Loading...
1/*
2 * sched_clock for unstable cpu clocks
3 *
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
5 *
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8 *
9 * Based on code by:
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
12 *
13 *
14 * What:
15 *
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
19 *
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22 * # go backwards !! #
23 * ####################################################################
24 *
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
27 *
28 * cpu_clock(i) -- can be used from any context, including NMI.
29 * local_clock() -- is cpu_clock() on the current cpu.
30 *
31 * sched_clock_cpu(i)
32 *
33 * How:
34 *
35 * The implementation either uses sched_clock() when
36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37 * sched_clock() is assumed to provide these properties (mostly it means
38 * the architecture provides a globally synchronized highres time source).
39 *
40 * Otherwise it tries to create a semi stable clock from a mixture of other
41 * clocks, including:
42 *
43 * - GTOD (clock monotomic)
44 * - sched_clock()
45 * - explicit idle events
46 *
47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48 * deltas are filtered to provide monotonicity and keeping it within an
49 * expected window.
50 *
51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52 * that is otherwise invisible (TSC gets stopped).
53 *
54 */
55#include <linux/spinlock.h>
56#include <linux/hardirq.h>
57#include <linux/export.h>
58#include <linux/percpu.h>
59#include <linux/ktime.h>
60#include <linux/sched.h>
61#include <linux/static_key.h>
62#include <linux/workqueue.h>
63#include <linux/compiler.h>
64#include <linux/tick.h>
65
66/*
67 * Scheduler clock - returns current time in nanosec units.
68 * This is default implementation.
69 * Architectures and sub-architectures can override this.
70 */
71unsigned long long __weak sched_clock(void)
72{
73 return (unsigned long long)(jiffies - INITIAL_JIFFIES)
74 * (NSEC_PER_SEC / HZ);
75}
76EXPORT_SYMBOL_GPL(sched_clock);
77
78__read_mostly int sched_clock_running;
79
80#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
81static struct static_key __sched_clock_stable = STATIC_KEY_INIT;
82static int __sched_clock_stable_early;
83
84int sched_clock_stable(void)
85{
86 return static_key_false(&__sched_clock_stable);
87}
88
89static void __set_sched_clock_stable(void)
90{
91 if (!sched_clock_stable())
92 static_key_slow_inc(&__sched_clock_stable);
93
94 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
95}
96
97void set_sched_clock_stable(void)
98{
99 __sched_clock_stable_early = 1;
100
101 smp_mb(); /* matches sched_clock_init() */
102
103 if (!sched_clock_running)
104 return;
105
106 __set_sched_clock_stable();
107}
108
109static void __clear_sched_clock_stable(struct work_struct *work)
110{
111 /* XXX worry about clock continuity */
112 if (sched_clock_stable())
113 static_key_slow_dec(&__sched_clock_stable);
114
115 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
116}
117
118static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
119
120void clear_sched_clock_stable(void)
121{
122 __sched_clock_stable_early = 0;
123
124 smp_mb(); /* matches sched_clock_init() */
125
126 if (!sched_clock_running)
127 return;
128
129 schedule_work(&sched_clock_work);
130}
131
132struct sched_clock_data {
133 u64 tick_raw;
134 u64 tick_gtod;
135 u64 clock;
136};
137
138static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
139
140static inline struct sched_clock_data *this_scd(void)
141{
142 return this_cpu_ptr(&sched_clock_data);
143}
144
145static inline struct sched_clock_data *cpu_sdc(int cpu)
146{
147 return &per_cpu(sched_clock_data, cpu);
148}
149
150void sched_clock_init(void)
151{
152 u64 ktime_now = ktime_to_ns(ktime_get());
153 int cpu;
154
155 for_each_possible_cpu(cpu) {
156 struct sched_clock_data *scd = cpu_sdc(cpu);
157
158 scd->tick_raw = 0;
159 scd->tick_gtod = ktime_now;
160 scd->clock = ktime_now;
161 }
162
163 sched_clock_running = 1;
164
165 /*
166 * Ensure that it is impossible to not do a static_key update.
167 *
168 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
169 * and do the update, or we must see their __sched_clock_stable_early
170 * and do the update, or both.
171 */
172 smp_mb(); /* matches {set,clear}_sched_clock_stable() */
173
174 if (__sched_clock_stable_early)
175 __set_sched_clock_stable();
176 else
177 __clear_sched_clock_stable(NULL);
178}
179
180/*
181 * min, max except they take wrapping into account
182 */
183
184static inline u64 wrap_min(u64 x, u64 y)
185{
186 return (s64)(x - y) < 0 ? x : y;
187}
188
189static inline u64 wrap_max(u64 x, u64 y)
190{
191 return (s64)(x - y) > 0 ? x : y;
192}
193
194/*
195 * update the percpu scd from the raw @now value
196 *
197 * - filter out backward motion
198 * - use the GTOD tick value to create a window to filter crazy TSC values
199 */
200static u64 sched_clock_local(struct sched_clock_data *scd)
201{
202 u64 now, clock, old_clock, min_clock, max_clock;
203 s64 delta;
204
205again:
206 now = sched_clock();
207 delta = now - scd->tick_raw;
208 if (unlikely(delta < 0))
209 delta = 0;
210
211 old_clock = scd->clock;
212
213 /*
214 * scd->clock = clamp(scd->tick_gtod + delta,
215 * max(scd->tick_gtod, scd->clock),
216 * scd->tick_gtod + TICK_NSEC);
217 */
218
219 clock = scd->tick_gtod + delta;
220 min_clock = wrap_max(scd->tick_gtod, old_clock);
221 max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
222
223 clock = wrap_max(clock, min_clock);
224 clock = wrap_min(clock, max_clock);
225
226 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
227 goto again;
228
229 return clock;
230}
231
232static u64 sched_clock_remote(struct sched_clock_data *scd)
233{
234 struct sched_clock_data *my_scd = this_scd();
235 u64 this_clock, remote_clock;
236 u64 *ptr, old_val, val;
237
238#if BITS_PER_LONG != 64
239again:
240 /*
241 * Careful here: The local and the remote clock values need to
242 * be read out atomic as we need to compare the values and
243 * then update either the local or the remote side. So the
244 * cmpxchg64 below only protects one readout.
245 *
246 * We must reread via sched_clock_local() in the retry case on
247 * 32bit as an NMI could use sched_clock_local() via the
248 * tracer and hit between the readout of
249 * the low32bit and the high 32bit portion.
250 */
251 this_clock = sched_clock_local(my_scd);
252 /*
253 * We must enforce atomic readout on 32bit, otherwise the
254 * update on the remote cpu can hit inbetween the readout of
255 * the low32bit and the high 32bit portion.
256 */
257 remote_clock = cmpxchg64(&scd->clock, 0, 0);
258#else
259 /*
260 * On 64bit the read of [my]scd->clock is atomic versus the
261 * update, so we can avoid the above 32bit dance.
262 */
263 sched_clock_local(my_scd);
264again:
265 this_clock = my_scd->clock;
266 remote_clock = scd->clock;
267#endif
268
269 /*
270 * Use the opportunity that we have both locks
271 * taken to couple the two clocks: we take the
272 * larger time as the latest time for both
273 * runqueues. (this creates monotonic movement)
274 */
275 if (likely((s64)(remote_clock - this_clock) < 0)) {
276 ptr = &scd->clock;
277 old_val = remote_clock;
278 val = this_clock;
279 } else {
280 /*
281 * Should be rare, but possible:
282 */
283 ptr = &my_scd->clock;
284 old_val = this_clock;
285 val = remote_clock;
286 }
287
288 if (cmpxchg64(ptr, old_val, val) != old_val)
289 goto again;
290
291 return val;
292}
293
294/*
295 * Similar to cpu_clock(), but requires local IRQs to be disabled.
296 *
297 * See cpu_clock().
298 */
299u64 sched_clock_cpu(int cpu)
300{
301 struct sched_clock_data *scd;
302 u64 clock;
303
304 if (sched_clock_stable())
305 return sched_clock();
306
307 if (unlikely(!sched_clock_running))
308 return 0ull;
309
310 preempt_disable_notrace();
311 scd = cpu_sdc(cpu);
312
313 if (cpu != smp_processor_id())
314 clock = sched_clock_remote(scd);
315 else
316 clock = sched_clock_local(scd);
317 preempt_enable_notrace();
318
319 return clock;
320}
321
322void sched_clock_tick(void)
323{
324 struct sched_clock_data *scd;
325 u64 now, now_gtod;
326
327 if (sched_clock_stable())
328 return;
329
330 if (unlikely(!sched_clock_running))
331 return;
332
333 WARN_ON_ONCE(!irqs_disabled());
334
335 scd = this_scd();
336 now_gtod = ktime_to_ns(ktime_get());
337 now = sched_clock();
338
339 scd->tick_raw = now;
340 scd->tick_gtod = now_gtod;
341 sched_clock_local(scd);
342}
343
344/*
345 * We are going deep-idle (irqs are disabled):
346 */
347void sched_clock_idle_sleep_event(void)
348{
349 sched_clock_cpu(smp_processor_id());
350}
351EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
352
353/*
354 * We just idled delta nanoseconds (called with irqs disabled):
355 */
356void sched_clock_idle_wakeup_event(u64 delta_ns)
357{
358 if (timekeeping_suspended)
359 return;
360
361 sched_clock_tick();
362 touch_softlockup_watchdog_sched();
363}
364EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
365
366/*
367 * As outlined at the top, provides a fast, high resolution, nanosecond
368 * time source that is monotonic per cpu argument and has bounded drift
369 * between cpus.
370 *
371 * ######################### BIG FAT WARNING ##########################
372 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
373 * # go backwards !! #
374 * ####################################################################
375 */
376u64 cpu_clock(int cpu)
377{
378 if (!sched_clock_stable())
379 return sched_clock_cpu(cpu);
380
381 return sched_clock();
382}
383
384/*
385 * Similar to cpu_clock() for the current cpu. Time will only be observed
386 * to be monotonic if care is taken to only compare timestampt taken on the
387 * same CPU.
388 *
389 * See cpu_clock().
390 */
391u64 local_clock(void)
392{
393 if (!sched_clock_stable())
394 return sched_clock_cpu(raw_smp_processor_id());
395
396 return sched_clock();
397}
398
399#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
400
401void sched_clock_init(void)
402{
403 sched_clock_running = 1;
404}
405
406u64 sched_clock_cpu(int cpu)
407{
408 if (unlikely(!sched_clock_running))
409 return 0;
410
411 return sched_clock();
412}
413
414u64 cpu_clock(int cpu)
415{
416 return sched_clock();
417}
418
419u64 local_clock(void)
420{
421 return sched_clock();
422}
423
424#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
425
426EXPORT_SYMBOL_GPL(cpu_clock);
427EXPORT_SYMBOL_GPL(local_clock);
428
429/*
430 * Running clock - returns the time that has elapsed while a guest has been
431 * running.
432 * On a guest this value should be local_clock minus the time the guest was
433 * suspended by the hypervisor (for any reason).
434 * On bare metal this function should return the same as local_clock.
435 * Architectures and sub-architectures can override this.
436 */
437u64 __weak running_clock(void)
438{
439 return local_clock();
440}
1/*
2 * sched_clock() for unstable CPU clocks
3 *
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
5 *
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8 *
9 * Based on code by:
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
12 *
13 *
14 * What this file implements:
15 *
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
19 *
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22 * # go backwards !! #
23 * ####################################################################
24 *
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
27 *
28 * cpu_clock(i) -- can be used from any context, including NMI.
29 * local_clock() -- is cpu_clock() on the current CPU.
30 *
31 * sched_clock_cpu(i)
32 *
33 * How it is implemented:
34 *
35 * The implementation either uses sched_clock() when
36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37 * sched_clock() is assumed to provide these properties (mostly it means
38 * the architecture provides a globally synchronized highres time source).
39 *
40 * Otherwise it tries to create a semi stable clock from a mixture of other
41 * clocks, including:
42 *
43 * - GTOD (clock monotomic)
44 * - sched_clock()
45 * - explicit idle events
46 *
47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48 * deltas are filtered to provide monotonicity and keeping it within an
49 * expected window.
50 *
51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52 * that is otherwise invisible (TSC gets stopped).
53 *
54 */
55#include "sched.h"
56
57/*
58 * Scheduler clock - returns current time in nanosec units.
59 * This is default implementation.
60 * Architectures and sub-architectures can override this.
61 */
62unsigned long long __weak sched_clock(void)
63{
64 return (unsigned long long)(jiffies - INITIAL_JIFFIES)
65 * (NSEC_PER_SEC / HZ);
66}
67EXPORT_SYMBOL_GPL(sched_clock);
68
69__read_mostly int sched_clock_running;
70
71void sched_clock_init(void)
72{
73 sched_clock_running = 1;
74}
75
76#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
77/*
78 * We must start with !__sched_clock_stable because the unstable -> stable
79 * transition is accurate, while the stable -> unstable transition is not.
80 *
81 * Similarly we start with __sched_clock_stable_early, thereby assuming we
82 * will become stable, such that there's only a single 1 -> 0 transition.
83 */
84static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
85static int __sched_clock_stable_early = 1;
86
87/*
88 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
89 */
90__read_mostly u64 __sched_clock_offset;
91static __read_mostly u64 __gtod_offset;
92
93struct sched_clock_data {
94 u64 tick_raw;
95 u64 tick_gtod;
96 u64 clock;
97};
98
99static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
100
101static inline struct sched_clock_data *this_scd(void)
102{
103 return this_cpu_ptr(&sched_clock_data);
104}
105
106static inline struct sched_clock_data *cpu_sdc(int cpu)
107{
108 return &per_cpu(sched_clock_data, cpu);
109}
110
111int sched_clock_stable(void)
112{
113 return static_branch_likely(&__sched_clock_stable);
114}
115
116static void __scd_stamp(struct sched_clock_data *scd)
117{
118 scd->tick_gtod = ktime_get_ns();
119 scd->tick_raw = sched_clock();
120}
121
122static void __set_sched_clock_stable(void)
123{
124 struct sched_clock_data *scd;
125
126 /*
127 * Since we're still unstable and the tick is already running, we have
128 * to disable IRQs in order to get a consistent scd->tick* reading.
129 */
130 local_irq_disable();
131 scd = this_scd();
132 /*
133 * Attempt to make the (initial) unstable->stable transition continuous.
134 */
135 __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
136 local_irq_enable();
137
138 printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
139 scd->tick_gtod, __gtod_offset,
140 scd->tick_raw, __sched_clock_offset);
141
142 static_branch_enable(&__sched_clock_stable);
143 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
144}
145
146/*
147 * If we ever get here, we're screwed, because we found out -- typically after
148 * the fact -- that TSC wasn't good. This means all our clocksources (including
149 * ktime) could have reported wrong values.
150 *
151 * What we do here is an attempt to fix up and continue sort of where we left
152 * off in a coherent manner.
153 *
154 * The only way to fully avoid random clock jumps is to boot with:
155 * "tsc=unstable".
156 */
157static void __sched_clock_work(struct work_struct *work)
158{
159 struct sched_clock_data *scd;
160 int cpu;
161
162 /* take a current timestamp and set 'now' */
163 preempt_disable();
164 scd = this_scd();
165 __scd_stamp(scd);
166 scd->clock = scd->tick_gtod + __gtod_offset;
167 preempt_enable();
168
169 /* clone to all CPUs */
170 for_each_possible_cpu(cpu)
171 per_cpu(sched_clock_data, cpu) = *scd;
172
173 printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
174 printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
175 scd->tick_gtod, __gtod_offset,
176 scd->tick_raw, __sched_clock_offset);
177
178 static_branch_disable(&__sched_clock_stable);
179}
180
181static DECLARE_WORK(sched_clock_work, __sched_clock_work);
182
183static void __clear_sched_clock_stable(void)
184{
185 if (!sched_clock_stable())
186 return;
187
188 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
189 schedule_work(&sched_clock_work);
190}
191
192void clear_sched_clock_stable(void)
193{
194 __sched_clock_stable_early = 0;
195
196 smp_mb(); /* matches sched_clock_init_late() */
197
198 if (sched_clock_running == 2)
199 __clear_sched_clock_stable();
200}
201
202/*
203 * We run this as late_initcall() such that it runs after all built-in drivers,
204 * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
205 */
206static int __init sched_clock_init_late(void)
207{
208 sched_clock_running = 2;
209 /*
210 * Ensure that it is impossible to not do a static_key update.
211 *
212 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
213 * and do the update, or we must see their __sched_clock_stable_early
214 * and do the update, or both.
215 */
216 smp_mb(); /* matches {set,clear}_sched_clock_stable() */
217
218 if (__sched_clock_stable_early)
219 __set_sched_clock_stable();
220
221 return 0;
222}
223late_initcall(sched_clock_init_late);
224
225/*
226 * min, max except they take wrapping into account
227 */
228
229static inline u64 wrap_min(u64 x, u64 y)
230{
231 return (s64)(x - y) < 0 ? x : y;
232}
233
234static inline u64 wrap_max(u64 x, u64 y)
235{
236 return (s64)(x - y) > 0 ? x : y;
237}
238
239/*
240 * update the percpu scd from the raw @now value
241 *
242 * - filter out backward motion
243 * - use the GTOD tick value to create a window to filter crazy TSC values
244 */
245static u64 sched_clock_local(struct sched_clock_data *scd)
246{
247 u64 now, clock, old_clock, min_clock, max_clock, gtod;
248 s64 delta;
249
250again:
251 now = sched_clock();
252 delta = now - scd->tick_raw;
253 if (unlikely(delta < 0))
254 delta = 0;
255
256 old_clock = scd->clock;
257
258 /*
259 * scd->clock = clamp(scd->tick_gtod + delta,
260 * max(scd->tick_gtod, scd->clock),
261 * scd->tick_gtod + TICK_NSEC);
262 */
263
264 gtod = scd->tick_gtod + __gtod_offset;
265 clock = gtod + delta;
266 min_clock = wrap_max(gtod, old_clock);
267 max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
268
269 clock = wrap_max(clock, min_clock);
270 clock = wrap_min(clock, max_clock);
271
272 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
273 goto again;
274
275 return clock;
276}
277
278static u64 sched_clock_remote(struct sched_clock_data *scd)
279{
280 struct sched_clock_data *my_scd = this_scd();
281 u64 this_clock, remote_clock;
282 u64 *ptr, old_val, val;
283
284#if BITS_PER_LONG != 64
285again:
286 /*
287 * Careful here: The local and the remote clock values need to
288 * be read out atomic as we need to compare the values and
289 * then update either the local or the remote side. So the
290 * cmpxchg64 below only protects one readout.
291 *
292 * We must reread via sched_clock_local() in the retry case on
293 * 32-bit kernels as an NMI could use sched_clock_local() via the
294 * tracer and hit between the readout of
295 * the low 32-bit and the high 32-bit portion.
296 */
297 this_clock = sched_clock_local(my_scd);
298 /*
299 * We must enforce atomic readout on 32-bit, otherwise the
300 * update on the remote CPU can hit inbetween the readout of
301 * the low 32-bit and the high 32-bit portion.
302 */
303 remote_clock = cmpxchg64(&scd->clock, 0, 0);
304#else
305 /*
306 * On 64-bit kernels the read of [my]scd->clock is atomic versus the
307 * update, so we can avoid the above 32-bit dance.
308 */
309 sched_clock_local(my_scd);
310again:
311 this_clock = my_scd->clock;
312 remote_clock = scd->clock;
313#endif
314
315 /*
316 * Use the opportunity that we have both locks
317 * taken to couple the two clocks: we take the
318 * larger time as the latest time for both
319 * runqueues. (this creates monotonic movement)
320 */
321 if (likely((s64)(remote_clock - this_clock) < 0)) {
322 ptr = &scd->clock;
323 old_val = remote_clock;
324 val = this_clock;
325 } else {
326 /*
327 * Should be rare, but possible:
328 */
329 ptr = &my_scd->clock;
330 old_val = this_clock;
331 val = remote_clock;
332 }
333
334 if (cmpxchg64(ptr, old_val, val) != old_val)
335 goto again;
336
337 return val;
338}
339
340/*
341 * Similar to cpu_clock(), but requires local IRQs to be disabled.
342 *
343 * See cpu_clock().
344 */
345u64 sched_clock_cpu(int cpu)
346{
347 struct sched_clock_data *scd;
348 u64 clock;
349
350 if (sched_clock_stable())
351 return sched_clock() + __sched_clock_offset;
352
353 if (unlikely(!sched_clock_running))
354 return 0ull;
355
356 preempt_disable_notrace();
357 scd = cpu_sdc(cpu);
358
359 if (cpu != smp_processor_id())
360 clock = sched_clock_remote(scd);
361 else
362 clock = sched_clock_local(scd);
363 preempt_enable_notrace();
364
365 return clock;
366}
367EXPORT_SYMBOL_GPL(sched_clock_cpu);
368
369void sched_clock_tick(void)
370{
371 struct sched_clock_data *scd;
372
373 if (sched_clock_stable())
374 return;
375
376 if (unlikely(!sched_clock_running))
377 return;
378
379 lockdep_assert_irqs_disabled();
380
381 scd = this_scd();
382 __scd_stamp(scd);
383 sched_clock_local(scd);
384}
385
386void sched_clock_tick_stable(void)
387{
388 u64 gtod, clock;
389
390 if (!sched_clock_stable())
391 return;
392
393 /*
394 * Called under watchdog_lock.
395 *
396 * The watchdog just found this TSC to (still) be stable, so now is a
397 * good moment to update our __gtod_offset. Because once we find the
398 * TSC to be unstable, any computation will be computing crap.
399 */
400 local_irq_disable();
401 gtod = ktime_get_ns();
402 clock = sched_clock();
403 __gtod_offset = (clock + __sched_clock_offset) - gtod;
404 local_irq_enable();
405}
406
407/*
408 * We are going deep-idle (irqs are disabled):
409 */
410void sched_clock_idle_sleep_event(void)
411{
412 sched_clock_cpu(smp_processor_id());
413}
414EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
415
416/*
417 * We just idled; resync with ktime.
418 */
419void sched_clock_idle_wakeup_event(void)
420{
421 unsigned long flags;
422
423 if (sched_clock_stable())
424 return;
425
426 if (unlikely(timekeeping_suspended))
427 return;
428
429 local_irq_save(flags);
430 sched_clock_tick();
431 local_irq_restore(flags);
432}
433EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
434
435#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
436
437u64 sched_clock_cpu(int cpu)
438{
439 if (unlikely(!sched_clock_running))
440 return 0;
441
442 return sched_clock();
443}
444
445#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
446
447/*
448 * Running clock - returns the time that has elapsed while a guest has been
449 * running.
450 * On a guest this value should be local_clock minus the time the guest was
451 * suspended by the hypervisor (for any reason).
452 * On bare metal this function should return the same as local_clock.
453 * Architectures and sub-architectures can override this.
454 */
455u64 __weak running_clock(void)
456{
457 return local_clock();
458}