reg, \
501 .offset = offsetof(struct pt_regs, r) \
502}
503
504#define REG_OFFSET_END { \
505 .name = NULL, \
506 .offset = 0 \
507}
508
509static const struct pt_regs_offset regoffset_table[] = {
510 REG_OFFSET_NAME(r0, regs[0]),
511 REG_OFFSET_NAME(r1, regs[1]),
512 REG_OFFSET_NAME(r2, regs[2]),
513 REG_OFFSET_NAME(r3, regs[3]),
514 REG_OFFSET_NAME(r4, regs[4]),
515 REG_OFFSET_NAME(r5, regs[5]),
516 REG_OFFSET_NAME(r6, regs[6]),
517 REG_OFFSET_NAME(r7, regs[7]),
518 REG_OFFSET_NAME(r8, regs[8]),
519 REG_OFFSET_NAME(r9, regs[9]),
520 REG_OFFSET_NAME(r10, regs[10]),
521 REG_OFFSET_NAME(r11, regs[11]),
522 REG_OFFSET_NAME(r12, regs[12]),
523 REG_OFFSET_NAME(r13, regs[13]),
524 REG_OFFSET_NAME(r14, regs[14]),
525 REG_OFFSET_NAME(r15, regs[15]),
526 REG_OFFSET_NAME(r16, regs[16]),
527 REG_OFFSET_NAME(r17, regs[17]),
528 REG_OFFSET_NAME(r18, regs[18]),
529 REG_OFFSET_NAME(r19, regs[19]),
530 REG_OFFSET_NAME(r20, regs[20]),
531 REG_OFFSET_NAME(r21, regs[21]),
532 REG_OFFSET_NAME(r22, regs[22]),
533 REG_OFFSET_NAME(r23, regs[23]),
534 REG_OFFSET_NAME(r24, regs[24]),
535 REG_OFFSET_NAME(r25, regs[25]),
536 REG_OFFSET_NAME(r26, regs[26]),
537 REG_OFFSET_NAME(r27, regs[27]),
538 REG_OFFSET_NAME(r28, regs[28]),
539 REG_OFFSET_NAME(r29, regs[29]),
540 REG_OFFSET_NAME(r30, regs[30]),
541 REG_OFFSET_NAME(r31, regs[31]),
542 REG_OFFSET_NAME(c0_status, cp0_status),
543 REG_OFFSET_NAME(hi, hi),
544 REG_OFFSET_NAME(lo, lo),
545#ifdef CONFIG_CPU_HAS_SMARTMIPS
546 REG_OFFSET_NAME(acx, acx),
547#endif
548 REG_OFFSET_NAME(c0_badvaddr, cp0_badvaddr),
549 REG_OFFSET_NAME(c0_cause, cp0_cause),
550 REG_OFFSET_NAME(c0_epc, cp0_epc),
551#ifdef CONFIG_CPU_CAVIUM_OCTEON
552 REG_OFFSET_NAME(mpl0, mpl[0]),
553 REG_OFFSET_NAME(mpl1, mpl[1]),
554 REG_OFFSET_NAME(mpl2, mpl[2]),
555 REG_OFFSET_NAME(mtp0, mtp[0]),
556 REG_OFFSET_NAME(mtp1, mtp[1]),
557 REG_OFFSET_NAME(mtp2, mtp[2]),
558#endif
559 REG_OFFSET_END,
560};
561
562/**
563 * regs_query_register_offset() - query register offset from its name
564 * @name: the name of a register
565 *
566 * regs_query_register_offset() returns the offset of a register in struct
567 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
568 */
569int regs_query_register_offset(const char *name)
570{
571 const struct pt_regs_offset *roff;
572 for (roff = regoffset_table; roff->name != NULL; roff++)
573 if (!strcmp(roff->name, name))
574 return roff->offset;
575 return -EINVAL;
576}
577
578#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
579
580static const struct user_regset mips_regsets[] = {
581 [REGSET_GPR] = {
582 .core_note_type = NT_PRSTATUS,
583 .n = ELF_NGREG,
584 .size = sizeof(unsigned int),
585 .align = sizeof(unsigned int),
586 .get = gpr32_get,
587 .set = gpr32_set,
588 },
589 [REGSET_FPR] = {
590 .core_note_type = NT_PRFPREG,
591 .n = ELF_NFPREG,
592 .size = sizeof(elf_fpreg_t),
593 .align = sizeof(elf_fpreg_t),
594 .get = fpr_get,
595 .set = fpr_set,
596 },
597};
598
599static const struct user_regset_view user_mips_view = {
600 .name = "mips",
601 .e_machine = ELF_ARCH,
602 .ei_osabi = ELF_OSABI,
603 .regsets = mips_regsets,
604 .n = ARRAY_SIZE(mips_regsets),
605};
606
607#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
608
609#ifdef CONFIG_64BIT
610
611static const struct user_regset mips64_regsets[] = {
612 [REGSET_GPR] = {
613 .core_note_type = NT_PRSTATUS,
614 .n = ELF_NGREG,
615 .size = sizeof(unsigned long),
616 .align = sizeof(unsigned long),
617 .get = gpr64_get,
618 .set = gpr64_set,
619 },
620 [REGSET_FPR] = {
621 .core_note_type = NT_PRFPREG,
622 .n = ELF_NFPREG,
623 .size = sizeof(elf_fpreg_t),
624 .align = sizeof(elf_fpreg_t),
625 .get = fpr_get,
626 .set = fpr_set,
627 },
628};
629
630static const struct user_regset_view user_mips64_view = {
631 .name = "mips64",
632 .e_machine = ELF_ARCH,
633 .ei_osabi = ELF_OSABI,
634 .regsets = mips64_regsets,
635 .n = ARRAY_SIZE(mips64_regsets),
636};
637
638#endif /* CONFIG_64BIT */
639
640const struct user_regset_view *task_user_regset_view(struct task_struct *task)
641{
642#ifdef CONFIG_32BIT
643 return &user_mips_view;
644#else
645#ifdef CONFIG_MIPS32_O32
646 if (test_tsk_thread_flag(task, TIF_32BIT_REGS))
647 return &user_mips_view;
648#endif
649 return &user_mips64_view;
650#endif
651}
652
653long arch_ptrace(struct task_struct *child, long request,
654 unsigned long addr, unsigned long data)
655{
656 int ret;
657 void __user *addrp = (void __user *) addr;
658 void __user *datavp = (void __user *) data;
659 unsigned long __user *datalp = (void __user *) data;
660
661 switch (request) {
662 /* when I and D space are separate, these will need to be fixed. */
663 case PTRACE_PEEKTEXT: /* read word at location addr. */
664 case PTRACE_PEEKDATA:
665 ret = generic_ptrace_peekdata(child, addr, data);
666 break;
667
668 /* Read the word at location addr in the USER area. */
669 case PTRACE_PEEKUSR: {
670 struct pt_regs *regs;
671 union fpureg *fregs;
672 unsigned long tmp = 0;
673
674 regs = task_pt_regs(child);
675 ret = 0; /* Default return value. */
676
677 switch (addr) {
678 case 0 ... 31:
679 tmp = regs->regs[addr];
680 break;
681 case FPR_BASE ... FPR_BASE + 31:
682 if (!tsk_used_math(child)) {
683 /* FP not yet used */
684 tmp = -1;
685 break;
686 }
687 fregs = get_fpu_regs(child);
688
689#ifdef CONFIG_32BIT
690 if (test_thread_flag(TIF_32BIT_FPREGS)) {
691 /*
692 * The odd registers are actually the high
693 * order bits of the values stored in the even
694 * registers - unless we're using r2k_switch.S.
695 */
696 tmp = get_fpr32(&fregs[(addr & ~1) - FPR_BASE],
697 addr & 1);
698 break;
699 }
700#endif
701 tmp = get_fpr32(&fregs[addr - FPR_BASE], 0);
702 break;
703 case PC:
704 tmp = regs->cp0_epc;
705 break;
706 case CAUSE:
707 tmp = regs->cp0_cause;
708 break;
709 case BADVADDR:
710 tmp = regs->cp0_badvaddr;
711 break;
712 case MMHI:
713 tmp = regs->hi;
714 break;
715 case MMLO:
716 tmp = regs->lo;
717 break;
718#ifdef CONFIG_CPU_HAS_SMARTMIPS
719 case ACX:
720 tmp = regs->acx;
721 break;
722#endif
723 case FPC_CSR:
724 tmp = child->thread.fpu.fcr31;
725 break;
726 case FPC_EIR:
727 /* implementation / version register */
728 tmp = boot_cpu_data.fpu_id;
729 break;
730 case DSP_BASE ... DSP_BASE + 5: {
731 dspreg_t *dregs;
732
733 if (!cpu_has_dsp) {
734 tmp = 0;
735 ret = -EIO;
736 goto out;
737 }
738 dregs = __get_dsp_regs(child);
739 tmp = (unsigned long) (dregs[addr - DSP_BASE]);
740 break;
741 }
742 case DSP_CONTROL:
743 if (!cpu_has_dsp) {
744 tmp = 0;
745 ret = -EIO;
746 goto out;
747 }
748 tmp = child->thread.dsp.dspcontrol;
749 break;
750 default:
751 tmp = 0;
752 ret = -EIO;
753 goto out;
754 }
755 ret = put_user(tmp, datalp);
756 break;
757 }
758
759 /* when I and D space are separate, this will have to be fixed. */
760 case PTRACE_POKETEXT: /* write the word at location addr. */
761 case PTRACE_POKEDATA:
762 ret = generic_ptrace_pokedata(child, addr, data);
763 break;
764
765 case PTRACE_POKEUSR: {
766 struct pt_regs *regs;
767 ret = 0;
768 regs = task_pt_regs(child);
769
770 switch (addr) {
771 case 0 ... 31:
772 regs->regs[addr] = data;
773 break;
774 case FPR_BASE ... FPR_BASE + 31: {
775 union fpureg *fregs = get_fpu_regs(child);
776
777 init_fp_ctx(child);
778#ifdef CONFIG_32BIT
779 if (test_thread_flag(TIF_32BIT_FPREGS)) {
780 /*
781 * The odd registers are actually the high
782 * order bits of the values stored in the even
783 * registers - unless we're using r2k_switch.S.
784 */
785 set_fpr32(&fregs[(addr & ~1) - FPR_BASE],
786 addr & 1, data);
787 break;
788 }
789#endif
790 set_fpr64(&fregs[addr - FPR_BASE], 0, data);
791 break;
792 }
793 case PC:
794 regs->cp0_epc = data;
795 break;
796 case MMHI:
797 regs->hi = data;
798 break;
799 case MMLO:
800 regs->lo = data;
801 break;
802#ifdef CONFIG_CPU_HAS_SMARTMIPS
803 case ACX:
804 regs->acx = data;
805 break;
806#endif
807 case FPC_CSR:
808 child->thread.fpu.fcr31 = data & ~FPU_CSR_ALL_X;
809 break;
810 case DSP_BASE ... DSP_BASE + 5: {
811 dspreg_t *dregs;
812
813 if (!cpu_has_dsp) {
814 ret = -EIO;
815 break;
816 }
817
818 dregs = __get_dsp_regs(child);
819 dregs[addr - DSP_BASE] = data;
820 break;
821 }
822 case DSP_CONTROL:
823 if (!cpu_has_dsp) {
824 ret = -EIO;
825 break;
826 }
827 child->thread.dsp.dspcontrol = data;
828 break;
829 default:
830 /* The rest are not allowed. */
831 ret = -EIO;
832 break;
833 }
834 break;
835 }
836
837 case PTRACE_GETREGS:
838 ret = ptrace_getregs(child, datavp);
839 break;
840
841 case PTRACE_SETREGS:
842 ret = ptrace_setregs(child, datavp);
843 break;
844
845 case PTRACE_GETFPREGS:
846 ret = ptrace_getfpregs(child, datavp);
847 break;
848
849 case PTRACE_SETFPREGS:
850 ret = ptrace_setfpregs(child, datavp);
851 break;
852
853 case PTRACE_GET_THREAD_AREA:
854 ret = put_user(task_thread_info(child)->tp_value, datalp);
855 break;
856
857 case PTRACE_GET_WATCH_REGS:
858 ret = ptrace_get_watch_regs(child, addrp);
859 break;
860
861 case PTRACE_SET_WATCH_REGS:
862 ret = ptrace_set_watch_regs(child, addrp);
863 break;
864
865 default:
866 ret = ptrace_request(child, request, addr, data);
867 break;
868 }
869 out:
870 return ret;
871}
872
873/*
874 * Notification of system call entry/exit
875 * - triggered by current->work.syscall_trace
876 */
877asmlinkage long syscall_trace_enter(struct pt_regs *regs, long syscall)
878{
879 long ret = 0;
880 user_exit();
881
882 current_thread_info()->syscall = syscall;
883
884 if (secure_computing() == -1)
885 return -1;
886
887 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
888 tracehook_report_syscall_entry(regs))
889 ret = -1;
890
891 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
892 trace_sys_enter(regs, regs->regs[2]);
893
894 audit_syscall_entry(syscall, regs->regs[4], regs->regs[5],
895 regs->regs[6], regs->regs[7]);
896 return syscall;
897}
898
899/*
900 * Notification of system call entry/exit
901 * - triggered by current->work.syscall_trace
902 */
903asmlinkage void syscall_trace_leave(struct pt_regs *regs)
904{
905 /*
906 * We may come here right after calling schedule_user()
907 * or do_notify_resume(), in which case we can be in RCU
908 * user mode.
909 */
910 user_exit();
911
912 audit_syscall_exit(regs);
913
914 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
915 trace_sys_exit(regs, regs->regs[2]);
916
917 if (test_thread_flag(TIF_SYSCALL_TRACE))
918 tracehook_report_syscall_exit(regs, 0);
919
920 user_enter();
921}
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1992 Ross Biro
7 * Copyright (C) Linus Torvalds
8 * Copyright (C) 1994, 95, 96, 97, 98, 2000 Ralf Baechle
9 * Copyright (C) 1996 David S. Miller
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 1999 MIPS Technologies, Inc.
12 * Copyright (C) 2000 Ulf Carlsson
13 *
14 * At this time Linux/MIPS64 only supports syscall tracing, even for 32-bit
15 * binaries.
16 */
17#include <linux/compiler.h>
18#include <linux/context_tracking.h>
19#include <linux/elf.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/sched/task_stack.h>
23#include <linux/mm.h>
24#include <linux/errno.h>
25#include <linux/ptrace.h>
26#include <linux/regset.h>
27#include <linux/smp.h>
28#include <linux/security.h>
29#include <linux/stddef.h>
30#include <linux/tracehook.h>
31#include <linux/audit.h>
32#include <linux/seccomp.h>
33#include <linux/ftrace.h>
34
35#include <asm/byteorder.h>
36#include <asm/cpu.h>
37#include <asm/cpu-info.h>
38#include <asm/dsp.h>
39#include <asm/fpu.h>
40#include <asm/mipsregs.h>
41#include <asm/mipsmtregs.h>
42#include <asm/pgtable.h>
43#include <asm/page.h>
44#include <asm/syscall.h>
45#include <linux/uaccess.h>
46#include <asm/bootinfo.h>
47#include <asm/reg.h>
48
49#define CREATE_TRACE_POINTS
50#include <trace/events/syscalls.h>
51
52static void init_fp_ctx(struct task_struct *target)
53{
54 /* If FP has been used then the target already has context */
55 if (tsk_used_math(target))
56 return;
57
58 /* Begin with data registers set to all 1s... */
59 memset(&target->thread.fpu.fpr, ~0, sizeof(target->thread.fpu.fpr));
60
61 /* FCSR has been preset by `mips_set_personality_nan'. */
62
63 /*
64 * Record that the target has "used" math, such that the context
65 * just initialised, and any modifications made by the caller,
66 * aren't discarded.
67 */
68 set_stopped_child_used_math(target);
69}
70
71/*
72 * Called by kernel/ptrace.c when detaching..
73 *
74 * Make sure single step bits etc are not set.
75 */
76void ptrace_disable(struct task_struct *child)
77{
78 /* Don't load the watchpoint registers for the ex-child. */
79 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
80}
81
82/*
83 * Poke at FCSR according to its mask. Set the Cause bits even
84 * if a corresponding Enable bit is set. This will be noticed at
85 * the time the thread is switched to and SIGFPE thrown accordingly.
86 */
87static void ptrace_setfcr31(struct task_struct *child, u32 value)
88{
89 u32 fcr31;
90 u32 mask;
91
92 fcr31 = child->thread.fpu.fcr31;
93 mask = boot_cpu_data.fpu_msk31;
94 child->thread.fpu.fcr31 = (value & ~mask) | (fcr31 & mask);
95}
96
97/*
98 * Read a general register set. We always use the 64-bit format, even
99 * for 32-bit kernels and for 32-bit processes on a 64-bit kernel.
100 * Registers are sign extended to fill the available space.
101 */
102int ptrace_getregs(struct task_struct *child, struct user_pt_regs __user *data)
103{
104 struct pt_regs *regs;
105 int i;
106
107 if (!access_ok(VERIFY_WRITE, data, 38 * 8))
108 return -EIO;
109
110 regs = task_pt_regs(child);
111
112 for (i = 0; i < 32; i++)
113 __put_user((long)regs->regs[i], (__s64 __user *)&data->regs[i]);
114 __put_user((long)regs->lo, (__s64 __user *)&data->lo);
115 __put_user((long)regs->hi, (__s64 __user *)&data->hi);
116 __put_user((long)regs->cp0_epc, (__s64 __user *)&data->cp0_epc);
117 __put_user((long)regs->cp0_badvaddr, (__s64 __user *)&data->cp0_badvaddr);
118 __put_user((long)regs->cp0_status, (__s64 __user *)&data->cp0_status);
119 __put_user((long)regs->cp0_cause, (__s64 __user *)&data->cp0_cause);
120
121 return 0;
122}
123
124/*
125 * Write a general register set. As for PTRACE_GETREGS, we always use
126 * the 64-bit format. On a 32-bit kernel only the lower order half
127 * (according to endianness) will be used.
128 */
129int ptrace_setregs(struct task_struct *child, struct user_pt_regs __user *data)
130{
131 struct pt_regs *regs;
132 int i;
133
134 if (!access_ok(VERIFY_READ, data, 38 * 8))
135 return -EIO;
136
137 regs = task_pt_regs(child);
138
139 for (i = 0; i < 32; i++)
140 __get_user(regs->regs[i], (__s64 __user *)&data->regs[i]);
141 __get_user(regs->lo, (__s64 __user *)&data->lo);
142 __get_user(regs->hi, (__s64 __user *)&data->hi);
143 __get_user(regs->cp0_epc, (__s64 __user *)&data->cp0_epc);
144
145 /* badvaddr, status, and cause may not be written. */
146
147 /* System call number may have been changed */
148 mips_syscall_update_nr(child, regs);
149
150 return 0;
151}
152
153int ptrace_getfpregs(struct task_struct *child, __u32 __user *data)
154{
155 int i;
156
157 if (!access_ok(VERIFY_WRITE, data, 33 * 8))
158 return -EIO;
159
160 if (tsk_used_math(child)) {
161 union fpureg *fregs = get_fpu_regs(child);
162 for (i = 0; i < 32; i++)
163 __put_user(get_fpr64(&fregs[i], 0),
164 i + (__u64 __user *)data);
165 } else {
166 for (i = 0; i < 32; i++)
167 __put_user((__u64) -1, i + (__u64 __user *) data);
168 }
169
170 __put_user(child->thread.fpu.fcr31, data + 64);
171 __put_user(boot_cpu_data.fpu_id, data + 65);
172
173 return 0;
174}
175
176int ptrace_setfpregs(struct task_struct *child, __u32 __user *data)
177{
178 union fpureg *fregs;
179 u64 fpr_val;
180 u32 value;
181 int i;
182
183 if (!access_ok(VERIFY_READ, data, 33 * 8))
184 return -EIO;
185
186 init_fp_ctx(child);
187 fregs = get_fpu_regs(child);
188
189 for (i = 0; i < 32; i++) {
190 __get_user(fpr_val, i + (__u64 __user *)data);
191 set_fpr64(&fregs[i], 0, fpr_val);
192 }
193
194 __get_user(value, data + 64);
195 ptrace_setfcr31(child, value);
196
197 /* FIR may not be written. */
198
199 return 0;
200}
201
202int ptrace_get_watch_regs(struct task_struct *child,
203 struct pt_watch_regs __user *addr)
204{
205 enum pt_watch_style style;
206 int i;
207
208 if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0)
209 return -EIO;
210 if (!access_ok(VERIFY_WRITE, addr, sizeof(struct pt_watch_regs)))
211 return -EIO;
212
213#ifdef CONFIG_32BIT
214 style = pt_watch_style_mips32;
215#define WATCH_STYLE mips32
216#else
217 style = pt_watch_style_mips64;
218#define WATCH_STYLE mips64
219#endif
220
221 __put_user(style, &addr->style);
222 __put_user(boot_cpu_data.watch_reg_use_cnt,
223 &addr->WATCH_STYLE.num_valid);
224 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
225 __put_user(child->thread.watch.mips3264.watchlo[i],
226 &addr->WATCH_STYLE.watchlo[i]);
227 __put_user(child->thread.watch.mips3264.watchhi[i] &
228 (MIPS_WATCHHI_MASK | MIPS_WATCHHI_IRW),
229 &addr->WATCH_STYLE.watchhi[i]);
230 __put_user(boot_cpu_data.watch_reg_masks[i],
231 &addr->WATCH_STYLE.watch_masks[i]);
232 }
233 for (; i < 8; i++) {
234 __put_user(0, &addr->WATCH_STYLE.watchlo[i]);
235 __put_user(0, &addr->WATCH_STYLE.watchhi[i]);
236 __put_user(0, &addr->WATCH_STYLE.watch_masks[i]);
237 }
238
239 return 0;
240}
241
242int ptrace_set_watch_regs(struct task_struct *child,
243 struct pt_watch_regs __user *addr)
244{
245 int i;
246 int watch_active = 0;
247 unsigned long lt[NUM_WATCH_REGS];
248 u16 ht[NUM_WATCH_REGS];
249
250 if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0)
251 return -EIO;
252 if (!access_ok(VERIFY_READ, addr, sizeof(struct pt_watch_regs)))
253 return -EIO;
254 /* Check the values. */
255 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
256 __get_user(lt[i], &addr->WATCH_STYLE.watchlo[i]);
257#ifdef CONFIG_32BIT
258 if (lt[i] & __UA_LIMIT)
259 return -EINVAL;
260#else
261 if (test_tsk_thread_flag(child, TIF_32BIT_ADDR)) {
262 if (lt[i] & 0xffffffff80000000UL)
263 return -EINVAL;
264 } else {
265 if (lt[i] & __UA_LIMIT)
266 return -EINVAL;
267 }
268#endif
269 __get_user(ht[i], &addr->WATCH_STYLE.watchhi[i]);
270 if (ht[i] & ~MIPS_WATCHHI_MASK)
271 return -EINVAL;
272 }
273 /* Install them. */
274 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
275 if (lt[i] & MIPS_WATCHLO_IRW)
276 watch_active = 1;
277 child->thread.watch.mips3264.watchlo[i] = lt[i];
278 /* Set the G bit. */
279 child->thread.watch.mips3264.watchhi[i] = ht[i];
280 }
281
282 if (watch_active)
283 set_tsk_thread_flag(child, TIF_LOAD_WATCH);
284 else
285 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
286
287 return 0;
288}
289
290/* regset get/set implementations */
291
292#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
293
294static int gpr32_get(struct task_struct *target,
295 const struct user_regset *regset,
296 unsigned int pos, unsigned int count,
297 void *kbuf, void __user *ubuf)
298{
299 struct pt_regs *regs = task_pt_regs(target);
300 u32 uregs[ELF_NGREG] = {};
301
302 mips_dump_regs32(uregs, regs);
303 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0,
304 sizeof(uregs));
305}
306
307static int gpr32_set(struct task_struct *target,
308 const struct user_regset *regset,
309 unsigned int pos, unsigned int count,
310 const void *kbuf, const void __user *ubuf)
311{
312 struct pt_regs *regs = task_pt_regs(target);
313 u32 uregs[ELF_NGREG];
314 unsigned start, num_regs, i;
315 int err;
316
317 start = pos / sizeof(u32);
318 num_regs = count / sizeof(u32);
319
320 if (start + num_regs > ELF_NGREG)
321 return -EIO;
322
323 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
324 sizeof(uregs));
325 if (err)
326 return err;
327
328 for (i = start; i < num_regs; i++) {
329 /*
330 * Cast all values to signed here so that if this is a 64-bit
331 * kernel, the supplied 32-bit values will be sign extended.
332 */
333 switch (i) {
334 case MIPS32_EF_R1 ... MIPS32_EF_R25:
335 /* k0/k1 are ignored. */
336 case MIPS32_EF_R28 ... MIPS32_EF_R31:
337 regs->regs[i - MIPS32_EF_R0] = (s32)uregs[i];
338 break;
339 case MIPS32_EF_LO:
340 regs->lo = (s32)uregs[i];
341 break;
342 case MIPS32_EF_HI:
343 regs->hi = (s32)uregs[i];
344 break;
345 case MIPS32_EF_CP0_EPC:
346 regs->cp0_epc = (s32)uregs[i];
347 break;
348 }
349 }
350
351 /* System call number may have been changed */
352 mips_syscall_update_nr(target, regs);
353
354 return 0;
355}
356
357#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
358
359#ifdef CONFIG_64BIT
360
361static int gpr64_get(struct task_struct *target,
362 const struct user_regset *regset,
363 unsigned int pos, unsigned int count,
364 void *kbuf, void __user *ubuf)
365{
366 struct pt_regs *regs = task_pt_regs(target);
367 u64 uregs[ELF_NGREG] = {};
368
369 mips_dump_regs64(uregs, regs);
370 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0,
371 sizeof(uregs));
372}
373
374static int gpr64_set(struct task_struct *target,
375 const struct user_regset *regset,
376 unsigned int pos, unsigned int count,
377 const void *kbuf, const void __user *ubuf)
378{
379 struct pt_regs *regs = task_pt_regs(target);
380 u64 uregs[ELF_NGREG];
381 unsigned start, num_regs, i;
382 int err;
383
384 start = pos / sizeof(u64);
385 num_regs = count / sizeof(u64);
386
387 if (start + num_regs > ELF_NGREG)
388 return -EIO;
389
390 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
391 sizeof(uregs));
392 if (err)
393 return err;
394
395 for (i = start; i < num_regs; i++) {
396 switch (i) {
397 case MIPS64_EF_R1 ... MIPS64_EF_R25:
398 /* k0/k1 are ignored. */
399 case MIPS64_EF_R28 ... MIPS64_EF_R31:
400 regs->regs[i - MIPS64_EF_R0] = uregs[i];
401 break;
402 case MIPS64_EF_LO:
403 regs->lo = uregs[i];
404 break;
405 case MIPS64_EF_HI:
406 regs->hi = uregs[i];
407 break;
408 case MIPS64_EF_CP0_EPC:
409 regs->cp0_epc = uregs[i];
410 break;
411 }
412 }
413
414 /* System call number may have been changed */
415 mips_syscall_update_nr(target, regs);
416
417 return 0;
418}
419
420#endif /* CONFIG_64BIT */
421
422/*
423 * Copy the floating-point context to the supplied NT_PRFPREG buffer,
424 * !CONFIG_CPU_HAS_MSA variant. FP context's general register slots
425 * correspond 1:1 to buffer slots. Only general registers are copied.
426 */
427static int fpr_get_fpa(struct task_struct *target,
428 unsigned int *pos, unsigned int *count,
429 void **kbuf, void __user **ubuf)
430{
431 return user_regset_copyout(pos, count, kbuf, ubuf,
432 &target->thread.fpu,
433 0, NUM_FPU_REGS * sizeof(elf_fpreg_t));
434}
435
436/*
437 * Copy the floating-point context to the supplied NT_PRFPREG buffer,
438 * CONFIG_CPU_HAS_MSA variant. Only lower 64 bits of FP context's
439 * general register slots are copied to buffer slots. Only general
440 * registers are copied.
441 */
442static int fpr_get_msa(struct task_struct *target,
443 unsigned int *pos, unsigned int *count,
444 void **kbuf, void __user **ubuf)
445{
446 unsigned int i;
447 u64 fpr_val;
448 int err;
449
450 BUILD_BUG_ON(sizeof(fpr_val) != sizeof(elf_fpreg_t));
451 for (i = 0; i < NUM_FPU_REGS; i++) {
452 fpr_val = get_fpr64(&target->thread.fpu.fpr[i], 0);
453 err = user_regset_copyout(pos, count, kbuf, ubuf,
454 &fpr_val, i * sizeof(elf_fpreg_t),
455 (i + 1) * sizeof(elf_fpreg_t));
456 if (err)
457 return err;
458 }
459
460 return 0;
461}
462
463/*
464 * Copy the floating-point context to the supplied NT_PRFPREG buffer.
465 * Choose the appropriate helper for general registers, and then copy
466 * the FCSR and FIR registers separately.
467 */
468static int fpr_get(struct task_struct *target,
469 const struct user_regset *regset,
470 unsigned int pos, unsigned int count,
471 void *kbuf, void __user *ubuf)
472{
473 const int fcr31_pos = NUM_FPU_REGS * sizeof(elf_fpreg_t);
474 const int fir_pos = fcr31_pos + sizeof(u32);
475 int err;
476
477 if (sizeof(target->thread.fpu.fpr[0]) == sizeof(elf_fpreg_t))
478 err = fpr_get_fpa(target, &pos, &count, &kbuf, &ubuf);
479 else
480 err = fpr_get_msa(target, &pos, &count, &kbuf, &ubuf);
481 if (err)
482 return err;
483
484 err = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
485 &target->thread.fpu.fcr31,
486 fcr31_pos, fcr31_pos + sizeof(u32));
487 if (err)
488 return err;
489
490 err = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
491 &boot_cpu_data.fpu_id,
492 fir_pos, fir_pos + sizeof(u32));
493
494 return err;
495}
496
497/*
498 * Copy the supplied NT_PRFPREG buffer to the floating-point context,
499 * !CONFIG_CPU_HAS_MSA variant. Buffer slots correspond 1:1 to FP
500 * context's general register slots. Only general registers are copied.
501 */
502static int fpr_set_fpa(struct task_struct *target,
503 unsigned int *pos, unsigned int *count,
504 const void **kbuf, const void __user **ubuf)
505{
506 return user_regset_copyin(pos, count, kbuf, ubuf,
507 &target->thread.fpu,
508 0, NUM_FPU_REGS * sizeof(elf_fpreg_t));
509}
510
511/*
512 * Copy the supplied NT_PRFPREG buffer to the floating-point context,
513 * CONFIG_CPU_HAS_MSA variant. Buffer slots are copied to lower 64
514 * bits only of FP context's general register slots. Only general
515 * registers are copied.
516 */
517static int fpr_set_msa(struct task_struct *target,
518 unsigned int *pos, unsigned int *count,
519 const void **kbuf, const void __user **ubuf)
520{
521 unsigned int i;
522 u64 fpr_val;
523 int err;
524
525 BUILD_BUG_ON(sizeof(fpr_val) != sizeof(elf_fpreg_t));
526 for (i = 0; i < NUM_FPU_REGS && *count > 0; i++) {
527 err = user_regset_copyin(pos, count, kbuf, ubuf,
528 &fpr_val, i * sizeof(elf_fpreg_t),
529 (i + 1) * sizeof(elf_fpreg_t));
530 if (err)
531 return err;
532 set_fpr64(&target->thread.fpu.fpr[i], 0, fpr_val);
533 }
534
535 return 0;
536}
537
538/*
539 * Copy the supplied NT_PRFPREG buffer to the floating-point context.
540 * Choose the appropriate helper for general registers, and then copy
541 * the FCSR register separately. Ignore the incoming FIR register
542 * contents though, as the register is read-only.
543 *
544 * We optimize for the case where `count % sizeof(elf_fpreg_t) == 0',
545 * which is supposed to have been guaranteed by the kernel before
546 * calling us, e.g. in `ptrace_regset'. We enforce that requirement,
547 * so that we can safely avoid preinitializing temporaries for
548 * partial register writes.
549 */
550static int fpr_set(struct task_struct *target,
551 const struct user_regset *regset,
552 unsigned int pos, unsigned int count,
553 const void *kbuf, const void __user *ubuf)
554{
555 const int fcr31_pos = NUM_FPU_REGS * sizeof(elf_fpreg_t);
556 const int fir_pos = fcr31_pos + sizeof(u32);
557 u32 fcr31;
558 int err;
559
560 BUG_ON(count % sizeof(elf_fpreg_t));
561
562 if (pos + count > sizeof(elf_fpregset_t))
563 return -EIO;
564
565 init_fp_ctx(target);
566
567 if (sizeof(target->thread.fpu.fpr[0]) == sizeof(elf_fpreg_t))
568 err = fpr_set_fpa(target, &pos, &count, &kbuf, &ubuf);
569 else
570 err = fpr_set_msa(target, &pos, &count, &kbuf, &ubuf);
571 if (err)
572 return err;
573
574 if (count > 0) {
575 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
576 &fcr31,
577 fcr31_pos, fcr31_pos + sizeof(u32));
578 if (err)
579 return err;
580
581 ptrace_setfcr31(target, fcr31);
582 }
583
584 if (count > 0)
585 err = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
586 fir_pos,
587 fir_pos + sizeof(u32));
588
589 return err;
590}
591
592enum mips_regset {
593 REGSET_GPR,
594 REGSET_FPR,
595};
596
597struct pt_regs_offset {
598 const char *name;
599 int offset;
600};
601
602#define REG_OFFSET_NAME(reg, r) { \
603 .name = #reg, \
604 .offset = offsetof(struct pt_regs, r) \
605}
606
607#define REG_OFFSET_END { \
608 .name = NULL, \
609 .offset = 0 \
610}
611
612static const struct pt_regs_offset regoffset_table[] = {
613 REG_OFFSET_NAME(r0, regs[0]),
614 REG_OFFSET_NAME(r1, regs[1]),
615 REG_OFFSET_NAME(r2, regs[2]),
616 REG_OFFSET_NAME(r3, regs[3]),
617 REG_OFFSET_NAME(r4, regs[4]),
618 REG_OFFSET_NAME(r5, regs[5]),
619 REG_OFFSET_NAME(r6, regs[6]),
620 REG_OFFSET_NAME(r7, regs[7]),
621 REG_OFFSET_NAME(r8, regs[8]),
622 REG_OFFSET_NAME(r9, regs[9]),
623 REG_OFFSET_NAME(r10, regs[10]),
624 REG_OFFSET_NAME(r11, regs[11]),
625 REG_OFFSET_NAME(r12, regs[12]),
626 REG_OFFSET_NAME(r13, regs[13]),
627 REG_OFFSET_NAME(r14, regs[14]),
628 REG_OFFSET_NAME(r15, regs[15]),
629 REG_OFFSET_NAME(r16, regs[16]),
630 REG_OFFSET_NAME(r17, regs[17]),
631 REG_OFFSET_NAME(r18, regs[18]),
632 REG_OFFSET_NAME(r19, regs[19]),
633 REG_OFFSET_NAME(r20, regs[20]),
634 REG_OFFSET_NAME(r21, regs[21]),
635 REG_OFFSET_NAME(r22, regs[22]),
636 REG_OFFSET_NAME(r23, regs[23]),
637 REG_OFFSET_NAME(r24, regs[24]),
638 REG_OFFSET_NAME(r25, regs[25]),
639 REG_OFFSET_NAME(r26, regs[26]),
640 REG_OFFSET_NAME(r27, regs[27]),
641 REG_OFFSET_NAME(r28, regs[28]),
642 REG_OFFSET_NAME(r29, regs[29]),
643 REG_OFFSET_NAME(r30, regs[30]),
644 REG_OFFSET_NAME(r31, regs[31]),
645 REG_OFFSET_NAME(c0_status, cp0_status),
646 REG_OFFSET_NAME(hi, hi),
647 REG_OFFSET_NAME(lo, lo),
648#ifdef CONFIG_CPU_HAS_SMARTMIPS
649 REG_OFFSET_NAME(acx, acx),
650#endif
651 REG_OFFSET_NAME(c0_badvaddr, cp0_badvaddr),
652 REG_OFFSET_NAME(c0_cause, cp0_cause),
653 REG_OFFSET_NAME(c0_epc, cp0_epc),
654#ifdef CONFIG_CPU_CAVIUM_OCTEON
655 REG_OFFSET_NAME(mpl0, mpl[0]),
656 REG_OFFSET_NAME(mpl1, mpl[1]),
657 REG_OFFSET_NAME(mpl2, mpl[2]),
658 REG_OFFSET_NAME(mtp0, mtp[0]),
659 REG_OFFSET_NAME(mtp1, mtp[1]),
660 REG_OFFSET_NAME(mtp2, mtp[2]),
661#endif
662 REG_OFFSET_END,
663};
664
665/**
666 * regs_query_register_offset() - query register offset from its name
667 * @name: the name of a register
668 *
669 * regs_query_register_offset() returns the offset of a register in struct
670 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
671 */
672int regs_query_register_offset(const char *name)
673{
674 const struct pt_regs_offset *roff;
675 for (roff = regoffset_table; roff->name != NULL; roff++)
676 if (!strcmp(roff->name, name))
677 return roff->offset;
678 return -EINVAL;
679}
680
681#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
682
683static const struct user_regset mips_regsets[] = {
684 [REGSET_GPR] = {
685 .core_note_type = NT_PRSTATUS,
686 .n = ELF_NGREG,
687 .size = sizeof(unsigned int),
688 .align = sizeof(unsigned int),
689 .get = gpr32_get,
690 .set = gpr32_set,
691 },
692 [REGSET_FPR] = {
693 .core_note_type = NT_PRFPREG,
694 .n = ELF_NFPREG,
695 .size = sizeof(elf_fpreg_t),
696 .align = sizeof(elf_fpreg_t),
697 .get = fpr_get,
698 .set = fpr_set,
699 },
700};
701
702static const struct user_regset_view user_mips_view = {
703 .name = "mips",
704 .e_machine = ELF_ARCH,
705 .ei_osabi = ELF_OSABI,
706 .regsets = mips_regsets,
707 .n = ARRAY_SIZE(mips_regsets),
708};
709
710#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
711
712#ifdef CONFIG_64BIT
713
714static const struct user_regset mips64_regsets[] = {
715 [REGSET_GPR] = {
716 .core_note_type = NT_PRSTATUS,
717 .n = ELF_NGREG,
718 .size = sizeof(unsigned long),
719 .align = sizeof(unsigned long),
720 .get = gpr64_get,
721 .set = gpr64_set,
722 },
723 [REGSET_FPR] = {
724 .core_note_type = NT_PRFPREG,
725 .n = ELF_NFPREG,
726 .size = sizeof(elf_fpreg_t),
727 .align = sizeof(elf_fpreg_t),
728 .get = fpr_get,
729 .set = fpr_set,
730 },
731};
732
733static const struct user_regset_view user_mips64_view = {
734 .name = "mips64",
735 .e_machine = ELF_ARCH,
736 .ei_osabi = ELF_OSABI,
737 .regsets = mips64_regsets,
738 .n = ARRAY_SIZE(mips64_regsets),
739};
740
741#ifdef CONFIG_MIPS32_N32
742
743static const struct user_regset_view user_mipsn32_view = {
744 .name = "mipsn32",
745 .e_flags = EF_MIPS_ABI2,
746 .e_machine = ELF_ARCH,
747 .ei_osabi = ELF_OSABI,
748 .regsets = mips64_regsets,
749 .n = ARRAY_SIZE(mips64_regsets),
750};
751
752#endif /* CONFIG_MIPS32_N32 */
753
754#endif /* CONFIG_64BIT */
755
756const struct user_regset_view *task_user_regset_view(struct task_struct *task)
757{
758#ifdef CONFIG_32BIT
759 return &user_mips_view;
760#else
761#ifdef CONFIG_MIPS32_O32
762 if (test_tsk_thread_flag(task, TIF_32BIT_REGS))
763 return &user_mips_view;
764#endif
765#ifdef CONFIG_MIPS32_N32
766 if (test_tsk_thread_flag(task, TIF_32BIT_ADDR))
767 return &user_mipsn32_view;
768#endif
769 return &user_mips64_view;
770#endif
771}
772
773long arch_ptrace(struct task_struct *child, long request,
774 unsigned long addr, unsigned long data)
775{
776 int ret;
777 void __user *addrp = (void __user *) addr;
778 void __user *datavp = (void __user *) data;
779 unsigned long __user *datalp = (void __user *) data;
780
781 switch (request) {
782 /* when I and D space are separate, these will need to be fixed. */
783 case PTRACE_PEEKTEXT: /* read word at location addr. */
784 case PTRACE_PEEKDATA:
785 ret = generic_ptrace_peekdata(child, addr, data);
786 break;
787
788 /* Read the word at location addr in the USER area. */
789 case PTRACE_PEEKUSR: {
790 struct pt_regs *regs;
791 union fpureg *fregs;
792 unsigned long tmp = 0;
793
794 regs = task_pt_regs(child);
795 ret = 0; /* Default return value. */
796
797 switch (addr) {
798 case 0 ... 31:
799 tmp = regs->regs[addr];
800 break;
801 case FPR_BASE ... FPR_BASE + 31:
802 if (!tsk_used_math(child)) {
803 /* FP not yet used */
804 tmp = -1;
805 break;
806 }
807 fregs = get_fpu_regs(child);
808
809#ifdef CONFIG_32BIT
810 if (test_tsk_thread_flag(child, TIF_32BIT_FPREGS)) {
811 /*
812 * The odd registers are actually the high
813 * order bits of the values stored in the even
814 * registers - unless we're using r2k_switch.S.
815 */
816 tmp = get_fpr32(&fregs[(addr & ~1) - FPR_BASE],
817 addr & 1);
818 break;
819 }
820#endif
821 tmp = get_fpr64(&fregs[addr - FPR_BASE], 0);
822 break;
823 case PC:
824 tmp = regs->cp0_epc;
825 break;
826 case CAUSE:
827 tmp = regs->cp0_cause;
828 break;
829 case BADVADDR:
830 tmp = regs->cp0_badvaddr;
831 break;
832 case MMHI:
833 tmp = regs->hi;
834 break;
835 case MMLO:
836 tmp = regs->lo;
837 break;
838#ifdef CONFIG_CPU_HAS_SMARTMIPS
839 case ACX:
840 tmp = regs->acx;
841 break;
842#endif
843 case FPC_CSR:
844 tmp = child->thread.fpu.fcr31;
845 break;
846 case FPC_EIR:
847 /* implementation / version register */
848 tmp = boot_cpu_data.fpu_id;
849 break;
850 case DSP_BASE ... DSP_BASE + 5: {
851 dspreg_t *dregs;
852
853 if (!cpu_has_dsp) {
854 tmp = 0;
855 ret = -EIO;
856 goto out;
857 }
858 dregs = __get_dsp_regs(child);
859 tmp = (unsigned long) (dregs[addr - DSP_BASE]);
860 break;
861 }
862 case DSP_CONTROL:
863 if (!cpu_has_dsp) {
864 tmp = 0;
865 ret = -EIO;
866 goto out;
867 }
868 tmp = child->thread.dsp.dspcontrol;
869 break;
870 default:
871 tmp = 0;
872 ret = -EIO;
873 goto out;
874 }
875 ret = put_user(tmp, datalp);
876 break;
877 }
878
879 /* when I and D space are separate, this will have to be fixed. */
880 case PTRACE_POKETEXT: /* write the word at location addr. */
881 case PTRACE_POKEDATA:
882 ret = generic_ptrace_pokedata(child, addr, data);
883 break;
884
885 case PTRACE_POKEUSR: {
886 struct pt_regs *regs;
887 ret = 0;
888 regs = task_pt_regs(child);
889
890 switch (addr) {
891 case 0 ... 31:
892 regs->regs[addr] = data;
893 /* System call number may have been changed */
894 if (addr == 2)
895 mips_syscall_update_nr(child, regs);
896 else if (addr == 4 &&
897 mips_syscall_is_indirect(child, regs))
898 mips_syscall_update_nr(child, regs);
899 break;
900 case FPR_BASE ... FPR_BASE + 31: {
901 union fpureg *fregs = get_fpu_regs(child);
902
903 init_fp_ctx(child);
904#ifdef CONFIG_32BIT
905 if (test_tsk_thread_flag(child, TIF_32BIT_FPREGS)) {
906 /*
907 * The odd registers are actually the high
908 * order bits of the values stored in the even
909 * registers - unless we're using r2k_switch.S.
910 */
911 set_fpr32(&fregs[(addr & ~1) - FPR_BASE],
912 addr & 1, data);
913 break;
914 }
915#endif
916 set_fpr64(&fregs[addr - FPR_BASE], 0, data);
917 break;
918 }
919 case PC:
920 regs->cp0_epc = data;
921 break;
922 case MMHI:
923 regs->hi = data;
924 break;
925 case MMLO:
926 regs->lo = data;
927 break;
928#ifdef CONFIG_CPU_HAS_SMARTMIPS
929 case ACX:
930 regs->acx = data;
931 break;
932#endif
933 case FPC_CSR:
934 init_fp_ctx(child);
935 ptrace_setfcr31(child, data);
936 break;
937 case DSP_BASE ... DSP_BASE + 5: {
938 dspreg_t *dregs;
939
940 if (!cpu_has_dsp) {
941 ret = -EIO;
942 break;
943 }
944
945 dregs = __get_dsp_regs(child);
946 dregs[addr - DSP_BASE] = data;
947 break;
948 }
949 case DSP_CONTROL:
950 if (!cpu_has_dsp) {
951 ret = -EIO;
952 break;
953 }
954 child->thread.dsp.dspcontrol = data;
955 break;
956 default:
957 /* The rest are not allowed. */
958 ret = -EIO;
959 break;
960 }
961 break;
962 }
963
964 case PTRACE_GETREGS:
965 ret = ptrace_getregs(child, datavp);
966 break;
967
968 case PTRACE_SETREGS:
969 ret = ptrace_setregs(child, datavp);
970 break;
971
972 case PTRACE_GETFPREGS:
973 ret = ptrace_getfpregs(child, datavp);
974 break;
975
976 case PTRACE_SETFPREGS:
977 ret = ptrace_setfpregs(child, datavp);
978 break;
979
980 case PTRACE_GET_THREAD_AREA:
981 ret = put_user(task_thread_info(child)->tp_value, datalp);
982 break;
983
984 case PTRACE_GET_WATCH_REGS:
985 ret = ptrace_get_watch_regs(child, addrp);
986 break;
987
988 case PTRACE_SET_WATCH_REGS:
989 ret = ptrace_set_watch_regs(child, addrp);
990 break;
991
992 default:
993 ret = ptrace_request(child, request, addr, data);
994 break;
995 }
996 out:
997 return ret;
998}
999
1000/*
1001 * Notification of system call entry/exit
1002 * - triggered by current->work.syscall_trace
1003 */
1004asmlinkage long syscall_trace_enter(struct pt_regs *regs, long syscall)
1005{
1006 user_exit();
1007
1008 current_thread_info()->syscall = syscall;
1009
1010 if (test_thread_flag(TIF_SYSCALL_TRACE)) {
1011 if (tracehook_report_syscall_entry(regs))
1012 return -1;
1013 syscall = current_thread_info()->syscall;
1014 }
1015
1016#ifdef CONFIG_SECCOMP
1017 if (unlikely(test_thread_flag(TIF_SECCOMP))) {
1018 int ret, i;
1019 struct seccomp_data sd;
1020 unsigned long args[6];
1021
1022 sd.nr = syscall;
1023 sd.arch = syscall_get_arch();
1024 syscall_get_arguments(current, regs, 0, 6, args);
1025 for (i = 0; i < 6; i++)
1026 sd.args[i] = args[i];
1027 sd.instruction_pointer = KSTK_EIP(current);
1028
1029 ret = __secure_computing(&sd);
1030 if (ret == -1)
1031 return ret;
1032 syscall = current_thread_info()->syscall;
1033 }
1034#endif
1035
1036 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
1037 trace_sys_enter(regs, regs->regs[2]);
1038
1039 audit_syscall_entry(syscall, regs->regs[4], regs->regs[5],
1040 regs->regs[6], regs->regs[7]);
1041
1042 /*
1043 * Negative syscall numbers are mistaken for rejected syscalls, but
1044 * won't have had the return value set appropriately, so we do so now.
1045 */
1046 if (syscall < 0)
1047 syscall_set_return_value(current, regs, -ENOSYS, 0);
1048 return syscall;
1049}
1050
1051/*
1052 * Notification of system call entry/exit
1053 * - triggered by current->work.syscall_trace
1054 */
1055asmlinkage void syscall_trace_leave(struct pt_regs *regs)
1056{
1057 /*
1058 * We may come here right after calling schedule_user()
1059 * or do_notify_resume(), in which case we can be in RCU
1060 * user mode.
1061 */
1062 user_exit();
1063
1064 audit_syscall_exit(regs);
1065
1066 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
1067 trace_sys_exit(regs, regs_return_value(regs));
1068
1069 if (test_thread_flag(TIF_SYSCALL_TRACE))
1070 tracehook_report_syscall_exit(regs, 0);
1071
1072 user_enter();
1073}