Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright © 2014 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Ben Widawsky <ben@bwidawsk.net>
  25 *    Michel Thierry <michel.thierry@intel.com>
  26 *    Thomas Daniel <thomas.daniel@intel.com>
  27 *    Oscar Mateo <oscar.mateo@intel.com>
  28 *
  29 */
  30
  31/**
  32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
  33 *
  34 * Motivation:
  35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
  36 * These expanded contexts enable a number of new abilities, especially
  37 * "Execlists" (also implemented in this file).
  38 *
  39 * One of the main differences with the legacy HW contexts is that logical
  40 * ring contexts incorporate many more things to the context's state, like
  41 * PDPs or ringbuffer control registers:
  42 *
  43 * The reason why PDPs are included in the context is straightforward: as
  44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
  45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
  46 * instead, the GPU will do it for you on the context switch.
  47 *
  48 * But, what about the ringbuffer control registers (head, tail, etc..)?
  49 * shouldn't we just need a set of those per engine command streamer? This is
  50 * where the name "Logical Rings" starts to make sense: by virtualizing the
  51 * rings, the engine cs shifts to a new "ring buffer" with every context
  52 * switch. When you want to submit a workload to the GPU you: A) choose your
  53 * context, B) find its appropriate virtualized ring, C) write commands to it
  54 * and then, finally, D) tell the GPU to switch to that context.
  55 *
  56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
  57 * to a contexts is via a context execution list, ergo "Execlists".
  58 *
  59 * LRC implementation:
  60 * Regarding the creation of contexts, we have:
  61 *
  62 * - One global default context.
  63 * - One local default context for each opened fd.
  64 * - One local extra context for each context create ioctl call.
  65 *
  66 * Now that ringbuffers belong per-context (and not per-engine, like before)
  67 * and that contexts are uniquely tied to a given engine (and not reusable,
  68 * like before) we need:
  69 *
  70 * - One ringbuffer per-engine inside each context.
  71 * - One backing object per-engine inside each context.
  72 *
  73 * The global default context starts its life with these new objects fully
  74 * allocated and populated. The local default context for each opened fd is
  75 * more complex, because we don't know at creation time which engine is going
  76 * to use them. To handle this, we have implemented a deferred creation of LR
  77 * contexts:
  78 *
  79 * The local context starts its life as a hollow or blank holder, that only
  80 * gets populated for a given engine once we receive an execbuffer. If later
  81 * on we receive another execbuffer ioctl for the same context but a different
  82 * engine, we allocate/populate a new ringbuffer and context backing object and
  83 * so on.
  84 *
  85 * Finally, regarding local contexts created using the ioctl call: as they are
  86 * only allowed with the render ring, we can allocate & populate them right
  87 * away (no need to defer anything, at least for now).
  88 *
  89 * Execlists implementation:
  90 * Execlists are the new method by which, on gen8+ hardware, workloads are
  91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
  92 * This method works as follows:
  93 *
  94 * When a request is committed, its commands (the BB start and any leading or
  95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
  96 * for the appropriate context. The tail pointer in the hardware context is not
  97 * updated at this time, but instead, kept by the driver in the ringbuffer
  98 * structure. A structure representing this request is added to a request queue
  99 * for the appropriate engine: this structure contains a copy of the context's
 100 * tail after the request was written to the ring buffer and a pointer to the
 101 * context itself.
 102 *
 103 * If the engine's request queue was empty before the request was added, the
 104 * queue is processed immediately. Otherwise the queue will be processed during
 105 * a context switch interrupt. In any case, elements on the queue will get sent
 106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 107 * globally unique 20-bits submission ID.
 108 *
 109 * When execution of a request completes, the GPU updates the context status
 110 * buffer with a context complete event and generates a context switch interrupt.
 111 * During the interrupt handling, the driver examines the events in the buffer:
 112 * for each context complete event, if the announced ID matches that on the head
 113 * of the request queue, then that request is retired and removed from the queue.
 114 *
 115 * After processing, if any requests were retired and the queue is not empty
 116 * then a new execution list can be submitted. The two requests at the front of
 117 * the queue are next to be submitted but since a context may not occur twice in
 118 * an execution list, if subsequent requests have the same ID as the first then
 119 * the two requests must be combined. This is done simply by discarding requests
 120 * at the head of the queue until either only one requests is left (in which case
 121 * we use a NULL second context) or the first two requests have unique IDs.
 122 *
 123 * By always executing the first two requests in the queue the driver ensures
 124 * that the GPU is kept as busy as possible. In the case where a single context
 125 * completes but a second context is still executing, the request for this second
 126 * context will be at the head of the queue when we remove the first one. This
 127 * request will then be resubmitted along with a new request for a different context,
 128 * which will cause the hardware to continue executing the second request and queue
 129 * the new request (the GPU detects the condition of a context getting preempted
 130 * with the same context and optimizes the context switch flow by not doing
 131 * preemption, but just sampling the new tail pointer).
 132 *
 133 */
 
 134
 135#include <drm/drmP.h>
 136#include <drm/i915_drm.h>
 137#include "i915_drv.h"
 
 
 138#include "intel_mocs.h"
 139
 140#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
 141#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
 142#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
 143
 144#define RING_EXECLIST_QFULL		(1 << 0x2)
 145#define RING_EXECLIST1_VALID		(1 << 0x3)
 146#define RING_EXECLIST0_VALID		(1 << 0x4)
 147#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
 148#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
 149#define RING_EXECLIST0_ACTIVE		(1 << 0x12)
 150
 151#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
 152#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
 153#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
 154#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
 155#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
 156#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
 157
 158#define CTX_LRI_HEADER_0		0x01
 159#define CTX_CONTEXT_CONTROL		0x02
 160#define CTX_RING_HEAD			0x04
 161#define CTX_RING_TAIL			0x06
 162#define CTX_RING_BUFFER_START		0x08
 163#define CTX_RING_BUFFER_CONTROL		0x0a
 164#define CTX_BB_HEAD_U			0x0c
 165#define CTX_BB_HEAD_L			0x0e
 166#define CTX_BB_STATE			0x10
 167#define CTX_SECOND_BB_HEAD_U		0x12
 168#define CTX_SECOND_BB_HEAD_L		0x14
 169#define CTX_SECOND_BB_STATE		0x16
 170#define CTX_BB_PER_CTX_PTR		0x18
 171#define CTX_RCS_INDIRECT_CTX		0x1a
 172#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
 173#define CTX_LRI_HEADER_1		0x21
 174#define CTX_CTX_TIMESTAMP		0x22
 175#define CTX_PDP3_UDW			0x24
 176#define CTX_PDP3_LDW			0x26
 177#define CTX_PDP2_UDW			0x28
 178#define CTX_PDP2_LDW			0x2a
 179#define CTX_PDP1_UDW			0x2c
 180#define CTX_PDP1_LDW			0x2e
 181#define CTX_PDP0_UDW			0x30
 182#define CTX_PDP0_LDW			0x32
 183#define CTX_LRI_HEADER_2		0x41
 184#define CTX_R_PWR_CLK_STATE		0x42
 185#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44
 186
 187#define GEN8_CTX_VALID (1<<0)
 188#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
 189#define GEN8_CTX_FORCE_RESTORE (1<<2)
 190#define GEN8_CTX_L3LLC_COHERENT (1<<5)
 191#define GEN8_CTX_PRIVILEGE (1<<8)
 192
 193#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
 194	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
 195	(reg_state)[(pos)+1] = (val); \
 196} while (0)
 197
 198#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
 199	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
 200	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
 201	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
 202} while (0)
 203
 204#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
 205	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
 206	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
 207} while (0)
 208
 209enum {
 210	ADVANCED_CONTEXT = 0,
 211	LEGACY_32B_CONTEXT,
 212	ADVANCED_AD_CONTEXT,
 213	LEGACY_64B_CONTEXT
 214};
 215#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
 216#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
 217		LEGACY_64B_CONTEXT :\
 218		LEGACY_32B_CONTEXT)
 219enum {
 220	FAULT_AND_HANG = 0,
 221	FAULT_AND_HALT, /* Debug only */
 222	FAULT_AND_STREAM,
 223	FAULT_AND_CONTINUE /* Unsupported */
 224};
 225#define GEN8_CTX_ID_SHIFT 32
 226#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
 227#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
 228
 229static int intel_lr_context_pin(struct intel_context *ctx,
 230				struct intel_engine_cs *engine);
 231static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
 232		struct drm_i915_gem_object *default_ctx_obj);
 233
 234
 235/**
 236 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 237 * @dev: DRM device.
 238 * @enable_execlists: value of i915.enable_execlists module parameter.
 239 *
 240 * Only certain platforms support Execlists (the prerequisites being
 241 * support for Logical Ring Contexts and Aliasing PPGTT or better).
 242 *
 243 * Return: 1 if Execlists is supported and has to be enabled.
 244 */
 245int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
 246{
 247	WARN_ON(i915.enable_ppgtt == -1);
 248
 249	/* On platforms with execlist available, vGPU will only
 250	 * support execlist mode, no ring buffer mode.
 251	 */
 252	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
 253		return 1;
 254
 255	if (INTEL_INFO(dev)->gen >= 9)
 256		return 1;
 257
 258	if (enable_execlists == 0)
 259		return 0;
 260
 261	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
 262	    i915.use_mmio_flip >= 0)
 263		return 1;
 
 
 
 264
 265	return 0;
 
 
 266}
 267
 268static void
 269logical_ring_init_platform_invariants(struct intel_engine_cs *ring)
 270{
 271	struct drm_device *dev = ring->dev;
 
 272
 273	ring->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
 274					IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
 275					(ring->id == VCS || ring->id == VCS2);
 276
 277	ring->ctx_desc_template = GEN8_CTX_VALID;
 278	ring->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
 279				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
 280	if (IS_GEN8(dev))
 281		ring->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
 282	ring->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
 283
 284	/* TODO: WaDisableLiteRestore when we start using semaphore
 285	 * signalling between Command Streamers */
 286	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
 287
 288	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
 289	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
 290	if (ring->disable_lite_restore_wa)
 291		ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
 292}
 293
 294/**
 295 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 296 * 					  descriptor for a pinned context
 297 *
 298 * @ctx: Context to work on
 299 * @ring: Engine the descriptor will be used with
 300 *
 301 * The context descriptor encodes various attributes of a context,
 302 * including its GTT address and some flags. Because it's fairly
 303 * expensive to calculate, we'll just do it once and cache the result,
 304 * which remains valid until the context is unpinned.
 305 *
 306 * This is what a descriptor looks like, from LSB to MSB:
 307 *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 308 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 309 *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
 310 *    bits 52-63:    reserved, may encode the engine ID (for GuC)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 311 */
 312static void
 313intel_lr_context_descriptor_update(struct intel_context *ctx,
 314				   struct intel_engine_cs *ring)
 315{
 316	uint64_t lrca, desc;
 
 317
 318	lrca = ctx->engine[ring->id].lrc_vma->node.start +
 319	       LRC_PPHWSP_PN * PAGE_SIZE;
 320
 321	desc = ring->ctx_desc_template;			   /* bits  0-11 */
 322	desc |= lrca;					   /* bits 12-31 */
 323	desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
 324
 325	ctx->engine[ring->id].lrc_desc = desc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326}
 327
 328uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
 329				     struct intel_engine_cs *ring)
 330{
 331	return ctx->engine[ring->id].lrc_desc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 332}
 333
 334/**
 335 * intel_execlists_ctx_id() - get the Execlists Context ID
 336 * @ctx: Context to get the ID for
 337 * @ring: Engine to get the ID for
 338 *
 339 * Do not confuse with ctx->id! Unfortunately we have a name overload
 340 * here: the old context ID we pass to userspace as a handler so that
 341 * they can refer to a context, and the new context ID we pass to the
 342 * ELSP so that the GPU can inform us of the context status via
 343 * interrupts.
 344 *
 345 * The context ID is a portion of the context descriptor, so we can
 346 * just extract the required part from the cached descriptor.
 347 *
 348 * Return: 20-bits globally unique context ID.
 349 */
 350u32 intel_execlists_ctx_id(struct intel_context *ctx,
 351			   struct intel_engine_cs *ring)
 352{
 353	return intel_lr_context_descriptor(ctx, ring) >> GEN8_CTX_ID_SHIFT;
 
 354}
 355
 356static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
 357				 struct drm_i915_gem_request *rq1)
 358{
 
 
 
 359
 360	struct intel_engine_cs *ring = rq0->ring;
 361	struct drm_device *dev = ring->dev;
 362	struct drm_i915_private *dev_priv = dev->dev_private;
 363	uint64_t desc[2];
 364
 365	if (rq1) {
 366		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
 367		rq1->elsp_submitted++;
 368	} else {
 369		desc[1] = 0;
 370	}
 371
 372	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
 373	rq0->elsp_submitted++;
 
 
 
 374
 375	/* You must always write both descriptors in the order below. */
 376	spin_lock(&dev_priv->uncore.lock);
 377	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
 378	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
 379	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
 380
 381	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
 382	/* The context is automatically loaded after the following */
 383	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
 
 
 384
 385	/* ELSP is a wo register, use another nearby reg for posting */
 386	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
 387	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
 388	spin_unlock(&dev_priv->uncore.lock);
 389}
 390
 391static int execlists_update_context(struct drm_i915_gem_request *rq)
 
 392{
 393	struct intel_engine_cs *ring = rq->ring;
 394	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
 395	uint32_t *reg_state = rq->ctx->engine[ring->id].lrc_reg_state;
 396
 397	reg_state[CTX_RING_TAIL+1] = rq->tail;
 
 
 
 398
 399	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
 400		/* True 32b PPGTT with dynamic page allocation: update PDP
 401		 * registers and point the unallocated PDPs to scratch page.
 402		 * PML4 is allocated during ppgtt init, so this is not needed
 403		 * in 48-bit mode.
 404		 */
 405		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
 406		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
 407		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
 408		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
 409	}
 410
 411	return 0;
 
 412}
 413
 414static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
 415				      struct drm_i915_gem_request *rq1)
 416{
 417	execlists_update_context(rq0);
 
 
 418
 419	if (rq1)
 420		execlists_update_context(rq1);
 
 
 
 
 421
 422	execlists_elsp_write(rq0, rq1);
 
 
 
 
 
 
 423}
 424
 425static void execlists_context_unqueue(struct intel_engine_cs *ring)
 426{
 427	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
 428	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
 
 
 429
 430	assert_spin_locked(&ring->execlist_lock);
 431
 432	/*
 433	 * If irqs are not active generate a warning as batches that finish
 434	 * without the irqs may get lost and a GPU Hang may occur.
 
 435	 */
 436	WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
 
 437
 438	if (list_empty(&ring->execlist_queue))
 439		return;
 440
 441	/* Try to read in pairs */
 442	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
 443				 execlist_link) {
 444		if (!req0) {
 445			req0 = cursor;
 446		} else if (req0->ctx == cursor->ctx) {
 447			/* Same ctx: ignore first request, as second request
 448			 * will update tail past first request's workload */
 449			cursor->elsp_submitted = req0->elsp_submitted;
 450			list_move_tail(&req0->execlist_link,
 451				       &ring->execlist_retired_req_list);
 452			req0 = cursor;
 453		} else {
 454			req1 = cursor;
 455			break;
 456		}
 457	}
 
 458
 459	if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
 460		/*
 461		 * WaIdleLiteRestore: make sure we never cause a lite
 462		 * restore with HEAD==TAIL
 463		 */
 464		if (req0->elsp_submitted) {
 465			/*
 466			 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
 467			 * as we resubmit the request. See gen8_emit_request()
 468			 * for where we prepare the padding after the end of the
 469			 * request.
 470			 */
 471			struct intel_ringbuffer *ringbuf;
 472
 473			ringbuf = req0->ctx->engine[ring->id].ringbuf;
 474			req0->tail += 8;
 475			req0->tail &= ringbuf->size - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476		}
 
 
 477	}
 478
 479	WARN_ON(req1 && req1->elsp_submitted);
 
 
 480
 481	execlists_submit_requests(req0, req1);
 482}
 483
 484static bool execlists_check_remove_request(struct intel_engine_cs *ring,
 485					   u32 request_id)
 486{
 487	struct drm_i915_gem_request *head_req;
 488
 489	assert_spin_locked(&ring->execlist_lock);
 490
 491	head_req = list_first_entry_or_null(&ring->execlist_queue,
 492					    struct drm_i915_gem_request,
 493					    execlist_link);
 494
 495	if (head_req != NULL) {
 496		if (intel_execlists_ctx_id(head_req->ctx, ring) == request_id) {
 497			WARN(head_req->elsp_submitted == 0,
 498			     "Never submitted head request\n");
 
 499
 500			if (--head_req->elsp_submitted <= 0) {
 501				list_move_tail(&head_req->execlist_link,
 502					       &ring->execlist_retired_req_list);
 503				return true;
 504			}
 505		}
 506	}
 507
 508	return false;
 509}
 510
 511static void get_context_status(struct intel_engine_cs *ring,
 512			       u8 read_pointer,
 513			       u32 *status, u32 *context_id)
 514{
 515	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 516
 517	if (WARN_ON(read_pointer >= GEN8_CSB_ENTRIES))
 518		return;
 519
 520	*status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer));
 521	*context_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer));
 522}
 523
 524/**
 525 * intel_lrc_irq_handler() - handle Context Switch interrupts
 526 * @ring: Engine Command Streamer to handle.
 527 *
 528 * Check the unread Context Status Buffers and manage the submission of new
 529 * contexts to the ELSP accordingly.
 530 */
 531void intel_lrc_irq_handler(struct intel_engine_cs *ring)
 532{
 533	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 534	u32 status_pointer;
 535	u8 read_pointer;
 536	u8 write_pointer;
 537	u32 status = 0;
 538	u32 status_id;
 539	u32 submit_contexts = 0;
 540
 541	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
 
 
 
 
 
 
 542
 543	read_pointer = ring->next_context_status_buffer;
 544	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
 545	if (read_pointer > write_pointer)
 546		write_pointer += GEN8_CSB_ENTRIES;
 547
 548	spin_lock(&ring->execlist_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549
 550	while (read_pointer < write_pointer) {
 
 
 551
 552		get_context_status(ring, ++read_pointer % GEN8_CSB_ENTRIES,
 553				   &status, &status_id);
 
 
 
 
 
 
 
 
 
 
 554
 555		if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
 556			continue;
 
 
 
 
 
 
 
 557
 558		if (status & GEN8_CTX_STATUS_PREEMPTED) {
 559			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
 560				if (execlists_check_remove_request(ring, status_id))
 561					WARN(1, "Lite Restored request removed from queue\n");
 562			} else
 563				WARN(1, "Preemption without Lite Restore\n");
 564		}
 565
 566		if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
 567		    (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
 568			if (execlists_check_remove_request(ring, status_id))
 569				submit_contexts++;
 570		}
 571	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572
 573	if (ring->disable_lite_restore_wa) {
 574		/* Prevent a ctx to preempt itself */
 575		if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
 576		    (submit_contexts != 0))
 577			execlists_context_unqueue(ring);
 578	} else if (submit_contexts != 0) {
 579		execlists_context_unqueue(ring);
 
 
 580	}
 581
 582	spin_unlock(&ring->execlist_lock);
 583
 584	if (unlikely(submit_contexts > 2))
 585		DRM_ERROR("More than two context complete events?\n");
 586
 587	ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
 588
 589	/* Update the read pointer to the old write pointer. Manual ringbuffer
 590	 * management ftw </sarcasm> */
 591	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
 592		   _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
 593				 ring->next_context_status_buffer << 8));
 594}
 595
 596static int execlists_context_queue(struct drm_i915_gem_request *request)
 597{
 598	struct intel_engine_cs *ring = request->ring;
 599	struct drm_i915_gem_request *cursor;
 600	int num_elements = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601
 602	if (request->ctx != request->i915->kernel_context)
 603		intel_lr_context_pin(request->ctx, ring);
 604
 605	i915_gem_request_reference(request);
 
 
 
 
 
 606
 607	spin_lock_irq(&ring->execlist_lock);
 
 
 
 
 
 
 
 
 
 
 608
 609	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
 610		if (++num_elements > 2)
 611			break;
 612
 613	if (num_elements > 2) {
 614		struct drm_i915_gem_request *tail_req;
 615
 616		tail_req = list_last_entry(&ring->execlist_queue,
 617					   struct drm_i915_gem_request,
 618					   execlist_link);
 619
 620		if (request->ctx == tail_req->ctx) {
 621			WARN(tail_req->elsp_submitted != 0,
 622				"More than 2 already-submitted reqs queued\n");
 623			list_move_tail(&tail_req->execlist_link,
 624				       &ring->execlist_retired_req_list);
 625		}
 626	}
 627
 628	list_add_tail(&request->execlist_link, &ring->execlist_queue);
 629	if (num_elements == 0)
 630		execlists_context_unqueue(ring);
 631
 632	spin_unlock_irq(&ring->execlist_lock);
 633
 634	return 0;
 635}
 636
 637static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
 
 638{
 639	struct intel_engine_cs *ring = req->ring;
 640	uint32_t flush_domains;
 641	int ret;
 642
 643	flush_domains = 0;
 644	if (ring->gpu_caches_dirty)
 645		flush_domains = I915_GEM_GPU_DOMAINS;
 646
 647	ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
 648	if (ret)
 649		return ret;
 650
 651	ring->gpu_caches_dirty = false;
 652	return 0;
 653}
 654
 655static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
 656				 struct list_head *vmas)
 657{
 658	const unsigned other_rings = ~intel_ring_flag(req->ring);
 659	struct i915_vma *vma;
 660	uint32_t flush_domains = 0;
 661	bool flush_chipset = false;
 662	int ret;
 663
 664	list_for_each_entry(vma, vmas, exec_list) {
 665		struct drm_i915_gem_object *obj = vma->obj;
 666
 667		if (obj->active & other_rings) {
 668			ret = i915_gem_object_sync(obj, req->ring, &req);
 669			if (ret)
 670				return ret;
 671		}
 672
 673		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
 674			flush_chipset |= i915_gem_clflush_object(obj, false);
 675
 676		flush_domains |= obj->base.write_domain;
 
 677	}
 678
 679	if (flush_domains & I915_GEM_DOMAIN_GTT)
 680		wmb();
 681
 682	/* Unconditionally invalidate gpu caches and ensure that we do flush
 683	 * any residual writes from the previous batch.
 684	 */
 685	return logical_ring_invalidate_all_caches(req);
 686}
 687
 688int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
 689{
 690	int ret = 0;
 
 
 
 691
 692	request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
 693
 694	if (i915.enable_guc_submission) {
 695		/*
 696		 * Check that the GuC has space for the request before
 697		 * going any further, as the i915_add_request() call
 698		 * later on mustn't fail ...
 699		 */
 700		struct intel_guc *guc = &request->i915->guc;
 
 
 
 
 
 
 
 
 701
 702		ret = i915_guc_wq_check_space(guc->execbuf_client);
 703		if (ret)
 704			return ret;
 
 
 
 
 
 
 
 705	}
 706
 707	if (request->ctx != request->i915->kernel_context)
 708		ret = intel_lr_context_pin(request->ctx, request->ring);
 
 
 709
 710	return ret;
 711}
 712
 713static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
 714				       int bytes)
 715{
 716	struct intel_ringbuffer *ringbuf = req->ringbuf;
 717	struct intel_engine_cs *ring = req->ring;
 718	struct drm_i915_gem_request *target;
 719	unsigned space;
 720	int ret;
 721
 722	if (intel_ring_space(ringbuf) >= bytes)
 723		return 0;
 
 
 
 
 724
 725	/* The whole point of reserving space is to not wait! */
 726	WARN_ON(ringbuf->reserved_in_use);
 727
 728	list_for_each_entry(target, &ring->request_list, list) {
 729		/*
 730		 * The request queue is per-engine, so can contain requests
 731		 * from multiple ringbuffers. Here, we must ignore any that
 732		 * aren't from the ringbuffer we're considering.
 733		 */
 734		if (target->ringbuf != ringbuf)
 735			continue;
 736
 737		/* Would completion of this request free enough space? */
 738		space = __intel_ring_space(target->postfix, ringbuf->tail,
 739					   ringbuf->size);
 740		if (space >= bytes)
 741			break;
 742	}
 743
 744	if (WARN_ON(&target->list == &ring->request_list))
 745		return -ENOSPC;
 
 
 
 
 
 746
 747	ret = i915_wait_request(target);
 748	if (ret)
 749		return ret;
 750
 751	ringbuf->space = space;
 752	return 0;
 753}
 754
 755/*
 756 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
 757 * @request: Request to advance the logical ringbuffer of.
 758 *
 759 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 760 * really happens during submission is that the context and current tail will be placed
 761 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 762 * point, the tail *inside* the context is updated and the ELSP written to.
 763 */
 764static int
 765intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
 766{
 767	struct intel_ringbuffer *ringbuf = request->ringbuf;
 768	struct drm_i915_private *dev_priv = request->i915;
 769	struct intel_engine_cs *engine = request->ring;
 
 
 770
 771	intel_logical_ring_advance(ringbuf);
 772	request->tail = ringbuf->tail;
 
 
 
 
 
 
 
 773
 774	/*
 775	 * Here we add two extra NOOPs as padding to avoid
 776	 * lite restore of a context with HEAD==TAIL.
 777	 *
 778	 * Caller must reserve WA_TAIL_DWORDS for us!
 779	 */
 780	intel_logical_ring_emit(ringbuf, MI_NOOP);
 781	intel_logical_ring_emit(ringbuf, MI_NOOP);
 782	intel_logical_ring_advance(ringbuf);
 
 
 
 
 
 
 
 
 783
 784	if (intel_ring_stopped(engine))
 785		return 0;
 
 
 
 
 
 
 
 
 786
 787	if (engine->last_context != request->ctx) {
 788		if (engine->last_context)
 789			intel_lr_context_unpin(engine->last_context, engine);
 790		if (request->ctx != request->i915->kernel_context) {
 791			intel_lr_context_pin(request->ctx, engine);
 792			engine->last_context = request->ctx;
 793		} else {
 794			engine->last_context = NULL;
 
 
 
 
 
 
 795		}
 796	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797
 798	if (dev_priv->guc.execbuf_client)
 799		i915_guc_submit(dev_priv->guc.execbuf_client, request);
 800	else
 801		execlists_context_queue(request);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802
 803	return 0;
 804}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805
 806static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
 807{
 808	uint32_t __iomem *virt;
 809	int rem = ringbuf->size - ringbuf->tail;
 
 
 
 810
 811	virt = ringbuf->virtual_start + ringbuf->tail;
 812	rem /= 4;
 813	while (rem--)
 814		iowrite32(MI_NOOP, virt++);
 
 
 815
 816	ringbuf->tail = 0;
 817	intel_ring_update_space(ringbuf);
 818}
 819
 820static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
 821{
 822	struct intel_ringbuffer *ringbuf = req->ringbuf;
 823	int remain_usable = ringbuf->effective_size - ringbuf->tail;
 824	int remain_actual = ringbuf->size - ringbuf->tail;
 825	int ret, total_bytes, wait_bytes = 0;
 826	bool need_wrap = false;
 827
 828	if (ringbuf->reserved_in_use)
 829		total_bytes = bytes;
 830	else
 831		total_bytes = bytes + ringbuf->reserved_size;
 832
 833	if (unlikely(bytes > remain_usable)) {
 834		/*
 835		 * Not enough space for the basic request. So need to flush
 836		 * out the remainder and then wait for base + reserved.
 837		 */
 838		wait_bytes = remain_actual + total_bytes;
 839		need_wrap = true;
 840	} else {
 841		if (unlikely(total_bytes > remain_usable)) {
 842			/*
 843			 * The base request will fit but the reserved space
 844			 * falls off the end. So don't need an immediate wrap
 845			 * and only need to effectively wait for the reserved
 846			 * size space from the start of ringbuffer.
 847			 */
 848			wait_bytes = remain_actual + ringbuf->reserved_size;
 849		} else if (total_bytes > ringbuf->space) {
 850			/* No wrapping required, just waiting. */
 851			wait_bytes = total_bytes;
 852		}
 853	}
 854
 855	if (wait_bytes) {
 856		ret = logical_ring_wait_for_space(req, wait_bytes);
 857		if (unlikely(ret))
 858			return ret;
 
 
 859
 860		if (need_wrap)
 861			__wrap_ring_buffer(ringbuf);
 
 
 
 862	}
 863
 864	return 0;
 865}
 866
 867/**
 868 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 869 *
 870 * @req: The request to start some new work for
 871 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 872 *
 873 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 874 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 875 * and also preallocates a request (every workload submission is still mediated through
 876 * requests, same as it did with legacy ringbuffer submission).
 877 *
 878 * Return: non-zero if the ringbuffer is not ready to be written to.
 879 */
 880int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
 881{
 882	struct drm_i915_private *dev_priv;
 883	int ret;
 884
 885	WARN_ON(req == NULL);
 886	dev_priv = req->ring->dev->dev_private;
 887
 888	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
 889				   dev_priv->mm.interruptible);
 890	if (ret)
 891		return ret;
 892
 893	ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
 894	if (ret)
 895		return ret;
 896
 897	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
 898	return 0;
 899}
 900
 901int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
 902{
 903	/*
 904	 * The first call merely notes the reserve request and is common for
 905	 * all back ends. The subsequent localised _begin() call actually
 906	 * ensures that the reservation is available. Without the begin, if
 907	 * the request creator immediately submitted the request without
 908	 * adding any commands to it then there might not actually be
 909	 * sufficient room for the submission commands.
 910	 */
 911	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
 912
 913	return intel_logical_ring_begin(request, 0);
 914}
 915
 916/**
 917 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 918 * @dev: DRM device.
 919 * @file: DRM file.
 920 * @ring: Engine Command Streamer to submit to.
 921 * @ctx: Context to employ for this submission.
 922 * @args: execbuffer call arguments.
 923 * @vmas: list of vmas.
 924 * @batch_obj: the batchbuffer to submit.
 925 * @exec_start: batchbuffer start virtual address pointer.
 926 * @dispatch_flags: translated execbuffer call flags.
 927 *
 928 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 929 * away the submission details of the execbuffer ioctl call.
 930 *
 931 * Return: non-zero if the submission fails.
 932 */
 933int intel_execlists_submission(struct i915_execbuffer_params *params,
 934			       struct drm_i915_gem_execbuffer2 *args,
 935			       struct list_head *vmas)
 936{
 937	struct drm_device       *dev = params->dev;
 938	struct intel_engine_cs  *ring = params->ring;
 939	struct drm_i915_private *dev_priv = dev->dev_private;
 940	struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
 941	u64 exec_start;
 942	int instp_mode;
 943	u32 instp_mask;
 944	int ret;
 945
 946	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
 947	instp_mask = I915_EXEC_CONSTANTS_MASK;
 948	switch (instp_mode) {
 949	case I915_EXEC_CONSTANTS_REL_GENERAL:
 950	case I915_EXEC_CONSTANTS_ABSOLUTE:
 951	case I915_EXEC_CONSTANTS_REL_SURFACE:
 952		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
 953			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
 954			return -EINVAL;
 955		}
 956
 957		if (instp_mode != dev_priv->relative_constants_mode) {
 958			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
 959				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
 960				return -EINVAL;
 961			}
 962
 963			/* The HW changed the meaning on this bit on gen6 */
 964			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
 965		}
 966		break;
 967	default:
 968		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
 969		return -EINVAL;
 970	}
 971
 972	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
 973		DRM_DEBUG("sol reset is gen7 only\n");
 974		return -EINVAL;
 975	}
 976
 977	ret = execlists_move_to_gpu(params->request, vmas);
 978	if (ret)
 979		return ret;
 980
 981	if (ring == &dev_priv->ring[RCS] &&
 982	    instp_mode != dev_priv->relative_constants_mode) {
 983		ret = intel_logical_ring_begin(params->request, 4);
 984		if (ret)
 985			return ret;
 
 986
 987		intel_logical_ring_emit(ringbuf, MI_NOOP);
 988		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
 989		intel_logical_ring_emit_reg(ringbuf, INSTPM);
 990		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
 991		intel_logical_ring_advance(ringbuf);
 992
 993		dev_priv->relative_constants_mode = instp_mode;
 994	}
 995
 996	exec_start = params->batch_obj_vm_offset +
 997		     args->batch_start_offset;
 998
 999	ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1000	if (ret)
1001		return ret;
1002
1003	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
 
1004
1005	i915_gem_execbuffer_move_to_active(vmas, params->request);
1006	i915_gem_execbuffer_retire_commands(params);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007
1008	return 0;
1009}
 
 
 
 
 
 
1010
1011void intel_execlists_retire_requests(struct intel_engine_cs *ring)
1012{
1013	struct drm_i915_gem_request *req, *tmp;
1014	struct list_head retired_list;
1015
1016	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1017	if (list_empty(&ring->execlist_retired_req_list))
1018		return;
 
 
1019
1020	INIT_LIST_HEAD(&retired_list);
1021	spin_lock_irq(&ring->execlist_lock);
1022	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
1023	spin_unlock_irq(&ring->execlist_lock);
 
 
 
 
 
 
 
 
 
1024
1025	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1026		struct intel_context *ctx = req->ctx;
1027		struct drm_i915_gem_object *ctx_obj =
1028				ctx->engine[ring->id].state;
1029
1030		if (ctx_obj && (ctx != req->i915->kernel_context))
1031			intel_lr_context_unpin(ctx, ring);
 
1032
1033		list_del(&req->execlist_link);
1034		i915_gem_request_unreference(req);
1035	}
1036}
1037
1038void intel_logical_ring_stop(struct intel_engine_cs *ring)
1039{
1040	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1041	int ret;
1042
1043	if (!intel_ring_initialized(ring))
1044		return;
1045
1046	ret = intel_ring_idle(ring);
1047	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
1048		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1049			  ring->name, ret);
1050
1051	/* TODO: Is this correct with Execlists enabled? */
1052	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1053	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1054		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1055		return;
1056	}
1057	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
 
1058}
1059
1060int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1061{
1062	struct intel_engine_cs *ring = req->ring;
1063	int ret;
1064
1065	if (!ring->gpu_caches_dirty)
1066		return 0;
 
 
 
 
 
 
 
 
1067
1068	ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1069	if (ret)
1070		return ret;
1071
1072	ring->gpu_caches_dirty = false;
1073	return 0;
1074}
1075
1076static int intel_lr_context_do_pin(struct intel_context *ctx,
1077				   struct intel_engine_cs *ring)
 
1078{
1079	struct drm_device *dev = ring->dev;
1080	struct drm_i915_private *dev_priv = dev->dev_private;
1081	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1082	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1083	struct page *lrc_state_page;
1084	uint32_t *lrc_reg_state;
1085	int ret;
1086
1087	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
 
 
 
 
 
 
 
 
 
1088
1089	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1090			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1091	if (ret)
1092		return ret;
1093
1094	lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
1095	if (WARN_ON(!lrc_state_page)) {
1096		ret = -ENODEV;
1097		goto unpin_ctx_obj;
1098	}
1099
1100	ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1101	if (ret)
1102		goto unpin_ctx_obj;
1103
1104	ctx->engine[ring->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1105	intel_lr_context_descriptor_update(ctx, ring);
1106	lrc_reg_state = kmap(lrc_state_page);
1107	lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1108	ctx->engine[ring->id].lrc_reg_state = lrc_reg_state;
1109	ctx_obj->dirty = true;
1110
1111	/* Invalidate GuC TLB. */
1112	if (i915.enable_guc_submission)
1113		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1114
1115	return ret;
 
 
1116
1117unpin_ctx_obj:
1118	i915_gem_object_ggtt_unpin(ctx_obj);
 
 
1119
1120	return ret;
 
 
 
 
 
 
1121}
1122
1123static int intel_lr_context_pin(struct intel_context *ctx,
1124				struct intel_engine_cs *engine)
1125{
1126	int ret = 0;
1127
1128	if (ctx->engine[engine->id].pin_count++ == 0) {
1129		ret = intel_lr_context_do_pin(ctx, engine);
1130		if (ret)
1131			goto reset_pin_count;
1132
1133		i915_gem_context_reference(ctx);
1134	}
1135	return ret;
1136
1137reset_pin_count:
1138	ctx->engine[engine->id].pin_count = 0;
1139	return ret;
1140}
1141
1142void intel_lr_context_unpin(struct intel_context *ctx,
1143			    struct intel_engine_cs *engine)
1144{
1145	struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1146
1147	WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1148	if (--ctx->engine[engine->id].pin_count == 0) {
1149		kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
1150		intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1151		i915_gem_object_ggtt_unpin(ctx_obj);
1152		ctx->engine[engine->id].lrc_vma = NULL;
1153		ctx->engine[engine->id].lrc_desc = 0;
1154		ctx->engine[engine->id].lrc_reg_state = NULL;
1155
1156		i915_gem_context_unreference(ctx);
1157	}
1158}
1159
1160static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1161{
1162	int ret, i;
1163	struct intel_engine_cs *ring = req->ring;
1164	struct intel_ringbuffer *ringbuf = req->ringbuf;
1165	struct drm_device *dev = ring->dev;
1166	struct drm_i915_private *dev_priv = dev->dev_private;
1167	struct i915_workarounds *w = &dev_priv->workarounds;
1168
1169	if (w->count == 0)
1170		return 0;
1171
1172	ring->gpu_caches_dirty = true;
1173	ret = logical_ring_flush_all_caches(req);
1174	if (ret)
1175		return ret;
 
1176
1177	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1178	if (ret)
1179		return ret;
1180
1181	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1182	for (i = 0; i < w->count; i++) {
1183		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1184		intel_logical_ring_emit(ringbuf, w->reg[i].value);
1185	}
1186	intel_logical_ring_emit(ringbuf, MI_NOOP);
1187
1188	intel_logical_ring_advance(ringbuf);
1189
1190	ring->gpu_caches_dirty = true;
1191	ret = logical_ring_flush_all_caches(req);
1192	if (ret)
1193		return ret;
1194
 
1195	return 0;
1196}
1197
1198#define wa_ctx_emit(batch, index, cmd)					\
1199	do {								\
1200		int __index = (index)++;				\
1201		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1202			return -ENOSPC;					\
1203		}							\
1204		batch[__index] = (cmd);					\
1205	} while (0)
1206
1207#define wa_ctx_emit_reg(batch, index, reg) \
1208	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1209
1210/*
1211 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1212 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1213 * but there is a slight complication as this is applied in WA batch where the
1214 * values are only initialized once so we cannot take register value at the
1215 * beginning and reuse it further; hence we save its value to memory, upload a
1216 * constant value with bit21 set and then we restore it back with the saved value.
1217 * To simplify the WA, a constant value is formed by using the default value
1218 * of this register. This shouldn't be a problem because we are only modifying
1219 * it for a short period and this batch in non-premptible. We can ofcourse
1220 * use additional instructions that read the actual value of the register
1221 * at that time and set our bit of interest but it makes the WA complicated.
1222 *
1223 * This WA is also required for Gen9 so extracting as a function avoids
1224 * code duplication.
1225 */
1226static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1227						uint32_t *const batch,
1228						uint32_t index)
1229{
1230	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1231
1232	/*
1233	 * WaDisableLSQCROPERFforOCL:skl
1234	 * This WA is implemented in skl_init_clock_gating() but since
1235	 * this batch updates GEN8_L3SQCREG4 with default value we need to
1236	 * set this bit here to retain the WA during flush.
1237	 */
1238	if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1239		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1240
1241	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1242				   MI_SRM_LRM_GLOBAL_GTT));
1243	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1244	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1245	wa_ctx_emit(batch, index, 0);
1246
1247	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1248	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1249	wa_ctx_emit(batch, index, l3sqc4_flush);
1250
1251	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1252	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1253				   PIPE_CONTROL_DC_FLUSH_ENABLE));
1254	wa_ctx_emit(batch, index, 0);
1255	wa_ctx_emit(batch, index, 0);
1256	wa_ctx_emit(batch, index, 0);
1257	wa_ctx_emit(batch, index, 0);
1258
1259	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1260				   MI_SRM_LRM_GLOBAL_GTT));
1261	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1262	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1263	wa_ctx_emit(batch, index, 0);
1264
1265	return index;
1266}
1267
1268static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1269				    uint32_t offset,
1270				    uint32_t start_alignment)
1271{
1272	return wa_ctx->offset = ALIGN(offset, start_alignment);
1273}
1274
1275static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1276			     uint32_t offset,
1277			     uint32_t size_alignment)
1278{
1279	wa_ctx->size = offset - wa_ctx->offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280
1281	WARN(wa_ctx->size % size_alignment,
1282	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1283	     wa_ctx->size, size_alignment);
1284	return 0;
1285}
1286
1287/**
1288 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1289 *
1290 * @ring: only applicable for RCS
1291 * @wa_ctx: structure representing wa_ctx
1292 *  offset: specifies start of the batch, should be cache-aligned. This is updated
1293 *    with the offset value received as input.
1294 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1295 * @batch: page in which WA are loaded
1296 * @offset: This field specifies the start of the batch, it should be
1297 *  cache-aligned otherwise it is adjusted accordingly.
1298 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1299 *  initialized at the beginning and shared across all contexts but this field
1300 *  helps us to have multiple batches at different offsets and select them based
1301 *  on a criteria. At the moment this batch always start at the beginning of the page
1302 *  and at this point we don't have multiple wa_ctx batch buffers.
1303 *
1304 *  The number of WA applied are not known at the beginning; we use this field
1305 *  to return the no of DWORDS written.
1306 *
1307 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1308 *  so it adds NOOPs as padding to make it cacheline aligned.
1309 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1310 *  makes a complete batch buffer.
1311 *
1312 * Return: non-zero if we exceed the PAGE_SIZE limit.
1313 */
1314
1315static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1316				    struct i915_wa_ctx_bb *wa_ctx,
1317				    uint32_t *const batch,
1318				    uint32_t *offset)
1319{
1320	uint32_t scratch_addr;
1321	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1322
1323	/* WaDisableCtxRestoreArbitration:bdw,chv */
1324	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1325
1326	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1327	if (IS_BROADWELL(ring->dev)) {
1328		int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1329		if (rc < 0)
1330			return rc;
1331		index = rc;
1332	}
1333
1334	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1335	/* Actual scratch location is at 128 bytes offset */
1336	scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
 
 
 
 
 
 
1337
1338	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1339	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1340				   PIPE_CONTROL_GLOBAL_GTT_IVB |
1341				   PIPE_CONTROL_CS_STALL |
1342				   PIPE_CONTROL_QW_WRITE));
1343	wa_ctx_emit(batch, index, scratch_addr);
1344	wa_ctx_emit(batch, index, 0);
1345	wa_ctx_emit(batch, index, 0);
1346	wa_ctx_emit(batch, index, 0);
1347
1348	/* Pad to end of cacheline */
1349	while (index % CACHELINE_DWORDS)
1350		wa_ctx_emit(batch, index, MI_NOOP);
1351
1352	/*
1353	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1354	 * execution depends on the length specified in terms of cache lines
1355	 * in the register CTX_RCS_INDIRECT_CTX
1356	 */
1357
1358	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1359}
1360
1361/**
1362 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1363 *
1364 * @ring: only applicable for RCS
1365 * @wa_ctx: structure representing wa_ctx
1366 *  offset: specifies start of the batch, should be cache-aligned.
1367 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1368 * @batch: page in which WA are loaded
1369 * @offset: This field specifies the start of this batch.
1370 *   This batch is started immediately after indirect_ctx batch. Since we ensure
1371 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1372 *
1373 *   The number of DWORDS written are returned using this field.
1374 *
1375 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1376 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1377 */
1378static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1379			       struct i915_wa_ctx_bb *wa_ctx,
1380			       uint32_t *const batch,
1381			       uint32_t *offset)
1382{
1383	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1384
1385	/* WaDisableCtxRestoreArbitration:bdw,chv */
1386	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1387
1388	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
 
 
 
 
 
1389
1390	return wa_ctx_end(wa_ctx, *offset = index, 1);
1391}
 
 
 
 
 
 
 
 
 
1392
1393static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1394				    struct i915_wa_ctx_bb *wa_ctx,
1395				    uint32_t *const batch,
1396				    uint32_t *offset)
1397{
1398	int ret;
1399	struct drm_device *dev = ring->dev;
1400	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1401
1402	/* WaDisableCtxRestoreArbitration:skl,bxt */
1403	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1404	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1405		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1406
1407	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1408	ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1409	if (ret < 0)
1410		return ret;
1411	index = ret;
1412
1413	/* Pad to end of cacheline */
1414	while (index % CACHELINE_DWORDS)
1415		wa_ctx_emit(batch, index, MI_NOOP);
1416
1417	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1418}
1419
1420static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1421			       struct i915_wa_ctx_bb *wa_ctx,
1422			       uint32_t *const batch,
1423			       uint32_t *offset)
1424{
1425	struct drm_device *dev = ring->dev;
1426	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1427
1428	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1429	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1430	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1431		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1432		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1433		wa_ctx_emit(batch, index,
1434			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1435		wa_ctx_emit(batch, index, MI_NOOP);
1436	}
1437
1438	/* WaDisableCtxRestoreArbitration:skl,bxt */
1439	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1440	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1441		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442
1443	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
 
 
1444
1445	return wa_ctx_end(wa_ctx, *offset = index, 1);
1446}
1447
1448static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
 
 
1449{
1450	int ret;
 
 
1451
1452	ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1453	if (!ring->wa_ctx.obj) {
1454		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1455		return -ENOMEM;
1456	}
1457
1458	ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1459	if (ret) {
1460		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1461				 ret);
1462		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1463		return ret;
1464	}
1465
 
 
 
 
 
1466	return 0;
 
 
 
 
1467}
1468
1469static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1470{
1471	if (ring->wa_ctx.obj) {
1472		i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1473		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1474		ring->wa_ctx.obj = NULL;
1475	}
1476}
1477
1478static int intel_init_workaround_bb(struct intel_engine_cs *ring)
 
 
1479{
1480	int ret;
1481	uint32_t *batch;
1482	uint32_t offset;
 
1483	struct page *page;
1484	struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
 
 
1485
1486	WARN_ON(ring->id != RCS);
 
1487
1488	/* update this when WA for higher Gen are added */
1489	if (INTEL_INFO(ring->dev)->gen > 9) {
1490		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1491			  INTEL_INFO(ring->dev)->gen);
 
 
 
 
 
 
 
 
 
 
 
1492		return 0;
1493	}
1494
1495	/* some WA perform writes to scratch page, ensure it is valid */
1496	if (ring->scratch.obj == NULL) {
1497		DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1498		return -EINVAL;
1499	}
1500
1501	ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1502	if (ret) {
1503		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1504		return ret;
1505	}
1506
1507	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1508	batch = kmap_atomic(page);
1509	offset = 0;
1510
1511	if (INTEL_INFO(ring->dev)->gen == 8) {
1512		ret = gen8_init_indirectctx_bb(ring,
1513					       &wa_ctx->indirect_ctx,
1514					       batch,
1515					       &offset);
1516		if (ret)
1517			goto out;
1518
1519		ret = gen8_init_perctx_bb(ring,
1520					  &wa_ctx->per_ctx,
1521					  batch,
1522					  &offset);
1523		if (ret)
1524			goto out;
1525	} else if (INTEL_INFO(ring->dev)->gen == 9) {
1526		ret = gen9_init_indirectctx_bb(ring,
1527					       &wa_ctx->indirect_ctx,
1528					       batch,
1529					       &offset);
1530		if (ret)
1531			goto out;
1532
1533		ret = gen9_init_perctx_bb(ring,
1534					  &wa_ctx->per_ctx,
1535					  batch,
1536					  &offset);
1537		if (ret)
1538			goto out;
 
 
 
 
 
 
 
 
 
1539	}
1540
1541out:
 
1542	kunmap_atomic(batch);
1543	if (ret)
1544		lrc_destroy_wa_ctx_obj(ring);
1545
1546	return ret;
1547}
1548
1549static int gen8_init_common_ring(struct intel_engine_cs *ring)
1550{
1551	struct drm_device *dev = ring->dev;
1552	struct drm_i915_private *dev_priv = dev->dev_private;
1553	u8 next_context_status_buffer_hw;
1554
1555	lrc_setup_hardware_status_page(ring,
1556				dev_priv->kernel_context->engine[ring->id].state);
1557
1558	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1559	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
 
1560
1561	I915_WRITE(RING_MODE_GEN7(ring),
1562		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1563		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1564	POSTING_READ(RING_MODE_GEN7(ring));
1565
1566	/*
1567	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1568	 * zero, we need to read the write pointer from hardware and use its
1569	 * value because "this register is power context save restored".
1570	 * Effectively, these states have been observed:
1571	 *
1572	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1573	 * BDW  | CSB regs not reset       | CSB regs reset       |
1574	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1575	 * SKL  |         ?                |         ?            |
1576	 * BXT  |         ?                |         ?            |
1577	 */
1578	next_context_status_buffer_hw =
1579		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
 
 
 
 
1580
1581	/*
1582	 * When the CSB registers are reset (also after power-up / gpu reset),
1583	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1584	 * this special case, so the first element read is CSB[0].
1585	 */
1586	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1587		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1588
1589	ring->next_context_status_buffer = next_context_status_buffer_hw;
1590	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
 
 
 
 
 
 
 
 
 
1591
1592	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
 
 
 
 
1593
1594	return 0;
1595}
1596
1597static int gen8_init_render_ring(struct intel_engine_cs *ring)
1598{
1599	struct drm_device *dev = ring->dev;
1600	struct drm_i915_private *dev_priv = dev->dev_private;
1601	int ret;
1602
1603	ret = gen8_init_common_ring(ring);
1604	if (ret)
1605		return ret;
1606
1607	/* We need to disable the AsyncFlip performance optimisations in order
1608	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1609	 * programmed to '1' on all products.
1610	 *
1611	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1612	 */
1613	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1614
1615	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1616
1617	return init_workarounds_ring(ring);
1618}
1619
1620static int gen9_init_render_ring(struct intel_engine_cs *ring)
1621{
1622	int ret;
1623
1624	ret = gen8_init_common_ring(ring);
1625	if (ret)
1626		return ret;
1627
1628	return init_workarounds_ring(ring);
1629}
1630
1631static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1632{
1633	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1634	struct intel_engine_cs *ring = req->ring;
1635	struct intel_ringbuffer *ringbuf = req->ringbuf;
1636	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1637	int i, ret;
1638
1639	ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1640	if (ret)
1641		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1642
1643	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1644	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1645		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1646
1647		intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1648		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1649		intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1650		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1651	}
1652
1653	intel_logical_ring_emit(ringbuf, MI_NOOP);
1654	intel_logical_ring_advance(ringbuf);
1655
1656	return 0;
1657}
1658
1659static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1660			      u64 offset, unsigned dispatch_flags)
 
1661{
1662	struct intel_ringbuffer *ringbuf = req->ringbuf;
1663	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1664	int ret;
1665
1666	/* Don't rely in hw updating PDPs, specially in lite-restore.
1667	 * Ideally, we should set Force PD Restore in ctx descriptor,
1668	 * but we can't. Force Restore would be a second option, but
1669	 * it is unsafe in case of lite-restore (because the ctx is
1670	 * not idle). PML4 is allocated during ppgtt init so this is
1671	 * not needed in 48-bit.*/
1672	if (req->ctx->ppgtt &&
1673	    (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1674		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1675		    !intel_vgpu_active(req->i915->dev)) {
1676			ret = intel_logical_ring_emit_pdps(req);
1677			if (ret)
1678				return ret;
1679		}
1680
1681		req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1682	}
1683
1684	ret = intel_logical_ring_begin(req, 4);
1685	if (ret)
1686		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1687
1688	/* FIXME(BDW): Address space and security selectors. */
1689	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1690				(ppgtt<<8) |
1691				(dispatch_flags & I915_DISPATCH_RS ?
1692				 MI_BATCH_RESOURCE_STREAMER : 0));
1693	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1694	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1695	intel_logical_ring_emit(ringbuf, MI_NOOP);
1696	intel_logical_ring_advance(ringbuf);
1697
1698	return 0;
1699}
1700
1701static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1702{
1703	struct drm_device *dev = ring->dev;
1704	struct drm_i915_private *dev_priv = dev->dev_private;
1705	unsigned long flags;
1706
1707	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1708		return false;
1709
1710	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1711	if (ring->irq_refcount++ == 0) {
1712		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1713		POSTING_READ(RING_IMR(ring->mmio_base));
1714	}
1715	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1716
1717	return true;
1718}
1719
1720static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1721{
1722	struct drm_device *dev = ring->dev;
1723	struct drm_i915_private *dev_priv = dev->dev_private;
1724	unsigned long flags;
1725
1726	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1727	if (--ring->irq_refcount == 0) {
1728		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1729		POSTING_READ(RING_IMR(ring->mmio_base));
1730	}
1731	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1732}
1733
1734static int gen8_emit_flush(struct drm_i915_gem_request *request,
1735			   u32 invalidate_domains,
1736			   u32 unused)
1737{
1738	struct intel_ringbuffer *ringbuf = request->ringbuf;
1739	struct intel_engine_cs *ring = ringbuf->ring;
1740	struct drm_device *dev = ring->dev;
1741	struct drm_i915_private *dev_priv = dev->dev_private;
1742	uint32_t cmd;
1743	int ret;
1744
1745	ret = intel_logical_ring_begin(request, 4);
1746	if (ret)
1747		return ret;
1748
1749	cmd = MI_FLUSH_DW + 1;
1750
1751	/* We always require a command barrier so that subsequent
1752	 * commands, such as breadcrumb interrupts, are strictly ordered
1753	 * wrt the contents of the write cache being flushed to memory
1754	 * (and thus being coherent from the CPU).
1755	 */
1756	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1757
1758	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1759		cmd |= MI_INVALIDATE_TLB;
1760		if (ring == &dev_priv->ring[VCS])
1761			cmd |= MI_INVALIDATE_BSD;
1762	}
1763
1764	intel_logical_ring_emit(ringbuf, cmd);
1765	intel_logical_ring_emit(ringbuf,
1766				I915_GEM_HWS_SCRATCH_ADDR |
1767				MI_FLUSH_DW_USE_GTT);
1768	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1769	intel_logical_ring_emit(ringbuf, 0); /* value */
1770	intel_logical_ring_advance(ringbuf);
1771
1772	return 0;
1773}
1774
1775static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1776				  u32 invalidate_domains,
1777				  u32 flush_domains)
1778{
1779	struct intel_ringbuffer *ringbuf = request->ringbuf;
1780	struct intel_engine_cs *ring = ringbuf->ring;
1781	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1782	bool vf_flush_wa = false;
1783	u32 flags = 0;
1784	int ret;
1785
1786	flags |= PIPE_CONTROL_CS_STALL;
1787
1788	if (flush_domains) {
1789		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1790		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1791		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1792		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1793	}
1794
1795	if (invalidate_domains) {
1796		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1797		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1798		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1799		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1800		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1801		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1802		flags |= PIPE_CONTROL_QW_WRITE;
1803		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1804
1805		/*
1806		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1807		 * pipe control.
1808		 */
1809		if (IS_GEN9(ring->dev))
1810			vf_flush_wa = true;
1811	}
1812
1813	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1814	if (ret)
1815		return ret;
 
1816
1817	if (vf_flush_wa) {
1818		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1819		intel_logical_ring_emit(ringbuf, 0);
1820		intel_logical_ring_emit(ringbuf, 0);
1821		intel_logical_ring_emit(ringbuf, 0);
1822		intel_logical_ring_emit(ringbuf, 0);
1823		intel_logical_ring_emit(ringbuf, 0);
1824	}
1825
1826	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1827	intel_logical_ring_emit(ringbuf, flags);
1828	intel_logical_ring_emit(ringbuf, scratch_addr);
1829	intel_logical_ring_emit(ringbuf, 0);
1830	intel_logical_ring_emit(ringbuf, 0);
1831	intel_logical_ring_emit(ringbuf, 0);
1832	intel_logical_ring_advance(ringbuf);
1833
1834	return 0;
1835}
1836
1837static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1838{
1839	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1840}
1841
1842static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1843{
1844	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1845}
1846
1847static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1848{
1849
1850	/*
1851	 * On BXT A steppings there is a HW coherency issue whereby the
1852	 * MI_STORE_DATA_IMM storing the completed request's seqno
1853	 * occasionally doesn't invalidate the CPU cache. Work around this by
1854	 * clflushing the corresponding cacheline whenever the caller wants
1855	 * the coherency to be guaranteed. Note that this cacheline is known
1856	 * to be clean at this point, since we only write it in
1857	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1858	 * this clflush in practice becomes an invalidate operation.
1859	 */
1860
1861	if (!lazy_coherency)
1862		intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1863
1864	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1865}
1866
1867static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1868{
1869	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1870
1871	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1872	intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1873}
1874
1875/*
1876 * Reserve space for 2 NOOPs at the end of each request to be
1877 * used as a workaround for not being allowed to do lite
1878 * restore with HEAD==TAIL (WaIdleLiteRestore).
1879 */
1880#define WA_TAIL_DWORDS 2
1881
1882static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1883{
1884	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
 
 
 
1885}
1886
1887static int gen8_emit_request(struct drm_i915_gem_request *request)
1888{
1889	struct intel_ringbuffer *ringbuf = request->ringbuf;
1890	int ret;
1891
1892	ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1893	if (ret)
1894		return ret;
1895
1896	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1897	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1898
1899	intel_logical_ring_emit(ringbuf,
1900				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1901	intel_logical_ring_emit(ringbuf,
1902				hws_seqno_address(request->ring) |
1903				MI_FLUSH_DW_USE_GTT);
1904	intel_logical_ring_emit(ringbuf, 0);
1905	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1906	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1907	intel_logical_ring_emit(ringbuf, MI_NOOP);
1908	return intel_logical_ring_advance_and_submit(request);
1909}
 
1910
1911static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1912{
1913	struct intel_ringbuffer *ringbuf = request->ringbuf;
1914	int ret;
1915
1916	ret = intel_logical_ring_begin(request, 8 + WA_TAIL_DWORDS);
1917	if (ret)
1918		return ret;
1919
1920	/* We're using qword write, seqno should be aligned to 8 bytes. */
1921	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1922
1923	/* w/a for post sync ops following a GPGPU operation we
1924	 * need a prior CS_STALL, which is emitted by the flush
1925	 * following the batch.
1926	 */
1927	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1928	intel_logical_ring_emit(ringbuf,
1929				(PIPE_CONTROL_GLOBAL_GTT_IVB |
1930				 PIPE_CONTROL_CS_STALL |
1931				 PIPE_CONTROL_QW_WRITE));
1932	intel_logical_ring_emit(ringbuf, hws_seqno_address(request->ring));
1933	intel_logical_ring_emit(ringbuf, 0);
1934	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1935	/* We're thrashing one dword of HWS. */
1936	intel_logical_ring_emit(ringbuf, 0);
1937	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1938	intel_logical_ring_emit(ringbuf, MI_NOOP);
1939	return intel_logical_ring_advance_and_submit(request);
1940}
1941
1942static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1943{
1944	struct render_state so;
1945	int ret;
1946
1947	ret = i915_gem_render_state_prepare(req->ring, &so);
1948	if (ret)
1949		return ret;
1950
1951	if (so.rodata == NULL)
1952		return 0;
1953
1954	ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1955				       I915_DISPATCH_SECURE);
1956	if (ret)
1957		goto out;
1958
1959	ret = req->ring->emit_bb_start(req,
1960				       (so.ggtt_offset + so.aux_batch_offset),
1961				       I915_DISPATCH_SECURE);
1962	if (ret)
1963		goto out;
1964
1965	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1966
1967out:
1968	i915_gem_render_state_fini(&so);
1969	return ret;
1970}
 
1971
1972static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1973{
1974	int ret;
1975
1976	ret = intel_logical_ring_workarounds_emit(req);
1977	if (ret)
1978		return ret;
1979
1980	ret = intel_rcs_context_init_mocs(req);
1981	/*
1982	 * Failing to program the MOCS is non-fatal.The system will not
1983	 * run at peak performance. So generate an error and carry on.
1984	 */
1985	if (ret)
1986		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1987
1988	return intel_lr_context_render_state_init(req);
1989}
1990
1991/**
1992 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1993 *
1994 * @ring: Engine Command Streamer.
1995 *
1996 */
1997void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1998{
1999	struct drm_i915_private *dev_priv;
2000
2001	if (!intel_ring_initialized(ring))
2002		return;
 
 
 
 
 
2003
2004	dev_priv = ring->dev->dev_private;
2005
2006	if (ring->buffer) {
2007		intel_logical_ring_stop(ring);
2008		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
2009	}
2010
2011	if (ring->cleanup)
2012		ring->cleanup(ring);
2013
2014	i915_cmd_parser_fini_ring(ring);
2015	i915_gem_batch_pool_fini(&ring->batch_pool);
2016
2017	if (ring->status_page.obj) {
2018		kunmap(sg_page(ring->status_page.obj->pages->sgl));
2019		ring->status_page.obj = NULL;
2020	}
 
 
 
 
 
 
 
 
 
2021
2022	ring->disable_lite_restore_wa = false;
2023	ring->ctx_desc_template = 0;
2024
2025	lrc_destroy_wa_ctx_obj(ring);
2026	ring->dev = NULL;
 
 
 
 
 
2027}
2028
2029static void
2030logical_ring_default_vfuncs(struct drm_device *dev,
2031			    struct intel_engine_cs *ring)
2032{
2033	/* Default vfuncs which can be overriden by each engine. */
2034	ring->init_hw = gen8_init_common_ring;
2035	ring->emit_request = gen8_emit_request;
2036	ring->emit_flush = gen8_emit_flush;
2037	ring->irq_get = gen8_logical_ring_get_irq;
2038	ring->irq_put = gen8_logical_ring_put_irq;
2039	ring->emit_bb_start = gen8_emit_bb_start;
2040	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2041		ring->get_seqno = bxt_a_get_seqno;
2042		ring->set_seqno = bxt_a_set_seqno;
 
 
 
 
 
 
 
 
2043	} else {
2044		ring->get_seqno = gen8_get_seqno;
2045		ring->set_seqno = gen8_set_seqno;
 
 
 
 
2046	}
 
2047}
2048
2049static inline void
2050logical_ring_default_irqs(struct intel_engine_cs *ring, unsigned shift)
2051{
2052	ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2053	ring->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
 
2054}
2055
2056static int
2057logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
2058{
2059	struct intel_context *dctx = to_i915(dev)->kernel_context;
2060	int ret;
 
 
2061
2062	/* Intentionally left blank. */
2063	ring->buffer = NULL;
2064
2065	ring->dev = dev;
2066	INIT_LIST_HEAD(&ring->active_list);
2067	INIT_LIST_HEAD(&ring->request_list);
2068	i915_gem_batch_pool_init(dev, &ring->batch_pool);
2069	init_waitqueue_head(&ring->irq_queue);
2070
2071	INIT_LIST_HEAD(&ring->buffers);
2072	INIT_LIST_HEAD(&ring->execlist_queue);
2073	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
2074	spin_lock_init(&ring->execlist_lock);
2075
2076	logical_ring_init_platform_invariants(ring);
 
 
2077
2078	ret = i915_cmd_parser_init_ring(ring);
2079	if (ret)
2080		goto error;
2081
2082	ret = intel_lr_context_deferred_alloc(dctx, ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
2083	if (ret)
2084		goto error;
2085
2086	/* As this is the default context, always pin it */
2087	ret = intel_lr_context_do_pin(dctx, ring);
2088	if (ret) {
2089		DRM_ERROR(
2090			"Failed to pin and map ringbuffer %s: %d\n",
2091			ring->name, ret);
2092		goto error;
 
2093	}
2094
 
 
 
 
 
2095	return 0;
2096
2097error:
2098	intel_logical_ring_cleanup(ring);
2099	return ret;
2100}
2101
2102static int logical_render_ring_init(struct drm_device *dev)
2103{
2104	struct drm_i915_private *dev_priv = dev->dev_private;
2105	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2106	int ret;
2107
2108	ring->name = "render ring";
2109	ring->id = RCS;
2110	ring->exec_id = I915_EXEC_RENDER;
2111	ring->guc_id = GUC_RENDER_ENGINE;
2112	ring->mmio_base = RENDER_RING_BASE;
2113
2114	logical_ring_default_irqs(ring, GEN8_RCS_IRQ_SHIFT);
2115	if (HAS_L3_DPF(dev))
2116		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2117
2118	logical_ring_default_vfuncs(dev, ring);
 
2119
2120	/* Override some for render ring. */
2121	if (INTEL_INFO(dev)->gen >= 9)
2122		ring->init_hw = gen9_init_render_ring;
2123	else
2124		ring->init_hw = gen8_init_render_ring;
2125	ring->init_context = gen8_init_rcs_context;
2126	ring->cleanup = intel_fini_pipe_control;
2127	ring->emit_flush = gen8_emit_flush_render;
2128	ring->emit_request = gen8_emit_request_render;
2129
2130	ring->dev = dev;
2131
2132	ret = intel_init_pipe_control(ring);
2133	if (ret)
2134		return ret;
2135
2136	ret = intel_init_workaround_bb(ring);
2137	if (ret) {
2138		/*
2139		 * We continue even if we fail to initialize WA batch
2140		 * because we only expect rare glitches but nothing
2141		 * critical to prevent us from using GPU
2142		 */
2143		DRM_ERROR("WA batch buffer initialization failed: %d\n",
2144			  ret);
2145	}
2146
2147	ret = logical_ring_init(dev, ring);
2148	if (ret) {
2149		lrc_destroy_wa_ctx_obj(ring);
2150	}
2151
2152	return ret;
2153}
2154
2155static int logical_bsd_ring_init(struct drm_device *dev)
2156{
2157	struct drm_i915_private *dev_priv = dev->dev_private;
2158	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2159
2160	ring->name = "bsd ring";
2161	ring->id = VCS;
2162	ring->exec_id = I915_EXEC_BSD;
2163	ring->guc_id = GUC_VIDEO_ENGINE;
2164	ring->mmio_base = GEN6_BSD_RING_BASE;
2165
2166	logical_ring_default_irqs(ring, GEN8_VCS1_IRQ_SHIFT);
2167	logical_ring_default_vfuncs(dev, ring);
2168
2169	return logical_ring_init(dev, ring);
2170}
2171
2172static int logical_bsd2_ring_init(struct drm_device *dev)
2173{
2174	struct drm_i915_private *dev_priv = dev->dev_private;
2175	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2176
2177	ring->name = "bsd2 ring";
2178	ring->id = VCS2;
2179	ring->exec_id = I915_EXEC_BSD;
2180	ring->guc_id = GUC_VIDEO_ENGINE2;
2181	ring->mmio_base = GEN8_BSD2_RING_BASE;
2182
2183	logical_ring_default_irqs(ring, GEN8_VCS2_IRQ_SHIFT);
2184	logical_ring_default_vfuncs(dev, ring);
2185
2186	return logical_ring_init(dev, ring);
2187}
2188
2189static int logical_blt_ring_init(struct drm_device *dev)
2190{
2191	struct drm_i915_private *dev_priv = dev->dev_private;
2192	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2193
2194	ring->name = "blitter ring";
2195	ring->id = BCS;
2196	ring->exec_id = I915_EXEC_BLT;
2197	ring->guc_id = GUC_BLITTER_ENGINE;
2198	ring->mmio_base = BLT_RING_BASE;
2199
2200	logical_ring_default_irqs(ring, GEN8_BCS_IRQ_SHIFT);
2201	logical_ring_default_vfuncs(dev, ring);
2202
2203	return logical_ring_init(dev, ring);
2204}
2205
2206static int logical_vebox_ring_init(struct drm_device *dev)
2207{
2208	struct drm_i915_private *dev_priv = dev->dev_private;
2209	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2210
2211	ring->name = "video enhancement ring";
2212	ring->id = VECS;
2213	ring->exec_id = I915_EXEC_VEBOX;
2214	ring->guc_id = GUC_VIDEOENHANCE_ENGINE;
2215	ring->mmio_base = VEBOX_RING_BASE;
2216
2217	logical_ring_default_irqs(ring, GEN8_VECS_IRQ_SHIFT);
2218	logical_ring_default_vfuncs(dev, ring);
2219
2220	return logical_ring_init(dev, ring);
2221}
2222
2223/**
2224 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2225 * @dev: DRM device.
2226 *
2227 * This function inits the engines for an Execlists submission style (the equivalent in the
2228 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2229 * those engines that are present in the hardware.
2230 *
2231 * Return: non-zero if the initialization failed.
2232 */
2233int intel_logical_rings_init(struct drm_device *dev)
2234{
2235	struct drm_i915_private *dev_priv = dev->dev_private;
2236	int ret;
2237
2238	ret = logical_render_ring_init(dev);
2239	if (ret)
2240		return ret;
2241
2242	if (HAS_BSD(dev)) {
2243		ret = logical_bsd_ring_init(dev);
2244		if (ret)
2245			goto cleanup_render_ring;
2246	}
2247
2248	if (HAS_BLT(dev)) {
2249		ret = logical_blt_ring_init(dev);
2250		if (ret)
2251			goto cleanup_bsd_ring;
2252	}
2253
2254	if (HAS_VEBOX(dev)) {
2255		ret = logical_vebox_ring_init(dev);
2256		if (ret)
2257			goto cleanup_blt_ring;
2258	}
2259
2260	if (HAS_BSD2(dev)) {
2261		ret = logical_bsd2_ring_init(dev);
2262		if (ret)
2263			goto cleanup_vebox_ring;
2264	}
2265
2266	return 0;
2267
2268cleanup_vebox_ring:
2269	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2270cleanup_blt_ring:
2271	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2272cleanup_bsd_ring:
2273	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2274cleanup_render_ring:
2275	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2276
2277	return ret;
2278}
2279
2280static u32
2281make_rpcs(struct drm_device *dev)
2282{
2283	u32 rpcs = 0;
2284
2285	/*
2286	 * No explicit RPCS request is needed to ensure full
2287	 * slice/subslice/EU enablement prior to Gen9.
2288	*/
2289	if (INTEL_INFO(dev)->gen < 9)
2290		return 0;
2291
2292	/*
2293	 * Starting in Gen9, render power gating can leave
2294	 * slice/subslice/EU in a partially enabled state. We
2295	 * must make an explicit request through RPCS for full
2296	 * enablement.
2297	*/
2298	if (INTEL_INFO(dev)->has_slice_pg) {
2299		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2300		rpcs |= INTEL_INFO(dev)->slice_total <<
2301			GEN8_RPCS_S_CNT_SHIFT;
2302		rpcs |= GEN8_RPCS_ENABLE;
2303	}
2304
2305	if (INTEL_INFO(dev)->has_subslice_pg) {
2306		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2307		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2308			GEN8_RPCS_SS_CNT_SHIFT;
2309		rpcs |= GEN8_RPCS_ENABLE;
2310	}
2311
2312	if (INTEL_INFO(dev)->has_eu_pg) {
2313		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2314			GEN8_RPCS_EU_MIN_SHIFT;
2315		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2316			GEN8_RPCS_EU_MAX_SHIFT;
2317		rpcs |= GEN8_RPCS_ENABLE;
2318	}
2319
2320	return rpcs;
2321}
2322
2323static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *ring)
2324{
2325	u32 indirect_ctx_offset;
2326
2327	switch (INTEL_INFO(ring->dev)->gen) {
2328	default:
2329		MISSING_CASE(INTEL_INFO(ring->dev)->gen);
2330		/* fall through */
 
 
 
 
 
 
 
 
2331	case 9:
2332		indirect_ctx_offset =
2333			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2334		break;
2335	case 8:
2336		indirect_ctx_offset =
2337			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2338		break;
2339	}
2340
2341	return indirect_ctx_offset;
2342}
2343
2344static int
2345populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2346		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2347{
2348	struct drm_device *dev = ring->dev;
2349	struct drm_i915_private *dev_priv = dev->dev_private;
2350	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2351	struct page *page;
2352	uint32_t *reg_state;
2353	int ret;
2354
2355	if (!ppgtt)
2356		ppgtt = dev_priv->mm.aliasing_ppgtt;
2357
2358	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2359	if (ret) {
2360		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2361		return ret;
2362	}
2363
2364	ret = i915_gem_object_get_pages(ctx_obj);
2365	if (ret) {
2366		DRM_DEBUG_DRIVER("Could not get object pages\n");
2367		return ret;
2368	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369
2370	i915_gem_object_pin_pages(ctx_obj);
 
 
2371
2372	/* The second page of the context object contains some fields which must
2373	 * be set up prior to the first execution. */
2374	page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2375	reg_state = kmap_atomic(page);
2376
2377	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2378	 * commands followed by (reg, value) pairs. The values we are setting here are
2379	 * only for the first context restore: on a subsequent save, the GPU will
2380	 * recreate this batchbuffer with new values (including all the missing
2381	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2382	reg_state[CTX_LRI_HEADER_0] =
2383		MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2384	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2385		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2386					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2387					  (HAS_RESOURCE_STREAMER(dev) ?
2388					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2389	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2390	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2391	/* Ring buffer start address is not known until the buffer is pinned.
2392	 * It is written to the context image in execlists_update_context()
2393	 */
2394	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2395	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2396		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2397	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2398	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2399	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2400		       RING_BB_PPGTT);
2401	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2402	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2403	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2404	if (ring->id == RCS) {
2405		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2406		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2407		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2408		if (ring->wa_ctx.obj) {
2409			struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2410			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2411
2412			reg_state[CTX_RCS_INDIRECT_CTX+1] =
2413				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2414				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2415
2416			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2417				intel_lr_indirect_ctx_offset(ring) << 6;
2418
2419			reg_state[CTX_BB_PER_CTX_PTR+1] =
2420				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2421				0x01;
2422		}
2423	}
2424	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2425	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
 
 
2426	/* PDP values well be assigned later if needed */
2427	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2428	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2429	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2430	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2431	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2432	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2433	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2434	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2435
2436	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2437		/* 64b PPGTT (48bit canonical)
2438		 * PDP0_DESCRIPTOR contains the base address to PML4 and
2439		 * other PDP Descriptors are ignored.
2440		 */
2441		ASSIGN_CTX_PML4(ppgtt, reg_state);
2442	} else {
2443		/* 32b PPGTT
2444		 * PDP*_DESCRIPTOR contains the base address of space supported.
2445		 * With dynamic page allocation, PDPs may not be allocated at
2446		 * this point. Point the unallocated PDPs to the scratch page
2447		 */
2448		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2449		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2450		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2451		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2452	}
2453
2454	if (ring->id == RCS) {
2455		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2456		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2457			       make_rpcs(dev));
2458	}
2459
2460	kunmap_atomic(reg_state);
2461	i915_gem_object_unpin_pages(ctx_obj);
 
 
2462
2463	return 0;
 
2464}
2465
2466/**
2467 * intel_lr_context_free() - free the LRC specific bits of a context
2468 * @ctx: the LR context to free.
2469 *
2470 * The real context freeing is done in i915_gem_context_free: this only
2471 * takes care of the bits that are LRC related: the per-engine backing
2472 * objects and the logical ringbuffer.
2473 */
2474void intel_lr_context_free(struct intel_context *ctx)
2475{
2476	int i;
2477
2478	for (i = I915_NUM_RINGS; --i >= 0; ) {
2479		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2480		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2481
2482		if (!ctx_obj)
2483			continue;
2484
2485		if (ctx == ctx->i915->kernel_context) {
2486			intel_unpin_ringbuffer_obj(ringbuf);
2487			i915_gem_object_ggtt_unpin(ctx_obj);
2488		}
 
2489
2490		WARN_ON(ctx->engine[i].pin_count);
2491		intel_ringbuffer_free(ringbuf);
2492		drm_gem_object_unreference(&ctx_obj->base);
 
 
2493	}
2494}
2495
2496/**
2497 * intel_lr_context_size() - return the size of the context for an engine
2498 * @ring: which engine to find the context size for
2499 *
2500 * Each engine may require a different amount of space for a context image,
2501 * so when allocating (or copying) an image, this function can be used to
2502 * find the right size for the specific engine.
2503 *
2504 * Return: size (in bytes) of an engine-specific context image
2505 *
2506 * Note: this size includes the HWSP, which is part of the context image
2507 * in LRC mode, but does not include the "shared data page" used with
2508 * GuC submission. The caller should account for this if using the GuC.
2509 */
2510uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
2511{
2512	int ret = 0;
2513
2514	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
 
 
 
2515
2516	switch (ring->id) {
2517	case RCS:
2518		if (INTEL_INFO(ring->dev)->gen >= 9)
2519			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2520		else
2521			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2522		break;
2523	case VCS:
2524	case BCS:
2525	case VECS:
2526	case VCS2:
2527		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2528		break;
2529	}
2530
2531	return ret;
2532}
 
 
 
 
 
 
 
 
 
2533
2534static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2535		struct drm_i915_gem_object *default_ctx_obj)
2536{
2537	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2538	struct page *page;
2539
2540	/* The HWSP is part of the default context object in LRC mode. */
2541	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2542			+ LRC_PPHWSP_PN * PAGE_SIZE;
2543	page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2544	ring->status_page.page_addr = kmap(page);
2545	ring->status_page.obj = default_ctx_obj;
2546
2547	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2548			(u32)ring->status_page.gfx_addr);
2549	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2550}
2551
2552/**
2553 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2554 * @ctx: LR context to create.
2555 * @ring: engine to be used with the context.
2556 *
2557 * This function can be called more than once, with different engines, if we plan
2558 * to use the context with them. The context backing objects and the ringbuffers
2559 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2560 * the creation is a deferred call: it's better to make sure first that we need to use
2561 * a given ring with the context.
2562 *
2563 * Return: non-zero on error.
2564 */
2565
2566int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2567				    struct intel_engine_cs *ring)
2568{
2569	struct drm_device *dev = ring->dev;
2570	struct drm_i915_gem_object *ctx_obj;
 
 
2571	uint32_t context_size;
2572	struct intel_ringbuffer *ringbuf;
2573	int ret;
2574
2575	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2576	WARN_ON(ctx->engine[ring->id].state);
2577
2578	context_size = round_up(intel_lr_context_size(ring), 4096);
2579
2580	/* One extra page as the sharing data between driver and GuC */
2581	context_size += PAGE_SIZE * LRC_PPHWSP_PN;
 
 
 
2582
2583	ctx_obj = i915_gem_alloc_object(dev, context_size);
2584	if (!ctx_obj) {
2585		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2586		return -ENOMEM;
2587	}
2588
2589	ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2590	if (IS_ERR(ringbuf)) {
2591		ret = PTR_ERR(ringbuf);
2592		goto error_deref_obj;
2593	}
2594
2595	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
 
 
 
 
 
 
2596	if (ret) {
2597		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2598		goto error_ringbuf;
2599	}
2600
2601	ctx->engine[ring->id].ringbuf = ringbuf;
2602	ctx->engine[ring->id].state = ctx_obj;
2603
2604	if (ctx != ctx->i915->kernel_context && ring->init_context) {
2605		struct drm_i915_gem_request *req;
2606
2607		req = i915_gem_request_alloc(ring, ctx);
2608		if (IS_ERR(req)) {
2609			ret = PTR_ERR(req);
2610			DRM_ERROR("ring create req: %d\n", ret);
2611			goto error_ringbuf;
2612		}
2613
2614		ret = ring->init_context(req);
2615		if (ret) {
2616			DRM_ERROR("ring init context: %d\n",
2617				ret);
2618			i915_gem_request_cancel(req);
2619			goto error_ringbuf;
2620		}
2621		i915_add_request_no_flush(req);
2622	}
2623	return 0;
2624
2625error_ringbuf:
2626	intel_ringbuffer_free(ringbuf);
2627error_deref_obj:
2628	drm_gem_object_unreference(&ctx_obj->base);
2629	ctx->engine[ring->id].ringbuf = NULL;
2630	ctx->engine[ring->id].state = NULL;
2631	return ret;
2632}
2633
2634void intel_lr_context_reset(struct drm_device *dev,
2635			struct intel_context *ctx)
2636{
2637	struct drm_i915_private *dev_priv = dev->dev_private;
2638	struct intel_engine_cs *ring;
2639	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2640
2641	for_each_ring(ring, dev_priv, i) {
2642		struct drm_i915_gem_object *ctx_obj =
2643				ctx->engine[ring->id].state;
2644		struct intel_ringbuffer *ringbuf =
2645				ctx->engine[ring->id].ringbuf;
2646		uint32_t *reg_state;
2647		struct page *page;
2648
2649		if (!ctx_obj)
2650			continue;
2651
2652		if (i915_gem_object_get_pages(ctx_obj)) {
2653			WARN(1, "Failed get_pages for context obj\n");
2654			continue;
2655		}
2656		page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2657		reg_state = kmap_atomic(page);
2658
2659		reg_state[CTX_RING_HEAD+1] = 0;
2660		reg_state[CTX_RING_TAIL+1] = 0;
2661
2662		kunmap_atomic(reg_state);
2663
2664		ringbuf->head = 0;
2665		ringbuf->tail = 0;
2666	}
2667}
v4.17
   1/*
   2 * Copyright © 2014 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Ben Widawsky <ben@bwidawsk.net>
  25 *    Michel Thierry <michel.thierry@intel.com>
  26 *    Thomas Daniel <thomas.daniel@intel.com>
  27 *    Oscar Mateo <oscar.mateo@intel.com>
  28 *
  29 */
  30
  31/**
  32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
  33 *
  34 * Motivation:
  35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
  36 * These expanded contexts enable a number of new abilities, especially
  37 * "Execlists" (also implemented in this file).
  38 *
  39 * One of the main differences with the legacy HW contexts is that logical
  40 * ring contexts incorporate many more things to the context's state, like
  41 * PDPs or ringbuffer control registers:
  42 *
  43 * The reason why PDPs are included in the context is straightforward: as
  44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
  45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
  46 * instead, the GPU will do it for you on the context switch.
  47 *
  48 * But, what about the ringbuffer control registers (head, tail, etc..)?
  49 * shouldn't we just need a set of those per engine command streamer? This is
  50 * where the name "Logical Rings" starts to make sense: by virtualizing the
  51 * rings, the engine cs shifts to a new "ring buffer" with every context
  52 * switch. When you want to submit a workload to the GPU you: A) choose your
  53 * context, B) find its appropriate virtualized ring, C) write commands to it
  54 * and then, finally, D) tell the GPU to switch to that context.
  55 *
  56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
  57 * to a contexts is via a context execution list, ergo "Execlists".
  58 *
  59 * LRC implementation:
  60 * Regarding the creation of contexts, we have:
  61 *
  62 * - One global default context.
  63 * - One local default context for each opened fd.
  64 * - One local extra context for each context create ioctl call.
  65 *
  66 * Now that ringbuffers belong per-context (and not per-engine, like before)
  67 * and that contexts are uniquely tied to a given engine (and not reusable,
  68 * like before) we need:
  69 *
  70 * - One ringbuffer per-engine inside each context.
  71 * - One backing object per-engine inside each context.
  72 *
  73 * The global default context starts its life with these new objects fully
  74 * allocated and populated. The local default context for each opened fd is
  75 * more complex, because we don't know at creation time which engine is going
  76 * to use them. To handle this, we have implemented a deferred creation of LR
  77 * contexts:
  78 *
  79 * The local context starts its life as a hollow or blank holder, that only
  80 * gets populated for a given engine once we receive an execbuffer. If later
  81 * on we receive another execbuffer ioctl for the same context but a different
  82 * engine, we allocate/populate a new ringbuffer and context backing object and
  83 * so on.
  84 *
  85 * Finally, regarding local contexts created using the ioctl call: as they are
  86 * only allowed with the render ring, we can allocate & populate them right
  87 * away (no need to defer anything, at least for now).
  88 *
  89 * Execlists implementation:
  90 * Execlists are the new method by which, on gen8+ hardware, workloads are
  91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
  92 * This method works as follows:
  93 *
  94 * When a request is committed, its commands (the BB start and any leading or
  95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
  96 * for the appropriate context. The tail pointer in the hardware context is not
  97 * updated at this time, but instead, kept by the driver in the ringbuffer
  98 * structure. A structure representing this request is added to a request queue
  99 * for the appropriate engine: this structure contains a copy of the context's
 100 * tail after the request was written to the ring buffer and a pointer to the
 101 * context itself.
 102 *
 103 * If the engine's request queue was empty before the request was added, the
 104 * queue is processed immediately. Otherwise the queue will be processed during
 105 * a context switch interrupt. In any case, elements on the queue will get sent
 106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 107 * globally unique 20-bits submission ID.
 108 *
 109 * When execution of a request completes, the GPU updates the context status
 110 * buffer with a context complete event and generates a context switch interrupt.
 111 * During the interrupt handling, the driver examines the events in the buffer:
 112 * for each context complete event, if the announced ID matches that on the head
 113 * of the request queue, then that request is retired and removed from the queue.
 114 *
 115 * After processing, if any requests were retired and the queue is not empty
 116 * then a new execution list can be submitted. The two requests at the front of
 117 * the queue are next to be submitted but since a context may not occur twice in
 118 * an execution list, if subsequent requests have the same ID as the first then
 119 * the two requests must be combined. This is done simply by discarding requests
 120 * at the head of the queue until either only one requests is left (in which case
 121 * we use a NULL second context) or the first two requests have unique IDs.
 122 *
 123 * By always executing the first two requests in the queue the driver ensures
 124 * that the GPU is kept as busy as possible. In the case where a single context
 125 * completes but a second context is still executing, the request for this second
 126 * context will be at the head of the queue when we remove the first one. This
 127 * request will then be resubmitted along with a new request for a different context,
 128 * which will cause the hardware to continue executing the second request and queue
 129 * the new request (the GPU detects the condition of a context getting preempted
 130 * with the same context and optimizes the context switch flow by not doing
 131 * preemption, but just sampling the new tail pointer).
 132 *
 133 */
 134#include <linux/interrupt.h>
 135
 136#include <drm/drmP.h>
 137#include <drm/i915_drm.h>
 138#include "i915_drv.h"
 139#include "i915_gem_render_state.h"
 140#include "intel_lrc_reg.h"
 141#include "intel_mocs.h"
 142
 
 
 
 
 143#define RING_EXECLIST_QFULL		(1 << 0x2)
 144#define RING_EXECLIST1_VALID		(1 << 0x3)
 145#define RING_EXECLIST0_VALID		(1 << 0x4)
 146#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
 147#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
 148#define RING_EXECLIST0_ACTIVE		(1 << 0x12)
 149
 150#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
 151#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
 152#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
 153#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
 154#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
 155#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
 156
 157#define GEN8_CTX_STATUS_COMPLETED_MASK \
 158	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159
 160/* Typical size of the average request (2 pipecontrols and a MI_BB) */
 161#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
 162#define WA_TAIL_DWORDS 2
 163#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
 
 164
 165static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
 166					    struct intel_engine_cs *engine);
 167static void execlists_init_reg_state(u32 *reg_state,
 168				     struct i915_gem_context *ctx,
 169				     struct intel_engine_cs *engine,
 170				     struct intel_ring *ring);
 171
 172static inline struct i915_priolist *to_priolist(struct rb_node *rb)
 173{
 174	return rb_entry(rb, struct i915_priolist, node);
 175}
 176
 177static inline int rq_prio(const struct i915_request *rq)
 
 178{
 179	return rq->priotree.priority;
 180}
 181
 182static inline bool need_preempt(const struct intel_engine_cs *engine,
 183				const struct i915_request *last,
 184				int prio)
 185{
 186	return engine->i915->preempt_context && prio > max(rq_prio(last), 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187}
 188
 189/**
 190 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 191 * 					  descriptor for a pinned context
 
 192 * @ctx: Context to work on
 193 * @engine: Engine the descriptor will be used with
 194 *
 195 * The context descriptor encodes various attributes of a context,
 196 * including its GTT address and some flags. Because it's fairly
 197 * expensive to calculate, we'll just do it once and cache the result,
 198 * which remains valid until the context is unpinned.
 199 *
 200 * This is what a descriptor looks like, from LSB to MSB::
 201 *
 202 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
 203 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 204 *      bits 32-52:    ctx ID, a globally unique tag
 205 *      bits 53-54:    mbz, reserved for use by hardware
 206 *      bits 55-63:    group ID, currently unused and set to 0
 207 *
 208 * Starting from Gen11, the upper dword of the descriptor has a new format:
 209 *
 210 *      bits 32-36:    reserved
 211 *      bits 37-47:    SW context ID
 212 *      bits 48:53:    engine instance
 213 *      bit 54:        mbz, reserved for use by hardware
 214 *      bits 55-60:    SW counter
 215 *      bits 61-63:    engine class
 216 *
 217 * engine info, SW context ID and SW counter need to form a unique number
 218 * (Context ID) per lrc.
 219 */
 220static void
 221intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
 222				   struct intel_engine_cs *engine)
 223{
 224	struct intel_context *ce = &ctx->engine[engine->id];
 225	u64 desc;
 226
 227	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
 228	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
 229
 230	desc = ctx->desc_template;				/* bits  0-11 */
 231	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
 
 232
 233	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
 234								/* bits 12-31 */
 235	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
 236
 237	if (INTEL_GEN(ctx->i915) >= 11) {
 238		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
 239		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
 240								/* bits 37-47 */
 241
 242		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
 243								/* bits 48-53 */
 244
 245		/* TODO: decide what to do with SW counter (bits 55-60) */
 246
 247		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
 248								/* bits 61-63 */
 249	} else {
 250		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
 251		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
 252	}
 253
 254	ce->lrc_desc = desc;
 255}
 256
 257static struct i915_priolist *
 258lookup_priolist(struct intel_engine_cs *engine,
 259		struct i915_priotree *pt,
 260		int prio)
 261{
 262	struct intel_engine_execlists * const execlists = &engine->execlists;
 263	struct i915_priolist *p;
 264	struct rb_node **parent, *rb;
 265	bool first = true;
 266
 267	if (unlikely(execlists->no_priolist))
 268		prio = I915_PRIORITY_NORMAL;
 269
 270find_priolist:
 271	/* most positive priority is scheduled first, equal priorities fifo */
 272	rb = NULL;
 273	parent = &execlists->queue.rb_node;
 274	while (*parent) {
 275		rb = *parent;
 276		p = to_priolist(rb);
 277		if (prio > p->priority) {
 278			parent = &rb->rb_left;
 279		} else if (prio < p->priority) {
 280			parent = &rb->rb_right;
 281			first = false;
 282		} else {
 283			return p;
 284		}
 285	}
 286
 287	if (prio == I915_PRIORITY_NORMAL) {
 288		p = &execlists->default_priolist;
 289	} else {
 290		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
 291		/* Convert an allocation failure to a priority bump */
 292		if (unlikely(!p)) {
 293			prio = I915_PRIORITY_NORMAL; /* recurses just once */
 294
 295			/* To maintain ordering with all rendering, after an
 296			 * allocation failure we have to disable all scheduling.
 297			 * Requests will then be executed in fifo, and schedule
 298			 * will ensure that dependencies are emitted in fifo.
 299			 * There will be still some reordering with existing
 300			 * requests, so if userspace lied about their
 301			 * dependencies that reordering may be visible.
 302			 */
 303			execlists->no_priolist = true;
 304			goto find_priolist;
 305		}
 306	}
 307
 308	p->priority = prio;
 309	INIT_LIST_HEAD(&p->requests);
 310	rb_link_node(&p->node, rb, parent);
 311	rb_insert_color(&p->node, &execlists->queue);
 312
 313	if (first)
 314		execlists->first = &p->node;
 315
 316	return p;
 317}
 318
 319static void unwind_wa_tail(struct i915_request *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 320{
 321	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
 322	assert_ring_tail_valid(rq->ring, rq->tail);
 323}
 324
 325static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
 
 326{
 327	struct i915_request *rq, *rn;
 328	struct i915_priolist *uninitialized_var(p);
 329	int last_prio = I915_PRIORITY_INVALID;
 330
 331	lockdep_assert_held(&engine->timeline->lock);
 
 
 
 
 
 
 
 
 
 
 332
 333	list_for_each_entry_safe_reverse(rq, rn,
 334					 &engine->timeline->requests,
 335					 link) {
 336		if (i915_request_completed(rq))
 337			return;
 338
 339		__i915_request_unsubmit(rq);
 340		unwind_wa_tail(rq);
 
 
 
 341
 342		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
 343		if (rq_prio(rq) != last_prio) {
 344			last_prio = rq_prio(rq);
 345			p = lookup_priolist(engine, &rq->priotree, last_prio);
 346		}
 347
 348		list_add(&rq->priotree.link, &p->requests);
 349	}
 
 
 350}
 351
 352void
 353execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
 354{
 355	struct intel_engine_cs *engine =
 356		container_of(execlists, typeof(*engine), execlists);
 
 357
 358	spin_lock_irq(&engine->timeline->lock);
 359	__unwind_incomplete_requests(engine);
 360	spin_unlock_irq(&engine->timeline->lock);
 361}
 362
 363static inline void
 364execlists_context_status_change(struct i915_request *rq, unsigned long status)
 365{
 366	/*
 367	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
 368	 * The compiler should eliminate this function as dead-code.
 369	 */
 370	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
 371		return;
 
 
 372
 373	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
 374				   status, rq);
 375}
 376
 377static inline void
 378execlists_context_schedule_in(struct i915_request *rq)
 379{
 380	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
 381	intel_engine_context_in(rq->engine);
 382}
 383
 384static inline void
 385execlists_context_schedule_out(struct i915_request *rq)
 386{
 387	intel_engine_context_out(rq->engine);
 388	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
 389}
 390
 391static void
 392execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
 393{
 394	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
 395	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
 396	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
 397	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
 398}
 399
 400static u64 execlists_update_context(struct i915_request *rq)
 401{
 402	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
 403	struct i915_hw_ppgtt *ppgtt =
 404		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
 405	u32 *reg_state = ce->lrc_reg_state;
 406
 407	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
 408
 409	/* True 32b PPGTT with dynamic page allocation: update PDP
 410	 * registers and point the unallocated PDPs to scratch page.
 411	 * PML4 is allocated during ppgtt init, so this is not needed
 412	 * in 48-bit mode.
 413	 */
 414	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
 415		execlists_update_context_pdps(ppgtt, reg_state);
 416
 417	return ce->lrc_desc;
 418}
 419
 420static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
 421{
 422	if (execlists->ctrl_reg) {
 423		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
 424		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
 425	} else {
 426		writel(upper_32_bits(desc), execlists->submit_reg);
 427		writel(lower_32_bits(desc), execlists->submit_reg);
 
 
 
 
 
 
 
 
 428	}
 429}
 430
 431static void execlists_submit_ports(struct intel_engine_cs *engine)
 432{
 433	struct intel_engine_execlists *execlists = &engine->execlists;
 434	struct execlist_port *port = execlists->port;
 435	unsigned int n;
 
 
 
 
 
 
 
 
 436
 437	/*
 438	 * ELSQ note: the submit queue is not cleared after being submitted
 439	 * to the HW so we need to make sure we always clean it up. This is
 440	 * currently ensured by the fact that we always write the same number
 441	 * of elsq entries, keep this in mind before changing the loop below.
 442	 */
 443	for (n = execlists_num_ports(execlists); n--; ) {
 444		struct i915_request *rq;
 445		unsigned int count;
 446		u64 desc;
 447
 448		rq = port_unpack(&port[n], &count);
 449		if (rq) {
 450			GEM_BUG_ON(count > !n);
 451			if (!count++)
 452				execlists_context_schedule_in(rq);
 453			port_set(&port[n], port_pack(rq, count));
 454			desc = execlists_update_context(rq);
 455			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
 456
 457			GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x, prio=%d\n",
 458				  engine->name, n,
 459				  port[n].context_id, count,
 460				  rq->global_seqno,
 461				  rq_prio(rq));
 462		} else {
 463			GEM_BUG_ON(!n);
 464			desc = 0;
 465		}
 466
 467		write_desc(execlists, desc, n);
 468	}
 469
 470	/* we need to manually load the submit queue */
 471	if (execlists->ctrl_reg)
 472		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
 473
 474	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
 475}
 476
 477static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
 
 478{
 479	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
 480		i915_gem_context_force_single_submission(ctx));
 481}
 
 
 
 
 482
 483static bool can_merge_ctx(const struct i915_gem_context *prev,
 484			  const struct i915_gem_context *next)
 485{
 486	if (prev != next)
 487		return false;
 488
 489	if (ctx_single_port_submission(prev))
 490		return false;
 
 
 
 
 
 491
 492	return true;
 493}
 494
 495static void port_assign(struct execlist_port *port, struct i915_request *rq)
 
 
 496{
 497	GEM_BUG_ON(rq == port_request(port));
 498
 499	if (port_isset(port))
 500		i915_request_put(port_request(port));
 501
 502	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
 
 503}
 504
 505static void inject_preempt_context(struct intel_engine_cs *engine)
 
 
 
 
 
 
 
 506{
 507	struct intel_engine_execlists *execlists = &engine->execlists;
 508	struct intel_context *ce =
 509		&engine->i915->preempt_context->engine[engine->id];
 510	unsigned int n;
 
 
 
 511
 512	GEM_BUG_ON(execlists->preempt_complete_status !=
 513		   upper_32_bits(ce->lrc_desc));
 514	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
 515		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
 516				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
 517		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
 518				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));
 519
 520	/*
 521	 * Switch to our empty preempt context so
 522	 * the state of the GPU is known (idle).
 523	 */
 524	GEM_TRACE("%s\n", engine->name);
 525	for (n = execlists_num_ports(execlists); --n; )
 526		write_desc(execlists, 0, n);
 527
 528	write_desc(execlists, ce->lrc_desc, n);
 529
 530	/* we need to manually load the submit queue */
 531	if (execlists->ctrl_reg)
 532		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
 533
 534	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
 535	execlists_set_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT);
 536}
 537
 538static void execlists_dequeue(struct intel_engine_cs *engine)
 539{
 540	struct intel_engine_execlists * const execlists = &engine->execlists;
 541	struct execlist_port *port = execlists->port;
 542	const struct execlist_port * const last_port =
 543		&execlists->port[execlists->port_mask];
 544	struct i915_request *last = port_request(port);
 545	struct rb_node *rb;
 546	bool submit = false;
 547
 548	/* Hardware submission is through 2 ports. Conceptually each port
 549	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
 550	 * static for a context, and unique to each, so we only execute
 551	 * requests belonging to a single context from each ring. RING_HEAD
 552	 * is maintained by the CS in the context image, it marks the place
 553	 * where it got up to last time, and through RING_TAIL we tell the CS
 554	 * where we want to execute up to this time.
 555	 *
 556	 * In this list the requests are in order of execution. Consecutive
 557	 * requests from the same context are adjacent in the ringbuffer. We
 558	 * can combine these requests into a single RING_TAIL update:
 559	 *
 560	 *              RING_HEAD...req1...req2
 561	 *                                    ^- RING_TAIL
 562	 * since to execute req2 the CS must first execute req1.
 563	 *
 564	 * Our goal then is to point each port to the end of a consecutive
 565	 * sequence of requests as being the most optimal (fewest wake ups
 566	 * and context switches) submission.
 567	 */
 568
 569	spin_lock_irq(&engine->timeline->lock);
 570	rb = execlists->first;
 571	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
 572
 573	if (last) {
 574		/*
 575		 * Don't resubmit or switch until all outstanding
 576		 * preemptions (lite-restore) are seen. Then we
 577		 * know the next preemption status we see corresponds
 578		 * to this ELSP update.
 579		 */
 580		GEM_BUG_ON(!execlists_is_active(execlists,
 581						EXECLISTS_ACTIVE_USER));
 582		GEM_BUG_ON(!port_count(&port[0]));
 583		if (port_count(&port[0]) > 1)
 584			goto unlock;
 585
 586		/*
 587		 * If we write to ELSP a second time before the HW has had
 588		 * a chance to respond to the previous write, we can confuse
 589		 * the HW and hit "undefined behaviour". After writing to ELSP,
 590		 * we must then wait until we see a context-switch event from
 591		 * the HW to indicate that it has had a chance to respond.
 592		 */
 593		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
 594			goto unlock;
 595
 596		if (need_preempt(engine, last, execlists->queue_priority)) {
 597			inject_preempt_context(engine);
 598			goto unlock;
 
 
 
 599		}
 600
 601		/*
 602		 * In theory, we could coalesce more requests onto
 603		 * the second port (the first port is active, with
 604		 * no preemptions pending). However, that means we
 605		 * then have to deal with the possible lite-restore
 606		 * of the second port (as we submit the ELSP, there
 607		 * may be a context-switch) but also we may complete
 608		 * the resubmission before the context-switch. Ergo,
 609		 * coalescing onto the second port will cause a
 610		 * preemption event, but we cannot predict whether
 611		 * that will affect port[0] or port[1].
 612		 *
 613		 * If the second port is already active, we can wait
 614		 * until the next context-switch before contemplating
 615		 * new requests. The GPU will be busy and we should be
 616		 * able to resubmit the new ELSP before it idles,
 617		 * avoiding pipeline bubbles (momentary pauses where
 618		 * the driver is unable to keep up the supply of new
 619		 * work). However, we have to double check that the
 620		 * priorities of the ports haven't been switch.
 621		 */
 622		if (port_count(&port[1]))
 623			goto unlock;
 624
 625		/*
 626		 * WaIdleLiteRestore:bdw,skl
 627		 * Apply the wa NOOPs to prevent
 628		 * ring:HEAD == rq:TAIL as we resubmit the
 629		 * request. See gen8_emit_breadcrumb() for
 630		 * where we prepare the padding after the
 631		 * end of the request.
 632		 */
 633		last->tail = last->wa_tail;
 634	}
 635
 636	while (rb) {
 637		struct i915_priolist *p = to_priolist(rb);
 638		struct i915_request *rq, *rn;
 
 639
 640		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
 641			/*
 642			 * Can we combine this request with the current port?
 643			 * It has to be the same context/ringbuffer and not
 644			 * have any exceptions (e.g. GVT saying never to
 645			 * combine contexts).
 646			 *
 647			 * If we can combine the requests, we can execute both
 648			 * by updating the RING_TAIL to point to the end of the
 649			 * second request, and so we never need to tell the
 650			 * hardware about the first.
 651			 */
 652			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
 653				/*
 654				 * If we are on the second port and cannot
 655				 * combine this request with the last, then we
 656				 * are done.
 657				 */
 658				if (port == last_port) {
 659					__list_del_many(&p->requests,
 660							&rq->priotree.link);
 661					goto done;
 662				}
 663
 664				/*
 665				 * If GVT overrides us we only ever submit
 666				 * port[0], leaving port[1] empty. Note that we
 667				 * also have to be careful that we don't queue
 668				 * the same context (even though a different
 669				 * request) to the second port.
 670				 */
 671				if (ctx_single_port_submission(last->ctx) ||
 672				    ctx_single_port_submission(rq->ctx)) {
 673					__list_del_many(&p->requests,
 674							&rq->priotree.link);
 675					goto done;
 676				}
 677
 678				GEM_BUG_ON(last->ctx == rq->ctx);
 679
 680				if (submit)
 681					port_assign(port, last);
 682				port++;
 683
 684				GEM_BUG_ON(port_isset(port));
 685			}
 686
 687			INIT_LIST_HEAD(&rq->priotree.link);
 688			__i915_request_submit(rq);
 689			trace_i915_request_in(rq, port_index(port, execlists));
 690			last = rq;
 691			submit = true;
 692		}
 693
 694		rb = rb_next(rb);
 695		rb_erase(&p->node, &execlists->queue);
 696		INIT_LIST_HEAD(&p->requests);
 697		if (p->priority != I915_PRIORITY_NORMAL)
 698			kmem_cache_free(engine->i915->priorities, p);
 699	}
 700done:
 701	execlists->queue_priority = rb ? to_priolist(rb)->priority : INT_MIN;
 702	execlists->first = rb;
 703	if (submit)
 704		port_assign(port, last);
 705
 706	/* We must always keep the beast fed if we have work piled up */
 707	GEM_BUG_ON(execlists->first && !port_isset(execlists->port));
 
 708
 709unlock:
 710	spin_unlock_irq(&engine->timeline->lock);
 711
 712	if (submit) {
 713		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
 714		execlists_submit_ports(engine);
 
 
 
 
 
 
 
 715	}
 716
 717	GEM_BUG_ON(port_isset(execlists->port) &&
 718		   !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
 
 
 
 
 
 719}
 720
 721void
 722execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
 723{
 724	struct execlist_port *port = execlists->port;
 725	unsigned int num_ports = execlists_num_ports(execlists);
 
 
 
 
 
 
 
 
 
 
 
 
 
 726
 727	while (num_ports-- && port_isset(port)) {
 728		struct i915_request *rq = port_request(port);
 
 
 
 
 
 
 729
 730		GEM_BUG_ON(!execlists->active);
 731		intel_engine_context_out(rq->engine);
 732
 733		execlists_context_status_change(rq,
 734						i915_request_completed(rq) ?
 735						INTEL_CONTEXT_SCHEDULE_OUT :
 736						INTEL_CONTEXT_SCHEDULE_PREEMPTED);
 
 737
 738		i915_request_put(rq);
 
 739
 740		memset(port, 0, sizeof(*port));
 741		port++;
 742	}
 743
 744	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
 
 
 
 
 
 
 745}
 746
 747static void execlists_cancel_requests(struct intel_engine_cs *engine)
 748{
 749	struct intel_engine_execlists * const execlists = &engine->execlists;
 750	struct i915_request *rq, *rn;
 751	struct rb_node *rb;
 752	unsigned long flags;
 753
 754	GEM_TRACE("%s\n", engine->name);
 755
 756	/*
 757	 * Before we call engine->cancel_requests(), we should have exclusive
 758	 * access to the submission state. This is arranged for us by the
 759	 * caller disabling the interrupt generation, the tasklet and other
 760	 * threads that may then access the same state, giving us a free hand
 761	 * to reset state. However, we still need to let lockdep be aware that
 762	 * we know this state may be accessed in hardirq context, so we
 763	 * disable the irq around this manipulation and we want to keep
 764	 * the spinlock focused on its duties and not accidentally conflate
 765	 * coverage to the submission's irq state. (Similarly, although we
 766	 * shouldn't need to disable irq around the manipulation of the
 767	 * submission's irq state, we also wish to remind ourselves that
 768	 * it is irq state.)
 769	 */
 770	local_irq_save(flags);
 771
 772	/* Cancel the requests on the HW and clear the ELSP tracker. */
 773	execlists_cancel_port_requests(execlists);
 774
 775	spin_lock(&engine->timeline->lock);
 776
 777	/* Mark all executing requests as skipped. */
 778	list_for_each_entry(rq, &engine->timeline->requests, link) {
 779		GEM_BUG_ON(!rq->global_seqno);
 780		if (!i915_request_completed(rq))
 781			dma_fence_set_error(&rq->fence, -EIO);
 782	}
 783
 784	/* Flush the queued requests to the timeline list (for retiring). */
 785	rb = execlists->first;
 786	while (rb) {
 787		struct i915_priolist *p = to_priolist(rb);
 788
 789		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
 790			INIT_LIST_HEAD(&rq->priotree.link);
 791
 792			dma_fence_set_error(&rq->fence, -EIO);
 793			__i915_request_submit(rq);
 794		}
 
 
 
 
 
 795
 796		rb = rb_next(rb);
 797		rb_erase(&p->node, &execlists->queue);
 798		INIT_LIST_HEAD(&p->requests);
 799		if (p->priority != I915_PRIORITY_NORMAL)
 800			kmem_cache_free(engine->i915->priorities, p);
 801	}
 802
 803	/* Remaining _unready_ requests will be nop'ed when submitted */
 
 804
 805	execlists->queue_priority = INT_MIN;
 806	execlists->queue = RB_ROOT;
 807	execlists->first = NULL;
 808	GEM_BUG_ON(port_isset(execlists->port));
 
 
 
 
 809
 810	spin_unlock(&engine->timeline->lock);
 
 
 
 
 
 811
 812	/*
 813	 * The port is checked prior to scheduling a tasklet, but
 814	 * just in case we have suspended the tasklet to do the
 815	 * wedging make sure that when it wakes, it decides there
 816	 * is no work to do by clearing the irq_posted bit.
 817	 */
 818	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
 819
 820	/* Mark all CS interrupts as complete */
 821	execlists->active = 0;
 
 822
 823	local_irq_restore(flags);
 
 824}
 825
 826/*
 827 * Check the unread Context Status Buffers and manage the submission of new
 828 * contexts to the ELSP accordingly.
 
 
 
 
 
 829 */
 830static void execlists_submission_tasklet(unsigned long data)
 
 831{
 832	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
 833	struct intel_engine_execlists * const execlists = &engine->execlists;
 834	struct execlist_port * const port = execlists->port;
 835	struct drm_i915_private *dev_priv = engine->i915;
 836	bool fw = false;
 837
 838	/*
 839	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
 840	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
 841	 * not be relinquished until the device is idle (see
 842	 * i915_gem_idle_work_handler()). As a precaution, we make sure
 843	 * that all ELSP are drained i.e. we have processed the CSB,
 844	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
 845	 */
 846	GEM_BUG_ON(!dev_priv->gt.awake);
 847
 848	/*
 849	 * Prefer doing test_and_clear_bit() as a two stage operation to avoid
 850	 * imposing the cost of a locked atomic transaction when submitting a
 851	 * new request (outside of the context-switch interrupt).
 
 852	 */
 853	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
 854		/* The HWSP contains a (cacheable) mirror of the CSB */
 855		const u32 *buf =
 856			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
 857		unsigned int head, tail;
 858
 859		if (unlikely(execlists->csb_use_mmio)) {
 860			buf = (u32 * __force)
 861				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
 862			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
 863		}
 864
 865		/* Clear before reading to catch new interrupts */
 866		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
 867		smp_mb__after_atomic();
 868
 869		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
 870			if (!fw) {
 871				intel_uncore_forcewake_get(dev_priv,
 872							   execlists->fw_domains);
 873				fw = true;
 874			}
 875
 876			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
 877			tail = GEN8_CSB_WRITE_PTR(head);
 878			head = GEN8_CSB_READ_PTR(head);
 879			execlists->csb_head = head;
 
 
 880		} else {
 881			const int write_idx =
 882				intel_hws_csb_write_index(dev_priv) -
 883				I915_HWS_CSB_BUF0_INDEX;
 884
 885			head = execlists->csb_head;
 886			tail = READ_ONCE(buf[write_idx]);
 887			rmb(); /* Hopefully paired with a wmb() in HW */
 888		}
 889		GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
 890			  engine->name,
 891			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
 892			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
 893
 894		while (head != tail) {
 895			struct i915_request *rq;
 896			unsigned int status;
 897			unsigned int count;
 898
 899			if (++head == GEN8_CSB_ENTRIES)
 900				head = 0;
 901
 902			/* We are flying near dragons again.
 903			 *
 904			 * We hold a reference to the request in execlist_port[]
 905			 * but no more than that. We are operating in softirq
 906			 * context and so cannot hold any mutex or sleep. That
 907			 * prevents us stopping the requests we are processing
 908			 * in port[] from being retired simultaneously (the
 909			 * breadcrumb will be complete before we see the
 910			 * context-switch). As we only hold the reference to the
 911			 * request, any pointer chasing underneath the request
 912			 * is subject to a potential use-after-free. Thus we
 913			 * store all of the bookkeeping within port[] as
 914			 * required, and avoid using unguarded pointers beneath
 915			 * request itself. The same applies to the atomic
 916			 * status notifier.
 917			 */
 918
 919			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
 920			GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
 921				  engine->name, head,
 922				  status, buf[2*head + 1],
 923				  execlists->active);
 924
 925			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
 926				      GEN8_CTX_STATUS_PREEMPTED))
 927				execlists_set_active(execlists,
 928						     EXECLISTS_ACTIVE_HWACK);
 929			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
 930				execlists_clear_active(execlists,
 931						       EXECLISTS_ACTIVE_HWACK);
 932
 933			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
 934				continue;
 935
 936			/* We should never get a COMPLETED | IDLE_ACTIVE! */
 937			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
 938
 939			if (status & GEN8_CTX_STATUS_COMPLETE &&
 940			    buf[2*head + 1] == execlists->preempt_complete_status) {
 941				GEM_TRACE("%s preempt-idle\n", engine->name);
 942
 943				execlists_cancel_port_requests(execlists);
 944				execlists_unwind_incomplete_requests(execlists);
 945
 946				GEM_BUG_ON(!execlists_is_active(execlists,
 947								EXECLISTS_ACTIVE_PREEMPT));
 948				execlists_clear_active(execlists,
 949						       EXECLISTS_ACTIVE_PREEMPT);
 950				continue;
 951			}
 952
 953			if (status & GEN8_CTX_STATUS_PREEMPTED &&
 954			    execlists_is_active(execlists,
 955						EXECLISTS_ACTIVE_PREEMPT))
 956				continue;
 957
 958			GEM_BUG_ON(!execlists_is_active(execlists,
 959							EXECLISTS_ACTIVE_USER));
 960
 961			rq = port_unpack(port, &count);
 962			GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x, prio=%d\n",
 963				  engine->name,
 964				  port->context_id, count,
 965				  rq ? rq->global_seqno : 0,
 966				  rq ? rq_prio(rq) : 0);
 967
 968			/* Check the context/desc id for this event matches */
 969			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
 970
 971			GEM_BUG_ON(count == 0);
 972			if (--count == 0) {
 973				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
 974				GEM_BUG_ON(port_isset(&port[1]) &&
 975					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
 976				GEM_BUG_ON(!i915_request_completed(rq));
 977				execlists_context_schedule_out(rq);
 978				trace_i915_request_out(rq);
 979				i915_request_put(rq);
 980
 981				GEM_TRACE("%s completed ctx=%d\n",
 982					  engine->name, port->context_id);
 983
 984				execlists_port_complete(execlists, port);
 985			} else {
 986				port_set(port, port_pack(rq, count));
 987			}
 988
 989			/* After the final element, the hw should be idle */
 990			GEM_BUG_ON(port_count(port) == 0 &&
 991				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
 992			if (port_count(port) == 0)
 993				execlists_clear_active(execlists,
 994						       EXECLISTS_ACTIVE_USER);
 995		}
 996
 997		if (head != execlists->csb_head) {
 998			execlists->csb_head = head;
 999			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
1000			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
1001		}
1002	}
1003
1004	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
1005		execlists_dequeue(engine);
 
1006
1007	if (fw)
1008		intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
 
 
 
 
 
1009
1010	/* If the engine is now idle, so should be the flag; and vice versa. */
1011	GEM_BUG_ON(execlists_is_active(&engine->execlists,
1012				       EXECLISTS_ACTIVE_USER) ==
1013		   !port_isset(engine->execlists.port));
1014}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015
1016static void queue_request(struct intel_engine_cs *engine,
1017			  struct i915_priotree *pt,
1018			  int prio)
1019{
1020	list_add_tail(&pt->link, &lookup_priolist(engine, pt, prio)->requests);
1021}
1022
1023static void submit_queue(struct intel_engine_cs *engine, int prio)
1024{
1025	if (prio > engine->execlists.queue_priority) {
1026		engine->execlists.queue_priority = prio;
1027		tasklet_hi_schedule(&engine->execlists.tasklet);
1028	}
 
 
1029}
1030
1031static void execlists_submit_request(struct i915_request *request)
 
 
 
 
 
 
 
 
 
 
 
 
 
1032{
1033	struct intel_engine_cs *engine = request->engine;
1034	unsigned long flags;
1035
1036	/* Will be called from irq-context when using foreign fences. */
1037	spin_lock_irqsave(&engine->timeline->lock, flags);
1038
1039	queue_request(engine, &request->priotree, rq_prio(request));
1040	submit_queue(engine, rq_prio(request));
 
 
1041
1042	GEM_BUG_ON(!engine->execlists.first);
1043	GEM_BUG_ON(list_empty(&request->priotree.link));
 
1044
1045	spin_unlock_irqrestore(&engine->timeline->lock, flags);
 
1046}
1047
1048static struct i915_request *pt_to_request(struct i915_priotree *pt)
1049{
1050	return container_of(pt, struct i915_request, priotree);
 
 
 
 
 
 
 
 
 
 
1051}
1052
1053static struct intel_engine_cs *
1054pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
1055{
1056	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057
1058	GEM_BUG_ON(!locked);
 
 
 
 
 
 
 
1059
1060	if (engine != locked) {
1061		spin_unlock(&locked->timeline->lock);
1062		spin_lock(&engine->timeline->lock);
1063	}
1064
1065	return engine;
1066}
 
1067
1068static void execlists_schedule(struct i915_request *request, int prio)
1069{
1070	struct intel_engine_cs *engine;
1071	struct i915_dependency *dep, *p;
1072	struct i915_dependency stack;
1073	LIST_HEAD(dfs);
1074
1075	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
 
 
 
 
1076
1077	if (i915_request_completed(request))
1078		return;
1079
1080	if (prio <= READ_ONCE(request->priotree.priority))
1081		return;
1082
1083	/* Need BKL in order to use the temporary link inside i915_dependency */
1084	lockdep_assert_held(&request->i915->drm.struct_mutex);
 
1085
1086	stack.signaler = &request->priotree;
1087	list_add(&stack.dfs_link, &dfs);
1088
1089	/*
1090	 * Recursively bump all dependent priorities to match the new request.
1091	 *
1092	 * A naive approach would be to use recursion:
1093	 * static void update_priorities(struct i915_priotree *pt, prio) {
1094	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
1095	 *		update_priorities(dep->signal, prio)
1096	 *	queue_request(pt);
1097	 * }
1098	 * but that may have unlimited recursion depth and so runs a very
1099	 * real risk of overunning the kernel stack. Instead, we build
1100	 * a flat list of all dependencies starting with the current request.
1101	 * As we walk the list of dependencies, we add all of its dependencies
1102	 * to the end of the list (this may include an already visited
1103	 * request) and continue to walk onwards onto the new dependencies. The
1104	 * end result is a topological list of requests in reverse order, the
1105	 * last element in the list is the request we must execute first.
1106	 */
1107	list_for_each_entry(dep, &dfs, dfs_link) {
1108		struct i915_priotree *pt = dep->signaler;
1109
1110		/*
1111		 * Within an engine, there can be no cycle, but we may
1112		 * refer to the same dependency chain multiple times
1113		 * (redundant dependencies are not eliminated) and across
1114		 * engines.
1115		 */
1116		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1117			GEM_BUG_ON(p == dep); /* no cycles! */
1118
1119			if (i915_priotree_signaled(p->signaler))
1120				continue;
 
 
1121
1122			GEM_BUG_ON(p->signaler->priority < pt->priority);
1123			if (prio > READ_ONCE(p->signaler->priority))
1124				list_move_tail(&p->dfs_link, &dfs);
1125		}
1126	}
1127
1128	/*
1129	 * If we didn't need to bump any existing priorities, and we haven't
1130	 * yet submitted this request (i.e. there is no potential race with
1131	 * execlists_submit_request()), we can set our own priority and skip
1132	 * acquiring the engine locks.
1133	 */
1134	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1135		GEM_BUG_ON(!list_empty(&request->priotree.link));
1136		request->priotree.priority = prio;
1137		if (stack.dfs_link.next == stack.dfs_link.prev)
1138			return;
1139		__list_del_entry(&stack.dfs_link);
1140	}
1141
1142	engine = request->engine;
1143	spin_lock_irq(&engine->timeline->lock);
 
 
1144
1145	/* Fifo and depth-first replacement ensure our deps execute before us */
1146	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1147		struct i915_priotree *pt = dep->signaler;
1148
1149		INIT_LIST_HEAD(&dep->dfs_link);
 
 
 
1150
1151		engine = pt_lock_engine(pt, engine);
 
 
 
1152
1153		if (prio <= pt->priority)
1154			continue;
1155
1156		pt->priority = prio;
1157		if (!list_empty(&pt->link)) {
1158			__list_del_entry(&pt->link);
1159			queue_request(engine, pt, prio);
1160		}
1161		submit_queue(engine, prio);
 
 
 
 
1162	}
1163
1164	spin_unlock_irq(&engine->timeline->lock);
1165}
1166
1167static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1168{
1169	unsigned int flags;
1170	int err;
1171
1172	/*
1173	 * Clear this page out of any CPU caches for coherent swap-in/out.
1174	 * We only want to do this on the first bind so that we do not stall
1175	 * on an active context (which by nature is already on the GPU).
1176	 */
1177	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1178		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1179		if (err)
1180			return err;
1181	}
1182
1183	flags = PIN_GLOBAL | PIN_HIGH;
1184	if (ctx->ggtt_offset_bias)
1185		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1186
1187	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
 
1188}
1189
1190static struct intel_ring *
1191execlists_context_pin(struct intel_engine_cs *engine,
1192		      struct i915_gem_context *ctx)
1193{
1194	struct intel_context *ce = &ctx->engine[engine->id];
1195	void *vaddr;
 
 
 
 
1196	int ret;
1197
1198	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1199
1200	if (likely(ce->pin_count++))
1201		goto out;
1202	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1203
1204	ret = execlists_context_deferred_alloc(ctx, engine);
1205	if (ret)
1206		goto err;
1207	GEM_BUG_ON(!ce->state);
1208
1209	ret = __context_pin(ctx, ce->state);
 
1210	if (ret)
1211		goto err;
1212
1213	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1214	if (IS_ERR(vaddr)) {
1215		ret = PTR_ERR(vaddr);
1216		goto unpin_vma;
1217	}
1218
1219	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1220	if (ret)
1221		goto unpin_map;
1222
1223	intel_lr_context_descriptor_update(ctx, engine);
 
 
 
 
 
 
 
 
 
1224
1225	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1226	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1227		i915_ggtt_offset(ce->ring->vma);
1228
1229	ce->state->obj->pin_global++;
1230	i915_gem_context_get(ctx);
1231out:
1232	return ce->ring;
1233
1234unpin_map:
1235	i915_gem_object_unpin_map(ce->state->obj);
1236unpin_vma:
1237	__i915_vma_unpin(ce->state);
1238err:
1239	ce->pin_count = 0;
1240	return ERR_PTR(ret);
1241}
1242
1243static void execlists_context_unpin(struct intel_engine_cs *engine,
1244				    struct i915_gem_context *ctx)
1245{
1246	struct intel_context *ce = &ctx->engine[engine->id];
 
 
 
 
 
1247
1248	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1249	GEM_BUG_ON(ce->pin_count == 0);
 
1250
1251	if (--ce->pin_count)
1252		return;
 
 
1253
1254	intel_ring_unpin(ce->ring);
 
 
 
1255
1256	ce->state->obj->pin_global--;
1257	i915_gem_object_unpin_map(ce->state->obj);
1258	i915_vma_unpin(ce->state);
 
 
 
 
 
1259
1260	i915_gem_context_put(ctx);
 
1261}
1262
1263static int execlists_request_alloc(struct i915_request *request)
1264{
1265	struct intel_engine_cs *engine = request->engine;
1266	struct intel_context *ce = &request->ctx->engine[engine->id];
1267	int ret;
 
 
 
1268
1269	GEM_BUG_ON(!ce->pin_count);
 
1270
1271	/* Flush enough space to reduce the likelihood of waiting after
1272	 * we start building the request - in which case we will just
1273	 * have to repeat work.
1274	 */
1275	request->reserved_space += EXECLISTS_REQUEST_SIZE;
1276
1277	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1278	if (ret)
1279		return ret;
1280
1281	/* Note that after this point, we have committed to using
1282	 * this request as it is being used to both track the
1283	 * state of engine initialisation and liveness of the
1284	 * golden renderstate above. Think twice before you try
1285	 * to cancel/unwind this request now.
1286	 */
 
 
 
 
 
 
 
1287
1288	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1289	return 0;
1290}
1291
 
 
 
 
 
 
 
 
 
 
 
 
1292/*
1293 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1294 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1295 * but there is a slight complication as this is applied in WA batch where the
1296 * values are only initialized once so we cannot take register value at the
1297 * beginning and reuse it further; hence we save its value to memory, upload a
1298 * constant value with bit21 set and then we restore it back with the saved value.
1299 * To simplify the WA, a constant value is formed by using the default value
1300 * of this register. This shouldn't be a problem because we are only modifying
1301 * it for a short period and this batch in non-premptible. We can ofcourse
1302 * use additional instructions that read the actual value of the register
1303 * at that time and set our bit of interest but it makes the WA complicated.
1304 *
1305 * This WA is also required for Gen9 so extracting as a function avoids
1306 * code duplication.
1307 */
1308static u32 *
1309gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310{
1311	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1312	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1313	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
1314	*batch++ = 0;
1315
1316	*batch++ = MI_LOAD_REGISTER_IMM(1);
1317	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1318	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1319
1320	batch = gen8_emit_pipe_control(batch,
1321				       PIPE_CONTROL_CS_STALL |
1322				       PIPE_CONTROL_DC_FLUSH_ENABLE,
1323				       0);
1324
1325	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1326	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1327	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
1328	*batch++ = 0;
1329
1330	return batch;
 
 
 
1331}
1332
1333/*
1334 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1335 * initialized at the beginning and shared across all contexts but this field
1336 * helps us to have multiple batches at different offsets and select them based
1337 * on a criteria. At the moment this batch always start at the beginning of the page
1338 * and at this point we don't have multiple wa_ctx batch buffers.
1339 *
1340 * The number of WA applied are not known at the beginning; we use this field
1341 * to return the no of DWORDS written.
1342 *
1343 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1344 * so it adds NOOPs as padding to make it cacheline aligned.
1345 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1346 * makes a complete batch buffer.
 
 
 
 
 
 
 
 
 
 
 
 
1347 */
1348static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
 
 
 
 
1349{
 
 
 
1350	/* WaDisableCtxRestoreArbitration:bdw,chv */
1351	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1352
1353	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1354	if (IS_BROADWELL(engine->i915))
1355		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
 
 
 
 
1356
1357	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1358	/* Actual scratch location is at 128 bytes offset */
1359	batch = gen8_emit_pipe_control(batch,
1360				       PIPE_CONTROL_FLUSH_L3 |
1361				       PIPE_CONTROL_GLOBAL_GTT_IVB |
1362				       PIPE_CONTROL_CS_STALL |
1363				       PIPE_CONTROL_QW_WRITE,
1364				       i915_ggtt_offset(engine->scratch) +
1365				       2 * CACHELINE_BYTES);
1366
1367	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
 
 
 
 
 
 
 
 
1368
1369	/* Pad to end of cacheline */
1370	while ((unsigned long)batch % CACHELINE_BYTES)
1371		*batch++ = MI_NOOP;
1372
1373	/*
1374	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1375	 * execution depends on the length specified in terms of cache lines
1376	 * in the register CTX_RCS_INDIRECT_CTX
1377	 */
1378
1379	return batch;
1380}
1381
1382static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1383{
1384	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1385
1386	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1387	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1388
1389	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1390	*batch++ = MI_LOAD_REGISTER_IMM(1);
1391	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1392	*batch++ = _MASKED_BIT_DISABLE(
1393			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1394	*batch++ = MI_NOOP;
1395
1396	/* WaClearSlmSpaceAtContextSwitch:kbl */
1397	/* Actual scratch location is at 128 bytes offset */
1398	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1399		batch = gen8_emit_pipe_control(batch,
1400					       PIPE_CONTROL_FLUSH_L3 |
1401					       PIPE_CONTROL_GLOBAL_GTT_IVB |
1402					       PIPE_CONTROL_CS_STALL |
1403					       PIPE_CONTROL_QW_WRITE,
1404					       i915_ggtt_offset(engine->scratch)
1405					       + 2 * CACHELINE_BYTES);
1406	}
1407
1408	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1409	if (HAS_POOLED_EU(engine->i915)) {
1410		/*
1411		 * EU pool configuration is setup along with golden context
1412		 * during context initialization. This value depends on
1413		 * device type (2x6 or 3x6) and needs to be updated based
1414		 * on which subslice is disabled especially for 2x6
1415		 * devices, however it is safe to load default
1416		 * configuration of 3x6 device instead of masking off
1417		 * corresponding bits because HW ignores bits of a disabled
1418		 * subslice and drops down to appropriate config. Please
1419		 * see render_state_setup() in i915_gem_render_state.c for
1420		 * possible configurations, to avoid duplication they are
1421		 * not shown here again.
1422		 */
1423		*batch++ = GEN9_MEDIA_POOL_STATE;
1424		*batch++ = GEN9_MEDIA_POOL_ENABLE;
1425		*batch++ = 0x00777000;
1426		*batch++ = 0;
1427		*batch++ = 0;
1428		*batch++ = 0;
1429	}
1430
1431	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
 
 
 
 
 
 
 
 
 
1432
1433	/* Pad to end of cacheline */
1434	while ((unsigned long)batch % CACHELINE_BYTES)
1435		*batch++ = MI_NOOP;
1436
1437	return batch;
1438}
1439
1440static u32 *
1441gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
 
 
1442{
1443	int i;
 
 
 
 
 
 
 
 
 
 
 
1444
1445	/*
1446	 * WaPipeControlBefore3DStateSamplePattern: cnl
1447	 *
1448	 * Ensure the engine is idle prior to programming a
1449	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
1450	 */
1451	batch = gen8_emit_pipe_control(batch,
1452				       PIPE_CONTROL_CS_STALL,
1453				       0);
1454	/*
1455	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1456	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1457	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1458	 * confusing. Since gen8_emit_pipe_control() already advances the
1459	 * batch by 6 dwords, we advance the other 10 here, completing a
1460	 * cacheline. It's not clear if the workaround requires this padding
1461	 * before other commands, or if it's just the regular padding we would
1462	 * already have for the workaround bb, so leave it here for now.
1463	 */
1464	for (i = 0; i < 10; i++)
1465		*batch++ = MI_NOOP;
1466
1467	/* Pad to end of cacheline */
1468	while ((unsigned long)batch % CACHELINE_BYTES)
1469		*batch++ = MI_NOOP;
1470
1471	return batch;
1472}
1473
1474#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1475
1476static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1477{
1478	struct drm_i915_gem_object *obj;
1479	struct i915_vma *vma;
1480	int err;
1481
1482	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1483	if (IS_ERR(obj))
1484		return PTR_ERR(obj);
 
 
1485
1486	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1487	if (IS_ERR(vma)) {
1488		err = PTR_ERR(vma);
1489		goto err;
 
 
1490	}
1491
1492	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1493	if (err)
1494		goto err;
1495
1496	engine->wa_ctx.vma = vma;
1497	return 0;
1498
1499err:
1500	i915_gem_object_put(obj);
1501	return err;
1502}
1503
1504static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1505{
1506	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
 
 
 
 
1507}
1508
1509typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1510
1511static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1512{
1513	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1514	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1515					    &wa_ctx->per_ctx };
1516	wa_bb_func_t wa_bb_fn[2];
1517	struct page *page;
1518	void *batch, *batch_ptr;
1519	unsigned int i;
1520	int ret;
1521
1522	if (GEM_WARN_ON(engine->id != RCS))
1523		return -EINVAL;
1524
1525	switch (INTEL_GEN(engine->i915)) {
1526	case 10:
1527		wa_bb_fn[0] = gen10_init_indirectctx_bb;
1528		wa_bb_fn[1] = NULL;
1529		break;
1530	case 9:
1531		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1532		wa_bb_fn[1] = NULL;
1533		break;
1534	case 8:
1535		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1536		wa_bb_fn[1] = NULL;
1537		break;
1538	default:
1539		MISSING_CASE(INTEL_GEN(engine->i915));
1540		return 0;
1541	}
1542
1543	ret = lrc_setup_wa_ctx(engine);
 
 
 
 
 
 
1544	if (ret) {
1545		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1546		return ret;
1547	}
1548
1549	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1550	batch = batch_ptr = kmap_atomic(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1551
1552	/*
1553	 * Emit the two workaround batch buffers, recording the offset from the
1554	 * start of the workaround batch buffer object for each and their
1555	 * respective sizes.
1556	 */
1557	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1558		wa_bb[i]->offset = batch_ptr - batch;
1559		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1560					    CACHELINE_BYTES))) {
1561			ret = -EINVAL;
1562			break;
1563		}
1564		if (wa_bb_fn[i])
1565			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1566		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1567	}
1568
1569	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1570
1571	kunmap_atomic(batch);
1572	if (ret)
1573		lrc_destroy_wa_ctx(engine);
1574
1575	return ret;
1576}
1577
1578static u8 gtiir[] = {
1579	[RCS] = 0,
1580	[BCS] = 0,
1581	[VCS] = 1,
1582	[VCS2] = 1,
1583	[VECS] = 3,
1584};
 
1585
1586static void enable_execlists(struct intel_engine_cs *engine)
1587{
1588	struct drm_i915_private *dev_priv = engine->i915;
1589
1590	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
 
 
 
1591
1592	/*
1593	 * Make sure we're not enabling the new 12-deep CSB
1594	 * FIFO as that requires a slightly updated handling
1595	 * in the ctx switch irq. Since we're currently only
1596	 * using only 2 elements of the enhanced execlists the
1597	 * deeper FIFO it's not needed and it's not worth adding
1598	 * more statements to the irq handler to support it.
 
 
 
 
1599	 */
1600	if (INTEL_GEN(dev_priv) >= 11)
1601		I915_WRITE(RING_MODE_GEN7(engine),
1602			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1603	else
1604		I915_WRITE(RING_MODE_GEN7(engine),
1605			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1606
1607	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1608		   engine->status_page.ggtt_offset);
1609	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1610
1611	/* Following the reset, we need to reload the CSB read/write pointers */
1612	engine->execlists.csb_head = -1;
1613}
1614
1615static int gen8_init_common_ring(struct intel_engine_cs *engine)
1616{
1617	struct intel_engine_execlists * const execlists = &engine->execlists;
1618	int ret;
1619
1620	ret = intel_mocs_init_engine(engine);
1621	if (ret)
1622		return ret;
1623
1624	intel_engine_reset_breadcrumbs(engine);
1625	intel_engine_init_hangcheck(engine);
1626
1627	enable_execlists(engine);
1628
1629	/* After a GPU reset, we may have requests to replay */
1630	if (execlists->first)
1631		tasklet_schedule(&execlists->tasklet);
1632
1633	return 0;
1634}
1635
1636static int gen8_init_render_ring(struct intel_engine_cs *engine)
1637{
1638	struct drm_i915_private *dev_priv = engine->i915;
 
1639	int ret;
1640
1641	ret = gen8_init_common_ring(engine);
1642	if (ret)
1643		return ret;
1644
1645	/* We need to disable the AsyncFlip performance optimisations in order
1646	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1647	 * programmed to '1' on all products.
1648	 *
1649	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1650	 */
1651	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1652
1653	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1654
1655	return init_workarounds_ring(engine);
1656}
1657
1658static int gen9_init_render_ring(struct intel_engine_cs *engine)
1659{
1660	int ret;
1661
1662	ret = gen8_init_common_ring(engine);
1663	if (ret)
1664		return ret;
1665
1666	return init_workarounds_ring(engine);
1667}
1668
1669static void reset_irq(struct intel_engine_cs *engine)
1670{
1671	struct drm_i915_private *dev_priv = engine->i915;
1672	int i;
 
 
 
1673
1674	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
1675
1676	/*
1677	 * Clear any pending interrupt state.
1678	 *
1679	 * We do it twice out of paranoia that some of the IIR are double
1680	 * buffered, and if we only reset it once there may still be
1681	 * an interrupt pending.
1682	 */
1683	for (i = 0; i < 2; i++) {
1684		I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1685			   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1686		POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
1687	}
1688	GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
1689		   (GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift));
1690
1691	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1692}
1693
1694static void reset_common_ring(struct intel_engine_cs *engine,
1695			      struct i915_request *request)
1696{
1697	struct intel_engine_execlists * const execlists = &engine->execlists;
1698	struct intel_context *ce;
1699	unsigned long flags;
1700
1701	GEM_TRACE("%s seqno=%x\n",
1702		  engine->name, request ? request->global_seqno : 0);
1703
1704	/* See execlists_cancel_requests() for the irq/spinlock split. */
1705	local_irq_save(flags);
1706
1707	reset_irq(engine);
1708
1709	/*
1710	 * Catch up with any missed context-switch interrupts.
1711	 *
1712	 * Ideally we would just read the remaining CSB entries now that we
1713	 * know the gpu is idle. However, the CSB registers are sometimes^W
1714	 * often trashed across a GPU reset! Instead we have to rely on
1715	 * guessing the missed context-switch events by looking at what
1716	 * requests were completed.
1717	 */
1718	execlists_cancel_port_requests(execlists);
1719
1720	/* Push back any incomplete requests for replay after the reset. */
1721	spin_lock(&engine->timeline->lock);
1722	__unwind_incomplete_requests(engine);
1723	spin_unlock(&engine->timeline->lock);
1724
1725	/* Mark all CS interrupts as complete */
1726	execlists->active = 0;
1727
1728	local_irq_restore(flags);
1729
1730	/*
1731	 * If the request was innocent, we leave the request in the ELSP
1732	 * and will try to replay it on restarting. The context image may
1733	 * have been corrupted by the reset, in which case we may have
1734	 * to service a new GPU hang, but more likely we can continue on
1735	 * without impact.
1736	 *
1737	 * If the request was guilty, we presume the context is corrupt
1738	 * and have to at least restore the RING register in the context
1739	 * image back to the expected values to skip over the guilty request.
1740	 */
1741	if (!request || request->fence.error != -EIO)
1742		return;
1743
1744	/*
1745	 * We want a simple context + ring to execute the breadcrumb update.
1746	 * We cannot rely on the context being intact across the GPU hang,
1747	 * so clear it and rebuild just what we need for the breadcrumb.
1748	 * All pending requests for this context will be zapped, and any
1749	 * future request will be after userspace has had the opportunity
1750	 * to recreate its own state.
1751	 */
1752	ce = &request->ctx->engine[engine->id];
1753	execlists_init_reg_state(ce->lrc_reg_state,
1754				 request->ctx, engine, ce->ring);
1755
1756	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1757	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1758		i915_ggtt_offset(ce->ring->vma);
1759	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1760
1761	request->ring->head = request->postfix;
1762	intel_ring_update_space(request->ring);
1763
1764	/* Reset WaIdleLiteRestore:bdw,skl as well */
1765	unwind_wa_tail(request);
1766}
1767
1768static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1769{
1770	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
1771	struct intel_engine_cs *engine = rq->engine;
1772	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1773	u32 *cs;
1774	int i;
1775
1776	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1777	if (IS_ERR(cs))
1778		return PTR_ERR(cs);
1779
1780	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1781	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1782		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1783
1784		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1785		*cs++ = upper_32_bits(pd_daddr);
1786		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1787		*cs++ = lower_32_bits(pd_daddr);
1788	}
1789
1790	*cs++ = MI_NOOP;
1791	intel_ring_advance(rq, cs);
1792
1793	return 0;
1794}
1795
1796static int gen8_emit_bb_start(struct i915_request *rq,
1797			      u64 offset, u32 len,
1798			      const unsigned int flags)
1799{
1800	u32 *cs;
 
1801	int ret;
1802
1803	/* Don't rely in hw updating PDPs, specially in lite-restore.
1804	 * Ideally, we should set Force PD Restore in ctx descriptor,
1805	 * but we can't. Force Restore would be a second option, but
1806	 * it is unsafe in case of lite-restore (because the ctx is
1807	 * not idle). PML4 is allocated during ppgtt init so this is
1808	 * not needed in 48-bit.*/
1809	if (rq->ctx->ppgtt &&
1810	    (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
1811	    !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
1812	    !intel_vgpu_active(rq->i915)) {
1813		ret = intel_logical_ring_emit_pdps(rq);
1814		if (ret)
1815			return ret;
 
1816
1817		rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1818	}
1819
1820	cs = intel_ring_begin(rq, 4);
1821	if (IS_ERR(cs))
1822		return PTR_ERR(cs);
1823
1824	/*
1825	 * WaDisableCtxRestoreArbitration:bdw,chv
1826	 *
1827	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
1828	 * particular all the gen that do not need the w/a at all!), if we
1829	 * took care to make sure that on every switch into this context
1830	 * (both ordinary and for preemption) that arbitrartion was enabled
1831	 * we would be fine. However, there doesn't seem to be a downside to
1832	 * being paranoid and making sure it is set before each batch and
1833	 * every context-switch.
1834	 *
1835	 * Note that if we fail to enable arbitration before the request
1836	 * is complete, then we do not see the context-switch interrupt and
1837	 * the engine hangs (with RING_HEAD == RING_TAIL).
1838	 *
1839	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1840	 */
1841	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1842
1843	/* FIXME(BDW): Address space and security selectors. */
1844	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
1845		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1846		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1847	*cs++ = lower_32_bits(offset);
1848	*cs++ = upper_32_bits(offset);
1849	intel_ring_advance(rq, cs);
 
 
1850
1851	return 0;
1852}
1853
1854static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1855{
1856	struct drm_i915_private *dev_priv = engine->i915;
1857	I915_WRITE_IMR(engine,
1858		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
1859	POSTING_READ_FW(RING_IMR(engine->mmio_base));
 
 
 
 
 
 
 
 
 
 
 
1860}
1861
1862static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1863{
1864	struct drm_i915_private *dev_priv = engine->i915;
1865	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1866}
1867
1868static int gen8_emit_flush(struct i915_request *request, u32 mode)
1869{
1870	u32 cmd, *cs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1871
1872	cs = intel_ring_begin(request, 4);
1873	if (IS_ERR(cs))
1874		return PTR_ERR(cs);
1875
1876	cmd = MI_FLUSH_DW + 1;
1877
1878	/* We always require a command barrier so that subsequent
1879	 * commands, such as breadcrumb interrupts, are strictly ordered
1880	 * wrt the contents of the write cache being flushed to memory
1881	 * (and thus being coherent from the CPU).
1882	 */
1883	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1884
1885	if (mode & EMIT_INVALIDATE) {
1886		cmd |= MI_INVALIDATE_TLB;
1887		if (request->engine->id == VCS)
1888			cmd |= MI_INVALIDATE_BSD;
1889	}
1890
1891	*cs++ = cmd;
1892	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1893	*cs++ = 0; /* upper addr */
1894	*cs++ = 0; /* value */
1895	intel_ring_advance(request, cs);
 
 
1896
1897	return 0;
1898}
1899
1900static int gen8_emit_flush_render(struct i915_request *request,
1901				  u32 mode)
1902{
1903	struct intel_engine_cs *engine = request->engine;
1904	u32 scratch_addr =
1905		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1906	bool vf_flush_wa = false, dc_flush_wa = false;
1907	u32 *cs, flags = 0;
1908	int len;
 
1909
1910	flags |= PIPE_CONTROL_CS_STALL;
1911
1912	if (mode & EMIT_FLUSH) {
1913		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1914		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1915		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1916		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1917	}
1918
1919	if (mode & EMIT_INVALIDATE) {
1920		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1921		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1922		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1923		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1924		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1925		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1926		flags |= PIPE_CONTROL_QW_WRITE;
1927		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1928
1929		/*
1930		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1931		 * pipe control.
1932		 */
1933		if (IS_GEN9(request->i915))
1934			vf_flush_wa = true;
 
1935
1936		/* WaForGAMHang:kbl */
1937		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1938			dc_flush_wa = true;
1939	}
1940
1941	len = 6;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1942
1943	if (vf_flush_wa)
1944		len += 6;
1945
1946	if (dc_flush_wa)
1947		len += 12;
 
 
1948
1949	cs = intel_ring_begin(request, len);
1950	if (IS_ERR(cs))
1951		return PTR_ERR(cs);
 
1952
1953	if (vf_flush_wa)
1954		cs = gen8_emit_pipe_control(cs, 0, 0);
1955
1956	if (dc_flush_wa)
1957		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1958					    0);
 
 
 
 
 
 
 
1959
1960	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
 
1961
1962	if (dc_flush_wa)
1963		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1964
1965	intel_ring_advance(request, cs);
 
 
1966
1967	return 0;
 
1968}
1969
1970/*
1971 * Reserve space for 2 NOOPs at the end of each request to be
1972 * used as a workaround for not being allowed to do lite
1973 * restore with HEAD==TAIL (WaIdleLiteRestore).
1974 */
1975static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
 
 
1976{
1977	/* Ensure there's always at least one preemption point per-request. */
1978	*cs++ = MI_ARB_CHECK;
1979	*cs++ = MI_NOOP;
1980	request->wa_tail = intel_ring_offset(request, cs);
1981}
1982
1983static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
1984{
 
 
 
 
 
 
 
1985	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1986	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1987
1988	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
1989				  intel_hws_seqno_address(request->engine));
1990	*cs++ = MI_USER_INTERRUPT;
1991	*cs++ = MI_NOOP;
1992	request->tail = intel_ring_offset(request, cs);
1993	assert_ring_tail_valid(request->ring, request->tail);
1994
1995	gen8_emit_wa_tail(request, cs);
 
 
1996}
1997static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1998
1999static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2000{
 
 
 
 
 
 
 
2001	/* We're using qword write, seqno should be aligned to 8 bytes. */
2002	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
2003
2004	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
2005				      intel_hws_seqno_address(request->engine));
2006	*cs++ = MI_USER_INTERRUPT;
2007	*cs++ = MI_NOOP;
2008	request->tail = intel_ring_offset(request, cs);
2009	assert_ring_tail_valid(request->ring, request->tail);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2010
2011	gen8_emit_wa_tail(request, cs);
 
 
 
 
 
 
 
 
 
 
2012}
2013static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2014
2015static int gen8_init_rcs_context(struct i915_request *rq)
2016{
2017	int ret;
2018
2019	ret = intel_ring_workarounds_emit(rq);
2020	if (ret)
2021		return ret;
2022
2023	ret = intel_rcs_context_init_mocs(rq);
2024	/*
2025	 * Failing to program the MOCS is non-fatal.The system will not
2026	 * run at peak performance. So generate an error and carry on.
2027	 */
2028	if (ret)
2029		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2030
2031	return i915_gem_render_state_emit(rq);
2032}
2033
2034/**
2035 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2036 * @engine: Engine Command Streamer.
 
 
2037 */
2038void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2039{
2040	struct drm_i915_private *dev_priv;
2041
2042	/*
2043	 * Tasklet cannot be active at this point due intel_mark_active/idle
2044	 * so this is just for documentation.
2045	 */
2046	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2047			     &engine->execlists.tasklet.state)))
2048		tasklet_kill(&engine->execlists.tasklet);
2049
2050	dev_priv = engine->i915;
2051
2052	if (engine->buffer) {
2053		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
 
2054	}
2055
2056	if (engine->cleanup)
2057		engine->cleanup(engine);
2058
2059	intel_engine_cleanup_common(engine);
 
2060
2061	lrc_destroy_wa_ctx(engine);
2062
2063	engine->i915 = NULL;
2064	dev_priv->engine[engine->id] = NULL;
2065	kfree(engine);
2066}
2067
2068static void execlists_set_default_submission(struct intel_engine_cs *engine)
2069{
2070	engine->submit_request = execlists_submit_request;
2071	engine->cancel_requests = execlists_cancel_requests;
2072	engine->schedule = execlists_schedule;
2073	engine->execlists.tasklet.func = execlists_submission_tasklet;
2074
2075	engine->park = NULL;
2076	engine->unpark = NULL;
2077
2078	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2079
2080	engine->i915->caps.scheduler =
2081		I915_SCHEDULER_CAP_ENABLED |
2082		I915_SCHEDULER_CAP_PRIORITY;
2083	if (engine->i915->preempt_context)
2084		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2085}
2086
2087static void
2088logical_ring_default_vfuncs(struct intel_engine_cs *engine)
 
2089{
2090	/* Default vfuncs which can be overriden by each engine. */
2091	engine->init_hw = gen8_init_common_ring;
2092	engine->reset_hw = reset_common_ring;
2093
2094	engine->context_pin = execlists_context_pin;
2095	engine->context_unpin = execlists_context_unpin;
2096
2097	engine->request_alloc = execlists_request_alloc;
2098
2099	engine->emit_flush = gen8_emit_flush;
2100	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2101	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2102
2103	engine->set_default_submission = execlists_set_default_submission;
2104
2105	if (INTEL_GEN(engine->i915) < 11) {
2106		engine->irq_enable = gen8_logical_ring_enable_irq;
2107		engine->irq_disable = gen8_logical_ring_disable_irq;
2108	} else {
2109		/*
2110		 * TODO: On Gen11 interrupt masks need to be clear
2111		 * to allow C6 entry. Keep interrupts enabled at
2112		 * and take the hit of generating extra interrupts
2113		 * until a more refined solution exists.
2114		 */
2115	}
2116	engine->emit_bb_start = gen8_emit_bb_start;
2117}
2118
2119static inline void
2120logical_ring_default_irqs(struct intel_engine_cs *engine)
2121{
2122	unsigned shift = engine->irq_shift;
2123	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2124	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2125}
2126
2127static void
2128logical_ring_setup(struct intel_engine_cs *engine)
2129{
2130	struct drm_i915_private *dev_priv = engine->i915;
2131	enum forcewake_domains fw_domains;
2132
2133	intel_engine_setup_common(engine);
2134
2135	/* Intentionally left blank. */
2136	engine->buffer = NULL;
2137
2138	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2139						    RING_ELSP(engine),
2140						    FW_REG_WRITE);
 
 
 
 
 
 
 
2141
2142	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2143						     RING_CONTEXT_STATUS_PTR(engine),
2144						     FW_REG_READ | FW_REG_WRITE);
2145
2146	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2147						     RING_CONTEXT_STATUS_BUF_BASE(engine),
2148						     FW_REG_READ);
2149
2150	engine->execlists.fw_domains = fw_domains;
2151
2152	tasklet_init(&engine->execlists.tasklet,
2153		     execlists_submission_tasklet, (unsigned long)engine);
2154
2155	logical_ring_default_vfuncs(engine);
2156	logical_ring_default_irqs(engine);
2157}
2158
2159static int logical_ring_init(struct intel_engine_cs *engine)
2160{
2161	int ret;
2162
2163	ret = intel_engine_init_common(engine);
2164	if (ret)
2165		goto error;
2166
2167	if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
2168		engine->execlists.submit_reg = engine->i915->regs +
2169			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2170		engine->execlists.ctrl_reg = engine->i915->regs +
2171			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2172	} else {
2173		engine->execlists.submit_reg = engine->i915->regs +
2174			i915_mmio_reg_offset(RING_ELSP(engine));
2175	}
2176
2177	engine->execlists.preempt_complete_status = ~0u;
2178	if (engine->i915->preempt_context)
2179		engine->execlists.preempt_complete_status =
2180			upper_32_bits(engine->i915->preempt_context->engine[engine->id].lrc_desc);
2181
2182	return 0;
2183
2184error:
2185	intel_logical_ring_cleanup(engine);
2186	return ret;
2187}
2188
2189int logical_render_ring_init(struct intel_engine_cs *engine)
2190{
2191	struct drm_i915_private *dev_priv = engine->i915;
 
2192	int ret;
2193
2194	logical_ring_setup(engine);
 
 
 
 
 
 
 
 
2195
2196	if (HAS_L3_DPF(dev_priv))
2197		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2198
2199	/* Override some for render ring. */
2200	if (INTEL_GEN(dev_priv) >= 9)
2201		engine->init_hw = gen9_init_render_ring;
2202	else
2203		engine->init_hw = gen8_init_render_ring;
2204	engine->init_context = gen8_init_rcs_context;
2205	engine->emit_flush = gen8_emit_flush_render;
2206	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2207	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2208
2209	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
 
 
2210	if (ret)
2211		return ret;
2212
2213	ret = intel_init_workaround_bb(engine);
2214	if (ret) {
2215		/*
2216		 * We continue even if we fail to initialize WA batch
2217		 * because we only expect rare glitches but nothing
2218		 * critical to prevent us from using GPU
2219		 */
2220		DRM_ERROR("WA batch buffer initialization failed: %d\n",
2221			  ret);
2222	}
2223
2224	return logical_ring_init(engine);
 
 
 
 
 
2225}
2226
2227int logical_xcs_ring_init(struct intel_engine_cs *engine)
2228{
2229	logical_ring_setup(engine);
 
 
 
 
 
 
 
2230
2231	return logical_ring_init(engine);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2232}
2233
2234static u32
2235make_rpcs(struct drm_i915_private *dev_priv)
2236{
2237	u32 rpcs = 0;
2238
2239	/*
2240	 * No explicit RPCS request is needed to ensure full
2241	 * slice/subslice/EU enablement prior to Gen9.
2242	*/
2243	if (INTEL_GEN(dev_priv) < 9)
2244		return 0;
2245
2246	/*
2247	 * Starting in Gen9, render power gating can leave
2248	 * slice/subslice/EU in a partially enabled state. We
2249	 * must make an explicit request through RPCS for full
2250	 * enablement.
2251	*/
2252	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2253		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2254		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2255			GEN8_RPCS_S_CNT_SHIFT;
2256		rpcs |= GEN8_RPCS_ENABLE;
2257	}
2258
2259	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2260		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2261		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2262			GEN8_RPCS_SS_CNT_SHIFT;
2263		rpcs |= GEN8_RPCS_ENABLE;
2264	}
2265
2266	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2267		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2268			GEN8_RPCS_EU_MIN_SHIFT;
2269		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2270			GEN8_RPCS_EU_MAX_SHIFT;
2271		rpcs |= GEN8_RPCS_ENABLE;
2272	}
2273
2274	return rpcs;
2275}
2276
2277static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2278{
2279	u32 indirect_ctx_offset;
2280
2281	switch (INTEL_GEN(engine->i915)) {
2282	default:
2283		MISSING_CASE(INTEL_GEN(engine->i915));
2284		/* fall through */
2285	case 11:
2286		indirect_ctx_offset =
2287			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2288		break;
2289	case 10:
2290		indirect_ctx_offset =
2291			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2292		break;
2293	case 9:
2294		indirect_ctx_offset =
2295			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2296		break;
2297	case 8:
2298		indirect_ctx_offset =
2299			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2300		break;
2301	}
2302
2303	return indirect_ctx_offset;
2304}
2305
2306static void execlists_init_reg_state(u32 *regs,
2307				     struct i915_gem_context *ctx,
2308				     struct intel_engine_cs *engine,
2309				     struct intel_ring *ring)
2310{
2311	struct drm_i915_private *dev_priv = engine->i915;
2312	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2313	u32 base = engine->mmio_base;
2314	bool rcs = engine->id == RCS;
2315
2316	/* A context is actually a big batch buffer with several
2317	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2318	 * values we are setting here are only for the first context restore:
2319	 * on a subsequent save, the GPU will recreate this batchbuffer with new
2320	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2321	 * we are not initializing here).
2322	 */
2323	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2324				 MI_LRI_FORCE_POSTED;
2325
2326	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2327		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2328				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2329		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2330				   (HAS_RESOURCE_STREAMER(dev_priv) ?
2331				   CTX_CTRL_RS_CTX_ENABLE : 0)));
2332	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2333	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2334	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2335	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2336		RING_CTL_SIZE(ring->size) | RING_VALID);
2337	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2338	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2339	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2340	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2341	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2342	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2343	if (rcs) {
2344		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2345
2346		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2347		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2348			RING_INDIRECT_CTX_OFFSET(base), 0);
2349		if (wa_ctx->indirect_ctx.size) {
2350			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2351
2352			regs[CTX_RCS_INDIRECT_CTX + 1] =
2353				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
2354				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2355
2356			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2357				intel_lr_indirect_ctx_offset(engine) << 6;
2358		}
2359
2360		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2361		if (wa_ctx->per_ctx.size) {
2362			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
 
2363
2364			regs[CTX_BB_PER_CTX_PTR + 1] =
2365				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2366		}
2367	}
2368
2369	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2370
2371	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2372	/* PDP values well be assigned later if needed */
2373	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2374	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2375	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2376	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2377	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2378	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2379	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2380	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2381
2382	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2383		/* 64b PPGTT (48bit canonical)
2384		 * PDP0_DESCRIPTOR contains the base address to PML4 and
2385		 * other PDP Descriptors are ignored.
2386		 */
2387		ASSIGN_CTX_PML4(ppgtt, regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2388	}
2389
2390	if (rcs) {
2391		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2392		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2393			make_rpcs(dev_priv));
2394
2395		i915_oa_init_reg_state(engine, ctx, regs);
2396	}
2397}
2398
2399static int
2400populate_lr_context(struct i915_gem_context *ctx,
2401		    struct drm_i915_gem_object *ctx_obj,
2402		    struct intel_engine_cs *engine,
2403		    struct intel_ring *ring)
 
 
 
 
2404{
2405	void *vaddr;
2406	u32 *regs;
2407	int ret;
 
 
 
 
 
2408
2409	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2410	if (ret) {
2411		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2412		return ret;
2413	}
2414
2415	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2416	if (IS_ERR(vaddr)) {
2417		ret = PTR_ERR(vaddr);
2418		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2419		return ret;
2420	}
2421	ctx_obj->mm.dirty = true;
2422
2423	if (engine->default_state) {
2424		/*
2425		 * We only want to copy over the template context state;
2426		 * skipping over the headers reserved for GuC communication,
2427		 * leaving those as zero.
2428		 */
2429		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2430		void *defaults;
 
 
 
 
 
 
 
 
 
2431
2432		defaults = i915_gem_object_pin_map(engine->default_state,
2433						   I915_MAP_WB);
2434		if (IS_ERR(defaults))
2435			return PTR_ERR(defaults);
2436
2437		memcpy(vaddr + start, defaults + start, engine->context_size);
2438		i915_gem_object_unpin_map(engine->default_state);
 
 
 
 
 
 
 
 
 
 
 
2439	}
2440
2441	/* The second page of the context object contains some fields which must
2442	 * be set up prior to the first execution. */
2443	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2444	execlists_init_reg_state(regs, ctx, engine, ring);
2445	if (!engine->default_state)
2446		regs[CTX_CONTEXT_CONTROL + 1] |=
2447			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2448	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2449		regs[CTX_CONTEXT_CONTROL + 1] |=
2450			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2451					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2452
2453	i915_gem_object_unpin_map(ctx_obj);
 
 
 
 
2454
2455	return 0;
 
 
 
 
 
 
 
 
 
2456}
2457
2458static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2459					    struct intel_engine_cs *engine)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2460{
 
2461	struct drm_i915_gem_object *ctx_obj;
2462	struct intel_context *ce = &ctx->engine[engine->id];
2463	struct i915_vma *vma;
2464	uint32_t context_size;
2465	struct intel_ring *ring;
2466	int ret;
2467
2468	if (ce->state)
2469		return 0;
2470
2471	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2472
2473	/*
2474	 * Before the actual start of the context image, we insert a few pages
2475	 * for our own use and for sharing with the GuC.
2476	 */
2477	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2478
2479	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2480	if (IS_ERR(ctx_obj)) {
2481		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2482		return PTR_ERR(ctx_obj);
2483	}
2484
2485	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2486	if (IS_ERR(vma)) {
2487		ret = PTR_ERR(vma);
2488		goto error_deref_obj;
2489	}
2490
2491	ring = intel_engine_create_ring(engine, ctx->ring_size);
2492	if (IS_ERR(ring)) {
2493		ret = PTR_ERR(ring);
2494		goto error_deref_obj;
2495	}
2496
2497	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2498	if (ret) {
2499		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2500		goto error_ring_free;
2501	}
2502
2503	ce->ring = ring;
2504	ce->state = vma;
 
 
 
 
 
 
 
 
 
 
2505
 
 
 
 
 
 
 
 
 
2506	return 0;
2507
2508error_ring_free:
2509	intel_ring_free(ring);
2510error_deref_obj:
2511	i915_gem_object_put(ctx_obj);
 
 
2512	return ret;
2513}
2514
2515void intel_lr_context_resume(struct drm_i915_private *dev_priv)
 
2516{
2517	struct intel_engine_cs *engine;
2518	struct i915_gem_context *ctx;
2519	enum intel_engine_id id;
2520
2521	/* Because we emit WA_TAIL_DWORDS there may be a disparity
2522	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2523	 * that stored in context. As we only write new commands from
2524	 * ce->ring->tail onwards, everything before that is junk. If the GPU
2525	 * starts reading from its RING_HEAD from the context, it may try to
2526	 * execute that junk and die.
2527	 *
2528	 * So to avoid that we reset the context images upon resume. For
2529	 * simplicity, we just zero everything out.
2530	 */
2531	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2532		for_each_engine(engine, dev_priv, id) {
2533			struct intel_context *ce = &ctx->engine[engine->id];
2534			u32 *reg;
2535
2536			if (!ce->state)
2537				continue;
2538
2539			reg = i915_gem_object_pin_map(ce->state->obj,
2540						      I915_MAP_WB);
2541			if (WARN_ON(IS_ERR(reg)))
2542				continue;
2543
2544			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2545			reg[CTX_RING_HEAD+1] = 0;
2546			reg[CTX_RING_TAIL+1] = 0;
2547
2548			ce->state->obj->mm.dirty = true;
2549			i915_gem_object_unpin_map(ce->state->obj);
 
 
 
 
 
2550
2551			intel_ring_reset(ce->ring, 0);
 
 
 
 
 
2552		}
 
 
 
 
 
 
 
 
 
 
2553	}
2554}