Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1/*
  2 * Copyright © 2016 Intel Corporation
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 21 * IN THE SOFTWARE.
 22 *
 23 */
 24
 25#include <drm/drm_print.h>
 26
 27#include "intel_device_info.h"
 28#include "i915_drv.h"
 29
 30#define PLATFORM_NAME(x) [INTEL_##x] = #x
 31static const char * const platform_names[] = {
 32	PLATFORM_NAME(I830),
 33	PLATFORM_NAME(I845G),
 34	PLATFORM_NAME(I85X),
 35	PLATFORM_NAME(I865G),
 36	PLATFORM_NAME(I915G),
 37	PLATFORM_NAME(I915GM),
 38	PLATFORM_NAME(I945G),
 39	PLATFORM_NAME(I945GM),
 40	PLATFORM_NAME(G33),
 41	PLATFORM_NAME(PINEVIEW),
 42	PLATFORM_NAME(I965G),
 43	PLATFORM_NAME(I965GM),
 44	PLATFORM_NAME(G45),
 45	PLATFORM_NAME(GM45),
 46	PLATFORM_NAME(IRONLAKE),
 47	PLATFORM_NAME(SANDYBRIDGE),
 48	PLATFORM_NAME(IVYBRIDGE),
 49	PLATFORM_NAME(VALLEYVIEW),
 50	PLATFORM_NAME(HASWELL),
 51	PLATFORM_NAME(BROADWELL),
 52	PLATFORM_NAME(CHERRYVIEW),
 53	PLATFORM_NAME(SKYLAKE),
 54	PLATFORM_NAME(BROXTON),
 55	PLATFORM_NAME(KABYLAKE),
 56	PLATFORM_NAME(GEMINILAKE),
 57	PLATFORM_NAME(COFFEELAKE),
 58	PLATFORM_NAME(CANNONLAKE),
 59	PLATFORM_NAME(ICELAKE),
 60};
 61#undef PLATFORM_NAME
 62
 63const char *intel_platform_name(enum intel_platform platform)
 64{
 65	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
 66
 67	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
 68			 platform_names[platform] == NULL))
 69		return "<unknown>";
 70
 71	return platform_names[platform];
 72}
 73
 74void intel_device_info_dump_flags(const struct intel_device_info *info,
 75				  struct drm_printer *p)
 76{
 77#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
 78	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
 79#undef PRINT_FLAG
 80}
 81
 82static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
 83{
 84	int s;
 85
 86	drm_printf(p, "slice mask: %04x\n", sseu->slice_mask);
 87	drm_printf(p, "slice total: %u\n", hweight8(sseu->slice_mask));
 88	drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu));
 89	for (s = 0; s < ARRAY_SIZE(sseu->subslice_mask); s++) {
 90		drm_printf(p, "slice%d %u subslices mask=%04x\n",
 91			   s, hweight8(sseu->subslice_mask[s]),
 92			   sseu->subslice_mask[s]);
 93	}
 94	drm_printf(p, "EU total: %u\n", sseu->eu_total);
 95	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
 96	drm_printf(p, "has slice power gating: %s\n",
 97		   yesno(sseu->has_slice_pg));
 98	drm_printf(p, "has subslice power gating: %s\n",
 99		   yesno(sseu->has_subslice_pg));
100	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
101}
102
103void intel_device_info_dump_runtime(const struct intel_device_info *info,
104				    struct drm_printer *p)
105{
106	sseu_dump(&info->sseu, p);
107
108	drm_printf(p, "CS timestamp frequency: %u kHz\n",
109		   info->cs_timestamp_frequency_khz);
110}
111
112void intel_device_info_dump(const struct intel_device_info *info,
113			    struct drm_printer *p)
114{
115	struct drm_i915_private *dev_priv =
116		container_of(info, struct drm_i915_private, info);
117
118	drm_printf(p, "pciid=0x%04x rev=0x%02x platform=%s gen=%i\n",
119		   INTEL_DEVID(dev_priv),
120		   INTEL_REVID(dev_priv),
121		   intel_platform_name(info->platform),
122		   info->gen);
123
124	intel_device_info_dump_flags(info, p);
125}
126
127void intel_device_info_dump_topology(const struct sseu_dev_info *sseu,
128				     struct drm_printer *p)
129{
130	int s, ss;
131
132	if (sseu->max_slices == 0) {
133		drm_printf(p, "Unavailable\n");
134		return;
135	}
136
137	for (s = 0; s < sseu->max_slices; s++) {
138		drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n",
139			   s, hweight8(sseu->subslice_mask[s]),
140			   sseu->subslice_mask[s]);
141
142		for (ss = 0; ss < sseu->max_subslices; ss++) {
143			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
144
145			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
146				   ss, hweight16(enabled_eus), enabled_eus);
147		}
148	}
149}
150
151static u16 compute_eu_total(const struct sseu_dev_info *sseu)
152{
153	u16 i, total = 0;
154
155	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
156		total += hweight8(sseu->eu_mask[i]);
157
158	return total;
159}
160
161static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
162{
163	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
164	const u32 fuse2 = I915_READ(GEN8_FUSE2);
165	int s, ss;
166	const int eu_mask = 0xff;
167	u32 subslice_mask, eu_en;
168
169	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
170			    GEN10_F2_S_ENA_SHIFT;
171	sseu->max_slices = 6;
172	sseu->max_subslices = 4;
173	sseu->max_eus_per_subslice = 8;
174
175	subslice_mask = (1 << 4) - 1;
176	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
177			   GEN10_F2_SS_DIS_SHIFT);
178
179	/*
180	 * Slice0 can have up to 3 subslices, but there are only 2 in
181	 * slice1/2.
182	 */
183	sseu->subslice_mask[0] = subslice_mask;
184	for (s = 1; s < sseu->max_slices; s++)
185		sseu->subslice_mask[s] = subslice_mask & 0x3;
186
187	/* Slice0 */
188	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
189	for (ss = 0; ss < sseu->max_subslices; ss++)
190		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
191	/* Slice1 */
192	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
193	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
194	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
195	/* Slice2 */
196	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
197	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
198	/* Slice3 */
199	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
200	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
201	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
202	/* Slice4 */
203	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
204	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
205	/* Slice5 */
206	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
207	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
208	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
209
210	/* Do a second pass where we mark the subslices disabled if all their
211	 * eus are off.
212	 */
213	for (s = 0; s < sseu->max_slices; s++) {
214		for (ss = 0; ss < sseu->max_subslices; ss++) {
215			if (sseu_get_eus(sseu, s, ss) == 0)
216				sseu->subslice_mask[s] &= ~BIT(ss);
217		}
218	}
219
220	sseu->eu_total = compute_eu_total(sseu);
221
222	/*
223	 * CNL is expected to always have a uniform distribution
224	 * of EU across subslices with the exception that any one
225	 * EU in any one subslice may be fused off for die
226	 * recovery.
227	 */
228	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
229				DIV_ROUND_UP(sseu->eu_total,
230					     sseu_subslice_total(sseu)) : 0;
231
232	/* No restrictions on Power Gating */
233	sseu->has_slice_pg = 1;
234	sseu->has_subslice_pg = 1;
235	sseu->has_eu_pg = 1;
236}
237
238static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
239{
240	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
241	u32 fuse;
242
243	fuse = I915_READ(CHV_FUSE_GT);
244
245	sseu->slice_mask = BIT(0);
246	sseu->max_slices = 1;
247	sseu->max_subslices = 2;
248	sseu->max_eus_per_subslice = 8;
249
250	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
251		u8 disabled_mask =
252			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
253			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
254			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
255			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
256
257		sseu->subslice_mask[0] |= BIT(0);
258		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
259	}
260
261	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
262		u8 disabled_mask =
263			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
264			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
265			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
266			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
267
268		sseu->subslice_mask[0] |= BIT(1);
269		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
270	}
271
272	sseu->eu_total = compute_eu_total(sseu);
273
274	/*
275	 * CHV expected to always have a uniform distribution of EU
276	 * across subslices.
277	*/
278	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
279				sseu->eu_total / sseu_subslice_total(sseu) :
280				0;
281	/*
282	 * CHV supports subslice power gating on devices with more than
283	 * one subslice, and supports EU power gating on devices with
284	 * more than one EU pair per subslice.
285	*/
286	sseu->has_slice_pg = 0;
287	sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1;
288	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
289}
290
291static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
292{
293	struct intel_device_info *info = mkwrite_device_info(dev_priv);
294	struct sseu_dev_info *sseu = &info->sseu;
295	int s, ss;
296	u32 fuse2, eu_disable, subslice_mask;
297	const u8 eu_mask = 0xff;
298
299	fuse2 = I915_READ(GEN8_FUSE2);
300	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
301
302	/* BXT has a single slice and at most 3 subslices. */
303	sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3;
304	sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4;
305	sseu->max_eus_per_subslice = 8;
306
307	/*
308	 * The subslice disable field is global, i.e. it applies
309	 * to each of the enabled slices.
310	*/
311	subslice_mask = (1 << sseu->max_subslices) - 1;
312	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
313			   GEN9_F2_SS_DIS_SHIFT);
314
315	/*
316	 * Iterate through enabled slices and subslices to
317	 * count the total enabled EU.
318	*/
319	for (s = 0; s < sseu->max_slices; s++) {
320		if (!(sseu->slice_mask & BIT(s)))
321			/* skip disabled slice */
322			continue;
323
324		sseu->subslice_mask[s] = subslice_mask;
325
326		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
327		for (ss = 0; ss < sseu->max_subslices; ss++) {
328			int eu_per_ss;
329			u8 eu_disabled_mask;
330
331			if (!(sseu->subslice_mask[s] & BIT(ss)))
332				/* skip disabled subslice */
333				continue;
334
335			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
336
337			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
338
339			eu_per_ss = sseu->max_eus_per_subslice -
340				hweight8(eu_disabled_mask);
341
342			/*
343			 * Record which subslice(s) has(have) 7 EUs. we
344			 * can tune the hash used to spread work among
345			 * subslices if they are unbalanced.
346			 */
347			if (eu_per_ss == 7)
348				sseu->subslice_7eu[s] |= BIT(ss);
349		}
350	}
351
352	sseu->eu_total = compute_eu_total(sseu);
353
354	/*
355	 * SKL is expected to always have a uniform distribution
356	 * of EU across subslices with the exception that any one
357	 * EU in any one subslice may be fused off for die
358	 * recovery. BXT is expected to be perfectly uniform in EU
359	 * distribution.
360	*/
361	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
362				DIV_ROUND_UP(sseu->eu_total,
363					     sseu_subslice_total(sseu)) : 0;
364	/*
365	 * SKL+ supports slice power gating on devices with more than
366	 * one slice, and supports EU power gating on devices with
367	 * more than one EU pair per subslice. BXT+ supports subslice
368	 * power gating on devices with more than one subslice, and
369	 * supports EU power gating on devices with more than one EU
370	 * pair per subslice.
371	*/
372	sseu->has_slice_pg =
373		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
374	sseu->has_subslice_pg =
375		IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1;
376	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
377
378	if (IS_GEN9_LP(dev_priv)) {
379#define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
380		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
381
382		sseu->min_eu_in_pool = 0;
383		if (info->has_pooled_eu) {
384			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
385				sseu->min_eu_in_pool = 3;
386			else if (IS_SS_DISABLED(1))
387				sseu->min_eu_in_pool = 6;
388			else
389				sseu->min_eu_in_pool = 9;
390		}
391#undef IS_SS_DISABLED
392	}
393}
394
395static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
396{
397	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
398	int s, ss;
399	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
400
401	fuse2 = I915_READ(GEN8_FUSE2);
402	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
403	sseu->max_slices = 3;
404	sseu->max_subslices = 3;
405	sseu->max_eus_per_subslice = 8;
406
407	/*
408	 * The subslice disable field is global, i.e. it applies
409	 * to each of the enabled slices.
410	 */
411	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
412	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
413			   GEN8_F2_SS_DIS_SHIFT);
414
415	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
416	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
417			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
418			 (32 - GEN8_EU_DIS0_S1_SHIFT));
419	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
420			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
421			 (32 - GEN8_EU_DIS1_S2_SHIFT));
422
423	/*
424	 * Iterate through enabled slices and subslices to
425	 * count the total enabled EU.
426	 */
427	for (s = 0; s < sseu->max_slices; s++) {
428		if (!(sseu->slice_mask & BIT(s)))
429			/* skip disabled slice */
430			continue;
431
432		sseu->subslice_mask[s] = subslice_mask;
433
434		for (ss = 0; ss < sseu->max_subslices; ss++) {
435			u8 eu_disabled_mask;
436			u32 n_disabled;
437
438			if (!(sseu->subslice_mask[ss] & BIT(ss)))
439				/* skip disabled subslice */
440				continue;
441
442			eu_disabled_mask =
443				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
444
445			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
446
447			n_disabled = hweight8(eu_disabled_mask);
448
449			/*
450			 * Record which subslices have 7 EUs.
451			 */
452			if (sseu->max_eus_per_subslice - n_disabled == 7)
453				sseu->subslice_7eu[s] |= 1 << ss;
454		}
455	}
456
457	sseu->eu_total = compute_eu_total(sseu);
458
459	/*
460	 * BDW is expected to always have a uniform distribution of EU across
461	 * subslices with the exception that any one EU in any one subslice may
462	 * be fused off for die recovery.
463	 */
464	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
465				DIV_ROUND_UP(sseu->eu_total,
466					     sseu_subslice_total(sseu)) : 0;
467
468	/*
469	 * BDW supports slice power gating on devices with more than
470	 * one slice.
471	 */
472	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
473	sseu->has_subslice_pg = 0;
474	sseu->has_eu_pg = 0;
475}
476
477static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
478{
479	struct intel_device_info *info = mkwrite_device_info(dev_priv);
480	struct sseu_dev_info *sseu = &info->sseu;
481	u32 fuse1;
482	int s, ss;
483
484	/*
485	 * There isn't a register to tell us how many slices/subslices. We
486	 * work off the PCI-ids here.
487	 */
488	switch (info->gt) {
489	default:
490		MISSING_CASE(info->gt);
491		/* fall through */
492	case 1:
493		sseu->slice_mask = BIT(0);
494		sseu->subslice_mask[0] = BIT(0);
495		break;
496	case 2:
497		sseu->slice_mask = BIT(0);
498		sseu->subslice_mask[0] = BIT(0) | BIT(1);
499		break;
500	case 3:
501		sseu->slice_mask = BIT(0) | BIT(1);
502		sseu->subslice_mask[0] = BIT(0) | BIT(1);
503		sseu->subslice_mask[1] = BIT(0) | BIT(1);
504		break;
505	}
506
507	sseu->max_slices = hweight8(sseu->slice_mask);
508	sseu->max_subslices = hweight8(sseu->subslice_mask[0]);
509
510	fuse1 = I915_READ(HSW_PAVP_FUSE1);
511	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
512	default:
513		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
514			     HSW_F1_EU_DIS_SHIFT);
515		/* fall through */
516	case HSW_F1_EU_DIS_10EUS:
517		sseu->eu_per_subslice = 10;
518		break;
519	case HSW_F1_EU_DIS_8EUS:
520		sseu->eu_per_subslice = 8;
521		break;
522	case HSW_F1_EU_DIS_6EUS:
523		sseu->eu_per_subslice = 6;
524		break;
525	}
526	sseu->max_eus_per_subslice = sseu->eu_per_subslice;
527
528	for (s = 0; s < sseu->max_slices; s++) {
529		for (ss = 0; ss < sseu->max_subslices; ss++) {
530			sseu_set_eus(sseu, s, ss,
531				     (1UL << sseu->eu_per_subslice) - 1);
532		}
533	}
534
535	sseu->eu_total = compute_eu_total(sseu);
536
537	/* No powergating for you. */
538	sseu->has_slice_pg = 0;
539	sseu->has_subslice_pg = 0;
540	sseu->has_eu_pg = 0;
541}
542
543static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
544{
545	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
546	u32 base_freq, frac_freq;
547
548	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
549		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
550	base_freq *= 1000;
551
552	frac_freq = ((ts_override &
553		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
554		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
555	frac_freq = 1000 / (frac_freq + 1);
556
557	return base_freq + frac_freq;
558}
559
560static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
561{
562	u32 f12_5_mhz = 12500;
563	u32 f19_2_mhz = 19200;
564	u32 f24_mhz = 24000;
565
566	if (INTEL_GEN(dev_priv) <= 4) {
567		/* PRMs say:
568		 *
569		 *     "The value in this register increments once every 16
570		 *      hclks." (through the “Clocking Configuration”
571		 *      (“CLKCFG”) MCHBAR register)
572		 */
573		return dev_priv->rawclk_freq / 16;
574	} else if (INTEL_GEN(dev_priv) <= 8) {
575		/* PRMs say:
576		 *
577		 *     "The PCU TSC counts 10ns increments; this timestamp
578		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
579		 *      rolling over every 1.5 hours).
580		 */
581		return f12_5_mhz;
582	} else if (INTEL_GEN(dev_priv) <= 9) {
583		u32 ctc_reg = I915_READ(CTC_MODE);
584		u32 freq = 0;
585
586		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
587			freq = read_reference_ts_freq(dev_priv);
588		} else {
589			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
590
591			/* Now figure out how the command stream's timestamp
592			 * register increments from this frequency (it might
593			 * increment only every few clock cycle).
594			 */
595			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
596				      CTC_SHIFT_PARAMETER_SHIFT);
597		}
598
599		return freq;
600	} else if (INTEL_GEN(dev_priv) <= 10) {
601		u32 ctc_reg = I915_READ(CTC_MODE);
602		u32 freq = 0;
603		u32 rpm_config_reg = 0;
604
605		/* First figure out the reference frequency. There are 2 ways
606		 * we can compute the frequency, either through the
607		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
608		 * tells us which one we should use.
609		 */
610		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
611			freq = read_reference_ts_freq(dev_priv);
612		} else {
613			u32 crystal_clock;
614
615			rpm_config_reg = I915_READ(RPM_CONFIG0);
616			crystal_clock = (rpm_config_reg &
617					 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
618				GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
619			switch (crystal_clock) {
620			case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
621				freq = f19_2_mhz;
622				break;
623			case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
624				freq = f24_mhz;
625				break;
626			}
627
628			/* Now figure out how the command stream's timestamp
629			 * register increments from this frequency (it might
630			 * increment only every few clock cycle).
631			 */
632			freq >>= 3 - ((rpm_config_reg &
633				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
634				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
635		}
636
637		return freq;
638	}
639
640	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
641	return 0;
642}
643
644/**
645 * intel_device_info_runtime_init - initialize runtime info
646 * @info: intel device info struct
647 *
648 * Determine various intel_device_info fields at runtime.
649 *
650 * Use it when either:
651 *   - it's judged too laborious to fill n static structures with the limit
652 *     when a simple if statement does the job,
653 *   - run-time checks (eg read fuse/strap registers) are needed.
654 *
655 * This function needs to be called:
656 *   - after the MMIO has been setup as we are reading registers,
657 *   - after the PCH has been detected,
658 *   - before the first usage of the fields it can tweak.
659 */
660void intel_device_info_runtime_init(struct intel_device_info *info)
661{
662	struct drm_i915_private *dev_priv =
663		container_of(info, struct drm_i915_private, info);
664	enum pipe pipe;
665
666	if (INTEL_GEN(dev_priv) >= 10) {
667		for_each_pipe(dev_priv, pipe)
668			info->num_scalers[pipe] = 2;
669	} else if (INTEL_GEN(dev_priv) == 9) {
670		info->num_scalers[PIPE_A] = 2;
671		info->num_scalers[PIPE_B] = 2;
672		info->num_scalers[PIPE_C] = 1;
673	}
674
675	BUILD_BUG_ON(I915_NUM_ENGINES >
676		     sizeof(intel_ring_mask_t) * BITS_PER_BYTE);
677
678	/*
679	 * Skylake and Broxton currently don't expose the topmost plane as its
680	 * use is exclusive with the legacy cursor and we only want to expose
681	 * one of those, not both. Until we can safely expose the topmost plane
682	 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
683	 * we don't expose the topmost plane at all to prevent ABI breakage
684	 * down the line.
685	 */
686	if (IS_GEN10(dev_priv) || IS_GEMINILAKE(dev_priv))
687		for_each_pipe(dev_priv, pipe)
688			info->num_sprites[pipe] = 3;
689	else if (IS_BROXTON(dev_priv)) {
690		info->num_sprites[PIPE_A] = 2;
691		info->num_sprites[PIPE_B] = 2;
692		info->num_sprites[PIPE_C] = 1;
693	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
694		for_each_pipe(dev_priv, pipe)
695			info->num_sprites[pipe] = 2;
696	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
697		for_each_pipe(dev_priv, pipe)
698			info->num_sprites[pipe] = 1;
699	}
700
701	if (i915_modparams.disable_display) {
702		DRM_INFO("Display disabled (module parameter)\n");
703		info->num_pipes = 0;
704	} else if (info->num_pipes > 0 &&
705		   (IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) &&
706		   HAS_PCH_SPLIT(dev_priv)) {
707		u32 fuse_strap = I915_READ(FUSE_STRAP);
708		u32 sfuse_strap = I915_READ(SFUSE_STRAP);
709
710		/*
711		 * SFUSE_STRAP is supposed to have a bit signalling the display
712		 * is fused off. Unfortunately it seems that, at least in
713		 * certain cases, fused off display means that PCH display
714		 * reads don't land anywhere. In that case, we read 0s.
715		 *
716		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
717		 * should be set when taking over after the firmware.
718		 */
719		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
720		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
721		    (HAS_PCH_CPT(dev_priv) &&
722		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
723			DRM_INFO("Display fused off, disabling\n");
724			info->num_pipes = 0;
725		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
726			DRM_INFO("PipeC fused off\n");
727			info->num_pipes -= 1;
728		}
729	} else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) {
730		u32 dfsm = I915_READ(SKL_DFSM);
731		u8 disabled_mask = 0;
732		bool invalid;
733		int num_bits;
734
735		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
736			disabled_mask |= BIT(PIPE_A);
737		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
738			disabled_mask |= BIT(PIPE_B);
739		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
740			disabled_mask |= BIT(PIPE_C);
741
742		num_bits = hweight8(disabled_mask);
743
744		switch (disabled_mask) {
745		case BIT(PIPE_A):
746		case BIT(PIPE_B):
747		case BIT(PIPE_A) | BIT(PIPE_B):
748		case BIT(PIPE_A) | BIT(PIPE_C):
749			invalid = true;
750			break;
751		default:
752			invalid = false;
753		}
754
755		if (num_bits > info->num_pipes || invalid)
756			DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
757				  disabled_mask);
758		else
759			info->num_pipes -= num_bits;
760	}
761
762	/* Initialize slice/subslice/EU info */
763	if (IS_HASWELL(dev_priv))
764		haswell_sseu_info_init(dev_priv);
765	else if (IS_CHERRYVIEW(dev_priv))
766		cherryview_sseu_info_init(dev_priv);
767	else if (IS_BROADWELL(dev_priv))
768		broadwell_sseu_info_init(dev_priv);
769	else if (INTEL_GEN(dev_priv) == 9)
770		gen9_sseu_info_init(dev_priv);
771	else if (INTEL_GEN(dev_priv) >= 10)
772		gen10_sseu_info_init(dev_priv);
773
774	/* Initialize command stream timestamp frequency */
775	info->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
776}
777
778void intel_driver_caps_print(const struct intel_driver_caps *caps,
779			     struct drm_printer *p)
780{
781	drm_printf(p, "scheduler: %x\n", caps->scheduler);
782}