Loading...
1/*
2 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
3 * Copyright (c) 2012 David Airlie <airlied@linux.ie>
4 * Copyright (c) 2013 David Herrmann <dh.herrmann@gmail.com>
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25#include <drm/drmP.h>
26#include <drm/drm_mm.h>
27#include <drm/drm_vma_manager.h>
28#include <linux/fs.h>
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/rbtree.h>
32#include <linux/slab.h>
33#include <linux/spinlock.h>
34#include <linux/types.h>
35
36/**
37 * DOC: vma offset manager
38 *
39 * The vma-manager is responsible to map arbitrary driver-dependent memory
40 * regions into the linear user address-space. It provides offsets to the
41 * caller which can then be used on the address_space of the drm-device. It
42 * takes care to not overlap regions, size them appropriately and to not
43 * confuse mm-core by inconsistent fake vm_pgoff fields.
44 * Drivers shouldn't use this for object placement in VMEM. This manager should
45 * only be used to manage mappings into linear user-space VMs.
46 *
47 * We use drm_mm as backend to manage object allocations. But it is highly
48 * optimized for alloc/free calls, not lookups. Hence, we use an rb-tree to
49 * speed up offset lookups.
50 *
51 * You must not use multiple offset managers on a single address_space.
52 * Otherwise, mm-core will be unable to tear down memory mappings as the VM will
53 * no longer be linear.
54 *
55 * This offset manager works on page-based addresses. That is, every argument
56 * and return code (with the exception of drm_vma_node_offset_addr()) is given
57 * in number of pages, not number of bytes. That means, object sizes and offsets
58 * must always be page-aligned (as usual).
59 * If you want to get a valid byte-based user-space address for a given offset,
60 * please see drm_vma_node_offset_addr().
61 *
62 * Additionally to offset management, the vma offset manager also handles access
63 * management. For every open-file context that is allowed to access a given
64 * node, you must call drm_vma_node_allow(). Otherwise, an mmap() call on this
65 * open-file with the offset of the node will fail with -EACCES. To revoke
66 * access again, use drm_vma_node_revoke(). However, the caller is responsible
67 * for destroying already existing mappings, if required.
68 */
69
70/**
71 * drm_vma_offset_manager_init - Initialize new offset-manager
72 * @mgr: Manager object
73 * @page_offset: Offset of available memory area (page-based)
74 * @size: Size of available address space range (page-based)
75 *
76 * Initialize a new offset-manager. The offset and area size available for the
77 * manager are given as @page_offset and @size. Both are interpreted as
78 * page-numbers, not bytes.
79 *
80 * Adding/removing nodes from the manager is locked internally and protected
81 * against concurrent access. However, node allocation and destruction is left
82 * for the caller. While calling into the vma-manager, a given node must
83 * always be guaranteed to be referenced.
84 */
85void drm_vma_offset_manager_init(struct drm_vma_offset_manager *mgr,
86 unsigned long page_offset, unsigned long size)
87{
88 rwlock_init(&mgr->vm_lock);
89 mgr->vm_addr_space_rb = RB_ROOT;
90 drm_mm_init(&mgr->vm_addr_space_mm, page_offset, size);
91}
92EXPORT_SYMBOL(drm_vma_offset_manager_init);
93
94/**
95 * drm_vma_offset_manager_destroy() - Destroy offset manager
96 * @mgr: Manager object
97 *
98 * Destroy an object manager which was previously created via
99 * drm_vma_offset_manager_init(). The caller must remove all allocated nodes
100 * before destroying the manager. Otherwise, drm_mm will refuse to free the
101 * requested resources.
102 *
103 * The manager must not be accessed after this function is called.
104 */
105void drm_vma_offset_manager_destroy(struct drm_vma_offset_manager *mgr)
106{
107 /* take the lock to protect against buggy drivers */
108 write_lock(&mgr->vm_lock);
109 drm_mm_takedown(&mgr->vm_addr_space_mm);
110 write_unlock(&mgr->vm_lock);
111}
112EXPORT_SYMBOL(drm_vma_offset_manager_destroy);
113
114/**
115 * drm_vma_offset_lookup_locked() - Find node in offset space
116 * @mgr: Manager object
117 * @start: Start address for object (page-based)
118 * @pages: Size of object (page-based)
119 *
120 * Find a node given a start address and object size. This returns the _best_
121 * match for the given node. That is, @start may point somewhere into a valid
122 * region and the given node will be returned, as long as the node spans the
123 * whole requested area (given the size in number of pages as @pages).
124 *
125 * Note that before lookup the vma offset manager lookup lock must be acquired
126 * with drm_vma_offset_lock_lookup(). See there for an example. This can then be
127 * used to implement weakly referenced lookups using kref_get_unless_zero().
128 *
129 * Example:
130 * drm_vma_offset_lock_lookup(mgr);
131 * node = drm_vma_offset_lookup_locked(mgr);
132 * if (node)
133 * kref_get_unless_zero(container_of(node, sth, entr));
134 * drm_vma_offset_unlock_lookup(mgr);
135 *
136 * RETURNS:
137 * Returns NULL if no suitable node can be found. Otherwise, the best match
138 * is returned. It's the caller's responsibility to make sure the node doesn't
139 * get destroyed before the caller can access it.
140 */
141struct drm_vma_offset_node *drm_vma_offset_lookup_locked(struct drm_vma_offset_manager *mgr,
142 unsigned long start,
143 unsigned long pages)
144{
145 struct drm_vma_offset_node *node, *best;
146 struct rb_node *iter;
147 unsigned long offset;
148
149 iter = mgr->vm_addr_space_rb.rb_node;
150 best = NULL;
151
152 while (likely(iter)) {
153 node = rb_entry(iter, struct drm_vma_offset_node, vm_rb);
154 offset = node->vm_node.start;
155 if (start >= offset) {
156 iter = iter->rb_right;
157 best = node;
158 if (start == offset)
159 break;
160 } else {
161 iter = iter->rb_left;
162 }
163 }
164
165 /* verify that the node spans the requested area */
166 if (best) {
167 offset = best->vm_node.start + best->vm_node.size;
168 if (offset < start + pages)
169 best = NULL;
170 }
171
172 return best;
173}
174EXPORT_SYMBOL(drm_vma_offset_lookup_locked);
175
176/* internal helper to link @node into the rb-tree */
177static void _drm_vma_offset_add_rb(struct drm_vma_offset_manager *mgr,
178 struct drm_vma_offset_node *node)
179{
180 struct rb_node **iter = &mgr->vm_addr_space_rb.rb_node;
181 struct rb_node *parent = NULL;
182 struct drm_vma_offset_node *iter_node;
183
184 while (likely(*iter)) {
185 parent = *iter;
186 iter_node = rb_entry(*iter, struct drm_vma_offset_node, vm_rb);
187
188 if (node->vm_node.start < iter_node->vm_node.start)
189 iter = &(*iter)->rb_left;
190 else if (node->vm_node.start > iter_node->vm_node.start)
191 iter = &(*iter)->rb_right;
192 else
193 BUG();
194 }
195
196 rb_link_node(&node->vm_rb, parent, iter);
197 rb_insert_color(&node->vm_rb, &mgr->vm_addr_space_rb);
198}
199
200/**
201 * drm_vma_offset_add() - Add offset node to manager
202 * @mgr: Manager object
203 * @node: Node to be added
204 * @pages: Allocation size visible to user-space (in number of pages)
205 *
206 * Add a node to the offset-manager. If the node was already added, this does
207 * nothing and return 0. @pages is the size of the object given in number of
208 * pages.
209 * After this call succeeds, you can access the offset of the node until it
210 * is removed again.
211 *
212 * If this call fails, it is safe to retry the operation or call
213 * drm_vma_offset_remove(), anyway. However, no cleanup is required in that
214 * case.
215 *
216 * @pages is not required to be the same size as the underlying memory object
217 * that you want to map. It only limits the size that user-space can map into
218 * their address space.
219 *
220 * RETURNS:
221 * 0 on success, negative error code on failure.
222 */
223int drm_vma_offset_add(struct drm_vma_offset_manager *mgr,
224 struct drm_vma_offset_node *node, unsigned long pages)
225{
226 int ret;
227
228 write_lock(&mgr->vm_lock);
229
230 if (drm_mm_node_allocated(&node->vm_node)) {
231 ret = 0;
232 goto out_unlock;
233 }
234
235 ret = drm_mm_insert_node(&mgr->vm_addr_space_mm, &node->vm_node,
236 pages, 0, DRM_MM_SEARCH_DEFAULT);
237 if (ret)
238 goto out_unlock;
239
240 _drm_vma_offset_add_rb(mgr, node);
241
242out_unlock:
243 write_unlock(&mgr->vm_lock);
244 return ret;
245}
246EXPORT_SYMBOL(drm_vma_offset_add);
247
248/**
249 * drm_vma_offset_remove() - Remove offset node from manager
250 * @mgr: Manager object
251 * @node: Node to be removed
252 *
253 * Remove a node from the offset manager. If the node wasn't added before, this
254 * does nothing. After this call returns, the offset and size will be 0 until a
255 * new offset is allocated via drm_vma_offset_add() again. Helper functions like
256 * drm_vma_node_start() and drm_vma_node_offset_addr() will return 0 if no
257 * offset is allocated.
258 */
259void drm_vma_offset_remove(struct drm_vma_offset_manager *mgr,
260 struct drm_vma_offset_node *node)
261{
262 write_lock(&mgr->vm_lock);
263
264 if (drm_mm_node_allocated(&node->vm_node)) {
265 rb_erase(&node->vm_rb, &mgr->vm_addr_space_rb);
266 drm_mm_remove_node(&node->vm_node);
267 memset(&node->vm_node, 0, sizeof(node->vm_node));
268 }
269
270 write_unlock(&mgr->vm_lock);
271}
272EXPORT_SYMBOL(drm_vma_offset_remove);
273
274/**
275 * drm_vma_node_allow - Add open-file to list of allowed users
276 * @node: Node to modify
277 * @filp: Open file to add
278 *
279 * Add @filp to the list of allowed open-files for this node. If @filp is
280 * already on this list, the ref-count is incremented.
281 *
282 * The list of allowed-users is preserved across drm_vma_offset_add() and
283 * drm_vma_offset_remove() calls. You may even call it if the node is currently
284 * not added to any offset-manager.
285 *
286 * You must remove all open-files the same number of times as you added them
287 * before destroying the node. Otherwise, you will leak memory.
288 *
289 * This is locked against concurrent access internally.
290 *
291 * RETURNS:
292 * 0 on success, negative error code on internal failure (out-of-mem)
293 */
294int drm_vma_node_allow(struct drm_vma_offset_node *node, struct file *filp)
295{
296 struct rb_node **iter;
297 struct rb_node *parent = NULL;
298 struct drm_vma_offset_file *new, *entry;
299 int ret = 0;
300
301 /* Preallocate entry to avoid atomic allocations below. It is quite
302 * unlikely that an open-file is added twice to a single node so we
303 * don't optimize for this case. OOM is checked below only if the entry
304 * is actually used. */
305 new = kmalloc(sizeof(*entry), GFP_KERNEL);
306
307 write_lock(&node->vm_lock);
308
309 iter = &node->vm_files.rb_node;
310
311 while (likely(*iter)) {
312 parent = *iter;
313 entry = rb_entry(*iter, struct drm_vma_offset_file, vm_rb);
314
315 if (filp == entry->vm_filp) {
316 entry->vm_count++;
317 goto unlock;
318 } else if (filp > entry->vm_filp) {
319 iter = &(*iter)->rb_right;
320 } else {
321 iter = &(*iter)->rb_left;
322 }
323 }
324
325 if (!new) {
326 ret = -ENOMEM;
327 goto unlock;
328 }
329
330 new->vm_filp = filp;
331 new->vm_count = 1;
332 rb_link_node(&new->vm_rb, parent, iter);
333 rb_insert_color(&new->vm_rb, &node->vm_files);
334 new = NULL;
335
336unlock:
337 write_unlock(&node->vm_lock);
338 kfree(new);
339 return ret;
340}
341EXPORT_SYMBOL(drm_vma_node_allow);
342
343/**
344 * drm_vma_node_revoke - Remove open-file from list of allowed users
345 * @node: Node to modify
346 * @filp: Open file to remove
347 *
348 * Decrement the ref-count of @filp in the list of allowed open-files on @node.
349 * If the ref-count drops to zero, remove @filp from the list. You must call
350 * this once for every drm_vma_node_allow() on @filp.
351 *
352 * This is locked against concurrent access internally.
353 *
354 * If @filp is not on the list, nothing is done.
355 */
356void drm_vma_node_revoke(struct drm_vma_offset_node *node, struct file *filp)
357{
358 struct drm_vma_offset_file *entry;
359 struct rb_node *iter;
360
361 write_lock(&node->vm_lock);
362
363 iter = node->vm_files.rb_node;
364 while (likely(iter)) {
365 entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
366 if (filp == entry->vm_filp) {
367 if (!--entry->vm_count) {
368 rb_erase(&entry->vm_rb, &node->vm_files);
369 kfree(entry);
370 }
371 break;
372 } else if (filp > entry->vm_filp) {
373 iter = iter->rb_right;
374 } else {
375 iter = iter->rb_left;
376 }
377 }
378
379 write_unlock(&node->vm_lock);
380}
381EXPORT_SYMBOL(drm_vma_node_revoke);
382
383/**
384 * drm_vma_node_is_allowed - Check whether an open-file is granted access
385 * @node: Node to check
386 * @filp: Open-file to check for
387 *
388 * Search the list in @node whether @filp is currently on the list of allowed
389 * open-files (see drm_vma_node_allow()).
390 *
391 * This is locked against concurrent access internally.
392 *
393 * RETURNS:
394 * true iff @filp is on the list
395 */
396bool drm_vma_node_is_allowed(struct drm_vma_offset_node *node,
397 struct file *filp)
398{
399 struct drm_vma_offset_file *entry;
400 struct rb_node *iter;
401
402 read_lock(&node->vm_lock);
403
404 iter = node->vm_files.rb_node;
405 while (likely(iter)) {
406 entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
407 if (filp == entry->vm_filp)
408 break;
409 else if (filp > entry->vm_filp)
410 iter = iter->rb_right;
411 else
412 iter = iter->rb_left;
413 }
414
415 read_unlock(&node->vm_lock);
416
417 return iter;
418}
419EXPORT_SYMBOL(drm_vma_node_is_allowed);
1/*
2 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
3 * Copyright (c) 2012 David Airlie <airlied@linux.ie>
4 * Copyright (c) 2013 David Herrmann <dh.herrmann@gmail.com>
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25#include <drm/drmP.h>
26#include <drm/drm_mm.h>
27#include <drm/drm_vma_manager.h>
28#include <linux/mm.h>
29#include <linux/module.h>
30#include <linux/rbtree.h>
31#include <linux/slab.h>
32#include <linux/spinlock.h>
33#include <linux/types.h>
34
35/**
36 * DOC: vma offset manager
37 *
38 * The vma-manager is responsible to map arbitrary driver-dependent memory
39 * regions into the linear user address-space. It provides offsets to the
40 * caller which can then be used on the address_space of the drm-device. It
41 * takes care to not overlap regions, size them appropriately and to not
42 * confuse mm-core by inconsistent fake vm_pgoff fields.
43 * Drivers shouldn't use this for object placement in VMEM. This manager should
44 * only be used to manage mappings into linear user-space VMs.
45 *
46 * We use drm_mm as backend to manage object allocations. But it is highly
47 * optimized for alloc/free calls, not lookups. Hence, we use an rb-tree to
48 * speed up offset lookups.
49 *
50 * You must not use multiple offset managers on a single address_space.
51 * Otherwise, mm-core will be unable to tear down memory mappings as the VM will
52 * no longer be linear.
53 *
54 * This offset manager works on page-based addresses. That is, every argument
55 * and return code (with the exception of drm_vma_node_offset_addr()) is given
56 * in number of pages, not number of bytes. That means, object sizes and offsets
57 * must always be page-aligned (as usual).
58 * If you want to get a valid byte-based user-space address for a given offset,
59 * please see drm_vma_node_offset_addr().
60 *
61 * Additionally to offset management, the vma offset manager also handles access
62 * management. For every open-file context that is allowed to access a given
63 * node, you must call drm_vma_node_allow(). Otherwise, an mmap() call on this
64 * open-file with the offset of the node will fail with -EACCES. To revoke
65 * access again, use drm_vma_node_revoke(). However, the caller is responsible
66 * for destroying already existing mappings, if required.
67 */
68
69/**
70 * drm_vma_offset_manager_init - Initialize new offset-manager
71 * @mgr: Manager object
72 * @page_offset: Offset of available memory area (page-based)
73 * @size: Size of available address space range (page-based)
74 *
75 * Initialize a new offset-manager. The offset and area size available for the
76 * manager are given as @page_offset and @size. Both are interpreted as
77 * page-numbers, not bytes.
78 *
79 * Adding/removing nodes from the manager is locked internally and protected
80 * against concurrent access. However, node allocation and destruction is left
81 * for the caller. While calling into the vma-manager, a given node must
82 * always be guaranteed to be referenced.
83 */
84void drm_vma_offset_manager_init(struct drm_vma_offset_manager *mgr,
85 unsigned long page_offset, unsigned long size)
86{
87 rwlock_init(&mgr->vm_lock);
88 drm_mm_init(&mgr->vm_addr_space_mm, page_offset, size);
89}
90EXPORT_SYMBOL(drm_vma_offset_manager_init);
91
92/**
93 * drm_vma_offset_manager_destroy() - Destroy offset manager
94 * @mgr: Manager object
95 *
96 * Destroy an object manager which was previously created via
97 * drm_vma_offset_manager_init(). The caller must remove all allocated nodes
98 * before destroying the manager. Otherwise, drm_mm will refuse to free the
99 * requested resources.
100 *
101 * The manager must not be accessed after this function is called.
102 */
103void drm_vma_offset_manager_destroy(struct drm_vma_offset_manager *mgr)
104{
105 /* take the lock to protect against buggy drivers */
106 write_lock(&mgr->vm_lock);
107 drm_mm_takedown(&mgr->vm_addr_space_mm);
108 write_unlock(&mgr->vm_lock);
109}
110EXPORT_SYMBOL(drm_vma_offset_manager_destroy);
111
112/**
113 * drm_vma_offset_lookup_locked() - Find node in offset space
114 * @mgr: Manager object
115 * @start: Start address for object (page-based)
116 * @pages: Size of object (page-based)
117 *
118 * Find a node given a start address and object size. This returns the _best_
119 * match for the given node. That is, @start may point somewhere into a valid
120 * region and the given node will be returned, as long as the node spans the
121 * whole requested area (given the size in number of pages as @pages).
122 *
123 * Note that before lookup the vma offset manager lookup lock must be acquired
124 * with drm_vma_offset_lock_lookup(). See there for an example. This can then be
125 * used to implement weakly referenced lookups using kref_get_unless_zero().
126 *
127 * Example:
128 *
129 * ::
130 *
131 * drm_vma_offset_lock_lookup(mgr);
132 * node = drm_vma_offset_lookup_locked(mgr);
133 * if (node)
134 * kref_get_unless_zero(container_of(node, sth, entr));
135 * drm_vma_offset_unlock_lookup(mgr);
136 *
137 * RETURNS:
138 * Returns NULL if no suitable node can be found. Otherwise, the best match
139 * is returned. It's the caller's responsibility to make sure the node doesn't
140 * get destroyed before the caller can access it.
141 */
142struct drm_vma_offset_node *drm_vma_offset_lookup_locked(struct drm_vma_offset_manager *mgr,
143 unsigned long start,
144 unsigned long pages)
145{
146 struct drm_mm_node *node, *best;
147 struct rb_node *iter;
148 unsigned long offset;
149
150 iter = mgr->vm_addr_space_mm.interval_tree.rb_root.rb_node;
151 best = NULL;
152
153 while (likely(iter)) {
154 node = rb_entry(iter, struct drm_mm_node, rb);
155 offset = node->start;
156 if (start >= offset) {
157 iter = iter->rb_right;
158 best = node;
159 if (start == offset)
160 break;
161 } else {
162 iter = iter->rb_left;
163 }
164 }
165
166 /* verify that the node spans the requested area */
167 if (best) {
168 offset = best->start + best->size;
169 if (offset < start + pages)
170 best = NULL;
171 }
172
173 if (!best)
174 return NULL;
175
176 return container_of(best, struct drm_vma_offset_node, vm_node);
177}
178EXPORT_SYMBOL(drm_vma_offset_lookup_locked);
179
180/**
181 * drm_vma_offset_add() - Add offset node to manager
182 * @mgr: Manager object
183 * @node: Node to be added
184 * @pages: Allocation size visible to user-space (in number of pages)
185 *
186 * Add a node to the offset-manager. If the node was already added, this does
187 * nothing and return 0. @pages is the size of the object given in number of
188 * pages.
189 * After this call succeeds, you can access the offset of the node until it
190 * is removed again.
191 *
192 * If this call fails, it is safe to retry the operation or call
193 * drm_vma_offset_remove(), anyway. However, no cleanup is required in that
194 * case.
195 *
196 * @pages is not required to be the same size as the underlying memory object
197 * that you want to map. It only limits the size that user-space can map into
198 * their address space.
199 *
200 * RETURNS:
201 * 0 on success, negative error code on failure.
202 */
203int drm_vma_offset_add(struct drm_vma_offset_manager *mgr,
204 struct drm_vma_offset_node *node, unsigned long pages)
205{
206 int ret = 0;
207
208 write_lock(&mgr->vm_lock);
209
210 if (!drm_mm_node_allocated(&node->vm_node))
211 ret = drm_mm_insert_node(&mgr->vm_addr_space_mm,
212 &node->vm_node, pages);
213
214 write_unlock(&mgr->vm_lock);
215
216 return ret;
217}
218EXPORT_SYMBOL(drm_vma_offset_add);
219
220/**
221 * drm_vma_offset_remove() - Remove offset node from manager
222 * @mgr: Manager object
223 * @node: Node to be removed
224 *
225 * Remove a node from the offset manager. If the node wasn't added before, this
226 * does nothing. After this call returns, the offset and size will be 0 until a
227 * new offset is allocated via drm_vma_offset_add() again. Helper functions like
228 * drm_vma_node_start() and drm_vma_node_offset_addr() will return 0 if no
229 * offset is allocated.
230 */
231void drm_vma_offset_remove(struct drm_vma_offset_manager *mgr,
232 struct drm_vma_offset_node *node)
233{
234 write_lock(&mgr->vm_lock);
235
236 if (drm_mm_node_allocated(&node->vm_node)) {
237 drm_mm_remove_node(&node->vm_node);
238 memset(&node->vm_node, 0, sizeof(node->vm_node));
239 }
240
241 write_unlock(&mgr->vm_lock);
242}
243EXPORT_SYMBOL(drm_vma_offset_remove);
244
245/**
246 * drm_vma_node_allow - Add open-file to list of allowed users
247 * @node: Node to modify
248 * @tag: Tag of file to remove
249 *
250 * Add @tag to the list of allowed open-files for this node. If @tag is
251 * already on this list, the ref-count is incremented.
252 *
253 * The list of allowed-users is preserved across drm_vma_offset_add() and
254 * drm_vma_offset_remove() calls. You may even call it if the node is currently
255 * not added to any offset-manager.
256 *
257 * You must remove all open-files the same number of times as you added them
258 * before destroying the node. Otherwise, you will leak memory.
259 *
260 * This is locked against concurrent access internally.
261 *
262 * RETURNS:
263 * 0 on success, negative error code on internal failure (out-of-mem)
264 */
265int drm_vma_node_allow(struct drm_vma_offset_node *node, struct drm_file *tag)
266{
267 struct rb_node **iter;
268 struct rb_node *parent = NULL;
269 struct drm_vma_offset_file *new, *entry;
270 int ret = 0;
271
272 /* Preallocate entry to avoid atomic allocations below. It is quite
273 * unlikely that an open-file is added twice to a single node so we
274 * don't optimize for this case. OOM is checked below only if the entry
275 * is actually used. */
276 new = kmalloc(sizeof(*entry), GFP_KERNEL);
277
278 write_lock(&node->vm_lock);
279
280 iter = &node->vm_files.rb_node;
281
282 while (likely(*iter)) {
283 parent = *iter;
284 entry = rb_entry(*iter, struct drm_vma_offset_file, vm_rb);
285
286 if (tag == entry->vm_tag) {
287 entry->vm_count++;
288 goto unlock;
289 } else if (tag > entry->vm_tag) {
290 iter = &(*iter)->rb_right;
291 } else {
292 iter = &(*iter)->rb_left;
293 }
294 }
295
296 if (!new) {
297 ret = -ENOMEM;
298 goto unlock;
299 }
300
301 new->vm_tag = tag;
302 new->vm_count = 1;
303 rb_link_node(&new->vm_rb, parent, iter);
304 rb_insert_color(&new->vm_rb, &node->vm_files);
305 new = NULL;
306
307unlock:
308 write_unlock(&node->vm_lock);
309 kfree(new);
310 return ret;
311}
312EXPORT_SYMBOL(drm_vma_node_allow);
313
314/**
315 * drm_vma_node_revoke - Remove open-file from list of allowed users
316 * @node: Node to modify
317 * @tag: Tag of file to remove
318 *
319 * Decrement the ref-count of @tag in the list of allowed open-files on @node.
320 * If the ref-count drops to zero, remove @tag from the list. You must call
321 * this once for every drm_vma_node_allow() on @tag.
322 *
323 * This is locked against concurrent access internally.
324 *
325 * If @tag is not on the list, nothing is done.
326 */
327void drm_vma_node_revoke(struct drm_vma_offset_node *node,
328 struct drm_file *tag)
329{
330 struct drm_vma_offset_file *entry;
331 struct rb_node *iter;
332
333 write_lock(&node->vm_lock);
334
335 iter = node->vm_files.rb_node;
336 while (likely(iter)) {
337 entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
338 if (tag == entry->vm_tag) {
339 if (!--entry->vm_count) {
340 rb_erase(&entry->vm_rb, &node->vm_files);
341 kfree(entry);
342 }
343 break;
344 } else if (tag > entry->vm_tag) {
345 iter = iter->rb_right;
346 } else {
347 iter = iter->rb_left;
348 }
349 }
350
351 write_unlock(&node->vm_lock);
352}
353EXPORT_SYMBOL(drm_vma_node_revoke);
354
355/**
356 * drm_vma_node_is_allowed - Check whether an open-file is granted access
357 * @node: Node to check
358 * @tag: Tag of file to remove
359 *
360 * Search the list in @node whether @tag is currently on the list of allowed
361 * open-files (see drm_vma_node_allow()).
362 *
363 * This is locked against concurrent access internally.
364 *
365 * RETURNS:
366 * true iff @filp is on the list
367 */
368bool drm_vma_node_is_allowed(struct drm_vma_offset_node *node,
369 struct drm_file *tag)
370{
371 struct drm_vma_offset_file *entry;
372 struct rb_node *iter;
373
374 read_lock(&node->vm_lock);
375
376 iter = node->vm_files.rb_node;
377 while (likely(iter)) {
378 entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
379 if (tag == entry->vm_tag)
380 break;
381 else if (tag > entry->vm_tag)
382 iter = iter->rb_right;
383 else
384 iter = iter->rb_left;
385 }
386
387 read_unlock(&node->vm_lock);
388
389 return iter;
390}
391EXPORT_SYMBOL(drm_vma_node_is_allowed);