Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#ifndef __BTRFS_VOLUMES_
20#define __BTRFS_VOLUMES_
21
22#include <linux/bio.h>
23#include <linux/sort.h>
24#include <linux/btrfs.h>
25#include "async-thread.h"
26
27extern struct mutex uuid_mutex;
28
29#define BTRFS_STRIPE_LEN SZ_64K
30
31struct buffer_head;
32struct btrfs_pending_bios {
33 struct bio *head;
34 struct bio *tail;
35};
36
37/*
38 * Use sequence counter to get consistent device stat data on
39 * 32-bit processors.
40 */
41#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
42#include <linux/seqlock.h>
43#define __BTRFS_NEED_DEVICE_DATA_ORDERED
44#define btrfs_device_data_ordered_init(device) \
45 seqcount_init(&device->data_seqcount)
46#else
47#define btrfs_device_data_ordered_init(device) do { } while (0)
48#endif
49
50struct btrfs_device {
51 struct list_head dev_list;
52 struct list_head dev_alloc_list;
53 struct btrfs_fs_devices *fs_devices;
54
55 struct btrfs_root *dev_root;
56
57 struct rcu_string *name;
58
59 u64 generation;
60
61 spinlock_t io_lock ____cacheline_aligned;
62 int running_pending;
63 /* regular prio bios */
64 struct btrfs_pending_bios pending_bios;
65 /* WRITE_SYNC bios */
66 struct btrfs_pending_bios pending_sync_bios;
67
68 struct block_device *bdev;
69
70 /* the mode sent to blkdev_get */
71 fmode_t mode;
72
73 int writeable;
74 int in_fs_metadata;
75 int missing;
76 int can_discard;
77 int is_tgtdev_for_dev_replace;
78
79#ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
80 seqcount_t data_seqcount;
81#endif
82
83 /* the internal btrfs device id */
84 u64 devid;
85
86 /* size of the device in memory */
87 u64 total_bytes;
88
89 /* size of the device on disk */
90 u64 disk_total_bytes;
91
92 /* bytes used */
93 u64 bytes_used;
94
95 /* optimal io alignment for this device */
96 u32 io_align;
97
98 /* optimal io width for this device */
99 u32 io_width;
100 /* type and info about this device */
101 u64 type;
102
103 /* minimal io size for this device */
104 u32 sector_size;
105
106 /* physical drive uuid (or lvm uuid) */
107 u8 uuid[BTRFS_UUID_SIZE];
108
109 /*
110 * size of the device on the current transaction
111 *
112 * This variant is update when committing the transaction,
113 * and protected by device_list_mutex
114 */
115 u64 commit_total_bytes;
116
117 /* bytes used on the current transaction */
118 u64 commit_bytes_used;
119 /*
120 * used to manage the device which is resized
121 *
122 * It is protected by chunk_lock.
123 */
124 struct list_head resized_list;
125
126 /* for sending down flush barriers */
127 int nobarriers;
128 struct bio *flush_bio;
129 struct completion flush_wait;
130
131 /* per-device scrub information */
132 struct scrub_ctx *scrub_device;
133
134 struct btrfs_work work;
135 struct rcu_head rcu;
136 struct work_struct rcu_work;
137
138 /* readahead state */
139 spinlock_t reada_lock;
140 atomic_t reada_in_flight;
141 u64 reada_next;
142 struct reada_zone *reada_curr_zone;
143 struct radix_tree_root reada_zones;
144 struct radix_tree_root reada_extents;
145
146 /* disk I/O failure stats. For detailed description refer to
147 * enum btrfs_dev_stat_values in ioctl.h */
148 int dev_stats_valid;
149
150 /* Counter to record the change of device stats */
151 atomic_t dev_stats_ccnt;
152 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
153};
154
155/*
156 * If we read those variants at the context of their own lock, we needn't
157 * use the following helpers, reading them directly is safe.
158 */
159#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
160#define BTRFS_DEVICE_GETSET_FUNCS(name) \
161static inline u64 \
162btrfs_device_get_##name(const struct btrfs_device *dev) \
163{ \
164 u64 size; \
165 unsigned int seq; \
166 \
167 do { \
168 seq = read_seqcount_begin(&dev->data_seqcount); \
169 size = dev->name; \
170 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \
171 return size; \
172} \
173 \
174static inline void \
175btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
176{ \
177 preempt_disable(); \
178 write_seqcount_begin(&dev->data_seqcount); \
179 dev->name = size; \
180 write_seqcount_end(&dev->data_seqcount); \
181 preempt_enable(); \
182}
183#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT)
184#define BTRFS_DEVICE_GETSET_FUNCS(name) \
185static inline u64 \
186btrfs_device_get_##name(const struct btrfs_device *dev) \
187{ \
188 u64 size; \
189 \
190 preempt_disable(); \
191 size = dev->name; \
192 preempt_enable(); \
193 return size; \
194} \
195 \
196static inline void \
197btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
198{ \
199 preempt_disable(); \
200 dev->name = size; \
201 preempt_enable(); \
202}
203#else
204#define BTRFS_DEVICE_GETSET_FUNCS(name) \
205static inline u64 \
206btrfs_device_get_##name(const struct btrfs_device *dev) \
207{ \
208 return dev->name; \
209} \
210 \
211static inline void \
212btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
213{ \
214 dev->name = size; \
215}
216#endif
217
218BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
219BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
220BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
221
222struct btrfs_fs_devices {
223 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
224
225 u64 num_devices;
226 u64 open_devices;
227 u64 rw_devices;
228 u64 missing_devices;
229 u64 total_rw_bytes;
230 u64 total_devices;
231 struct block_device *latest_bdev;
232
233 /* all of the devices in the FS, protected by a mutex
234 * so we can safely walk it to write out the supers without
235 * worrying about add/remove by the multi-device code.
236 * Scrubbing super can kick off supers writing by holding
237 * this mutex lock.
238 */
239 struct mutex device_list_mutex;
240 struct list_head devices;
241
242 struct list_head resized_devices;
243 /* devices not currently being allocated */
244 struct list_head alloc_list;
245 struct list_head list;
246
247 struct btrfs_fs_devices *seed;
248 int seeding;
249
250 int opened;
251
252 /* set when we find or add a device that doesn't have the
253 * nonrot flag set
254 */
255 int rotating;
256
257 struct btrfs_fs_info *fs_info;
258 /* sysfs kobjects */
259 struct kobject fsid_kobj;
260 struct kobject *device_dir_kobj;
261 struct completion kobj_unregister;
262};
263
264#define BTRFS_BIO_INLINE_CSUM_SIZE 64
265
266/*
267 * we need the mirror number and stripe index to be passed around
268 * the call chain while we are processing end_io (especially errors).
269 * Really, what we need is a btrfs_bio structure that has this info
270 * and is properly sized with its stripe array, but we're not there
271 * quite yet. We have our own btrfs bioset, and all of the bios
272 * we allocate are actually btrfs_io_bios. We'll cram as much of
273 * struct btrfs_bio as we can into this over time.
274 */
275typedef void (btrfs_io_bio_end_io_t) (struct btrfs_io_bio *bio, int err);
276struct btrfs_io_bio {
277 unsigned int mirror_num;
278 unsigned int stripe_index;
279 u64 logical;
280 u8 *csum;
281 u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
282 u8 *csum_allocated;
283 btrfs_io_bio_end_io_t *end_io;
284 struct bio bio;
285};
286
287static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
288{
289 return container_of(bio, struct btrfs_io_bio, bio);
290}
291
292struct btrfs_bio_stripe {
293 struct btrfs_device *dev;
294 u64 physical;
295 u64 length; /* only used for discard mappings */
296};
297
298struct btrfs_bio;
299typedef void (btrfs_bio_end_io_t) (struct btrfs_bio *bio, int err);
300
301struct btrfs_bio {
302 atomic_t refs;
303 atomic_t stripes_pending;
304 struct btrfs_fs_info *fs_info;
305 u64 map_type; /* get from map_lookup->type */
306 bio_end_io_t *end_io;
307 struct bio *orig_bio;
308 unsigned long flags;
309 void *private;
310 atomic_t error;
311 int max_errors;
312 int num_stripes;
313 int mirror_num;
314 int num_tgtdevs;
315 int *tgtdev_map;
316 /*
317 * logical block numbers for the start of each stripe
318 * The last one or two are p/q. These are sorted,
319 * so raid_map[0] is the start of our full stripe
320 */
321 u64 *raid_map;
322 struct btrfs_bio_stripe stripes[];
323};
324
325struct btrfs_device_info {
326 struct btrfs_device *dev;
327 u64 dev_offset;
328 u64 max_avail;
329 u64 total_avail;
330};
331
332struct btrfs_raid_attr {
333 int sub_stripes; /* sub_stripes info for map */
334 int dev_stripes; /* stripes per dev */
335 int devs_max; /* max devs to use */
336 int devs_min; /* min devs needed */
337 int tolerated_failures; /* max tolerated fail devs */
338 int devs_increment; /* ndevs has to be a multiple of this */
339 int ncopies; /* how many copies to data has */
340};
341
342extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
343
344extern const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES];
345
346struct map_lookup {
347 u64 type;
348 int io_align;
349 int io_width;
350 int stripe_len;
351 int sector_size;
352 int num_stripes;
353 int sub_stripes;
354 struct btrfs_bio_stripe stripes[];
355};
356
357#define map_lookup_size(n) (sizeof(struct map_lookup) + \
358 (sizeof(struct btrfs_bio_stripe) * (n)))
359
360/*
361 * Restriper's general type filter
362 */
363#define BTRFS_BALANCE_DATA (1ULL << 0)
364#define BTRFS_BALANCE_SYSTEM (1ULL << 1)
365#define BTRFS_BALANCE_METADATA (1ULL << 2)
366
367#define BTRFS_BALANCE_TYPE_MASK (BTRFS_BALANCE_DATA | \
368 BTRFS_BALANCE_SYSTEM | \
369 BTRFS_BALANCE_METADATA)
370
371#define BTRFS_BALANCE_FORCE (1ULL << 3)
372#define BTRFS_BALANCE_RESUME (1ULL << 4)
373
374/*
375 * Balance filters
376 */
377#define BTRFS_BALANCE_ARGS_PROFILES (1ULL << 0)
378#define BTRFS_BALANCE_ARGS_USAGE (1ULL << 1)
379#define BTRFS_BALANCE_ARGS_DEVID (1ULL << 2)
380#define BTRFS_BALANCE_ARGS_DRANGE (1ULL << 3)
381#define BTRFS_BALANCE_ARGS_VRANGE (1ULL << 4)
382#define BTRFS_BALANCE_ARGS_LIMIT (1ULL << 5)
383#define BTRFS_BALANCE_ARGS_LIMIT_RANGE (1ULL << 6)
384#define BTRFS_BALANCE_ARGS_STRIPES_RANGE (1ULL << 7)
385#define BTRFS_BALANCE_ARGS_USAGE_RANGE (1ULL << 10)
386
387#define BTRFS_BALANCE_ARGS_MASK \
388 (BTRFS_BALANCE_ARGS_PROFILES | \
389 BTRFS_BALANCE_ARGS_USAGE | \
390 BTRFS_BALANCE_ARGS_DEVID | \
391 BTRFS_BALANCE_ARGS_DRANGE | \
392 BTRFS_BALANCE_ARGS_VRANGE | \
393 BTRFS_BALANCE_ARGS_LIMIT | \
394 BTRFS_BALANCE_ARGS_LIMIT_RANGE | \
395 BTRFS_BALANCE_ARGS_STRIPES_RANGE | \
396 BTRFS_BALANCE_ARGS_USAGE_RANGE)
397
398/*
399 * Profile changing flags. When SOFT is set we won't relocate chunk if
400 * it already has the target profile (even though it may be
401 * half-filled).
402 */
403#define BTRFS_BALANCE_ARGS_CONVERT (1ULL << 8)
404#define BTRFS_BALANCE_ARGS_SOFT (1ULL << 9)
405
406struct btrfs_balance_args;
407struct btrfs_balance_progress;
408struct btrfs_balance_control {
409 struct btrfs_fs_info *fs_info;
410
411 struct btrfs_balance_args data;
412 struct btrfs_balance_args meta;
413 struct btrfs_balance_args sys;
414
415 u64 flags;
416
417 struct btrfs_balance_progress stat;
418};
419
420int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
421 u64 end, u64 *length);
422void btrfs_get_bbio(struct btrfs_bio *bbio);
423void btrfs_put_bbio(struct btrfs_bio *bbio);
424int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
425 u64 logical, u64 *length,
426 struct btrfs_bio **bbio_ret, int mirror_num);
427int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
428 u64 logical, u64 *length,
429 struct btrfs_bio **bbio_ret, int mirror_num,
430 int need_raid_map);
431int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
432 u64 chunk_start, u64 physical, u64 devid,
433 u64 **logical, int *naddrs, int *stripe_len);
434int btrfs_read_sys_array(struct btrfs_root *root);
435int btrfs_read_chunk_tree(struct btrfs_root *root);
436int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
437 struct btrfs_root *extent_root, u64 type);
438void btrfs_mapping_init(struct btrfs_mapping_tree *tree);
439void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree);
440int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
441 int mirror_num, int async_submit);
442int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
443 fmode_t flags, void *holder);
444int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
445 struct btrfs_fs_devices **fs_devices_ret);
446int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
447void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step);
448int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
449 char *device_path,
450 struct btrfs_device **device);
451struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
452 const u64 *devid,
453 const u8 *uuid);
454int btrfs_rm_device(struct btrfs_root *root, char *device_path);
455void btrfs_cleanup_fs_uuids(void);
456int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
457int btrfs_grow_device(struct btrfs_trans_handle *trans,
458 struct btrfs_device *device, u64 new_size);
459struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
460 u8 *uuid, u8 *fsid);
461int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
462int btrfs_init_new_device(struct btrfs_root *root, char *path);
463int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
464 struct btrfs_device *srcdev,
465 struct btrfs_device **device_out);
466int btrfs_balance(struct btrfs_balance_control *bctl,
467 struct btrfs_ioctl_balance_args *bargs);
468int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
469int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
470int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
471int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
472int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
473int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info);
474int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset);
475int find_free_dev_extent_start(struct btrfs_transaction *transaction,
476 struct btrfs_device *device, u64 num_bytes,
477 u64 search_start, u64 *start, u64 *max_avail);
478int find_free_dev_extent(struct btrfs_trans_handle *trans,
479 struct btrfs_device *device, u64 num_bytes,
480 u64 *start, u64 *max_avail);
481void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
482int btrfs_get_dev_stats(struct btrfs_root *root,
483 struct btrfs_ioctl_get_dev_stats *stats);
484void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
485int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
486int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
487 struct btrfs_fs_info *fs_info);
488void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
489 struct btrfs_device *srcdev);
490void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
491 struct btrfs_device *srcdev);
492void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
493 struct btrfs_device *tgtdev);
494void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
495 struct btrfs_device *tgtdev);
496void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path);
497int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
498 u64 logical, u64 len, int mirror_num);
499unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
500 struct btrfs_mapping_tree *map_tree,
501 u64 logical);
502int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
503 struct btrfs_root *extent_root,
504 u64 chunk_offset, u64 chunk_size);
505int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
506 struct btrfs_root *root, u64 chunk_offset);
507
508static inline int btrfs_dev_stats_dirty(struct btrfs_device *dev)
509{
510 return atomic_read(&dev->dev_stats_ccnt);
511}
512
513static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
514 int index)
515{
516 atomic_inc(dev->dev_stat_values + index);
517 smp_mb__before_atomic();
518 atomic_inc(&dev->dev_stats_ccnt);
519}
520
521static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
522 int index)
523{
524 return atomic_read(dev->dev_stat_values + index);
525}
526
527static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
528 int index)
529{
530 int ret;
531
532 ret = atomic_xchg(dev->dev_stat_values + index, 0);
533 smp_mb__before_atomic();
534 atomic_inc(&dev->dev_stats_ccnt);
535 return ret;
536}
537
538static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
539 int index, unsigned long val)
540{
541 atomic_set(dev->dev_stat_values + index, val);
542 smp_mb__before_atomic();
543 atomic_inc(&dev->dev_stats_ccnt);
544}
545
546static inline void btrfs_dev_stat_reset(struct btrfs_device *dev,
547 int index)
548{
549 btrfs_dev_stat_set(dev, index, 0);
550}
551
552void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info);
553void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
554 struct btrfs_transaction *transaction);
555
556static inline void lock_chunks(struct btrfs_root *root)
557{
558 mutex_lock(&root->fs_info->chunk_mutex);
559}
560
561static inline void unlock_chunks(struct btrfs_root *root)
562{
563 mutex_unlock(&root->fs_info->chunk_mutex);
564}
565
566struct list_head *btrfs_get_fs_uuids(void);
567void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info);
568void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info);
569
570#endif
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_VOLUMES_H
7#define BTRFS_VOLUMES_H
8
9#include <linux/bio.h>
10#include <linux/sort.h>
11#include <linux/btrfs.h>
12#include "async-thread.h"
13
14extern struct mutex uuid_mutex;
15
16#define BTRFS_STRIPE_LEN SZ_64K
17
18struct buffer_head;
19struct btrfs_pending_bios {
20 struct bio *head;
21 struct bio *tail;
22};
23
24/*
25 * Use sequence counter to get consistent device stat data on
26 * 32-bit processors.
27 */
28#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
29#include <linux/seqlock.h>
30#define __BTRFS_NEED_DEVICE_DATA_ORDERED
31#define btrfs_device_data_ordered_init(device) \
32 seqcount_init(&device->data_seqcount)
33#else
34#define btrfs_device_data_ordered_init(device) do { } while (0)
35#endif
36
37#define BTRFS_DEV_STATE_WRITEABLE (0)
38#define BTRFS_DEV_STATE_IN_FS_METADATA (1)
39#define BTRFS_DEV_STATE_MISSING (2)
40#define BTRFS_DEV_STATE_REPLACE_TGT (3)
41#define BTRFS_DEV_STATE_FLUSH_SENT (4)
42
43struct btrfs_device {
44 struct list_head dev_list;
45 struct list_head dev_alloc_list;
46 struct btrfs_fs_devices *fs_devices;
47 struct btrfs_fs_info *fs_info;
48
49 struct rcu_string *name;
50
51 u64 generation;
52
53 spinlock_t io_lock ____cacheline_aligned;
54 int running_pending;
55 /* regular prio bios */
56 struct btrfs_pending_bios pending_bios;
57 /* sync bios */
58 struct btrfs_pending_bios pending_sync_bios;
59
60 struct block_device *bdev;
61
62 /* the mode sent to blkdev_get */
63 fmode_t mode;
64
65 unsigned long dev_state;
66 blk_status_t last_flush_error;
67 int flush_bio_sent;
68
69#ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
70 seqcount_t data_seqcount;
71#endif
72
73 /* the internal btrfs device id */
74 u64 devid;
75
76 /* size of the device in memory */
77 u64 total_bytes;
78
79 /* size of the device on disk */
80 u64 disk_total_bytes;
81
82 /* bytes used */
83 u64 bytes_used;
84
85 /* optimal io alignment for this device */
86 u32 io_align;
87
88 /* optimal io width for this device */
89 u32 io_width;
90 /* type and info about this device */
91 u64 type;
92
93 /* minimal io size for this device */
94 u32 sector_size;
95
96 /* physical drive uuid (or lvm uuid) */
97 u8 uuid[BTRFS_UUID_SIZE];
98
99 /*
100 * size of the device on the current transaction
101 *
102 * This variant is update when committing the transaction,
103 * and protected by device_list_mutex
104 */
105 u64 commit_total_bytes;
106
107 /* bytes used on the current transaction */
108 u64 commit_bytes_used;
109 /*
110 * used to manage the device which is resized
111 *
112 * It is protected by chunk_lock.
113 */
114 struct list_head resized_list;
115
116 /* for sending down flush barriers */
117 struct bio *flush_bio;
118 struct completion flush_wait;
119
120 /* per-device scrub information */
121 struct scrub_ctx *scrub_ctx;
122
123 struct btrfs_work work;
124 struct rcu_head rcu;
125
126 /* readahead state */
127 atomic_t reada_in_flight;
128 u64 reada_next;
129 struct reada_zone *reada_curr_zone;
130 struct radix_tree_root reada_zones;
131 struct radix_tree_root reada_extents;
132
133 /* disk I/O failure stats. For detailed description refer to
134 * enum btrfs_dev_stat_values in ioctl.h */
135 int dev_stats_valid;
136
137 /* Counter to record the change of device stats */
138 atomic_t dev_stats_ccnt;
139 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
140};
141
142/*
143 * If we read those variants at the context of their own lock, we needn't
144 * use the following helpers, reading them directly is safe.
145 */
146#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
147#define BTRFS_DEVICE_GETSET_FUNCS(name) \
148static inline u64 \
149btrfs_device_get_##name(const struct btrfs_device *dev) \
150{ \
151 u64 size; \
152 unsigned int seq; \
153 \
154 do { \
155 seq = read_seqcount_begin(&dev->data_seqcount); \
156 size = dev->name; \
157 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \
158 return size; \
159} \
160 \
161static inline void \
162btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
163{ \
164 preempt_disable(); \
165 write_seqcount_begin(&dev->data_seqcount); \
166 dev->name = size; \
167 write_seqcount_end(&dev->data_seqcount); \
168 preempt_enable(); \
169}
170#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT)
171#define BTRFS_DEVICE_GETSET_FUNCS(name) \
172static inline u64 \
173btrfs_device_get_##name(const struct btrfs_device *dev) \
174{ \
175 u64 size; \
176 \
177 preempt_disable(); \
178 size = dev->name; \
179 preempt_enable(); \
180 return size; \
181} \
182 \
183static inline void \
184btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
185{ \
186 preempt_disable(); \
187 dev->name = size; \
188 preempt_enable(); \
189}
190#else
191#define BTRFS_DEVICE_GETSET_FUNCS(name) \
192static inline u64 \
193btrfs_device_get_##name(const struct btrfs_device *dev) \
194{ \
195 return dev->name; \
196} \
197 \
198static inline void \
199btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
200{ \
201 dev->name = size; \
202}
203#endif
204
205BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
206BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
207BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
208
209struct btrfs_fs_devices {
210 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
211
212 u64 num_devices;
213 u64 open_devices;
214 u64 rw_devices;
215 u64 missing_devices;
216 u64 total_rw_bytes;
217 u64 total_devices;
218 struct block_device *latest_bdev;
219
220 /* all of the devices in the FS, protected by a mutex
221 * so we can safely walk it to write out the supers without
222 * worrying about add/remove by the multi-device code.
223 * Scrubbing super can kick off supers writing by holding
224 * this mutex lock.
225 */
226 struct mutex device_list_mutex;
227 struct list_head devices;
228
229 struct list_head resized_devices;
230 /* devices not currently being allocated */
231 struct list_head alloc_list;
232 struct list_head list;
233
234 struct btrfs_fs_devices *seed;
235 int seeding;
236
237 int opened;
238
239 /* set when we find or add a device that doesn't have the
240 * nonrot flag set
241 */
242 int rotating;
243
244 struct btrfs_fs_info *fs_info;
245 /* sysfs kobjects */
246 struct kobject fsid_kobj;
247 struct kobject *device_dir_kobj;
248 struct completion kobj_unregister;
249};
250
251#define BTRFS_BIO_INLINE_CSUM_SIZE 64
252
253/*
254 * we need the mirror number and stripe index to be passed around
255 * the call chain while we are processing end_io (especially errors).
256 * Really, what we need is a btrfs_bio structure that has this info
257 * and is properly sized with its stripe array, but we're not there
258 * quite yet. We have our own btrfs bioset, and all of the bios
259 * we allocate are actually btrfs_io_bios. We'll cram as much of
260 * struct btrfs_bio as we can into this over time.
261 */
262typedef void (btrfs_io_bio_end_io_t) (struct btrfs_io_bio *bio, int err);
263struct btrfs_io_bio {
264 unsigned int mirror_num;
265 unsigned int stripe_index;
266 u64 logical;
267 u8 *csum;
268 u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
269 u8 *csum_allocated;
270 btrfs_io_bio_end_io_t *end_io;
271 struct bvec_iter iter;
272 /*
273 * This member must come last, bio_alloc_bioset will allocate enough
274 * bytes for entire btrfs_io_bio but relies on bio being last.
275 */
276 struct bio bio;
277};
278
279static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
280{
281 return container_of(bio, struct btrfs_io_bio, bio);
282}
283
284struct btrfs_bio_stripe {
285 struct btrfs_device *dev;
286 u64 physical;
287 u64 length; /* only used for discard mappings */
288};
289
290struct btrfs_bio;
291typedef void (btrfs_bio_end_io_t) (struct btrfs_bio *bio, int err);
292
293struct btrfs_bio {
294 refcount_t refs;
295 atomic_t stripes_pending;
296 struct btrfs_fs_info *fs_info;
297 u64 map_type; /* get from map_lookup->type */
298 bio_end_io_t *end_io;
299 struct bio *orig_bio;
300 unsigned long flags;
301 void *private;
302 atomic_t error;
303 int max_errors;
304 int num_stripes;
305 int mirror_num;
306 int num_tgtdevs;
307 int *tgtdev_map;
308 /*
309 * logical block numbers for the start of each stripe
310 * The last one or two are p/q. These are sorted,
311 * so raid_map[0] is the start of our full stripe
312 */
313 u64 *raid_map;
314 struct btrfs_bio_stripe stripes[];
315};
316
317struct btrfs_device_info {
318 struct btrfs_device *dev;
319 u64 dev_offset;
320 u64 max_avail;
321 u64 total_avail;
322};
323
324struct btrfs_raid_attr {
325 int sub_stripes; /* sub_stripes info for map */
326 int dev_stripes; /* stripes per dev */
327 int devs_max; /* max devs to use */
328 int devs_min; /* min devs needed */
329 int tolerated_failures; /* max tolerated fail devs */
330 int devs_increment; /* ndevs has to be a multiple of this */
331 int ncopies; /* how many copies to data has */
332};
333
334extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
335extern const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES];
336extern const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES];
337
338struct map_lookup {
339 u64 type;
340 int io_align;
341 int io_width;
342 u64 stripe_len;
343 int num_stripes;
344 int sub_stripes;
345 struct btrfs_bio_stripe stripes[];
346};
347
348#define map_lookup_size(n) (sizeof(struct map_lookup) + \
349 (sizeof(struct btrfs_bio_stripe) * (n)))
350
351struct btrfs_balance_args;
352struct btrfs_balance_progress;
353struct btrfs_balance_control {
354 struct btrfs_fs_info *fs_info;
355
356 struct btrfs_balance_args data;
357 struct btrfs_balance_args meta;
358 struct btrfs_balance_args sys;
359
360 u64 flags;
361
362 struct btrfs_balance_progress stat;
363};
364
365enum btrfs_map_op {
366 BTRFS_MAP_READ,
367 BTRFS_MAP_WRITE,
368 BTRFS_MAP_DISCARD,
369 BTRFS_MAP_GET_READ_MIRRORS,
370};
371
372static inline enum btrfs_map_op btrfs_op(struct bio *bio)
373{
374 switch (bio_op(bio)) {
375 case REQ_OP_DISCARD:
376 return BTRFS_MAP_DISCARD;
377 case REQ_OP_WRITE:
378 return BTRFS_MAP_WRITE;
379 default:
380 WARN_ON_ONCE(1);
381 case REQ_OP_READ:
382 return BTRFS_MAP_READ;
383 }
384}
385
386int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
387 u64 end, u64 *length);
388void btrfs_get_bbio(struct btrfs_bio *bbio);
389void btrfs_put_bbio(struct btrfs_bio *bbio);
390int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
391 u64 logical, u64 *length,
392 struct btrfs_bio **bbio_ret, int mirror_num);
393int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
394 u64 logical, u64 *length,
395 struct btrfs_bio **bbio_ret);
396int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
397 u64 chunk_start, u64 physical, u64 devid,
398 u64 **logical, int *naddrs, int *stripe_len);
399int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
400int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
401int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
402 struct btrfs_fs_info *fs_info, u64 type);
403void btrfs_mapping_init(struct btrfs_mapping_tree *tree);
404void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree);
405blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
406 int mirror_num, int async_submit);
407int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
408 fmode_t flags, void *holder);
409int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
410 struct btrfs_fs_devices **fs_devices_ret);
411int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
412void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step);
413void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
414 struct btrfs_device *device, struct btrfs_device *this_dev);
415int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
416 const char *device_path,
417 struct btrfs_device **device);
418int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
419 const char *devpath,
420 struct btrfs_device **device);
421struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
422 const u64 *devid,
423 const u8 *uuid);
424int btrfs_rm_device(struct btrfs_fs_info *fs_info,
425 const char *device_path, u64 devid);
426void __exit btrfs_cleanup_fs_uuids(void);
427int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
428int btrfs_grow_device(struct btrfs_trans_handle *trans,
429 struct btrfs_device *device, u64 new_size);
430struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
431 u8 *uuid, u8 *fsid);
432int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
433int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
434int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
435 const char *device_path,
436 struct btrfs_device *srcdev,
437 struct btrfs_device **device_out);
438int btrfs_balance(struct btrfs_balance_control *bctl,
439 struct btrfs_ioctl_balance_args *bargs);
440int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
441int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
442int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
443int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
444int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
445int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info);
446int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
447int find_free_dev_extent_start(struct btrfs_transaction *transaction,
448 struct btrfs_device *device, u64 num_bytes,
449 u64 search_start, u64 *start, u64 *max_avail);
450int find_free_dev_extent(struct btrfs_trans_handle *trans,
451 struct btrfs_device *device, u64 num_bytes,
452 u64 *start, u64 *max_avail);
453void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
454int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
455 struct btrfs_ioctl_get_dev_stats *stats);
456void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
457int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
458int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
459 struct btrfs_fs_info *fs_info);
460void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
461 struct btrfs_device *srcdev);
462void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
463 struct btrfs_device *srcdev);
464void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
465 struct btrfs_device *tgtdev);
466void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path);
467int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
468 u64 logical, u64 len);
469unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
470 u64 logical);
471int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
472 struct btrfs_fs_info *fs_info,
473 u64 chunk_offset, u64 chunk_size);
474int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
475 struct btrfs_fs_info *fs_info, u64 chunk_offset);
476
477static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
478 int index)
479{
480 atomic_inc(dev->dev_stat_values + index);
481 /*
482 * This memory barrier orders stores updating statistics before stores
483 * updating dev_stats_ccnt.
484 *
485 * It pairs with smp_rmb() in btrfs_run_dev_stats().
486 */
487 smp_mb__before_atomic();
488 atomic_inc(&dev->dev_stats_ccnt);
489}
490
491static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
492 int index)
493{
494 return atomic_read(dev->dev_stat_values + index);
495}
496
497static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
498 int index)
499{
500 int ret;
501
502 ret = atomic_xchg(dev->dev_stat_values + index, 0);
503 /*
504 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
505 * - RMW operations that have a return value are fully ordered;
506 *
507 * This implicit memory barriers is paired with the smp_rmb in
508 * btrfs_run_dev_stats
509 */
510 atomic_inc(&dev->dev_stats_ccnt);
511 return ret;
512}
513
514static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
515 int index, unsigned long val)
516{
517 atomic_set(dev->dev_stat_values + index, val);
518 /*
519 * This memory barrier orders stores updating statistics before stores
520 * updating dev_stats_ccnt.
521 *
522 * It pairs with smp_rmb() in btrfs_run_dev_stats().
523 */
524 smp_mb__before_atomic();
525 atomic_inc(&dev->dev_stats_ccnt);
526}
527
528static inline void btrfs_dev_stat_reset(struct btrfs_device *dev,
529 int index)
530{
531 btrfs_dev_stat_set(dev, index, 0);
532}
533
534/*
535 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
536 * can be used as index to access btrfs_raid_array[].
537 */
538static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
539{
540 if (flags & BTRFS_BLOCK_GROUP_RAID10)
541 return BTRFS_RAID_RAID10;
542 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
543 return BTRFS_RAID_RAID1;
544 else if (flags & BTRFS_BLOCK_GROUP_DUP)
545 return BTRFS_RAID_DUP;
546 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
547 return BTRFS_RAID_RAID0;
548 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
549 return BTRFS_RAID_RAID5;
550 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
551 return BTRFS_RAID_RAID6;
552
553 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
554}
555
556void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info);
557void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans);
558
559struct list_head *btrfs_get_fs_uuids(void);
560void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info);
561void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info);
562bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
563 struct btrfs_device *failing_dev);
564
565#endif