Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * kernel/sched/loadavg.c
  3 *
  4 * This file contains the magic bits required to compute the global loadavg
  5 * figure. Its a silly number but people think its important. We go through
  6 * great pains to make it work on big machines and tickless kernels.
  7 */
  8
  9#include <linux/export.h>
 10
 11#include "sched.h"
 12
 13/*
 14 * Global load-average calculations
 15 *
 16 * We take a distributed and async approach to calculating the global load-avg
 17 * in order to minimize overhead.
 18 *
 19 * The global load average is an exponentially decaying average of nr_running +
 20 * nr_uninterruptible.
 21 *
 22 * Once every LOAD_FREQ:
 23 *
 24 *   nr_active = 0;
 25 *   for_each_possible_cpu(cpu)
 26 *	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 27 *
 28 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 29 *
 30 * Due to a number of reasons the above turns in the mess below:
 31 *
 32 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 33 *    serious number of cpus, therefore we need to take a distributed approach
 34 *    to calculating nr_active.
 35 *
 36 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 37 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 38 *
 39 *    So assuming nr_active := 0 when we start out -- true per definition, we
 40 *    can simply take per-cpu deltas and fold those into a global accumulate
 41 *    to obtain the same result. See calc_load_fold_active().
 42 *
 43 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 44 *    across the machine, we assume 10 ticks is sufficient time for every
 45 *    cpu to have completed this task.
 46 *
 47 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 48 *    again, being late doesn't loose the delta, just wrecks the sample.
 49 *
 50 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 51 *    this would add another cross-cpu cacheline miss and atomic operation
 52 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 53 *    when it went into uninterruptible state and decrement on whatever cpu
 54 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 55 *    all cpus yields the correct result.
 56 *
 57 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 58 */
 59
 60/* Variables and functions for calc_load */
 61atomic_long_t calc_load_tasks;
 62unsigned long calc_load_update;
 63unsigned long avenrun[3];
 64EXPORT_SYMBOL(avenrun); /* should be removed */
 65
 66/**
 67 * get_avenrun - get the load average array
 68 * @loads:	pointer to dest load array
 69 * @offset:	offset to add
 70 * @shift:	shift count to shift the result left
 71 *
 72 * These values are estimates at best, so no need for locking.
 73 */
 74void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
 75{
 76	loads[0] = (avenrun[0] + offset) << shift;
 77	loads[1] = (avenrun[1] + offset) << shift;
 78	loads[2] = (avenrun[2] + offset) << shift;
 79}
 80
 81long calc_load_fold_active(struct rq *this_rq)
 82{
 83	long nr_active, delta = 0;
 84
 85	nr_active = this_rq->nr_running;
 86	nr_active += (long)this_rq->nr_uninterruptible;
 87
 88	if (nr_active != this_rq->calc_load_active) {
 89		delta = nr_active - this_rq->calc_load_active;
 90		this_rq->calc_load_active = nr_active;
 91	}
 92
 93	return delta;
 94}
 95
 96/*
 97 * a1 = a0 * e + a * (1 - e)
 98 */
 99static unsigned long
100calc_load(unsigned long load, unsigned long exp, unsigned long active)
101{
102	load *= exp;
103	load += active * (FIXED_1 - exp);
104	load += 1UL << (FSHIFT - 1);
105	return load >> FSHIFT;
 
 
 
106}
107
108#ifdef CONFIG_NO_HZ_COMMON
109/*
110 * Handle NO_HZ for the global load-average.
111 *
112 * Since the above described distributed algorithm to compute the global
113 * load-average relies on per-cpu sampling from the tick, it is affected by
114 * NO_HZ.
115 *
116 * The basic idea is to fold the nr_active delta into a global idle-delta upon
117 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
118 * when we read the global state.
119 *
120 * Obviously reality has to ruin such a delightfully simple scheme:
121 *
122 *  - When we go NO_HZ idle during the window, we can negate our sample
123 *    contribution, causing under-accounting.
124 *
125 *    We avoid this by keeping two idle-delta counters and flipping them
126 *    when the window starts, thus separating old and new NO_HZ load.
127 *
128 *    The only trick is the slight shift in index flip for read vs write.
129 *
130 *        0s            5s            10s           15s
131 *          +10           +10           +10           +10
132 *        |-|-----------|-|-----------|-|-----------|-|
133 *    r:0 0 1           1 0           0 1           1 0
134 *    w:0 1 1           0 0           1 1           0 0
135 *
136 *    This ensures we'll fold the old idle contribution in this window while
137 *    accumlating the new one.
138 *
139 *  - When we wake up from NO_HZ idle during the window, we push up our
140 *    contribution, since we effectively move our sample point to a known
141 *    busy state.
142 *
143 *    This is solved by pushing the window forward, and thus skipping the
144 *    sample, for this cpu (effectively using the idle-delta for this cpu which
145 *    was in effect at the time the window opened). This also solves the issue
146 *    of having to deal with a cpu having been in NOHZ idle for multiple
147 *    LOAD_FREQ intervals.
148 *
149 * When making the ILB scale, we should try to pull this in as well.
150 */
151static atomic_long_t calc_load_idle[2];
152static int calc_load_idx;
153
154static inline int calc_load_write_idx(void)
155{
156	int idx = calc_load_idx;
157
158	/*
159	 * See calc_global_nohz(), if we observe the new index, we also
160	 * need to observe the new update time.
161	 */
162	smp_rmb();
163
164	/*
165	 * If the folding window started, make sure we start writing in the
166	 * next idle-delta.
167	 */
168	if (!time_before(jiffies, calc_load_update))
169		idx++;
170
171	return idx & 1;
172}
173
174static inline int calc_load_read_idx(void)
175{
176	return calc_load_idx & 1;
177}
178
179void calc_load_enter_idle(void)
180{
181	struct rq *this_rq = this_rq();
182	long delta;
183
184	/*
185	 * We're going into NOHZ mode, if there's any pending delta, fold it
186	 * into the pending idle delta.
187	 */
188	delta = calc_load_fold_active(this_rq);
189	if (delta) {
190		int idx = calc_load_write_idx();
191
192		atomic_long_add(delta, &calc_load_idle[idx]);
193	}
194}
195
196void calc_load_exit_idle(void)
197{
198	struct rq *this_rq = this_rq();
199
200	/*
201	 * If we're still before the sample window, we're done.
202	 */
 
203	if (time_before(jiffies, this_rq->calc_load_update))
204		return;
205
206	/*
207	 * We woke inside or after the sample window, this means we're already
208	 * accounted through the nohz accounting, so skip the entire deal and
209	 * sync up for the next window.
210	 */
211	this_rq->calc_load_update = calc_load_update;
212	if (time_before(jiffies, this_rq->calc_load_update + 10))
213		this_rq->calc_load_update += LOAD_FREQ;
214}
215
216static long calc_load_fold_idle(void)
217{
218	int idx = calc_load_read_idx();
219	long delta = 0;
220
221	if (atomic_long_read(&calc_load_idle[idx]))
222		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
223
224	return delta;
225}
226
227/**
228 * fixed_power_int - compute: x^n, in O(log n) time
229 *
230 * @x:         base of the power
231 * @frac_bits: fractional bits of @x
232 * @n:         power to raise @x to.
233 *
234 * By exploiting the relation between the definition of the natural power
235 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
236 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
237 * (where: n_i \elem {0, 1}, the binary vector representing n),
238 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
239 * of course trivially computable in O(log_2 n), the length of our binary
240 * vector.
241 */
242static unsigned long
243fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
244{
245	unsigned long result = 1UL << frac_bits;
246
247	if (n) {
248		for (;;) {
249			if (n & 1) {
250				result *= x;
251				result += 1UL << (frac_bits - 1);
252				result >>= frac_bits;
253			}
254			n >>= 1;
255			if (!n)
256				break;
257			x *= x;
258			x += 1UL << (frac_bits - 1);
259			x >>= frac_bits;
260		}
261	}
262
263	return result;
264}
265
266/*
267 * a1 = a0 * e + a * (1 - e)
268 *
269 * a2 = a1 * e + a * (1 - e)
270 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
271 *    = a0 * e^2 + a * (1 - e) * (1 + e)
272 *
273 * a3 = a2 * e + a * (1 - e)
274 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
275 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
276 *
277 *  ...
278 *
279 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
280 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
281 *    = a0 * e^n + a * (1 - e^n)
282 *
283 * [1] application of the geometric series:
284 *
285 *              n         1 - x^(n+1)
286 *     S_n := \Sum x^i = -------------
287 *             i=0          1 - x
288 */
289static unsigned long
290calc_load_n(unsigned long load, unsigned long exp,
291	    unsigned long active, unsigned int n)
292{
293	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
294}
295
296/*
297 * NO_HZ can leave us missing all per-cpu ticks calling
298 * calc_load_account_active(), but since an idle CPU folds its delta into
299 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
300 * in the pending idle delta if our idle period crossed a load cycle boundary.
301 *
302 * Once we've updated the global active value, we need to apply the exponential
303 * weights adjusted to the number of cycles missed.
304 */
305static void calc_global_nohz(void)
306{
 
307	long delta, active, n;
308
309	if (!time_before(jiffies, calc_load_update + 10)) {
 
310		/*
311		 * Catch-up, fold however many we are behind still
312		 */
313		delta = jiffies - calc_load_update - 10;
314		n = 1 + (delta / LOAD_FREQ);
315
316		active = atomic_long_read(&calc_load_tasks);
317		active = active > 0 ? active * FIXED_1 : 0;
318
319		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
320		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
321		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
322
323		calc_load_update += n * LOAD_FREQ;
324	}
325
326	/*
327	 * Flip the idle index...
328	 *
329	 * Make sure we first write the new time then flip the index, so that
330	 * calc_load_write_idx() will see the new time when it reads the new
331	 * index, this avoids a double flip messing things up.
332	 */
333	smp_wmb();
334	calc_load_idx++;
335}
336#else /* !CONFIG_NO_HZ_COMMON */
337
338static inline long calc_load_fold_idle(void) { return 0; }
339static inline void calc_global_nohz(void) { }
340
341#endif /* CONFIG_NO_HZ_COMMON */
342
343/*
344 * calc_load - update the avenrun load estimates 10 ticks after the
345 * CPUs have updated calc_load_tasks.
346 *
347 * Called from the global timer code.
348 */
349void calc_global_load(unsigned long ticks)
350{
 
351	long active, delta;
352
353	if (time_before(jiffies, calc_load_update + 10))
 
354		return;
355
356	/*
357	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
358	 */
359	delta = calc_load_fold_idle();
360	if (delta)
361		atomic_long_add(delta, &calc_load_tasks);
362
363	active = atomic_long_read(&calc_load_tasks);
364	active = active > 0 ? active * FIXED_1 : 0;
365
366	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
367	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
368	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
369
370	calc_load_update += LOAD_FREQ;
371
372	/*
373	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
 
374	 */
375	calc_global_nohz();
376}
377
378/*
379 * Called from scheduler_tick() to periodically update this CPU's
380 * active count.
381 */
382void calc_global_load_tick(struct rq *this_rq)
383{
384	long delta;
385
386	if (time_before(jiffies, this_rq->calc_load_update))
387		return;
388
389	delta  = calc_load_fold_active(this_rq);
390	if (delta)
391		atomic_long_add(delta, &calc_load_tasks);
392
393	this_rq->calc_load_update += LOAD_FREQ;
394}
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * kernel/sched/loadavg.c
  4 *
  5 * This file contains the magic bits required to compute the global loadavg
  6 * figure. Its a silly number but people think its important. We go through
  7 * great pains to make it work on big machines and tickless kernels.
  8 */
 
 
 
  9#include "sched.h"
 10
 11/*
 12 * Global load-average calculations
 13 *
 14 * We take a distributed and async approach to calculating the global load-avg
 15 * in order to minimize overhead.
 16 *
 17 * The global load average is an exponentially decaying average of nr_running +
 18 * nr_uninterruptible.
 19 *
 20 * Once every LOAD_FREQ:
 21 *
 22 *   nr_active = 0;
 23 *   for_each_possible_cpu(cpu)
 24 *	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 25 *
 26 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 27 *
 28 * Due to a number of reasons the above turns in the mess below:
 29 *
 30 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 31 *    serious number of CPUs, therefore we need to take a distributed approach
 32 *    to calculating nr_active.
 33 *
 34 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 35 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 36 *
 37 *    So assuming nr_active := 0 when we start out -- true per definition, we
 38 *    can simply take per-CPU deltas and fold those into a global accumulate
 39 *    to obtain the same result. See calc_load_fold_active().
 40 *
 41 *    Furthermore, in order to avoid synchronizing all per-CPU delta folding
 42 *    across the machine, we assume 10 ticks is sufficient time for every
 43 *    CPU to have completed this task.
 44 *
 45 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 46 *    again, being late doesn't loose the delta, just wrecks the sample.
 47 *
 48 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-CPU because
 49 *    this would add another cross-CPU cacheline miss and atomic operation
 50 *    to the wakeup path. Instead we increment on whatever CPU the task ran
 51 *    when it went into uninterruptible state and decrement on whatever CPU
 52 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 53 *    all CPUs yields the correct result.
 54 *
 55 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 56 */
 57
 58/* Variables and functions for calc_load */
 59atomic_long_t calc_load_tasks;
 60unsigned long calc_load_update;
 61unsigned long avenrun[3];
 62EXPORT_SYMBOL(avenrun); /* should be removed */
 63
 64/**
 65 * get_avenrun - get the load average array
 66 * @loads:	pointer to dest load array
 67 * @offset:	offset to add
 68 * @shift:	shift count to shift the result left
 69 *
 70 * These values are estimates at best, so no need for locking.
 71 */
 72void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
 73{
 74	loads[0] = (avenrun[0] + offset) << shift;
 75	loads[1] = (avenrun[1] + offset) << shift;
 76	loads[2] = (avenrun[2] + offset) << shift;
 77}
 78
 79long calc_load_fold_active(struct rq *this_rq, long adjust)
 80{
 81	long nr_active, delta = 0;
 82
 83	nr_active = this_rq->nr_running - adjust;
 84	nr_active += (long)this_rq->nr_uninterruptible;
 85
 86	if (nr_active != this_rq->calc_load_active) {
 87		delta = nr_active - this_rq->calc_load_active;
 88		this_rq->calc_load_active = nr_active;
 89	}
 90
 91	return delta;
 92}
 93
 94/*
 95 * a1 = a0 * e + a * (1 - e)
 96 */
 97static unsigned long
 98calc_load(unsigned long load, unsigned long exp, unsigned long active)
 99{
100	unsigned long newload;
101
102	newload = load * exp + active * (FIXED_1 - exp);
103	if (active >= load)
104		newload += FIXED_1-1;
105
106	return newload / FIXED_1;
107}
108
109#ifdef CONFIG_NO_HZ_COMMON
110/*
111 * Handle NO_HZ for the global load-average.
112 *
113 * Since the above described distributed algorithm to compute the global
114 * load-average relies on per-CPU sampling from the tick, it is affected by
115 * NO_HZ.
116 *
117 * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon
118 * entering NO_HZ state such that we can include this as an 'extra' CPU delta
119 * when we read the global state.
120 *
121 * Obviously reality has to ruin such a delightfully simple scheme:
122 *
123 *  - When we go NO_HZ idle during the window, we can negate our sample
124 *    contribution, causing under-accounting.
125 *
126 *    We avoid this by keeping two NO_HZ-delta counters and flipping them
127 *    when the window starts, thus separating old and new NO_HZ load.
128 *
129 *    The only trick is the slight shift in index flip for read vs write.
130 *
131 *        0s            5s            10s           15s
132 *          +10           +10           +10           +10
133 *        |-|-----------|-|-----------|-|-----------|-|
134 *    r:0 0 1           1 0           0 1           1 0
135 *    w:0 1 1           0 0           1 1           0 0
136 *
137 *    This ensures we'll fold the old NO_HZ contribution in this window while
138 *    accumlating the new one.
139 *
140 *  - When we wake up from NO_HZ during the window, we push up our
141 *    contribution, since we effectively move our sample point to a known
142 *    busy state.
143 *
144 *    This is solved by pushing the window forward, and thus skipping the
145 *    sample, for this CPU (effectively using the NO_HZ-delta for this CPU which
146 *    was in effect at the time the window opened). This also solves the issue
147 *    of having to deal with a CPU having been in NO_HZ for multiple LOAD_FREQ
148 *    intervals.
149 *
150 * When making the ILB scale, we should try to pull this in as well.
151 */
152static atomic_long_t calc_load_nohz[2];
153static int calc_load_idx;
154
155static inline int calc_load_write_idx(void)
156{
157	int idx = calc_load_idx;
158
159	/*
160	 * See calc_global_nohz(), if we observe the new index, we also
161	 * need to observe the new update time.
162	 */
163	smp_rmb();
164
165	/*
166	 * If the folding window started, make sure we start writing in the
167	 * next NO_HZ-delta.
168	 */
169	if (!time_before(jiffies, READ_ONCE(calc_load_update)))
170		idx++;
171
172	return idx & 1;
173}
174
175static inline int calc_load_read_idx(void)
176{
177	return calc_load_idx & 1;
178}
179
180void calc_load_nohz_start(void)
181{
182	struct rq *this_rq = this_rq();
183	long delta;
184
185	/*
186	 * We're going into NO_HZ mode, if there's any pending delta, fold it
187	 * into the pending NO_HZ delta.
188	 */
189	delta = calc_load_fold_active(this_rq, 0);
190	if (delta) {
191		int idx = calc_load_write_idx();
192
193		atomic_long_add(delta, &calc_load_nohz[idx]);
194	}
195}
196
197void calc_load_nohz_stop(void)
198{
199	struct rq *this_rq = this_rq();
200
201	/*
202	 * If we're still before the pending sample window, we're done.
203	 */
204	this_rq->calc_load_update = READ_ONCE(calc_load_update);
205	if (time_before(jiffies, this_rq->calc_load_update))
206		return;
207
208	/*
209	 * We woke inside or after the sample window, this means we're already
210	 * accounted through the nohz accounting, so skip the entire deal and
211	 * sync up for the next window.
212	 */
 
213	if (time_before(jiffies, this_rq->calc_load_update + 10))
214		this_rq->calc_load_update += LOAD_FREQ;
215}
216
217static long calc_load_nohz_fold(void)
218{
219	int idx = calc_load_read_idx();
220	long delta = 0;
221
222	if (atomic_long_read(&calc_load_nohz[idx]))
223		delta = atomic_long_xchg(&calc_load_nohz[idx], 0);
224
225	return delta;
226}
227
228/**
229 * fixed_power_int - compute: x^n, in O(log n) time
230 *
231 * @x:         base of the power
232 * @frac_bits: fractional bits of @x
233 * @n:         power to raise @x to.
234 *
235 * By exploiting the relation between the definition of the natural power
236 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
237 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
238 * (where: n_i \elem {0, 1}, the binary vector representing n),
239 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
240 * of course trivially computable in O(log_2 n), the length of our binary
241 * vector.
242 */
243static unsigned long
244fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
245{
246	unsigned long result = 1UL << frac_bits;
247
248	if (n) {
249		for (;;) {
250			if (n & 1) {
251				result *= x;
252				result += 1UL << (frac_bits - 1);
253				result >>= frac_bits;
254			}
255			n >>= 1;
256			if (!n)
257				break;
258			x *= x;
259			x += 1UL << (frac_bits - 1);
260			x >>= frac_bits;
261		}
262	}
263
264	return result;
265}
266
267/*
268 * a1 = a0 * e + a * (1 - e)
269 *
270 * a2 = a1 * e + a * (1 - e)
271 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
272 *    = a0 * e^2 + a * (1 - e) * (1 + e)
273 *
274 * a3 = a2 * e + a * (1 - e)
275 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
276 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
277 *
278 *  ...
279 *
280 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
281 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
282 *    = a0 * e^n + a * (1 - e^n)
283 *
284 * [1] application of the geometric series:
285 *
286 *              n         1 - x^(n+1)
287 *     S_n := \Sum x^i = -------------
288 *             i=0          1 - x
289 */
290static unsigned long
291calc_load_n(unsigned long load, unsigned long exp,
292	    unsigned long active, unsigned int n)
293{
294	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
295}
296
297/*
298 * NO_HZ can leave us missing all per-CPU ticks calling
299 * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into
300 * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold
301 * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary.
302 *
303 * Once we've updated the global active value, we need to apply the exponential
304 * weights adjusted to the number of cycles missed.
305 */
306static void calc_global_nohz(void)
307{
308	unsigned long sample_window;
309	long delta, active, n;
310
311	sample_window = READ_ONCE(calc_load_update);
312	if (!time_before(jiffies, sample_window + 10)) {
313		/*
314		 * Catch-up, fold however many we are behind still
315		 */
316		delta = jiffies - sample_window - 10;
317		n = 1 + (delta / LOAD_FREQ);
318
319		active = atomic_long_read(&calc_load_tasks);
320		active = active > 0 ? active * FIXED_1 : 0;
321
322		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
323		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
324		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
325
326		WRITE_ONCE(calc_load_update, sample_window + n * LOAD_FREQ);
327	}
328
329	/*
330	 * Flip the NO_HZ index...
331	 *
332	 * Make sure we first write the new time then flip the index, so that
333	 * calc_load_write_idx() will see the new time when it reads the new
334	 * index, this avoids a double flip messing things up.
335	 */
336	smp_wmb();
337	calc_load_idx++;
338}
339#else /* !CONFIG_NO_HZ_COMMON */
340
341static inline long calc_load_nohz_fold(void) { return 0; }
342static inline void calc_global_nohz(void) { }
343
344#endif /* CONFIG_NO_HZ_COMMON */
345
346/*
347 * calc_load - update the avenrun load estimates 10 ticks after the
348 * CPUs have updated calc_load_tasks.
349 *
350 * Called from the global timer code.
351 */
352void calc_global_load(unsigned long ticks)
353{
354	unsigned long sample_window;
355	long active, delta;
356
357	sample_window = READ_ONCE(calc_load_update);
358	if (time_before(jiffies, sample_window + 10))
359		return;
360
361	/*
362	 * Fold the 'old' NO_HZ-delta to include all NO_HZ CPUs.
363	 */
364	delta = calc_load_nohz_fold();
365	if (delta)
366		atomic_long_add(delta, &calc_load_tasks);
367
368	active = atomic_long_read(&calc_load_tasks);
369	active = active > 0 ? active * FIXED_1 : 0;
370
371	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
372	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
373	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
374
375	WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ);
376
377	/*
378	 * In case we went to NO_HZ for multiple LOAD_FREQ intervals
379	 * catch up in bulk.
380	 */
381	calc_global_nohz();
382}
383
384/*
385 * Called from scheduler_tick() to periodically update this CPU's
386 * active count.
387 */
388void calc_global_load_tick(struct rq *this_rq)
389{
390	long delta;
391
392	if (time_before(jiffies, this_rq->calc_load_update))
393		return;
394
395	delta  = calc_load_fold_active(this_rq, 0);
396	if (delta)
397		atomic_long_add(delta, &calc_load_tasks);
398
399	this_rq->calc_load_update += LOAD_FREQ;
400}