Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * linux/ipc/sem.c
   3 * Copyright (C) 1992 Krishna Balasubramanian
   4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
   5 *
   6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
   7 *
   8 * SMP-threaded, sysctl's added
   9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
  10 * Enforced range limit on SEM_UNDO
  11 * (c) 2001 Red Hat Inc
  12 * Lockless wakeup
  13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
 
  14 * Further wakeup optimizations, documentation
  15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
  16 *
  17 * support for audit of ipc object properties and permission changes
  18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
  19 *
  20 * namespaces support
  21 * OpenVZ, SWsoft Inc.
  22 * Pavel Emelianov <xemul@openvz.org>
  23 *
  24 * Implementation notes: (May 2010)
  25 * This file implements System V semaphores.
  26 *
  27 * User space visible behavior:
  28 * - FIFO ordering for semop() operations (just FIFO, not starvation
  29 *   protection)
  30 * - multiple semaphore operations that alter the same semaphore in
  31 *   one semop() are handled.
  32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
  33 *   SETALL calls.
  34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
  35 * - undo adjustments at process exit are limited to 0..SEMVMX.
  36 * - namespace are supported.
  37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
  38 *   to /proc/sys/kernel/sem.
  39 * - statistics about the usage are reported in /proc/sysvipc/sem.
  40 *
  41 * Internals:
  42 * - scalability:
  43 *   - all global variables are read-mostly.
  44 *   - semop() calls and semctl(RMID) are synchronized by RCU.
  45 *   - most operations do write operations (actually: spin_lock calls) to
  46 *     the per-semaphore array structure.
  47 *   Thus: Perfect SMP scaling between independent semaphore arrays.
  48 *         If multiple semaphores in one array are used, then cache line
  49 *         trashing on the semaphore array spinlock will limit the scaling.
  50 * - semncnt and semzcnt are calculated on demand in count_semcnt()
  51 * - the task that performs a successful semop() scans the list of all
  52 *   sleeping tasks and completes any pending operations that can be fulfilled.
  53 *   Semaphores are actively given to waiting tasks (necessary for FIFO).
  54 *   (see update_queue())
  55 * - To improve the scalability, the actual wake-up calls are performed after
  56 *   dropping all locks. (see wake_up_sem_queue_prepare(),
  57 *   wake_up_sem_queue_do())
  58 * - All work is done by the waker, the woken up task does not have to do
  59 *   anything - not even acquiring a lock or dropping a refcount.
  60 * - A woken up task may not even touch the semaphore array anymore, it may
  61 *   have been destroyed already by a semctl(RMID).
  62 * - The synchronizations between wake-ups due to a timeout/signal and a
  63 *   wake-up due to a completed semaphore operation is achieved by using an
  64 *   intermediate state (IN_WAKEUP).
  65 * - UNDO values are stored in an array (one per process and per
  66 *   semaphore array, lazily allocated). For backwards compatibility, multiple
  67 *   modes for the UNDO variables are supported (per process, per thread)
  68 *   (see copy_semundo, CLONE_SYSVSEM)
  69 * - There are two lists of the pending operations: a per-array list
  70 *   and per-semaphore list (stored in the array). This allows to achieve FIFO
  71 *   ordering without always scanning all pending operations.
  72 *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
  73 */
  74
  75#include <linux/slab.h>
  76#include <linux/spinlock.h>
  77#include <linux/init.h>
  78#include <linux/proc_fs.h>
  79#include <linux/time.h>
  80#include <linux/security.h>
  81#include <linux/syscalls.h>
  82#include <linux/audit.h>
  83#include <linux/capability.h>
  84#include <linux/seq_file.h>
  85#include <linux/rwsem.h>
  86#include <linux/nsproxy.h>
  87#include <linux/ipc_namespace.h>
 
  88
  89#include <linux/uaccess.h>
  90#include "util.h"
  91
  92/* One semaphore structure for each semaphore in the system. */
  93struct sem {
  94	int	semval;		/* current value */
  95	/*
  96	 * PID of the process that last modified the semaphore. For
  97	 * Linux, specifically these are:
  98	 *  - semop
  99	 *  - semctl, via SETVAL and SETALL.
 100	 *  - at task exit when performing undo adjustments (see exit_sem).
 101	 */
 102	int	sempid;
 103	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
 104	struct list_head pending_alter; /* pending single-sop operations */
 105					/* that alter the semaphore */
 106	struct list_head pending_const; /* pending single-sop operations */
 107					/* that do not alter the semaphore*/
 108	time_t	sem_otime;	/* candidate for sem_otime */
 109} ____cacheline_aligned_in_smp;
 110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111/* One queue for each sleeping process in the system. */
 112struct sem_queue {
 113	struct list_head	list;	 /* queue of pending operations */
 114	struct task_struct	*sleeper; /* this process */
 115	struct sem_undo		*undo;	 /* undo structure */
 116	int			pid;	 /* process id of requesting process */
 117	int			status;	 /* completion status of operation */
 118	struct sembuf		*sops;	 /* array of pending operations */
 119	struct sembuf		*blocking; /* the operation that blocked */
 120	int			nsops;	 /* number of operations */
 121	int			alter;	 /* does *sops alter the array? */
 
 122};
 123
 124/* Each task has a list of undo requests. They are executed automatically
 125 * when the process exits.
 126 */
 127struct sem_undo {
 128	struct list_head	list_proc;	/* per-process list: *
 129						 * all undos from one process
 130						 * rcu protected */
 131	struct rcu_head		rcu;		/* rcu struct for sem_undo */
 132	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
 133	struct list_head	list_id;	/* per semaphore array list:
 134						 * all undos for one array */
 135	int			semid;		/* semaphore set identifier */
 136	short			*semadj;	/* array of adjustments */
 137						/* one per semaphore */
 138};
 139
 140/* sem_undo_list controls shared access to the list of sem_undo structures
 141 * that may be shared among all a CLONE_SYSVSEM task group.
 142 */
 143struct sem_undo_list {
 144	atomic_t		refcnt;
 145	spinlock_t		lock;
 146	struct list_head	list_proc;
 147};
 148
 149
 150#define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
 151
 152#define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
 153
 154static int newary(struct ipc_namespace *, struct ipc_params *);
 155static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
 156#ifdef CONFIG_PROC_FS
 157static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
 158#endif
 159
 160#define SEMMSL_FAST	256 /* 512 bytes on stack */
 161#define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
 162
 163/*
 
 
 
 
 
 
 
 164 * Locking:
 
 165 *	sem_undo.id_next,
 166 *	sem_array.complex_count,
 167 *	sem_array.pending{_alter,_cont},
 168 *	sem_array.sem_undo: global sem_lock() for read/write
 169 *	sem_undo.proc_next: only "current" is allowed to read/write that field.
 
 
 170 *
 171 *	sem_array.sem_base[i].pending_{const,alter}:
 172 *		global or semaphore sem_lock() for read/write
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173 */
 174
 175#define sc_semmsl	sem_ctls[0]
 176#define sc_semmns	sem_ctls[1]
 177#define sc_semopm	sem_ctls[2]
 178#define sc_semmni	sem_ctls[3]
 179
 180void sem_init_ns(struct ipc_namespace *ns)
 181{
 182	ns->sc_semmsl = SEMMSL;
 183	ns->sc_semmns = SEMMNS;
 184	ns->sc_semopm = SEMOPM;
 185	ns->sc_semmni = SEMMNI;
 186	ns->used_sems = 0;
 187	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
 188}
 189
 190#ifdef CONFIG_IPC_NS
 191void sem_exit_ns(struct ipc_namespace *ns)
 192{
 193	free_ipcs(ns, &sem_ids(ns), freeary);
 194	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
 
 195}
 196#endif
 197
 198void __init sem_init(void)
 199{
 200	sem_init_ns(&init_ipc_ns);
 
 201	ipc_init_proc_interface("sysvipc/sem",
 202				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
 203				IPC_SEM_IDS, sysvipc_sem_proc_show);
 
 204}
 205
 206/**
 207 * unmerge_queues - unmerge queues, if possible.
 208 * @sma: semaphore array
 209 *
 210 * The function unmerges the wait queues if complex_count is 0.
 211 * It must be called prior to dropping the global semaphore array lock.
 212 */
 213static void unmerge_queues(struct sem_array *sma)
 214{
 215	struct sem_queue *q, *tq;
 216
 217	/* complex operations still around? */
 218	if (sma->complex_count)
 219		return;
 220	/*
 221	 * We will switch back to simple mode.
 222	 * Move all pending operation back into the per-semaphore
 223	 * queues.
 224	 */
 225	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
 226		struct sem *curr;
 227		curr = &sma->sem_base[q->sops[0].sem_num];
 228
 229		list_add_tail(&q->list, &curr->pending_alter);
 230	}
 231	INIT_LIST_HEAD(&sma->pending_alter);
 232}
 233
 234/**
 235 * merge_queues - merge single semop queues into global queue
 236 * @sma: semaphore array
 237 *
 238 * This function merges all per-semaphore queues into the global queue.
 239 * It is necessary to achieve FIFO ordering for the pending single-sop
 240 * operations when a multi-semop operation must sleep.
 241 * Only the alter operations must be moved, the const operations can stay.
 242 */
 243static void merge_queues(struct sem_array *sma)
 244{
 245	int i;
 246	for (i = 0; i < sma->sem_nsems; i++) {
 247		struct sem *sem = sma->sem_base + i;
 248
 249		list_splice_init(&sem->pending_alter, &sma->pending_alter);
 250	}
 251}
 252
 253static void sem_rcu_free(struct rcu_head *head)
 254{
 255	struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
 256	struct sem_array *sma = ipc_rcu_to_struct(p);
 257
 258	security_sem_free(sma);
 259	ipc_rcu_free(head);
 260}
 261
 262/*
 263 * spin_unlock_wait() and !spin_is_locked() are not memory barriers, they
 264 * are only control barriers.
 265 * The code must pair with spin_unlock(&sem->lock) or
 266 * spin_unlock(&sem_perm.lock), thus just the control barrier is insufficient.
 267 *
 268 * smp_rmb() is sufficient, as writes cannot pass the control barrier.
 269 */
 270#define ipc_smp_acquire__after_spin_is_unlocked()	smp_rmb()
 271
 272/*
 273 * Wait until all currently ongoing simple ops have completed.
 274 * Caller must own sem_perm.lock.
 275 * New simple ops cannot start, because simple ops first check
 276 * that sem_perm.lock is free.
 277 * that a) sem_perm.lock is free and b) complex_count is 0.
 278 */
 279static void sem_wait_array(struct sem_array *sma)
 280{
 281	int i;
 282	struct sem *sem;
 283
 284	if (sma->complex_count)  {
 285		/* The thread that increased sma->complex_count waited on
 286		 * all sem->lock locks. Thus we don't need to wait again.
 
 
 287		 */
 
 288		return;
 289	}
 
 290
 291	for (i = 0; i < sma->sem_nsems; i++) {
 292		sem = sma->sem_base + i;
 293		spin_unlock_wait(&sem->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 294	}
 295	ipc_smp_acquire__after_spin_is_unlocked();
 296}
 297
 
 298/*
 299 * If the request contains only one semaphore operation, and there are
 300 * no complex transactions pending, lock only the semaphore involved.
 301 * Otherwise, lock the entire semaphore array, since we either have
 302 * multiple semaphores in our own semops, or we need to look at
 303 * semaphores from other pending complex operations.
 304 */
 305static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
 306			      int nsops)
 307{
 308	struct sem *sem;
 309
 310	if (nsops != 1) {
 311		/* Complex operation - acquire a full lock */
 312		ipc_lock_object(&sma->sem_perm);
 313
 314		/* And wait until all simple ops that are processed
 315		 * right now have dropped their locks.
 316		 */
 317		sem_wait_array(sma);
 318		return -1;
 319	}
 320
 321	/*
 322	 * Only one semaphore affected - try to optimize locking.
 323	 * The rules are:
 324	 * - optimized locking is possible if no complex operation
 325	 *   is either enqueued or processed right now.
 326	 * - The test for enqueued complex ops is simple:
 327	 *      sma->complex_count != 0
 328	 * - Testing for complex ops that are processed right now is
 329	 *   a bit more difficult. Complex ops acquire the full lock
 330	 *   and first wait that the running simple ops have completed.
 331	 *   (see above)
 332	 *   Thus: If we own a simple lock and the global lock is free
 333	 *	and complex_count is now 0, then it will stay 0 and
 334	 *	thus just locking sem->lock is sufficient.
 335	 */
 336	sem = sma->sem_base + sops->sem_num;
 337
 338	if (sma->complex_count == 0) {
 
 
 
 
 339		/*
 340		 * It appears that no complex operation is around.
 341		 * Acquire the per-semaphore lock.
 342		 */
 343		spin_lock(&sem->lock);
 344
 345		/* Then check that the global lock is free */
 346		if (!spin_is_locked(&sma->sem_perm.lock)) {
 347			/*
 348			 * We need a memory barrier with acquire semantics,
 349			 * otherwise we can race with another thread that does:
 350			 *	complex_count++;
 351			 *	spin_unlock(sem_perm.lock);
 352			 */
 353			ipc_smp_acquire__after_spin_is_unlocked();
 354
 355			/*
 356			 * Now repeat the test of complex_count:
 357			 * It can't change anymore until we drop sem->lock.
 358			 * Thus: if is now 0, then it will stay 0.
 359			 */
 360			if (sma->complex_count == 0) {
 361				/* fast path successful! */
 362				return sops->sem_num;
 363			}
 364		}
 365		spin_unlock(&sem->lock);
 366	}
 367
 368	/* slow path: acquire the full lock */
 369	ipc_lock_object(&sma->sem_perm);
 370
 371	if (sma->complex_count == 0) {
 372		/* False alarm:
 373		 * There is no complex operation, thus we can switch
 374		 * back to the fast path.
 
 
 
 
 
 375		 */
 376		spin_lock(&sem->lock);
 
 377		ipc_unlock_object(&sma->sem_perm);
 378		return sops->sem_num;
 379	} else {
 380		/* Not a false alarm, thus complete the sequence for a
 381		 * full lock.
 
 
 382		 */
 383		sem_wait_array(sma);
 384		return -1;
 385	}
 386}
 387
 388static inline void sem_unlock(struct sem_array *sma, int locknum)
 389{
 390	if (locknum == -1) {
 391		unmerge_queues(sma);
 
 392		ipc_unlock_object(&sma->sem_perm);
 393	} else {
 394		struct sem *sem = sma->sem_base + locknum;
 395		spin_unlock(&sem->lock);
 396	}
 397}
 398
 399/*
 400 * sem_lock_(check_) routines are called in the paths where the rwsem
 401 * is not held.
 402 *
 403 * The caller holds the RCU read lock.
 404 */
 405static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
 406			int id, struct sembuf *sops, int nsops, int *locknum)
 407{
 408	struct kern_ipc_perm *ipcp;
 409	struct sem_array *sma;
 410
 411	ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
 412	if (IS_ERR(ipcp))
 413		return ERR_CAST(ipcp);
 414
 415	sma = container_of(ipcp, struct sem_array, sem_perm);
 416	*locknum = sem_lock(sma, sops, nsops);
 417
 418	/* ipc_rmid() may have already freed the ID while sem_lock
 419	 * was spinning: verify that the structure is still valid
 420	 */
 421	if (ipc_valid_object(ipcp))
 422		return container_of(ipcp, struct sem_array, sem_perm);
 423
 424	sem_unlock(sma, *locknum);
 425	return ERR_PTR(-EINVAL);
 426}
 427
 428static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
 429{
 430	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
 431
 432	if (IS_ERR(ipcp))
 433		return ERR_CAST(ipcp);
 434
 435	return container_of(ipcp, struct sem_array, sem_perm);
 436}
 437
 438static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
 439							int id)
 440{
 441	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
 442
 443	if (IS_ERR(ipcp))
 444		return ERR_CAST(ipcp);
 445
 446	return container_of(ipcp, struct sem_array, sem_perm);
 447}
 448
 449static inline void sem_lock_and_putref(struct sem_array *sma)
 450{
 451	sem_lock(sma, NULL, -1);
 452	ipc_rcu_putref(sma, ipc_rcu_free);
 453}
 454
 455static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
 456{
 457	ipc_rmid(&sem_ids(ns), &s->sem_perm);
 458}
 459
 460/*
 461 * Lockless wakeup algorithm:
 462 * Without the check/retry algorithm a lockless wakeup is possible:
 463 * - queue.status is initialized to -EINTR before blocking.
 464 * - wakeup is performed by
 465 *	* unlinking the queue entry from the pending list
 466 *	* setting queue.status to IN_WAKEUP
 467 *	  This is the notification for the blocked thread that a
 468 *	  result value is imminent.
 469 *	* call wake_up_process
 470 *	* set queue.status to the final value.
 471 * - the previously blocked thread checks queue.status:
 472 *	* if it's IN_WAKEUP, then it must wait until the value changes
 473 *	* if it's not -EINTR, then the operation was completed by
 474 *	  update_queue. semtimedop can return queue.status without
 475 *	  performing any operation on the sem array.
 476 *	* otherwise it must acquire the spinlock and check what's up.
 477 *
 478 * The two-stage algorithm is necessary to protect against the following
 479 * races:
 480 * - if queue.status is set after wake_up_process, then the woken up idle
 481 *   thread could race forward and try (and fail) to acquire sma->lock
 482 *   before update_queue had a chance to set queue.status
 483 * - if queue.status is written before wake_up_process and if the
 484 *   blocked process is woken up by a signal between writing
 485 *   queue.status and the wake_up_process, then the woken up
 486 *   process could return from semtimedop and die by calling
 487 *   sys_exit before wake_up_process is called. Then wake_up_process
 488 *   will oops, because the task structure is already invalid.
 489 *   (yes, this happened on s390 with sysv msg).
 490 *
 491 */
 492#define IN_WAKEUP	1
 493
 494/**
 495 * newary - Create a new semaphore set
 496 * @ns: namespace
 497 * @params: ptr to the structure that contains key, semflg and nsems
 498 *
 499 * Called with sem_ids.rwsem held (as a writer)
 500 */
 501static int newary(struct ipc_namespace *ns, struct ipc_params *params)
 502{
 503	int id;
 504	int retval;
 505	struct sem_array *sma;
 506	int size;
 507	key_t key = params->key;
 508	int nsems = params->u.nsems;
 509	int semflg = params->flg;
 510	int i;
 511
 512	if (!nsems)
 513		return -EINVAL;
 514	if (ns->used_sems + nsems > ns->sc_semmns)
 515		return -ENOSPC;
 516
 517	size = sizeof(*sma) + nsems * sizeof(struct sem);
 518	sma = ipc_rcu_alloc(size);
 519	if (!sma)
 520		return -ENOMEM;
 521
 522	memset(sma, 0, size);
 523
 524	sma->sem_perm.mode = (semflg & S_IRWXUGO);
 525	sma->sem_perm.key = key;
 526
 527	sma->sem_perm.security = NULL;
 528	retval = security_sem_alloc(sma);
 529	if (retval) {
 530		ipc_rcu_putref(sma, ipc_rcu_free);
 531		return retval;
 532	}
 533
 534	sma->sem_base = (struct sem *) &sma[1];
 535
 536	for (i = 0; i < nsems; i++) {
 537		INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
 538		INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
 539		spin_lock_init(&sma->sem_base[i].lock);
 540	}
 541
 542	sma->complex_count = 0;
 
 543	INIT_LIST_HEAD(&sma->pending_alter);
 544	INIT_LIST_HEAD(&sma->pending_const);
 545	INIT_LIST_HEAD(&sma->list_id);
 546	sma->sem_nsems = nsems;
 547	sma->sem_ctime = get_seconds();
 548
 549	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
 550	if (id < 0) {
 551		ipc_rcu_putref(sma, sem_rcu_free);
 552		return id;
 
 553	}
 554	ns->used_sems += nsems;
 555
 556	sem_unlock(sma, -1);
 557	rcu_read_unlock();
 558
 559	return sma->sem_perm.id;
 560}
 561
 562
 563/*
 564 * Called with sem_ids.rwsem and ipcp locked.
 565 */
 566static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
 567{
 568	struct sem_array *sma;
 569
 570	sma = container_of(ipcp, struct sem_array, sem_perm);
 571	return security_sem_associate(sma, semflg);
 572}
 573
 574/*
 575 * Called with sem_ids.rwsem and ipcp locked.
 576 */
 577static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
 578				struct ipc_params *params)
 579{
 580	struct sem_array *sma;
 581
 582	sma = container_of(ipcp, struct sem_array, sem_perm);
 583	if (params->u.nsems > sma->sem_nsems)
 584		return -EINVAL;
 585
 586	return 0;
 587}
 588
 589SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
 590{
 591	struct ipc_namespace *ns;
 592	static const struct ipc_ops sem_ops = {
 593		.getnew = newary,
 594		.associate = sem_security,
 595		.more_checks = sem_more_checks,
 596	};
 597	struct ipc_params sem_params;
 598
 599	ns = current->nsproxy->ipc_ns;
 600
 601	if (nsems < 0 || nsems > ns->sc_semmsl)
 602		return -EINVAL;
 603
 604	sem_params.key = key;
 605	sem_params.flg = semflg;
 606	sem_params.u.nsems = nsems;
 607
 608	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
 609}
 610
 
 
 
 
 
 611/**
 612 * perform_atomic_semop - Perform (if possible) a semaphore operation
 
 613 * @sma: semaphore array
 614 * @q: struct sem_queue that describes the operation
 615 *
 
 
 
 
 
 
 
 616 * Returns 0 if the operation was possible.
 617 * Returns 1 if the operation is impossible, the caller must sleep.
 618 * Negative values are error codes.
 619 */
 620static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
 621{
 622	int result, sem_op, nsops, pid;
 
 623	struct sembuf *sop;
 624	struct sem *curr;
 625	struct sembuf *sops;
 626	struct sem_undo *un;
 627
 628	sops = q->sops;
 629	nsops = q->nsops;
 630	un = q->undo;
 631
 632	for (sop = sops; sop < sops + nsops; sop++) {
 633		curr = sma->sem_base + sop->sem_num;
 634		sem_op = sop->sem_op;
 635		result = curr->semval;
 636
 637		if (!sem_op && result)
 638			goto would_block;
 639
 640		result += sem_op;
 641		if (result < 0)
 642			goto would_block;
 643		if (result > SEMVMX)
 644			goto out_of_range;
 645
 646		if (sop->sem_flg & SEM_UNDO) {
 647			int undo = un->semadj[sop->sem_num] - sem_op;
 648			/* Exceeding the undo range is an error. */
 649			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
 650				goto out_of_range;
 651			un->semadj[sop->sem_num] = undo;
 652		}
 653
 654		curr->semval = result;
 655	}
 656
 657	sop--;
 658	pid = q->pid;
 659	while (sop >= sops) {
 660		sma->sem_base[sop->sem_num].sempid = pid;
 661		sop--;
 662	}
 663
 664	return 0;
 665
 666out_of_range:
 667	result = -ERANGE;
 668	goto undo;
 669
 670would_block:
 671	q->blocking = sop;
 672
 673	if (sop->sem_flg & IPC_NOWAIT)
 674		result = -EAGAIN;
 675	else
 676		result = 1;
 677
 678undo:
 679	sop--;
 680	while (sop >= sops) {
 681		sem_op = sop->sem_op;
 682		sma->sem_base[sop->sem_num].semval -= sem_op;
 683		if (sop->sem_flg & SEM_UNDO)
 684			un->semadj[sop->sem_num] += sem_op;
 685		sop--;
 686	}
 687
 688	return result;
 689}
 690
 691/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
 692 * @q: queue entry that must be signaled
 693 * @error: Error value for the signal
 694 *
 695 * Prepare the wake-up of the queue entry q.
 696 */
 697static void wake_up_sem_queue_prepare(struct list_head *pt,
 698				struct sem_queue *q, int error)
 699{
 700	if (list_empty(pt)) {
 701		/*
 702		 * Hold preempt off so that we don't get preempted and have the
 703		 * wakee busy-wait until we're scheduled back on.
 704		 */
 705		preempt_disable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 706	}
 707	q->status = IN_WAKEUP;
 708	q->pid = error;
 709
 710	list_add_tail(&q->list, pt);
 711}
 
 
 712
 713/**
 714 * wake_up_sem_queue_do - do the actual wake-up
 715 * @pt: list of tasks to be woken up
 716 *
 717 * Do the actual wake-up.
 718 * The function is called without any locks held, thus the semaphore array
 719 * could be destroyed already and the tasks can disappear as soon as the
 720 * status is set to the actual return code.
 721 */
 722static void wake_up_sem_queue_do(struct list_head *pt)
 723{
 724	struct sem_queue *q, *t;
 725	int did_something;
 726
 727	did_something = !list_empty(pt);
 728	list_for_each_entry_safe(q, t, pt, list) {
 729		wake_up_process(q->sleeper);
 730		/* q can disappear immediately after writing q->status. */
 731		smp_wmb();
 732		q->status = q->pid;
 733	}
 734	if (did_something)
 735		preempt_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736}
 737
 738static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
 739{
 740	list_del(&q->list);
 741	if (q->nsops > 1)
 742		sma->complex_count--;
 743}
 744
 745/** check_restart(sma, q)
 746 * @sma: semaphore array
 747 * @q: the operation that just completed
 748 *
 749 * update_queue is O(N^2) when it restarts scanning the whole queue of
 750 * waiting operations. Therefore this function checks if the restart is
 751 * really necessary. It is called after a previously waiting operation
 752 * modified the array.
 753 * Note that wait-for-zero operations are handled without restart.
 754 */
 755static int check_restart(struct sem_array *sma, struct sem_queue *q)
 756{
 757	/* pending complex alter operations are too difficult to analyse */
 758	if (!list_empty(&sma->pending_alter))
 759		return 1;
 760
 761	/* we were a sleeping complex operation. Too difficult */
 762	if (q->nsops > 1)
 763		return 1;
 764
 765	/* It is impossible that someone waits for the new value:
 766	 * - complex operations always restart.
 767	 * - wait-for-zero are handled seperately.
 768	 * - q is a previously sleeping simple operation that
 769	 *   altered the array. It must be a decrement, because
 770	 *   simple increments never sleep.
 771	 * - If there are older (higher priority) decrements
 772	 *   in the queue, then they have observed the original
 773	 *   semval value and couldn't proceed. The operation
 774	 *   decremented to value - thus they won't proceed either.
 775	 */
 776	return 0;
 777}
 778
 779/**
 780 * wake_const_ops - wake up non-alter tasks
 781 * @sma: semaphore array.
 782 * @semnum: semaphore that was modified.
 783 * @pt: list head for the tasks that must be woken up.
 784 *
 785 * wake_const_ops must be called after a semaphore in a semaphore array
 786 * was set to 0. If complex const operations are pending, wake_const_ops must
 787 * be called with semnum = -1, as well as with the number of each modified
 788 * semaphore.
 789 * The tasks that must be woken up are added to @pt. The return code
 790 * is stored in q->pid.
 791 * The function returns 1 if at least one operation was completed successfully.
 792 */
 793static int wake_const_ops(struct sem_array *sma, int semnum,
 794				struct list_head *pt)
 795{
 796	struct sem_queue *q;
 797	struct list_head *walk;
 798	struct list_head *pending_list;
 799	int semop_completed = 0;
 800
 801	if (semnum == -1)
 802		pending_list = &sma->pending_const;
 803	else
 804		pending_list = &sma->sem_base[semnum].pending_const;
 805
 806	walk = pending_list->next;
 807	while (walk != pending_list) {
 808		int error;
 809
 810		q = container_of(walk, struct sem_queue, list);
 811		walk = walk->next;
 812
 813		error = perform_atomic_semop(sma, q);
 814
 815		if (error <= 0) {
 816			/* operation completed, remove from queue & wakeup */
 817
 818			unlink_queue(sma, q);
 
 
 
 819
 820			wake_up_sem_queue_prepare(pt, q, error);
 821			if (error == 0)
 822				semop_completed = 1;
 823		}
 824	}
 
 825	return semop_completed;
 826}
 827
 828/**
 829 * do_smart_wakeup_zero - wakeup all wait for zero tasks
 830 * @sma: semaphore array
 831 * @sops: operations that were performed
 832 * @nsops: number of operations
 833 * @pt: list head of the tasks that must be woken up.
 834 *
 835 * Checks all required queue for wait-for-zero operations, based
 836 * on the actual changes that were performed on the semaphore array.
 837 * The function returns 1 if at least one operation was completed successfully.
 838 */
 839static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
 840					int nsops, struct list_head *pt)
 841{
 842	int i;
 843	int semop_completed = 0;
 844	int got_zero = 0;
 845
 846	/* first: the per-semaphore queues, if known */
 847	if (sops) {
 848		for (i = 0; i < nsops; i++) {
 849			int num = sops[i].sem_num;
 850
 851			if (sma->sem_base[num].semval == 0) {
 852				got_zero = 1;
 853				semop_completed |= wake_const_ops(sma, num, pt);
 854			}
 855		}
 856	} else {
 857		/*
 858		 * No sops means modified semaphores not known.
 859		 * Assume all were changed.
 860		 */
 861		for (i = 0; i < sma->sem_nsems; i++) {
 862			if (sma->sem_base[i].semval == 0) {
 863				got_zero = 1;
 864				semop_completed |= wake_const_ops(sma, i, pt);
 865			}
 866		}
 867	}
 868	/*
 869	 * If one of the modified semaphores got 0,
 870	 * then check the global queue, too.
 871	 */
 872	if (got_zero)
 873		semop_completed |= wake_const_ops(sma, -1, pt);
 874
 875	return semop_completed;
 876}
 877
 878
 879/**
 880 * update_queue - look for tasks that can be completed.
 881 * @sma: semaphore array.
 882 * @semnum: semaphore that was modified.
 883 * @pt: list head for the tasks that must be woken up.
 884 *
 885 * update_queue must be called after a semaphore in a semaphore array
 886 * was modified. If multiple semaphores were modified, update_queue must
 887 * be called with semnum = -1, as well as with the number of each modified
 888 * semaphore.
 889 * The tasks that must be woken up are added to @pt. The return code
 890 * is stored in q->pid.
 891 * The function internally checks if const operations can now succeed.
 892 *
 893 * The function return 1 if at least one semop was completed successfully.
 894 */
 895static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
 896{
 897	struct sem_queue *q;
 898	struct list_head *walk;
 899	struct list_head *pending_list;
 900	int semop_completed = 0;
 901
 902	if (semnum == -1)
 903		pending_list = &sma->pending_alter;
 904	else
 905		pending_list = &sma->sem_base[semnum].pending_alter;
 906
 907again:
 908	walk = pending_list->next;
 909	while (walk != pending_list) {
 910		int error, restart;
 911
 912		q = container_of(walk, struct sem_queue, list);
 913		walk = walk->next;
 914
 915		/* If we are scanning the single sop, per-semaphore list of
 916		 * one semaphore and that semaphore is 0, then it is not
 917		 * necessary to scan further: simple increments
 918		 * that affect only one entry succeed immediately and cannot
 919		 * be in the  per semaphore pending queue, and decrements
 920		 * cannot be successful if the value is already 0.
 921		 */
 922		if (semnum != -1 && sma->sem_base[semnum].semval == 0)
 923			break;
 924
 925		error = perform_atomic_semop(sma, q);
 926
 927		/* Does q->sleeper still need to sleep? */
 928		if (error > 0)
 929			continue;
 930
 931		unlink_queue(sma, q);
 932
 933		if (error) {
 934			restart = 0;
 935		} else {
 936			semop_completed = 1;
 937			do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
 938			restart = check_restart(sma, q);
 939		}
 940
 941		wake_up_sem_queue_prepare(pt, q, error);
 942		if (restart)
 943			goto again;
 944	}
 945	return semop_completed;
 946}
 947
 948/**
 949 * set_semotime - set sem_otime
 950 * @sma: semaphore array
 951 * @sops: operations that modified the array, may be NULL
 952 *
 953 * sem_otime is replicated to avoid cache line trashing.
 954 * This function sets one instance to the current time.
 955 */
 956static void set_semotime(struct sem_array *sma, struct sembuf *sops)
 957{
 958	if (sops == NULL) {
 959		sma->sem_base[0].sem_otime = get_seconds();
 960	} else {
 961		sma->sem_base[sops[0].sem_num].sem_otime =
 962							get_seconds();
 963	}
 964}
 965
 966/**
 967 * do_smart_update - optimized update_queue
 968 * @sma: semaphore array
 969 * @sops: operations that were performed
 970 * @nsops: number of operations
 971 * @otime: force setting otime
 972 * @pt: list head of the tasks that must be woken up.
 973 *
 974 * do_smart_update() does the required calls to update_queue and wakeup_zero,
 975 * based on the actual changes that were performed on the semaphore array.
 976 * Note that the function does not do the actual wake-up: the caller is
 977 * responsible for calling wake_up_sem_queue_do(@pt).
 978 * It is safe to perform this call after dropping all locks.
 979 */
 980static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
 981			int otime, struct list_head *pt)
 982{
 983	int i;
 984
 985	otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
 986
 987	if (!list_empty(&sma->pending_alter)) {
 988		/* semaphore array uses the global queue - just process it. */
 989		otime |= update_queue(sma, -1, pt);
 990	} else {
 991		if (!sops) {
 992			/*
 993			 * No sops, thus the modified semaphores are not
 994			 * known. Check all.
 995			 */
 996			for (i = 0; i < sma->sem_nsems; i++)
 997				otime |= update_queue(sma, i, pt);
 998		} else {
 999			/*
1000			 * Check the semaphores that were increased:
1001			 * - No complex ops, thus all sleeping ops are
1002			 *   decrease.
1003			 * - if we decreased the value, then any sleeping
1004			 *   semaphore ops wont be able to run: If the
1005			 *   previous value was too small, then the new
1006			 *   value will be too small, too.
1007			 */
1008			for (i = 0; i < nsops; i++) {
1009				if (sops[i].sem_op > 0) {
1010					otime |= update_queue(sma,
1011							sops[i].sem_num, pt);
1012				}
1013			}
1014		}
1015	}
1016	if (otime)
1017		set_semotime(sma, sops);
1018}
1019
1020/*
1021 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1022 */
1023static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1024			bool count_zero)
1025{
1026	struct sembuf *sop = q->blocking;
1027
1028	/*
1029	 * Linux always (since 0.99.10) reported a task as sleeping on all
1030	 * semaphores. This violates SUS, therefore it was changed to the
1031	 * standard compliant behavior.
1032	 * Give the administrators a chance to notice that an application
1033	 * might misbehave because it relies on the Linux behavior.
1034	 */
1035	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1036			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1037			current->comm, task_pid_nr(current));
1038
1039	if (sop->sem_num != semnum)
1040		return 0;
1041
1042	if (count_zero && sop->sem_op == 0)
1043		return 1;
1044	if (!count_zero && sop->sem_op < 0)
1045		return 1;
1046
1047	return 0;
1048}
1049
1050/* The following counts are associated to each semaphore:
1051 *   semncnt        number of tasks waiting on semval being nonzero
1052 *   semzcnt        number of tasks waiting on semval being zero
1053 *
1054 * Per definition, a task waits only on the semaphore of the first semop
1055 * that cannot proceed, even if additional operation would block, too.
1056 */
1057static int count_semcnt(struct sem_array *sma, ushort semnum,
1058			bool count_zero)
1059{
1060	struct list_head *l;
1061	struct sem_queue *q;
1062	int semcnt;
1063
1064	semcnt = 0;
1065	/* First: check the simple operations. They are easy to evaluate */
1066	if (count_zero)
1067		l = &sma->sem_base[semnum].pending_const;
1068	else
1069		l = &sma->sem_base[semnum].pending_alter;
1070
1071	list_for_each_entry(q, l, list) {
1072		/* all task on a per-semaphore list sleep on exactly
1073		 * that semaphore
1074		 */
1075		semcnt++;
1076	}
1077
1078	/* Then: check the complex operations. */
1079	list_for_each_entry(q, &sma->pending_alter, list) {
1080		semcnt += check_qop(sma, semnum, q, count_zero);
1081	}
1082	if (count_zero) {
1083		list_for_each_entry(q, &sma->pending_const, list) {
1084			semcnt += check_qop(sma, semnum, q, count_zero);
1085		}
1086	}
1087	return semcnt;
1088}
1089
1090/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1091 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1092 * remains locked on exit.
1093 */
1094static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1095{
1096	struct sem_undo *un, *tu;
1097	struct sem_queue *q, *tq;
1098	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1099	struct list_head tasks;
1100	int i;
 
1101
1102	/* Free the existing undo structures for this semaphore set.  */
1103	ipc_assert_locked_object(&sma->sem_perm);
1104	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1105		list_del(&un->list_id);
1106		spin_lock(&un->ulp->lock);
1107		un->semid = -1;
1108		list_del_rcu(&un->list_proc);
1109		spin_unlock(&un->ulp->lock);
1110		kfree_rcu(un, rcu);
1111	}
1112
1113	/* Wake up all pending processes and let them fail with EIDRM. */
1114	INIT_LIST_HEAD(&tasks);
1115	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1116		unlink_queue(sma, q);
1117		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1118	}
1119
1120	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1121		unlink_queue(sma, q);
1122		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1123	}
1124	for (i = 0; i < sma->sem_nsems; i++) {
1125		struct sem *sem = sma->sem_base + i;
1126		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1127			unlink_queue(sma, q);
1128			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1129		}
1130		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1131			unlink_queue(sma, q);
1132			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1133		}
 
1134	}
1135
1136	/* Remove the semaphore set from the IDR */
1137	sem_rmid(ns, sma);
1138	sem_unlock(sma, -1);
1139	rcu_read_unlock();
1140
1141	wake_up_sem_queue_do(&tasks);
1142	ns->used_sems -= sma->sem_nsems;
1143	ipc_rcu_putref(sma, sem_rcu_free);
1144}
1145
1146static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1147{
1148	switch (version) {
1149	case IPC_64:
1150		return copy_to_user(buf, in, sizeof(*in));
1151	case IPC_OLD:
1152	    {
1153		struct semid_ds out;
1154
1155		memset(&out, 0, sizeof(out));
1156
1157		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1158
1159		out.sem_otime	= in->sem_otime;
1160		out.sem_ctime	= in->sem_ctime;
1161		out.sem_nsems	= in->sem_nsems;
1162
1163		return copy_to_user(buf, &out, sizeof(out));
1164	    }
1165	default:
1166		return -EINVAL;
1167	}
1168}
1169
1170static time_t get_semotime(struct sem_array *sma)
1171{
1172	int i;
1173	time_t res;
1174
1175	res = sma->sem_base[0].sem_otime;
1176	for (i = 1; i < sma->sem_nsems; i++) {
1177		time_t to = sma->sem_base[i].sem_otime;
1178
1179		if (to > res)
1180			res = to;
1181	}
1182	return res;
1183}
1184
1185static int semctl_nolock(struct ipc_namespace *ns, int semid,
1186			 int cmd, int version, void __user *p)
1187{
1188	int err;
1189	struct sem_array *sma;
 
 
1190
1191	switch (cmd) {
1192	case IPC_INFO:
1193	case SEM_INFO:
1194	{
1195		struct seminfo seminfo;
1196		int max_id;
1197
1198		err = security_sem_semctl(NULL, cmd);
1199		if (err)
1200			return err;
1201
1202		memset(&seminfo, 0, sizeof(seminfo));
1203		seminfo.semmni = ns->sc_semmni;
1204		seminfo.semmns = ns->sc_semmns;
1205		seminfo.semmsl = ns->sc_semmsl;
1206		seminfo.semopm = ns->sc_semopm;
1207		seminfo.semvmx = SEMVMX;
1208		seminfo.semmnu = SEMMNU;
1209		seminfo.semmap = SEMMAP;
1210		seminfo.semume = SEMUME;
1211		down_read(&sem_ids(ns).rwsem);
1212		if (cmd == SEM_INFO) {
1213			seminfo.semusz = sem_ids(ns).in_use;
1214			seminfo.semaem = ns->used_sems;
1215		} else {
1216			seminfo.semusz = SEMUSZ;
1217			seminfo.semaem = SEMAEM;
1218		}
1219		max_id = ipc_get_maxid(&sem_ids(ns));
1220		up_read(&sem_ids(ns).rwsem);
1221		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1222			return -EFAULT;
1223		return (max_id < 0) ? 0 : max_id;
1224	}
1225	case IPC_STAT:
1226	case SEM_STAT:
1227	{
1228		struct semid64_ds tbuf;
1229		int id = 0;
1230
1231		memset(&tbuf, 0, sizeof(tbuf));
1232
1233		rcu_read_lock();
1234		if (cmd == SEM_STAT) {
1235			sma = sem_obtain_object(ns, semid);
1236			if (IS_ERR(sma)) {
1237				err = PTR_ERR(sma);
1238				goto out_unlock;
1239			}
1240			id = sma->sem_perm.id;
1241		} else {
1242			sma = sem_obtain_object_check(ns, semid);
1243			if (IS_ERR(sma)) {
1244				err = PTR_ERR(sma);
1245				goto out_unlock;
1246			}
1247		}
 
1248
 
 
 
 
1249		err = -EACCES;
1250		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1251			goto out_unlock;
 
1252
1253		err = security_sem_semctl(sma, cmd);
1254		if (err)
1255			goto out_unlock;
1256
1257		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1258		tbuf.sem_otime = get_semotime(sma);
1259		tbuf.sem_ctime = sma->sem_ctime;
1260		tbuf.sem_nsems = sma->sem_nsems;
1261		rcu_read_unlock();
1262		if (copy_semid_to_user(p, &tbuf, version))
1263			return -EFAULT;
1264		return id;
1265	}
1266	default:
1267		return -EINVAL;
1268	}
 
 
 
 
 
 
 
 
 
 
1269out_unlock:
1270	rcu_read_unlock();
1271	return err;
1272}
1273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1274static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1275		unsigned long arg)
1276{
1277	struct sem_undo *un;
1278	struct sem_array *sma;
1279	struct sem *curr;
1280	int err;
1281	struct list_head tasks;
1282	int val;
1283#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1284	/* big-endian 64bit */
1285	val = arg >> 32;
1286#else
1287	/* 32bit or little-endian 64bit */
1288	val = arg;
1289#endif
1290
1291	if (val > SEMVMX || val < 0)
1292		return -ERANGE;
1293
1294	INIT_LIST_HEAD(&tasks);
1295
1296	rcu_read_lock();
1297	sma = sem_obtain_object_check(ns, semid);
1298	if (IS_ERR(sma)) {
1299		rcu_read_unlock();
1300		return PTR_ERR(sma);
1301	}
1302
1303	if (semnum < 0 || semnum >= sma->sem_nsems) {
1304		rcu_read_unlock();
1305		return -EINVAL;
1306	}
1307
1308
1309	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1310		rcu_read_unlock();
1311		return -EACCES;
1312	}
1313
1314	err = security_sem_semctl(sma, SETVAL);
1315	if (err) {
1316		rcu_read_unlock();
1317		return -EACCES;
1318	}
1319
1320	sem_lock(sma, NULL, -1);
1321
1322	if (!ipc_valid_object(&sma->sem_perm)) {
1323		sem_unlock(sma, -1);
1324		rcu_read_unlock();
1325		return -EIDRM;
1326	}
1327
1328	curr = &sma->sem_base[semnum];
1329
1330	ipc_assert_locked_object(&sma->sem_perm);
1331	list_for_each_entry(un, &sma->list_id, list_id)
1332		un->semadj[semnum] = 0;
1333
1334	curr->semval = val;
1335	curr->sempid = task_tgid_vnr(current);
1336	sma->sem_ctime = get_seconds();
1337	/* maybe some queued-up processes were waiting for this */
1338	do_smart_update(sma, NULL, 0, 0, &tasks);
1339	sem_unlock(sma, -1);
1340	rcu_read_unlock();
1341	wake_up_sem_queue_do(&tasks);
1342	return 0;
1343}
1344
1345static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1346		int cmd, void __user *p)
1347{
1348	struct sem_array *sma;
1349	struct sem *curr;
1350	int err, nsems;
1351	ushort fast_sem_io[SEMMSL_FAST];
1352	ushort *sem_io = fast_sem_io;
1353	struct list_head tasks;
1354
1355	INIT_LIST_HEAD(&tasks);
1356
1357	rcu_read_lock();
1358	sma = sem_obtain_object_check(ns, semid);
1359	if (IS_ERR(sma)) {
1360		rcu_read_unlock();
1361		return PTR_ERR(sma);
1362	}
1363
1364	nsems = sma->sem_nsems;
1365
1366	err = -EACCES;
1367	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1368		goto out_rcu_wakeup;
1369
1370	err = security_sem_semctl(sma, cmd);
1371	if (err)
1372		goto out_rcu_wakeup;
1373
1374	err = -EACCES;
1375	switch (cmd) {
1376	case GETALL:
1377	{
1378		ushort __user *array = p;
1379		int i;
1380
1381		sem_lock(sma, NULL, -1);
1382		if (!ipc_valid_object(&sma->sem_perm)) {
1383			err = -EIDRM;
1384			goto out_unlock;
1385		}
1386		if (nsems > SEMMSL_FAST) {
1387			if (!ipc_rcu_getref(sma)) {
1388				err = -EIDRM;
1389				goto out_unlock;
1390			}
1391			sem_unlock(sma, -1);
1392			rcu_read_unlock();
1393			sem_io = ipc_alloc(sizeof(ushort)*nsems);
 
1394			if (sem_io == NULL) {
1395				ipc_rcu_putref(sma, ipc_rcu_free);
1396				return -ENOMEM;
1397			}
1398
1399			rcu_read_lock();
1400			sem_lock_and_putref(sma);
1401			if (!ipc_valid_object(&sma->sem_perm)) {
1402				err = -EIDRM;
1403				goto out_unlock;
1404			}
1405		}
1406		for (i = 0; i < sma->sem_nsems; i++)
1407			sem_io[i] = sma->sem_base[i].semval;
1408		sem_unlock(sma, -1);
1409		rcu_read_unlock();
1410		err = 0;
1411		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1412			err = -EFAULT;
1413		goto out_free;
1414	}
1415	case SETALL:
1416	{
1417		int i;
1418		struct sem_undo *un;
1419
1420		if (!ipc_rcu_getref(sma)) {
1421			err = -EIDRM;
1422			goto out_rcu_wakeup;
1423		}
1424		rcu_read_unlock();
1425
1426		if (nsems > SEMMSL_FAST) {
1427			sem_io = ipc_alloc(sizeof(ushort)*nsems);
 
1428			if (sem_io == NULL) {
1429				ipc_rcu_putref(sma, ipc_rcu_free);
1430				return -ENOMEM;
1431			}
1432		}
1433
1434		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1435			ipc_rcu_putref(sma, ipc_rcu_free);
1436			err = -EFAULT;
1437			goto out_free;
1438		}
1439
1440		for (i = 0; i < nsems; i++) {
1441			if (sem_io[i] > SEMVMX) {
1442				ipc_rcu_putref(sma, ipc_rcu_free);
1443				err = -ERANGE;
1444				goto out_free;
1445			}
1446		}
1447		rcu_read_lock();
1448		sem_lock_and_putref(sma);
1449		if (!ipc_valid_object(&sma->sem_perm)) {
1450			err = -EIDRM;
1451			goto out_unlock;
1452		}
1453
1454		for (i = 0; i < nsems; i++) {
1455			sma->sem_base[i].semval = sem_io[i];
1456			sma->sem_base[i].sempid = task_tgid_vnr(current);
1457		}
1458
1459		ipc_assert_locked_object(&sma->sem_perm);
1460		list_for_each_entry(un, &sma->list_id, list_id) {
1461			for (i = 0; i < nsems; i++)
1462				un->semadj[i] = 0;
1463		}
1464		sma->sem_ctime = get_seconds();
1465		/* maybe some queued-up processes were waiting for this */
1466		do_smart_update(sma, NULL, 0, 0, &tasks);
1467		err = 0;
1468		goto out_unlock;
1469	}
1470	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1471	}
1472	err = -EINVAL;
1473	if (semnum < 0 || semnum >= nsems)
1474		goto out_rcu_wakeup;
1475
1476	sem_lock(sma, NULL, -1);
1477	if (!ipc_valid_object(&sma->sem_perm)) {
1478		err = -EIDRM;
1479		goto out_unlock;
1480	}
1481	curr = &sma->sem_base[semnum];
1482
1483	switch (cmd) {
1484	case GETVAL:
1485		err = curr->semval;
1486		goto out_unlock;
1487	case GETPID:
1488		err = curr->sempid;
1489		goto out_unlock;
1490	case GETNCNT:
1491		err = count_semcnt(sma, semnum, 0);
1492		goto out_unlock;
1493	case GETZCNT:
1494		err = count_semcnt(sma, semnum, 1);
1495		goto out_unlock;
1496	}
1497
1498out_unlock:
1499	sem_unlock(sma, -1);
1500out_rcu_wakeup:
1501	rcu_read_unlock();
1502	wake_up_sem_queue_do(&tasks);
1503out_free:
1504	if (sem_io != fast_sem_io)
1505		ipc_free(sem_io);
1506	return err;
1507}
1508
1509static inline unsigned long
1510copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1511{
1512	switch (version) {
1513	case IPC_64:
1514		if (copy_from_user(out, buf, sizeof(*out)))
1515			return -EFAULT;
1516		return 0;
1517	case IPC_OLD:
1518	    {
1519		struct semid_ds tbuf_old;
1520
1521		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1522			return -EFAULT;
1523
1524		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1525		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1526		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1527
1528		return 0;
1529	    }
1530	default:
1531		return -EINVAL;
1532	}
1533}
1534
1535/*
1536 * This function handles some semctl commands which require the rwsem
1537 * to be held in write mode.
1538 * NOTE: no locks must be held, the rwsem is taken inside this function.
1539 */
1540static int semctl_down(struct ipc_namespace *ns, int semid,
1541		       int cmd, int version, void __user *p)
1542{
1543	struct sem_array *sma;
1544	int err;
1545	struct semid64_ds semid64;
1546	struct kern_ipc_perm *ipcp;
1547
1548	if (cmd == IPC_SET) {
1549		if (copy_semid_from_user(&semid64, p, version))
1550			return -EFAULT;
1551	}
1552
1553	down_write(&sem_ids(ns).rwsem);
1554	rcu_read_lock();
1555
1556	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1557				      &semid64.sem_perm, 0);
1558	if (IS_ERR(ipcp)) {
1559		err = PTR_ERR(ipcp);
1560		goto out_unlock1;
1561	}
1562
1563	sma = container_of(ipcp, struct sem_array, sem_perm);
1564
1565	err = security_sem_semctl(sma, cmd);
1566	if (err)
1567		goto out_unlock1;
1568
1569	switch (cmd) {
1570	case IPC_RMID:
1571		sem_lock(sma, NULL, -1);
1572		/* freeary unlocks the ipc object and rcu */
1573		freeary(ns, ipcp);
1574		goto out_up;
1575	case IPC_SET:
1576		sem_lock(sma, NULL, -1);
1577		err = ipc_update_perm(&semid64.sem_perm, ipcp);
1578		if (err)
1579			goto out_unlock0;
1580		sma->sem_ctime = get_seconds();
1581		break;
1582	default:
1583		err = -EINVAL;
1584		goto out_unlock1;
1585	}
1586
1587out_unlock0:
1588	sem_unlock(sma, -1);
1589out_unlock1:
1590	rcu_read_unlock();
1591out_up:
1592	up_write(&sem_ids(ns).rwsem);
1593	return err;
1594}
1595
1596SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1597{
1598	int version;
1599	struct ipc_namespace *ns;
1600	void __user *p = (void __user *)arg;
 
 
1601
1602	if (semid < 0)
1603		return -EINVAL;
1604
1605	version = ipc_parse_version(&cmd);
1606	ns = current->nsproxy->ipc_ns;
1607
1608	switch (cmd) {
1609	case IPC_INFO:
1610	case SEM_INFO:
 
1611	case IPC_STAT:
1612	case SEM_STAT:
1613		return semctl_nolock(ns, semid, cmd, version, p);
 
 
 
 
 
 
1614	case GETALL:
1615	case GETVAL:
1616	case GETPID:
1617	case GETNCNT:
1618	case GETZCNT:
1619	case SETALL:
1620		return semctl_main(ns, semid, semnum, cmd, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621	case SETVAL:
1622		return semctl_setval(ns, semid, semnum, arg);
1623	case IPC_RMID:
1624	case IPC_SET:
1625		return semctl_down(ns, semid, cmd, version, p);
 
 
 
 
1626	default:
1627		return -EINVAL;
1628	}
1629}
1630
 
 
 
 
 
 
1631/* If the task doesn't already have a undo_list, then allocate one
1632 * here.  We guarantee there is only one thread using this undo list,
1633 * and current is THE ONE
1634 *
1635 * If this allocation and assignment succeeds, but later
1636 * portions of this code fail, there is no need to free the sem_undo_list.
1637 * Just let it stay associated with the task, and it'll be freed later
1638 * at exit time.
1639 *
1640 * This can block, so callers must hold no locks.
1641 */
1642static inline int get_undo_list(struct sem_undo_list **undo_listp)
1643{
1644	struct sem_undo_list *undo_list;
1645
1646	undo_list = current->sysvsem.undo_list;
1647	if (!undo_list) {
1648		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1649		if (undo_list == NULL)
1650			return -ENOMEM;
1651		spin_lock_init(&undo_list->lock);
1652		atomic_set(&undo_list->refcnt, 1);
1653		INIT_LIST_HEAD(&undo_list->list_proc);
1654
1655		current->sysvsem.undo_list = undo_list;
1656	}
1657	*undo_listp = undo_list;
1658	return 0;
1659}
1660
1661static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1662{
1663	struct sem_undo *un;
1664
1665	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1666		if (un->semid == semid)
1667			return un;
1668	}
1669	return NULL;
1670}
1671
1672static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1673{
1674	struct sem_undo *un;
1675
1676	assert_spin_locked(&ulp->lock);
1677
1678	un = __lookup_undo(ulp, semid);
1679	if (un) {
1680		list_del_rcu(&un->list_proc);
1681		list_add_rcu(&un->list_proc, &ulp->list_proc);
1682	}
1683	return un;
1684}
1685
1686/**
1687 * find_alloc_undo - lookup (and if not present create) undo array
1688 * @ns: namespace
1689 * @semid: semaphore array id
1690 *
1691 * The function looks up (and if not present creates) the undo structure.
1692 * The size of the undo structure depends on the size of the semaphore
1693 * array, thus the alloc path is not that straightforward.
1694 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1695 * performs a rcu_read_lock().
1696 */
1697static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1698{
1699	struct sem_array *sma;
1700	struct sem_undo_list *ulp;
1701	struct sem_undo *un, *new;
1702	int nsems, error;
1703
1704	error = get_undo_list(&ulp);
1705	if (error)
1706		return ERR_PTR(error);
1707
1708	rcu_read_lock();
1709	spin_lock(&ulp->lock);
1710	un = lookup_undo(ulp, semid);
1711	spin_unlock(&ulp->lock);
1712	if (likely(un != NULL))
1713		goto out;
1714
1715	/* no undo structure around - allocate one. */
1716	/* step 1: figure out the size of the semaphore array */
1717	sma = sem_obtain_object_check(ns, semid);
1718	if (IS_ERR(sma)) {
1719		rcu_read_unlock();
1720		return ERR_CAST(sma);
1721	}
1722
1723	nsems = sma->sem_nsems;
1724	if (!ipc_rcu_getref(sma)) {
1725		rcu_read_unlock();
1726		un = ERR_PTR(-EIDRM);
1727		goto out;
1728	}
1729	rcu_read_unlock();
1730
1731	/* step 2: allocate new undo structure */
1732	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1733	if (!new) {
1734		ipc_rcu_putref(sma, ipc_rcu_free);
1735		return ERR_PTR(-ENOMEM);
1736	}
1737
1738	/* step 3: Acquire the lock on semaphore array */
1739	rcu_read_lock();
1740	sem_lock_and_putref(sma);
1741	if (!ipc_valid_object(&sma->sem_perm)) {
1742		sem_unlock(sma, -1);
1743		rcu_read_unlock();
1744		kfree(new);
1745		un = ERR_PTR(-EIDRM);
1746		goto out;
1747	}
1748	spin_lock(&ulp->lock);
1749
1750	/*
1751	 * step 4: check for races: did someone else allocate the undo struct?
1752	 */
1753	un = lookup_undo(ulp, semid);
1754	if (un) {
1755		kfree(new);
1756		goto success;
1757	}
1758	/* step 5: initialize & link new undo structure */
1759	new->semadj = (short *) &new[1];
1760	new->ulp = ulp;
1761	new->semid = semid;
1762	assert_spin_locked(&ulp->lock);
1763	list_add_rcu(&new->list_proc, &ulp->list_proc);
1764	ipc_assert_locked_object(&sma->sem_perm);
1765	list_add(&new->list_id, &sma->list_id);
1766	un = new;
1767
1768success:
1769	spin_unlock(&ulp->lock);
1770	sem_unlock(sma, -1);
1771out:
1772	return un;
1773}
1774
1775
1776/**
1777 * get_queue_result - retrieve the result code from sem_queue
1778 * @q: Pointer to queue structure
1779 *
1780 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1781 * q->status, then we must loop until the value is replaced with the final
1782 * value: This may happen if a task is woken up by an unrelated event (e.g.
1783 * signal) and in parallel the task is woken up by another task because it got
1784 * the requested semaphores.
1785 *
1786 * The function can be called with or without holding the semaphore spinlock.
1787 */
1788static int get_queue_result(struct sem_queue *q)
1789{
1790	int error;
1791
1792	error = q->status;
1793	while (unlikely(error == IN_WAKEUP)) {
1794		cpu_relax();
1795		error = q->status;
1796	}
1797
1798	return error;
1799}
1800
1801SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1802		unsigned, nsops, const struct timespec __user *, timeout)
1803{
1804	int error = -EINVAL;
1805	struct sem_array *sma;
1806	struct sembuf fast_sops[SEMOPM_FAST];
1807	struct sembuf *sops = fast_sops, *sop;
1808	struct sem_undo *un;
1809	int undos = 0, alter = 0, max, locknum;
 
1810	struct sem_queue queue;
1811	unsigned long jiffies_left = 0;
1812	struct ipc_namespace *ns;
1813	struct list_head tasks;
1814
1815	ns = current->nsproxy->ipc_ns;
1816
1817	if (nsops < 1 || semid < 0)
1818		return -EINVAL;
1819	if (nsops > ns->sc_semopm)
1820		return -E2BIG;
1821	if (nsops > SEMOPM_FAST) {
1822		sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1823		if (sops == NULL)
1824			return -ENOMEM;
1825	}
 
1826	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1827		error =  -EFAULT;
1828		goto out_free;
1829	}
 
1830	if (timeout) {
1831		struct timespec _timeout;
1832		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1833			error = -EFAULT;
1834			goto out_free;
1835		}
1836		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1837			_timeout.tv_nsec >= 1000000000L) {
1838			error = -EINVAL;
1839			goto out_free;
1840		}
1841		jiffies_left = timespec_to_jiffies(&_timeout);
1842	}
 
1843	max = 0;
1844	for (sop = sops; sop < sops + nsops; sop++) {
 
 
1845		if (sop->sem_num >= max)
1846			max = sop->sem_num;
1847		if (sop->sem_flg & SEM_UNDO)
1848			undos = 1;
1849		if (sop->sem_op != 0)
1850			alter = 1;
 
 
 
 
 
 
 
 
 
 
 
1851	}
1852
1853	INIT_LIST_HEAD(&tasks);
1854
1855	if (undos) {
1856		/* On success, find_alloc_undo takes the rcu_read_lock */
1857		un = find_alloc_undo(ns, semid);
1858		if (IS_ERR(un)) {
1859			error = PTR_ERR(un);
1860			goto out_free;
1861		}
1862	} else {
1863		un = NULL;
1864		rcu_read_lock();
1865	}
1866
1867	sma = sem_obtain_object_check(ns, semid);
1868	if (IS_ERR(sma)) {
1869		rcu_read_unlock();
1870		error = PTR_ERR(sma);
1871		goto out_free;
1872	}
1873
1874	error = -EFBIG;
1875	if (max >= sma->sem_nsems)
1876		goto out_rcu_wakeup;
 
 
1877
1878	error = -EACCES;
1879	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1880		goto out_rcu_wakeup;
 
 
1881
1882	error = security_sem_semop(sma, sops, nsops, alter);
1883	if (error)
1884		goto out_rcu_wakeup;
 
 
1885
1886	error = -EIDRM;
1887	locknum = sem_lock(sma, sops, nsops);
1888	/*
1889	 * We eventually might perform the following check in a lockless
1890	 * fashion, considering ipc_valid_object() locking constraints.
1891	 * If nsops == 1 and there is no contention for sem_perm.lock, then
1892	 * only a per-semaphore lock is held and it's OK to proceed with the
1893	 * check below. More details on the fine grained locking scheme
1894	 * entangled here and why it's RMID race safe on comments at sem_lock()
1895	 */
1896	if (!ipc_valid_object(&sma->sem_perm))
1897		goto out_unlock_free;
1898	/*
1899	 * semid identifiers are not unique - find_alloc_undo may have
1900	 * allocated an undo structure, it was invalidated by an RMID
1901	 * and now a new array with received the same id. Check and fail.
1902	 * This case can be detected checking un->semid. The existence of
1903	 * "un" itself is guaranteed by rcu.
1904	 */
1905	if (un && un->semid == -1)
1906		goto out_unlock_free;
1907
1908	queue.sops = sops;
1909	queue.nsops = nsops;
1910	queue.undo = un;
1911	queue.pid = task_tgid_vnr(current);
1912	queue.alter = alter;
 
1913
1914	error = perform_atomic_semop(sma, &queue);
1915	if (error == 0) {
1916		/* If the operation was successful, then do
 
 
 
1917		 * the required updates.
1918		 */
1919		if (alter)
1920			do_smart_update(sma, sops, nsops, 1, &tasks);
1921		else
1922			set_semotime(sma, sops);
 
 
 
 
 
 
1923	}
1924	if (error <= 0)
1925		goto out_unlock_free;
1926
1927	/* We need to sleep on this operation, so we put the current
 
1928	 * task into the pending queue and go to sleep.
1929	 */
1930
1931	if (nsops == 1) {
1932		struct sem *curr;
1933		curr = &sma->sem_base[sops->sem_num];
1934
1935		if (alter) {
1936			if (sma->complex_count) {
1937				list_add_tail(&queue.list,
1938						&sma->pending_alter);
1939			} else {
1940
1941				list_add_tail(&queue.list,
1942						&curr->pending_alter);
1943			}
1944		} else {
1945			list_add_tail(&queue.list, &curr->pending_const);
1946		}
1947	} else {
1948		if (!sma->complex_count)
1949			merge_queues(sma);
1950
1951		if (alter)
1952			list_add_tail(&queue.list, &sma->pending_alter);
1953		else
1954			list_add_tail(&queue.list, &sma->pending_const);
1955
1956		sma->complex_count++;
1957	}
1958
1959	queue.status = -EINTR;
1960	queue.sleeper = current;
 
1961
1962sleep_again:
1963	__set_current_state(TASK_INTERRUPTIBLE);
1964	sem_unlock(sma, locknum);
1965	rcu_read_unlock();
1966
1967	if (timeout)
1968		jiffies_left = schedule_timeout(jiffies_left);
1969	else
1970		schedule();
1971
1972	error = get_queue_result(&queue);
 
 
 
1973
1974	if (error != -EINTR) {
1975		/* fast path: update_queue already obtained all requested
1976		 * resources.
1977		 * Perform a smp_mb(): User space could assume that semop()
1978		 * is a memory barrier: Without the mb(), the cpu could
1979		 * speculatively read in user space stale data that was
1980		 * overwritten by the previous owner of the semaphore.
 
 
 
1981		 */
1982		smp_mb();
1983
1984		goto out_free;
1985	}
1986
1987	rcu_read_lock();
1988	sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1989
1990	/*
1991	 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1992	 */
1993	error = get_queue_result(&queue);
1994
1995	/*
1996	 * Array removed? If yes, leave without sem_unlock().
1997	 */
1998	if (IS_ERR(sma)) {
1999		rcu_read_unlock();
2000		goto out_free;
2001	}
2002
 
 
2003
2004	/*
2005	 * If queue.status != -EINTR we are woken up by another process.
2006	 * Leave without unlink_queue(), but with sem_unlock().
2007	 */
2008	if (error != -EINTR)
2009		goto out_unlock_free;
2010
2011	/*
2012	 * If an interrupt occurred we have to clean up the queue
2013	 */
2014	if (timeout && jiffies_left == 0)
2015		error = -EAGAIN;
 
2016
2017	/*
2018	 * If the wakeup was spurious, just retry
2019	 */
2020	if (error == -EINTR && !signal_pending(current))
2021		goto sleep_again;
 
2022
2023	unlink_queue(sma, &queue);
2024
2025out_unlock_free:
2026	sem_unlock(sma, locknum);
2027out_rcu_wakeup:
2028	rcu_read_unlock();
2029	wake_up_sem_queue_do(&tasks);
2030out_free:
2031	if (sops != fast_sops)
2032		kfree(sops);
2033	return error;
2034}
2035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2036SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2037		unsigned, nsops)
2038{
2039	return sys_semtimedop(semid, tsops, nsops, NULL);
2040}
2041
2042/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2043 * parent and child tasks.
2044 */
2045
2046int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2047{
2048	struct sem_undo_list *undo_list;
2049	int error;
2050
2051	if (clone_flags & CLONE_SYSVSEM) {
2052		error = get_undo_list(&undo_list);
2053		if (error)
2054			return error;
2055		atomic_inc(&undo_list->refcnt);
2056		tsk->sysvsem.undo_list = undo_list;
2057	} else
2058		tsk->sysvsem.undo_list = NULL;
2059
2060	return 0;
2061}
2062
2063/*
2064 * add semadj values to semaphores, free undo structures.
2065 * undo structures are not freed when semaphore arrays are destroyed
2066 * so some of them may be out of date.
2067 * IMPLEMENTATION NOTE: There is some confusion over whether the
2068 * set of adjustments that needs to be done should be done in an atomic
2069 * manner or not. That is, if we are attempting to decrement the semval
2070 * should we queue up and wait until we can do so legally?
2071 * The original implementation attempted to do this (queue and wait).
2072 * The current implementation does not do so. The POSIX standard
2073 * and SVID should be consulted to determine what behavior is mandated.
2074 */
2075void exit_sem(struct task_struct *tsk)
2076{
2077	struct sem_undo_list *ulp;
2078
2079	ulp = tsk->sysvsem.undo_list;
2080	if (!ulp)
2081		return;
2082	tsk->sysvsem.undo_list = NULL;
2083
2084	if (!atomic_dec_and_test(&ulp->refcnt))
2085		return;
2086
2087	for (;;) {
2088		struct sem_array *sma;
2089		struct sem_undo *un;
2090		struct list_head tasks;
2091		int semid, i;
 
 
 
2092
2093		rcu_read_lock();
2094		un = list_entry_rcu(ulp->list_proc.next,
2095				    struct sem_undo, list_proc);
2096		if (&un->list_proc == &ulp->list_proc) {
2097			/*
2098			 * We must wait for freeary() before freeing this ulp,
2099			 * in case we raced with last sem_undo. There is a small
2100			 * possibility where we exit while freeary() didn't
2101			 * finish unlocking sem_undo_list.
2102			 */
2103			spin_unlock_wait(&ulp->lock);
 
2104			rcu_read_unlock();
2105			break;
2106		}
2107		spin_lock(&ulp->lock);
2108		semid = un->semid;
2109		spin_unlock(&ulp->lock);
2110
2111		/* exit_sem raced with IPC_RMID, nothing to do */
2112		if (semid == -1) {
2113			rcu_read_unlock();
2114			continue;
2115		}
2116
2117		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2118		/* exit_sem raced with IPC_RMID, nothing to do */
2119		if (IS_ERR(sma)) {
2120			rcu_read_unlock();
2121			continue;
2122		}
2123
2124		sem_lock(sma, NULL, -1);
2125		/* exit_sem raced with IPC_RMID, nothing to do */
2126		if (!ipc_valid_object(&sma->sem_perm)) {
2127			sem_unlock(sma, -1);
2128			rcu_read_unlock();
2129			continue;
2130		}
2131		un = __lookup_undo(ulp, semid);
2132		if (un == NULL) {
2133			/* exit_sem raced with IPC_RMID+semget() that created
2134			 * exactly the same semid. Nothing to do.
2135			 */
2136			sem_unlock(sma, -1);
2137			rcu_read_unlock();
2138			continue;
2139		}
2140
2141		/* remove un from the linked lists */
2142		ipc_assert_locked_object(&sma->sem_perm);
2143		list_del(&un->list_id);
2144
2145		/* we are the last process using this ulp, acquiring ulp->lock
2146		 * isn't required. Besides that, we are also protected against
2147		 * IPC_RMID as we hold sma->sem_perm lock now
2148		 */
2149		list_del_rcu(&un->list_proc);
2150
2151		/* perform adjustments registered in un */
2152		for (i = 0; i < sma->sem_nsems; i++) {
2153			struct sem *semaphore = &sma->sem_base[i];
2154			if (un->semadj[i]) {
2155				semaphore->semval += un->semadj[i];
2156				/*
2157				 * Range checks of the new semaphore value,
2158				 * not defined by sus:
2159				 * - Some unices ignore the undo entirely
2160				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2161				 * - some cap the value (e.g. FreeBSD caps
2162				 *   at 0, but doesn't enforce SEMVMX)
2163				 *
2164				 * Linux caps the semaphore value, both at 0
2165				 * and at SEMVMX.
2166				 *
2167				 *	Manfred <manfred@colorfullife.com>
2168				 */
2169				if (semaphore->semval < 0)
2170					semaphore->semval = 0;
2171				if (semaphore->semval > SEMVMX)
2172					semaphore->semval = SEMVMX;
2173				semaphore->sempid = task_tgid_vnr(current);
2174			}
2175		}
2176		/* maybe some queued-up processes were waiting for this */
2177		INIT_LIST_HEAD(&tasks);
2178		do_smart_update(sma, NULL, 0, 1, &tasks);
2179		sem_unlock(sma, -1);
2180		rcu_read_unlock();
2181		wake_up_sem_queue_do(&tasks);
2182
2183		kfree_rcu(un, rcu);
2184	}
2185	kfree(ulp);
2186}
2187
2188#ifdef CONFIG_PROC_FS
2189static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2190{
2191	struct user_namespace *user_ns = seq_user_ns(s);
2192	struct sem_array *sma = it;
2193	time_t sem_otime;
 
2194
2195	/*
2196	 * The proc interface isn't aware of sem_lock(), it calls
2197	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2198	 * In order to stay compatible with sem_lock(), we must wait until
2199	 * all simple semop() calls have left their critical regions.
2200	 */
2201	sem_wait_array(sma);
2202
2203	sem_otime = get_semotime(sma);
2204
2205	seq_printf(s,
2206		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2207		   sma->sem_perm.key,
2208		   sma->sem_perm.id,
2209		   sma->sem_perm.mode,
2210		   sma->sem_nsems,
2211		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2212		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2213		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2214		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2215		   sem_otime,
2216		   sma->sem_ctime);
 
 
2217
2218	return 0;
2219}
2220#endif
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/ipc/sem.c
   4 * Copyright (C) 1992 Krishna Balasubramanian
   5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
   6 *
   7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
   8 *
   9 * SMP-threaded, sysctl's added
  10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
  11 * Enforced range limit on SEM_UNDO
  12 * (c) 2001 Red Hat Inc
  13 * Lockless wakeup
  14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
  15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
  16 * Further wakeup optimizations, documentation
  17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
  18 *
  19 * support for audit of ipc object properties and permission changes
  20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
  21 *
  22 * namespaces support
  23 * OpenVZ, SWsoft Inc.
  24 * Pavel Emelianov <xemul@openvz.org>
  25 *
  26 * Implementation notes: (May 2010)
  27 * This file implements System V semaphores.
  28 *
  29 * User space visible behavior:
  30 * - FIFO ordering for semop() operations (just FIFO, not starvation
  31 *   protection)
  32 * - multiple semaphore operations that alter the same semaphore in
  33 *   one semop() are handled.
  34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
  35 *   SETALL calls.
  36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
  37 * - undo adjustments at process exit are limited to 0..SEMVMX.
  38 * - namespace are supported.
  39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
  40 *   to /proc/sys/kernel/sem.
  41 * - statistics about the usage are reported in /proc/sysvipc/sem.
  42 *
  43 * Internals:
  44 * - scalability:
  45 *   - all global variables are read-mostly.
  46 *   - semop() calls and semctl(RMID) are synchronized by RCU.
  47 *   - most operations do write operations (actually: spin_lock calls) to
  48 *     the per-semaphore array structure.
  49 *   Thus: Perfect SMP scaling between independent semaphore arrays.
  50 *         If multiple semaphores in one array are used, then cache line
  51 *         trashing on the semaphore array spinlock will limit the scaling.
  52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
  53 * - the task that performs a successful semop() scans the list of all
  54 *   sleeping tasks and completes any pending operations that can be fulfilled.
  55 *   Semaphores are actively given to waiting tasks (necessary for FIFO).
  56 *   (see update_queue())
  57 * - To improve the scalability, the actual wake-up calls are performed after
  58 *   dropping all locks. (see wake_up_sem_queue_prepare())
 
  59 * - All work is done by the waker, the woken up task does not have to do
  60 *   anything - not even acquiring a lock or dropping a refcount.
  61 * - A woken up task may not even touch the semaphore array anymore, it may
  62 *   have been destroyed already by a semctl(RMID).
 
 
 
  63 * - UNDO values are stored in an array (one per process and per
  64 *   semaphore array, lazily allocated). For backwards compatibility, multiple
  65 *   modes for the UNDO variables are supported (per process, per thread)
  66 *   (see copy_semundo, CLONE_SYSVSEM)
  67 * - There are two lists of the pending operations: a per-array list
  68 *   and per-semaphore list (stored in the array). This allows to achieve FIFO
  69 *   ordering without always scanning all pending operations.
  70 *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
  71 */
  72
  73#include <linux/slab.h>
  74#include <linux/spinlock.h>
  75#include <linux/init.h>
  76#include <linux/proc_fs.h>
  77#include <linux/time.h>
  78#include <linux/security.h>
  79#include <linux/syscalls.h>
  80#include <linux/audit.h>
  81#include <linux/capability.h>
  82#include <linux/seq_file.h>
  83#include <linux/rwsem.h>
  84#include <linux/nsproxy.h>
  85#include <linux/ipc_namespace.h>
  86#include <linux/sched/wake_q.h>
  87
  88#include <linux/uaccess.h>
  89#include "util.h"
  90
  91/* One semaphore structure for each semaphore in the system. */
  92struct sem {
  93	int	semval;		/* current value */
  94	/*
  95	 * PID of the process that last modified the semaphore. For
  96	 * Linux, specifically these are:
  97	 *  - semop
  98	 *  - semctl, via SETVAL and SETALL.
  99	 *  - at task exit when performing undo adjustments (see exit_sem).
 100	 */
 101	struct pid *sempid;
 102	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
 103	struct list_head pending_alter; /* pending single-sop operations */
 104					/* that alter the semaphore */
 105	struct list_head pending_const; /* pending single-sop operations */
 106					/* that do not alter the semaphore*/
 107	time_t	sem_otime;	/* candidate for sem_otime */
 108} ____cacheline_aligned_in_smp;
 109
 110/* One sem_array data structure for each set of semaphores in the system. */
 111struct sem_array {
 112	struct kern_ipc_perm	sem_perm;	/* permissions .. see ipc.h */
 113	time64_t		sem_ctime;	/* create/last semctl() time */
 114	struct list_head	pending_alter;	/* pending operations */
 115						/* that alter the array */
 116	struct list_head	pending_const;	/* pending complex operations */
 117						/* that do not alter semvals */
 118	struct list_head	list_id;	/* undo requests on this array */
 119	int			sem_nsems;	/* no. of semaphores in array */
 120	int			complex_count;	/* pending complex operations */
 121	unsigned int		use_global_lock;/* >0: global lock required */
 122
 123	struct sem		sems[];
 124} __randomize_layout;
 125
 126/* One queue for each sleeping process in the system. */
 127struct sem_queue {
 128	struct list_head	list;	 /* queue of pending operations */
 129	struct task_struct	*sleeper; /* this process */
 130	struct sem_undo		*undo;	 /* undo structure */
 131	struct pid		*pid;	 /* process id of requesting process */
 132	int			status;	 /* completion status of operation */
 133	struct sembuf		*sops;	 /* array of pending operations */
 134	struct sembuf		*blocking; /* the operation that blocked */
 135	int			nsops;	 /* number of operations */
 136	bool			alter;	 /* does *sops alter the array? */
 137	bool                    dupsop;	 /* sops on more than one sem_num */
 138};
 139
 140/* Each task has a list of undo requests. They are executed automatically
 141 * when the process exits.
 142 */
 143struct sem_undo {
 144	struct list_head	list_proc;	/* per-process list: *
 145						 * all undos from one process
 146						 * rcu protected */
 147	struct rcu_head		rcu;		/* rcu struct for sem_undo */
 148	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
 149	struct list_head	list_id;	/* per semaphore array list:
 150						 * all undos for one array */
 151	int			semid;		/* semaphore set identifier */
 152	short			*semadj;	/* array of adjustments */
 153						/* one per semaphore */
 154};
 155
 156/* sem_undo_list controls shared access to the list of sem_undo structures
 157 * that may be shared among all a CLONE_SYSVSEM task group.
 158 */
 159struct sem_undo_list {
 160	refcount_t		refcnt;
 161	spinlock_t		lock;
 162	struct list_head	list_proc;
 163};
 164
 165
 166#define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
 167
 
 
 168static int newary(struct ipc_namespace *, struct ipc_params *);
 169static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
 170#ifdef CONFIG_PROC_FS
 171static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
 172#endif
 173
 174#define SEMMSL_FAST	256 /* 512 bytes on stack */
 175#define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
 176
 177/*
 178 * Switching from the mode suitable for simple ops
 179 * to the mode for complex ops is costly. Therefore:
 180 * use some hysteresis
 181 */
 182#define USE_GLOBAL_LOCK_HYSTERESIS	10
 183
 184/*
 185 * Locking:
 186 * a) global sem_lock() for read/write
 187 *	sem_undo.id_next,
 188 *	sem_array.complex_count,
 189 *	sem_array.pending{_alter,_const},
 190 *	sem_array.sem_undo
 191 *
 192 * b) global or semaphore sem_lock() for read/write:
 193 *	sem_array.sems[i].pending_{const,alter}:
 194 *
 195 * c) special:
 196 *	sem_undo_list.list_proc:
 197 *	* undo_list->lock for write
 198 *	* rcu for read
 199 *	use_global_lock:
 200 *	* global sem_lock() for write
 201 *	* either local or global sem_lock() for read.
 202 *
 203 * Memory ordering:
 204 * Most ordering is enforced by using spin_lock() and spin_unlock().
 205 * The special case is use_global_lock:
 206 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
 207 * using smp_store_release().
 208 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
 209 * smp_load_acquire().
 210 * Setting it from 0 to non-zero must be ordered with regards to
 211 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
 212 * is inside a spin_lock() and after a write from 0 to non-zero a
 213 * spin_lock()+spin_unlock() is done.
 214 */
 215
 216#define sc_semmsl	sem_ctls[0]
 217#define sc_semmns	sem_ctls[1]
 218#define sc_semopm	sem_ctls[2]
 219#define sc_semmni	sem_ctls[3]
 220
 221int sem_init_ns(struct ipc_namespace *ns)
 222{
 223	ns->sc_semmsl = SEMMSL;
 224	ns->sc_semmns = SEMMNS;
 225	ns->sc_semopm = SEMOPM;
 226	ns->sc_semmni = SEMMNI;
 227	ns->used_sems = 0;
 228	return ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
 229}
 230
 231#ifdef CONFIG_IPC_NS
 232void sem_exit_ns(struct ipc_namespace *ns)
 233{
 234	free_ipcs(ns, &sem_ids(ns), freeary);
 235	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
 236	rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
 237}
 238#endif
 239
 240int __init sem_init(void)
 241{
 242	const int err = sem_init_ns(&init_ipc_ns);
 243
 244	ipc_init_proc_interface("sysvipc/sem",
 245				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
 246				IPC_SEM_IDS, sysvipc_sem_proc_show);
 247	return err;
 248}
 249
 250/**
 251 * unmerge_queues - unmerge queues, if possible.
 252 * @sma: semaphore array
 253 *
 254 * The function unmerges the wait queues if complex_count is 0.
 255 * It must be called prior to dropping the global semaphore array lock.
 256 */
 257static void unmerge_queues(struct sem_array *sma)
 258{
 259	struct sem_queue *q, *tq;
 260
 261	/* complex operations still around? */
 262	if (sma->complex_count)
 263		return;
 264	/*
 265	 * We will switch back to simple mode.
 266	 * Move all pending operation back into the per-semaphore
 267	 * queues.
 268	 */
 269	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
 270		struct sem *curr;
 271		curr = &sma->sems[q->sops[0].sem_num];
 272
 273		list_add_tail(&q->list, &curr->pending_alter);
 274	}
 275	INIT_LIST_HEAD(&sma->pending_alter);
 276}
 277
 278/**
 279 * merge_queues - merge single semop queues into global queue
 280 * @sma: semaphore array
 281 *
 282 * This function merges all per-semaphore queues into the global queue.
 283 * It is necessary to achieve FIFO ordering for the pending single-sop
 284 * operations when a multi-semop operation must sleep.
 285 * Only the alter operations must be moved, the const operations can stay.
 286 */
 287static void merge_queues(struct sem_array *sma)
 288{
 289	int i;
 290	for (i = 0; i < sma->sem_nsems; i++) {
 291		struct sem *sem = &sma->sems[i];
 292
 293		list_splice_init(&sem->pending_alter, &sma->pending_alter);
 294	}
 295}
 296
 297static void sem_rcu_free(struct rcu_head *head)
 298{
 299	struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
 300	struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
 301
 302	security_sem_free(&sma->sem_perm);
 303	kvfree(sma);
 304}
 305
 306/*
 307 * Enter the mode suitable for non-simple operations:
 
 
 
 
 
 
 
 
 
 
 308 * Caller must own sem_perm.lock.
 
 
 
 309 */
 310static void complexmode_enter(struct sem_array *sma)
 311{
 312	int i;
 313	struct sem *sem;
 314
 315	if (sma->use_global_lock > 0)  {
 316		/*
 317		 * We are already in global lock mode.
 318		 * Nothing to do, just reset the
 319		 * counter until we return to simple mode.
 320		 */
 321		sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
 322		return;
 323	}
 324	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
 325
 326	for (i = 0; i < sma->sem_nsems; i++) {
 327		sem = &sma->sems[i];
 328		spin_lock(&sem->lock);
 329		spin_unlock(&sem->lock);
 330	}
 331}
 332
 333/*
 334 * Try to leave the mode that disallows simple operations:
 335 * Caller must own sem_perm.lock.
 336 */
 337static void complexmode_tryleave(struct sem_array *sma)
 338{
 339	if (sma->complex_count)  {
 340		/* Complex ops are sleeping.
 341		 * We must stay in complex mode
 342		 */
 343		return;
 344	}
 345	if (sma->use_global_lock == 1) {
 346		/*
 347		 * Immediately after setting use_global_lock to 0,
 348		 * a simple op can start. Thus: all memory writes
 349		 * performed by the current operation must be visible
 350		 * before we set use_global_lock to 0.
 351		 */
 352		smp_store_release(&sma->use_global_lock, 0);
 353	} else {
 354		sma->use_global_lock--;
 355	}
 
 356}
 357
 358#define SEM_GLOBAL_LOCK	(-1)
 359/*
 360 * If the request contains only one semaphore operation, and there are
 361 * no complex transactions pending, lock only the semaphore involved.
 362 * Otherwise, lock the entire semaphore array, since we either have
 363 * multiple semaphores in our own semops, or we need to look at
 364 * semaphores from other pending complex operations.
 365 */
 366static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
 367			      int nsops)
 368{
 369	struct sem *sem;
 370
 371	if (nsops != 1) {
 372		/* Complex operation - acquire a full lock */
 373		ipc_lock_object(&sma->sem_perm);
 374
 375		/* Prevent parallel simple ops */
 376		complexmode_enter(sma);
 377		return SEM_GLOBAL_LOCK;
 
 
 378	}
 379
 380	/*
 381	 * Only one semaphore affected - try to optimize locking.
 382	 * Optimized locking is possible if no complex operation
 383	 * is either enqueued or processed right now.
 384	 *
 385	 * Both facts are tracked by use_global_mode.
 
 
 
 
 
 
 
 
 386	 */
 387	sem = &sma->sems[sops->sem_num];
 388
 389	/*
 390	 * Initial check for use_global_lock. Just an optimization,
 391	 * no locking, no memory barrier.
 392	 */
 393	if (!sma->use_global_lock) {
 394		/*
 395		 * It appears that no complex operation is around.
 396		 * Acquire the per-semaphore lock.
 397		 */
 398		spin_lock(&sem->lock);
 399
 400		/* pairs with smp_store_release() */
 401		if (!smp_load_acquire(&sma->use_global_lock)) {
 402			/* fast path successful! */
 403			return sops->sem_num;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404		}
 405		spin_unlock(&sem->lock);
 406	}
 407
 408	/* slow path: acquire the full lock */
 409	ipc_lock_object(&sma->sem_perm);
 410
 411	if (sma->use_global_lock == 0) {
 412		/*
 413		 * The use_global_lock mode ended while we waited for
 414		 * sma->sem_perm.lock. Thus we must switch to locking
 415		 * with sem->lock.
 416		 * Unlike in the fast path, there is no need to recheck
 417		 * sma->use_global_lock after we have acquired sem->lock:
 418		 * We own sma->sem_perm.lock, thus use_global_lock cannot
 419		 * change.
 420		 */
 421		spin_lock(&sem->lock);
 422
 423		ipc_unlock_object(&sma->sem_perm);
 424		return sops->sem_num;
 425	} else {
 426		/*
 427		 * Not a false alarm, thus continue to use the global lock
 428		 * mode. No need for complexmode_enter(), this was done by
 429		 * the caller that has set use_global_mode to non-zero.
 430		 */
 431		return SEM_GLOBAL_LOCK;
 
 432	}
 433}
 434
 435static inline void sem_unlock(struct sem_array *sma, int locknum)
 436{
 437	if (locknum == SEM_GLOBAL_LOCK) {
 438		unmerge_queues(sma);
 439		complexmode_tryleave(sma);
 440		ipc_unlock_object(&sma->sem_perm);
 441	} else {
 442		struct sem *sem = &sma->sems[locknum];
 443		spin_unlock(&sem->lock);
 444	}
 445}
 446
 447/*
 448 * sem_lock_(check_) routines are called in the paths where the rwsem
 449 * is not held.
 450 *
 451 * The caller holds the RCU read lock.
 452 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
 454{
 455	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
 456
 457	if (IS_ERR(ipcp))
 458		return ERR_CAST(ipcp);
 459
 460	return container_of(ipcp, struct sem_array, sem_perm);
 461}
 462
 463static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
 464							int id)
 465{
 466	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
 467
 468	if (IS_ERR(ipcp))
 469		return ERR_CAST(ipcp);
 470
 471	return container_of(ipcp, struct sem_array, sem_perm);
 472}
 473
 474static inline void sem_lock_and_putref(struct sem_array *sma)
 475{
 476	sem_lock(sma, NULL, -1);
 477	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
 478}
 479
 480static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
 481{
 482	ipc_rmid(&sem_ids(ns), &s->sem_perm);
 483}
 484
 485static struct sem_array *sem_alloc(size_t nsems)
 486{
 487	struct sem_array *sma;
 488	size_t size;
 489
 490	if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
 491		return NULL;
 492
 493	size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
 494	sma = kvmalloc(size, GFP_KERNEL);
 495	if (unlikely(!sma))
 496		return NULL;
 497
 498	memset(sma, 0, size);
 499
 500	return sma;
 501}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 502
 503/**
 504 * newary - Create a new semaphore set
 505 * @ns: namespace
 506 * @params: ptr to the structure that contains key, semflg and nsems
 507 *
 508 * Called with sem_ids.rwsem held (as a writer)
 509 */
 510static int newary(struct ipc_namespace *ns, struct ipc_params *params)
 511{
 
 512	int retval;
 513	struct sem_array *sma;
 
 514	key_t key = params->key;
 515	int nsems = params->u.nsems;
 516	int semflg = params->flg;
 517	int i;
 518
 519	if (!nsems)
 520		return -EINVAL;
 521	if (ns->used_sems + nsems > ns->sc_semmns)
 522		return -ENOSPC;
 523
 524	sma = sem_alloc(nsems);
 
 525	if (!sma)
 526		return -ENOMEM;
 527
 
 
 528	sma->sem_perm.mode = (semflg & S_IRWXUGO);
 529	sma->sem_perm.key = key;
 530
 531	sma->sem_perm.security = NULL;
 532	retval = security_sem_alloc(&sma->sem_perm);
 533	if (retval) {
 534		kvfree(sma);
 535		return retval;
 536	}
 537
 
 
 538	for (i = 0; i < nsems; i++) {
 539		INIT_LIST_HEAD(&sma->sems[i].pending_alter);
 540		INIT_LIST_HEAD(&sma->sems[i].pending_const);
 541		spin_lock_init(&sma->sems[i].lock);
 542	}
 543
 544	sma->complex_count = 0;
 545	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
 546	INIT_LIST_HEAD(&sma->pending_alter);
 547	INIT_LIST_HEAD(&sma->pending_const);
 548	INIT_LIST_HEAD(&sma->list_id);
 549	sma->sem_nsems = nsems;
 550	sma->sem_ctime = ktime_get_real_seconds();
 551
 552	/* ipc_addid() locks sma upon success. */
 553	retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
 554	if (retval < 0) {
 555		call_rcu(&sma->sem_perm.rcu, sem_rcu_free);
 556		return retval;
 557	}
 558	ns->used_sems += nsems;
 559
 560	sem_unlock(sma, -1);
 561	rcu_read_unlock();
 562
 563	return sma->sem_perm.id;
 564}
 565
 566
 567/*
 568 * Called with sem_ids.rwsem and ipcp locked.
 569 */
 
 
 
 
 
 
 
 
 
 
 
 570static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
 571				struct ipc_params *params)
 572{
 573	struct sem_array *sma;
 574
 575	sma = container_of(ipcp, struct sem_array, sem_perm);
 576	if (params->u.nsems > sma->sem_nsems)
 577		return -EINVAL;
 578
 579	return 0;
 580}
 581
 582long ksys_semget(key_t key, int nsems, int semflg)
 583{
 584	struct ipc_namespace *ns;
 585	static const struct ipc_ops sem_ops = {
 586		.getnew = newary,
 587		.associate = security_sem_associate,
 588		.more_checks = sem_more_checks,
 589	};
 590	struct ipc_params sem_params;
 591
 592	ns = current->nsproxy->ipc_ns;
 593
 594	if (nsems < 0 || nsems > ns->sc_semmsl)
 595		return -EINVAL;
 596
 597	sem_params.key = key;
 598	sem_params.flg = semflg;
 599	sem_params.u.nsems = nsems;
 600
 601	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
 602}
 603
 604SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
 605{
 606	return ksys_semget(key, nsems, semflg);
 607}
 608
 609/**
 610 * perform_atomic_semop[_slow] - Attempt to perform semaphore
 611 *                               operations on a given array.
 612 * @sma: semaphore array
 613 * @q: struct sem_queue that describes the operation
 614 *
 615 * Caller blocking are as follows, based the value
 616 * indicated by the semaphore operation (sem_op):
 617 *
 618 *  (1) >0 never blocks.
 619 *  (2)  0 (wait-for-zero operation): semval is non-zero.
 620 *  (3) <0 attempting to decrement semval to a value smaller than zero.
 621 *
 622 * Returns 0 if the operation was possible.
 623 * Returns 1 if the operation is impossible, the caller must sleep.
 624 * Returns <0 for error codes.
 625 */
 626static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
 627{
 628	int result, sem_op, nsops;
 629	struct pid *pid;
 630	struct sembuf *sop;
 631	struct sem *curr;
 632	struct sembuf *sops;
 633	struct sem_undo *un;
 634
 635	sops = q->sops;
 636	nsops = q->nsops;
 637	un = q->undo;
 638
 639	for (sop = sops; sop < sops + nsops; sop++) {
 640		curr = &sma->sems[sop->sem_num];
 641		sem_op = sop->sem_op;
 642		result = curr->semval;
 643
 644		if (!sem_op && result)
 645			goto would_block;
 646
 647		result += sem_op;
 648		if (result < 0)
 649			goto would_block;
 650		if (result > SEMVMX)
 651			goto out_of_range;
 652
 653		if (sop->sem_flg & SEM_UNDO) {
 654			int undo = un->semadj[sop->sem_num] - sem_op;
 655			/* Exceeding the undo range is an error. */
 656			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
 657				goto out_of_range;
 658			un->semadj[sop->sem_num] = undo;
 659		}
 660
 661		curr->semval = result;
 662	}
 663
 664	sop--;
 665	pid = q->pid;
 666	while (sop >= sops) {
 667		ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
 668		sop--;
 669	}
 670
 671	return 0;
 672
 673out_of_range:
 674	result = -ERANGE;
 675	goto undo;
 676
 677would_block:
 678	q->blocking = sop;
 679
 680	if (sop->sem_flg & IPC_NOWAIT)
 681		result = -EAGAIN;
 682	else
 683		result = 1;
 684
 685undo:
 686	sop--;
 687	while (sop >= sops) {
 688		sem_op = sop->sem_op;
 689		sma->sems[sop->sem_num].semval -= sem_op;
 690		if (sop->sem_flg & SEM_UNDO)
 691			un->semadj[sop->sem_num] += sem_op;
 692		sop--;
 693	}
 694
 695	return result;
 696}
 697
 698static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
 
 
 
 
 
 
 
 699{
 700	int result, sem_op, nsops;
 701	struct sembuf *sop;
 702	struct sem *curr;
 703	struct sembuf *sops;
 704	struct sem_undo *un;
 705
 706	sops = q->sops;
 707	nsops = q->nsops;
 708	un = q->undo;
 709
 710	if (unlikely(q->dupsop))
 711		return perform_atomic_semop_slow(sma, q);
 712
 713	/*
 714	 * We scan the semaphore set twice, first to ensure that the entire
 715	 * operation can succeed, therefore avoiding any pointless writes
 716	 * to shared memory and having to undo such changes in order to block
 717	 * until the operations can go through.
 718	 */
 719	for (sop = sops; sop < sops + nsops; sop++) {
 720		curr = &sma->sems[sop->sem_num];
 721		sem_op = sop->sem_op;
 722		result = curr->semval;
 723
 724		if (!sem_op && result)
 725			goto would_block; /* wait-for-zero */
 726
 727		result += sem_op;
 728		if (result < 0)
 729			goto would_block;
 730
 731		if (result > SEMVMX)
 732			return -ERANGE;
 733
 734		if (sop->sem_flg & SEM_UNDO) {
 735			int undo = un->semadj[sop->sem_num] - sem_op;
 736
 737			/* Exceeding the undo range is an error. */
 738			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
 739				return -ERANGE;
 740		}
 741	}
 
 
 742
 743	for (sop = sops; sop < sops + nsops; sop++) {
 744		curr = &sma->sems[sop->sem_num];
 745		sem_op = sop->sem_op;
 746		result = curr->semval;
 747
 748		if (sop->sem_flg & SEM_UNDO) {
 749			int undo = un->semadj[sop->sem_num] - sem_op;
 750
 751			un->semadj[sop->sem_num] = undo;
 752		}
 753		curr->semval += sem_op;
 754		ipc_update_pid(&curr->sempid, q->pid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 755	}
 756
 757	return 0;
 758
 759would_block:
 760	q->blocking = sop;
 761	return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
 762}
 763
 764static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
 765					     struct wake_q_head *wake_q)
 766{
 767	wake_q_add(wake_q, q->sleeper);
 768	/*
 769	 * Rely on the above implicit barrier, such that we can
 770	 * ensure that we hold reference to the task before setting
 771	 * q->status. Otherwise we could race with do_exit if the
 772	 * task is awoken by an external event before calling
 773	 * wake_up_process().
 774	 */
 775	WRITE_ONCE(q->status, error);
 776}
 777
 778static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
 779{
 780	list_del(&q->list);
 781	if (q->nsops > 1)
 782		sma->complex_count--;
 783}
 784
 785/** check_restart(sma, q)
 786 * @sma: semaphore array
 787 * @q: the operation that just completed
 788 *
 789 * update_queue is O(N^2) when it restarts scanning the whole queue of
 790 * waiting operations. Therefore this function checks if the restart is
 791 * really necessary. It is called after a previously waiting operation
 792 * modified the array.
 793 * Note that wait-for-zero operations are handled without restart.
 794 */
 795static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
 796{
 797	/* pending complex alter operations are too difficult to analyse */
 798	if (!list_empty(&sma->pending_alter))
 799		return 1;
 800
 801	/* we were a sleeping complex operation. Too difficult */
 802	if (q->nsops > 1)
 803		return 1;
 804
 805	/* It is impossible that someone waits for the new value:
 806	 * - complex operations always restart.
 807	 * - wait-for-zero are handled seperately.
 808	 * - q is a previously sleeping simple operation that
 809	 *   altered the array. It must be a decrement, because
 810	 *   simple increments never sleep.
 811	 * - If there are older (higher priority) decrements
 812	 *   in the queue, then they have observed the original
 813	 *   semval value and couldn't proceed. The operation
 814	 *   decremented to value - thus they won't proceed either.
 815	 */
 816	return 0;
 817}
 818
 819/**
 820 * wake_const_ops - wake up non-alter tasks
 821 * @sma: semaphore array.
 822 * @semnum: semaphore that was modified.
 823 * @wake_q: lockless wake-queue head.
 824 *
 825 * wake_const_ops must be called after a semaphore in a semaphore array
 826 * was set to 0. If complex const operations are pending, wake_const_ops must
 827 * be called with semnum = -1, as well as with the number of each modified
 828 * semaphore.
 829 * The tasks that must be woken up are added to @wake_q. The return code
 830 * is stored in q->pid.
 831 * The function returns 1 if at least one operation was completed successfully.
 832 */
 833static int wake_const_ops(struct sem_array *sma, int semnum,
 834			  struct wake_q_head *wake_q)
 835{
 836	struct sem_queue *q, *tmp;
 
 837	struct list_head *pending_list;
 838	int semop_completed = 0;
 839
 840	if (semnum == -1)
 841		pending_list = &sma->pending_const;
 842	else
 843		pending_list = &sma->sems[semnum].pending_const;
 
 
 
 
 
 
 
 844
 845	list_for_each_entry_safe(q, tmp, pending_list, list) {
 846		int error = perform_atomic_semop(sma, q);
 
 
 847
 848		if (error > 0)
 849			continue;
 850		/* operation completed, remove from queue & wakeup */
 851		unlink_queue(sma, q);
 852
 853		wake_up_sem_queue_prepare(q, error, wake_q);
 854		if (error == 0)
 855			semop_completed = 1;
 
 856	}
 857
 858	return semop_completed;
 859}
 860
 861/**
 862 * do_smart_wakeup_zero - wakeup all wait for zero tasks
 863 * @sma: semaphore array
 864 * @sops: operations that were performed
 865 * @nsops: number of operations
 866 * @wake_q: lockless wake-queue head
 867 *
 868 * Checks all required queue for wait-for-zero operations, based
 869 * on the actual changes that were performed on the semaphore array.
 870 * The function returns 1 if at least one operation was completed successfully.
 871 */
 872static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
 873				int nsops, struct wake_q_head *wake_q)
 874{
 875	int i;
 876	int semop_completed = 0;
 877	int got_zero = 0;
 878
 879	/* first: the per-semaphore queues, if known */
 880	if (sops) {
 881		for (i = 0; i < nsops; i++) {
 882			int num = sops[i].sem_num;
 883
 884			if (sma->sems[num].semval == 0) {
 885				got_zero = 1;
 886				semop_completed |= wake_const_ops(sma, num, wake_q);
 887			}
 888		}
 889	} else {
 890		/*
 891		 * No sops means modified semaphores not known.
 892		 * Assume all were changed.
 893		 */
 894		for (i = 0; i < sma->sem_nsems; i++) {
 895			if (sma->sems[i].semval == 0) {
 896				got_zero = 1;
 897				semop_completed |= wake_const_ops(sma, i, wake_q);
 898			}
 899		}
 900	}
 901	/*
 902	 * If one of the modified semaphores got 0,
 903	 * then check the global queue, too.
 904	 */
 905	if (got_zero)
 906		semop_completed |= wake_const_ops(sma, -1, wake_q);
 907
 908	return semop_completed;
 909}
 910
 911
 912/**
 913 * update_queue - look for tasks that can be completed.
 914 * @sma: semaphore array.
 915 * @semnum: semaphore that was modified.
 916 * @wake_q: lockless wake-queue head.
 917 *
 918 * update_queue must be called after a semaphore in a semaphore array
 919 * was modified. If multiple semaphores were modified, update_queue must
 920 * be called with semnum = -1, as well as with the number of each modified
 921 * semaphore.
 922 * The tasks that must be woken up are added to @wake_q. The return code
 923 * is stored in q->pid.
 924 * The function internally checks if const operations can now succeed.
 925 *
 926 * The function return 1 if at least one semop was completed successfully.
 927 */
 928static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
 929{
 930	struct sem_queue *q, *tmp;
 
 931	struct list_head *pending_list;
 932	int semop_completed = 0;
 933
 934	if (semnum == -1)
 935		pending_list = &sma->pending_alter;
 936	else
 937		pending_list = &sma->sems[semnum].pending_alter;
 938
 939again:
 940	list_for_each_entry_safe(q, tmp, pending_list, list) {
 
 941		int error, restart;
 942
 
 
 
 943		/* If we are scanning the single sop, per-semaphore list of
 944		 * one semaphore and that semaphore is 0, then it is not
 945		 * necessary to scan further: simple increments
 946		 * that affect only one entry succeed immediately and cannot
 947		 * be in the  per semaphore pending queue, and decrements
 948		 * cannot be successful if the value is already 0.
 949		 */
 950		if (semnum != -1 && sma->sems[semnum].semval == 0)
 951			break;
 952
 953		error = perform_atomic_semop(sma, q);
 954
 955		/* Does q->sleeper still need to sleep? */
 956		if (error > 0)
 957			continue;
 958
 959		unlink_queue(sma, q);
 960
 961		if (error) {
 962			restart = 0;
 963		} else {
 964			semop_completed = 1;
 965			do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
 966			restart = check_restart(sma, q);
 967		}
 968
 969		wake_up_sem_queue_prepare(q, error, wake_q);
 970		if (restart)
 971			goto again;
 972	}
 973	return semop_completed;
 974}
 975
 976/**
 977 * set_semotime - set sem_otime
 978 * @sma: semaphore array
 979 * @sops: operations that modified the array, may be NULL
 980 *
 981 * sem_otime is replicated to avoid cache line trashing.
 982 * This function sets one instance to the current time.
 983 */
 984static void set_semotime(struct sem_array *sma, struct sembuf *sops)
 985{
 986	if (sops == NULL) {
 987		sma->sems[0].sem_otime = get_seconds();
 988	} else {
 989		sma->sems[sops[0].sem_num].sem_otime =
 990							get_seconds();
 991	}
 992}
 993
 994/**
 995 * do_smart_update - optimized update_queue
 996 * @sma: semaphore array
 997 * @sops: operations that were performed
 998 * @nsops: number of operations
 999 * @otime: force setting otime
1000 * @wake_q: lockless wake-queue head
1001 *
1002 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1003 * based on the actual changes that were performed on the semaphore array.
1004 * Note that the function does not do the actual wake-up: the caller is
1005 * responsible for calling wake_up_q().
1006 * It is safe to perform this call after dropping all locks.
1007 */
1008static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1009			    int otime, struct wake_q_head *wake_q)
1010{
1011	int i;
1012
1013	otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1014
1015	if (!list_empty(&sma->pending_alter)) {
1016		/* semaphore array uses the global queue - just process it. */
1017		otime |= update_queue(sma, -1, wake_q);
1018	} else {
1019		if (!sops) {
1020			/*
1021			 * No sops, thus the modified semaphores are not
1022			 * known. Check all.
1023			 */
1024			for (i = 0; i < sma->sem_nsems; i++)
1025				otime |= update_queue(sma, i, wake_q);
1026		} else {
1027			/*
1028			 * Check the semaphores that were increased:
1029			 * - No complex ops, thus all sleeping ops are
1030			 *   decrease.
1031			 * - if we decreased the value, then any sleeping
1032			 *   semaphore ops wont be able to run: If the
1033			 *   previous value was too small, then the new
1034			 *   value will be too small, too.
1035			 */
1036			for (i = 0; i < nsops; i++) {
1037				if (sops[i].sem_op > 0) {
1038					otime |= update_queue(sma,
1039							      sops[i].sem_num, wake_q);
1040				}
1041			}
1042		}
1043	}
1044	if (otime)
1045		set_semotime(sma, sops);
1046}
1047
1048/*
1049 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1050 */
1051static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1052			bool count_zero)
1053{
1054	struct sembuf *sop = q->blocking;
1055
1056	/*
1057	 * Linux always (since 0.99.10) reported a task as sleeping on all
1058	 * semaphores. This violates SUS, therefore it was changed to the
1059	 * standard compliant behavior.
1060	 * Give the administrators a chance to notice that an application
1061	 * might misbehave because it relies on the Linux behavior.
1062	 */
1063	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1064			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1065			current->comm, task_pid_nr(current));
1066
1067	if (sop->sem_num != semnum)
1068		return 0;
1069
1070	if (count_zero && sop->sem_op == 0)
1071		return 1;
1072	if (!count_zero && sop->sem_op < 0)
1073		return 1;
1074
1075	return 0;
1076}
1077
1078/* The following counts are associated to each semaphore:
1079 *   semncnt        number of tasks waiting on semval being nonzero
1080 *   semzcnt        number of tasks waiting on semval being zero
1081 *
1082 * Per definition, a task waits only on the semaphore of the first semop
1083 * that cannot proceed, even if additional operation would block, too.
1084 */
1085static int count_semcnt(struct sem_array *sma, ushort semnum,
1086			bool count_zero)
1087{
1088	struct list_head *l;
1089	struct sem_queue *q;
1090	int semcnt;
1091
1092	semcnt = 0;
1093	/* First: check the simple operations. They are easy to evaluate */
1094	if (count_zero)
1095		l = &sma->sems[semnum].pending_const;
1096	else
1097		l = &sma->sems[semnum].pending_alter;
1098
1099	list_for_each_entry(q, l, list) {
1100		/* all task on a per-semaphore list sleep on exactly
1101		 * that semaphore
1102		 */
1103		semcnt++;
1104	}
1105
1106	/* Then: check the complex operations. */
1107	list_for_each_entry(q, &sma->pending_alter, list) {
1108		semcnt += check_qop(sma, semnum, q, count_zero);
1109	}
1110	if (count_zero) {
1111		list_for_each_entry(q, &sma->pending_const, list) {
1112			semcnt += check_qop(sma, semnum, q, count_zero);
1113		}
1114	}
1115	return semcnt;
1116}
1117
1118/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1119 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1120 * remains locked on exit.
1121 */
1122static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1123{
1124	struct sem_undo *un, *tu;
1125	struct sem_queue *q, *tq;
1126	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
 
1127	int i;
1128	DEFINE_WAKE_Q(wake_q);
1129
1130	/* Free the existing undo structures for this semaphore set.  */
1131	ipc_assert_locked_object(&sma->sem_perm);
1132	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1133		list_del(&un->list_id);
1134		spin_lock(&un->ulp->lock);
1135		un->semid = -1;
1136		list_del_rcu(&un->list_proc);
1137		spin_unlock(&un->ulp->lock);
1138		kfree_rcu(un, rcu);
1139	}
1140
1141	/* Wake up all pending processes and let them fail with EIDRM. */
 
1142	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1143		unlink_queue(sma, q);
1144		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1145	}
1146
1147	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1148		unlink_queue(sma, q);
1149		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1150	}
1151	for (i = 0; i < sma->sem_nsems; i++) {
1152		struct sem *sem = &sma->sems[i];
1153		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1154			unlink_queue(sma, q);
1155			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1156		}
1157		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1158			unlink_queue(sma, q);
1159			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1160		}
1161		ipc_update_pid(&sem->sempid, NULL);
1162	}
1163
1164	/* Remove the semaphore set from the IDR */
1165	sem_rmid(ns, sma);
1166	sem_unlock(sma, -1);
1167	rcu_read_unlock();
1168
1169	wake_up_q(&wake_q);
1170	ns->used_sems -= sma->sem_nsems;
1171	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1172}
1173
1174static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1175{
1176	switch (version) {
1177	case IPC_64:
1178		return copy_to_user(buf, in, sizeof(*in));
1179	case IPC_OLD:
1180	    {
1181		struct semid_ds out;
1182
1183		memset(&out, 0, sizeof(out));
1184
1185		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1186
1187		out.sem_otime	= in->sem_otime;
1188		out.sem_ctime	= in->sem_ctime;
1189		out.sem_nsems	= in->sem_nsems;
1190
1191		return copy_to_user(buf, &out, sizeof(out));
1192	    }
1193	default:
1194		return -EINVAL;
1195	}
1196}
1197
1198static time64_t get_semotime(struct sem_array *sma)
1199{
1200	int i;
1201	time64_t res;
1202
1203	res = sma->sems[0].sem_otime;
1204	for (i = 1; i < sma->sem_nsems; i++) {
1205		time64_t to = sma->sems[i].sem_otime;
1206
1207		if (to > res)
1208			res = to;
1209	}
1210	return res;
1211}
1212
1213static int semctl_stat(struct ipc_namespace *ns, int semid,
1214			 int cmd, struct semid64_ds *semid64)
1215{
 
1216	struct sem_array *sma;
1217	int id = 0;
1218	int err;
1219
1220	memset(semid64, 0, sizeof(*semid64));
 
 
 
 
 
 
 
 
 
1221
1222	rcu_read_lock();
1223	if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1224		sma = sem_obtain_object(ns, semid);
1225		if (IS_ERR(sma)) {
1226			err = PTR_ERR(sma);
1227			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
1228		}
1229		id = sma->sem_perm.id;
1230	} else { /* IPC_STAT */
1231		sma = sem_obtain_object_check(ns, semid);
1232		if (IS_ERR(sma)) {
1233			err = PTR_ERR(sma);
1234			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235		}
1236	}
1237
1238	/* see comment for SHM_STAT_ANY */
1239	if (cmd == SEM_STAT_ANY)
1240		audit_ipc_obj(&sma->sem_perm);
1241	else {
1242		err = -EACCES;
1243		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1244			goto out_unlock;
1245	}
1246
1247	err = security_sem_semctl(&sma->sem_perm, cmd);
1248	if (err)
1249		goto out_unlock;
1250
1251	ipc_lock_object(&sma->sem_perm);
1252
1253	if (!ipc_valid_object(&sma->sem_perm)) {
1254		ipc_unlock_object(&sma->sem_perm);
1255		err = -EIDRM;
1256		goto out_unlock;
 
 
 
 
 
1257	}
1258
1259	kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1260	semid64->sem_otime = get_semotime(sma);
1261	semid64->sem_ctime = sma->sem_ctime;
1262	semid64->sem_nsems = sma->sem_nsems;
1263
1264	ipc_unlock_object(&sma->sem_perm);
1265	rcu_read_unlock();
1266	return id;
1267
1268out_unlock:
1269	rcu_read_unlock();
1270	return err;
1271}
1272
1273static int semctl_info(struct ipc_namespace *ns, int semid,
1274			 int cmd, void __user *p)
1275{
1276	struct seminfo seminfo;
1277	int max_id;
1278	int err;
1279
1280	err = security_sem_semctl(NULL, cmd);
1281	if (err)
1282		return err;
1283
1284	memset(&seminfo, 0, sizeof(seminfo));
1285	seminfo.semmni = ns->sc_semmni;
1286	seminfo.semmns = ns->sc_semmns;
1287	seminfo.semmsl = ns->sc_semmsl;
1288	seminfo.semopm = ns->sc_semopm;
1289	seminfo.semvmx = SEMVMX;
1290	seminfo.semmnu = SEMMNU;
1291	seminfo.semmap = SEMMAP;
1292	seminfo.semume = SEMUME;
1293	down_read(&sem_ids(ns).rwsem);
1294	if (cmd == SEM_INFO) {
1295		seminfo.semusz = sem_ids(ns).in_use;
1296		seminfo.semaem = ns->used_sems;
1297	} else {
1298		seminfo.semusz = SEMUSZ;
1299		seminfo.semaem = SEMAEM;
1300	}
1301	max_id = ipc_get_maxid(&sem_ids(ns));
1302	up_read(&sem_ids(ns).rwsem);
1303	if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1304		return -EFAULT;
1305	return (max_id < 0) ? 0 : max_id;
1306}
1307
1308static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1309		int val)
1310{
1311	struct sem_undo *un;
1312	struct sem_array *sma;
1313	struct sem *curr;
1314	int err;
1315	DEFINE_WAKE_Q(wake_q);
 
 
 
 
 
 
 
 
1316
1317	if (val > SEMVMX || val < 0)
1318		return -ERANGE;
1319
 
 
1320	rcu_read_lock();
1321	sma = sem_obtain_object_check(ns, semid);
1322	if (IS_ERR(sma)) {
1323		rcu_read_unlock();
1324		return PTR_ERR(sma);
1325	}
1326
1327	if (semnum < 0 || semnum >= sma->sem_nsems) {
1328		rcu_read_unlock();
1329		return -EINVAL;
1330	}
1331
1332
1333	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1334		rcu_read_unlock();
1335		return -EACCES;
1336	}
1337
1338	err = security_sem_semctl(&sma->sem_perm, SETVAL);
1339	if (err) {
1340		rcu_read_unlock();
1341		return -EACCES;
1342	}
1343
1344	sem_lock(sma, NULL, -1);
1345
1346	if (!ipc_valid_object(&sma->sem_perm)) {
1347		sem_unlock(sma, -1);
1348		rcu_read_unlock();
1349		return -EIDRM;
1350	}
1351
1352	curr = &sma->sems[semnum];
1353
1354	ipc_assert_locked_object(&sma->sem_perm);
1355	list_for_each_entry(un, &sma->list_id, list_id)
1356		un->semadj[semnum] = 0;
1357
1358	curr->semval = val;
1359	ipc_update_pid(&curr->sempid, task_tgid(current));
1360	sma->sem_ctime = ktime_get_real_seconds();
1361	/* maybe some queued-up processes were waiting for this */
1362	do_smart_update(sma, NULL, 0, 0, &wake_q);
1363	sem_unlock(sma, -1);
1364	rcu_read_unlock();
1365	wake_up_q(&wake_q);
1366	return 0;
1367}
1368
1369static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1370		int cmd, void __user *p)
1371{
1372	struct sem_array *sma;
1373	struct sem *curr;
1374	int err, nsems;
1375	ushort fast_sem_io[SEMMSL_FAST];
1376	ushort *sem_io = fast_sem_io;
1377	DEFINE_WAKE_Q(wake_q);
 
 
1378
1379	rcu_read_lock();
1380	sma = sem_obtain_object_check(ns, semid);
1381	if (IS_ERR(sma)) {
1382		rcu_read_unlock();
1383		return PTR_ERR(sma);
1384	}
1385
1386	nsems = sma->sem_nsems;
1387
1388	err = -EACCES;
1389	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1390		goto out_rcu_wakeup;
1391
1392	err = security_sem_semctl(&sma->sem_perm, cmd);
1393	if (err)
1394		goto out_rcu_wakeup;
1395
1396	err = -EACCES;
1397	switch (cmd) {
1398	case GETALL:
1399	{
1400		ushort __user *array = p;
1401		int i;
1402
1403		sem_lock(sma, NULL, -1);
1404		if (!ipc_valid_object(&sma->sem_perm)) {
1405			err = -EIDRM;
1406			goto out_unlock;
1407		}
1408		if (nsems > SEMMSL_FAST) {
1409			if (!ipc_rcu_getref(&sma->sem_perm)) {
1410				err = -EIDRM;
1411				goto out_unlock;
1412			}
1413			sem_unlock(sma, -1);
1414			rcu_read_unlock();
1415			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1416						GFP_KERNEL);
1417			if (sem_io == NULL) {
1418				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1419				return -ENOMEM;
1420			}
1421
1422			rcu_read_lock();
1423			sem_lock_and_putref(sma);
1424			if (!ipc_valid_object(&sma->sem_perm)) {
1425				err = -EIDRM;
1426				goto out_unlock;
1427			}
1428		}
1429		for (i = 0; i < sma->sem_nsems; i++)
1430			sem_io[i] = sma->sems[i].semval;
1431		sem_unlock(sma, -1);
1432		rcu_read_unlock();
1433		err = 0;
1434		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1435			err = -EFAULT;
1436		goto out_free;
1437	}
1438	case SETALL:
1439	{
1440		int i;
1441		struct sem_undo *un;
1442
1443		if (!ipc_rcu_getref(&sma->sem_perm)) {
1444			err = -EIDRM;
1445			goto out_rcu_wakeup;
1446		}
1447		rcu_read_unlock();
1448
1449		if (nsems > SEMMSL_FAST) {
1450			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1451						GFP_KERNEL);
1452			if (sem_io == NULL) {
1453				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1454				return -ENOMEM;
1455			}
1456		}
1457
1458		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1459			ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1460			err = -EFAULT;
1461			goto out_free;
1462		}
1463
1464		for (i = 0; i < nsems; i++) {
1465			if (sem_io[i] > SEMVMX) {
1466				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1467				err = -ERANGE;
1468				goto out_free;
1469			}
1470		}
1471		rcu_read_lock();
1472		sem_lock_and_putref(sma);
1473		if (!ipc_valid_object(&sma->sem_perm)) {
1474			err = -EIDRM;
1475			goto out_unlock;
1476		}
1477
1478		for (i = 0; i < nsems; i++) {
1479			sma->sems[i].semval = sem_io[i];
1480			ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1481		}
1482
1483		ipc_assert_locked_object(&sma->sem_perm);
1484		list_for_each_entry(un, &sma->list_id, list_id) {
1485			for (i = 0; i < nsems; i++)
1486				un->semadj[i] = 0;
1487		}
1488		sma->sem_ctime = ktime_get_real_seconds();
1489		/* maybe some queued-up processes were waiting for this */
1490		do_smart_update(sma, NULL, 0, 0, &wake_q);
1491		err = 0;
1492		goto out_unlock;
1493	}
1494	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1495	}
1496	err = -EINVAL;
1497	if (semnum < 0 || semnum >= nsems)
1498		goto out_rcu_wakeup;
1499
1500	sem_lock(sma, NULL, -1);
1501	if (!ipc_valid_object(&sma->sem_perm)) {
1502		err = -EIDRM;
1503		goto out_unlock;
1504	}
1505	curr = &sma->sems[semnum];
1506
1507	switch (cmd) {
1508	case GETVAL:
1509		err = curr->semval;
1510		goto out_unlock;
1511	case GETPID:
1512		err = pid_vnr(curr->sempid);
1513		goto out_unlock;
1514	case GETNCNT:
1515		err = count_semcnt(sma, semnum, 0);
1516		goto out_unlock;
1517	case GETZCNT:
1518		err = count_semcnt(sma, semnum, 1);
1519		goto out_unlock;
1520	}
1521
1522out_unlock:
1523	sem_unlock(sma, -1);
1524out_rcu_wakeup:
1525	rcu_read_unlock();
1526	wake_up_q(&wake_q);
1527out_free:
1528	if (sem_io != fast_sem_io)
1529		kvfree(sem_io);
1530	return err;
1531}
1532
1533static inline unsigned long
1534copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1535{
1536	switch (version) {
1537	case IPC_64:
1538		if (copy_from_user(out, buf, sizeof(*out)))
1539			return -EFAULT;
1540		return 0;
1541	case IPC_OLD:
1542	    {
1543		struct semid_ds tbuf_old;
1544
1545		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1546			return -EFAULT;
1547
1548		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1549		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1550		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1551
1552		return 0;
1553	    }
1554	default:
1555		return -EINVAL;
1556	}
1557}
1558
1559/*
1560 * This function handles some semctl commands which require the rwsem
1561 * to be held in write mode.
1562 * NOTE: no locks must be held, the rwsem is taken inside this function.
1563 */
1564static int semctl_down(struct ipc_namespace *ns, int semid,
1565		       int cmd, struct semid64_ds *semid64)
1566{
1567	struct sem_array *sma;
1568	int err;
 
1569	struct kern_ipc_perm *ipcp;
1570
 
 
 
 
 
1571	down_write(&sem_ids(ns).rwsem);
1572	rcu_read_lock();
1573
1574	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1575				      &semid64->sem_perm, 0);
1576	if (IS_ERR(ipcp)) {
1577		err = PTR_ERR(ipcp);
1578		goto out_unlock1;
1579	}
1580
1581	sma = container_of(ipcp, struct sem_array, sem_perm);
1582
1583	err = security_sem_semctl(&sma->sem_perm, cmd);
1584	if (err)
1585		goto out_unlock1;
1586
1587	switch (cmd) {
1588	case IPC_RMID:
1589		sem_lock(sma, NULL, -1);
1590		/* freeary unlocks the ipc object and rcu */
1591		freeary(ns, ipcp);
1592		goto out_up;
1593	case IPC_SET:
1594		sem_lock(sma, NULL, -1);
1595		err = ipc_update_perm(&semid64->sem_perm, ipcp);
1596		if (err)
1597			goto out_unlock0;
1598		sma->sem_ctime = ktime_get_real_seconds();
1599		break;
1600	default:
1601		err = -EINVAL;
1602		goto out_unlock1;
1603	}
1604
1605out_unlock0:
1606	sem_unlock(sma, -1);
1607out_unlock1:
1608	rcu_read_unlock();
1609out_up:
1610	up_write(&sem_ids(ns).rwsem);
1611	return err;
1612}
1613
1614long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg)
1615{
1616	int version;
1617	struct ipc_namespace *ns;
1618	void __user *p = (void __user *)arg;
1619	struct semid64_ds semid64;
1620	int err;
1621
1622	if (semid < 0)
1623		return -EINVAL;
1624
1625	version = ipc_parse_version(&cmd);
1626	ns = current->nsproxy->ipc_ns;
1627
1628	switch (cmd) {
1629	case IPC_INFO:
1630	case SEM_INFO:
1631		return semctl_info(ns, semid, cmd, p);
1632	case IPC_STAT:
1633	case SEM_STAT:
1634	case SEM_STAT_ANY:
1635		err = semctl_stat(ns, semid, cmd, &semid64);
1636		if (err < 0)
1637			return err;
1638		if (copy_semid_to_user(p, &semid64, version))
1639			err = -EFAULT;
1640		return err;
1641	case GETALL:
1642	case GETVAL:
1643	case GETPID:
1644	case GETNCNT:
1645	case GETZCNT:
1646	case SETALL:
1647		return semctl_main(ns, semid, semnum, cmd, p);
1648	case SETVAL: {
1649		int val;
1650#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1651		/* big-endian 64bit */
1652		val = arg >> 32;
1653#else
1654		/* 32bit or little-endian 64bit */
1655		val = arg;
1656#endif
1657		return semctl_setval(ns, semid, semnum, val);
1658	}
1659	case IPC_SET:
1660		if (copy_semid_from_user(&semid64, p, version))
1661			return -EFAULT;
1662	case IPC_RMID:
1663		return semctl_down(ns, semid, cmd, &semid64);
1664	default:
1665		return -EINVAL;
1666	}
1667}
1668
1669SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1670{
1671	return ksys_semctl(semid, semnum, cmd, arg);
1672}
1673
1674#ifdef CONFIG_COMPAT
1675
1676struct compat_semid_ds {
1677	struct compat_ipc_perm sem_perm;
1678	compat_time_t sem_otime;
1679	compat_time_t sem_ctime;
1680	compat_uptr_t sem_base;
1681	compat_uptr_t sem_pending;
1682	compat_uptr_t sem_pending_last;
1683	compat_uptr_t undo;
1684	unsigned short sem_nsems;
1685};
1686
1687static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1688					int version)
1689{
1690	memset(out, 0, sizeof(*out));
1691	if (version == IPC_64) {
1692		struct compat_semid64_ds __user *p = buf;
1693		return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1694	} else {
1695		struct compat_semid_ds __user *p = buf;
1696		return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1697	}
1698}
1699
1700static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1701					int version)
1702{
1703	if (version == IPC_64) {
1704		struct compat_semid64_ds v;
1705		memset(&v, 0, sizeof(v));
1706		to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1707		v.sem_otime = in->sem_otime;
1708		v.sem_ctime = in->sem_ctime;
1709		v.sem_nsems = in->sem_nsems;
1710		return copy_to_user(buf, &v, sizeof(v));
1711	} else {
1712		struct compat_semid_ds v;
1713		memset(&v, 0, sizeof(v));
1714		to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1715		v.sem_otime = in->sem_otime;
1716		v.sem_ctime = in->sem_ctime;
1717		v.sem_nsems = in->sem_nsems;
1718		return copy_to_user(buf, &v, sizeof(v));
1719	}
1720}
1721
1722long compat_ksys_semctl(int semid, int semnum, int cmd, int arg)
1723{
1724	void __user *p = compat_ptr(arg);
1725	struct ipc_namespace *ns;
1726	struct semid64_ds semid64;
1727	int version = compat_ipc_parse_version(&cmd);
1728	int err;
1729
1730	ns = current->nsproxy->ipc_ns;
1731
1732	if (semid < 0)
1733		return -EINVAL;
1734
1735	switch (cmd & (~IPC_64)) {
1736	case IPC_INFO:
1737	case SEM_INFO:
1738		return semctl_info(ns, semid, cmd, p);
1739	case IPC_STAT:
1740	case SEM_STAT:
1741	case SEM_STAT_ANY:
1742		err = semctl_stat(ns, semid, cmd, &semid64);
1743		if (err < 0)
1744			return err;
1745		if (copy_compat_semid_to_user(p, &semid64, version))
1746			err = -EFAULT;
1747		return err;
1748	case GETVAL:
1749	case GETPID:
1750	case GETNCNT:
1751	case GETZCNT:
1752	case GETALL:
1753	case SETALL:
1754		return semctl_main(ns, semid, semnum, cmd, p);
1755	case SETVAL:
1756		return semctl_setval(ns, semid, semnum, arg);
 
1757	case IPC_SET:
1758		if (copy_compat_semid_from_user(&semid64, p, version))
1759			return -EFAULT;
1760		/* fallthru */
1761	case IPC_RMID:
1762		return semctl_down(ns, semid, cmd, &semid64);
1763	default:
1764		return -EINVAL;
1765	}
1766}
1767
1768COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1769{
1770	return compat_ksys_semctl(semid, semnum, cmd, arg);
1771}
1772#endif
1773
1774/* If the task doesn't already have a undo_list, then allocate one
1775 * here.  We guarantee there is only one thread using this undo list,
1776 * and current is THE ONE
1777 *
1778 * If this allocation and assignment succeeds, but later
1779 * portions of this code fail, there is no need to free the sem_undo_list.
1780 * Just let it stay associated with the task, and it'll be freed later
1781 * at exit time.
1782 *
1783 * This can block, so callers must hold no locks.
1784 */
1785static inline int get_undo_list(struct sem_undo_list **undo_listp)
1786{
1787	struct sem_undo_list *undo_list;
1788
1789	undo_list = current->sysvsem.undo_list;
1790	if (!undo_list) {
1791		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1792		if (undo_list == NULL)
1793			return -ENOMEM;
1794		spin_lock_init(&undo_list->lock);
1795		refcount_set(&undo_list->refcnt, 1);
1796		INIT_LIST_HEAD(&undo_list->list_proc);
1797
1798		current->sysvsem.undo_list = undo_list;
1799	}
1800	*undo_listp = undo_list;
1801	return 0;
1802}
1803
1804static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1805{
1806	struct sem_undo *un;
1807
1808	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1809		if (un->semid == semid)
1810			return un;
1811	}
1812	return NULL;
1813}
1814
1815static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1816{
1817	struct sem_undo *un;
1818
1819	assert_spin_locked(&ulp->lock);
1820
1821	un = __lookup_undo(ulp, semid);
1822	if (un) {
1823		list_del_rcu(&un->list_proc);
1824		list_add_rcu(&un->list_proc, &ulp->list_proc);
1825	}
1826	return un;
1827}
1828
1829/**
1830 * find_alloc_undo - lookup (and if not present create) undo array
1831 * @ns: namespace
1832 * @semid: semaphore array id
1833 *
1834 * The function looks up (and if not present creates) the undo structure.
1835 * The size of the undo structure depends on the size of the semaphore
1836 * array, thus the alloc path is not that straightforward.
1837 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1838 * performs a rcu_read_lock().
1839 */
1840static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1841{
1842	struct sem_array *sma;
1843	struct sem_undo_list *ulp;
1844	struct sem_undo *un, *new;
1845	int nsems, error;
1846
1847	error = get_undo_list(&ulp);
1848	if (error)
1849		return ERR_PTR(error);
1850
1851	rcu_read_lock();
1852	spin_lock(&ulp->lock);
1853	un = lookup_undo(ulp, semid);
1854	spin_unlock(&ulp->lock);
1855	if (likely(un != NULL))
1856		goto out;
1857
1858	/* no undo structure around - allocate one. */
1859	/* step 1: figure out the size of the semaphore array */
1860	sma = sem_obtain_object_check(ns, semid);
1861	if (IS_ERR(sma)) {
1862		rcu_read_unlock();
1863		return ERR_CAST(sma);
1864	}
1865
1866	nsems = sma->sem_nsems;
1867	if (!ipc_rcu_getref(&sma->sem_perm)) {
1868		rcu_read_unlock();
1869		un = ERR_PTR(-EIDRM);
1870		goto out;
1871	}
1872	rcu_read_unlock();
1873
1874	/* step 2: allocate new undo structure */
1875	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1876	if (!new) {
1877		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1878		return ERR_PTR(-ENOMEM);
1879	}
1880
1881	/* step 3: Acquire the lock on semaphore array */
1882	rcu_read_lock();
1883	sem_lock_and_putref(sma);
1884	if (!ipc_valid_object(&sma->sem_perm)) {
1885		sem_unlock(sma, -1);
1886		rcu_read_unlock();
1887		kfree(new);
1888		un = ERR_PTR(-EIDRM);
1889		goto out;
1890	}
1891	spin_lock(&ulp->lock);
1892
1893	/*
1894	 * step 4: check for races: did someone else allocate the undo struct?
1895	 */
1896	un = lookup_undo(ulp, semid);
1897	if (un) {
1898		kfree(new);
1899		goto success;
1900	}
1901	/* step 5: initialize & link new undo structure */
1902	new->semadj = (short *) &new[1];
1903	new->ulp = ulp;
1904	new->semid = semid;
1905	assert_spin_locked(&ulp->lock);
1906	list_add_rcu(&new->list_proc, &ulp->list_proc);
1907	ipc_assert_locked_object(&sma->sem_perm);
1908	list_add(&new->list_id, &sma->list_id);
1909	un = new;
1910
1911success:
1912	spin_unlock(&ulp->lock);
1913	sem_unlock(sma, -1);
1914out:
1915	return un;
1916}
1917
1918static long do_semtimedop(int semid, struct sembuf __user *tsops,
1919		unsigned nsops, const struct timespec64 *timeout)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1920{
1921	int error = -EINVAL;
1922	struct sem_array *sma;
1923	struct sembuf fast_sops[SEMOPM_FAST];
1924	struct sembuf *sops = fast_sops, *sop;
1925	struct sem_undo *un;
1926	int max, locknum;
1927	bool undos = false, alter = false, dupsop = false;
1928	struct sem_queue queue;
1929	unsigned long dup = 0, jiffies_left = 0;
1930	struct ipc_namespace *ns;
 
1931
1932	ns = current->nsproxy->ipc_ns;
1933
1934	if (nsops < 1 || semid < 0)
1935		return -EINVAL;
1936	if (nsops > ns->sc_semopm)
1937		return -E2BIG;
1938	if (nsops > SEMOPM_FAST) {
1939		sops = kvmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1940		if (sops == NULL)
1941			return -ENOMEM;
1942	}
1943
1944	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1945		error =  -EFAULT;
1946		goto out_free;
1947	}
1948
1949	if (timeout) {
1950		if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1951			timeout->tv_nsec >= 1000000000L) {
 
 
 
 
 
1952			error = -EINVAL;
1953			goto out_free;
1954		}
1955		jiffies_left = timespec64_to_jiffies(timeout);
1956	}
1957
1958	max = 0;
1959	for (sop = sops; sop < sops + nsops; sop++) {
1960		unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1961
1962		if (sop->sem_num >= max)
1963			max = sop->sem_num;
1964		if (sop->sem_flg & SEM_UNDO)
1965			undos = true;
1966		if (dup & mask) {
1967			/*
1968			 * There was a previous alter access that appears
1969			 * to have accessed the same semaphore, thus use
1970			 * the dupsop logic. "appears", because the detection
1971			 * can only check % BITS_PER_LONG.
1972			 */
1973			dupsop = true;
1974		}
1975		if (sop->sem_op != 0) {
1976			alter = true;
1977			dup |= mask;
1978		}
1979	}
1980
 
 
1981	if (undos) {
1982		/* On success, find_alloc_undo takes the rcu_read_lock */
1983		un = find_alloc_undo(ns, semid);
1984		if (IS_ERR(un)) {
1985			error = PTR_ERR(un);
1986			goto out_free;
1987		}
1988	} else {
1989		un = NULL;
1990		rcu_read_lock();
1991	}
1992
1993	sma = sem_obtain_object_check(ns, semid);
1994	if (IS_ERR(sma)) {
1995		rcu_read_unlock();
1996		error = PTR_ERR(sma);
1997		goto out_free;
1998	}
1999
2000	error = -EFBIG;
2001	if (max >= sma->sem_nsems) {
2002		rcu_read_unlock();
2003		goto out_free;
2004	}
2005
2006	error = -EACCES;
2007	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2008		rcu_read_unlock();
2009		goto out_free;
2010	}
2011
2012	error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2013	if (error) {
2014		rcu_read_unlock();
2015		goto out_free;
2016	}
2017
2018	error = -EIDRM;
2019	locknum = sem_lock(sma, sops, nsops);
2020	/*
2021	 * We eventually might perform the following check in a lockless
2022	 * fashion, considering ipc_valid_object() locking constraints.
2023	 * If nsops == 1 and there is no contention for sem_perm.lock, then
2024	 * only a per-semaphore lock is held and it's OK to proceed with the
2025	 * check below. More details on the fine grained locking scheme
2026	 * entangled here and why it's RMID race safe on comments at sem_lock()
2027	 */
2028	if (!ipc_valid_object(&sma->sem_perm))
2029		goto out_unlock_free;
2030	/*
2031	 * semid identifiers are not unique - find_alloc_undo may have
2032	 * allocated an undo structure, it was invalidated by an RMID
2033	 * and now a new array with received the same id. Check and fail.
2034	 * This case can be detected checking un->semid. The existence of
2035	 * "un" itself is guaranteed by rcu.
2036	 */
2037	if (un && un->semid == -1)
2038		goto out_unlock_free;
2039
2040	queue.sops = sops;
2041	queue.nsops = nsops;
2042	queue.undo = un;
2043	queue.pid = task_tgid(current);
2044	queue.alter = alter;
2045	queue.dupsop = dupsop;
2046
2047	error = perform_atomic_semop(sma, &queue);
2048	if (error == 0) { /* non-blocking succesfull path */
2049		DEFINE_WAKE_Q(wake_q);
2050
2051		/*
2052		 * If the operation was successful, then do
2053		 * the required updates.
2054		 */
2055		if (alter)
2056			do_smart_update(sma, sops, nsops, 1, &wake_q);
2057		else
2058			set_semotime(sma, sops);
2059
2060		sem_unlock(sma, locknum);
2061		rcu_read_unlock();
2062		wake_up_q(&wake_q);
2063
2064		goto out_free;
2065	}
2066	if (error < 0) /* non-blocking error path */
2067		goto out_unlock_free;
2068
2069	/*
2070	 * We need to sleep on this operation, so we put the current
2071	 * task into the pending queue and go to sleep.
2072	 */
 
2073	if (nsops == 1) {
2074		struct sem *curr;
2075		curr = &sma->sems[sops->sem_num];
2076
2077		if (alter) {
2078			if (sma->complex_count) {
2079				list_add_tail(&queue.list,
2080						&sma->pending_alter);
2081			} else {
2082
2083				list_add_tail(&queue.list,
2084						&curr->pending_alter);
2085			}
2086		} else {
2087			list_add_tail(&queue.list, &curr->pending_const);
2088		}
2089	} else {
2090		if (!sma->complex_count)
2091			merge_queues(sma);
2092
2093		if (alter)
2094			list_add_tail(&queue.list, &sma->pending_alter);
2095		else
2096			list_add_tail(&queue.list, &sma->pending_const);
2097
2098		sma->complex_count++;
2099	}
2100
2101	do {
2102		queue.status = -EINTR;
2103		queue.sleeper = current;
2104
2105		__set_current_state(TASK_INTERRUPTIBLE);
2106		sem_unlock(sma, locknum);
2107		rcu_read_unlock();
 
 
 
 
 
 
2108
2109		if (timeout)
2110			jiffies_left = schedule_timeout(jiffies_left);
2111		else
2112			schedule();
2113
2114		/*
2115		 * fastpath: the semop has completed, either successfully or
2116		 * not, from the syscall pov, is quite irrelevant to us at this
2117		 * point; we're done.
2118		 *
2119		 * We _do_ care, nonetheless, about being awoken by a signal or
2120		 * spuriously.  The queue.status is checked again in the
2121		 * slowpath (aka after taking sem_lock), such that we can detect
2122		 * scenarios where we were awakened externally, during the
2123		 * window between wake_q_add() and wake_up_q().
2124		 */
2125		error = READ_ONCE(queue.status);
2126		if (error != -EINTR) {
2127			/*
2128			 * User space could assume that semop() is a memory
2129			 * barrier: Without the mb(), the cpu could
2130			 * speculatively read in userspace stale data that was
2131			 * overwritten by the previous owner of the semaphore.
2132			 */
2133			smp_mb();
2134			goto out_free;
2135		}
 
2136
2137		rcu_read_lock();
2138		locknum = sem_lock(sma, sops, nsops);
 
 
 
 
 
2139
2140		if (!ipc_valid_object(&sma->sem_perm))
2141			goto out_unlock_free;
2142
2143		error = READ_ONCE(queue.status);
 
 
 
 
 
2144
2145		/*
2146		 * If queue.status != -EINTR we are woken up by another process.
2147		 * Leave without unlink_queue(), but with sem_unlock().
2148		 */
2149		if (error != -EINTR)
2150			goto out_unlock_free;
2151
2152		/*
2153		 * If an interrupt occurred we have to clean up the queue.
2154		 */
2155		if (timeout && jiffies_left == 0)
2156			error = -EAGAIN;
2157	} while (error == -EINTR && !signal_pending(current)); /* spurious */
2158
2159	unlink_queue(sma, &queue);
2160
2161out_unlock_free:
2162	sem_unlock(sma, locknum);
 
2163	rcu_read_unlock();
 
2164out_free:
2165	if (sops != fast_sops)
2166		kvfree(sops);
2167	return error;
2168}
2169
2170long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2171		     unsigned int nsops, const struct timespec __user *timeout)
2172{
2173	if (timeout) {
2174		struct timespec64 ts;
2175		if (get_timespec64(&ts, timeout))
2176			return -EFAULT;
2177		return do_semtimedop(semid, tsops, nsops, &ts);
2178	}
2179	return do_semtimedop(semid, tsops, nsops, NULL);
2180}
2181
2182SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2183		unsigned int, nsops, const struct timespec __user *, timeout)
2184{
2185	return ksys_semtimedop(semid, tsops, nsops, timeout);
2186}
2187
2188#ifdef CONFIG_COMPAT
2189long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2190			    unsigned int nsops,
2191			    const struct compat_timespec __user *timeout)
2192{
2193	if (timeout) {
2194		struct timespec64 ts;
2195		if (compat_get_timespec64(&ts, timeout))
2196			return -EFAULT;
2197		return do_semtimedop(semid, tsems, nsops, &ts);
2198	}
2199	return do_semtimedop(semid, tsems, nsops, NULL);
2200}
2201
2202COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems,
2203		       unsigned int, nsops,
2204		       const struct compat_timespec __user *, timeout)
2205{
2206	return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2207}
2208#endif
2209
2210SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2211		unsigned, nsops)
2212{
2213	return do_semtimedop(semid, tsops, nsops, NULL);
2214}
2215
2216/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2217 * parent and child tasks.
2218 */
2219
2220int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2221{
2222	struct sem_undo_list *undo_list;
2223	int error;
2224
2225	if (clone_flags & CLONE_SYSVSEM) {
2226		error = get_undo_list(&undo_list);
2227		if (error)
2228			return error;
2229		refcount_inc(&undo_list->refcnt);
2230		tsk->sysvsem.undo_list = undo_list;
2231	} else
2232		tsk->sysvsem.undo_list = NULL;
2233
2234	return 0;
2235}
2236
2237/*
2238 * add semadj values to semaphores, free undo structures.
2239 * undo structures are not freed when semaphore arrays are destroyed
2240 * so some of them may be out of date.
2241 * IMPLEMENTATION NOTE: There is some confusion over whether the
2242 * set of adjustments that needs to be done should be done in an atomic
2243 * manner or not. That is, if we are attempting to decrement the semval
2244 * should we queue up and wait until we can do so legally?
2245 * The original implementation attempted to do this (queue and wait).
2246 * The current implementation does not do so. The POSIX standard
2247 * and SVID should be consulted to determine what behavior is mandated.
2248 */
2249void exit_sem(struct task_struct *tsk)
2250{
2251	struct sem_undo_list *ulp;
2252
2253	ulp = tsk->sysvsem.undo_list;
2254	if (!ulp)
2255		return;
2256	tsk->sysvsem.undo_list = NULL;
2257
2258	if (!refcount_dec_and_test(&ulp->refcnt))
2259		return;
2260
2261	for (;;) {
2262		struct sem_array *sma;
2263		struct sem_undo *un;
 
2264		int semid, i;
2265		DEFINE_WAKE_Q(wake_q);
2266
2267		cond_resched();
2268
2269		rcu_read_lock();
2270		un = list_entry_rcu(ulp->list_proc.next,
2271				    struct sem_undo, list_proc);
2272		if (&un->list_proc == &ulp->list_proc) {
2273			/*
2274			 * We must wait for freeary() before freeing this ulp,
2275			 * in case we raced with last sem_undo. There is a small
2276			 * possibility where we exit while freeary() didn't
2277			 * finish unlocking sem_undo_list.
2278			 */
2279			spin_lock(&ulp->lock);
2280			spin_unlock(&ulp->lock);
2281			rcu_read_unlock();
2282			break;
2283		}
2284		spin_lock(&ulp->lock);
2285		semid = un->semid;
2286		spin_unlock(&ulp->lock);
2287
2288		/* exit_sem raced with IPC_RMID, nothing to do */
2289		if (semid == -1) {
2290			rcu_read_unlock();
2291			continue;
2292		}
2293
2294		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2295		/* exit_sem raced with IPC_RMID, nothing to do */
2296		if (IS_ERR(sma)) {
2297			rcu_read_unlock();
2298			continue;
2299		}
2300
2301		sem_lock(sma, NULL, -1);
2302		/* exit_sem raced with IPC_RMID, nothing to do */
2303		if (!ipc_valid_object(&sma->sem_perm)) {
2304			sem_unlock(sma, -1);
2305			rcu_read_unlock();
2306			continue;
2307		}
2308		un = __lookup_undo(ulp, semid);
2309		if (un == NULL) {
2310			/* exit_sem raced with IPC_RMID+semget() that created
2311			 * exactly the same semid. Nothing to do.
2312			 */
2313			sem_unlock(sma, -1);
2314			rcu_read_unlock();
2315			continue;
2316		}
2317
2318		/* remove un from the linked lists */
2319		ipc_assert_locked_object(&sma->sem_perm);
2320		list_del(&un->list_id);
2321
2322		/* we are the last process using this ulp, acquiring ulp->lock
2323		 * isn't required. Besides that, we are also protected against
2324		 * IPC_RMID as we hold sma->sem_perm lock now
2325		 */
2326		list_del_rcu(&un->list_proc);
2327
2328		/* perform adjustments registered in un */
2329		for (i = 0; i < sma->sem_nsems; i++) {
2330			struct sem *semaphore = &sma->sems[i];
2331			if (un->semadj[i]) {
2332				semaphore->semval += un->semadj[i];
2333				/*
2334				 * Range checks of the new semaphore value,
2335				 * not defined by sus:
2336				 * - Some unices ignore the undo entirely
2337				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2338				 * - some cap the value (e.g. FreeBSD caps
2339				 *   at 0, but doesn't enforce SEMVMX)
2340				 *
2341				 * Linux caps the semaphore value, both at 0
2342				 * and at SEMVMX.
2343				 *
2344				 *	Manfred <manfred@colorfullife.com>
2345				 */
2346				if (semaphore->semval < 0)
2347					semaphore->semval = 0;
2348				if (semaphore->semval > SEMVMX)
2349					semaphore->semval = SEMVMX;
2350				ipc_update_pid(&semaphore->sempid, task_tgid(current));
2351			}
2352		}
2353		/* maybe some queued-up processes were waiting for this */
2354		do_smart_update(sma, NULL, 0, 1, &wake_q);
 
2355		sem_unlock(sma, -1);
2356		rcu_read_unlock();
2357		wake_up_q(&wake_q);
2358
2359		kfree_rcu(un, rcu);
2360	}
2361	kfree(ulp);
2362}
2363
2364#ifdef CONFIG_PROC_FS
2365static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2366{
2367	struct user_namespace *user_ns = seq_user_ns(s);
2368	struct kern_ipc_perm *ipcp = it;
2369	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2370	time64_t sem_otime;
2371
2372	/*
2373	 * The proc interface isn't aware of sem_lock(), it calls
2374	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2375	 * In order to stay compatible with sem_lock(), we must
2376	 * enter / leave complex_mode.
2377	 */
2378	complexmode_enter(sma);
2379
2380	sem_otime = get_semotime(sma);
2381
2382	seq_printf(s,
2383		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2384		   sma->sem_perm.key,
2385		   sma->sem_perm.id,
2386		   sma->sem_perm.mode,
2387		   sma->sem_nsems,
2388		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2389		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2390		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2391		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2392		   sem_otime,
2393		   sma->sem_ctime);
2394
2395	complexmode_tryleave(sma);
2396
2397	return 0;
2398}
2399#endif