Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * SWIOTLB-based DMA API implementation
  3 *
  4 * Copyright (C) 2012 ARM Ltd.
  5 * Author: Catalin Marinas <catalin.marinas@arm.com>
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 *
 11 * This program is distributed in the hope that it will be useful,
 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 *
 16 * You should have received a copy of the GNU General Public License
 17 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 18 */
 19
 20#include <linux/gfp.h>
 21#include <linux/acpi.h>
 
 
 22#include <linux/export.h>
 23#include <linux/slab.h>
 24#include <linux/genalloc.h>
 25#include <linux/dma-mapping.h>
 26#include <linux/dma-contiguous.h>
 27#include <linux/vmalloc.h>
 28#include <linux/swiotlb.h>
 
 29
 30#include <asm/cacheflush.h>
 31
 32static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot,
 
 
 33				 bool coherent)
 34{
 35	if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
 36		return pgprot_writecombine(prot);
 37	return prot;
 38}
 39
 40static struct gen_pool *atomic_pool;
 41
 42#define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
 43static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
 44
 45static int __init early_coherent_pool(char *p)
 46{
 47	atomic_pool_size = memparse(p, &p);
 48	return 0;
 49}
 50early_param("coherent_pool", early_coherent_pool);
 51
 52static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
 53{
 54	unsigned long val;
 55	void *ptr = NULL;
 56
 57	if (!atomic_pool) {
 58		WARN(1, "coherent pool not initialised!\n");
 59		return NULL;
 60	}
 61
 62	val = gen_pool_alloc(atomic_pool, size);
 63	if (val) {
 64		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 65
 66		*ret_page = phys_to_page(phys);
 67		ptr = (void *)val;
 68		memset(ptr, 0, size);
 69	}
 70
 71	return ptr;
 72}
 73
 74static bool __in_atomic_pool(void *start, size_t size)
 75{
 76	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
 77}
 78
 79static int __free_from_pool(void *start, size_t size)
 80{
 81	if (!__in_atomic_pool(start, size))
 82		return 0;
 83
 84	gen_pool_free(atomic_pool, (unsigned long)start, size);
 85
 86	return 1;
 87}
 88
 89static void *__dma_alloc_coherent(struct device *dev, size_t size,
 90				  dma_addr_t *dma_handle, gfp_t flags,
 91				  struct dma_attrs *attrs)
 92{
 93	if (dev == NULL) {
 94		WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
 95		return NULL;
 96	}
 97
 98	if (IS_ENABLED(CONFIG_ZONE_DMA) &&
 99	    dev->coherent_dma_mask <= DMA_BIT_MASK(32))
100		flags |= GFP_DMA;
101	if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) {
102		struct page *page;
103		void *addr;
104
105		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
106							get_order(size));
107		if (!page)
108			return NULL;
109
110		*dma_handle = phys_to_dma(dev, page_to_phys(page));
111		addr = page_address(page);
112		memset(addr, 0, size);
113		return addr;
114	} else {
115		return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
116	}
117}
118
119static void __dma_free_coherent(struct device *dev, size_t size,
120				void *vaddr, dma_addr_t dma_handle,
121				struct dma_attrs *attrs)
122{
123	bool freed;
124	phys_addr_t paddr = dma_to_phys(dev, dma_handle);
125
126	if (dev == NULL) {
127		WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
128		return;
129	}
130
131	freed = dma_release_from_contiguous(dev,
132					phys_to_page(paddr),
133					size >> PAGE_SHIFT);
134	if (!freed)
135		swiotlb_free_coherent(dev, size, vaddr, dma_handle);
136}
137
138static void *__dma_alloc(struct device *dev, size_t size,
139			 dma_addr_t *dma_handle, gfp_t flags,
140			 struct dma_attrs *attrs)
141{
142	struct page *page;
143	void *ptr, *coherent_ptr;
144	bool coherent = is_device_dma_coherent(dev);
145	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
146
147	size = PAGE_ALIGN(size);
148
149	if (!coherent && !gfpflags_allow_blocking(flags)) {
150		struct page *page = NULL;
151		void *addr = __alloc_from_pool(size, &page, flags);
152
153		if (addr)
154			*dma_handle = phys_to_dma(dev, page_to_phys(page));
155
156		return addr;
157	}
158
159	ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
160	if (!ptr)
161		goto no_mem;
162
163	/* no need for non-cacheable mapping if coherent */
164	if (coherent)
165		return ptr;
166
167	/* remove any dirty cache lines on the kernel alias */
168	__dma_flush_range(ptr, ptr + size);
169
170	/* create a coherent mapping */
171	page = virt_to_page(ptr);
172	coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
173						   prot, NULL);
174	if (!coherent_ptr)
175		goto no_map;
176
177	return coherent_ptr;
178
179no_map:
180	__dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
181no_mem:
182	*dma_handle = DMA_ERROR_CODE;
183	return NULL;
184}
185
186static void __dma_free(struct device *dev, size_t size,
187		       void *vaddr, dma_addr_t dma_handle,
188		       struct dma_attrs *attrs)
189{
190	void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
191
192	size = PAGE_ALIGN(size);
193
194	if (!is_device_dma_coherent(dev)) {
195		if (__free_from_pool(vaddr, size))
196			return;
197		vunmap(vaddr);
198	}
199	__dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
200}
201
202static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
203				     unsigned long offset, size_t size,
204				     enum dma_data_direction dir,
205				     struct dma_attrs *attrs)
206{
207	dma_addr_t dev_addr;
208
209	dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
210	if (!is_device_dma_coherent(dev))
 
211		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
212
213	return dev_addr;
214}
215
216
217static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
218				 size_t size, enum dma_data_direction dir,
219				 struct dma_attrs *attrs)
220{
221	if (!is_device_dma_coherent(dev))
 
222		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
223	swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
224}
225
226static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
227				  int nelems, enum dma_data_direction dir,
228				  struct dma_attrs *attrs)
229{
230	struct scatterlist *sg;
231	int i, ret;
232
233	ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
234	if (!is_device_dma_coherent(dev))
 
235		for_each_sg(sgl, sg, ret, i)
236			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
237				       sg->length, dir);
238
239	return ret;
240}
241
242static void __swiotlb_unmap_sg_attrs(struct device *dev,
243				     struct scatterlist *sgl, int nelems,
244				     enum dma_data_direction dir,
245				     struct dma_attrs *attrs)
246{
247	struct scatterlist *sg;
248	int i;
249
250	if (!is_device_dma_coherent(dev))
 
251		for_each_sg(sgl, sg, nelems, i)
252			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
253					 sg->length, dir);
254	swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
255}
256
257static void __swiotlb_sync_single_for_cpu(struct device *dev,
258					  dma_addr_t dev_addr, size_t size,
259					  enum dma_data_direction dir)
260{
261	if (!is_device_dma_coherent(dev))
262		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
263	swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
264}
265
266static void __swiotlb_sync_single_for_device(struct device *dev,
267					     dma_addr_t dev_addr, size_t size,
268					     enum dma_data_direction dir)
269{
270	swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
271	if (!is_device_dma_coherent(dev))
272		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
273}
274
275static void __swiotlb_sync_sg_for_cpu(struct device *dev,
276				      struct scatterlist *sgl, int nelems,
277				      enum dma_data_direction dir)
278{
279	struct scatterlist *sg;
280	int i;
281
282	if (!is_device_dma_coherent(dev))
283		for_each_sg(sgl, sg, nelems, i)
284			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
285					 sg->length, dir);
286	swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
287}
288
289static void __swiotlb_sync_sg_for_device(struct device *dev,
290					 struct scatterlist *sgl, int nelems,
291					 enum dma_data_direction dir)
292{
293	struct scatterlist *sg;
294	int i;
295
296	swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
297	if (!is_device_dma_coherent(dev))
298		for_each_sg(sgl, sg, nelems, i)
299			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
300				       sg->length, dir);
301}
302
303static int __swiotlb_mmap(struct device *dev,
304			  struct vm_area_struct *vma,
305			  void *cpu_addr, dma_addr_t dma_addr, size_t size,
306			  struct dma_attrs *attrs)
307{
308	int ret = -ENXIO;
309	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
310					PAGE_SHIFT;
311	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
312	unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
313	unsigned long off = vma->vm_pgoff;
314
315	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
316					     is_device_dma_coherent(dev));
317
318	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
319		return ret;
320
321	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
322		ret = remap_pfn_range(vma, vma->vm_start,
323				      pfn + off,
324				      vma->vm_end - vma->vm_start,
325				      vma->vm_page_prot);
326	}
327
328	return ret;
329}
330
331static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
332				 void *cpu_addr, dma_addr_t handle, size_t size,
333				 struct dma_attrs *attrs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334{
335	int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
336
337	if (!ret)
338		sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)),
339			    PAGE_ALIGN(size), 0);
340
341	return ret;
342}
343
344static struct dma_map_ops swiotlb_dma_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
345	.alloc = __dma_alloc,
346	.free = __dma_free,
347	.mmap = __swiotlb_mmap,
348	.get_sgtable = __swiotlb_get_sgtable,
349	.map_page = __swiotlb_map_page,
350	.unmap_page = __swiotlb_unmap_page,
351	.map_sg = __swiotlb_map_sg_attrs,
352	.unmap_sg = __swiotlb_unmap_sg_attrs,
353	.sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
354	.sync_single_for_device = __swiotlb_sync_single_for_device,
355	.sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
356	.sync_sg_for_device = __swiotlb_sync_sg_for_device,
357	.dma_supported = swiotlb_dma_supported,
358	.mapping_error = swiotlb_dma_mapping_error,
359};
360
361static int __init atomic_pool_init(void)
362{
363	pgprot_t prot = __pgprot(PROT_NORMAL_NC);
364	unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
365	struct page *page;
366	void *addr;
367	unsigned int pool_size_order = get_order(atomic_pool_size);
368
369	if (dev_get_cma_area(NULL))
370		page = dma_alloc_from_contiguous(NULL, nr_pages,
371							pool_size_order);
372	else
373		page = alloc_pages(GFP_DMA, pool_size_order);
374
375	if (page) {
376		int ret;
377		void *page_addr = page_address(page);
378
379		memset(page_addr, 0, atomic_pool_size);
380		__dma_flush_range(page_addr, page_addr + atomic_pool_size);
381
382		atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
383		if (!atomic_pool)
384			goto free_page;
385
386		addr = dma_common_contiguous_remap(page, atomic_pool_size,
387					VM_USERMAP, prot, atomic_pool_init);
388
389		if (!addr)
390			goto destroy_genpool;
391
392		ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
393					page_to_phys(page),
394					atomic_pool_size, -1);
395		if (ret)
396			goto remove_mapping;
397
398		gen_pool_set_algo(atomic_pool,
399				  gen_pool_first_fit_order_align,
400				  (void *)PAGE_SHIFT);
401
402		pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
403			atomic_pool_size / 1024);
404		return 0;
405	}
406	goto out;
407
408remove_mapping:
409	dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
410destroy_genpool:
411	gen_pool_destroy(atomic_pool);
412	atomic_pool = NULL;
413free_page:
414	if (!dma_release_from_contiguous(NULL, page, nr_pages))
415		__free_pages(page, pool_size_order);
416out:
417	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
418		atomic_pool_size / 1024);
419	return -ENOMEM;
420}
421
422/********************************************
423 * The following APIs are for dummy DMA ops *
424 ********************************************/
425
426static void *__dummy_alloc(struct device *dev, size_t size,
427			   dma_addr_t *dma_handle, gfp_t flags,
428			   struct dma_attrs *attrs)
429{
430	return NULL;
431}
432
433static void __dummy_free(struct device *dev, size_t size,
434			 void *vaddr, dma_addr_t dma_handle,
435			 struct dma_attrs *attrs)
436{
437}
438
439static int __dummy_mmap(struct device *dev,
440			struct vm_area_struct *vma,
441			void *cpu_addr, dma_addr_t dma_addr, size_t size,
442			struct dma_attrs *attrs)
443{
444	return -ENXIO;
445}
446
447static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
448				   unsigned long offset, size_t size,
449				   enum dma_data_direction dir,
450				   struct dma_attrs *attrs)
451{
452	return DMA_ERROR_CODE;
453}
454
455static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
456			       size_t size, enum dma_data_direction dir,
457			       struct dma_attrs *attrs)
458{
459}
460
461static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
462			  int nelems, enum dma_data_direction dir,
463			  struct dma_attrs *attrs)
464{
465	return 0;
466}
467
468static void __dummy_unmap_sg(struct device *dev,
469			     struct scatterlist *sgl, int nelems,
470			     enum dma_data_direction dir,
471			     struct dma_attrs *attrs)
472{
473}
474
475static void __dummy_sync_single(struct device *dev,
476				dma_addr_t dev_addr, size_t size,
477				enum dma_data_direction dir)
478{
479}
480
481static void __dummy_sync_sg(struct device *dev,
482			    struct scatterlist *sgl, int nelems,
483			    enum dma_data_direction dir)
484{
485}
486
487static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
488{
489	return 1;
490}
491
492static int __dummy_dma_supported(struct device *hwdev, u64 mask)
493{
494	return 0;
495}
496
497struct dma_map_ops dummy_dma_ops = {
498	.alloc                  = __dummy_alloc,
499	.free                   = __dummy_free,
500	.mmap                   = __dummy_mmap,
501	.map_page               = __dummy_map_page,
502	.unmap_page             = __dummy_unmap_page,
503	.map_sg                 = __dummy_map_sg,
504	.unmap_sg               = __dummy_unmap_sg,
505	.sync_single_for_cpu    = __dummy_sync_single,
506	.sync_single_for_device = __dummy_sync_single,
507	.sync_sg_for_cpu        = __dummy_sync_sg,
508	.sync_sg_for_device     = __dummy_sync_sg,
509	.mapping_error          = __dummy_mapping_error,
510	.dma_supported          = __dummy_dma_supported,
511};
512EXPORT_SYMBOL(dummy_dma_ops);
513
514static int __init arm64_dma_init(void)
515{
 
 
 
 
516	return atomic_pool_init();
517}
518arch_initcall(arm64_dma_init);
519
520#define PREALLOC_DMA_DEBUG_ENTRIES	4096
521
522static int __init dma_debug_do_init(void)
523{
524	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
525	return 0;
526}
527fs_initcall(dma_debug_do_init);
528
529
530#ifdef CONFIG_IOMMU_DMA
531#include <linux/dma-iommu.h>
532#include <linux/platform_device.h>
533#include <linux/amba/bus.h>
534
535/* Thankfully, all cache ops are by VA so we can ignore phys here */
536static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
537{
538	__dma_flush_range(virt, virt + PAGE_SIZE);
539}
540
541static void *__iommu_alloc_attrs(struct device *dev, size_t size,
542				 dma_addr_t *handle, gfp_t gfp,
543				 struct dma_attrs *attrs)
544{
545	bool coherent = is_device_dma_coherent(dev);
546	int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent);
547	size_t iosize = size;
548	void *addr;
549
550	if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
551		return NULL;
552
553	size = PAGE_ALIGN(size);
554
555	/*
556	 * Some drivers rely on this, and we probably don't want the
557	 * possibility of stale kernel data being read by devices anyway.
558	 */
559	gfp |= __GFP_ZERO;
560
561	if (gfpflags_allow_blocking(gfp)) {
562		struct page **pages;
563		pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
564
565		pages = iommu_dma_alloc(dev, iosize, gfp, ioprot, handle,
566					flush_page);
567		if (!pages)
568			return NULL;
569
570		addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
571					      __builtin_return_address(0));
572		if (!addr)
573			iommu_dma_free(dev, pages, iosize, handle);
574	} else {
575		struct page *page;
576		/*
577		 * In atomic context we can't remap anything, so we'll only
578		 * get the virtually contiguous buffer we need by way of a
579		 * physically contiguous allocation.
580		 */
581		if (coherent) {
582			page = alloc_pages(gfp, get_order(size));
583			addr = page ? page_address(page) : NULL;
584		} else {
585			addr = __alloc_from_pool(size, &page, gfp);
586		}
587		if (!addr)
588			return NULL;
589
590		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
591		if (iommu_dma_mapping_error(dev, *handle)) {
592			if (coherent)
593				__free_pages(page, get_order(size));
594			else
595				__free_from_pool(addr, size);
596			addr = NULL;
597		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598	}
599	return addr;
600}
601
602static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
603			       dma_addr_t handle, struct dma_attrs *attrs)
604{
605	size_t iosize = size;
606
607	size = PAGE_ALIGN(size);
608	/*
609	 * @cpu_addr will be one of 3 things depending on how it was allocated:
 
610	 * - A remapped array of pages from iommu_dma_alloc(), for all
611	 *   non-atomic allocations.
612	 * - A non-cacheable alias from the atomic pool, for atomic
613	 *   allocations by non-coherent devices.
614	 * - A normal lowmem address, for atomic allocations by
615	 *   coherent devices.
616	 * Hence how dodgy the below logic looks...
617	 */
618	if (__in_atomic_pool(cpu_addr, size)) {
619		iommu_dma_unmap_page(dev, handle, iosize, 0, NULL);
620		__free_from_pool(cpu_addr, size);
 
 
 
 
 
 
621	} else if (is_vmalloc_addr(cpu_addr)){
622		struct vm_struct *area = find_vm_area(cpu_addr);
623
624		if (WARN_ON(!area || !area->pages))
625			return;
626		iommu_dma_free(dev, area->pages, iosize, &handle);
627		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
628	} else {
629		iommu_dma_unmap_page(dev, handle, iosize, 0, NULL);
630		__free_pages(virt_to_page(cpu_addr), get_order(size));
631	}
632}
633
634static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
635			      void *cpu_addr, dma_addr_t dma_addr, size_t size,
636			      struct dma_attrs *attrs)
637{
638	struct vm_struct *area;
639	int ret;
640
641	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
642					     is_device_dma_coherent(dev));
643
644	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
645		return ret;
646
 
 
 
 
 
 
 
 
 
647	area = find_vm_area(cpu_addr);
648	if (WARN_ON(!area || !area->pages))
649		return -ENXIO;
650
651	return iommu_dma_mmap(area->pages, size, vma);
652}
653
654static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
655			       void *cpu_addr, dma_addr_t dma_addr,
656			       size_t size, struct dma_attrs *attrs)
657{
658	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
659	struct vm_struct *area = find_vm_area(cpu_addr);
660
 
 
 
 
 
 
 
 
 
661	if (WARN_ON(!area || !area->pages))
662		return -ENXIO;
663
664	return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
665					 GFP_KERNEL);
666}
667
668static void __iommu_sync_single_for_cpu(struct device *dev,
669					dma_addr_t dev_addr, size_t size,
670					enum dma_data_direction dir)
671{
672	phys_addr_t phys;
673
674	if (is_device_dma_coherent(dev))
675		return;
676
677	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
678	__dma_unmap_area(phys_to_virt(phys), size, dir);
679}
680
681static void __iommu_sync_single_for_device(struct device *dev,
682					   dma_addr_t dev_addr, size_t size,
683					   enum dma_data_direction dir)
684{
685	phys_addr_t phys;
686
687	if (is_device_dma_coherent(dev))
688		return;
689
690	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
691	__dma_map_area(phys_to_virt(phys), size, dir);
692}
693
694static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
695				   unsigned long offset, size_t size,
696				   enum dma_data_direction dir,
697				   struct dma_attrs *attrs)
698{
699	bool coherent = is_device_dma_coherent(dev);
700	int prot = dma_direction_to_prot(dir, coherent);
701	dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
702
703	if (!iommu_dma_mapping_error(dev, dev_addr) &&
704	    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
705		__iommu_sync_single_for_device(dev, dev_addr, size, dir);
706
707	return dev_addr;
708}
709
710static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
711			       size_t size, enum dma_data_direction dir,
712			       struct dma_attrs *attrs)
713{
714	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
715		__iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
716
717	iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
718}
719
720static void __iommu_sync_sg_for_cpu(struct device *dev,
721				    struct scatterlist *sgl, int nelems,
722				    enum dma_data_direction dir)
723{
724	struct scatterlist *sg;
725	int i;
726
727	if (is_device_dma_coherent(dev))
728		return;
729
730	for_each_sg(sgl, sg, nelems, i)
731		__dma_unmap_area(sg_virt(sg), sg->length, dir);
732}
733
734static void __iommu_sync_sg_for_device(struct device *dev,
735				       struct scatterlist *sgl, int nelems,
736				       enum dma_data_direction dir)
737{
738	struct scatterlist *sg;
739	int i;
740
741	if (is_device_dma_coherent(dev))
742		return;
743
744	for_each_sg(sgl, sg, nelems, i)
745		__dma_map_area(sg_virt(sg), sg->length, dir);
746}
747
748static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
749				int nelems, enum dma_data_direction dir,
750				struct dma_attrs *attrs)
751{
752	bool coherent = is_device_dma_coherent(dev);
753
754	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
755		__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
756
757	return iommu_dma_map_sg(dev, sgl, nelems,
758			dma_direction_to_prot(dir, coherent));
759}
760
761static void __iommu_unmap_sg_attrs(struct device *dev,
762				   struct scatterlist *sgl, int nelems,
763				   enum dma_data_direction dir,
764				   struct dma_attrs *attrs)
765{
766	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
767		__iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
768
769	iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
770}
771
772static struct dma_map_ops iommu_dma_ops = {
773	.alloc = __iommu_alloc_attrs,
774	.free = __iommu_free_attrs,
775	.mmap = __iommu_mmap_attrs,
776	.get_sgtable = __iommu_get_sgtable,
777	.map_page = __iommu_map_page,
778	.unmap_page = __iommu_unmap_page,
779	.map_sg = __iommu_map_sg_attrs,
780	.unmap_sg = __iommu_unmap_sg_attrs,
781	.sync_single_for_cpu = __iommu_sync_single_for_cpu,
782	.sync_single_for_device = __iommu_sync_single_for_device,
783	.sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
784	.sync_sg_for_device = __iommu_sync_sg_for_device,
785	.dma_supported = iommu_dma_supported,
 
786	.mapping_error = iommu_dma_mapping_error,
787};
788
789/*
790 * TODO: Right now __iommu_setup_dma_ops() gets called too early to do
791 * everything it needs to - the device is only partially created and the
792 * IOMMU driver hasn't seen it yet, so it can't have a group. Thus we
793 * need this delayed attachment dance. Once IOMMU probe ordering is sorted
794 * to move the arch_setup_dma_ops() call later, all the notifier bits below
795 * become unnecessary, and will go away.
796 */
797struct iommu_dma_notifier_data {
798	struct list_head list;
799	struct device *dev;
800	const struct iommu_ops *ops;
801	u64 dma_base;
802	u64 size;
803};
804static LIST_HEAD(iommu_dma_masters);
805static DEFINE_MUTEX(iommu_dma_notifier_lock);
806
807/*
808 * Temporarily "borrow" a domain feature flag to to tell if we had to resort
809 * to creating our own domain here, in case we need to clean it up again.
810 */
811#define __IOMMU_DOMAIN_FAKE_DEFAULT		(1U << 31)
812
813static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops,
814			   u64 dma_base, u64 size)
815{
816	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
817
818	/*
819	 * Best case: The device is either part of a group which was
820	 * already attached to a domain in a previous call, or it's
821	 * been put in a default DMA domain by the IOMMU core.
822	 */
823	if (!domain) {
824		/*
825		 * Urgh. The IOMMU core isn't going to do default domains
826		 * for non-PCI devices anyway, until it has some means of
827		 * abstracting the entirely implementation-specific
828		 * sideband data/SoC topology/unicorn dust that may or
829		 * may not differentiate upstream masters.
830		 * So until then, HORRIBLE HACKS!
831		 */
832		domain = ops->domain_alloc(IOMMU_DOMAIN_DMA);
833		if (!domain)
834			goto out_no_domain;
835
836		domain->ops = ops;
837		domain->type = IOMMU_DOMAIN_DMA | __IOMMU_DOMAIN_FAKE_DEFAULT;
838
839		if (iommu_attach_device(domain, dev))
840			goto out_put_domain;
841	}
842
843	if (iommu_dma_init_domain(domain, dma_base, size))
844		goto out_detach;
845
846	dev->archdata.dma_ops = &iommu_dma_ops;
847	return true;
848
849out_detach:
850	iommu_detach_device(domain, dev);
851out_put_domain:
852	if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT)
853		iommu_domain_free(domain);
854out_no_domain:
855	pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
856		dev_name(dev));
857	return false;
858}
859
860static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops,
861			      u64 dma_base, u64 size)
862{
863	struct iommu_dma_notifier_data *iommudata;
864
865	iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL);
866	if (!iommudata)
867		return;
868
869	iommudata->dev = dev;
870	iommudata->ops = ops;
871	iommudata->dma_base = dma_base;
872	iommudata->size = size;
873
874	mutex_lock(&iommu_dma_notifier_lock);
875	list_add(&iommudata->list, &iommu_dma_masters);
876	mutex_unlock(&iommu_dma_notifier_lock);
877}
878
879static int __iommu_attach_notifier(struct notifier_block *nb,
880				   unsigned long action, void *data)
881{
882	struct iommu_dma_notifier_data *master, *tmp;
883
884	if (action != BUS_NOTIFY_ADD_DEVICE)
885		return 0;
886
887	mutex_lock(&iommu_dma_notifier_lock);
888	list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) {
889		if (do_iommu_attach(master->dev, master->ops,
890				master->dma_base, master->size)) {
891			list_del(&master->list);
892			kfree(master);
893		}
894	}
895	mutex_unlock(&iommu_dma_notifier_lock);
896	return 0;
897}
898
899static int __init register_iommu_dma_ops_notifier(struct bus_type *bus)
900{
901	struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL);
902	int ret;
903
904	if (!nb)
905		return -ENOMEM;
906	/*
907	 * The device must be attached to a domain before the driver probe
908	 * routine gets a chance to start allocating DMA buffers. However,
909	 * the IOMMU driver also needs a chance to configure the iommu_group
910	 * via its add_device callback first, so we need to make the attach
911	 * happen between those two points. Since the IOMMU core uses a bus
912	 * notifier with default priority for add_device, do the same but
913	 * with a lower priority to ensure the appropriate ordering.
914	 */
915	nb->notifier_call = __iommu_attach_notifier;
916	nb->priority = -100;
917
918	ret = bus_register_notifier(bus, nb);
919	if (ret) {
920		pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n",
921			bus->name);
922		kfree(nb);
923	}
924	return ret;
925}
926
927static int __init __iommu_dma_init(void)
928{
929	int ret;
930
931	ret = iommu_dma_init();
932	if (!ret)
933		ret = register_iommu_dma_ops_notifier(&platform_bus_type);
934	if (!ret)
935		ret = register_iommu_dma_ops_notifier(&amba_bustype);
936
937	/* handle devices queued before this arch_initcall */
938	if (!ret)
939		__iommu_attach_notifier(NULL, BUS_NOTIFY_ADD_DEVICE, NULL);
940	return ret;
941}
942arch_initcall(__iommu_dma_init);
943
944static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
945				  const struct iommu_ops *ops)
946{
947	struct iommu_group *group;
948
949	if (!ops)
950		return;
 
951	/*
952	 * TODO: As a concession to the future, we're ready to handle being
953	 * called both early and late (i.e. after bus_add_device). Once all
954	 * the platform bus code is reworked to call us late and the notifier
955	 * junk above goes away, move the body of do_iommu_attach here.
956	 */
957	group = iommu_group_get(dev);
958	if (group) {
959		do_iommu_attach(dev, ops, dma_base, size);
960		iommu_group_put(group);
961	} else {
962		queue_iommu_attach(dev, ops, dma_base, size);
 
 
 
 
963	}
 
 
 
 
 
 
964}
965
966void arch_teardown_dma_ops(struct device *dev)
967{
968	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
969
970	if (domain) {
971		iommu_detach_device(domain, dev);
972		if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT)
973			iommu_domain_free(domain);
974	}
975
976	dev->archdata.dma_ops = NULL;
977}
978
979#else
980
981static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
982				  struct iommu_ops *iommu)
983{ }
984
985#endif  /* CONFIG_IOMMU_DMA */
986
987void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
988			struct iommu_ops *iommu, bool coherent)
989{
990	if (!dev->archdata.dma_ops)
991		dev->archdata.dma_ops = &swiotlb_dma_ops;
992
993	dev->archdata.dma_coherent = coherent;
994	__iommu_setup_dma_ops(dev, dma_base, size, iommu);
 
 
 
 
 
 
 
995}
v4.17
  1/*
  2 * SWIOTLB-based DMA API implementation
  3 *
  4 * Copyright (C) 2012 ARM Ltd.
  5 * Author: Catalin Marinas <catalin.marinas@arm.com>
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 *
 11 * This program is distributed in the hope that it will be useful,
 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 *
 16 * You should have received a copy of the GNU General Public License
 17 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 18 */
 19
 20#include <linux/gfp.h>
 21#include <linux/acpi.h>
 22#include <linux/bootmem.h>
 23#include <linux/cache.h>
 24#include <linux/export.h>
 25#include <linux/slab.h>
 26#include <linux/genalloc.h>
 27#include <linux/dma-direct.h>
 28#include <linux/dma-contiguous.h>
 29#include <linux/vmalloc.h>
 30#include <linux/swiotlb.h>
 31#include <linux/pci.h>
 32
 33#include <asm/cacheflush.h>
 34
 35static int swiotlb __ro_after_init;
 36
 37static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
 38				 bool coherent)
 39{
 40	if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
 41		return pgprot_writecombine(prot);
 42	return prot;
 43}
 44
 45static struct gen_pool *atomic_pool __ro_after_init;
 46
 47#define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
 48static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
 49
 50static int __init early_coherent_pool(char *p)
 51{
 52	atomic_pool_size = memparse(p, &p);
 53	return 0;
 54}
 55early_param("coherent_pool", early_coherent_pool);
 56
 57static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
 58{
 59	unsigned long val;
 60	void *ptr = NULL;
 61
 62	if (!atomic_pool) {
 63		WARN(1, "coherent pool not initialised!\n");
 64		return NULL;
 65	}
 66
 67	val = gen_pool_alloc(atomic_pool, size);
 68	if (val) {
 69		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 70
 71		*ret_page = phys_to_page(phys);
 72		ptr = (void *)val;
 73		memset(ptr, 0, size);
 74	}
 75
 76	return ptr;
 77}
 78
 79static bool __in_atomic_pool(void *start, size_t size)
 80{
 81	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
 82}
 83
 84static int __free_from_pool(void *start, size_t size)
 85{
 86	if (!__in_atomic_pool(start, size))
 87		return 0;
 88
 89	gen_pool_free(atomic_pool, (unsigned long)start, size);
 90
 91	return 1;
 92}
 93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 94static void *__dma_alloc(struct device *dev, size_t size,
 95			 dma_addr_t *dma_handle, gfp_t flags,
 96			 unsigned long attrs)
 97{
 98	struct page *page;
 99	void *ptr, *coherent_ptr;
100	bool coherent = is_device_dma_coherent(dev);
101	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
102
103	size = PAGE_ALIGN(size);
104
105	if (!coherent && !gfpflags_allow_blocking(flags)) {
106		struct page *page = NULL;
107		void *addr = __alloc_from_pool(size, &page, flags);
108
109		if (addr)
110			*dma_handle = phys_to_dma(dev, page_to_phys(page));
111
112		return addr;
113	}
114
115	ptr = swiotlb_alloc(dev, size, dma_handle, flags, attrs);
116	if (!ptr)
117		goto no_mem;
118
119	/* no need for non-cacheable mapping if coherent */
120	if (coherent)
121		return ptr;
122
123	/* remove any dirty cache lines on the kernel alias */
124	__dma_flush_area(ptr, size);
125
126	/* create a coherent mapping */
127	page = virt_to_page(ptr);
128	coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
129						   prot, __builtin_return_address(0));
130	if (!coherent_ptr)
131		goto no_map;
132
133	return coherent_ptr;
134
135no_map:
136	swiotlb_free(dev, size, ptr, *dma_handle, attrs);
137no_mem:
 
138	return NULL;
139}
140
141static void __dma_free(struct device *dev, size_t size,
142		       void *vaddr, dma_addr_t dma_handle,
143		       unsigned long attrs)
144{
145	void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
146
147	size = PAGE_ALIGN(size);
148
149	if (!is_device_dma_coherent(dev)) {
150		if (__free_from_pool(vaddr, size))
151			return;
152		vunmap(vaddr);
153	}
154	swiotlb_free(dev, size, swiotlb_addr, dma_handle, attrs);
155}
156
157static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
158				     unsigned long offset, size_t size,
159				     enum dma_data_direction dir,
160				     unsigned long attrs)
161{
162	dma_addr_t dev_addr;
163
164	dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
165	if (!is_device_dma_coherent(dev) &&
166	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
167		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
168
169	return dev_addr;
170}
171
172
173static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
174				 size_t size, enum dma_data_direction dir,
175				 unsigned long attrs)
176{
177	if (!is_device_dma_coherent(dev) &&
178	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
179		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
180	swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
181}
182
183static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
184				  int nelems, enum dma_data_direction dir,
185				  unsigned long attrs)
186{
187	struct scatterlist *sg;
188	int i, ret;
189
190	ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
191	if (!is_device_dma_coherent(dev) &&
192	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
193		for_each_sg(sgl, sg, ret, i)
194			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
195				       sg->length, dir);
196
197	return ret;
198}
199
200static void __swiotlb_unmap_sg_attrs(struct device *dev,
201				     struct scatterlist *sgl, int nelems,
202				     enum dma_data_direction dir,
203				     unsigned long attrs)
204{
205	struct scatterlist *sg;
206	int i;
207
208	if (!is_device_dma_coherent(dev) &&
209	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
210		for_each_sg(sgl, sg, nelems, i)
211			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
212					 sg->length, dir);
213	swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
214}
215
216static void __swiotlb_sync_single_for_cpu(struct device *dev,
217					  dma_addr_t dev_addr, size_t size,
218					  enum dma_data_direction dir)
219{
220	if (!is_device_dma_coherent(dev))
221		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
222	swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
223}
224
225static void __swiotlb_sync_single_for_device(struct device *dev,
226					     dma_addr_t dev_addr, size_t size,
227					     enum dma_data_direction dir)
228{
229	swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
230	if (!is_device_dma_coherent(dev))
231		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
232}
233
234static void __swiotlb_sync_sg_for_cpu(struct device *dev,
235				      struct scatterlist *sgl, int nelems,
236				      enum dma_data_direction dir)
237{
238	struct scatterlist *sg;
239	int i;
240
241	if (!is_device_dma_coherent(dev))
242		for_each_sg(sgl, sg, nelems, i)
243			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
244					 sg->length, dir);
245	swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
246}
247
248static void __swiotlb_sync_sg_for_device(struct device *dev,
249					 struct scatterlist *sgl, int nelems,
250					 enum dma_data_direction dir)
251{
252	struct scatterlist *sg;
253	int i;
254
255	swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
256	if (!is_device_dma_coherent(dev))
257		for_each_sg(sgl, sg, nelems, i)
258			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
259				       sg->length, dir);
260}
261
262static int __swiotlb_mmap_pfn(struct vm_area_struct *vma,
263			      unsigned long pfn, size_t size)
 
 
264{
265	int ret = -ENXIO;
266	unsigned long nr_vma_pages = vma_pages(vma);
 
267	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 
268	unsigned long off = vma->vm_pgoff;
269
 
 
 
 
 
 
270	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
271		ret = remap_pfn_range(vma, vma->vm_start,
272				      pfn + off,
273				      vma->vm_end - vma->vm_start,
274				      vma->vm_page_prot);
275	}
276
277	return ret;
278}
279
280static int __swiotlb_mmap(struct device *dev,
281			  struct vm_area_struct *vma,
282			  void *cpu_addr, dma_addr_t dma_addr, size_t size,
283			  unsigned long attrs)
284{
285	int ret;
286	unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
287
288	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
289					     is_device_dma_coherent(dev));
290
291	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
292		return ret;
293
294	return __swiotlb_mmap_pfn(vma, pfn, size);
295}
296
297static int __swiotlb_get_sgtable_page(struct sg_table *sgt,
298				      struct page *page, size_t size)
299{
300	int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
301
302	if (!ret)
303		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 
304
305	return ret;
306}
307
308static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
309				 void *cpu_addr, dma_addr_t handle, size_t size,
310				 unsigned long attrs)
311{
312	struct page *page = phys_to_page(dma_to_phys(dev, handle));
313
314	return __swiotlb_get_sgtable_page(sgt, page, size);
315}
316
317static int __swiotlb_dma_supported(struct device *hwdev, u64 mask)
318{
319	if (swiotlb)
320		return swiotlb_dma_supported(hwdev, mask);
321	return 1;
322}
323
324static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr)
325{
326	if (swiotlb)
327		return swiotlb_dma_mapping_error(hwdev, addr);
328	return 0;
329}
330
331static const struct dma_map_ops arm64_swiotlb_dma_ops = {
332	.alloc = __dma_alloc,
333	.free = __dma_free,
334	.mmap = __swiotlb_mmap,
335	.get_sgtable = __swiotlb_get_sgtable,
336	.map_page = __swiotlb_map_page,
337	.unmap_page = __swiotlb_unmap_page,
338	.map_sg = __swiotlb_map_sg_attrs,
339	.unmap_sg = __swiotlb_unmap_sg_attrs,
340	.sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
341	.sync_single_for_device = __swiotlb_sync_single_for_device,
342	.sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
343	.sync_sg_for_device = __swiotlb_sync_sg_for_device,
344	.dma_supported = __swiotlb_dma_supported,
345	.mapping_error = __swiotlb_dma_mapping_error,
346};
347
348static int __init atomic_pool_init(void)
349{
350	pgprot_t prot = __pgprot(PROT_NORMAL_NC);
351	unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
352	struct page *page;
353	void *addr;
354	unsigned int pool_size_order = get_order(atomic_pool_size);
355
356	if (dev_get_cma_area(NULL))
357		page = dma_alloc_from_contiguous(NULL, nr_pages,
358						 pool_size_order, GFP_KERNEL);
359	else
360		page = alloc_pages(GFP_DMA32, pool_size_order);
361
362	if (page) {
363		int ret;
364		void *page_addr = page_address(page);
365
366		memset(page_addr, 0, atomic_pool_size);
367		__dma_flush_area(page_addr, atomic_pool_size);
368
369		atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
370		if (!atomic_pool)
371			goto free_page;
372
373		addr = dma_common_contiguous_remap(page, atomic_pool_size,
374					VM_USERMAP, prot, atomic_pool_init);
375
376		if (!addr)
377			goto destroy_genpool;
378
379		ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
380					page_to_phys(page),
381					atomic_pool_size, -1);
382		if (ret)
383			goto remove_mapping;
384
385		gen_pool_set_algo(atomic_pool,
386				  gen_pool_first_fit_order_align,
387				  NULL);
388
389		pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
390			atomic_pool_size / 1024);
391		return 0;
392	}
393	goto out;
394
395remove_mapping:
396	dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
397destroy_genpool:
398	gen_pool_destroy(atomic_pool);
399	atomic_pool = NULL;
400free_page:
401	if (!dma_release_from_contiguous(NULL, page, nr_pages))
402		__free_pages(page, pool_size_order);
403out:
404	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
405		atomic_pool_size / 1024);
406	return -ENOMEM;
407}
408
409/********************************************
410 * The following APIs are for dummy DMA ops *
411 ********************************************/
412
413static void *__dummy_alloc(struct device *dev, size_t size,
414			   dma_addr_t *dma_handle, gfp_t flags,
415			   unsigned long attrs)
416{
417	return NULL;
418}
419
420static void __dummy_free(struct device *dev, size_t size,
421			 void *vaddr, dma_addr_t dma_handle,
422			 unsigned long attrs)
423{
424}
425
426static int __dummy_mmap(struct device *dev,
427			struct vm_area_struct *vma,
428			void *cpu_addr, dma_addr_t dma_addr, size_t size,
429			unsigned long attrs)
430{
431	return -ENXIO;
432}
433
434static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
435				   unsigned long offset, size_t size,
436				   enum dma_data_direction dir,
437				   unsigned long attrs)
438{
439	return 0;
440}
441
442static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
443			       size_t size, enum dma_data_direction dir,
444			       unsigned long attrs)
445{
446}
447
448static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
449			  int nelems, enum dma_data_direction dir,
450			  unsigned long attrs)
451{
452	return 0;
453}
454
455static void __dummy_unmap_sg(struct device *dev,
456			     struct scatterlist *sgl, int nelems,
457			     enum dma_data_direction dir,
458			     unsigned long attrs)
459{
460}
461
462static void __dummy_sync_single(struct device *dev,
463				dma_addr_t dev_addr, size_t size,
464				enum dma_data_direction dir)
465{
466}
467
468static void __dummy_sync_sg(struct device *dev,
469			    struct scatterlist *sgl, int nelems,
470			    enum dma_data_direction dir)
471{
472}
473
474static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
475{
476	return 1;
477}
478
479static int __dummy_dma_supported(struct device *hwdev, u64 mask)
480{
481	return 0;
482}
483
484const struct dma_map_ops dummy_dma_ops = {
485	.alloc                  = __dummy_alloc,
486	.free                   = __dummy_free,
487	.mmap                   = __dummy_mmap,
488	.map_page               = __dummy_map_page,
489	.unmap_page             = __dummy_unmap_page,
490	.map_sg                 = __dummy_map_sg,
491	.unmap_sg               = __dummy_unmap_sg,
492	.sync_single_for_cpu    = __dummy_sync_single,
493	.sync_single_for_device = __dummy_sync_single,
494	.sync_sg_for_cpu        = __dummy_sync_sg,
495	.sync_sg_for_device     = __dummy_sync_sg,
496	.mapping_error          = __dummy_mapping_error,
497	.dma_supported          = __dummy_dma_supported,
498};
499EXPORT_SYMBOL(dummy_dma_ops);
500
501static int __init arm64_dma_init(void)
502{
503	if (swiotlb_force == SWIOTLB_FORCE ||
504	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
505		swiotlb = 1;
506
507	return atomic_pool_init();
508}
509arch_initcall(arm64_dma_init);
510
511#define PREALLOC_DMA_DEBUG_ENTRIES	4096
512
513static int __init dma_debug_do_init(void)
514{
515	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
516	return 0;
517}
518fs_initcall(dma_debug_do_init);
519
520
521#ifdef CONFIG_IOMMU_DMA
522#include <linux/dma-iommu.h>
523#include <linux/platform_device.h>
524#include <linux/amba/bus.h>
525
526/* Thankfully, all cache ops are by VA so we can ignore phys here */
527static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
528{
529	__dma_flush_area(virt, PAGE_SIZE);
530}
531
532static void *__iommu_alloc_attrs(struct device *dev, size_t size,
533				 dma_addr_t *handle, gfp_t gfp,
534				 unsigned long attrs)
535{
536	bool coherent = is_device_dma_coherent(dev);
537	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
538	size_t iosize = size;
539	void *addr;
540
541	if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
542		return NULL;
543
544	size = PAGE_ALIGN(size);
545
546	/*
547	 * Some drivers rely on this, and we probably don't want the
548	 * possibility of stale kernel data being read by devices anyway.
549	 */
550	gfp |= __GFP_ZERO;
551
552	if (!gfpflags_allow_blocking(gfp)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
553		struct page *page;
554		/*
555		 * In atomic context we can't remap anything, so we'll only
556		 * get the virtually contiguous buffer we need by way of a
557		 * physically contiguous allocation.
558		 */
559		if (coherent) {
560			page = alloc_pages(gfp, get_order(size));
561			addr = page ? page_address(page) : NULL;
562		} else {
563			addr = __alloc_from_pool(size, &page, gfp);
564		}
565		if (!addr)
566			return NULL;
567
568		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
569		if (iommu_dma_mapping_error(dev, *handle)) {
570			if (coherent)
571				__free_pages(page, get_order(size));
572			else
573				__free_from_pool(addr, size);
574			addr = NULL;
575		}
576	} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
577		pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
578		struct page *page;
579
580		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
581						 get_order(size), gfp);
582		if (!page)
583			return NULL;
584
585		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
586		if (iommu_dma_mapping_error(dev, *handle)) {
587			dma_release_from_contiguous(dev, page,
588						    size >> PAGE_SHIFT);
589			return NULL;
590		}
591		if (!coherent)
592			__dma_flush_area(page_to_virt(page), iosize);
593
594		addr = dma_common_contiguous_remap(page, size, VM_USERMAP,
595						   prot,
596						   __builtin_return_address(0));
597		if (!addr) {
598			iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs);
599			dma_release_from_contiguous(dev, page,
600						    size >> PAGE_SHIFT);
601		}
602	} else {
603		pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
604		struct page **pages;
605
606		pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
607					handle, flush_page);
608		if (!pages)
609			return NULL;
610
611		addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
612					      __builtin_return_address(0));
613		if (!addr)
614			iommu_dma_free(dev, pages, iosize, handle);
615	}
616	return addr;
617}
618
619static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
620			       dma_addr_t handle, unsigned long attrs)
621{
622	size_t iosize = size;
623
624	size = PAGE_ALIGN(size);
625	/*
626	 * @cpu_addr will be one of 4 things depending on how it was allocated:
627	 * - A remapped array of pages for contiguous allocations.
628	 * - A remapped array of pages from iommu_dma_alloc(), for all
629	 *   non-atomic allocations.
630	 * - A non-cacheable alias from the atomic pool, for atomic
631	 *   allocations by non-coherent devices.
632	 * - A normal lowmem address, for atomic allocations by
633	 *   coherent devices.
634	 * Hence how dodgy the below logic looks...
635	 */
636	if (__in_atomic_pool(cpu_addr, size)) {
637		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
638		__free_from_pool(cpu_addr, size);
639	} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
640		struct page *page = vmalloc_to_page(cpu_addr);
641
642		iommu_dma_unmap_page(dev, handle, iosize, 0, attrs);
643		dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
644		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
645	} else if (is_vmalloc_addr(cpu_addr)){
646		struct vm_struct *area = find_vm_area(cpu_addr);
647
648		if (WARN_ON(!area || !area->pages))
649			return;
650		iommu_dma_free(dev, area->pages, iosize, &handle);
651		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
652	} else {
653		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
654		__free_pages(virt_to_page(cpu_addr), get_order(size));
655	}
656}
657
658static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
659			      void *cpu_addr, dma_addr_t dma_addr, size_t size,
660			      unsigned long attrs)
661{
662	struct vm_struct *area;
663	int ret;
664
665	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
666					     is_device_dma_coherent(dev));
667
668	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
669		return ret;
670
671	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
672		/*
673		 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
674		 * hence in the vmalloc space.
675		 */
676		unsigned long pfn = vmalloc_to_pfn(cpu_addr);
677		return __swiotlb_mmap_pfn(vma, pfn, size);
678	}
679
680	area = find_vm_area(cpu_addr);
681	if (WARN_ON(!area || !area->pages))
682		return -ENXIO;
683
684	return iommu_dma_mmap(area->pages, size, vma);
685}
686
687static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
688			       void *cpu_addr, dma_addr_t dma_addr,
689			       size_t size, unsigned long attrs)
690{
691	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
692	struct vm_struct *area = find_vm_area(cpu_addr);
693
694	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
695		/*
696		 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
697		 * hence in the vmalloc space.
698		 */
699		struct page *page = vmalloc_to_page(cpu_addr);
700		return __swiotlb_get_sgtable_page(sgt, page, size);
701	}
702
703	if (WARN_ON(!area || !area->pages))
704		return -ENXIO;
705
706	return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
707					 GFP_KERNEL);
708}
709
710static void __iommu_sync_single_for_cpu(struct device *dev,
711					dma_addr_t dev_addr, size_t size,
712					enum dma_data_direction dir)
713{
714	phys_addr_t phys;
715
716	if (is_device_dma_coherent(dev))
717		return;
718
719	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
720	__dma_unmap_area(phys_to_virt(phys), size, dir);
721}
722
723static void __iommu_sync_single_for_device(struct device *dev,
724					   dma_addr_t dev_addr, size_t size,
725					   enum dma_data_direction dir)
726{
727	phys_addr_t phys;
728
729	if (is_device_dma_coherent(dev))
730		return;
731
732	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
733	__dma_map_area(phys_to_virt(phys), size, dir);
734}
735
736static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
737				   unsigned long offset, size_t size,
738				   enum dma_data_direction dir,
739				   unsigned long attrs)
740{
741	bool coherent = is_device_dma_coherent(dev);
742	int prot = dma_info_to_prot(dir, coherent, attrs);
743	dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
744
745	if (!iommu_dma_mapping_error(dev, dev_addr) &&
746	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
747		__iommu_sync_single_for_device(dev, dev_addr, size, dir);
748
749	return dev_addr;
750}
751
752static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
753			       size_t size, enum dma_data_direction dir,
754			       unsigned long attrs)
755{
756	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
757		__iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
758
759	iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
760}
761
762static void __iommu_sync_sg_for_cpu(struct device *dev,
763				    struct scatterlist *sgl, int nelems,
764				    enum dma_data_direction dir)
765{
766	struct scatterlist *sg;
767	int i;
768
769	if (is_device_dma_coherent(dev))
770		return;
771
772	for_each_sg(sgl, sg, nelems, i)
773		__dma_unmap_area(sg_virt(sg), sg->length, dir);
774}
775
776static void __iommu_sync_sg_for_device(struct device *dev,
777				       struct scatterlist *sgl, int nelems,
778				       enum dma_data_direction dir)
779{
780	struct scatterlist *sg;
781	int i;
782
783	if (is_device_dma_coherent(dev))
784		return;
785
786	for_each_sg(sgl, sg, nelems, i)
787		__dma_map_area(sg_virt(sg), sg->length, dir);
788}
789
790static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
791				int nelems, enum dma_data_direction dir,
792				unsigned long attrs)
793{
794	bool coherent = is_device_dma_coherent(dev);
795
796	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
797		__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
798
799	return iommu_dma_map_sg(dev, sgl, nelems,
800				dma_info_to_prot(dir, coherent, attrs));
801}
802
803static void __iommu_unmap_sg_attrs(struct device *dev,
804				   struct scatterlist *sgl, int nelems,
805				   enum dma_data_direction dir,
806				   unsigned long attrs)
807{
808	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
809		__iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
810
811	iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
812}
813
814static const struct dma_map_ops iommu_dma_ops = {
815	.alloc = __iommu_alloc_attrs,
816	.free = __iommu_free_attrs,
817	.mmap = __iommu_mmap_attrs,
818	.get_sgtable = __iommu_get_sgtable,
819	.map_page = __iommu_map_page,
820	.unmap_page = __iommu_unmap_page,
821	.map_sg = __iommu_map_sg_attrs,
822	.unmap_sg = __iommu_unmap_sg_attrs,
823	.sync_single_for_cpu = __iommu_sync_single_for_cpu,
824	.sync_single_for_device = __iommu_sync_single_for_device,
825	.sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
826	.sync_sg_for_device = __iommu_sync_sg_for_device,
827	.map_resource = iommu_dma_map_resource,
828	.unmap_resource = iommu_dma_unmap_resource,
829	.mapping_error = iommu_dma_mapping_error,
830};
831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
832static int __init __iommu_dma_init(void)
833{
834	return iommu_dma_init();
 
 
 
 
 
 
 
 
 
 
 
835}
836arch_initcall(__iommu_dma_init);
837
838static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
839				  const struct iommu_ops *ops)
840{
841	struct iommu_domain *domain;
842
843	if (!ops)
844		return;
845
846	/*
847	 * The IOMMU core code allocates the default DMA domain, which the
848	 * underlying IOMMU driver needs to support via the dma-iommu layer.
 
 
849	 */
850	domain = iommu_get_domain_for_dev(dev);
851
852	if (!domain)
853		goto out_err;
854
855	if (domain->type == IOMMU_DOMAIN_DMA) {
856		if (iommu_dma_init_domain(domain, dma_base, size, dev))
857			goto out_err;
858
859		dev->dma_ops = &iommu_dma_ops;
860	}
861
862	return;
863
864out_err:
865	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
866		 dev_name(dev));
867}
868
869void arch_teardown_dma_ops(struct device *dev)
870{
871	dev->dma_ops = NULL;
 
 
 
 
 
 
 
 
872}
873
874#else
875
876static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
877				  const struct iommu_ops *iommu)
878{ }
879
880#endif  /* CONFIG_IOMMU_DMA */
881
882void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
883			const struct iommu_ops *iommu, bool coherent)
884{
885	if (!dev->dma_ops)
886		dev->dma_ops = &arm64_swiotlb_dma_ops;
887
888	dev->archdata.dma_coherent = coherent;
889	__iommu_setup_dma_ops(dev, dma_base, size, iommu);
890
891#ifdef CONFIG_XEN
892	if (xen_initial_domain()) {
893		dev->archdata.dev_dma_ops = dev->dma_ops;
894		dev->dma_ops = xen_dma_ops;
895	}
896#endif
897}