Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  linux/fs/ext4/ialloc.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  BSD ufs-inspired inode and directory allocation by
  10 *  Stephen Tweedie (sct@redhat.com), 1993
  11 *  Big-endian to little-endian byte-swapping/bitmaps by
  12 *        David S. Miller (davem@caip.rutgers.edu), 1995
  13 */
  14
  15#include <linux/time.h>
  16#include <linux/fs.h>
  17#include <linux/stat.h>
  18#include <linux/string.h>
  19#include <linux/quotaops.h>
  20#include <linux/buffer_head.h>
  21#include <linux/random.h>
  22#include <linux/bitops.h>
  23#include <linux/blkdev.h>
 
 
  24#include <asm/byteorder.h>
  25
  26#include "ext4.h"
  27#include "ext4_jbd2.h"
  28#include "xattr.h"
  29#include "acl.h"
  30
  31#include <trace/events/ext4.h>
  32
  33/*
  34 * ialloc.c contains the inodes allocation and deallocation routines
  35 */
  36
  37/*
  38 * The free inodes are managed by bitmaps.  A file system contains several
  39 * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
  40 * block for inodes, N blocks for the inode table and data blocks.
  41 *
  42 * The file system contains group descriptors which are located after the
  43 * super block.  Each descriptor contains the number of the bitmap block and
  44 * the free blocks count in the block.
  45 */
  46
  47/*
  48 * To avoid calling the atomic setbit hundreds or thousands of times, we only
  49 * need to use it within a single byte (to ensure we get endianness right).
  50 * We can use memset for the rest of the bitmap as there are no other users.
  51 */
  52void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
  53{
  54	int i;
  55
  56	if (start_bit >= end_bit)
  57		return;
  58
  59	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
  60	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
  61		ext4_set_bit(i, bitmap);
  62	if (i < end_bit)
  63		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
  64}
  65
  66/* Initializes an uninitialized inode bitmap */
  67static int ext4_init_inode_bitmap(struct super_block *sb,
  68				       struct buffer_head *bh,
  69				       ext4_group_t block_group,
  70				       struct ext4_group_desc *gdp)
  71{
  72	struct ext4_group_info *grp;
  73	struct ext4_sb_info *sbi = EXT4_SB(sb);
  74	J_ASSERT_BH(bh, buffer_locked(bh));
  75
  76	/* If checksum is bad mark all blocks and inodes use to prevent
  77	 * allocation, essentially implementing a per-group read-only flag. */
  78	if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
  79		grp = ext4_get_group_info(sb, block_group);
  80		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
  81			percpu_counter_sub(&sbi->s_freeclusters_counter,
  82					   grp->bb_free);
  83		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
  84		if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
  85			int count;
  86			count = ext4_free_inodes_count(sb, gdp);
  87			percpu_counter_sub(&sbi->s_freeinodes_counter,
  88					   count);
  89		}
  90		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
  91		return -EFSBADCRC;
  92	}
  93
  94	memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
  95	ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
  96			bh->b_data);
  97	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
  98				   EXT4_INODES_PER_GROUP(sb) / 8);
  99	ext4_group_desc_csum_set(sb, block_group, gdp);
 100
 101	return 0;
 102}
 103
 104void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
 105{
 106	if (uptodate) {
 107		set_buffer_uptodate(bh);
 108		set_bitmap_uptodate(bh);
 109	}
 110	unlock_buffer(bh);
 111	put_bh(bh);
 112}
 113
 114static int ext4_validate_inode_bitmap(struct super_block *sb,
 115				      struct ext4_group_desc *desc,
 116				      ext4_group_t block_group,
 117				      struct buffer_head *bh)
 118{
 119	ext4_fsblk_t	blk;
 120	struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
 121	struct ext4_sb_info *sbi = EXT4_SB(sb);
 122
 123	if (buffer_verified(bh))
 124		return 0;
 125	if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
 126		return -EFSCORRUPTED;
 127
 128	ext4_lock_group(sb, block_group);
 129	blk = ext4_inode_bitmap(sb, desc);
 130	if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
 131					   EXT4_INODES_PER_GROUP(sb) / 8)) {
 132		ext4_unlock_group(sb, block_group);
 133		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
 134			   "inode_bitmap = %llu", block_group, blk);
 135		grp = ext4_get_group_info(sb, block_group);
 136		if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
 137			int count;
 138			count = ext4_free_inodes_count(sb, desc);
 139			percpu_counter_sub(&sbi->s_freeinodes_counter,
 140					   count);
 141		}
 142		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
 143		return -EFSBADCRC;
 144	}
 145	set_buffer_verified(bh);
 146	ext4_unlock_group(sb, block_group);
 147	return 0;
 148}
 149
 150/*
 151 * Read the inode allocation bitmap for a given block_group, reading
 152 * into the specified slot in the superblock's bitmap cache.
 153 *
 154 * Return buffer_head of bitmap on success or NULL.
 155 */
 156static struct buffer_head *
 157ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
 158{
 159	struct ext4_group_desc *desc;
 
 160	struct buffer_head *bh = NULL;
 161	ext4_fsblk_t bitmap_blk;
 162	int err;
 163
 164	desc = ext4_get_group_desc(sb, block_group, NULL);
 165	if (!desc)
 166		return ERR_PTR(-EFSCORRUPTED);
 167
 168	bitmap_blk = ext4_inode_bitmap(sb, desc);
 
 
 
 
 
 
 169	bh = sb_getblk(sb, bitmap_blk);
 170	if (unlikely(!bh)) {
 171		ext4_error(sb, "Cannot read inode bitmap - "
 172			    "block_group = %u, inode_bitmap = %llu",
 173			    block_group, bitmap_blk);
 174		return ERR_PTR(-EIO);
 175	}
 176	if (bitmap_uptodate(bh))
 177		goto verify;
 178
 179	lock_buffer(bh);
 180	if (bitmap_uptodate(bh)) {
 181		unlock_buffer(bh);
 182		goto verify;
 183	}
 184
 185	ext4_lock_group(sb, block_group);
 186	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
 187		err = ext4_init_inode_bitmap(sb, bh, block_group, desc);
 
 
 188		set_bitmap_uptodate(bh);
 189		set_buffer_uptodate(bh);
 190		set_buffer_verified(bh);
 191		ext4_unlock_group(sb, block_group);
 192		unlock_buffer(bh);
 193		if (err) {
 194			ext4_error(sb, "Failed to init inode bitmap for group "
 195				   "%u: %d", block_group, err);
 196			goto out;
 197		}
 198		return bh;
 199	}
 200	ext4_unlock_group(sb, block_group);
 201
 202	if (buffer_uptodate(bh)) {
 203		/*
 204		 * if not uninit if bh is uptodate,
 205		 * bitmap is also uptodate
 206		 */
 207		set_bitmap_uptodate(bh);
 208		unlock_buffer(bh);
 209		goto verify;
 210	}
 211	/*
 212	 * submit the buffer_head for reading
 213	 */
 214	trace_ext4_load_inode_bitmap(sb, block_group);
 215	bh->b_end_io = ext4_end_bitmap_read;
 216	get_bh(bh);
 217	submit_bh(READ | REQ_META | REQ_PRIO, bh);
 218	wait_on_buffer(bh);
 219	if (!buffer_uptodate(bh)) {
 220		put_bh(bh);
 221		ext4_error(sb, "Cannot read inode bitmap - "
 222			   "block_group = %u, inode_bitmap = %llu",
 223			   block_group, bitmap_blk);
 224		return ERR_PTR(-EIO);
 225	}
 226
 227verify:
 228	err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
 229	if (err)
 230		goto out;
 231	return bh;
 232out:
 233	put_bh(bh);
 234	return ERR_PTR(err);
 235}
 236
 237/*
 238 * NOTE! When we get the inode, we're the only people
 239 * that have access to it, and as such there are no
 240 * race conditions we have to worry about. The inode
 241 * is not on the hash-lists, and it cannot be reached
 242 * through the filesystem because the directory entry
 243 * has been deleted earlier.
 244 *
 245 * HOWEVER: we must make sure that we get no aliases,
 246 * which means that we have to call "clear_inode()"
 247 * _before_ we mark the inode not in use in the inode
 248 * bitmaps. Otherwise a newly created file might use
 249 * the same inode number (not actually the same pointer
 250 * though), and then we'd have two inodes sharing the
 251 * same inode number and space on the harddisk.
 252 */
 253void ext4_free_inode(handle_t *handle, struct inode *inode)
 254{
 255	struct super_block *sb = inode->i_sb;
 256	int is_directory;
 257	unsigned long ino;
 258	struct buffer_head *bitmap_bh = NULL;
 259	struct buffer_head *bh2;
 260	ext4_group_t block_group;
 261	unsigned long bit;
 262	struct ext4_group_desc *gdp;
 263	struct ext4_super_block *es;
 264	struct ext4_sb_info *sbi;
 265	int fatal = 0, err, count, cleared;
 266	struct ext4_group_info *grp;
 267
 268	if (!sb) {
 269		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
 270		       "nonexistent device\n", __func__, __LINE__);
 271		return;
 272	}
 273	if (atomic_read(&inode->i_count) > 1) {
 274		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
 275			 __func__, __LINE__, inode->i_ino,
 276			 atomic_read(&inode->i_count));
 277		return;
 278	}
 279	if (inode->i_nlink) {
 280		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
 281			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
 282		return;
 283	}
 284	sbi = EXT4_SB(sb);
 285
 286	ino = inode->i_ino;
 287	ext4_debug("freeing inode %lu\n", ino);
 288	trace_ext4_free_inode(inode);
 289
 290	/*
 291	 * Note: we must free any quota before locking the superblock,
 292	 * as writing the quota to disk may need the lock as well.
 293	 */
 294	dquot_initialize(inode);
 295	ext4_xattr_delete_inode(handle, inode);
 296	dquot_free_inode(inode);
 297	dquot_drop(inode);
 298
 299	is_directory = S_ISDIR(inode->i_mode);
 300
 301	/* Do this BEFORE marking the inode not in use or returning an error */
 302	ext4_clear_inode(inode);
 303
 304	es = EXT4_SB(sb)->s_es;
 305	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
 306		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
 307		goto error_return;
 308	}
 309	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
 310	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
 311	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
 312	/* Don't bother if the inode bitmap is corrupt. */
 313	grp = ext4_get_group_info(sb, block_group);
 314	if (IS_ERR(bitmap_bh)) {
 315		fatal = PTR_ERR(bitmap_bh);
 316		bitmap_bh = NULL;
 317		goto error_return;
 318	}
 319	if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
 320		fatal = -EFSCORRUPTED;
 321		goto error_return;
 322	}
 323
 324	BUFFER_TRACE(bitmap_bh, "get_write_access");
 325	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
 326	if (fatal)
 327		goto error_return;
 328
 329	fatal = -ESRCH;
 330	gdp = ext4_get_group_desc(sb, block_group, &bh2);
 331	if (gdp) {
 332		BUFFER_TRACE(bh2, "get_write_access");
 333		fatal = ext4_journal_get_write_access(handle, bh2);
 334	}
 335	ext4_lock_group(sb, block_group);
 336	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
 337	if (fatal || !cleared) {
 338		ext4_unlock_group(sb, block_group);
 339		goto out;
 340	}
 341
 342	count = ext4_free_inodes_count(sb, gdp) + 1;
 343	ext4_free_inodes_set(sb, gdp, count);
 344	if (is_directory) {
 345		count = ext4_used_dirs_count(sb, gdp) - 1;
 346		ext4_used_dirs_set(sb, gdp, count);
 347		percpu_counter_dec(&sbi->s_dirs_counter);
 348	}
 349	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
 350				   EXT4_INODES_PER_GROUP(sb) / 8);
 351	ext4_group_desc_csum_set(sb, block_group, gdp);
 352	ext4_unlock_group(sb, block_group);
 353
 354	percpu_counter_inc(&sbi->s_freeinodes_counter);
 355	if (sbi->s_log_groups_per_flex) {
 356		ext4_group_t f = ext4_flex_group(sbi, block_group);
 357
 358		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
 359		if (is_directory)
 360			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
 361	}
 362	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
 363	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
 364out:
 365	if (cleared) {
 366		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
 367		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
 368		if (!fatal)
 369			fatal = err;
 370	} else {
 371		ext4_error(sb, "bit already cleared for inode %lu", ino);
 372		if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
 373			int count;
 374			count = ext4_free_inodes_count(sb, gdp);
 375			percpu_counter_sub(&sbi->s_freeinodes_counter,
 376					   count);
 377		}
 378		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
 379	}
 380
 381error_return:
 382	brelse(bitmap_bh);
 383	ext4_std_error(sb, fatal);
 384}
 385
 386struct orlov_stats {
 387	__u64 free_clusters;
 388	__u32 free_inodes;
 389	__u32 used_dirs;
 390};
 391
 392/*
 393 * Helper function for Orlov's allocator; returns critical information
 394 * for a particular block group or flex_bg.  If flex_size is 1, then g
 395 * is a block group number; otherwise it is flex_bg number.
 396 */
 397static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
 398			    int flex_size, struct orlov_stats *stats)
 399{
 400	struct ext4_group_desc *desc;
 401	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
 402
 403	if (flex_size > 1) {
 404		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
 405		stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
 406		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
 407		return;
 408	}
 409
 410	desc = ext4_get_group_desc(sb, g, NULL);
 411	if (desc) {
 412		stats->free_inodes = ext4_free_inodes_count(sb, desc);
 413		stats->free_clusters = ext4_free_group_clusters(sb, desc);
 414		stats->used_dirs = ext4_used_dirs_count(sb, desc);
 415	} else {
 416		stats->free_inodes = 0;
 417		stats->free_clusters = 0;
 418		stats->used_dirs = 0;
 419	}
 420}
 421
 422/*
 423 * Orlov's allocator for directories.
 424 *
 425 * We always try to spread first-level directories.
 426 *
 427 * If there are blockgroups with both free inodes and free blocks counts
 428 * not worse than average we return one with smallest directory count.
 429 * Otherwise we simply return a random group.
 430 *
 431 * For the rest rules look so:
 432 *
 433 * It's OK to put directory into a group unless
 434 * it has too many directories already (max_dirs) or
 435 * it has too few free inodes left (min_inodes) or
 436 * it has too few free blocks left (min_blocks) or
 437 * Parent's group is preferred, if it doesn't satisfy these
 438 * conditions we search cyclically through the rest. If none
 439 * of the groups look good we just look for a group with more
 440 * free inodes than average (starting at parent's group).
 441 */
 442
 443static int find_group_orlov(struct super_block *sb, struct inode *parent,
 444			    ext4_group_t *group, umode_t mode,
 445			    const struct qstr *qstr)
 446{
 447	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
 448	struct ext4_sb_info *sbi = EXT4_SB(sb);
 449	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
 450	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
 451	unsigned int freei, avefreei, grp_free;
 452	ext4_fsblk_t freeb, avefreec;
 453	unsigned int ndirs;
 454	int max_dirs, min_inodes;
 455	ext4_grpblk_t min_clusters;
 456	ext4_group_t i, grp, g, ngroups;
 457	struct ext4_group_desc *desc;
 458	struct orlov_stats stats;
 459	int flex_size = ext4_flex_bg_size(sbi);
 460	struct dx_hash_info hinfo;
 461
 462	ngroups = real_ngroups;
 463	if (flex_size > 1) {
 464		ngroups = (real_ngroups + flex_size - 1) >>
 465			sbi->s_log_groups_per_flex;
 466		parent_group >>= sbi->s_log_groups_per_flex;
 467	}
 468
 469	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
 470	avefreei = freei / ngroups;
 471	freeb = EXT4_C2B(sbi,
 472		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
 473	avefreec = freeb;
 474	do_div(avefreec, ngroups);
 475	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
 476
 477	if (S_ISDIR(mode) &&
 478	    ((parent == d_inode(sb->s_root)) ||
 479	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
 480		int best_ndir = inodes_per_group;
 481		int ret = -1;
 482
 483		if (qstr) {
 484			hinfo.hash_version = DX_HASH_HALF_MD4;
 485			hinfo.seed = sbi->s_hash_seed;
 486			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
 487			grp = hinfo.hash;
 488		} else
 489			grp = prandom_u32();
 490		parent_group = (unsigned)grp % ngroups;
 491		for (i = 0; i < ngroups; i++) {
 492			g = (parent_group + i) % ngroups;
 493			get_orlov_stats(sb, g, flex_size, &stats);
 494			if (!stats.free_inodes)
 495				continue;
 496			if (stats.used_dirs >= best_ndir)
 497				continue;
 498			if (stats.free_inodes < avefreei)
 499				continue;
 500			if (stats.free_clusters < avefreec)
 501				continue;
 502			grp = g;
 503			ret = 0;
 504			best_ndir = stats.used_dirs;
 505		}
 506		if (ret)
 507			goto fallback;
 508	found_flex_bg:
 509		if (flex_size == 1) {
 510			*group = grp;
 511			return 0;
 512		}
 513
 514		/*
 515		 * We pack inodes at the beginning of the flexgroup's
 516		 * inode tables.  Block allocation decisions will do
 517		 * something similar, although regular files will
 518		 * start at 2nd block group of the flexgroup.  See
 519		 * ext4_ext_find_goal() and ext4_find_near().
 520		 */
 521		grp *= flex_size;
 522		for (i = 0; i < flex_size; i++) {
 523			if (grp+i >= real_ngroups)
 524				break;
 525			desc = ext4_get_group_desc(sb, grp+i, NULL);
 526			if (desc && ext4_free_inodes_count(sb, desc)) {
 527				*group = grp+i;
 528				return 0;
 529			}
 530		}
 531		goto fallback;
 532	}
 533
 534	max_dirs = ndirs / ngroups + inodes_per_group / 16;
 535	min_inodes = avefreei - inodes_per_group*flex_size / 4;
 536	if (min_inodes < 1)
 537		min_inodes = 1;
 538	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
 539
 540	/*
 541	 * Start looking in the flex group where we last allocated an
 542	 * inode for this parent directory
 543	 */
 544	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
 545		parent_group = EXT4_I(parent)->i_last_alloc_group;
 546		if (flex_size > 1)
 547			parent_group >>= sbi->s_log_groups_per_flex;
 548	}
 549
 550	for (i = 0; i < ngroups; i++) {
 551		grp = (parent_group + i) % ngroups;
 552		get_orlov_stats(sb, grp, flex_size, &stats);
 553		if (stats.used_dirs >= max_dirs)
 554			continue;
 555		if (stats.free_inodes < min_inodes)
 556			continue;
 557		if (stats.free_clusters < min_clusters)
 558			continue;
 559		goto found_flex_bg;
 560	}
 561
 562fallback:
 563	ngroups = real_ngroups;
 564	avefreei = freei / ngroups;
 565fallback_retry:
 566	parent_group = EXT4_I(parent)->i_block_group;
 567	for (i = 0; i < ngroups; i++) {
 568		grp = (parent_group + i) % ngroups;
 569		desc = ext4_get_group_desc(sb, grp, NULL);
 570		if (desc) {
 571			grp_free = ext4_free_inodes_count(sb, desc);
 572			if (grp_free && grp_free >= avefreei) {
 573				*group = grp;
 574				return 0;
 575			}
 576		}
 577	}
 578
 579	if (avefreei) {
 580		/*
 581		 * The free-inodes counter is approximate, and for really small
 582		 * filesystems the above test can fail to find any blockgroups
 583		 */
 584		avefreei = 0;
 585		goto fallback_retry;
 586	}
 587
 588	return -1;
 589}
 590
 591static int find_group_other(struct super_block *sb, struct inode *parent,
 592			    ext4_group_t *group, umode_t mode)
 593{
 594	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
 595	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
 596	struct ext4_group_desc *desc;
 597	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
 598
 599	/*
 600	 * Try to place the inode is the same flex group as its
 601	 * parent.  If we can't find space, use the Orlov algorithm to
 602	 * find another flex group, and store that information in the
 603	 * parent directory's inode information so that use that flex
 604	 * group for future allocations.
 605	 */
 606	if (flex_size > 1) {
 607		int retry = 0;
 608
 609	try_again:
 610		parent_group &= ~(flex_size-1);
 611		last = parent_group + flex_size;
 612		if (last > ngroups)
 613			last = ngroups;
 614		for  (i = parent_group; i < last; i++) {
 615			desc = ext4_get_group_desc(sb, i, NULL);
 616			if (desc && ext4_free_inodes_count(sb, desc)) {
 617				*group = i;
 618				return 0;
 619			}
 620		}
 621		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
 622			retry = 1;
 623			parent_group = EXT4_I(parent)->i_last_alloc_group;
 624			goto try_again;
 625		}
 626		/*
 627		 * If this didn't work, use the Orlov search algorithm
 628		 * to find a new flex group; we pass in the mode to
 629		 * avoid the topdir algorithms.
 630		 */
 631		*group = parent_group + flex_size;
 632		if (*group > ngroups)
 633			*group = 0;
 634		return find_group_orlov(sb, parent, group, mode, NULL);
 635	}
 636
 637	/*
 638	 * Try to place the inode in its parent directory
 639	 */
 640	*group = parent_group;
 641	desc = ext4_get_group_desc(sb, *group, NULL);
 642	if (desc && ext4_free_inodes_count(sb, desc) &&
 643	    ext4_free_group_clusters(sb, desc))
 644		return 0;
 645
 646	/*
 647	 * We're going to place this inode in a different blockgroup from its
 648	 * parent.  We want to cause files in a common directory to all land in
 649	 * the same blockgroup.  But we want files which are in a different
 650	 * directory which shares a blockgroup with our parent to land in a
 651	 * different blockgroup.
 652	 *
 653	 * So add our directory's i_ino into the starting point for the hash.
 654	 */
 655	*group = (*group + parent->i_ino) % ngroups;
 656
 657	/*
 658	 * Use a quadratic hash to find a group with a free inode and some free
 659	 * blocks.
 660	 */
 661	for (i = 1; i < ngroups; i <<= 1) {
 662		*group += i;
 663		if (*group >= ngroups)
 664			*group -= ngroups;
 665		desc = ext4_get_group_desc(sb, *group, NULL);
 666		if (desc && ext4_free_inodes_count(sb, desc) &&
 667		    ext4_free_group_clusters(sb, desc))
 668			return 0;
 669	}
 670
 671	/*
 672	 * That failed: try linear search for a free inode, even if that group
 673	 * has no free blocks.
 674	 */
 675	*group = parent_group;
 676	for (i = 0; i < ngroups; i++) {
 677		if (++*group >= ngroups)
 678			*group = 0;
 679		desc = ext4_get_group_desc(sb, *group, NULL);
 680		if (desc && ext4_free_inodes_count(sb, desc))
 681			return 0;
 682	}
 683
 684	return -1;
 685}
 686
 687/*
 688 * In no journal mode, if an inode has recently been deleted, we want
 689 * to avoid reusing it until we're reasonably sure the inode table
 690 * block has been written back to disk.  (Yes, these values are
 691 * somewhat arbitrary...)
 692 */
 693#define RECENTCY_MIN	5
 694#define RECENTCY_DIRTY	30
 695
 696static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
 697{
 698	struct ext4_group_desc	*gdp;
 699	struct ext4_inode	*raw_inode;
 700	struct buffer_head	*bh;
 701	unsigned long		dtime, now;
 702	int	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
 703	int	offset, ret = 0, recentcy = RECENTCY_MIN;
 
 704
 705	gdp = ext4_get_group_desc(sb, group, NULL);
 706	if (unlikely(!gdp))
 707		return 0;
 708
 709	bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
 710		       (ino / inodes_per_block));
 711	if (unlikely(!bh) || !buffer_uptodate(bh))
 712		/*
 713		 * If the block is not in the buffer cache, then it
 714		 * must have been written out.
 715		 */
 716		goto out;
 717
 718	offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
 719	raw_inode = (struct ext4_inode *) (bh->b_data + offset);
 
 
 
 
 
 720	dtime = le32_to_cpu(raw_inode->i_dtime);
 721	now = get_seconds();
 722	if (buffer_dirty(bh))
 723		recentcy += RECENTCY_DIRTY;
 724
 725	if (dtime && (dtime < now) && (now < dtime + recentcy))
 
 726		ret = 1;
 727out:
 728	brelse(bh);
 729	return ret;
 730}
 731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732/*
 733 * There are two policies for allocating an inode.  If the new inode is
 734 * a directory, then a forward search is made for a block group with both
 735 * free space and a low directory-to-inode ratio; if that fails, then of
 736 * the groups with above-average free space, that group with the fewest
 737 * directories already is chosen.
 738 *
 739 * For other inodes, search forward from the parent directory's block
 740 * group to find a free inode.
 741 */
 742struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
 743			       umode_t mode, const struct qstr *qstr,
 744			       __u32 goal, uid_t *owner, int handle_type,
 745			       unsigned int line_no, int nblocks)
 
 746{
 747	struct super_block *sb;
 748	struct buffer_head *inode_bitmap_bh = NULL;
 749	struct buffer_head *group_desc_bh;
 750	ext4_group_t ngroups, group = 0;
 751	unsigned long ino = 0;
 752	struct inode *inode;
 753	struct ext4_group_desc *gdp = NULL;
 754	struct ext4_inode_info *ei;
 755	struct ext4_sb_info *sbi;
 756	int ret2, err;
 757	struct inode *ret;
 758	ext4_group_t i;
 759	ext4_group_t flex_group;
 760	struct ext4_group_info *grp;
 761	int encrypt = 0;
 762
 763	/* Cannot create files in a deleted directory */
 764	if (!dir || !dir->i_nlink)
 765		return ERR_PTR(-EPERM);
 766
 767	if ((ext4_encrypted_inode(dir) ||
 768	     DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb))) &&
 769	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
 770		err = ext4_get_encryption_info(dir);
 
 
 
 
 
 
 771		if (err)
 772			return ERR_PTR(err);
 773		if (ext4_encryption_info(dir) == NULL)
 774			return ERR_PTR(-EPERM);
 775		if (!handle)
 776			nblocks += EXT4_DATA_TRANS_BLOCKS(dir->i_sb);
 777		encrypt = 1;
 778	}
 779
 780	sb = dir->i_sb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781	ngroups = ext4_get_groups_count(sb);
 782	trace_ext4_request_inode(dir, mode);
 783	inode = new_inode(sb);
 784	if (!inode)
 785		return ERR_PTR(-ENOMEM);
 786	ei = EXT4_I(inode);
 787	sbi = EXT4_SB(sb);
 788
 789	/*
 790	 * Initialize owners and quota early so that we don't have to account
 791	 * for quota initialization worst case in standard inode creating
 792	 * transaction
 793	 */
 794	if (owner) {
 795		inode->i_mode = mode;
 796		i_uid_write(inode, owner[0]);
 797		i_gid_write(inode, owner[1]);
 798	} else if (test_opt(sb, GRPID)) {
 799		inode->i_mode = mode;
 800		inode->i_uid = current_fsuid();
 801		inode->i_gid = dir->i_gid;
 802	} else
 803		inode_init_owner(inode, dir, mode);
 804
 805	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
 806	    ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
 807		ei->i_projid = EXT4_I(dir)->i_projid;
 808	else
 809		ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
 810
 811	err = dquot_initialize(inode);
 812	if (err)
 813		goto out;
 814
 815	if (!goal)
 816		goal = sbi->s_inode_goal;
 817
 818	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
 819		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
 820		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
 821		ret2 = 0;
 822		goto got_group;
 823	}
 824
 825	if (S_ISDIR(mode))
 826		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
 827	else
 828		ret2 = find_group_other(sb, dir, &group, mode);
 829
 830got_group:
 831	EXT4_I(dir)->i_last_alloc_group = group;
 832	err = -ENOSPC;
 833	if (ret2 == -1)
 834		goto out;
 835
 836	/*
 837	 * Normally we will only go through one pass of this loop,
 838	 * unless we get unlucky and it turns out the group we selected
 839	 * had its last inode grabbed by someone else.
 840	 */
 841	for (i = 0; i < ngroups; i++, ino = 0) {
 842		err = -EIO;
 843
 844		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
 845		if (!gdp)
 846			goto out;
 847
 848		/*
 849		 * Check free inodes count before loading bitmap.
 850		 */
 851		if (ext4_free_inodes_count(sb, gdp) == 0) {
 852			if (++group == ngroups)
 853				group = 0;
 854			continue;
 855		}
 856
 857		grp = ext4_get_group_info(sb, group);
 858		/* Skip groups with already-known suspicious inode tables */
 859		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
 860			if (++group == ngroups)
 861				group = 0;
 862			continue;
 863		}
 864
 865		brelse(inode_bitmap_bh);
 866		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
 867		/* Skip groups with suspicious inode tables */
 868		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
 869		    IS_ERR(inode_bitmap_bh)) {
 870			inode_bitmap_bh = NULL;
 871			if (++group == ngroups)
 872				group = 0;
 873			continue;
 874		}
 875
 876repeat_in_this_group:
 877		ino = ext4_find_next_zero_bit((unsigned long *)
 878					      inode_bitmap_bh->b_data,
 879					      EXT4_INODES_PER_GROUP(sb), ino);
 880		if (ino >= EXT4_INODES_PER_GROUP(sb))
 881			goto next_group;
 882		if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
 
 883			ext4_error(sb, "reserved inode found cleared - "
 884				   "inode=%lu", ino + 1);
 885			continue;
 886		}
 887		if ((EXT4_SB(sb)->s_journal == NULL) &&
 888		    recently_deleted(sb, group, ino)) {
 889			ino++;
 890			goto next_inode;
 891		}
 
 892		if (!handle) {
 893			BUG_ON(nblocks <= 0);
 894			handle = __ext4_journal_start_sb(dir->i_sb, line_no,
 895							 handle_type, nblocks,
 896							 0);
 897			if (IS_ERR(handle)) {
 898				err = PTR_ERR(handle);
 899				ext4_std_error(sb, err);
 900				goto out;
 901			}
 902		}
 903		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
 904		err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
 905		if (err) {
 906			ext4_std_error(sb, err);
 907			goto out;
 908		}
 909		ext4_lock_group(sb, group);
 910		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
 
 
 
 
 
 
 
 
 
 
 
 
 911		ext4_unlock_group(sb, group);
 912		ino++;		/* the inode bitmap is zero-based */
 913		if (!ret2)
 914			goto got; /* we grabbed the inode! */
 915next_inode:
 916		if (ino < EXT4_INODES_PER_GROUP(sb))
 917			goto repeat_in_this_group;
 918next_group:
 919		if (++group == ngroups)
 920			group = 0;
 921	}
 922	err = -ENOSPC;
 923	goto out;
 924
 925got:
 926	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
 927	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
 928	if (err) {
 929		ext4_std_error(sb, err);
 930		goto out;
 931	}
 932
 933	BUFFER_TRACE(group_desc_bh, "get_write_access");
 934	err = ext4_journal_get_write_access(handle, group_desc_bh);
 935	if (err) {
 936		ext4_std_error(sb, err);
 937		goto out;
 938	}
 939
 940	/* We may have to initialize the block bitmap if it isn't already */
 941	if (ext4_has_group_desc_csum(sb) &&
 942	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
 943		struct buffer_head *block_bitmap_bh;
 944
 945		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
 946		if (IS_ERR(block_bitmap_bh)) {
 947			err = PTR_ERR(block_bitmap_bh);
 948			goto out;
 949		}
 950		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
 951		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
 952		if (err) {
 953			brelse(block_bitmap_bh);
 954			ext4_std_error(sb, err);
 955			goto out;
 956		}
 957
 958		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
 959		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
 960
 961		/* recheck and clear flag under lock if we still need to */
 962		ext4_lock_group(sb, group);
 963		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
 964			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
 965			ext4_free_group_clusters_set(sb, gdp,
 966				ext4_free_clusters_after_init(sb, group, gdp));
 967			ext4_block_bitmap_csum_set(sb, group, gdp,
 968						   block_bitmap_bh);
 969			ext4_group_desc_csum_set(sb, group, gdp);
 970		}
 971		ext4_unlock_group(sb, group);
 972		brelse(block_bitmap_bh);
 973
 974		if (err) {
 975			ext4_std_error(sb, err);
 976			goto out;
 977		}
 978	}
 979
 980	/* Update the relevant bg descriptor fields */
 981	if (ext4_has_group_desc_csum(sb)) {
 982		int free;
 983		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
 984
 985		down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
 986		ext4_lock_group(sb, group); /* while we modify the bg desc */
 987		free = EXT4_INODES_PER_GROUP(sb) -
 988			ext4_itable_unused_count(sb, gdp);
 989		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
 990			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
 991			free = 0;
 992		}
 993		/*
 994		 * Check the relative inode number against the last used
 995		 * relative inode number in this group. if it is greater
 996		 * we need to update the bg_itable_unused count
 997		 */
 998		if (ino > free)
 999			ext4_itable_unused_set(sb, gdp,
1000					(EXT4_INODES_PER_GROUP(sb) - ino));
1001		up_read(&grp->alloc_sem);
1002	} else {
1003		ext4_lock_group(sb, group);
1004	}
1005
1006	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1007	if (S_ISDIR(mode)) {
1008		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1009		if (sbi->s_log_groups_per_flex) {
1010			ext4_group_t f = ext4_flex_group(sbi, group);
1011
1012			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1013		}
1014	}
1015	if (ext4_has_group_desc_csum(sb)) {
1016		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1017					   EXT4_INODES_PER_GROUP(sb) / 8);
1018		ext4_group_desc_csum_set(sb, group, gdp);
1019	}
1020	ext4_unlock_group(sb, group);
1021
1022	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1023	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1024	if (err) {
1025		ext4_std_error(sb, err);
1026		goto out;
1027	}
1028
1029	percpu_counter_dec(&sbi->s_freeinodes_counter);
1030	if (S_ISDIR(mode))
1031		percpu_counter_inc(&sbi->s_dirs_counter);
1032
1033	if (sbi->s_log_groups_per_flex) {
1034		flex_group = ext4_flex_group(sbi, group);
1035		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1036	}
1037
1038	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1039	/* This is the optimal IO size (for stat), not the fs block size */
1040	inode->i_blocks = 0;
1041	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1042						       ext4_current_time(inode);
1043
1044	memset(ei->i_data, 0, sizeof(ei->i_data));
1045	ei->i_dir_start_lookup = 0;
1046	ei->i_disksize = 0;
1047
1048	/* Don't inherit extent flag from directory, amongst others. */
1049	ei->i_flags =
1050		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
 
1051	ei->i_file_acl = 0;
1052	ei->i_dtime = 0;
1053	ei->i_block_group = group;
1054	ei->i_last_alloc_group = ~0;
1055
1056	ext4_set_inode_flags(inode);
1057	if (IS_DIRSYNC(inode))
1058		ext4_handle_sync(handle);
1059	if (insert_inode_locked(inode) < 0) {
1060		/*
1061		 * Likely a bitmap corruption causing inode to be allocated
1062		 * twice.
1063		 */
1064		err = -EIO;
1065		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1066			   inode->i_ino);
1067		goto out;
1068	}
1069	spin_lock(&sbi->s_next_gen_lock);
1070	inode->i_generation = sbi->s_next_generation++;
1071	spin_unlock(&sbi->s_next_gen_lock);
1072
1073	/* Precompute checksum seed for inode metadata */
1074	if (ext4_has_metadata_csum(sb)) {
1075		__u32 csum;
1076		__le32 inum = cpu_to_le32(inode->i_ino);
1077		__le32 gen = cpu_to_le32(inode->i_generation);
1078		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1079				   sizeof(inum));
1080		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1081					      sizeof(gen));
1082	}
1083
1084	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1085	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1086
1087	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1088	ei->i_inline_off = 0;
1089	if (ext4_has_feature_inline_data(sb))
1090		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1091	ret = inode;
1092	err = dquot_alloc_inode(inode);
1093	if (err)
1094		goto fail_drop;
1095
1096	err = ext4_init_acl(handle, inode, dir);
1097	if (err)
1098		goto fail_free_drop;
 
 
 
 
 
 
 
1099
1100	err = ext4_init_security(handle, inode, dir, qstr);
1101	if (err)
1102		goto fail_free_drop;
 
 
 
 
 
 
1103
1104	if (ext4_has_feature_extents(sb)) {
1105		/* set extent flag only for directory, file and normal symlink*/
1106		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1107			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1108			ext4_ext_tree_init(handle, inode);
1109		}
1110	}
1111
1112	if (ext4_handle_valid(handle)) {
1113		ei->i_sync_tid = handle->h_transaction->t_tid;
1114		ei->i_datasync_tid = handle->h_transaction->t_tid;
1115	}
1116
1117	if (encrypt) {
1118		err = ext4_inherit_context(dir, inode);
1119		if (err)
1120			goto fail_free_drop;
1121	}
1122
1123	err = ext4_mark_inode_dirty(handle, inode);
1124	if (err) {
1125		ext4_std_error(sb, err);
1126		goto fail_free_drop;
1127	}
1128
1129	ext4_debug("allocating inode %lu\n", inode->i_ino);
1130	trace_ext4_allocate_inode(inode, dir, mode);
1131	brelse(inode_bitmap_bh);
1132	return ret;
1133
1134fail_free_drop:
1135	dquot_free_inode(inode);
1136fail_drop:
1137	clear_nlink(inode);
1138	unlock_new_inode(inode);
1139out:
1140	dquot_drop(inode);
1141	inode->i_flags |= S_NOQUOTA;
1142	iput(inode);
1143	brelse(inode_bitmap_bh);
1144	return ERR_PTR(err);
1145}
1146
1147/* Verify that we are loading a valid orphan from disk */
1148struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1149{
1150	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1151	ext4_group_t block_group;
1152	int bit;
1153	struct buffer_head *bitmap_bh;
1154	struct inode *inode = NULL;
1155	long err = -EIO;
1156
1157	/* Error cases - e2fsck has already cleaned up for us */
1158	if (ino > max_ino) {
1159		ext4_warning(sb, "bad orphan ino %lu!  e2fsck was run?", ino);
1160		err = -EFSCORRUPTED;
1161		goto error;
1162	}
1163
1164	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1165	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1166	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1167	if (IS_ERR(bitmap_bh)) {
1168		err = PTR_ERR(bitmap_bh);
1169		ext4_warning(sb, "inode bitmap error %ld for orphan %lu",
1170			     ino, err);
1171		goto error;
1172	}
1173
1174	/* Having the inode bit set should be a 100% indicator that this
1175	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1176	 * inodes that were being truncated, so we can't check i_nlink==0.
1177	 */
1178	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1179		goto bad_orphan;
1180
1181	inode = ext4_iget(sb, ino);
1182	if (IS_ERR(inode))
1183		goto iget_failed;
 
 
 
 
1184
1185	/*
1186	 * If the orphans has i_nlinks > 0 then it should be able to be
1187	 * truncated, otherwise it won't be removed from the orphan list
1188	 * during processing and an infinite loop will result.
 
1189	 */
1190	if (inode->i_nlink && !ext4_can_truncate(inode))
 
1191		goto bad_orphan;
1192
1193	if (NEXT_ORPHAN(inode) > max_ino)
1194		goto bad_orphan;
1195	brelse(bitmap_bh);
1196	return inode;
1197
1198iget_failed:
1199	err = PTR_ERR(inode);
1200	inode = NULL;
1201bad_orphan:
1202	ext4_warning(sb, "bad orphan inode %lu!  e2fsck was run?", ino);
1203	printk(KERN_WARNING "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1204	       bit, (unsigned long long)bitmap_bh->b_blocknr,
1205	       ext4_test_bit(bit, bitmap_bh->b_data));
1206	printk(KERN_WARNING "inode=%p\n", inode);
1207	if (inode) {
1208		printk(KERN_WARNING "is_bad_inode(inode)=%d\n",
1209		       is_bad_inode(inode));
1210		printk(KERN_WARNING "NEXT_ORPHAN(inode)=%u\n",
1211		       NEXT_ORPHAN(inode));
1212		printk(KERN_WARNING "max_ino=%lu\n", max_ino);
1213		printk(KERN_WARNING "i_nlink=%u\n", inode->i_nlink);
1214		/* Avoid freeing blocks if we got a bad deleted inode */
1215		if (inode->i_nlink == 0)
1216			inode->i_blocks = 0;
1217		iput(inode);
1218	}
1219	brelse(bitmap_bh);
1220error:
1221	return ERR_PTR(err);
1222}
1223
1224unsigned long ext4_count_free_inodes(struct super_block *sb)
1225{
1226	unsigned long desc_count;
1227	struct ext4_group_desc *gdp;
1228	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1229#ifdef EXT4FS_DEBUG
1230	struct ext4_super_block *es;
1231	unsigned long bitmap_count, x;
1232	struct buffer_head *bitmap_bh = NULL;
1233
1234	es = EXT4_SB(sb)->s_es;
1235	desc_count = 0;
1236	bitmap_count = 0;
1237	gdp = NULL;
1238	for (i = 0; i < ngroups; i++) {
1239		gdp = ext4_get_group_desc(sb, i, NULL);
1240		if (!gdp)
1241			continue;
1242		desc_count += ext4_free_inodes_count(sb, gdp);
1243		brelse(bitmap_bh);
1244		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1245		if (IS_ERR(bitmap_bh)) {
1246			bitmap_bh = NULL;
1247			continue;
1248		}
1249
1250		x = ext4_count_free(bitmap_bh->b_data,
1251				    EXT4_INODES_PER_GROUP(sb) / 8);
1252		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1253			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1254		bitmap_count += x;
1255	}
1256	brelse(bitmap_bh);
1257	printk(KERN_DEBUG "ext4_count_free_inodes: "
1258	       "stored = %u, computed = %lu, %lu\n",
1259	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1260	return desc_count;
1261#else
1262	desc_count = 0;
1263	for (i = 0; i < ngroups; i++) {
1264		gdp = ext4_get_group_desc(sb, i, NULL);
1265		if (!gdp)
1266			continue;
1267		desc_count += ext4_free_inodes_count(sb, gdp);
1268		cond_resched();
1269	}
1270	return desc_count;
1271#endif
1272}
1273
1274/* Called at mount-time, super-block is locked */
1275unsigned long ext4_count_dirs(struct super_block * sb)
1276{
1277	unsigned long count = 0;
1278	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1279
1280	for (i = 0; i < ngroups; i++) {
1281		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1282		if (!gdp)
1283			continue;
1284		count += ext4_used_dirs_count(sb, gdp);
1285	}
1286	return count;
1287}
1288
1289/*
1290 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1291 * inode table. Must be called without any spinlock held. The only place
1292 * where it is called from on active part of filesystem is ext4lazyinit
1293 * thread, so we do not need any special locks, however we have to prevent
1294 * inode allocation from the current group, so we take alloc_sem lock, to
1295 * block ext4_new_inode() until we are finished.
1296 */
1297int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1298				 int barrier)
1299{
1300	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1301	struct ext4_sb_info *sbi = EXT4_SB(sb);
1302	struct ext4_group_desc *gdp = NULL;
1303	struct buffer_head *group_desc_bh;
1304	handle_t *handle;
1305	ext4_fsblk_t blk;
1306	int num, ret = 0, used_blks = 0;
1307
1308	/* This should not happen, but just to be sure check this */
1309	if (sb->s_flags & MS_RDONLY) {
1310		ret = 1;
1311		goto out;
1312	}
1313
1314	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1315	if (!gdp)
1316		goto out;
1317
1318	/*
1319	 * We do not need to lock this, because we are the only one
1320	 * handling this flag.
1321	 */
1322	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1323		goto out;
1324
1325	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1326	if (IS_ERR(handle)) {
1327		ret = PTR_ERR(handle);
1328		goto out;
1329	}
1330
1331	down_write(&grp->alloc_sem);
1332	/*
1333	 * If inode bitmap was already initialized there may be some
1334	 * used inodes so we need to skip blocks with used inodes in
1335	 * inode table.
1336	 */
1337	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1338		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1339			    ext4_itable_unused_count(sb, gdp)),
1340			    sbi->s_inodes_per_block);
1341
1342	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1343		ext4_error(sb, "Something is wrong with group %u: "
1344			   "used itable blocks: %d; "
1345			   "itable unused count: %u",
1346			   group, used_blks,
1347			   ext4_itable_unused_count(sb, gdp));
1348		ret = 1;
1349		goto err_out;
1350	}
1351
1352	blk = ext4_inode_table(sb, gdp) + used_blks;
1353	num = sbi->s_itb_per_group - used_blks;
1354
1355	BUFFER_TRACE(group_desc_bh, "get_write_access");
1356	ret = ext4_journal_get_write_access(handle,
1357					    group_desc_bh);
1358	if (ret)
1359		goto err_out;
1360
1361	/*
1362	 * Skip zeroout if the inode table is full. But we set the ZEROED
1363	 * flag anyway, because obviously, when it is full it does not need
1364	 * further zeroing.
1365	 */
1366	if (unlikely(num == 0))
1367		goto skip_zeroout;
1368
1369	ext4_debug("going to zero out inode table in group %d\n",
1370		   group);
1371	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1372	if (ret < 0)
1373		goto err_out;
1374	if (barrier)
1375		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1376
1377skip_zeroout:
1378	ext4_lock_group(sb, group);
1379	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1380	ext4_group_desc_csum_set(sb, group, gdp);
1381	ext4_unlock_group(sb, group);
1382
1383	BUFFER_TRACE(group_desc_bh,
1384		     "call ext4_handle_dirty_metadata");
1385	ret = ext4_handle_dirty_metadata(handle, NULL,
1386					 group_desc_bh);
1387
1388err_out:
1389	up_write(&grp->alloc_sem);
1390	ext4_journal_stop(handle);
1391out:
1392	return ret;
1393}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/ialloc.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  BSD ufs-inspired inode and directory allocation by
  11 *  Stephen Tweedie (sct@redhat.com), 1993
  12 *  Big-endian to little-endian byte-swapping/bitmaps by
  13 *        David S. Miller (davem@caip.rutgers.edu), 1995
  14 */
  15
  16#include <linux/time.h>
  17#include <linux/fs.h>
  18#include <linux/stat.h>
  19#include <linux/string.h>
  20#include <linux/quotaops.h>
  21#include <linux/buffer_head.h>
  22#include <linux/random.h>
  23#include <linux/bitops.h>
  24#include <linux/blkdev.h>
  25#include <linux/cred.h>
  26
  27#include <asm/byteorder.h>
  28
  29#include "ext4.h"
  30#include "ext4_jbd2.h"
  31#include "xattr.h"
  32#include "acl.h"
  33
  34#include <trace/events/ext4.h>
  35
  36/*
  37 * ialloc.c contains the inodes allocation and deallocation routines
  38 */
  39
  40/*
  41 * The free inodes are managed by bitmaps.  A file system contains several
  42 * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
  43 * block for inodes, N blocks for the inode table and data blocks.
  44 *
  45 * The file system contains group descriptors which are located after the
  46 * super block.  Each descriptor contains the number of the bitmap block and
  47 * the free blocks count in the block.
  48 */
  49
  50/*
  51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
  52 * need to use it within a single byte (to ensure we get endianness right).
  53 * We can use memset for the rest of the bitmap as there are no other users.
  54 */
  55void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
  56{
  57	int i;
  58
  59	if (start_bit >= end_bit)
  60		return;
  61
  62	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
  63	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
  64		ext4_set_bit(i, bitmap);
  65	if (i < end_bit)
  66		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
  67}
  68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
  70{
  71	if (uptodate) {
  72		set_buffer_uptodate(bh);
  73		set_bitmap_uptodate(bh);
  74	}
  75	unlock_buffer(bh);
  76	put_bh(bh);
  77}
  78
  79static int ext4_validate_inode_bitmap(struct super_block *sb,
  80				      struct ext4_group_desc *desc,
  81				      ext4_group_t block_group,
  82				      struct buffer_head *bh)
  83{
  84	ext4_fsblk_t	blk;
  85	struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
  86	struct ext4_sb_info *sbi = EXT4_SB(sb);
  87
  88	if (buffer_verified(bh))
  89		return 0;
  90	if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
  91		return -EFSCORRUPTED;
  92
  93	ext4_lock_group(sb, block_group);
  94	blk = ext4_inode_bitmap(sb, desc);
  95	if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
  96					   EXT4_INODES_PER_GROUP(sb) / 8)) {
  97		ext4_unlock_group(sb, block_group);
  98		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
  99			   "inode_bitmap = %llu", block_group, blk);
 100		grp = ext4_get_group_info(sb, block_group);
 101		if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
 102			int count;
 103			count = ext4_free_inodes_count(sb, desc);
 104			percpu_counter_sub(&sbi->s_freeinodes_counter,
 105					   count);
 106		}
 107		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
 108		return -EFSBADCRC;
 109	}
 110	set_buffer_verified(bh);
 111	ext4_unlock_group(sb, block_group);
 112	return 0;
 113}
 114
 115/*
 116 * Read the inode allocation bitmap for a given block_group, reading
 117 * into the specified slot in the superblock's bitmap cache.
 118 *
 119 * Return buffer_head of bitmap on success or NULL.
 120 */
 121static struct buffer_head *
 122ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
 123{
 124	struct ext4_group_desc *desc;
 125	struct ext4_sb_info *sbi = EXT4_SB(sb);
 126	struct buffer_head *bh = NULL;
 127	ext4_fsblk_t bitmap_blk;
 128	int err;
 129
 130	desc = ext4_get_group_desc(sb, block_group, NULL);
 131	if (!desc)
 132		return ERR_PTR(-EFSCORRUPTED);
 133
 134	bitmap_blk = ext4_inode_bitmap(sb, desc);
 135	if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
 136	    (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
 137		ext4_error(sb, "Invalid inode bitmap blk %llu in "
 138			   "block_group %u", bitmap_blk, block_group);
 139		return ERR_PTR(-EFSCORRUPTED);
 140	}
 141	bh = sb_getblk(sb, bitmap_blk);
 142	if (unlikely(!bh)) {
 143		ext4_error(sb, "Cannot read inode bitmap - "
 144			    "block_group = %u, inode_bitmap = %llu",
 145			    block_group, bitmap_blk);
 146		return ERR_PTR(-EIO);
 147	}
 148	if (bitmap_uptodate(bh))
 149		goto verify;
 150
 151	lock_buffer(bh);
 152	if (bitmap_uptodate(bh)) {
 153		unlock_buffer(bh);
 154		goto verify;
 155	}
 156
 157	ext4_lock_group(sb, block_group);
 158	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
 159		memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
 160		ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
 161				     sb->s_blocksize * 8, bh->b_data);
 162		set_bitmap_uptodate(bh);
 163		set_buffer_uptodate(bh);
 164		set_buffer_verified(bh);
 165		ext4_unlock_group(sb, block_group);
 166		unlock_buffer(bh);
 
 
 
 
 
 167		return bh;
 168	}
 169	ext4_unlock_group(sb, block_group);
 170
 171	if (buffer_uptodate(bh)) {
 172		/*
 173		 * if not uninit if bh is uptodate,
 174		 * bitmap is also uptodate
 175		 */
 176		set_bitmap_uptodate(bh);
 177		unlock_buffer(bh);
 178		goto verify;
 179	}
 180	/*
 181	 * submit the buffer_head for reading
 182	 */
 183	trace_ext4_load_inode_bitmap(sb, block_group);
 184	bh->b_end_io = ext4_end_bitmap_read;
 185	get_bh(bh);
 186	submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
 187	wait_on_buffer(bh);
 188	if (!buffer_uptodate(bh)) {
 189		put_bh(bh);
 190		ext4_error(sb, "Cannot read inode bitmap - "
 191			   "block_group = %u, inode_bitmap = %llu",
 192			   block_group, bitmap_blk);
 193		return ERR_PTR(-EIO);
 194	}
 195
 196verify:
 197	err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
 198	if (err)
 199		goto out;
 200	return bh;
 201out:
 202	put_bh(bh);
 203	return ERR_PTR(err);
 204}
 205
 206/*
 207 * NOTE! When we get the inode, we're the only people
 208 * that have access to it, and as such there are no
 209 * race conditions we have to worry about. The inode
 210 * is not on the hash-lists, and it cannot be reached
 211 * through the filesystem because the directory entry
 212 * has been deleted earlier.
 213 *
 214 * HOWEVER: we must make sure that we get no aliases,
 215 * which means that we have to call "clear_inode()"
 216 * _before_ we mark the inode not in use in the inode
 217 * bitmaps. Otherwise a newly created file might use
 218 * the same inode number (not actually the same pointer
 219 * though), and then we'd have two inodes sharing the
 220 * same inode number and space on the harddisk.
 221 */
 222void ext4_free_inode(handle_t *handle, struct inode *inode)
 223{
 224	struct super_block *sb = inode->i_sb;
 225	int is_directory;
 226	unsigned long ino;
 227	struct buffer_head *bitmap_bh = NULL;
 228	struct buffer_head *bh2;
 229	ext4_group_t block_group;
 230	unsigned long bit;
 231	struct ext4_group_desc *gdp;
 232	struct ext4_super_block *es;
 233	struct ext4_sb_info *sbi;
 234	int fatal = 0, err, count, cleared;
 235	struct ext4_group_info *grp;
 236
 237	if (!sb) {
 238		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
 239		       "nonexistent device\n", __func__, __LINE__);
 240		return;
 241	}
 242	if (atomic_read(&inode->i_count) > 1) {
 243		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
 244			 __func__, __LINE__, inode->i_ino,
 245			 atomic_read(&inode->i_count));
 246		return;
 247	}
 248	if (inode->i_nlink) {
 249		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
 250			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
 251		return;
 252	}
 253	sbi = EXT4_SB(sb);
 254
 255	ino = inode->i_ino;
 256	ext4_debug("freeing inode %lu\n", ino);
 257	trace_ext4_free_inode(inode);
 258
 259	/*
 260	 * Note: we must free any quota before locking the superblock,
 261	 * as writing the quota to disk may need the lock as well.
 262	 */
 263	dquot_initialize(inode);
 
 264	dquot_free_inode(inode);
 265	dquot_drop(inode);
 266
 267	is_directory = S_ISDIR(inode->i_mode);
 268
 269	/* Do this BEFORE marking the inode not in use or returning an error */
 270	ext4_clear_inode(inode);
 271
 272	es = sbi->s_es;
 273	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
 274		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
 275		goto error_return;
 276	}
 277	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
 278	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
 279	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
 280	/* Don't bother if the inode bitmap is corrupt. */
 281	grp = ext4_get_group_info(sb, block_group);
 282	if (IS_ERR(bitmap_bh)) {
 283		fatal = PTR_ERR(bitmap_bh);
 284		bitmap_bh = NULL;
 285		goto error_return;
 286	}
 287	if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
 288		fatal = -EFSCORRUPTED;
 289		goto error_return;
 290	}
 291
 292	BUFFER_TRACE(bitmap_bh, "get_write_access");
 293	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
 294	if (fatal)
 295		goto error_return;
 296
 297	fatal = -ESRCH;
 298	gdp = ext4_get_group_desc(sb, block_group, &bh2);
 299	if (gdp) {
 300		BUFFER_TRACE(bh2, "get_write_access");
 301		fatal = ext4_journal_get_write_access(handle, bh2);
 302	}
 303	ext4_lock_group(sb, block_group);
 304	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
 305	if (fatal || !cleared) {
 306		ext4_unlock_group(sb, block_group);
 307		goto out;
 308	}
 309
 310	count = ext4_free_inodes_count(sb, gdp) + 1;
 311	ext4_free_inodes_set(sb, gdp, count);
 312	if (is_directory) {
 313		count = ext4_used_dirs_count(sb, gdp) - 1;
 314		ext4_used_dirs_set(sb, gdp, count);
 315		percpu_counter_dec(&sbi->s_dirs_counter);
 316	}
 317	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
 318				   EXT4_INODES_PER_GROUP(sb) / 8);
 319	ext4_group_desc_csum_set(sb, block_group, gdp);
 320	ext4_unlock_group(sb, block_group);
 321
 322	percpu_counter_inc(&sbi->s_freeinodes_counter);
 323	if (sbi->s_log_groups_per_flex) {
 324		ext4_group_t f = ext4_flex_group(sbi, block_group);
 325
 326		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
 327		if (is_directory)
 328			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
 329	}
 330	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
 331	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
 332out:
 333	if (cleared) {
 334		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
 335		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
 336		if (!fatal)
 337			fatal = err;
 338	} else {
 339		ext4_error(sb, "bit already cleared for inode %lu", ino);
 340		if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
 341			int count;
 342			count = ext4_free_inodes_count(sb, gdp);
 343			percpu_counter_sub(&sbi->s_freeinodes_counter,
 344					   count);
 345		}
 346		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
 347	}
 348
 349error_return:
 350	brelse(bitmap_bh);
 351	ext4_std_error(sb, fatal);
 352}
 353
 354struct orlov_stats {
 355	__u64 free_clusters;
 356	__u32 free_inodes;
 357	__u32 used_dirs;
 358};
 359
 360/*
 361 * Helper function for Orlov's allocator; returns critical information
 362 * for a particular block group or flex_bg.  If flex_size is 1, then g
 363 * is a block group number; otherwise it is flex_bg number.
 364 */
 365static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
 366			    int flex_size, struct orlov_stats *stats)
 367{
 368	struct ext4_group_desc *desc;
 369	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
 370
 371	if (flex_size > 1) {
 372		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
 373		stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
 374		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
 375		return;
 376	}
 377
 378	desc = ext4_get_group_desc(sb, g, NULL);
 379	if (desc) {
 380		stats->free_inodes = ext4_free_inodes_count(sb, desc);
 381		stats->free_clusters = ext4_free_group_clusters(sb, desc);
 382		stats->used_dirs = ext4_used_dirs_count(sb, desc);
 383	} else {
 384		stats->free_inodes = 0;
 385		stats->free_clusters = 0;
 386		stats->used_dirs = 0;
 387	}
 388}
 389
 390/*
 391 * Orlov's allocator for directories.
 392 *
 393 * We always try to spread first-level directories.
 394 *
 395 * If there are blockgroups with both free inodes and free blocks counts
 396 * not worse than average we return one with smallest directory count.
 397 * Otherwise we simply return a random group.
 398 *
 399 * For the rest rules look so:
 400 *
 401 * It's OK to put directory into a group unless
 402 * it has too many directories already (max_dirs) or
 403 * it has too few free inodes left (min_inodes) or
 404 * it has too few free blocks left (min_blocks) or
 405 * Parent's group is preferred, if it doesn't satisfy these
 406 * conditions we search cyclically through the rest. If none
 407 * of the groups look good we just look for a group with more
 408 * free inodes than average (starting at parent's group).
 409 */
 410
 411static int find_group_orlov(struct super_block *sb, struct inode *parent,
 412			    ext4_group_t *group, umode_t mode,
 413			    const struct qstr *qstr)
 414{
 415	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
 416	struct ext4_sb_info *sbi = EXT4_SB(sb);
 417	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
 418	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
 419	unsigned int freei, avefreei, grp_free;
 420	ext4_fsblk_t freeb, avefreec;
 421	unsigned int ndirs;
 422	int max_dirs, min_inodes;
 423	ext4_grpblk_t min_clusters;
 424	ext4_group_t i, grp, g, ngroups;
 425	struct ext4_group_desc *desc;
 426	struct orlov_stats stats;
 427	int flex_size = ext4_flex_bg_size(sbi);
 428	struct dx_hash_info hinfo;
 429
 430	ngroups = real_ngroups;
 431	if (flex_size > 1) {
 432		ngroups = (real_ngroups + flex_size - 1) >>
 433			sbi->s_log_groups_per_flex;
 434		parent_group >>= sbi->s_log_groups_per_flex;
 435	}
 436
 437	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
 438	avefreei = freei / ngroups;
 439	freeb = EXT4_C2B(sbi,
 440		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
 441	avefreec = freeb;
 442	do_div(avefreec, ngroups);
 443	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
 444
 445	if (S_ISDIR(mode) &&
 446	    ((parent == d_inode(sb->s_root)) ||
 447	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
 448		int best_ndir = inodes_per_group;
 449		int ret = -1;
 450
 451		if (qstr) {
 452			hinfo.hash_version = DX_HASH_HALF_MD4;
 453			hinfo.seed = sbi->s_hash_seed;
 454			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
 455			grp = hinfo.hash;
 456		} else
 457			grp = prandom_u32();
 458		parent_group = (unsigned)grp % ngroups;
 459		for (i = 0; i < ngroups; i++) {
 460			g = (parent_group + i) % ngroups;
 461			get_orlov_stats(sb, g, flex_size, &stats);
 462			if (!stats.free_inodes)
 463				continue;
 464			if (stats.used_dirs >= best_ndir)
 465				continue;
 466			if (stats.free_inodes < avefreei)
 467				continue;
 468			if (stats.free_clusters < avefreec)
 469				continue;
 470			grp = g;
 471			ret = 0;
 472			best_ndir = stats.used_dirs;
 473		}
 474		if (ret)
 475			goto fallback;
 476	found_flex_bg:
 477		if (flex_size == 1) {
 478			*group = grp;
 479			return 0;
 480		}
 481
 482		/*
 483		 * We pack inodes at the beginning of the flexgroup's
 484		 * inode tables.  Block allocation decisions will do
 485		 * something similar, although regular files will
 486		 * start at 2nd block group of the flexgroup.  See
 487		 * ext4_ext_find_goal() and ext4_find_near().
 488		 */
 489		grp *= flex_size;
 490		for (i = 0; i < flex_size; i++) {
 491			if (grp+i >= real_ngroups)
 492				break;
 493			desc = ext4_get_group_desc(sb, grp+i, NULL);
 494			if (desc && ext4_free_inodes_count(sb, desc)) {
 495				*group = grp+i;
 496				return 0;
 497			}
 498		}
 499		goto fallback;
 500	}
 501
 502	max_dirs = ndirs / ngroups + inodes_per_group / 16;
 503	min_inodes = avefreei - inodes_per_group*flex_size / 4;
 504	if (min_inodes < 1)
 505		min_inodes = 1;
 506	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
 507
 508	/*
 509	 * Start looking in the flex group where we last allocated an
 510	 * inode for this parent directory
 511	 */
 512	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
 513		parent_group = EXT4_I(parent)->i_last_alloc_group;
 514		if (flex_size > 1)
 515			parent_group >>= sbi->s_log_groups_per_flex;
 516	}
 517
 518	for (i = 0; i < ngroups; i++) {
 519		grp = (parent_group + i) % ngroups;
 520		get_orlov_stats(sb, grp, flex_size, &stats);
 521		if (stats.used_dirs >= max_dirs)
 522			continue;
 523		if (stats.free_inodes < min_inodes)
 524			continue;
 525		if (stats.free_clusters < min_clusters)
 526			continue;
 527		goto found_flex_bg;
 528	}
 529
 530fallback:
 531	ngroups = real_ngroups;
 532	avefreei = freei / ngroups;
 533fallback_retry:
 534	parent_group = EXT4_I(parent)->i_block_group;
 535	for (i = 0; i < ngroups; i++) {
 536		grp = (parent_group + i) % ngroups;
 537		desc = ext4_get_group_desc(sb, grp, NULL);
 538		if (desc) {
 539			grp_free = ext4_free_inodes_count(sb, desc);
 540			if (grp_free && grp_free >= avefreei) {
 541				*group = grp;
 542				return 0;
 543			}
 544		}
 545	}
 546
 547	if (avefreei) {
 548		/*
 549		 * The free-inodes counter is approximate, and for really small
 550		 * filesystems the above test can fail to find any blockgroups
 551		 */
 552		avefreei = 0;
 553		goto fallback_retry;
 554	}
 555
 556	return -1;
 557}
 558
 559static int find_group_other(struct super_block *sb, struct inode *parent,
 560			    ext4_group_t *group, umode_t mode)
 561{
 562	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
 563	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
 564	struct ext4_group_desc *desc;
 565	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
 566
 567	/*
 568	 * Try to place the inode is the same flex group as its
 569	 * parent.  If we can't find space, use the Orlov algorithm to
 570	 * find another flex group, and store that information in the
 571	 * parent directory's inode information so that use that flex
 572	 * group for future allocations.
 573	 */
 574	if (flex_size > 1) {
 575		int retry = 0;
 576
 577	try_again:
 578		parent_group &= ~(flex_size-1);
 579		last = parent_group + flex_size;
 580		if (last > ngroups)
 581			last = ngroups;
 582		for  (i = parent_group; i < last; i++) {
 583			desc = ext4_get_group_desc(sb, i, NULL);
 584			if (desc && ext4_free_inodes_count(sb, desc)) {
 585				*group = i;
 586				return 0;
 587			}
 588		}
 589		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
 590			retry = 1;
 591			parent_group = EXT4_I(parent)->i_last_alloc_group;
 592			goto try_again;
 593		}
 594		/*
 595		 * If this didn't work, use the Orlov search algorithm
 596		 * to find a new flex group; we pass in the mode to
 597		 * avoid the topdir algorithms.
 598		 */
 599		*group = parent_group + flex_size;
 600		if (*group > ngroups)
 601			*group = 0;
 602		return find_group_orlov(sb, parent, group, mode, NULL);
 603	}
 604
 605	/*
 606	 * Try to place the inode in its parent directory
 607	 */
 608	*group = parent_group;
 609	desc = ext4_get_group_desc(sb, *group, NULL);
 610	if (desc && ext4_free_inodes_count(sb, desc) &&
 611	    ext4_free_group_clusters(sb, desc))
 612		return 0;
 613
 614	/*
 615	 * We're going to place this inode in a different blockgroup from its
 616	 * parent.  We want to cause files in a common directory to all land in
 617	 * the same blockgroup.  But we want files which are in a different
 618	 * directory which shares a blockgroup with our parent to land in a
 619	 * different blockgroup.
 620	 *
 621	 * So add our directory's i_ino into the starting point for the hash.
 622	 */
 623	*group = (*group + parent->i_ino) % ngroups;
 624
 625	/*
 626	 * Use a quadratic hash to find a group with a free inode and some free
 627	 * blocks.
 628	 */
 629	for (i = 1; i < ngroups; i <<= 1) {
 630		*group += i;
 631		if (*group >= ngroups)
 632			*group -= ngroups;
 633		desc = ext4_get_group_desc(sb, *group, NULL);
 634		if (desc && ext4_free_inodes_count(sb, desc) &&
 635		    ext4_free_group_clusters(sb, desc))
 636			return 0;
 637	}
 638
 639	/*
 640	 * That failed: try linear search for a free inode, even if that group
 641	 * has no free blocks.
 642	 */
 643	*group = parent_group;
 644	for (i = 0; i < ngroups; i++) {
 645		if (++*group >= ngroups)
 646			*group = 0;
 647		desc = ext4_get_group_desc(sb, *group, NULL);
 648		if (desc && ext4_free_inodes_count(sb, desc))
 649			return 0;
 650	}
 651
 652	return -1;
 653}
 654
 655/*
 656 * In no journal mode, if an inode has recently been deleted, we want
 657 * to avoid reusing it until we're reasonably sure the inode table
 658 * block has been written back to disk.  (Yes, these values are
 659 * somewhat arbitrary...)
 660 */
 661#define RECENTCY_MIN	5
 662#define RECENTCY_DIRTY	300
 663
 664static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
 665{
 666	struct ext4_group_desc	*gdp;
 667	struct ext4_inode	*raw_inode;
 668	struct buffer_head	*bh;
 669	int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
 670	int offset, ret = 0;
 671	int recentcy = RECENTCY_MIN;
 672	u32 dtime, now;
 673
 674	gdp = ext4_get_group_desc(sb, group, NULL);
 675	if (unlikely(!gdp))
 676		return 0;
 677
 678	bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
 679		       (ino / inodes_per_block));
 680	if (!bh || !buffer_uptodate(bh))
 681		/*
 682		 * If the block is not in the buffer cache, then it
 683		 * must have been written out.
 684		 */
 685		goto out;
 686
 687	offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
 688	raw_inode = (struct ext4_inode *) (bh->b_data + offset);
 689
 690	/* i_dtime is only 32 bits on disk, but we only care about relative
 691	 * times in the range of a few minutes (i.e. long enough to sync a
 692	 * recently-deleted inode to disk), so using the low 32 bits of the
 693	 * clock (a 68 year range) is enough, see time_before32() */
 694	dtime = le32_to_cpu(raw_inode->i_dtime);
 695	now = ktime_get_real_seconds();
 696	if (buffer_dirty(bh))
 697		recentcy += RECENTCY_DIRTY;
 698
 699	if (dtime && time_before32(dtime, now) &&
 700	    time_before32(now, dtime + recentcy))
 701		ret = 1;
 702out:
 703	brelse(bh);
 704	return ret;
 705}
 706
 707static int find_inode_bit(struct super_block *sb, ext4_group_t group,
 708			  struct buffer_head *bitmap, unsigned long *ino)
 709{
 710next:
 711	*ino = ext4_find_next_zero_bit((unsigned long *)
 712				       bitmap->b_data,
 713				       EXT4_INODES_PER_GROUP(sb), *ino);
 714	if (*ino >= EXT4_INODES_PER_GROUP(sb))
 715		return 0;
 716
 717	if ((EXT4_SB(sb)->s_journal == NULL) &&
 718	    recently_deleted(sb, group, *ino)) {
 719		*ino = *ino + 1;
 720		if (*ino < EXT4_INODES_PER_GROUP(sb))
 721			goto next;
 722		return 0;
 723	}
 724
 725	return 1;
 726}
 727
 728/*
 729 * There are two policies for allocating an inode.  If the new inode is
 730 * a directory, then a forward search is made for a block group with both
 731 * free space and a low directory-to-inode ratio; if that fails, then of
 732 * the groups with above-average free space, that group with the fewest
 733 * directories already is chosen.
 734 *
 735 * For other inodes, search forward from the parent directory's block
 736 * group to find a free inode.
 737 */
 738struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
 739			       umode_t mode, const struct qstr *qstr,
 740			       __u32 goal, uid_t *owner, __u32 i_flags,
 741			       int handle_type, unsigned int line_no,
 742			       int nblocks)
 743{
 744	struct super_block *sb;
 745	struct buffer_head *inode_bitmap_bh = NULL;
 746	struct buffer_head *group_desc_bh;
 747	ext4_group_t ngroups, group = 0;
 748	unsigned long ino = 0;
 749	struct inode *inode;
 750	struct ext4_group_desc *gdp = NULL;
 751	struct ext4_inode_info *ei;
 752	struct ext4_sb_info *sbi;
 753	int ret2, err;
 754	struct inode *ret;
 755	ext4_group_t i;
 756	ext4_group_t flex_group;
 757	struct ext4_group_info *grp;
 758	int encrypt = 0;
 759
 760	/* Cannot create files in a deleted directory */
 761	if (!dir || !dir->i_nlink)
 762		return ERR_PTR(-EPERM);
 763
 764	sb = dir->i_sb;
 765	sbi = EXT4_SB(sb);
 766
 767	if (unlikely(ext4_forced_shutdown(sbi)))
 768		return ERR_PTR(-EIO);
 769
 770	if ((ext4_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
 771	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
 772	    !(i_flags & EXT4_EA_INODE_FL)) {
 773		err = fscrypt_get_encryption_info(dir);
 774		if (err)
 775			return ERR_PTR(err);
 776		if (!fscrypt_has_encryption_key(dir))
 777			return ERR_PTR(-ENOKEY);
 
 
 778		encrypt = 1;
 779	}
 780
 781	if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
 782#ifdef CONFIG_EXT4_FS_POSIX_ACL
 783		struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
 784
 785		if (IS_ERR(p))
 786			return ERR_CAST(p);
 787		if (p) {
 788			int acl_size = p->a_count * sizeof(ext4_acl_entry);
 789
 790			nblocks += (S_ISDIR(mode) ? 2 : 1) *
 791				__ext4_xattr_set_credits(sb, NULL /* inode */,
 792					NULL /* block_bh */, acl_size,
 793					true /* is_create */);
 794			posix_acl_release(p);
 795		}
 796#endif
 797
 798#ifdef CONFIG_SECURITY
 799		{
 800			int num_security_xattrs = 1;
 801
 802#ifdef CONFIG_INTEGRITY
 803			num_security_xattrs++;
 804#endif
 805			/*
 806			 * We assume that security xattrs are never
 807			 * more than 1k.  In practice they are under
 808			 * 128 bytes.
 809			 */
 810			nblocks += num_security_xattrs *
 811				__ext4_xattr_set_credits(sb, NULL /* inode */,
 812					NULL /* block_bh */, 1024,
 813					true /* is_create */);
 814		}
 815#endif
 816		if (encrypt)
 817			nblocks += __ext4_xattr_set_credits(sb,
 818					NULL /* inode */, NULL /* block_bh */,
 819					FSCRYPT_SET_CONTEXT_MAX_SIZE,
 820					true /* is_create */);
 821	}
 822
 823	ngroups = ext4_get_groups_count(sb);
 824	trace_ext4_request_inode(dir, mode);
 825	inode = new_inode(sb);
 826	if (!inode)
 827		return ERR_PTR(-ENOMEM);
 828	ei = EXT4_I(inode);
 
 829
 830	/*
 831	 * Initialize owners and quota early so that we don't have to account
 832	 * for quota initialization worst case in standard inode creating
 833	 * transaction
 834	 */
 835	if (owner) {
 836		inode->i_mode = mode;
 837		i_uid_write(inode, owner[0]);
 838		i_gid_write(inode, owner[1]);
 839	} else if (test_opt(sb, GRPID)) {
 840		inode->i_mode = mode;
 841		inode->i_uid = current_fsuid();
 842		inode->i_gid = dir->i_gid;
 843	} else
 844		inode_init_owner(inode, dir, mode);
 845
 846	if (ext4_has_feature_project(sb) &&
 847	    ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
 848		ei->i_projid = EXT4_I(dir)->i_projid;
 849	else
 850		ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
 851
 852	err = dquot_initialize(inode);
 853	if (err)
 854		goto out;
 855
 856	if (!goal)
 857		goal = sbi->s_inode_goal;
 858
 859	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
 860		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
 861		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
 862		ret2 = 0;
 863		goto got_group;
 864	}
 865
 866	if (S_ISDIR(mode))
 867		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
 868	else
 869		ret2 = find_group_other(sb, dir, &group, mode);
 870
 871got_group:
 872	EXT4_I(dir)->i_last_alloc_group = group;
 873	err = -ENOSPC;
 874	if (ret2 == -1)
 875		goto out;
 876
 877	/*
 878	 * Normally we will only go through one pass of this loop,
 879	 * unless we get unlucky and it turns out the group we selected
 880	 * had its last inode grabbed by someone else.
 881	 */
 882	for (i = 0; i < ngroups; i++, ino = 0) {
 883		err = -EIO;
 884
 885		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
 886		if (!gdp)
 887			goto out;
 888
 889		/*
 890		 * Check free inodes count before loading bitmap.
 891		 */
 892		if (ext4_free_inodes_count(sb, gdp) == 0)
 893			goto next_group;
 
 
 
 894
 895		grp = ext4_get_group_info(sb, group);
 896		/* Skip groups with already-known suspicious inode tables */
 897		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
 898			goto next_group;
 
 
 
 899
 900		brelse(inode_bitmap_bh);
 901		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
 902		/* Skip groups with suspicious inode tables */
 903		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
 904		    IS_ERR(inode_bitmap_bh)) {
 905			inode_bitmap_bh = NULL;
 906			goto next_group;
 
 
 907		}
 908
 909repeat_in_this_group:
 910		ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
 911		if (!ret2)
 
 
 912			goto next_group;
 913
 914		if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
 915			ext4_error(sb, "reserved inode found cleared - "
 916				   "inode=%lu", ino + 1);
 917			goto next_group;
 
 
 
 
 
 918		}
 919
 920		if (!handle) {
 921			BUG_ON(nblocks <= 0);
 922			handle = __ext4_journal_start_sb(dir->i_sb, line_no,
 923							 handle_type, nblocks,
 924							 0);
 925			if (IS_ERR(handle)) {
 926				err = PTR_ERR(handle);
 927				ext4_std_error(sb, err);
 928				goto out;
 929			}
 930		}
 931		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
 932		err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
 933		if (err) {
 934			ext4_std_error(sb, err);
 935			goto out;
 936		}
 937		ext4_lock_group(sb, group);
 938		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
 939		if (ret2) {
 940			/* Someone already took the bit. Repeat the search
 941			 * with lock held.
 942			 */
 943			ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
 944			if (ret2) {
 945				ext4_set_bit(ino, inode_bitmap_bh->b_data);
 946				ret2 = 0;
 947			} else {
 948				ret2 = 1; /* we didn't grab the inode */
 949			}
 950		}
 951		ext4_unlock_group(sb, group);
 952		ino++;		/* the inode bitmap is zero-based */
 953		if (!ret2)
 954			goto got; /* we grabbed the inode! */
 955
 956		if (ino < EXT4_INODES_PER_GROUP(sb))
 957			goto repeat_in_this_group;
 958next_group:
 959		if (++group == ngroups)
 960			group = 0;
 961	}
 962	err = -ENOSPC;
 963	goto out;
 964
 965got:
 966	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
 967	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
 968	if (err) {
 969		ext4_std_error(sb, err);
 970		goto out;
 971	}
 972
 973	BUFFER_TRACE(group_desc_bh, "get_write_access");
 974	err = ext4_journal_get_write_access(handle, group_desc_bh);
 975	if (err) {
 976		ext4_std_error(sb, err);
 977		goto out;
 978	}
 979
 980	/* We may have to initialize the block bitmap if it isn't already */
 981	if (ext4_has_group_desc_csum(sb) &&
 982	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
 983		struct buffer_head *block_bitmap_bh;
 984
 985		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
 986		if (IS_ERR(block_bitmap_bh)) {
 987			err = PTR_ERR(block_bitmap_bh);
 988			goto out;
 989		}
 990		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
 991		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
 992		if (err) {
 993			brelse(block_bitmap_bh);
 994			ext4_std_error(sb, err);
 995			goto out;
 996		}
 997
 998		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
 999		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1000
1001		/* recheck and clear flag under lock if we still need to */
1002		ext4_lock_group(sb, group);
1003		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
1004			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1005			ext4_free_group_clusters_set(sb, gdp,
1006				ext4_free_clusters_after_init(sb, group, gdp));
1007			ext4_block_bitmap_csum_set(sb, group, gdp,
1008						   block_bitmap_bh);
1009			ext4_group_desc_csum_set(sb, group, gdp);
1010		}
1011		ext4_unlock_group(sb, group);
1012		brelse(block_bitmap_bh);
1013
1014		if (err) {
1015			ext4_std_error(sb, err);
1016			goto out;
1017		}
1018	}
1019
1020	/* Update the relevant bg descriptor fields */
1021	if (ext4_has_group_desc_csum(sb)) {
1022		int free;
1023		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1024
1025		down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1026		ext4_lock_group(sb, group); /* while we modify the bg desc */
1027		free = EXT4_INODES_PER_GROUP(sb) -
1028			ext4_itable_unused_count(sb, gdp);
1029		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1030			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1031			free = 0;
1032		}
1033		/*
1034		 * Check the relative inode number against the last used
1035		 * relative inode number in this group. if it is greater
1036		 * we need to update the bg_itable_unused count
1037		 */
1038		if (ino > free)
1039			ext4_itable_unused_set(sb, gdp,
1040					(EXT4_INODES_PER_GROUP(sb) - ino));
1041		up_read(&grp->alloc_sem);
1042	} else {
1043		ext4_lock_group(sb, group);
1044	}
1045
1046	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1047	if (S_ISDIR(mode)) {
1048		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1049		if (sbi->s_log_groups_per_flex) {
1050			ext4_group_t f = ext4_flex_group(sbi, group);
1051
1052			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1053		}
1054	}
1055	if (ext4_has_group_desc_csum(sb)) {
1056		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1057					   EXT4_INODES_PER_GROUP(sb) / 8);
1058		ext4_group_desc_csum_set(sb, group, gdp);
1059	}
1060	ext4_unlock_group(sb, group);
1061
1062	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1063	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1064	if (err) {
1065		ext4_std_error(sb, err);
1066		goto out;
1067	}
1068
1069	percpu_counter_dec(&sbi->s_freeinodes_counter);
1070	if (S_ISDIR(mode))
1071		percpu_counter_inc(&sbi->s_dirs_counter);
1072
1073	if (sbi->s_log_groups_per_flex) {
1074		flex_group = ext4_flex_group(sbi, group);
1075		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1076	}
1077
1078	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1079	/* This is the optimal IO size (for stat), not the fs block size */
1080	inode->i_blocks = 0;
1081	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1082						       current_time(inode);
1083
1084	memset(ei->i_data, 0, sizeof(ei->i_data));
1085	ei->i_dir_start_lookup = 0;
1086	ei->i_disksize = 0;
1087
1088	/* Don't inherit extent flag from directory, amongst others. */
1089	ei->i_flags =
1090		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1091	ei->i_flags |= i_flags;
1092	ei->i_file_acl = 0;
1093	ei->i_dtime = 0;
1094	ei->i_block_group = group;
1095	ei->i_last_alloc_group = ~0;
1096
1097	ext4_set_inode_flags(inode);
1098	if (IS_DIRSYNC(inode))
1099		ext4_handle_sync(handle);
1100	if (insert_inode_locked(inode) < 0) {
1101		/*
1102		 * Likely a bitmap corruption causing inode to be allocated
1103		 * twice.
1104		 */
1105		err = -EIO;
1106		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1107			   inode->i_ino);
1108		goto out;
1109	}
1110	inode->i_generation = prandom_u32();
 
 
1111
1112	/* Precompute checksum seed for inode metadata */
1113	if (ext4_has_metadata_csum(sb)) {
1114		__u32 csum;
1115		__le32 inum = cpu_to_le32(inode->i_ino);
1116		__le32 gen = cpu_to_le32(inode->i_generation);
1117		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1118				   sizeof(inum));
1119		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1120					      sizeof(gen));
1121	}
1122
1123	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1124	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1125
1126	ei->i_extra_isize = sbi->s_want_extra_isize;
1127	ei->i_inline_off = 0;
1128	if (ext4_has_feature_inline_data(sb))
1129		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1130	ret = inode;
1131	err = dquot_alloc_inode(inode);
1132	if (err)
1133		goto fail_drop;
1134
1135	/*
1136	 * Since the encryption xattr will always be unique, create it first so
1137	 * that it's less likely to end up in an external xattr block and
1138	 * prevent its deduplication.
1139	 */
1140	if (encrypt) {
1141		err = fscrypt_inherit_context(dir, inode, handle, true);
1142		if (err)
1143			goto fail_free_drop;
1144	}
1145
1146	if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1147		err = ext4_init_acl(handle, inode, dir);
1148		if (err)
1149			goto fail_free_drop;
1150
1151		err = ext4_init_security(handle, inode, dir, qstr);
1152		if (err)
1153			goto fail_free_drop;
1154	}
1155
1156	if (ext4_has_feature_extents(sb)) {
1157		/* set extent flag only for directory, file and normal symlink*/
1158		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1159			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1160			ext4_ext_tree_init(handle, inode);
1161		}
1162	}
1163
1164	if (ext4_handle_valid(handle)) {
1165		ei->i_sync_tid = handle->h_transaction->t_tid;
1166		ei->i_datasync_tid = handle->h_transaction->t_tid;
1167	}
1168
 
 
 
 
 
 
1169	err = ext4_mark_inode_dirty(handle, inode);
1170	if (err) {
1171		ext4_std_error(sb, err);
1172		goto fail_free_drop;
1173	}
1174
1175	ext4_debug("allocating inode %lu\n", inode->i_ino);
1176	trace_ext4_allocate_inode(inode, dir, mode);
1177	brelse(inode_bitmap_bh);
1178	return ret;
1179
1180fail_free_drop:
1181	dquot_free_inode(inode);
1182fail_drop:
1183	clear_nlink(inode);
1184	unlock_new_inode(inode);
1185out:
1186	dquot_drop(inode);
1187	inode->i_flags |= S_NOQUOTA;
1188	iput(inode);
1189	brelse(inode_bitmap_bh);
1190	return ERR_PTR(err);
1191}
1192
1193/* Verify that we are loading a valid orphan from disk */
1194struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1195{
1196	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1197	ext4_group_t block_group;
1198	int bit;
1199	struct buffer_head *bitmap_bh = NULL;
1200	struct inode *inode = NULL;
1201	int err = -EFSCORRUPTED;
1202
1203	if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1204		goto bad_orphan;
 
 
 
 
1205
1206	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1207	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1208	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1209	if (IS_ERR(bitmap_bh)) {
1210		ext4_error(sb, "inode bitmap error %ld for orphan %lu",
1211			   ino, PTR_ERR(bitmap_bh));
1212		return (struct inode *) bitmap_bh;
 
1213	}
1214
1215	/* Having the inode bit set should be a 100% indicator that this
1216	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1217	 * inodes that were being truncated, so we can't check i_nlink==0.
1218	 */
1219	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1220		goto bad_orphan;
1221
1222	inode = ext4_iget(sb, ino);
1223	if (IS_ERR(inode)) {
1224		err = PTR_ERR(inode);
1225		ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1226			   ino, err);
1227		return inode;
1228	}
1229
1230	/*
1231	 * If the orphans has i_nlinks > 0 then it should be able to
1232	 * be truncated, otherwise it won't be removed from the orphan
1233	 * list during processing and an infinite loop will result.
1234	 * Similarly, it must not be a bad inode.
1235	 */
1236	if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1237	    is_bad_inode(inode))
1238		goto bad_orphan;
1239
1240	if (NEXT_ORPHAN(inode) > max_ino)
1241		goto bad_orphan;
1242	brelse(bitmap_bh);
1243	return inode;
1244
 
 
 
1245bad_orphan:
1246	ext4_error(sb, "bad orphan inode %lu", ino);
1247	if (bitmap_bh)
1248		printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1249		       bit, (unsigned long long)bitmap_bh->b_blocknr,
1250		       ext4_test_bit(bit, bitmap_bh->b_data));
1251	if (inode) {
1252		printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1253		       is_bad_inode(inode));
1254		printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1255		       NEXT_ORPHAN(inode));
1256		printk(KERN_ERR "max_ino=%lu\n", max_ino);
1257		printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1258		/* Avoid freeing blocks if we got a bad deleted inode */
1259		if (inode->i_nlink == 0)
1260			inode->i_blocks = 0;
1261		iput(inode);
1262	}
1263	brelse(bitmap_bh);
 
1264	return ERR_PTR(err);
1265}
1266
1267unsigned long ext4_count_free_inodes(struct super_block *sb)
1268{
1269	unsigned long desc_count;
1270	struct ext4_group_desc *gdp;
1271	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1272#ifdef EXT4FS_DEBUG
1273	struct ext4_super_block *es;
1274	unsigned long bitmap_count, x;
1275	struct buffer_head *bitmap_bh = NULL;
1276
1277	es = EXT4_SB(sb)->s_es;
1278	desc_count = 0;
1279	bitmap_count = 0;
1280	gdp = NULL;
1281	for (i = 0; i < ngroups; i++) {
1282		gdp = ext4_get_group_desc(sb, i, NULL);
1283		if (!gdp)
1284			continue;
1285		desc_count += ext4_free_inodes_count(sb, gdp);
1286		brelse(bitmap_bh);
1287		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1288		if (IS_ERR(bitmap_bh)) {
1289			bitmap_bh = NULL;
1290			continue;
1291		}
1292
1293		x = ext4_count_free(bitmap_bh->b_data,
1294				    EXT4_INODES_PER_GROUP(sb) / 8);
1295		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1296			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1297		bitmap_count += x;
1298	}
1299	brelse(bitmap_bh);
1300	printk(KERN_DEBUG "ext4_count_free_inodes: "
1301	       "stored = %u, computed = %lu, %lu\n",
1302	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1303	return desc_count;
1304#else
1305	desc_count = 0;
1306	for (i = 0; i < ngroups; i++) {
1307		gdp = ext4_get_group_desc(sb, i, NULL);
1308		if (!gdp)
1309			continue;
1310		desc_count += ext4_free_inodes_count(sb, gdp);
1311		cond_resched();
1312	}
1313	return desc_count;
1314#endif
1315}
1316
1317/* Called at mount-time, super-block is locked */
1318unsigned long ext4_count_dirs(struct super_block * sb)
1319{
1320	unsigned long count = 0;
1321	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1322
1323	for (i = 0; i < ngroups; i++) {
1324		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1325		if (!gdp)
1326			continue;
1327		count += ext4_used_dirs_count(sb, gdp);
1328	}
1329	return count;
1330}
1331
1332/*
1333 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1334 * inode table. Must be called without any spinlock held. The only place
1335 * where it is called from on active part of filesystem is ext4lazyinit
1336 * thread, so we do not need any special locks, however we have to prevent
1337 * inode allocation from the current group, so we take alloc_sem lock, to
1338 * block ext4_new_inode() until we are finished.
1339 */
1340int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1341				 int barrier)
1342{
1343	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1344	struct ext4_sb_info *sbi = EXT4_SB(sb);
1345	struct ext4_group_desc *gdp = NULL;
1346	struct buffer_head *group_desc_bh;
1347	handle_t *handle;
1348	ext4_fsblk_t blk;
1349	int num, ret = 0, used_blks = 0;
1350
1351	/* This should not happen, but just to be sure check this */
1352	if (sb_rdonly(sb)) {
1353		ret = 1;
1354		goto out;
1355	}
1356
1357	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1358	if (!gdp)
1359		goto out;
1360
1361	/*
1362	 * We do not need to lock this, because we are the only one
1363	 * handling this flag.
1364	 */
1365	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1366		goto out;
1367
1368	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1369	if (IS_ERR(handle)) {
1370		ret = PTR_ERR(handle);
1371		goto out;
1372	}
1373
1374	down_write(&grp->alloc_sem);
1375	/*
1376	 * If inode bitmap was already initialized there may be some
1377	 * used inodes so we need to skip blocks with used inodes in
1378	 * inode table.
1379	 */
1380	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1381		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1382			    ext4_itable_unused_count(sb, gdp)),
1383			    sbi->s_inodes_per_block);
1384
1385	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1386		ext4_error(sb, "Something is wrong with group %u: "
1387			   "used itable blocks: %d; "
1388			   "itable unused count: %u",
1389			   group, used_blks,
1390			   ext4_itable_unused_count(sb, gdp));
1391		ret = 1;
1392		goto err_out;
1393	}
1394
1395	blk = ext4_inode_table(sb, gdp) + used_blks;
1396	num = sbi->s_itb_per_group - used_blks;
1397
1398	BUFFER_TRACE(group_desc_bh, "get_write_access");
1399	ret = ext4_journal_get_write_access(handle,
1400					    group_desc_bh);
1401	if (ret)
1402		goto err_out;
1403
1404	/*
1405	 * Skip zeroout if the inode table is full. But we set the ZEROED
1406	 * flag anyway, because obviously, when it is full it does not need
1407	 * further zeroing.
1408	 */
1409	if (unlikely(num == 0))
1410		goto skip_zeroout;
1411
1412	ext4_debug("going to zero out inode table in group %d\n",
1413		   group);
1414	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1415	if (ret < 0)
1416		goto err_out;
1417	if (barrier)
1418		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1419
1420skip_zeroout:
1421	ext4_lock_group(sb, group);
1422	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1423	ext4_group_desc_csum_set(sb, group, gdp);
1424	ext4_unlock_group(sb, group);
1425
1426	BUFFER_TRACE(group_desc_bh,
1427		     "call ext4_handle_dirty_metadata");
1428	ret = ext4_handle_dirty_metadata(handle, NULL,
1429					 group_desc_bh);
1430
1431err_out:
1432	up_write(&grp->alloc_sem);
1433	ext4_journal_stop(handle);
1434out:
1435	return ret;
1436}