Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*******************************************************************************
  2 *
  3 * Intel Ethernet Controller XL710 Family Linux Driver
  4 * Copyright(c) 2013 - 2014 Intel Corporation.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms and conditions of the GNU General Public License,
  8 * version 2, as published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope it will be useful, but WITHOUT
 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13 * more details.
 14 *
 15 * You should have received a copy of the GNU General Public License along
 16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 17 *
 18 * The full GNU General Public License is included in this distribution in
 19 * the file called "COPYING".
 20 *
 21 * Contact Information:
 22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 24 *
 25 ******************************************************************************/
 26
 27#include "i40e.h"
 28#include <linux/ptp_classify.h>
 29
 30/* The XL710 timesync is very much like Intel's 82599 design when it comes to
 31 * the fundamental clock design. However, the clock operations are much simpler
 32 * in the XL710 because the device supports a full 64 bits of nanoseconds.
 33 * Because the field is so wide, we can forgo the cycle counter and just
 34 * operate with the nanosecond field directly without fear of overflow.
 35 *
 36 * Much like the 82599, the update period is dependent upon the link speed:
 37 * At 40Gb link or no link, the period is 1.6ns.
 38 * At 10Gb link, the period is multiplied by 2. (3.2ns)
 39 * At 1Gb link, the period is multiplied by 20. (32ns)
 40 * 1588 functionality is not supported at 100Mbps.
 41 */
 42#define I40E_PTP_40GB_INCVAL 0x0199999999ULL
 43#define I40E_PTP_10GB_INCVAL 0x0333333333ULL
 44#define I40E_PTP_1GB_INCVAL  0x2000000000ULL
 45
 46#define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
 47#define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
 48					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
 49
 50/**
 51 * i40e_ptp_read - Read the PHC time from the device
 52 * @pf: Board private structure
 53 * @ts: timespec structure to hold the current time value
 54 *
 55 * This function reads the PRTTSYN_TIME registers and stores them in a
 56 * timespec. However, since the registers are 64 bits of nanoseconds, we must
 57 * convert the result to a timespec before we can return.
 58 **/
 59static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts)
 60{
 61	struct i40e_hw *hw = &pf->hw;
 62	u32 hi, lo;
 63	u64 ns;
 64
 65	/* The timer latches on the lowest register read. */
 66	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
 67	hi = rd32(hw, I40E_PRTTSYN_TIME_H);
 68
 69	ns = (((u64)hi) << 32) | lo;
 70
 71	*ts = ns_to_timespec64(ns);
 72}
 73
 74/**
 75 * i40e_ptp_write - Write the PHC time to the device
 76 * @pf: Board private structure
 77 * @ts: timespec structure that holds the new time value
 78 *
 79 * This function writes the PRTTSYN_TIME registers with the user value. Since
 80 * we receive a timespec from the stack, we must convert that timespec into
 81 * nanoseconds before programming the registers.
 82 **/
 83static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
 84{
 85	struct i40e_hw *hw = &pf->hw;
 86	u64 ns = timespec64_to_ns(ts);
 87
 88	/* The timer will not update until the high register is written, so
 89	 * write the low register first.
 90	 */
 91	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
 92	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
 93}
 94
 95/**
 96 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
 97 * @hwtstamps: Timestamp structure to update
 98 * @timestamp: Timestamp from the hardware
 99 *
100 * We need to convert the NIC clock value into a hwtstamp which can be used by
101 * the upper level timestamping functions. Since the timestamp is simply a 64-
102 * bit nanosecond value, we can call ns_to_ktime directly to handle this.
103 **/
104static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
105					 u64 timestamp)
106{
107	memset(hwtstamps, 0, sizeof(*hwtstamps));
108
109	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
110}
111
112/**
113 * i40e_ptp_adjfreq - Adjust the PHC frequency
114 * @ptp: The PTP clock structure
115 * @ppb: Parts per billion adjustment from the base
116 *
117 * Adjust the frequency of the PHC by the indicated parts per billion from the
118 * base frequency.
119 **/
120static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
121{
122	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
123	struct i40e_hw *hw = &pf->hw;
124	u64 adj, freq, diff;
125	int neg_adj = 0;
126
127	if (ppb < 0) {
128		neg_adj = 1;
129		ppb = -ppb;
130	}
131
132	smp_mb(); /* Force any pending update before accessing. */
133	adj = ACCESS_ONCE(pf->ptp_base_adj);
134
135	freq = adj;
136	freq *= ppb;
137	diff = div_u64(freq, 1000000000ULL);
138
139	if (neg_adj)
140		adj -= diff;
141	else
142		adj += diff;
143
144	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
145	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
146
147	return 0;
148}
149
150/**
151 * i40e_ptp_adjtime - Adjust the PHC time
152 * @ptp: The PTP clock structure
153 * @delta: Offset in nanoseconds to adjust the PHC time by
154 *
155 * Adjust the frequency of the PHC by the indicated parts per billion from the
156 * base frequency.
157 **/
158static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
159{
160	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
161	struct timespec64 now, then = ns_to_timespec64(delta);
162	unsigned long flags;
163
164	spin_lock_irqsave(&pf->tmreg_lock, flags);
165
166	i40e_ptp_read(pf, &now);
167	now = timespec64_add(now, then);
168	i40e_ptp_write(pf, (const struct timespec64 *)&now);
169
170	spin_unlock_irqrestore(&pf->tmreg_lock, flags);
171
172	return 0;
173}
174
175/**
176 * i40e_ptp_gettime - Get the time of the PHC
177 * @ptp: The PTP clock structure
178 * @ts: timespec structure to hold the current time value
179 *
180 * Read the device clock and return the correct value on ns, after converting it
181 * into a timespec struct.
182 **/
183static int i40e_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
184{
185	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
186	unsigned long flags;
187
188	spin_lock_irqsave(&pf->tmreg_lock, flags);
189	i40e_ptp_read(pf, ts);
190	spin_unlock_irqrestore(&pf->tmreg_lock, flags);
191
192	return 0;
193}
194
195/**
196 * i40e_ptp_settime - Set the time of the PHC
197 * @ptp: The PTP clock structure
198 * @ts: timespec structure that holds the new time value
199 *
200 * Set the device clock to the user input value. The conversion from timespec
201 * to ns happens in the write function.
202 **/
203static int i40e_ptp_settime(struct ptp_clock_info *ptp,
204			    const struct timespec64 *ts)
205{
206	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
207	unsigned long flags;
208
209	spin_lock_irqsave(&pf->tmreg_lock, flags);
210	i40e_ptp_write(pf, ts);
211	spin_unlock_irqrestore(&pf->tmreg_lock, flags);
212
213	return 0;
214}
215
216/**
217 * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem
218 * @ptp: The PTP clock structure
219 * @rq: The requested feature to change
220 * @on: Enable/disable flag
221 *
222 * The XL710 does not support any of the ancillary features of the PHC
223 * subsystem, so this function may just return.
224 **/
225static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
226				   struct ptp_clock_request *rq, int on)
227{
228	return -EOPNOTSUPP;
229}
230
231/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
 
233 * @vsi: The VSI with the rings relevant to 1588
234 *
235 * This watchdog task is scheduled to detect error case where hardware has
236 * dropped an Rx packet that was timestamped when the ring is full. The
237 * particular error is rare but leaves the device in a state unable to timestamp
238 * any future packets.
239 **/
240void i40e_ptp_rx_hang(struct i40e_vsi *vsi)
241{
242	struct i40e_pf *pf = vsi->back;
243	struct i40e_hw *hw = &pf->hw;
244	struct i40e_ring *rx_ring;
245	unsigned long rx_event;
246	u32 prttsyn_stat;
247	int n;
248
249	/* Since we cannot turn off the Rx timestamp logic if the device is
250	 * configured for Tx timestamping, we check if Rx timestamping is
251	 * configured. We don't want to spuriously warn about Rx timestamp
252	 * hangs if we don't care about the timestamps.
253	 */
254	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
255		return;
256
257	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
258
259	/* Unless all four receive timestamp registers are latched, we are not
260	 * concerned about a possible PTP Rx hang, so just update the timeout
261	 * counter and exit.
262	 */
263	if (!(prttsyn_stat & ((I40E_PRTTSYN_STAT_1_RXT0_MASK <<
264			       I40E_PRTTSYN_STAT_1_RXT0_SHIFT) |
265			      (I40E_PRTTSYN_STAT_1_RXT1_MASK <<
266			       I40E_PRTTSYN_STAT_1_RXT1_SHIFT) |
267			      (I40E_PRTTSYN_STAT_1_RXT2_MASK <<
268			       I40E_PRTTSYN_STAT_1_RXT2_SHIFT) |
269			      (I40E_PRTTSYN_STAT_1_RXT3_MASK <<
270			       I40E_PRTTSYN_STAT_1_RXT3_SHIFT)))) {
271		pf->last_rx_ptp_check = jiffies;
272		return;
 
 
273	}
274
275	/* Determine the most recent watchdog or rx_timestamp event. */
276	rx_event = pf->last_rx_ptp_check;
277	for (n = 0; n < vsi->num_queue_pairs; n++) {
278		rx_ring = vsi->rx_rings[n];
279		if (time_after(rx_ring->last_rx_timestamp, rx_event))
280			rx_event = rx_ring->last_rx_timestamp;
281	}
282
283	/* Only need to read the high RXSTMP register to clear the lock */
284	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
285		rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
286		rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
287		rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
288		rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
289		pf->last_rx_ptp_check = jiffies;
290		pf->rx_hwtstamp_cleared++;
291		dev_warn(&vsi->back->pdev->dev,
292			 "%s: clearing Rx timestamp hang\n",
293			 __func__);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
294	}
295}
296
297/**
298 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
299 * @pf: Board private structure
300 *
301 * Read the value of the Tx timestamp from the registers, convert it into a
302 * value consumable by the stack, and store that result into the shhwtstamps
303 * struct before returning it up the stack.
304 **/
305void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
306{
307	struct skb_shared_hwtstamps shhwtstamps;
 
308	struct i40e_hw *hw = &pf->hw;
309	u32 hi, lo;
310	u64 ns;
311
312	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
313		return;
314
315	/* don't attempt to timestamp if we don't have an skb */
316	if (!pf->ptp_tx_skb)
317		return;
318
319	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
320	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
321
322	ns = (((u64)hi) << 32) | lo;
323
324	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
325	skb_tstamp_tx(pf->ptp_tx_skb, &shhwtstamps);
326	dev_kfree_skb_any(pf->ptp_tx_skb);
 
 
 
 
327	pf->ptp_tx_skb = NULL;
328	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, &pf->state);
 
 
 
 
329}
330
331/**
332 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
333 * @pf: Board private structure
334 * @skb: Particular skb to send timestamp with
335 * @index: Index into the receive timestamp registers for the timestamp
336 *
337 * The XL710 receives a notification in the receive descriptor with an offset
338 * into the set of RXTIME registers where the timestamp is for that skb. This
339 * function goes and fetches the receive timestamp from that offset, if a valid
340 * one exists. The RXTIME registers are in ns, so we must convert the result
341 * first.
342 **/
343void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
344{
345	u32 prttsyn_stat, hi, lo;
346	struct i40e_hw *hw;
347	u64 ns;
348
349	/* Since we cannot turn off the Rx timestamp logic if the device is
350	 * doing Tx timestamping, check if Rx timestamping is configured.
351	 */
352	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
353		return;
354
355	hw = &pf->hw;
356
357	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
358
359	if (!(prttsyn_stat & BIT(index)))
 
 
 
 
 
360		return;
 
 
 
 
361
362	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
363	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
364
 
 
365	ns = (((u64)hi) << 32) | lo;
366
367	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
368}
369
370/**
371 * i40e_ptp_set_increment - Utility function to update clock increment rate
372 * @pf: Board private structure
373 *
374 * During a link change, the DMA frequency that drives the 1588 logic will
375 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
376 * we must update the increment value per clock tick.
377 **/
378void i40e_ptp_set_increment(struct i40e_pf *pf)
379{
380	struct i40e_link_status *hw_link_info;
381	struct i40e_hw *hw = &pf->hw;
382	u64 incval;
383
384	hw_link_info = &hw->phy.link_info;
385
386	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
387
388	switch (hw_link_info->link_speed) {
389	case I40E_LINK_SPEED_10GB:
390		incval = I40E_PTP_10GB_INCVAL;
391		break;
392	case I40E_LINK_SPEED_1GB:
393		incval = I40E_PTP_1GB_INCVAL;
394		break;
395	case I40E_LINK_SPEED_100MB:
396	{
397		static int warn_once;
398
399		if (!warn_once) {
400			dev_warn(&pf->pdev->dev,
401				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
402			warn_once++;
403		}
404		incval = 0;
405		break;
406	}
407	case I40E_LINK_SPEED_40GB:
408	default:
409		incval = I40E_PTP_40GB_INCVAL;
410		break;
411	}
412
413	/* Write the new increment value into the increment register. The
414	 * hardware will not update the clock until both registers have been
415	 * written.
416	 */
417	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
418	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
419
420	/* Update the base adjustement value. */
421	ACCESS_ONCE(pf->ptp_base_adj) = incval;
422	smp_mb(); /* Force the above update. */
423}
424
425/**
426 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
427 * @pf: Board private structure
428 * @ifreq: ioctl data
429 *
430 * Obtain the current hardware timestamping settigs as requested. To do this,
431 * keep a shadow copy of the timestamp settings rather than attempting to
432 * deconstruct it from the registers.
433 **/
434int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
435{
436	struct hwtstamp_config *config = &pf->tstamp_config;
437
438	if (!(pf->flags & I40E_FLAG_PTP))
439		return -EOPNOTSUPP;
440
441	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
442		-EFAULT : 0;
443}
444
445/**
446 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
447 * @pf: Board private structure
448 * @config: hwtstamp settings requested or saved
449 *
450 * Control hardware registers to enter the specific mode requested by the
451 * user. Also used during reset path to ensure that timestamp settings are
452 * maintained.
453 *
454 * Note: modifies config in place, and may update the requested mode to be
455 * more broad if the specific filter is not directly supported.
456 **/
457static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
458				       struct hwtstamp_config *config)
459{
460	struct i40e_hw *hw = &pf->hw;
461	u32 tsyntype, regval;
462
463	/* Reserved for future extensions. */
464	if (config->flags)
465		return -EINVAL;
466
467	switch (config->tx_type) {
468	case HWTSTAMP_TX_OFF:
469		pf->ptp_tx = false;
470		break;
471	case HWTSTAMP_TX_ON:
472		pf->ptp_tx = true;
473		break;
474	default:
475		return -ERANGE;
476	}
477
478	switch (config->rx_filter) {
479	case HWTSTAMP_FILTER_NONE:
480		pf->ptp_rx = false;
481		/* We set the type to V1, but do not enable UDP packet
482		 * recognition. In this way, we should be as close to
483		 * disabling PTP Rx timestamps as possible since V1 packets
484		 * are always UDP, since L2 packets are a V2 feature.
485		 */
486		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
487		break;
488	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
489	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
490	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
 
 
491		pf->ptp_rx = true;
492		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
493			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
494			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
495		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
496		break;
497	case HWTSTAMP_FILTER_PTP_V2_EVENT:
498	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
499	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
500	case HWTSTAMP_FILTER_PTP_V2_SYNC:
501	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
502	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
503	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
504	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
505	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
 
 
 
 
 
 
506		pf->ptp_rx = true;
507		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
508			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2 |
509			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
510		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
 
 
 
 
511		break;
 
512	case HWTSTAMP_FILTER_ALL:
513	default:
514		return -ERANGE;
515	}
516
517	/* Clear out all 1588-related registers to clear and unlatch them. */
 
518	rd32(hw, I40E_PRTTSYN_STAT_0);
519	rd32(hw, I40E_PRTTSYN_TXTIME_H);
520	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
521	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
522	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
523	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
 
 
524
525	/* Enable/disable the Tx timestamp interrupt based on user input. */
526	regval = rd32(hw, I40E_PRTTSYN_CTL0);
527	if (pf->ptp_tx)
528		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
529	else
530		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
531	wr32(hw, I40E_PRTTSYN_CTL0, regval);
532
533	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
534	if (pf->ptp_tx)
535		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
536	else
537		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
538	wr32(hw, I40E_PFINT_ICR0_ENA, regval);
539
540	/* Although there is no simple on/off switch for Rx, we "disable" Rx
541	 * timestamps by setting to V1 only mode and clear the UDP
542	 * recognition. This ought to disable all PTP Rx timestamps as V1
543	 * packets are always over UDP. Note that software is configured to
544	 * ignore Rx timestamps via the pf->ptp_rx flag.
545	 */
546	regval = rd32(hw, I40E_PRTTSYN_CTL1);
547	/* clear everything but the enable bit */
548	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
549	/* now enable bits for desired Rx timestamps */
550	regval |= tsyntype;
551	wr32(hw, I40E_PRTTSYN_CTL1, regval);
552
553	return 0;
554}
555
556/**
557 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
558 * @pf: Board private structure
559 * @ifreq: ioctl data
560 *
561 * Respond to the user filter requests and make the appropriate hardware
562 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
563 * logic, so keep track in software of whether to indicate these timestamps
564 * or not.
565 *
566 * It is permissible to "upgrade" the user request to a broader filter, as long
567 * as the user receives the timestamps they care about and the user is notified
568 * the filter has been broadened.
569 **/
570int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
571{
572	struct hwtstamp_config config;
573	int err;
574
575	if (!(pf->flags & I40E_FLAG_PTP))
576		return -EOPNOTSUPP;
577
578	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
579		return -EFAULT;
580
581	err = i40e_ptp_set_timestamp_mode(pf, &config);
582	if (err)
583		return err;
584
585	/* save these settings for future reference */
586	pf->tstamp_config = config;
587
588	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
589		-EFAULT : 0;
590}
591
592/**
593 * i40e_ptp_create_clock - Create PTP clock device for userspace
594 * @pf: Board private structure
595 *
596 * This function creates a new PTP clock device. It only creates one if we
597 * don't already have one, so it is safe to call. Will return error if it
598 * can't create one, but success if we already have a device. Should be used
599 * by i40e_ptp_init to create clock initially, and prevent global resets from
600 * creating new clock devices.
601 **/
602static long i40e_ptp_create_clock(struct i40e_pf *pf)
603{
604	/* no need to create a clock device if we already have one */
605	if (!IS_ERR_OR_NULL(pf->ptp_clock))
606		return 0;
607
608	strncpy(pf->ptp_caps.name, i40e_driver_name, sizeof(pf->ptp_caps.name));
609	pf->ptp_caps.owner = THIS_MODULE;
610	pf->ptp_caps.max_adj = 999999999;
611	pf->ptp_caps.n_ext_ts = 0;
612	pf->ptp_caps.pps = 0;
613	pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
614	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
615	pf->ptp_caps.gettime64 = i40e_ptp_gettime;
616	pf->ptp_caps.settime64 = i40e_ptp_settime;
617	pf->ptp_caps.enable = i40e_ptp_feature_enable;
618
619	/* Attempt to register the clock before enabling the hardware. */
620	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
621	if (IS_ERR(pf->ptp_clock))
622		return PTR_ERR(pf->ptp_clock);
623
624	/* clear the hwtstamp settings here during clock create, instead of
625	 * during regular init, so that we can maintain settings across a
626	 * reset or suspend.
627	 */
628	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
629	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
630
631	return 0;
632}
633
634/**
635 * i40e_ptp_init - Initialize the 1588 support after device probe or reset
636 * @pf: Board private structure
637 *
638 * This function sets device up for 1588 support. The first time it is run, it
639 * will create a PHC clock device. It does not create a clock device if one
640 * already exists. It also reconfigures the device after a reset.
641 **/
642void i40e_ptp_init(struct i40e_pf *pf)
643{
644	struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
645	struct i40e_hw *hw = &pf->hw;
646	u32 pf_id;
647	long err;
648
649	/* Only one PF is assigned to control 1588 logic per port. Do not
650	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
651	 */
652	pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
653		I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
654	if (hw->pf_id != pf_id) {
655		pf->flags &= ~I40E_FLAG_PTP;
656		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
657			 __func__,
658			 netdev->name);
659		return;
660	}
661
662	/* we have to initialize the lock first, since we can't control
663	 * when the user will enter the PHC device entry points
664	 */
665	spin_lock_init(&pf->tmreg_lock);
666
667	/* ensure we have a clock device */
668	err = i40e_ptp_create_clock(pf);
669	if (err) {
670		pf->ptp_clock = NULL;
671		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
672			__func__);
673	} else {
674		struct timespec64 ts;
675		u32 regval;
676
677		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
678			dev_info(&pf->pdev->dev, "PHC enabled\n");
679		pf->flags |= I40E_FLAG_PTP;
680
681		/* Ensure the clocks are running. */
682		regval = rd32(hw, I40E_PRTTSYN_CTL0);
683		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
684		wr32(hw, I40E_PRTTSYN_CTL0, regval);
685		regval = rd32(hw, I40E_PRTTSYN_CTL1);
686		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
687		wr32(hw, I40E_PRTTSYN_CTL1, regval);
688
689		/* Set the increment value per clock tick. */
690		i40e_ptp_set_increment(pf);
691
692		/* reset timestamping mode */
693		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
694
695		/* Set the clock value. */
696		ts = ktime_to_timespec64(ktime_get_real());
697		i40e_ptp_settime(&pf->ptp_caps, &ts);
698	}
699}
700
701/**
702 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
703 * @pf: Board private structure
704 *
705 * This function handles the cleanup work required from the initialization by
706 * clearing out the important information and unregistering the PHC.
707 **/
708void i40e_ptp_stop(struct i40e_pf *pf)
709{
710	pf->flags &= ~I40E_FLAG_PTP;
711	pf->ptp_tx = false;
712	pf->ptp_rx = false;
713
714	if (pf->ptp_tx_skb) {
715		dev_kfree_skb_any(pf->ptp_tx_skb);
716		pf->ptp_tx_skb = NULL;
717		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, &pf->state);
718	}
719
720	if (pf->ptp_clock) {
721		ptp_clock_unregister(pf->ptp_clock);
722		pf->ptp_clock = NULL;
723		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
724			 pf->vsi[pf->lan_vsi]->netdev->name);
725	}
726}
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*******************************************************************************
  3 *
  4 * Intel Ethernet Controller XL710 Family Linux Driver
  5 * Copyright(c) 2013 - 2014 Intel Corporation.
  6 *
  7 * This program is free software; you can redistribute it and/or modify it
  8 * under the terms and conditions of the GNU General Public License,
  9 * version 2, as published by the Free Software Foundation.
 10 *
 11 * This program is distributed in the hope it will be useful, but WITHOUT
 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 14 * more details.
 15 *
 16 * You should have received a copy of the GNU General Public License along
 17 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 18 *
 19 * The full GNU General Public License is included in this distribution in
 20 * the file called "COPYING".
 21 *
 22 * Contact Information:
 23 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 24 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 25 *
 26 ******************************************************************************/
 27
 28#include "i40e.h"
 29#include <linux/ptp_classify.h>
 30
 31/* The XL710 timesync is very much like Intel's 82599 design when it comes to
 32 * the fundamental clock design. However, the clock operations are much simpler
 33 * in the XL710 because the device supports a full 64 bits of nanoseconds.
 34 * Because the field is so wide, we can forgo the cycle counter and just
 35 * operate with the nanosecond field directly without fear of overflow.
 36 *
 37 * Much like the 82599, the update period is dependent upon the link speed:
 38 * At 40Gb link or no link, the period is 1.6ns.
 39 * At 10Gb link, the period is multiplied by 2. (3.2ns)
 40 * At 1Gb link, the period is multiplied by 20. (32ns)
 41 * 1588 functionality is not supported at 100Mbps.
 42 */
 43#define I40E_PTP_40GB_INCVAL 0x0199999999ULL
 44#define I40E_PTP_10GB_INCVAL 0x0333333333ULL
 45#define I40E_PTP_1GB_INCVAL  0x2000000000ULL
 46
 47#define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
 48#define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
 49					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
 50
 51/**
 52 * i40e_ptp_read - Read the PHC time from the device
 53 * @pf: Board private structure
 54 * @ts: timespec structure to hold the current time value
 55 *
 56 * This function reads the PRTTSYN_TIME registers and stores them in a
 57 * timespec. However, since the registers are 64 bits of nanoseconds, we must
 58 * convert the result to a timespec before we can return.
 59 **/
 60static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts)
 61{
 62	struct i40e_hw *hw = &pf->hw;
 63	u32 hi, lo;
 64	u64 ns;
 65
 66	/* The timer latches on the lowest register read. */
 67	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
 68	hi = rd32(hw, I40E_PRTTSYN_TIME_H);
 69
 70	ns = (((u64)hi) << 32) | lo;
 71
 72	*ts = ns_to_timespec64(ns);
 73}
 74
 75/**
 76 * i40e_ptp_write - Write the PHC time to the device
 77 * @pf: Board private structure
 78 * @ts: timespec structure that holds the new time value
 79 *
 80 * This function writes the PRTTSYN_TIME registers with the user value. Since
 81 * we receive a timespec from the stack, we must convert that timespec into
 82 * nanoseconds before programming the registers.
 83 **/
 84static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
 85{
 86	struct i40e_hw *hw = &pf->hw;
 87	u64 ns = timespec64_to_ns(ts);
 88
 89	/* The timer will not update until the high register is written, so
 90	 * write the low register first.
 91	 */
 92	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
 93	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
 94}
 95
 96/**
 97 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
 98 * @hwtstamps: Timestamp structure to update
 99 * @timestamp: Timestamp from the hardware
100 *
101 * We need to convert the NIC clock value into a hwtstamp which can be used by
102 * the upper level timestamping functions. Since the timestamp is simply a 64-
103 * bit nanosecond value, we can call ns_to_ktime directly to handle this.
104 **/
105static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
106					 u64 timestamp)
107{
108	memset(hwtstamps, 0, sizeof(*hwtstamps));
109
110	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
111}
112
113/**
114 * i40e_ptp_adjfreq - Adjust the PHC frequency
115 * @ptp: The PTP clock structure
116 * @ppb: Parts per billion adjustment from the base
117 *
118 * Adjust the frequency of the PHC by the indicated parts per billion from the
119 * base frequency.
120 **/
121static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
122{
123	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
124	struct i40e_hw *hw = &pf->hw;
125	u64 adj, freq, diff;
126	int neg_adj = 0;
127
128	if (ppb < 0) {
129		neg_adj = 1;
130		ppb = -ppb;
131	}
132
133	smp_mb(); /* Force any pending update before accessing. */
134	adj = READ_ONCE(pf->ptp_base_adj);
135
136	freq = adj;
137	freq *= ppb;
138	diff = div_u64(freq, 1000000000ULL);
139
140	if (neg_adj)
141		adj -= diff;
142	else
143		adj += diff;
144
145	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
146	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
147
148	return 0;
149}
150
151/**
152 * i40e_ptp_adjtime - Adjust the PHC time
153 * @ptp: The PTP clock structure
154 * @delta: Offset in nanoseconds to adjust the PHC time by
155 *
156 * Adjust the frequency of the PHC by the indicated parts per billion from the
157 * base frequency.
158 **/
159static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
160{
161	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
162	struct timespec64 now;
 
163
164	mutex_lock(&pf->tmreg_lock);
165
166	i40e_ptp_read(pf, &now);
167	timespec64_add_ns(&now, delta);
168	i40e_ptp_write(pf, (const struct timespec64 *)&now);
169
170	mutex_unlock(&pf->tmreg_lock);
171
172	return 0;
173}
174
175/**
176 * i40e_ptp_gettime - Get the time of the PHC
177 * @ptp: The PTP clock structure
178 * @ts: timespec structure to hold the current time value
179 *
180 * Read the device clock and return the correct value on ns, after converting it
181 * into a timespec struct.
182 **/
183static int i40e_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
184{
185	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 
186
187	mutex_lock(&pf->tmreg_lock);
188	i40e_ptp_read(pf, ts);
189	mutex_unlock(&pf->tmreg_lock);
190
191	return 0;
192}
193
194/**
195 * i40e_ptp_settime - Set the time of the PHC
196 * @ptp: The PTP clock structure
197 * @ts: timespec structure that holds the new time value
198 *
199 * Set the device clock to the user input value. The conversion from timespec
200 * to ns happens in the write function.
201 **/
202static int i40e_ptp_settime(struct ptp_clock_info *ptp,
203			    const struct timespec64 *ts)
204{
205	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 
206
207	mutex_lock(&pf->tmreg_lock);
208	i40e_ptp_write(pf, ts);
209	mutex_unlock(&pf->tmreg_lock);
210
211	return 0;
212}
213
214/**
215 * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem
216 * @ptp: The PTP clock structure
217 * @rq: The requested feature to change
218 * @on: Enable/disable flag
219 *
220 * The XL710 does not support any of the ancillary features of the PHC
221 * subsystem, so this function may just return.
222 **/
223static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
224				   struct ptp_clock_request *rq, int on)
225{
226	return -EOPNOTSUPP;
227}
228
229/**
230 * i40e_ptp_update_latch_events - Read I40E_PRTTSYN_STAT_1 and latch events
231 * @pf: the PF data structure
232 *
233 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
234 * for noticed latch events. This allows the driver to keep track of the first
235 * time a latch event was noticed which will be used to help clear out Rx
236 * timestamps for packets that got dropped or lost.
237 *
238 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
239 * expected to be called only while under the ptp_rx_lock.
240 **/
241static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
242{
243	struct i40e_hw *hw = &pf->hw;
244	u32 prttsyn_stat, new_latch_events;
245	int  i;
246
247	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
248	new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
249
250	/* Update the jiffies time for any newly latched timestamp. This
251	 * ensures that we store the time that we first discovered a timestamp
252	 * was latched by the hardware. The service task will later determine
253	 * if we should free the latch and drop that timestamp should too much
254	 * time pass. This flow ensures that we only update jiffies for new
255	 * events latched since the last time we checked, and not all events
256	 * currently latched, so that the service task accounting remains
257	 * accurate.
258	 */
259	for (i = 0; i < 4; i++) {
260		if (new_latch_events & BIT(i))
261			pf->latch_events[i] = jiffies;
262	}
263
264	/* Finally, we store the current status of the Rx timestamp latches */
265	pf->latch_event_flags = prttsyn_stat;
266
267	return prttsyn_stat;
268}
269
270/**
271 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
272 * @pf: The PF private data structure
273 * @vsi: The VSI with the rings relevant to 1588
274 *
275 * This watchdog task is scheduled to detect error case where hardware has
276 * dropped an Rx packet that was timestamped when the ring is full. The
277 * particular error is rare but leaves the device in a state unable to timestamp
278 * any future packets.
279 **/
280void i40e_ptp_rx_hang(struct i40e_pf *pf)
281{
 
282	struct i40e_hw *hw = &pf->hw;
283	unsigned int i, cleared = 0;
 
 
 
284
285	/* Since we cannot turn off the Rx timestamp logic if the device is
286	 * configured for Tx timestamping, we check if Rx timestamping is
287	 * configured. We don't want to spuriously warn about Rx timestamp
288	 * hangs if we don't care about the timestamps.
289	 */
290	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
291		return;
292
293	spin_lock_bh(&pf->ptp_rx_lock);
294
295	/* Update current latch times for Rx events */
296	i40e_ptp_get_rx_events(pf);
297
298	/* Check all the currently latched Rx events and see whether they have
299	 * been latched for over a second. It is assumed that any timestamp
300	 * should have been cleared within this time, or else it was captured
301	 * for a dropped frame that the driver never received. Thus, we will
302	 * clear any timestamp that has been latched for over 1 second.
303	 */
304	for (i = 0; i < 4; i++) {
305		if ((pf->latch_event_flags & BIT(i)) &&
306		    time_is_before_jiffies(pf->latch_events[i] + HZ)) {
307			rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
308			pf->latch_event_flags &= ~BIT(i);
309			cleared++;
310		}
311	}
312
313	spin_unlock_bh(&pf->ptp_rx_lock);
314
315	/* Log a warning if more than 2 timestamps got dropped in the same
316	 * check. We don't want to warn about all drops because it can occur
317	 * in normal scenarios such as PTP frames on multicast addresses we
318	 * aren't listening to. However, administrator should know if this is
319	 * the reason packets aren't receiving timestamps.
320	 */
321	if (cleared > 2)
322		dev_dbg(&pf->pdev->dev,
323			"Dropped %d missed RXTIME timestamp events\n",
324			cleared);
325
326	/* Finally, update the rx_hwtstamp_cleared counter */
327	pf->rx_hwtstamp_cleared += cleared;
328}
329
330/**
331 * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
332 * @pf: The PF private data structure
333 *
334 * This watchdog task is run periodically to make sure that we clear the Tx
335 * timestamp logic if we don't obtain a timestamp in a reasonable amount of
336 * time. It is unexpected in the normal case but if it occurs it results in
337 * permanently prevent timestamps of future packets
338 **/
339void i40e_ptp_tx_hang(struct i40e_pf *pf)
340{
341	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
342		return;
343
344	/* Nothing to do if we're not already waiting for a timestamp */
345	if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
346		return;
347
348	/* We already have a handler routine which is run when we are notified
349	 * of a Tx timestamp in the hardware. If we don't get an interrupt
350	 * within a second it is reasonable to assume that we never will.
351	 */
352	if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
353		dev_kfree_skb_any(pf->ptp_tx_skb);
354		pf->ptp_tx_skb = NULL;
355		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
356		pf->tx_hwtstamp_timeouts++;
357	}
358}
359
360/**
361 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
362 * @pf: Board private structure
363 *
364 * Read the value of the Tx timestamp from the registers, convert it into a
365 * value consumable by the stack, and store that result into the shhwtstamps
366 * struct before returning it up the stack.
367 **/
368void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
369{
370	struct skb_shared_hwtstamps shhwtstamps;
371	struct sk_buff *skb = pf->ptp_tx_skb;
372	struct i40e_hw *hw = &pf->hw;
373	u32 hi, lo;
374	u64 ns;
375
376	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
377		return;
378
379	/* don't attempt to timestamp if we don't have an skb */
380	if (!pf->ptp_tx_skb)
381		return;
382
383	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
384	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
385
386	ns = (((u64)hi) << 32) | lo;
 
387	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
388
389	/* Clear the bit lock as soon as possible after reading the register,
390	 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
391	 * applications might wake up and attempt to request another transmit
392	 * timestamp prior to the bit lock being cleared.
393	 */
394	pf->ptp_tx_skb = NULL;
395	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
396
397	/* Notify the stack and free the skb after we've unlocked */
398	skb_tstamp_tx(skb, &shhwtstamps);
399	dev_kfree_skb_any(skb);
400}
401
402/**
403 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
404 * @pf: Board private structure
405 * @skb: Particular skb to send timestamp with
406 * @index: Index into the receive timestamp registers for the timestamp
407 *
408 * The XL710 receives a notification in the receive descriptor with an offset
409 * into the set of RXTIME registers where the timestamp is for that skb. This
410 * function goes and fetches the receive timestamp from that offset, if a valid
411 * one exists. The RXTIME registers are in ns, so we must convert the result
412 * first.
413 **/
414void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
415{
416	u32 prttsyn_stat, hi, lo;
417	struct i40e_hw *hw;
418	u64 ns;
419
420	/* Since we cannot turn off the Rx timestamp logic if the device is
421	 * doing Tx timestamping, check if Rx timestamping is configured.
422	 */
423	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
424		return;
425
426	hw = &pf->hw;
427
428	spin_lock_bh(&pf->ptp_rx_lock);
429
430	/* Get current Rx events and update latch times */
431	prttsyn_stat = i40e_ptp_get_rx_events(pf);
432
433	/* TODO: Should we warn about missing Rx timestamp event? */
434	if (!(prttsyn_stat & BIT(index))) {
435		spin_unlock_bh(&pf->ptp_rx_lock);
436		return;
437	}
438
439	/* Clear the latched event since we're about to read its register */
440	pf->latch_event_flags &= ~BIT(index);
441
442	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
443	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
444
445	spin_unlock_bh(&pf->ptp_rx_lock);
446
447	ns = (((u64)hi) << 32) | lo;
448
449	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
450}
451
452/**
453 * i40e_ptp_set_increment - Utility function to update clock increment rate
454 * @pf: Board private structure
455 *
456 * During a link change, the DMA frequency that drives the 1588 logic will
457 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
458 * we must update the increment value per clock tick.
459 **/
460void i40e_ptp_set_increment(struct i40e_pf *pf)
461{
462	struct i40e_link_status *hw_link_info;
463	struct i40e_hw *hw = &pf->hw;
464	u64 incval;
465
466	hw_link_info = &hw->phy.link_info;
467
468	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
469
470	switch (hw_link_info->link_speed) {
471	case I40E_LINK_SPEED_10GB:
472		incval = I40E_PTP_10GB_INCVAL;
473		break;
474	case I40E_LINK_SPEED_1GB:
475		incval = I40E_PTP_1GB_INCVAL;
476		break;
477	case I40E_LINK_SPEED_100MB:
478	{
479		static int warn_once;
480
481		if (!warn_once) {
482			dev_warn(&pf->pdev->dev,
483				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
484			warn_once++;
485		}
486		incval = 0;
487		break;
488	}
489	case I40E_LINK_SPEED_40GB:
490	default:
491		incval = I40E_PTP_40GB_INCVAL;
492		break;
493	}
494
495	/* Write the new increment value into the increment register. The
496	 * hardware will not update the clock until both registers have been
497	 * written.
498	 */
499	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
500	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
501
502	/* Update the base adjustement value. */
503	WRITE_ONCE(pf->ptp_base_adj, incval);
504	smp_mb(); /* Force the above update. */
505}
506
507/**
508 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
509 * @pf: Board private structure
510 * @ifreq: ioctl data
511 *
512 * Obtain the current hardware timestamping settigs as requested. To do this,
513 * keep a shadow copy of the timestamp settings rather than attempting to
514 * deconstruct it from the registers.
515 **/
516int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
517{
518	struct hwtstamp_config *config = &pf->tstamp_config;
519
520	if (!(pf->flags & I40E_FLAG_PTP))
521		return -EOPNOTSUPP;
522
523	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
524		-EFAULT : 0;
525}
526
527/**
528 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
529 * @pf: Board private structure
530 * @config: hwtstamp settings requested or saved
531 *
532 * Control hardware registers to enter the specific mode requested by the
533 * user. Also used during reset path to ensure that timestamp settings are
534 * maintained.
535 *
536 * Note: modifies config in place, and may update the requested mode to be
537 * more broad if the specific filter is not directly supported.
538 **/
539static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
540				       struct hwtstamp_config *config)
541{
542	struct i40e_hw *hw = &pf->hw;
543	u32 tsyntype, regval;
544
545	/* Reserved for future extensions. */
546	if (config->flags)
547		return -EINVAL;
548
549	switch (config->tx_type) {
550	case HWTSTAMP_TX_OFF:
551		pf->ptp_tx = false;
552		break;
553	case HWTSTAMP_TX_ON:
554		pf->ptp_tx = true;
555		break;
556	default:
557		return -ERANGE;
558	}
559
560	switch (config->rx_filter) {
561	case HWTSTAMP_FILTER_NONE:
562		pf->ptp_rx = false;
563		/* We set the type to V1, but do not enable UDP packet
564		 * recognition. In this way, we should be as close to
565		 * disabling PTP Rx timestamps as possible since V1 packets
566		 * are always UDP, since L2 packets are a V2 feature.
567		 */
568		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
569		break;
570	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
571	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
572	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
573		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
574			return -ERANGE;
575		pf->ptp_rx = true;
576		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
577			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
578			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
579		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
580		break;
581	case HWTSTAMP_FILTER_PTP_V2_EVENT:
 
582	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
583	case HWTSTAMP_FILTER_PTP_V2_SYNC:
 
584	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
585	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 
586	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
587		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
588			return -ERANGE;
589		/* fall through */
590	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
591	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
592	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
593		pf->ptp_rx = true;
594		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
595			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
596		if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
597			tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
598			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
599		} else {
600			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
601		}
602		break;
603	case HWTSTAMP_FILTER_NTP_ALL:
604	case HWTSTAMP_FILTER_ALL:
605	default:
606		return -ERANGE;
607	}
608
609	/* Clear out all 1588-related registers to clear and unlatch them. */
610	spin_lock_bh(&pf->ptp_rx_lock);
611	rd32(hw, I40E_PRTTSYN_STAT_0);
612	rd32(hw, I40E_PRTTSYN_TXTIME_H);
613	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
614	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
615	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
616	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
617	pf->latch_event_flags = 0;
618	spin_unlock_bh(&pf->ptp_rx_lock);
619
620	/* Enable/disable the Tx timestamp interrupt based on user input. */
621	regval = rd32(hw, I40E_PRTTSYN_CTL0);
622	if (pf->ptp_tx)
623		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
624	else
625		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
626	wr32(hw, I40E_PRTTSYN_CTL0, regval);
627
628	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
629	if (pf->ptp_tx)
630		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
631	else
632		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
633	wr32(hw, I40E_PFINT_ICR0_ENA, regval);
634
635	/* Although there is no simple on/off switch for Rx, we "disable" Rx
636	 * timestamps by setting to V1 only mode and clear the UDP
637	 * recognition. This ought to disable all PTP Rx timestamps as V1
638	 * packets are always over UDP. Note that software is configured to
639	 * ignore Rx timestamps via the pf->ptp_rx flag.
640	 */
641	regval = rd32(hw, I40E_PRTTSYN_CTL1);
642	/* clear everything but the enable bit */
643	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
644	/* now enable bits for desired Rx timestamps */
645	regval |= tsyntype;
646	wr32(hw, I40E_PRTTSYN_CTL1, regval);
647
648	return 0;
649}
650
651/**
652 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
653 * @pf: Board private structure
654 * @ifreq: ioctl data
655 *
656 * Respond to the user filter requests and make the appropriate hardware
657 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
658 * logic, so keep track in software of whether to indicate these timestamps
659 * or not.
660 *
661 * It is permissible to "upgrade" the user request to a broader filter, as long
662 * as the user receives the timestamps they care about and the user is notified
663 * the filter has been broadened.
664 **/
665int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
666{
667	struct hwtstamp_config config;
668	int err;
669
670	if (!(pf->flags & I40E_FLAG_PTP))
671		return -EOPNOTSUPP;
672
673	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
674		return -EFAULT;
675
676	err = i40e_ptp_set_timestamp_mode(pf, &config);
677	if (err)
678		return err;
679
680	/* save these settings for future reference */
681	pf->tstamp_config = config;
682
683	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
684		-EFAULT : 0;
685}
686
687/**
688 * i40e_ptp_create_clock - Create PTP clock device for userspace
689 * @pf: Board private structure
690 *
691 * This function creates a new PTP clock device. It only creates one if we
692 * don't already have one, so it is safe to call. Will return error if it
693 * can't create one, but success if we already have a device. Should be used
694 * by i40e_ptp_init to create clock initially, and prevent global resets from
695 * creating new clock devices.
696 **/
697static long i40e_ptp_create_clock(struct i40e_pf *pf)
698{
699	/* no need to create a clock device if we already have one */
700	if (!IS_ERR_OR_NULL(pf->ptp_clock))
701		return 0;
702
703	strncpy(pf->ptp_caps.name, i40e_driver_name, sizeof(pf->ptp_caps.name));
704	pf->ptp_caps.owner = THIS_MODULE;
705	pf->ptp_caps.max_adj = 999999999;
706	pf->ptp_caps.n_ext_ts = 0;
707	pf->ptp_caps.pps = 0;
708	pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
709	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
710	pf->ptp_caps.gettime64 = i40e_ptp_gettime;
711	pf->ptp_caps.settime64 = i40e_ptp_settime;
712	pf->ptp_caps.enable = i40e_ptp_feature_enable;
713
714	/* Attempt to register the clock before enabling the hardware. */
715	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
716	if (IS_ERR(pf->ptp_clock))
717		return PTR_ERR(pf->ptp_clock);
718
719	/* clear the hwtstamp settings here during clock create, instead of
720	 * during regular init, so that we can maintain settings across a
721	 * reset or suspend.
722	 */
723	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
724	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
725
726	return 0;
727}
728
729/**
730 * i40e_ptp_init - Initialize the 1588 support after device probe or reset
731 * @pf: Board private structure
732 *
733 * This function sets device up for 1588 support. The first time it is run, it
734 * will create a PHC clock device. It does not create a clock device if one
735 * already exists. It also reconfigures the device after a reset.
736 **/
737void i40e_ptp_init(struct i40e_pf *pf)
738{
739	struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
740	struct i40e_hw *hw = &pf->hw;
741	u32 pf_id;
742	long err;
743
744	/* Only one PF is assigned to control 1588 logic per port. Do not
745	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
746	 */
747	pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
748		I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
749	if (hw->pf_id != pf_id) {
750		pf->flags &= ~I40E_FLAG_PTP;
751		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
752			 __func__,
753			 netdev->name);
754		return;
755	}
756
757	mutex_init(&pf->tmreg_lock);
758	spin_lock_init(&pf->ptp_rx_lock);
 
 
759
760	/* ensure we have a clock device */
761	err = i40e_ptp_create_clock(pf);
762	if (err) {
763		pf->ptp_clock = NULL;
764		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
765			__func__);
766	} else if (pf->ptp_clock) {
767		struct timespec64 ts;
768		u32 regval;
769
770		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
771			dev_info(&pf->pdev->dev, "PHC enabled\n");
772		pf->flags |= I40E_FLAG_PTP;
773
774		/* Ensure the clocks are running. */
775		regval = rd32(hw, I40E_PRTTSYN_CTL0);
776		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
777		wr32(hw, I40E_PRTTSYN_CTL0, regval);
778		regval = rd32(hw, I40E_PRTTSYN_CTL1);
779		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
780		wr32(hw, I40E_PRTTSYN_CTL1, regval);
781
782		/* Set the increment value per clock tick. */
783		i40e_ptp_set_increment(pf);
784
785		/* reset timestamping mode */
786		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
787
788		/* Set the clock value. */
789		ts = ktime_to_timespec64(ktime_get_real());
790		i40e_ptp_settime(&pf->ptp_caps, &ts);
791	}
792}
793
794/**
795 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
796 * @pf: Board private structure
797 *
798 * This function handles the cleanup work required from the initialization by
799 * clearing out the important information and unregistering the PHC.
800 **/
801void i40e_ptp_stop(struct i40e_pf *pf)
802{
803	pf->flags &= ~I40E_FLAG_PTP;
804	pf->ptp_tx = false;
805	pf->ptp_rx = false;
806
807	if (pf->ptp_tx_skb) {
808		dev_kfree_skb_any(pf->ptp_tx_skb);
809		pf->ptp_tx_skb = NULL;
810		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
811	}
812
813	if (pf->ptp_clock) {
814		ptp_clock_unregister(pf->ptp_clock);
815		pf->ptp_clock = NULL;
816		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
817			 pf->vsi[pf->lan_vsi]->netdev->name);
818	}
819}