Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.6
  1/*
  2 *  linux/arch/arm/mm/fault.c
  3 *
  4 *  Copyright (C) 1995  Linus Torvalds
  5 *  Modifications for ARM processor (c) 1995-2004 Russell King
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/module.h>
 12#include <linux/signal.h>
 13#include <linux/mm.h>
 14#include <linux/hardirq.h>
 15#include <linux/init.h>
 16#include <linux/kprobes.h>
 17#include <linux/uaccess.h>
 18#include <linux/page-flags.h>
 19#include <linux/sched.h>
 
 20#include <linux/highmem.h>
 21#include <linux/perf_event.h>
 22
 23#include <asm/exception.h>
 24#include <asm/pgtable.h>
 25#include <asm/system_misc.h>
 26#include <asm/system_info.h>
 27#include <asm/tlbflush.h>
 28
 29#include "fault.h"
 30
 31#ifdef CONFIG_MMU
 32
 33#ifdef CONFIG_KPROBES
 34static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
 35{
 36	int ret = 0;
 37
 38	if (!user_mode(regs)) {
 39		/* kprobe_running() needs smp_processor_id() */
 40		preempt_disable();
 41		if (kprobe_running() && kprobe_fault_handler(regs, fsr))
 42			ret = 1;
 43		preempt_enable();
 44	}
 45
 46	return ret;
 47}
 48#else
 49static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
 50{
 51	return 0;
 52}
 53#endif
 54
 55/*
 56 * This is useful to dump out the page tables associated with
 57 * 'addr' in mm 'mm'.
 58 */
 59void show_pte(struct mm_struct *mm, unsigned long addr)
 60{
 61	pgd_t *pgd;
 62
 63	if (!mm)
 64		mm = &init_mm;
 65
 66	pr_alert("pgd = %p\n", mm->pgd);
 67	pgd = pgd_offset(mm, addr);
 68	pr_alert("[%08lx] *pgd=%08llx",
 69			addr, (long long)pgd_val(*pgd));
 70
 71	do {
 72		pud_t *pud;
 73		pmd_t *pmd;
 74		pte_t *pte;
 75
 76		if (pgd_none(*pgd))
 77			break;
 78
 79		if (pgd_bad(*pgd)) {
 80			pr_cont("(bad)");
 81			break;
 82		}
 83
 84		pud = pud_offset(pgd, addr);
 85		if (PTRS_PER_PUD != 1)
 86			pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
 87
 88		if (pud_none(*pud))
 89			break;
 90
 91		if (pud_bad(*pud)) {
 92			pr_cont("(bad)");
 93			break;
 94		}
 95
 96		pmd = pmd_offset(pud, addr);
 97		if (PTRS_PER_PMD != 1)
 98			pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
 99
100		if (pmd_none(*pmd))
101			break;
102
103		if (pmd_bad(*pmd)) {
104			pr_cont("(bad)");
105			break;
106		}
107
108		/* We must not map this if we have highmem enabled */
109		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
110			break;
111
112		pte = pte_offset_map(pmd, addr);
113		pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
114#ifndef CONFIG_ARM_LPAE
115		pr_cont(", *ppte=%08llx",
116		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
117#endif
118		pte_unmap(pte);
119	} while(0);
120
121	pr_cont("\n");
122}
123#else					/* CONFIG_MMU */
124void show_pte(struct mm_struct *mm, unsigned long addr)
125{ }
126#endif					/* CONFIG_MMU */
127
128/*
129 * Oops.  The kernel tried to access some page that wasn't present.
130 */
131static void
132__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
133		  struct pt_regs *regs)
134{
135	/*
136	 * Are we prepared to handle this kernel fault?
137	 */
138	if (fixup_exception(regs))
139		return;
140
141	/*
142	 * No handler, we'll have to terminate things with extreme prejudice.
143	 */
144	bust_spinlocks(1);
145	pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
146		 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
147		 "paging request", addr);
148
149	show_pte(mm, addr);
150	die("Oops", regs, fsr);
151	bust_spinlocks(0);
152	do_exit(SIGKILL);
153}
154
155/*
156 * Something tried to access memory that isn't in our memory map..
157 * User mode accesses just cause a SIGSEGV
158 */
159static void
160__do_user_fault(struct task_struct *tsk, unsigned long addr,
161		unsigned int fsr, unsigned int sig, int code,
162		struct pt_regs *regs)
163{
164	struct siginfo si;
165
166#ifdef CONFIG_DEBUG_USER
167	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
168	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
169		printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
170		       tsk->comm, sig, addr, fsr);
171		show_pte(tsk->mm, addr);
172		show_regs(regs);
173	}
174#endif
175
176	tsk->thread.address = addr;
177	tsk->thread.error_code = fsr;
178	tsk->thread.trap_no = 14;
179	si.si_signo = sig;
180	si.si_errno = 0;
181	si.si_code = code;
182	si.si_addr = (void __user *)addr;
183	force_sig_info(sig, &si, tsk);
184}
185
186void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
187{
188	struct task_struct *tsk = current;
189	struct mm_struct *mm = tsk->active_mm;
190
191	/*
192	 * If we are in kernel mode at this point, we
193	 * have no context to handle this fault with.
194	 */
195	if (user_mode(regs))
196		__do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
197	else
198		__do_kernel_fault(mm, addr, fsr, regs);
199}
200
201#ifdef CONFIG_MMU
202#define VM_FAULT_BADMAP		0x010000
203#define VM_FAULT_BADACCESS	0x020000
204
205/*
206 * Check that the permissions on the VMA allow for the fault which occurred.
207 * If we encountered a write fault, we must have write permission, otherwise
208 * we allow any permission.
209 */
210static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
211{
212	unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
213
214	if (fsr & FSR_WRITE)
215		mask = VM_WRITE;
216	if (fsr & FSR_LNX_PF)
217		mask = VM_EXEC;
218
219	return vma->vm_flags & mask ? false : true;
220}
221
222static int __kprobes
223__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
224		unsigned int flags, struct task_struct *tsk)
225{
226	struct vm_area_struct *vma;
227	int fault;
228
229	vma = find_vma(mm, addr);
230	fault = VM_FAULT_BADMAP;
231	if (unlikely(!vma))
232		goto out;
233	if (unlikely(vma->vm_start > addr))
234		goto check_stack;
235
236	/*
237	 * Ok, we have a good vm_area for this
238	 * memory access, so we can handle it.
239	 */
240good_area:
241	if (access_error(fsr, vma)) {
242		fault = VM_FAULT_BADACCESS;
243		goto out;
244	}
245
246	return handle_mm_fault(mm, vma, addr & PAGE_MASK, flags);
247
248check_stack:
249	/* Don't allow expansion below FIRST_USER_ADDRESS */
250	if (vma->vm_flags & VM_GROWSDOWN &&
251	    addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
252		goto good_area;
253out:
254	return fault;
255}
256
257static int __kprobes
258do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
259{
260	struct task_struct *tsk;
261	struct mm_struct *mm;
262	int fault, sig, code;
263	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
264
265	if (notify_page_fault(regs, fsr))
266		return 0;
267
268	tsk = current;
269	mm  = tsk->mm;
270
271	/* Enable interrupts if they were enabled in the parent context. */
272	if (interrupts_enabled(regs))
273		local_irq_enable();
274
275	/*
276	 * If we're in an interrupt or have no user
277	 * context, we must not take the fault..
278	 */
279	if (faulthandler_disabled() || !mm)
280		goto no_context;
281
282	if (user_mode(regs))
283		flags |= FAULT_FLAG_USER;
284	if (fsr & FSR_WRITE)
285		flags |= FAULT_FLAG_WRITE;
286
287	/*
288	 * As per x86, we may deadlock here.  However, since the kernel only
289	 * validly references user space from well defined areas of the code,
290	 * we can bug out early if this is from code which shouldn't.
291	 */
292	if (!down_read_trylock(&mm->mmap_sem)) {
293		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
294			goto no_context;
295retry:
296		down_read(&mm->mmap_sem);
297	} else {
298		/*
299		 * The above down_read_trylock() might have succeeded in
300		 * which case, we'll have missed the might_sleep() from
301		 * down_read()
302		 */
303		might_sleep();
304#ifdef CONFIG_DEBUG_VM
305		if (!user_mode(regs) &&
306		    !search_exception_tables(regs->ARM_pc))
307			goto no_context;
308#endif
309	}
310
311	fault = __do_page_fault(mm, addr, fsr, flags, tsk);
312
313	/* If we need to retry but a fatal signal is pending, handle the
314	 * signal first. We do not need to release the mmap_sem because
315	 * it would already be released in __lock_page_or_retry in
316	 * mm/filemap.c. */
317	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
 
 
318		return 0;
 
319
320	/*
321	 * Major/minor page fault accounting is only done on the
322	 * initial attempt. If we go through a retry, it is extremely
323	 * likely that the page will be found in page cache at that point.
324	 */
325
326	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
327	if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
328		if (fault & VM_FAULT_MAJOR) {
329			tsk->maj_flt++;
330			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
331					regs, addr);
332		} else {
333			tsk->min_flt++;
334			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
335					regs, addr);
336		}
337		if (fault & VM_FAULT_RETRY) {
338			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
339			* of starvation. */
340			flags &= ~FAULT_FLAG_ALLOW_RETRY;
341			flags |= FAULT_FLAG_TRIED;
342			goto retry;
343		}
344	}
345
346	up_read(&mm->mmap_sem);
347
348	/*
349	 * Handle the "normal" case first - VM_FAULT_MAJOR
350	 */
351	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
352		return 0;
353
354	/*
355	 * If we are in kernel mode at this point, we
356	 * have no context to handle this fault with.
357	 */
358	if (!user_mode(regs))
359		goto no_context;
360
361	if (fault & VM_FAULT_OOM) {
362		/*
363		 * We ran out of memory, call the OOM killer, and return to
364		 * userspace (which will retry the fault, or kill us if we
365		 * got oom-killed)
366		 */
367		pagefault_out_of_memory();
368		return 0;
369	}
370
371	if (fault & VM_FAULT_SIGBUS) {
372		/*
373		 * We had some memory, but were unable to
374		 * successfully fix up this page fault.
375		 */
376		sig = SIGBUS;
377		code = BUS_ADRERR;
378	} else {
379		/*
380		 * Something tried to access memory that
381		 * isn't in our memory map..
382		 */
383		sig = SIGSEGV;
384		code = fault == VM_FAULT_BADACCESS ?
385			SEGV_ACCERR : SEGV_MAPERR;
386	}
387
388	__do_user_fault(tsk, addr, fsr, sig, code, regs);
389	return 0;
390
391no_context:
392	__do_kernel_fault(mm, addr, fsr, regs);
393	return 0;
394}
395#else					/* CONFIG_MMU */
396static int
397do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
398{
399	return 0;
400}
401#endif					/* CONFIG_MMU */
402
403/*
404 * First Level Translation Fault Handler
405 *
406 * We enter here because the first level page table doesn't contain
407 * a valid entry for the address.
408 *
409 * If the address is in kernel space (>= TASK_SIZE), then we are
410 * probably faulting in the vmalloc() area.
411 *
412 * If the init_task's first level page tables contains the relevant
413 * entry, we copy the it to this task.  If not, we send the process
414 * a signal, fixup the exception, or oops the kernel.
415 *
416 * NOTE! We MUST NOT take any locks for this case. We may be in an
417 * interrupt or a critical region, and should only copy the information
418 * from the master page table, nothing more.
419 */
420#ifdef CONFIG_MMU
421static int __kprobes
422do_translation_fault(unsigned long addr, unsigned int fsr,
423		     struct pt_regs *regs)
424{
425	unsigned int index;
426	pgd_t *pgd, *pgd_k;
427	pud_t *pud, *pud_k;
428	pmd_t *pmd, *pmd_k;
429
430	if (addr < TASK_SIZE)
431		return do_page_fault(addr, fsr, regs);
432
433	if (user_mode(regs))
434		goto bad_area;
435
436	index = pgd_index(addr);
437
438	pgd = cpu_get_pgd() + index;
439	pgd_k = init_mm.pgd + index;
440
441	if (pgd_none(*pgd_k))
442		goto bad_area;
443	if (!pgd_present(*pgd))
444		set_pgd(pgd, *pgd_k);
445
446	pud = pud_offset(pgd, addr);
447	pud_k = pud_offset(pgd_k, addr);
448
449	if (pud_none(*pud_k))
450		goto bad_area;
451	if (!pud_present(*pud))
452		set_pud(pud, *pud_k);
453
454	pmd = pmd_offset(pud, addr);
455	pmd_k = pmd_offset(pud_k, addr);
456
457#ifdef CONFIG_ARM_LPAE
458	/*
459	 * Only one hardware entry per PMD with LPAE.
460	 */
461	index = 0;
462#else
463	/*
464	 * On ARM one Linux PGD entry contains two hardware entries (see page
465	 * tables layout in pgtable.h). We normally guarantee that we always
466	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
467	 * It can create inidividual L1 entries, so here we have to call
468	 * pmd_none() check for the entry really corresponded to address, not
469	 * for the first of pair.
470	 */
471	index = (addr >> SECTION_SHIFT) & 1;
472#endif
473	if (pmd_none(pmd_k[index]))
474		goto bad_area;
475
476	copy_pmd(pmd, pmd_k);
477	return 0;
478
479bad_area:
480	do_bad_area(addr, fsr, regs);
481	return 0;
482}
483#else					/* CONFIG_MMU */
484static int
485do_translation_fault(unsigned long addr, unsigned int fsr,
486		     struct pt_regs *regs)
487{
488	return 0;
489}
490#endif					/* CONFIG_MMU */
491
492/*
493 * Some section permission faults need to be handled gracefully.
494 * They can happen due to a __{get,put}_user during an oops.
495 */
496#ifndef CONFIG_ARM_LPAE
497static int
498do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
499{
500	do_bad_area(addr, fsr, regs);
501	return 0;
502}
503#endif /* CONFIG_ARM_LPAE */
504
505/*
506 * This abort handler always returns "fault".
507 */
508static int
509do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
510{
511	return 1;
512}
513
514struct fsr_info {
515	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
516	int	sig;
517	int	code;
518	const char *name;
519};
520
521/* FSR definition */
522#ifdef CONFIG_ARM_LPAE
523#include "fsr-3level.c"
524#else
525#include "fsr-2level.c"
526#endif
527
528void __init
529hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
530		int sig, int code, const char *name)
531{
532	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
533		BUG();
534
535	fsr_info[nr].fn   = fn;
536	fsr_info[nr].sig  = sig;
537	fsr_info[nr].code = code;
538	fsr_info[nr].name = name;
539}
540
541/*
542 * Dispatch a data abort to the relevant handler.
543 */
544asmlinkage void __exception
545do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
546{
547	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
548	struct siginfo info;
549
550	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
551		return;
552
553	pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
554		inf->name, fsr, addr);
555	show_pte(current->mm, addr);
556
557	info.si_signo = inf->sig;
558	info.si_errno = 0;
559	info.si_code  = inf->code;
560	info.si_addr  = (void __user *)addr;
561	arm_notify_die("", regs, &info, fsr, 0);
562}
563
564void __init
565hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
566		 int sig, int code, const char *name)
567{
568	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
569		BUG();
570
571	ifsr_info[nr].fn   = fn;
572	ifsr_info[nr].sig  = sig;
573	ifsr_info[nr].code = code;
574	ifsr_info[nr].name = name;
575}
576
577asmlinkage void __exception
578do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
579{
580	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
581	struct siginfo info;
582
583	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
584		return;
585
586	pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
587		inf->name, ifsr, addr);
588
589	info.si_signo = inf->sig;
590	info.si_errno = 0;
591	info.si_code  = inf->code;
592	info.si_addr  = (void __user *)addr;
593	arm_notify_die("", regs, &info, ifsr, 0);
594}
595
596/*
597 * Abort handler to be used only during first unmasking of asynchronous aborts
598 * on the boot CPU. This makes sure that the machine will not die if the
599 * firmware/bootloader left an imprecise abort pending for us to trip over.
600 */
601static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
602				      struct pt_regs *regs)
603{
604	pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
605		"first unmask, this is most likely caused by a "
606		"firmware/bootloader bug.\n", fsr);
607
608	return 0;
609}
610
611void __init early_abt_enable(void)
612{
613	fsr_info[22].fn = early_abort_handler;
614	local_abt_enable();
615	fsr_info[22].fn = do_bad;
616}
617
618#ifndef CONFIG_ARM_LPAE
619static int __init exceptions_init(void)
620{
621	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
622		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
623				"I-cache maintenance fault");
624	}
625
626	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
627		/*
628		 * TODO: Access flag faults introduced in ARMv6K.
629		 * Runtime check for 'K' extension is needed
630		 */
631		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
632				"section access flag fault");
633		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
634				"section access flag fault");
635	}
636
637	return 0;
638}
639
640arch_initcall(exceptions_init);
641#endif
v4.17
  1/*
  2 *  linux/arch/arm/mm/fault.c
  3 *
  4 *  Copyright (C) 1995  Linus Torvalds
  5 *  Modifications for ARM processor (c) 1995-2004 Russell King
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/extable.h>
 12#include <linux/signal.h>
 13#include <linux/mm.h>
 14#include <linux/hardirq.h>
 15#include <linux/init.h>
 16#include <linux/kprobes.h>
 17#include <linux/uaccess.h>
 18#include <linux/page-flags.h>
 19#include <linux/sched/signal.h>
 20#include <linux/sched/debug.h>
 21#include <linux/highmem.h>
 22#include <linux/perf_event.h>
 23
 
 24#include <asm/pgtable.h>
 25#include <asm/system_misc.h>
 26#include <asm/system_info.h>
 27#include <asm/tlbflush.h>
 28
 29#include "fault.h"
 30
 31#ifdef CONFIG_MMU
 32
 33#ifdef CONFIG_KPROBES
 34static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
 35{
 36	int ret = 0;
 37
 38	if (!user_mode(regs)) {
 39		/* kprobe_running() needs smp_processor_id() */
 40		preempt_disable();
 41		if (kprobe_running() && kprobe_fault_handler(regs, fsr))
 42			ret = 1;
 43		preempt_enable();
 44	}
 45
 46	return ret;
 47}
 48#else
 49static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
 50{
 51	return 0;
 52}
 53#endif
 54
 55/*
 56 * This is useful to dump out the page tables associated with
 57 * 'addr' in mm 'mm'.
 58 */
 59void show_pte(struct mm_struct *mm, unsigned long addr)
 60{
 61	pgd_t *pgd;
 62
 63	if (!mm)
 64		mm = &init_mm;
 65
 66	pr_alert("pgd = %p\n", mm->pgd);
 67	pgd = pgd_offset(mm, addr);
 68	pr_alert("[%08lx] *pgd=%08llx",
 69			addr, (long long)pgd_val(*pgd));
 70
 71	do {
 72		pud_t *pud;
 73		pmd_t *pmd;
 74		pte_t *pte;
 75
 76		if (pgd_none(*pgd))
 77			break;
 78
 79		if (pgd_bad(*pgd)) {
 80			pr_cont("(bad)");
 81			break;
 82		}
 83
 84		pud = pud_offset(pgd, addr);
 85		if (PTRS_PER_PUD != 1)
 86			pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
 87
 88		if (pud_none(*pud))
 89			break;
 90
 91		if (pud_bad(*pud)) {
 92			pr_cont("(bad)");
 93			break;
 94		}
 95
 96		pmd = pmd_offset(pud, addr);
 97		if (PTRS_PER_PMD != 1)
 98			pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
 99
100		if (pmd_none(*pmd))
101			break;
102
103		if (pmd_bad(*pmd)) {
104			pr_cont("(bad)");
105			break;
106		}
107
108		/* We must not map this if we have highmem enabled */
109		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
110			break;
111
112		pte = pte_offset_map(pmd, addr);
113		pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
114#ifndef CONFIG_ARM_LPAE
115		pr_cont(", *ppte=%08llx",
116		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
117#endif
118		pte_unmap(pte);
119	} while(0);
120
121	pr_cont("\n");
122}
123#else					/* CONFIG_MMU */
124void show_pte(struct mm_struct *mm, unsigned long addr)
125{ }
126#endif					/* CONFIG_MMU */
127
128/*
129 * Oops.  The kernel tried to access some page that wasn't present.
130 */
131static void
132__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
133		  struct pt_regs *regs)
134{
135	/*
136	 * Are we prepared to handle this kernel fault?
137	 */
138	if (fixup_exception(regs))
139		return;
140
141	/*
142	 * No handler, we'll have to terminate things with extreme prejudice.
143	 */
144	bust_spinlocks(1);
145	pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
146		 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
147		 "paging request", addr);
148
149	show_pte(mm, addr);
150	die("Oops", regs, fsr);
151	bust_spinlocks(0);
152	do_exit(SIGKILL);
153}
154
155/*
156 * Something tried to access memory that isn't in our memory map..
157 * User mode accesses just cause a SIGSEGV
158 */
159static void
160__do_user_fault(struct task_struct *tsk, unsigned long addr,
161		unsigned int fsr, unsigned int sig, int code,
162		struct pt_regs *regs)
163{
164	struct siginfo si;
165
166#ifdef CONFIG_DEBUG_USER
167	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
168	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
169		printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
170		       tsk->comm, sig, addr, fsr);
171		show_pte(tsk->mm, addr);
172		show_regs(regs);
173	}
174#endif
175
176	tsk->thread.address = addr;
177	tsk->thread.error_code = fsr;
178	tsk->thread.trap_no = 14;
179	si.si_signo = sig;
180	si.si_errno = 0;
181	si.si_code = code;
182	si.si_addr = (void __user *)addr;
183	force_sig_info(sig, &si, tsk);
184}
185
186void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
187{
188	struct task_struct *tsk = current;
189	struct mm_struct *mm = tsk->active_mm;
190
191	/*
192	 * If we are in kernel mode at this point, we
193	 * have no context to handle this fault with.
194	 */
195	if (user_mode(regs))
196		__do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
197	else
198		__do_kernel_fault(mm, addr, fsr, regs);
199}
200
201#ifdef CONFIG_MMU
202#define VM_FAULT_BADMAP		0x010000
203#define VM_FAULT_BADACCESS	0x020000
204
205/*
206 * Check that the permissions on the VMA allow for the fault which occurred.
207 * If we encountered a write fault, we must have write permission, otherwise
208 * we allow any permission.
209 */
210static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
211{
212	unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
213
214	if (fsr & FSR_WRITE)
215		mask = VM_WRITE;
216	if (fsr & FSR_LNX_PF)
217		mask = VM_EXEC;
218
219	return vma->vm_flags & mask ? false : true;
220}
221
222static int __kprobes
223__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
224		unsigned int flags, struct task_struct *tsk)
225{
226	struct vm_area_struct *vma;
227	int fault;
228
229	vma = find_vma(mm, addr);
230	fault = VM_FAULT_BADMAP;
231	if (unlikely(!vma))
232		goto out;
233	if (unlikely(vma->vm_start > addr))
234		goto check_stack;
235
236	/*
237	 * Ok, we have a good vm_area for this
238	 * memory access, so we can handle it.
239	 */
240good_area:
241	if (access_error(fsr, vma)) {
242		fault = VM_FAULT_BADACCESS;
243		goto out;
244	}
245
246	return handle_mm_fault(vma, addr & PAGE_MASK, flags);
247
248check_stack:
249	/* Don't allow expansion below FIRST_USER_ADDRESS */
250	if (vma->vm_flags & VM_GROWSDOWN &&
251	    addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
252		goto good_area;
253out:
254	return fault;
255}
256
257static int __kprobes
258do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
259{
260	struct task_struct *tsk;
261	struct mm_struct *mm;
262	int fault, sig, code;
263	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
264
265	if (notify_page_fault(regs, fsr))
266		return 0;
267
268	tsk = current;
269	mm  = tsk->mm;
270
271	/* Enable interrupts if they were enabled in the parent context. */
272	if (interrupts_enabled(regs))
273		local_irq_enable();
274
275	/*
276	 * If we're in an interrupt or have no user
277	 * context, we must not take the fault..
278	 */
279	if (faulthandler_disabled() || !mm)
280		goto no_context;
281
282	if (user_mode(regs))
283		flags |= FAULT_FLAG_USER;
284	if (fsr & FSR_WRITE)
285		flags |= FAULT_FLAG_WRITE;
286
287	/*
288	 * As per x86, we may deadlock here.  However, since the kernel only
289	 * validly references user space from well defined areas of the code,
290	 * we can bug out early if this is from code which shouldn't.
291	 */
292	if (!down_read_trylock(&mm->mmap_sem)) {
293		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
294			goto no_context;
295retry:
296		down_read(&mm->mmap_sem);
297	} else {
298		/*
299		 * The above down_read_trylock() might have succeeded in
300		 * which case, we'll have missed the might_sleep() from
301		 * down_read()
302		 */
303		might_sleep();
304#ifdef CONFIG_DEBUG_VM
305		if (!user_mode(regs) &&
306		    !search_exception_tables(regs->ARM_pc))
307			goto no_context;
308#endif
309	}
310
311	fault = __do_page_fault(mm, addr, fsr, flags, tsk);
312
313	/* If we need to retry but a fatal signal is pending, handle the
314	 * signal first. We do not need to release the mmap_sem because
315	 * it would already be released in __lock_page_or_retry in
316	 * mm/filemap.c. */
317	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
318		if (!user_mode(regs))
319			goto no_context;
320		return 0;
321	}
322
323	/*
324	 * Major/minor page fault accounting is only done on the
325	 * initial attempt. If we go through a retry, it is extremely
326	 * likely that the page will be found in page cache at that point.
327	 */
328
329	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
330	if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
331		if (fault & VM_FAULT_MAJOR) {
332			tsk->maj_flt++;
333			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
334					regs, addr);
335		} else {
336			tsk->min_flt++;
337			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
338					regs, addr);
339		}
340		if (fault & VM_FAULT_RETRY) {
341			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
342			* of starvation. */
343			flags &= ~FAULT_FLAG_ALLOW_RETRY;
344			flags |= FAULT_FLAG_TRIED;
345			goto retry;
346		}
347	}
348
349	up_read(&mm->mmap_sem);
350
351	/*
352	 * Handle the "normal" case first - VM_FAULT_MAJOR
353	 */
354	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
355		return 0;
356
357	/*
358	 * If we are in kernel mode at this point, we
359	 * have no context to handle this fault with.
360	 */
361	if (!user_mode(regs))
362		goto no_context;
363
364	if (fault & VM_FAULT_OOM) {
365		/*
366		 * We ran out of memory, call the OOM killer, and return to
367		 * userspace (which will retry the fault, or kill us if we
368		 * got oom-killed)
369		 */
370		pagefault_out_of_memory();
371		return 0;
372	}
373
374	if (fault & VM_FAULT_SIGBUS) {
375		/*
376		 * We had some memory, but were unable to
377		 * successfully fix up this page fault.
378		 */
379		sig = SIGBUS;
380		code = BUS_ADRERR;
381	} else {
382		/*
383		 * Something tried to access memory that
384		 * isn't in our memory map..
385		 */
386		sig = SIGSEGV;
387		code = fault == VM_FAULT_BADACCESS ?
388			SEGV_ACCERR : SEGV_MAPERR;
389	}
390
391	__do_user_fault(tsk, addr, fsr, sig, code, regs);
392	return 0;
393
394no_context:
395	__do_kernel_fault(mm, addr, fsr, regs);
396	return 0;
397}
398#else					/* CONFIG_MMU */
399static int
400do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
401{
402	return 0;
403}
404#endif					/* CONFIG_MMU */
405
406/*
407 * First Level Translation Fault Handler
408 *
409 * We enter here because the first level page table doesn't contain
410 * a valid entry for the address.
411 *
412 * If the address is in kernel space (>= TASK_SIZE), then we are
413 * probably faulting in the vmalloc() area.
414 *
415 * If the init_task's first level page tables contains the relevant
416 * entry, we copy the it to this task.  If not, we send the process
417 * a signal, fixup the exception, or oops the kernel.
418 *
419 * NOTE! We MUST NOT take any locks for this case. We may be in an
420 * interrupt or a critical region, and should only copy the information
421 * from the master page table, nothing more.
422 */
423#ifdef CONFIG_MMU
424static int __kprobes
425do_translation_fault(unsigned long addr, unsigned int fsr,
426		     struct pt_regs *regs)
427{
428	unsigned int index;
429	pgd_t *pgd, *pgd_k;
430	pud_t *pud, *pud_k;
431	pmd_t *pmd, *pmd_k;
432
433	if (addr < TASK_SIZE)
434		return do_page_fault(addr, fsr, regs);
435
436	if (user_mode(regs))
437		goto bad_area;
438
439	index = pgd_index(addr);
440
441	pgd = cpu_get_pgd() + index;
442	pgd_k = init_mm.pgd + index;
443
444	if (pgd_none(*pgd_k))
445		goto bad_area;
446	if (!pgd_present(*pgd))
447		set_pgd(pgd, *pgd_k);
448
449	pud = pud_offset(pgd, addr);
450	pud_k = pud_offset(pgd_k, addr);
451
452	if (pud_none(*pud_k))
453		goto bad_area;
454	if (!pud_present(*pud))
455		set_pud(pud, *pud_k);
456
457	pmd = pmd_offset(pud, addr);
458	pmd_k = pmd_offset(pud_k, addr);
459
460#ifdef CONFIG_ARM_LPAE
461	/*
462	 * Only one hardware entry per PMD with LPAE.
463	 */
464	index = 0;
465#else
466	/*
467	 * On ARM one Linux PGD entry contains two hardware entries (see page
468	 * tables layout in pgtable.h). We normally guarantee that we always
469	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
470	 * It can create inidividual L1 entries, so here we have to call
471	 * pmd_none() check for the entry really corresponded to address, not
472	 * for the first of pair.
473	 */
474	index = (addr >> SECTION_SHIFT) & 1;
475#endif
476	if (pmd_none(pmd_k[index]))
477		goto bad_area;
478
479	copy_pmd(pmd, pmd_k);
480	return 0;
481
482bad_area:
483	do_bad_area(addr, fsr, regs);
484	return 0;
485}
486#else					/* CONFIG_MMU */
487static int
488do_translation_fault(unsigned long addr, unsigned int fsr,
489		     struct pt_regs *regs)
490{
491	return 0;
492}
493#endif					/* CONFIG_MMU */
494
495/*
496 * Some section permission faults need to be handled gracefully.
497 * They can happen due to a __{get,put}_user during an oops.
498 */
499#ifndef CONFIG_ARM_LPAE
500static int
501do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
502{
503	do_bad_area(addr, fsr, regs);
504	return 0;
505}
506#endif /* CONFIG_ARM_LPAE */
507
508/*
509 * This abort handler always returns "fault".
510 */
511static int
512do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
513{
514	return 1;
515}
516
517struct fsr_info {
518	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
519	int	sig;
520	int	code;
521	const char *name;
522};
523
524/* FSR definition */
525#ifdef CONFIG_ARM_LPAE
526#include "fsr-3level.c"
527#else
528#include "fsr-2level.c"
529#endif
530
531void __init
532hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
533		int sig, int code, const char *name)
534{
535	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
536		BUG();
537
538	fsr_info[nr].fn   = fn;
539	fsr_info[nr].sig  = sig;
540	fsr_info[nr].code = code;
541	fsr_info[nr].name = name;
542}
543
544/*
545 * Dispatch a data abort to the relevant handler.
546 */
547asmlinkage void
548do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
549{
550	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
551	struct siginfo info;
552
553	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
554		return;
555
556	pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
557		inf->name, fsr, addr);
558	show_pte(current->mm, addr);
559
560	info.si_signo = inf->sig;
561	info.si_errno = 0;
562	info.si_code  = inf->code;
563	info.si_addr  = (void __user *)addr;
564	arm_notify_die("", regs, &info, fsr, 0);
565}
566
567void __init
568hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
569		 int sig, int code, const char *name)
570{
571	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
572		BUG();
573
574	ifsr_info[nr].fn   = fn;
575	ifsr_info[nr].sig  = sig;
576	ifsr_info[nr].code = code;
577	ifsr_info[nr].name = name;
578}
579
580asmlinkage void
581do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
582{
583	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
584	struct siginfo info;
585
586	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
587		return;
588
589	pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
590		inf->name, ifsr, addr);
591
592	info.si_signo = inf->sig;
593	info.si_errno = 0;
594	info.si_code  = inf->code;
595	info.si_addr  = (void __user *)addr;
596	arm_notify_die("", regs, &info, ifsr, 0);
597}
598
599/*
600 * Abort handler to be used only during first unmasking of asynchronous aborts
601 * on the boot CPU. This makes sure that the machine will not die if the
602 * firmware/bootloader left an imprecise abort pending for us to trip over.
603 */
604static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
605				      struct pt_regs *regs)
606{
607	pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
608		"first unmask, this is most likely caused by a "
609		"firmware/bootloader bug.\n", fsr);
610
611	return 0;
612}
613
614void __init early_abt_enable(void)
615{
616	fsr_info[FSR_FS_AEA].fn = early_abort_handler;
617	local_abt_enable();
618	fsr_info[FSR_FS_AEA].fn = do_bad;
619}
620
621#ifndef CONFIG_ARM_LPAE
622static int __init exceptions_init(void)
623{
624	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
625		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
626				"I-cache maintenance fault");
627	}
628
629	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
630		/*
631		 * TODO: Access flag faults introduced in ARMv6K.
632		 * Runtime check for 'K' extension is needed
633		 */
634		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
635				"section access flag fault");
636		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
637				"section access flag fault");
638	}
639
640	return 0;
641}
642
643arch_initcall(exceptions_init);
644#endif