Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Read-Copy Update mechanism for mutual exclusion
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, you can access it online at
 16 * http://www.gnu.org/licenses/gpl-2.0.html.
 17 *
 18 * Copyright IBM Corporation, 2001
 19 *
 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 21 *	    Manfred Spraul <manfred@colorfullife.com>
 22 *
 23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 25 * Papers:
 26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
 27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
 28 *
 29 * For detailed explanation of Read-Copy Update mechanism see -
 30 *		http://lse.sourceforge.net/locking/rcupdate.html
 31 *
 32 */
 33#include <linux/types.h>
 34#include <linux/kernel.h>
 35#include <linux/init.h>
 36#include <linux/spinlock.h>
 37#include <linux/smp.h>
 38#include <linux/interrupt.h>
 39#include <linux/sched.h>
 
 40#include <linux/atomic.h>
 41#include <linux/bitops.h>
 42#include <linux/percpu.h>
 43#include <linux/notifier.h>
 44#include <linux/cpu.h>
 45#include <linux/mutex.h>
 46#include <linux/export.h>
 47#include <linux/hardirq.h>
 48#include <linux/delay.h>
 49#include <linux/module.h>
 50#include <linux/kthread.h>
 51#include <linux/tick.h>
 
 
 52
 53#define CREATE_TRACE_POINTS
 54
 55#include "rcu.h"
 56
 57MODULE_ALIAS("rcupdate");
 58#ifdef MODULE_PARAM_PREFIX
 59#undef MODULE_PARAM_PREFIX
 60#endif
 61#define MODULE_PARAM_PREFIX "rcupdate."
 62
 63#ifndef CONFIG_TINY_RCU
 
 64module_param(rcu_expedited, int, 0);
 
 65module_param(rcu_normal, int, 0);
 66static int rcu_normal_after_boot;
 67module_param(rcu_normal_after_boot, int, 0);
 68#endif /* #ifndef CONFIG_TINY_RCU */
 69
 70#if defined(CONFIG_DEBUG_LOCK_ALLOC) && defined(CONFIG_PREEMPT_COUNT)
 71/**
 72 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
 73 *
 74 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
 75 * RCU-sched read-side critical section.  In absence of
 76 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
 77 * critical section unless it can prove otherwise.  Note that disabling
 78 * of preemption (including disabling irqs) counts as an RCU-sched
 79 * read-side critical section.  This is useful for debug checks in functions
 80 * that required that they be called within an RCU-sched read-side
 81 * critical section.
 82 *
 83 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
 84 * and while lockdep is disabled.
 85 *
 86 * Note that if the CPU is in the idle loop from an RCU point of
 87 * view (ie: that we are in the section between rcu_idle_enter() and
 88 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
 89 * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
 90 * that are in such a section, considering these as in extended quiescent
 91 * state, so such a CPU is effectively never in an RCU read-side critical
 92 * section regardless of what RCU primitives it invokes.  This state of
 93 * affairs is required --- we need to keep an RCU-free window in idle
 94 * where the CPU may possibly enter into low power mode. This way we can
 95 * notice an extended quiescent state to other CPUs that started a grace
 96 * period. Otherwise we would delay any grace period as long as we run in
 97 * the idle task.
 98 *
 99 * Similarly, we avoid claiming an SRCU read lock held if the current
100 * CPU is offline.
101 */
102int rcu_read_lock_sched_held(void)
103{
104	int lockdep_opinion = 0;
105
106	if (!debug_lockdep_rcu_enabled())
107		return 1;
108	if (!rcu_is_watching())
109		return 0;
110	if (!rcu_lockdep_current_cpu_online())
111		return 0;
112	if (debug_locks)
113		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
114	return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
115}
116EXPORT_SYMBOL(rcu_read_lock_sched_held);
117#endif
118
119#ifndef CONFIG_TINY_RCU
120
121/*
122 * Should expedited grace-period primitives always fall back to their
123 * non-expedited counterparts?  Intended for use within RCU.  Note
124 * that if the user specifies both rcu_expedited and rcu_normal, then
125 * rcu_normal wins.
 
 
126 */
127bool rcu_gp_is_normal(void)
128{
129	return READ_ONCE(rcu_normal);
 
130}
131EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
132
133static atomic_t rcu_expedited_nesting =
134	ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0);
135
136/*
137 * Should normal grace-period primitives be expedited?  Intended for
138 * use within RCU.  Note that this function takes the rcu_expedited
139 * sysfs/boot variable into account as well as the rcu_expedite_gp()
140 * nesting.  So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited()
141 * returns false is a -really- bad idea.
142 */
143bool rcu_gp_is_expedited(void)
144{
145	return rcu_expedited || atomic_read(&rcu_expedited_nesting);
 
146}
147EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
148
149/**
150 * rcu_expedite_gp - Expedite future RCU grace periods
151 *
152 * After a call to this function, future calls to synchronize_rcu() and
153 * friends act as the corresponding synchronize_rcu_expedited() function
154 * had instead been called.
155 */
156void rcu_expedite_gp(void)
157{
158	atomic_inc(&rcu_expedited_nesting);
159}
160EXPORT_SYMBOL_GPL(rcu_expedite_gp);
161
162/**
163 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
164 *
165 * Undo a prior call to rcu_expedite_gp().  If all prior calls to
166 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
167 * and if the rcu_expedited sysfs/boot parameter is not set, then all
168 * subsequent calls to synchronize_rcu() and friends will return to
169 * their normal non-expedited behavior.
170 */
171void rcu_unexpedite_gp(void)
172{
173	atomic_dec(&rcu_expedited_nesting);
174}
175EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
176
177/*
178 * Inform RCU of the end of the in-kernel boot sequence.
179 */
180void rcu_end_inkernel_boot(void)
181{
182	if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT))
183		rcu_unexpedite_gp();
184	if (rcu_normal_after_boot)
185		WRITE_ONCE(rcu_normal, 1);
186}
187
188#endif /* #ifndef CONFIG_TINY_RCU */
189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190#ifdef CONFIG_PREEMPT_RCU
191
192/*
193 * Preemptible RCU implementation for rcu_read_lock().
194 * Just increment ->rcu_read_lock_nesting, shared state will be updated
195 * if we block.
196 */
197void __rcu_read_lock(void)
198{
199	current->rcu_read_lock_nesting++;
200	barrier();  /* critical section after entry code. */
201}
202EXPORT_SYMBOL_GPL(__rcu_read_lock);
203
204/*
205 * Preemptible RCU implementation for rcu_read_unlock().
206 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
207 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
208 * invoke rcu_read_unlock_special() to clean up after a context switch
209 * in an RCU read-side critical section and other special cases.
210 */
211void __rcu_read_unlock(void)
212{
213	struct task_struct *t = current;
214
215	if (t->rcu_read_lock_nesting != 1) {
216		--t->rcu_read_lock_nesting;
217	} else {
218		barrier();  /* critical section before exit code. */
219		t->rcu_read_lock_nesting = INT_MIN;
220		barrier();  /* assign before ->rcu_read_unlock_special load */
221		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
222			rcu_read_unlock_special(t);
223		barrier();  /* ->rcu_read_unlock_special load before assign */
224		t->rcu_read_lock_nesting = 0;
225	}
226#ifdef CONFIG_PROVE_LOCKING
227	{
228		int rrln = READ_ONCE(t->rcu_read_lock_nesting);
229
230		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
231	}
232#endif /* #ifdef CONFIG_PROVE_LOCKING */
233}
234EXPORT_SYMBOL_GPL(__rcu_read_unlock);
235
236#endif /* #ifdef CONFIG_PREEMPT_RCU */
237
238#ifdef CONFIG_DEBUG_LOCK_ALLOC
239static struct lock_class_key rcu_lock_key;
240struct lockdep_map rcu_lock_map =
241	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
242EXPORT_SYMBOL_GPL(rcu_lock_map);
243
244static struct lock_class_key rcu_bh_lock_key;
245struct lockdep_map rcu_bh_lock_map =
246	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
247EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
248
249static struct lock_class_key rcu_sched_lock_key;
250struct lockdep_map rcu_sched_lock_map =
251	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
252EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
253
254static struct lock_class_key rcu_callback_key;
255struct lockdep_map rcu_callback_map =
256	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
257EXPORT_SYMBOL_GPL(rcu_callback_map);
258
259int notrace debug_lockdep_rcu_enabled(void)
260{
261	return rcu_scheduler_active && debug_locks &&
262	       current->lockdep_recursion == 0;
263}
264EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
265
266/**
267 * rcu_read_lock_held() - might we be in RCU read-side critical section?
268 *
269 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
270 * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
271 * this assumes we are in an RCU read-side critical section unless it can
272 * prove otherwise.  This is useful for debug checks in functions that
273 * require that they be called within an RCU read-side critical section.
274 *
275 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
276 * and while lockdep is disabled.
277 *
278 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
279 * occur in the same context, for example, it is illegal to invoke
280 * rcu_read_unlock() in process context if the matching rcu_read_lock()
281 * was invoked from within an irq handler.
282 *
283 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
284 * offline from an RCU perspective, so check for those as well.
285 */
286int rcu_read_lock_held(void)
287{
288	if (!debug_lockdep_rcu_enabled())
289		return 1;
290	if (!rcu_is_watching())
291		return 0;
292	if (!rcu_lockdep_current_cpu_online())
293		return 0;
294	return lock_is_held(&rcu_lock_map);
295}
296EXPORT_SYMBOL_GPL(rcu_read_lock_held);
297
298/**
299 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
300 *
301 * Check for bottom half being disabled, which covers both the
302 * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
303 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
304 * will show the situation.  This is useful for debug checks in functions
305 * that require that they be called within an RCU read-side critical
306 * section.
307 *
308 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
309 *
310 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
311 * offline from an RCU perspective, so check for those as well.
312 */
313int rcu_read_lock_bh_held(void)
314{
315	if (!debug_lockdep_rcu_enabled())
316		return 1;
317	if (!rcu_is_watching())
318		return 0;
319	if (!rcu_lockdep_current_cpu_online())
320		return 0;
321	return in_softirq() || irqs_disabled();
322}
323EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
324
325#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
326
327/**
328 * wakeme_after_rcu() - Callback function to awaken a task after grace period
329 * @head: Pointer to rcu_head member within rcu_synchronize structure
330 *
331 * Awaken the corresponding task now that a grace period has elapsed.
332 */
333void wakeme_after_rcu(struct rcu_head *head)
334{
335	struct rcu_synchronize *rcu;
336
337	rcu = container_of(head, struct rcu_synchronize, head);
338	complete(&rcu->completion);
339}
340EXPORT_SYMBOL_GPL(wakeme_after_rcu);
341
342void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
343		   struct rcu_synchronize *rs_array)
344{
345	int i;
 
346
347	/* Initialize and register callbacks for each flavor specified. */
348	for (i = 0; i < n; i++) {
349		if (checktiny &&
350		    (crcu_array[i] == call_rcu ||
351		     crcu_array[i] == call_rcu_bh)) {
352			might_sleep();
353			continue;
354		}
355		init_rcu_head_on_stack(&rs_array[i].head);
356		init_completion(&rs_array[i].completion);
357		(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
 
 
 
 
358	}
359
360	/* Wait for all callbacks to be invoked. */
361	for (i = 0; i < n; i++) {
362		if (checktiny &&
363		    (crcu_array[i] == call_rcu ||
364		     crcu_array[i] == call_rcu_bh))
365			continue;
366		wait_for_completion(&rs_array[i].completion);
 
 
 
 
367		destroy_rcu_head_on_stack(&rs_array[i].head);
368	}
369}
370EXPORT_SYMBOL_GPL(__wait_rcu_gp);
371
372#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
373void init_rcu_head(struct rcu_head *head)
374{
375	debug_object_init(head, &rcuhead_debug_descr);
376}
 
377
378void destroy_rcu_head(struct rcu_head *head)
379{
380	debug_object_free(head, &rcuhead_debug_descr);
381}
 
382
383/*
384 * fixup_activate is called when:
385 * - an active object is activated
386 * - an unknown object is activated (might be a statically initialized object)
387 * Activation is performed internally by call_rcu().
388 */
389static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state)
390{
391	struct rcu_head *head = addr;
392
393	switch (state) {
394
395	case ODEBUG_STATE_NOTAVAILABLE:
396		/*
397		 * This is not really a fixup. We just make sure that it is
398		 * tracked in the object tracker.
399		 */
400		debug_object_init(head, &rcuhead_debug_descr);
401		debug_object_activate(head, &rcuhead_debug_descr);
402		return 0;
403	default:
404		return 1;
405	}
406}
407
408/**
409 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
410 * @head: pointer to rcu_head structure to be initialized
411 *
412 * This function informs debugobjects of a new rcu_head structure that
413 * has been allocated as an auto variable on the stack.  This function
414 * is not required for rcu_head structures that are statically defined or
415 * that are dynamically allocated on the heap.  This function has no
416 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
417 */
418void init_rcu_head_on_stack(struct rcu_head *head)
419{
420	debug_object_init_on_stack(head, &rcuhead_debug_descr);
421}
422EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
423
424/**
425 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
426 * @head: pointer to rcu_head structure to be initialized
427 *
428 * This function informs debugobjects that an on-stack rcu_head structure
429 * is about to go out of scope.  As with init_rcu_head_on_stack(), this
430 * function is not required for rcu_head structures that are statically
431 * defined or that are dynamically allocated on the heap.  Also as with
432 * init_rcu_head_on_stack(), this function has no effect for
433 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
434 */
435void destroy_rcu_head_on_stack(struct rcu_head *head)
436{
437	debug_object_free(head, &rcuhead_debug_descr);
438}
439EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
440
441struct debug_obj_descr rcuhead_debug_descr = {
442	.name = "rcu_head",
443	.fixup_activate = rcuhead_fixup_activate,
444};
445EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
446#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
447
448#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
449void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
450			       unsigned long secs,
451			       unsigned long c_old, unsigned long c)
452{
453	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
454}
455EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
456#else
457#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
458	do { } while (0)
459#endif
460
461#ifdef CONFIG_RCU_STALL_COMMON
462
463#ifdef CONFIG_PROVE_RCU
464#define RCU_STALL_DELAY_DELTA	       (5 * HZ)
465#else
466#define RCU_STALL_DELAY_DELTA	       0
467#endif
468
469int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
 
470static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
471
472module_param(rcu_cpu_stall_suppress, int, 0644);
473module_param(rcu_cpu_stall_timeout, int, 0644);
474
475int rcu_jiffies_till_stall_check(void)
476{
477	int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
478
479	/*
480	 * Limit check must be consistent with the Kconfig limits
481	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
482	 */
483	if (till_stall_check < 3) {
484		WRITE_ONCE(rcu_cpu_stall_timeout, 3);
485		till_stall_check = 3;
486	} else if (till_stall_check > 300) {
487		WRITE_ONCE(rcu_cpu_stall_timeout, 300);
488		till_stall_check = 300;
489	}
490	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
491}
492
493void rcu_sysrq_start(void)
494{
495	if (!rcu_cpu_stall_suppress)
496		rcu_cpu_stall_suppress = 2;
497}
498
499void rcu_sysrq_end(void)
500{
501	if (rcu_cpu_stall_suppress == 2)
502		rcu_cpu_stall_suppress = 0;
503}
504
505static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
506{
507	rcu_cpu_stall_suppress = 1;
508	return NOTIFY_DONE;
509}
510
511static struct notifier_block rcu_panic_block = {
512	.notifier_call = rcu_panic,
513};
514
515static int __init check_cpu_stall_init(void)
516{
517	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
518	return 0;
519}
520early_initcall(check_cpu_stall_init);
521
522#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
523
524#ifdef CONFIG_TASKS_RCU
525
526/*
527 * Simple variant of RCU whose quiescent states are voluntary context switch,
528 * user-space execution, and idle.  As such, grace periods can take one good
529 * long time.  There are no read-side primitives similar to rcu_read_lock()
530 * and rcu_read_unlock() because this implementation is intended to get
531 * the system into a safe state for some of the manipulations involved in
532 * tracing and the like.  Finally, this implementation does not support
533 * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
534 * per-CPU callback lists will be needed.
535 */
536
537/* Global list of callbacks and associated lock. */
538static struct rcu_head *rcu_tasks_cbs_head;
539static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
540static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
541static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
542
543/* Track exiting tasks in order to allow them to be waited for. */
544DEFINE_SRCU(tasks_rcu_exit_srcu);
545
546/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
547static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
 
548module_param(rcu_task_stall_timeout, int, 0644);
549
550static void rcu_spawn_tasks_kthread(void);
551
552/*
553 * Post an RCU-tasks callback.  First call must be from process context
554 * after the scheduler if fully operational.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555 */
556void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
557{
558	unsigned long flags;
559	bool needwake;
560
561	rhp->next = NULL;
562	rhp->func = func;
563	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
564	needwake = !rcu_tasks_cbs_head;
565	*rcu_tasks_cbs_tail = rhp;
566	rcu_tasks_cbs_tail = &rhp->next;
567	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
568	if (needwake) {
569		rcu_spawn_tasks_kthread();
570		wake_up(&rcu_tasks_cbs_wq);
571	}
572}
573EXPORT_SYMBOL_GPL(call_rcu_tasks);
574
575/**
576 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
577 *
578 * Control will return to the caller some time after a full rcu-tasks
579 * grace period has elapsed, in other words after all currently
580 * executing rcu-tasks read-side critical sections have elapsed.  These
581 * read-side critical sections are delimited by calls to schedule(),
582 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
583 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
584 *
585 * This is a very specialized primitive, intended only for a few uses in
586 * tracing and other situations requiring manipulation of function
587 * preambles and profiling hooks.  The synchronize_rcu_tasks() function
588 * is not (yet) intended for heavy use from multiple CPUs.
589 *
590 * Note that this guarantee implies further memory-ordering guarantees.
591 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
592 * each CPU is guaranteed to have executed a full memory barrier since the
593 * end of its last RCU-tasks read-side critical section whose beginning
594 * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
595 * having an RCU-tasks read-side critical section that extends beyond
596 * the return from synchronize_rcu_tasks() is guaranteed to have executed
597 * a full memory barrier after the beginning of synchronize_rcu_tasks()
598 * and before the beginning of that RCU-tasks read-side critical section.
599 * Note that these guarantees include CPUs that are offline, idle, or
600 * executing in user mode, as well as CPUs that are executing in the kernel.
601 *
602 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
603 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
604 * to have executed a full memory barrier during the execution of
605 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
606 * (but again only if the system has more than one CPU).
607 */
608void synchronize_rcu_tasks(void)
609{
610	/* Complain if the scheduler has not started.  */
611	RCU_LOCKDEP_WARN(!rcu_scheduler_active,
612			 "synchronize_rcu_tasks called too soon");
613
614	/* Wait for the grace period. */
615	wait_rcu_gp(call_rcu_tasks);
616}
617EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
618
619/**
620 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
621 *
622 * Although the current implementation is guaranteed to wait, it is not
623 * obligated to, for example, if there are no pending callbacks.
624 */
625void rcu_barrier_tasks(void)
626{
627	/* There is only one callback queue, so this is easy.  ;-) */
628	synchronize_rcu_tasks();
629}
630EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
631
632/* See if tasks are still holding out, complain if so. */
633static void check_holdout_task(struct task_struct *t,
634			       bool needreport, bool *firstreport)
635{
636	int cpu;
637
638	if (!READ_ONCE(t->rcu_tasks_holdout) ||
639	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
640	    !READ_ONCE(t->on_rq) ||
641	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
642	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
643		WRITE_ONCE(t->rcu_tasks_holdout, false);
644		list_del_init(&t->rcu_tasks_holdout_list);
645		put_task_struct(t);
646		return;
647	}
 
648	if (!needreport)
649		return;
650	if (*firstreport) {
651		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
652		*firstreport = false;
653	}
654	cpu = task_cpu(t);
655	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
656		 t, ".I"[is_idle_task(t)],
657		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
658		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
659		 t->rcu_tasks_idle_cpu, cpu);
660	sched_show_task(t);
661}
662
663/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
664static int __noreturn rcu_tasks_kthread(void *arg)
665{
666	unsigned long flags;
667	struct task_struct *g, *t;
668	unsigned long lastreport;
669	struct rcu_head *list;
670	struct rcu_head *next;
671	LIST_HEAD(rcu_tasks_holdouts);
672
673	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
674	housekeeping_affine(current);
675
676	/*
677	 * Each pass through the following loop makes one check for
678	 * newly arrived callbacks, and, if there are some, waits for
679	 * one RCU-tasks grace period and then invokes the callbacks.
680	 * This loop is terminated by the system going down.  ;-)
681	 */
682	for (;;) {
683
684		/* Pick up any new callbacks. */
685		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
686		list = rcu_tasks_cbs_head;
687		rcu_tasks_cbs_head = NULL;
688		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
689		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
690
691		/* If there were none, wait a bit and start over. */
692		if (!list) {
693			wait_event_interruptible(rcu_tasks_cbs_wq,
694						 rcu_tasks_cbs_head);
695			if (!rcu_tasks_cbs_head) {
696				WARN_ON(signal_pending(current));
697				schedule_timeout_interruptible(HZ/10);
698			}
699			continue;
700		}
701
702		/*
703		 * Wait for all pre-existing t->on_rq and t->nvcsw
704		 * transitions to complete.  Invoking synchronize_sched()
705		 * suffices because all these transitions occur with
706		 * interrupts disabled.  Without this synchronize_sched(),
707		 * a read-side critical section that started before the
708		 * grace period might be incorrectly seen as having started
709		 * after the grace period.
710		 *
711		 * This synchronize_sched() also dispenses with the
712		 * need for a memory barrier on the first store to
713		 * ->rcu_tasks_holdout, as it forces the store to happen
714		 * after the beginning of the grace period.
715		 */
716		synchronize_sched();
717
718		/*
719		 * There were callbacks, so we need to wait for an
720		 * RCU-tasks grace period.  Start off by scanning
721		 * the task list for tasks that are not already
722		 * voluntarily blocked.  Mark these tasks and make
723		 * a list of them in rcu_tasks_holdouts.
724		 */
725		rcu_read_lock();
726		for_each_process_thread(g, t) {
727			if (t != current && READ_ONCE(t->on_rq) &&
728			    !is_idle_task(t)) {
729				get_task_struct(t);
730				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
731				WRITE_ONCE(t->rcu_tasks_holdout, true);
732				list_add(&t->rcu_tasks_holdout_list,
733					 &rcu_tasks_holdouts);
734			}
735		}
736		rcu_read_unlock();
737
738		/*
739		 * Wait for tasks that are in the process of exiting.
740		 * This does only part of the job, ensuring that all
741		 * tasks that were previously exiting reach the point
742		 * where they have disabled preemption, allowing the
743		 * later synchronize_sched() to finish the job.
744		 */
745		synchronize_srcu(&tasks_rcu_exit_srcu);
746
747		/*
748		 * Each pass through the following loop scans the list
749		 * of holdout tasks, removing any that are no longer
750		 * holdouts.  When the list is empty, we are done.
751		 */
752		lastreport = jiffies;
753		while (!list_empty(&rcu_tasks_holdouts)) {
754			bool firstreport;
755			bool needreport;
756			int rtst;
757			struct task_struct *t1;
758
759			schedule_timeout_interruptible(HZ);
760			rtst = READ_ONCE(rcu_task_stall_timeout);
761			needreport = rtst > 0 &&
762				     time_after(jiffies, lastreport + rtst);
763			if (needreport)
764				lastreport = jiffies;
765			firstreport = true;
766			WARN_ON(signal_pending(current));
767			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
768						rcu_tasks_holdout_list) {
769				check_holdout_task(t, needreport, &firstreport);
770				cond_resched();
771			}
772		}
773
774		/*
775		 * Because ->on_rq and ->nvcsw are not guaranteed
776		 * to have a full memory barriers prior to them in the
777		 * schedule() path, memory reordering on other CPUs could
778		 * cause their RCU-tasks read-side critical sections to
779		 * extend past the end of the grace period.  However,
780		 * because these ->nvcsw updates are carried out with
781		 * interrupts disabled, we can use synchronize_sched()
782		 * to force the needed ordering on all such CPUs.
783		 *
784		 * This synchronize_sched() also confines all
785		 * ->rcu_tasks_holdout accesses to be within the grace
786		 * period, avoiding the need for memory barriers for
787		 * ->rcu_tasks_holdout accesses.
788		 *
789		 * In addition, this synchronize_sched() waits for exiting
790		 * tasks to complete their final preempt_disable() region
791		 * of execution, cleaning up after the synchronize_srcu()
792		 * above.
793		 */
794		synchronize_sched();
795
796		/* Invoke the callbacks. */
797		while (list) {
798			next = list->next;
799			local_bh_disable();
800			list->func(list);
801			local_bh_enable();
802			list = next;
803			cond_resched();
804		}
805		schedule_timeout_uninterruptible(HZ/10);
806	}
807}
808
809/* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
810static void rcu_spawn_tasks_kthread(void)
811{
812	static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
813	static struct task_struct *rcu_tasks_kthread_ptr;
814	struct task_struct *t;
815
816	if (READ_ONCE(rcu_tasks_kthread_ptr)) {
817		smp_mb(); /* Ensure caller sees full kthread. */
818		return;
819	}
820	mutex_lock(&rcu_tasks_kthread_mutex);
821	if (rcu_tasks_kthread_ptr) {
822		mutex_unlock(&rcu_tasks_kthread_mutex);
823		return;
824	}
825	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
826	BUG_ON(IS_ERR(t));
827	smp_mb(); /* Ensure others see full kthread. */
828	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
829	mutex_unlock(&rcu_tasks_kthread_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
830}
831
832#endif /* #ifdef CONFIG_TASKS_RCU */
833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
834#ifdef CONFIG_PROVE_RCU
835
836/*
837 * Early boot self test parameters, one for each flavor
838 */
839static bool rcu_self_test;
840static bool rcu_self_test_bh;
841static bool rcu_self_test_sched;
842
843module_param(rcu_self_test, bool, 0444);
844module_param(rcu_self_test_bh, bool, 0444);
845module_param(rcu_self_test_sched, bool, 0444);
846
847static int rcu_self_test_counter;
848
849static void test_callback(struct rcu_head *r)
850{
851	rcu_self_test_counter++;
852	pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
853}
854
855static void early_boot_test_call_rcu(void)
856{
857	static struct rcu_head head;
858
859	call_rcu(&head, test_callback);
860}
861
862static void early_boot_test_call_rcu_bh(void)
863{
864	static struct rcu_head head;
865
866	call_rcu_bh(&head, test_callback);
867}
868
869static void early_boot_test_call_rcu_sched(void)
870{
871	static struct rcu_head head;
872
873	call_rcu_sched(&head, test_callback);
874}
875
876void rcu_early_boot_tests(void)
877{
878	pr_info("Running RCU self tests\n");
879
880	if (rcu_self_test)
881		early_boot_test_call_rcu();
882	if (rcu_self_test_bh)
883		early_boot_test_call_rcu_bh();
884	if (rcu_self_test_sched)
885		early_boot_test_call_rcu_sched();
 
886}
887
888static int rcu_verify_early_boot_tests(void)
889{
890	int ret = 0;
891	int early_boot_test_counter = 0;
892
893	if (rcu_self_test) {
894		early_boot_test_counter++;
895		rcu_barrier();
896	}
897	if (rcu_self_test_bh) {
898		early_boot_test_counter++;
899		rcu_barrier_bh();
900	}
901	if (rcu_self_test_sched) {
902		early_boot_test_counter++;
903		rcu_barrier_sched();
904	}
905
906	if (rcu_self_test_counter != early_boot_test_counter) {
907		WARN_ON(1);
908		ret = -1;
909	}
910
911	return ret;
912}
913late_initcall(rcu_verify_early_boot_tests);
914#else
915void rcu_early_boot_tests(void) {}
916#endif /* CONFIG_PROVE_RCU */
v4.17
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2001
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *	    Manfred Spraul <manfred@colorfullife.com>
  22 *
  23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  25 * Papers:
  26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  28 *
  29 * For detailed explanation of Read-Copy Update mechanism see -
  30 *		http://lse.sourceforge.net/locking/rcupdate.html
  31 *
  32 */
  33#include <linux/types.h>
  34#include <linux/kernel.h>
  35#include <linux/init.h>
  36#include <linux/spinlock.h>
  37#include <linux/smp.h>
  38#include <linux/interrupt.h>
  39#include <linux/sched/signal.h>
  40#include <linux/sched/debug.h>
  41#include <linux/atomic.h>
  42#include <linux/bitops.h>
  43#include <linux/percpu.h>
  44#include <linux/notifier.h>
  45#include <linux/cpu.h>
  46#include <linux/mutex.h>
  47#include <linux/export.h>
  48#include <linux/hardirq.h>
  49#include <linux/delay.h>
  50#include <linux/moduleparam.h>
  51#include <linux/kthread.h>
  52#include <linux/tick.h>
  53#include <linux/rcupdate_wait.h>
  54#include <linux/sched/isolation.h>
  55
  56#define CREATE_TRACE_POINTS
  57
  58#include "rcu.h"
  59
 
  60#ifdef MODULE_PARAM_PREFIX
  61#undef MODULE_PARAM_PREFIX
  62#endif
  63#define MODULE_PARAM_PREFIX "rcupdate."
  64
  65#ifndef CONFIG_TINY_RCU
  66extern int rcu_expedited; /* from sysctl */
  67module_param(rcu_expedited, int, 0);
  68extern int rcu_normal; /* from sysctl */
  69module_param(rcu_normal, int, 0);
  70static int rcu_normal_after_boot;
  71module_param(rcu_normal_after_boot, int, 0);
  72#endif /* #ifndef CONFIG_TINY_RCU */
  73
  74#ifdef CONFIG_DEBUG_LOCK_ALLOC
  75/**
  76 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
  77 *
  78 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
  79 * RCU-sched read-side critical section.  In absence of
  80 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
  81 * critical section unless it can prove otherwise.  Note that disabling
  82 * of preemption (including disabling irqs) counts as an RCU-sched
  83 * read-side critical section.  This is useful for debug checks in functions
  84 * that required that they be called within an RCU-sched read-side
  85 * critical section.
  86 *
  87 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
  88 * and while lockdep is disabled.
  89 *
  90 * Note that if the CPU is in the idle loop from an RCU point of
  91 * view (ie: that we are in the section between rcu_idle_enter() and
  92 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
  93 * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
  94 * that are in such a section, considering these as in extended quiescent
  95 * state, so such a CPU is effectively never in an RCU read-side critical
  96 * section regardless of what RCU primitives it invokes.  This state of
  97 * affairs is required --- we need to keep an RCU-free window in idle
  98 * where the CPU may possibly enter into low power mode. This way we can
  99 * notice an extended quiescent state to other CPUs that started a grace
 100 * period. Otherwise we would delay any grace period as long as we run in
 101 * the idle task.
 102 *
 103 * Similarly, we avoid claiming an SRCU read lock held if the current
 104 * CPU is offline.
 105 */
 106int rcu_read_lock_sched_held(void)
 107{
 108	int lockdep_opinion = 0;
 109
 110	if (!debug_lockdep_rcu_enabled())
 111		return 1;
 112	if (!rcu_is_watching())
 113		return 0;
 114	if (!rcu_lockdep_current_cpu_online())
 115		return 0;
 116	if (debug_locks)
 117		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
 118	return lockdep_opinion || !preemptible();
 119}
 120EXPORT_SYMBOL(rcu_read_lock_sched_held);
 121#endif
 122
 123#ifndef CONFIG_TINY_RCU
 124
 125/*
 126 * Should expedited grace-period primitives always fall back to their
 127 * non-expedited counterparts?  Intended for use within RCU.  Note
 128 * that if the user specifies both rcu_expedited and rcu_normal, then
 129 * rcu_normal wins.  (Except during the time period during boot from
 130 * when the first task is spawned until the rcu_set_runtime_mode()
 131 * core_initcall() is invoked, at which point everything is expedited.)
 132 */
 133bool rcu_gp_is_normal(void)
 134{
 135	return READ_ONCE(rcu_normal) &&
 136	       rcu_scheduler_active != RCU_SCHEDULER_INIT;
 137}
 138EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
 139
 140static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
 
 141
 142/*
 143 * Should normal grace-period primitives be expedited?  Intended for
 144 * use within RCU.  Note that this function takes the rcu_expedited
 145 * sysfs/boot variable and rcu_scheduler_active into account as well
 146 * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp()
 147 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
 148 */
 149bool rcu_gp_is_expedited(void)
 150{
 151	return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
 152	       rcu_scheduler_active == RCU_SCHEDULER_INIT;
 153}
 154EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
 155
 156/**
 157 * rcu_expedite_gp - Expedite future RCU grace periods
 158 *
 159 * After a call to this function, future calls to synchronize_rcu() and
 160 * friends act as the corresponding synchronize_rcu_expedited() function
 161 * had instead been called.
 162 */
 163void rcu_expedite_gp(void)
 164{
 165	atomic_inc(&rcu_expedited_nesting);
 166}
 167EXPORT_SYMBOL_GPL(rcu_expedite_gp);
 168
 169/**
 170 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
 171 *
 172 * Undo a prior call to rcu_expedite_gp().  If all prior calls to
 173 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
 174 * and if the rcu_expedited sysfs/boot parameter is not set, then all
 175 * subsequent calls to synchronize_rcu() and friends will return to
 176 * their normal non-expedited behavior.
 177 */
 178void rcu_unexpedite_gp(void)
 179{
 180	atomic_dec(&rcu_expedited_nesting);
 181}
 182EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
 183
 184/*
 185 * Inform RCU of the end of the in-kernel boot sequence.
 186 */
 187void rcu_end_inkernel_boot(void)
 188{
 189	rcu_unexpedite_gp();
 
 190	if (rcu_normal_after_boot)
 191		WRITE_ONCE(rcu_normal, 1);
 192}
 193
 194#endif /* #ifndef CONFIG_TINY_RCU */
 195
 196/*
 197 * Test each non-SRCU synchronous grace-period wait API.  This is
 198 * useful just after a change in mode for these primitives, and
 199 * during early boot.
 200 */
 201void rcu_test_sync_prims(void)
 202{
 203	if (!IS_ENABLED(CONFIG_PROVE_RCU))
 204		return;
 205	synchronize_rcu();
 206	synchronize_rcu_bh();
 207	synchronize_sched();
 208	synchronize_rcu_expedited();
 209	synchronize_rcu_bh_expedited();
 210	synchronize_sched_expedited();
 211}
 212
 213#if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
 214
 215/*
 216 * Switch to run-time mode once RCU has fully initialized.
 217 */
 218static int __init rcu_set_runtime_mode(void)
 219{
 220	rcu_test_sync_prims();
 221	rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
 222	rcu_test_sync_prims();
 223	return 0;
 224}
 225core_initcall(rcu_set_runtime_mode);
 226
 227#endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
 228
 229#ifdef CONFIG_PREEMPT_RCU
 230
 231/*
 232 * Preemptible RCU implementation for rcu_read_lock().
 233 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 234 * if we block.
 235 */
 236void __rcu_read_lock(void)
 237{
 238	current->rcu_read_lock_nesting++;
 239	barrier();  /* critical section after entry code. */
 240}
 241EXPORT_SYMBOL_GPL(__rcu_read_lock);
 242
 243/*
 244 * Preemptible RCU implementation for rcu_read_unlock().
 245 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 246 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 247 * invoke rcu_read_unlock_special() to clean up after a context switch
 248 * in an RCU read-side critical section and other special cases.
 249 */
 250void __rcu_read_unlock(void)
 251{
 252	struct task_struct *t = current;
 253
 254	if (t->rcu_read_lock_nesting != 1) {
 255		--t->rcu_read_lock_nesting;
 256	} else {
 257		barrier();  /* critical section before exit code. */
 258		t->rcu_read_lock_nesting = INT_MIN;
 259		barrier();  /* assign before ->rcu_read_unlock_special load */
 260		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
 261			rcu_read_unlock_special(t);
 262		barrier();  /* ->rcu_read_unlock_special load before assign */
 263		t->rcu_read_lock_nesting = 0;
 264	}
 265#ifdef CONFIG_PROVE_LOCKING
 266	{
 267		int rrln = READ_ONCE(t->rcu_read_lock_nesting);
 268
 269		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
 270	}
 271#endif /* #ifdef CONFIG_PROVE_LOCKING */
 272}
 273EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 274
 275#endif /* #ifdef CONFIG_PREEMPT_RCU */
 276
 277#ifdef CONFIG_DEBUG_LOCK_ALLOC
 278static struct lock_class_key rcu_lock_key;
 279struct lockdep_map rcu_lock_map =
 280	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
 281EXPORT_SYMBOL_GPL(rcu_lock_map);
 282
 283static struct lock_class_key rcu_bh_lock_key;
 284struct lockdep_map rcu_bh_lock_map =
 285	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
 286EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
 287
 288static struct lock_class_key rcu_sched_lock_key;
 289struct lockdep_map rcu_sched_lock_map =
 290	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
 291EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
 292
 293static struct lock_class_key rcu_callback_key;
 294struct lockdep_map rcu_callback_map =
 295	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
 296EXPORT_SYMBOL_GPL(rcu_callback_map);
 297
 298int notrace debug_lockdep_rcu_enabled(void)
 299{
 300	return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
 301	       current->lockdep_recursion == 0;
 302}
 303EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
 304
 305/**
 306 * rcu_read_lock_held() - might we be in RCU read-side critical section?
 307 *
 308 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
 309 * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
 310 * this assumes we are in an RCU read-side critical section unless it can
 311 * prove otherwise.  This is useful for debug checks in functions that
 312 * require that they be called within an RCU read-side critical section.
 313 *
 314 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
 315 * and while lockdep is disabled.
 316 *
 317 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
 318 * occur in the same context, for example, it is illegal to invoke
 319 * rcu_read_unlock() in process context if the matching rcu_read_lock()
 320 * was invoked from within an irq handler.
 321 *
 322 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 323 * offline from an RCU perspective, so check for those as well.
 324 */
 325int rcu_read_lock_held(void)
 326{
 327	if (!debug_lockdep_rcu_enabled())
 328		return 1;
 329	if (!rcu_is_watching())
 330		return 0;
 331	if (!rcu_lockdep_current_cpu_online())
 332		return 0;
 333	return lock_is_held(&rcu_lock_map);
 334}
 335EXPORT_SYMBOL_GPL(rcu_read_lock_held);
 336
 337/**
 338 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
 339 *
 340 * Check for bottom half being disabled, which covers both the
 341 * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
 342 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
 343 * will show the situation.  This is useful for debug checks in functions
 344 * that require that they be called within an RCU read-side critical
 345 * section.
 346 *
 347 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
 348 *
 349 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 350 * offline from an RCU perspective, so check for those as well.
 351 */
 352int rcu_read_lock_bh_held(void)
 353{
 354	if (!debug_lockdep_rcu_enabled())
 355		return 1;
 356	if (!rcu_is_watching())
 357		return 0;
 358	if (!rcu_lockdep_current_cpu_online())
 359		return 0;
 360	return in_softirq() || irqs_disabled();
 361}
 362EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
 363
 364#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 365
 366/**
 367 * wakeme_after_rcu() - Callback function to awaken a task after grace period
 368 * @head: Pointer to rcu_head member within rcu_synchronize structure
 369 *
 370 * Awaken the corresponding task now that a grace period has elapsed.
 371 */
 372void wakeme_after_rcu(struct rcu_head *head)
 373{
 374	struct rcu_synchronize *rcu;
 375
 376	rcu = container_of(head, struct rcu_synchronize, head);
 377	complete(&rcu->completion);
 378}
 379EXPORT_SYMBOL_GPL(wakeme_after_rcu);
 380
 381void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
 382		   struct rcu_synchronize *rs_array)
 383{
 384	int i;
 385	int j;
 386
 387	/* Initialize and register callbacks for each flavor specified. */
 388	for (i = 0; i < n; i++) {
 389		if (checktiny &&
 390		    (crcu_array[i] == call_rcu ||
 391		     crcu_array[i] == call_rcu_bh)) {
 392			might_sleep();
 393			continue;
 394		}
 395		init_rcu_head_on_stack(&rs_array[i].head);
 396		init_completion(&rs_array[i].completion);
 397		for (j = 0; j < i; j++)
 398			if (crcu_array[j] == crcu_array[i])
 399				break;
 400		if (j == i)
 401			(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
 402	}
 403
 404	/* Wait for all callbacks to be invoked. */
 405	for (i = 0; i < n; i++) {
 406		if (checktiny &&
 407		    (crcu_array[i] == call_rcu ||
 408		     crcu_array[i] == call_rcu_bh))
 409			continue;
 410		for (j = 0; j < i; j++)
 411			if (crcu_array[j] == crcu_array[i])
 412				break;
 413		if (j == i)
 414			wait_for_completion(&rs_array[i].completion);
 415		destroy_rcu_head_on_stack(&rs_array[i].head);
 416	}
 417}
 418EXPORT_SYMBOL_GPL(__wait_rcu_gp);
 419
 420#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 421void init_rcu_head(struct rcu_head *head)
 422{
 423	debug_object_init(head, &rcuhead_debug_descr);
 424}
 425EXPORT_SYMBOL_GPL(init_rcu_head);
 426
 427void destroy_rcu_head(struct rcu_head *head)
 428{
 429	debug_object_free(head, &rcuhead_debug_descr);
 430}
 431EXPORT_SYMBOL_GPL(destroy_rcu_head);
 432
 433static bool rcuhead_is_static_object(void *addr)
 
 
 
 
 
 
 434{
 435	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436}
 437
 438/**
 439 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
 440 * @head: pointer to rcu_head structure to be initialized
 441 *
 442 * This function informs debugobjects of a new rcu_head structure that
 443 * has been allocated as an auto variable on the stack.  This function
 444 * is not required for rcu_head structures that are statically defined or
 445 * that are dynamically allocated on the heap.  This function has no
 446 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 447 */
 448void init_rcu_head_on_stack(struct rcu_head *head)
 449{
 450	debug_object_init_on_stack(head, &rcuhead_debug_descr);
 451}
 452EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
 453
 454/**
 455 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
 456 * @head: pointer to rcu_head structure to be initialized
 457 *
 458 * This function informs debugobjects that an on-stack rcu_head structure
 459 * is about to go out of scope.  As with init_rcu_head_on_stack(), this
 460 * function is not required for rcu_head structures that are statically
 461 * defined or that are dynamically allocated on the heap.  Also as with
 462 * init_rcu_head_on_stack(), this function has no effect for
 463 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 464 */
 465void destroy_rcu_head_on_stack(struct rcu_head *head)
 466{
 467	debug_object_free(head, &rcuhead_debug_descr);
 468}
 469EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
 470
 471struct debug_obj_descr rcuhead_debug_descr = {
 472	.name = "rcu_head",
 473	.is_static_object = rcuhead_is_static_object,
 474};
 475EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
 476#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 477
 478#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
 479void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
 480			       unsigned long secs,
 481			       unsigned long c_old, unsigned long c)
 482{
 483	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
 484}
 485EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
 486#else
 487#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
 488	do { } while (0)
 489#endif
 490
 491#ifdef CONFIG_RCU_STALL_COMMON
 492
 493#ifdef CONFIG_PROVE_RCU
 494#define RCU_STALL_DELAY_DELTA	       (5 * HZ)
 495#else
 496#define RCU_STALL_DELAY_DELTA	       0
 497#endif
 498
 499int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
 500EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
 501static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
 502
 503module_param(rcu_cpu_stall_suppress, int, 0644);
 504module_param(rcu_cpu_stall_timeout, int, 0644);
 505
 506int rcu_jiffies_till_stall_check(void)
 507{
 508	int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
 509
 510	/*
 511	 * Limit check must be consistent with the Kconfig limits
 512	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
 513	 */
 514	if (till_stall_check < 3) {
 515		WRITE_ONCE(rcu_cpu_stall_timeout, 3);
 516		till_stall_check = 3;
 517	} else if (till_stall_check > 300) {
 518		WRITE_ONCE(rcu_cpu_stall_timeout, 300);
 519		till_stall_check = 300;
 520	}
 521	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
 522}
 523
 524void rcu_sysrq_start(void)
 525{
 526	if (!rcu_cpu_stall_suppress)
 527		rcu_cpu_stall_suppress = 2;
 528}
 529
 530void rcu_sysrq_end(void)
 531{
 532	if (rcu_cpu_stall_suppress == 2)
 533		rcu_cpu_stall_suppress = 0;
 534}
 535
 536static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
 537{
 538	rcu_cpu_stall_suppress = 1;
 539	return NOTIFY_DONE;
 540}
 541
 542static struct notifier_block rcu_panic_block = {
 543	.notifier_call = rcu_panic,
 544};
 545
 546static int __init check_cpu_stall_init(void)
 547{
 548	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
 549	return 0;
 550}
 551early_initcall(check_cpu_stall_init);
 552
 553#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
 554
 555#ifdef CONFIG_TASKS_RCU
 556
 557/*
 558 * Simple variant of RCU whose quiescent states are voluntary context switch,
 559 * user-space execution, and idle.  As such, grace periods can take one good
 560 * long time.  There are no read-side primitives similar to rcu_read_lock()
 561 * and rcu_read_unlock() because this implementation is intended to get
 562 * the system into a safe state for some of the manipulations involved in
 563 * tracing and the like.  Finally, this implementation does not support
 564 * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
 565 * per-CPU callback lists will be needed.
 566 */
 567
 568/* Global list of callbacks and associated lock. */
 569static struct rcu_head *rcu_tasks_cbs_head;
 570static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 571static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
 572static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
 573
 574/* Track exiting tasks in order to allow them to be waited for. */
 575DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
 576
 577/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
 578#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
 579static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
 580module_param(rcu_task_stall_timeout, int, 0644);
 581
 582static struct task_struct *rcu_tasks_kthread_ptr;
 583
 584/**
 585 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
 586 * @rhp: structure to be used for queueing the RCU updates.
 587 * @func: actual callback function to be invoked after the grace period
 588 *
 589 * The callback function will be invoked some time after a full grace
 590 * period elapses, in other words after all currently executing RCU
 591 * read-side critical sections have completed. call_rcu_tasks() assumes
 592 * that the read-side critical sections end at a voluntary context
 593 * switch (not a preemption!), entry into idle, or transition to usermode
 594 * execution.  As such, there are no read-side primitives analogous to
 595 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
 596 * to determine that all tasks have passed through a safe state, not so
 597 * much for data-strcuture synchronization.
 598 *
 599 * See the description of call_rcu() for more detailed information on
 600 * memory ordering guarantees.
 601 */
 602void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
 603{
 604	unsigned long flags;
 605	bool needwake;
 606
 607	rhp->next = NULL;
 608	rhp->func = func;
 609	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 610	needwake = !rcu_tasks_cbs_head;
 611	*rcu_tasks_cbs_tail = rhp;
 612	rcu_tasks_cbs_tail = &rhp->next;
 613	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 614	/* We can't create the thread unless interrupts are enabled. */
 615	if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
 616		wake_up(&rcu_tasks_cbs_wq);
 
 617}
 618EXPORT_SYMBOL_GPL(call_rcu_tasks);
 619
 620/**
 621 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
 622 *
 623 * Control will return to the caller some time after a full rcu-tasks
 624 * grace period has elapsed, in other words after all currently
 625 * executing rcu-tasks read-side critical sections have elapsed.  These
 626 * read-side critical sections are delimited by calls to schedule(),
 627 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
 628 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
 629 *
 630 * This is a very specialized primitive, intended only for a few uses in
 631 * tracing and other situations requiring manipulation of function
 632 * preambles and profiling hooks.  The synchronize_rcu_tasks() function
 633 * is not (yet) intended for heavy use from multiple CPUs.
 634 *
 635 * Note that this guarantee implies further memory-ordering guarantees.
 636 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
 637 * each CPU is guaranteed to have executed a full memory barrier since the
 638 * end of its last RCU-tasks read-side critical section whose beginning
 639 * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
 640 * having an RCU-tasks read-side critical section that extends beyond
 641 * the return from synchronize_rcu_tasks() is guaranteed to have executed
 642 * a full memory barrier after the beginning of synchronize_rcu_tasks()
 643 * and before the beginning of that RCU-tasks read-side critical section.
 644 * Note that these guarantees include CPUs that are offline, idle, or
 645 * executing in user mode, as well as CPUs that are executing in the kernel.
 646 *
 647 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
 648 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 649 * to have executed a full memory barrier during the execution of
 650 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
 651 * (but again only if the system has more than one CPU).
 652 */
 653void synchronize_rcu_tasks(void)
 654{
 655	/* Complain if the scheduler has not started.  */
 656	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
 657			 "synchronize_rcu_tasks called too soon");
 658
 659	/* Wait for the grace period. */
 660	wait_rcu_gp(call_rcu_tasks);
 661}
 662EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
 663
 664/**
 665 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
 666 *
 667 * Although the current implementation is guaranteed to wait, it is not
 668 * obligated to, for example, if there are no pending callbacks.
 669 */
 670void rcu_barrier_tasks(void)
 671{
 672	/* There is only one callback queue, so this is easy.  ;-) */
 673	synchronize_rcu_tasks();
 674}
 675EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
 676
 677/* See if tasks are still holding out, complain if so. */
 678static void check_holdout_task(struct task_struct *t,
 679			       bool needreport, bool *firstreport)
 680{
 681	int cpu;
 682
 683	if (!READ_ONCE(t->rcu_tasks_holdout) ||
 684	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
 685	    !READ_ONCE(t->on_rq) ||
 686	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
 687	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
 688		WRITE_ONCE(t->rcu_tasks_holdout, false);
 689		list_del_init(&t->rcu_tasks_holdout_list);
 690		put_task_struct(t);
 691		return;
 692	}
 693	rcu_request_urgent_qs_task(t);
 694	if (!needreport)
 695		return;
 696	if (*firstreport) {
 697		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
 698		*firstreport = false;
 699	}
 700	cpu = task_cpu(t);
 701	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
 702		 t, ".I"[is_idle_task(t)],
 703		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
 704		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
 705		 t->rcu_tasks_idle_cpu, cpu);
 706	sched_show_task(t);
 707}
 708
 709/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
 710static int __noreturn rcu_tasks_kthread(void *arg)
 711{
 712	unsigned long flags;
 713	struct task_struct *g, *t;
 714	unsigned long lastreport;
 715	struct rcu_head *list;
 716	struct rcu_head *next;
 717	LIST_HEAD(rcu_tasks_holdouts);
 718
 719	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
 720	housekeeping_affine(current, HK_FLAG_RCU);
 721
 722	/*
 723	 * Each pass through the following loop makes one check for
 724	 * newly arrived callbacks, and, if there are some, waits for
 725	 * one RCU-tasks grace period and then invokes the callbacks.
 726	 * This loop is terminated by the system going down.  ;-)
 727	 */
 728	for (;;) {
 729
 730		/* Pick up any new callbacks. */
 731		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 732		list = rcu_tasks_cbs_head;
 733		rcu_tasks_cbs_head = NULL;
 734		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 735		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 736
 737		/* If there were none, wait a bit and start over. */
 738		if (!list) {
 739			wait_event_interruptible(rcu_tasks_cbs_wq,
 740						 rcu_tasks_cbs_head);
 741			if (!rcu_tasks_cbs_head) {
 742				WARN_ON(signal_pending(current));
 743				schedule_timeout_interruptible(HZ/10);
 744			}
 745			continue;
 746		}
 747
 748		/*
 749		 * Wait for all pre-existing t->on_rq and t->nvcsw
 750		 * transitions to complete.  Invoking synchronize_sched()
 751		 * suffices because all these transitions occur with
 752		 * interrupts disabled.  Without this synchronize_sched(),
 753		 * a read-side critical section that started before the
 754		 * grace period might be incorrectly seen as having started
 755		 * after the grace period.
 756		 *
 757		 * This synchronize_sched() also dispenses with the
 758		 * need for a memory barrier on the first store to
 759		 * ->rcu_tasks_holdout, as it forces the store to happen
 760		 * after the beginning of the grace period.
 761		 */
 762		synchronize_sched();
 763
 764		/*
 765		 * There were callbacks, so we need to wait for an
 766		 * RCU-tasks grace period.  Start off by scanning
 767		 * the task list for tasks that are not already
 768		 * voluntarily blocked.  Mark these tasks and make
 769		 * a list of them in rcu_tasks_holdouts.
 770		 */
 771		rcu_read_lock();
 772		for_each_process_thread(g, t) {
 773			if (t != current && READ_ONCE(t->on_rq) &&
 774			    !is_idle_task(t)) {
 775				get_task_struct(t);
 776				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
 777				WRITE_ONCE(t->rcu_tasks_holdout, true);
 778				list_add(&t->rcu_tasks_holdout_list,
 779					 &rcu_tasks_holdouts);
 780			}
 781		}
 782		rcu_read_unlock();
 783
 784		/*
 785		 * Wait for tasks that are in the process of exiting.
 786		 * This does only part of the job, ensuring that all
 787		 * tasks that were previously exiting reach the point
 788		 * where they have disabled preemption, allowing the
 789		 * later synchronize_sched() to finish the job.
 790		 */
 791		synchronize_srcu(&tasks_rcu_exit_srcu);
 792
 793		/*
 794		 * Each pass through the following loop scans the list
 795		 * of holdout tasks, removing any that are no longer
 796		 * holdouts.  When the list is empty, we are done.
 797		 */
 798		lastreport = jiffies;
 799		while (!list_empty(&rcu_tasks_holdouts)) {
 800			bool firstreport;
 801			bool needreport;
 802			int rtst;
 803			struct task_struct *t1;
 804
 805			schedule_timeout_interruptible(HZ);
 806			rtst = READ_ONCE(rcu_task_stall_timeout);
 807			needreport = rtst > 0 &&
 808				     time_after(jiffies, lastreport + rtst);
 809			if (needreport)
 810				lastreport = jiffies;
 811			firstreport = true;
 812			WARN_ON(signal_pending(current));
 813			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
 814						rcu_tasks_holdout_list) {
 815				check_holdout_task(t, needreport, &firstreport);
 816				cond_resched();
 817			}
 818		}
 819
 820		/*
 821		 * Because ->on_rq and ->nvcsw are not guaranteed
 822		 * to have a full memory barriers prior to them in the
 823		 * schedule() path, memory reordering on other CPUs could
 824		 * cause their RCU-tasks read-side critical sections to
 825		 * extend past the end of the grace period.  However,
 826		 * because these ->nvcsw updates are carried out with
 827		 * interrupts disabled, we can use synchronize_sched()
 828		 * to force the needed ordering on all such CPUs.
 829		 *
 830		 * This synchronize_sched() also confines all
 831		 * ->rcu_tasks_holdout accesses to be within the grace
 832		 * period, avoiding the need for memory barriers for
 833		 * ->rcu_tasks_holdout accesses.
 834		 *
 835		 * In addition, this synchronize_sched() waits for exiting
 836		 * tasks to complete their final preempt_disable() region
 837		 * of execution, cleaning up after the synchronize_srcu()
 838		 * above.
 839		 */
 840		synchronize_sched();
 841
 842		/* Invoke the callbacks. */
 843		while (list) {
 844			next = list->next;
 845			local_bh_disable();
 846			list->func(list);
 847			local_bh_enable();
 848			list = next;
 849			cond_resched();
 850		}
 851		schedule_timeout_uninterruptible(HZ/10);
 852	}
 853}
 854
 855/* Spawn rcu_tasks_kthread() at core_initcall() time. */
 856static int __init rcu_spawn_tasks_kthread(void)
 857{
 
 
 858	struct task_struct *t;
 859
 
 
 
 
 
 
 
 
 
 860	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
 861	BUG_ON(IS_ERR(t));
 862	smp_mb(); /* Ensure others see full kthread. */
 863	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
 864	return 0;
 865}
 866core_initcall(rcu_spawn_tasks_kthread);
 867
 868/* Do the srcu_read_lock() for the above synchronize_srcu().  */
 869void exit_tasks_rcu_start(void)
 870{
 871	preempt_disable();
 872	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
 873	preempt_enable();
 874}
 875
 876/* Do the srcu_read_unlock() for the above synchronize_srcu().  */
 877void exit_tasks_rcu_finish(void)
 878{
 879	preempt_disable();
 880	__srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
 881	preempt_enable();
 882}
 883
 884#endif /* #ifdef CONFIG_TASKS_RCU */
 885
 886#ifndef CONFIG_TINY_RCU
 887
 888/*
 889 * Print any non-default Tasks RCU settings.
 890 */
 891static void __init rcu_tasks_bootup_oddness(void)
 892{
 893#ifdef CONFIG_TASKS_RCU
 894	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
 895		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
 896	else
 897		pr_info("\tTasks RCU enabled.\n");
 898#endif /* #ifdef CONFIG_TASKS_RCU */
 899}
 900
 901#endif /* #ifndef CONFIG_TINY_RCU */
 902
 903#ifdef CONFIG_PROVE_RCU
 904
 905/*
 906 * Early boot self test parameters, one for each flavor
 907 */
 908static bool rcu_self_test;
 909static bool rcu_self_test_bh;
 910static bool rcu_self_test_sched;
 911
 912module_param(rcu_self_test, bool, 0444);
 913module_param(rcu_self_test_bh, bool, 0444);
 914module_param(rcu_self_test_sched, bool, 0444);
 915
 916static int rcu_self_test_counter;
 917
 918static void test_callback(struct rcu_head *r)
 919{
 920	rcu_self_test_counter++;
 921	pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
 922}
 923
 924static void early_boot_test_call_rcu(void)
 925{
 926	static struct rcu_head head;
 927
 928	call_rcu(&head, test_callback);
 929}
 930
 931static void early_boot_test_call_rcu_bh(void)
 932{
 933	static struct rcu_head head;
 934
 935	call_rcu_bh(&head, test_callback);
 936}
 937
 938static void early_boot_test_call_rcu_sched(void)
 939{
 940	static struct rcu_head head;
 941
 942	call_rcu_sched(&head, test_callback);
 943}
 944
 945void rcu_early_boot_tests(void)
 946{
 947	pr_info("Running RCU self tests\n");
 948
 949	if (rcu_self_test)
 950		early_boot_test_call_rcu();
 951	if (rcu_self_test_bh)
 952		early_boot_test_call_rcu_bh();
 953	if (rcu_self_test_sched)
 954		early_boot_test_call_rcu_sched();
 955	rcu_test_sync_prims();
 956}
 957
 958static int rcu_verify_early_boot_tests(void)
 959{
 960	int ret = 0;
 961	int early_boot_test_counter = 0;
 962
 963	if (rcu_self_test) {
 964		early_boot_test_counter++;
 965		rcu_barrier();
 966	}
 967	if (rcu_self_test_bh) {
 968		early_boot_test_counter++;
 969		rcu_barrier_bh();
 970	}
 971	if (rcu_self_test_sched) {
 972		early_boot_test_counter++;
 973		rcu_barrier_sched();
 974	}
 975
 976	if (rcu_self_test_counter != early_boot_test_counter) {
 977		WARN_ON(1);
 978		ret = -1;
 979	}
 980
 981	return ret;
 982}
 983late_initcall(rcu_verify_early_boot_tests);
 984#else
 985void rcu_early_boot_tests(void) {}
 986#endif /* CONFIG_PROVE_RCU */
 987
 988#ifndef CONFIG_TINY_RCU
 989
 990/*
 991 * Print any significant non-default boot-time settings.
 992 */
 993void __init rcupdate_announce_bootup_oddness(void)
 994{
 995	if (rcu_normal)
 996		pr_info("\tNo expedited grace period (rcu_normal).\n");
 997	else if (rcu_normal_after_boot)
 998		pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
 999	else if (rcu_expedited)
1000		pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
1001	if (rcu_cpu_stall_suppress)
1002		pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
1003	if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
1004		pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
1005	rcu_tasks_bootup_oddness();
1006}
1007
1008#endif /* #ifndef CONFIG_TINY_RCU */