Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1/*
   2 * Copyright (c) 2013, Kenneth MacKay
   3 * All rights reserved.
   4 *
   5 * Redistribution and use in source and binary forms, with or without
   6 * modification, are permitted provided that the following conditions are
   7 * met:
   8 *  * Redistributions of source code must retain the above copyright
   9 *   notice, this list of conditions and the following disclaimer.
  10 *  * Redistributions in binary form must reproduce the above copyright
  11 *    notice, this list of conditions and the following disclaimer in the
  12 *    documentation and/or other materials provided with the distribution.
  13 *
  14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25 */
  26
  27#include <linux/random.h>
  28#include <linux/slab.h>
  29#include <linux/swab.h>
  30#include <linux/fips.h>
  31#include <crypto/ecdh.h>
  32#include <crypto/rng.h>
  33
  34#include "ecc.h"
  35#include "ecc_curve_defs.h"
  36
  37typedef struct {
  38	u64 m_low;
  39	u64 m_high;
  40} uint128_t;
  41
  42static inline const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
  43{
  44	switch (curve_id) {
  45	/* In FIPS mode only allow P256 and higher */
  46	case ECC_CURVE_NIST_P192:
  47		return fips_enabled ? NULL : &nist_p192;
  48	case ECC_CURVE_NIST_P256:
  49		return &nist_p256;
  50	default:
  51		return NULL;
  52	}
  53}
  54
  55static u64 *ecc_alloc_digits_space(unsigned int ndigits)
  56{
  57	size_t len = ndigits * sizeof(u64);
  58
  59	if (!len)
  60		return NULL;
  61
  62	return kmalloc(len, GFP_KERNEL);
  63}
  64
  65static void ecc_free_digits_space(u64 *space)
  66{
  67	kzfree(space);
  68}
  69
  70static struct ecc_point *ecc_alloc_point(unsigned int ndigits)
  71{
  72	struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
  73
  74	if (!p)
  75		return NULL;
  76
  77	p->x = ecc_alloc_digits_space(ndigits);
  78	if (!p->x)
  79		goto err_alloc_x;
  80
  81	p->y = ecc_alloc_digits_space(ndigits);
  82	if (!p->y)
  83		goto err_alloc_y;
  84
  85	p->ndigits = ndigits;
  86
  87	return p;
  88
  89err_alloc_y:
  90	ecc_free_digits_space(p->x);
  91err_alloc_x:
  92	kfree(p);
  93	return NULL;
  94}
  95
  96static void ecc_free_point(struct ecc_point *p)
  97{
  98	if (!p)
  99		return;
 100
 101	kzfree(p->x);
 102	kzfree(p->y);
 103	kzfree(p);
 104}
 105
 106static void vli_clear(u64 *vli, unsigned int ndigits)
 107{
 108	int i;
 109
 110	for (i = 0; i < ndigits; i++)
 111		vli[i] = 0;
 112}
 113
 114/* Returns true if vli == 0, false otherwise. */
 115static bool vli_is_zero(const u64 *vli, unsigned int ndigits)
 116{
 117	int i;
 118
 119	for (i = 0; i < ndigits; i++) {
 120		if (vli[i])
 121			return false;
 122	}
 123
 124	return true;
 125}
 126
 127/* Returns nonzero if bit bit of vli is set. */
 128static u64 vli_test_bit(const u64 *vli, unsigned int bit)
 129{
 130	return (vli[bit / 64] & ((u64)1 << (bit % 64)));
 131}
 132
 133/* Counts the number of 64-bit "digits" in vli. */
 134static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
 135{
 136	int i;
 137
 138	/* Search from the end until we find a non-zero digit.
 139	 * We do it in reverse because we expect that most digits will
 140	 * be nonzero.
 141	 */
 142	for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
 143
 144	return (i + 1);
 145}
 146
 147/* Counts the number of bits required for vli. */
 148static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
 149{
 150	unsigned int i, num_digits;
 151	u64 digit;
 152
 153	num_digits = vli_num_digits(vli, ndigits);
 154	if (num_digits == 0)
 155		return 0;
 156
 157	digit = vli[num_digits - 1];
 158	for (i = 0; digit; i++)
 159		digit >>= 1;
 160
 161	return ((num_digits - 1) * 64 + i);
 162}
 163
 164/* Sets dest = src. */
 165static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
 166{
 167	int i;
 168
 169	for (i = 0; i < ndigits; i++)
 170		dest[i] = src[i];
 171}
 172
 173/* Returns sign of left - right. */
 174static int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
 175{
 176	int i;
 177
 178	for (i = ndigits - 1; i >= 0; i--) {
 179		if (left[i] > right[i])
 180			return 1;
 181		else if (left[i] < right[i])
 182			return -1;
 183	}
 184
 185	return 0;
 186}
 187
 188/* Computes result = in << c, returning carry. Can modify in place
 189 * (if result == in). 0 < shift < 64.
 190 */
 191static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
 192		      unsigned int ndigits)
 193{
 194	u64 carry = 0;
 195	int i;
 196
 197	for (i = 0; i < ndigits; i++) {
 198		u64 temp = in[i];
 199
 200		result[i] = (temp << shift) | carry;
 201		carry = temp >> (64 - shift);
 202	}
 203
 204	return carry;
 205}
 206
 207/* Computes vli = vli >> 1. */
 208static void vli_rshift1(u64 *vli, unsigned int ndigits)
 209{
 210	u64 *end = vli;
 211	u64 carry = 0;
 212
 213	vli += ndigits;
 214
 215	while (vli-- > end) {
 216		u64 temp = *vli;
 217		*vli = (temp >> 1) | carry;
 218		carry = temp << 63;
 219	}
 220}
 221
 222/* Computes result = left + right, returning carry. Can modify in place. */
 223static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
 224		   unsigned int ndigits)
 225{
 226	u64 carry = 0;
 227	int i;
 228
 229	for (i = 0; i < ndigits; i++) {
 230		u64 sum;
 231
 232		sum = left[i] + right[i] + carry;
 233		if (sum != left[i])
 234			carry = (sum < left[i]);
 235
 236		result[i] = sum;
 237	}
 238
 239	return carry;
 240}
 241
 242/* Computes result = left - right, returning borrow. Can modify in place. */
 243static u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
 244		   unsigned int ndigits)
 245{
 246	u64 borrow = 0;
 247	int i;
 248
 249	for (i = 0; i < ndigits; i++) {
 250		u64 diff;
 251
 252		diff = left[i] - right[i] - borrow;
 253		if (diff != left[i])
 254			borrow = (diff > left[i]);
 255
 256		result[i] = diff;
 257	}
 258
 259	return borrow;
 260}
 261
 262static uint128_t mul_64_64(u64 left, u64 right)
 263{
 264	u64 a0 = left & 0xffffffffull;
 265	u64 a1 = left >> 32;
 266	u64 b0 = right & 0xffffffffull;
 267	u64 b1 = right >> 32;
 268	u64 m0 = a0 * b0;
 269	u64 m1 = a0 * b1;
 270	u64 m2 = a1 * b0;
 271	u64 m3 = a1 * b1;
 272	uint128_t result;
 273
 274	m2 += (m0 >> 32);
 275	m2 += m1;
 276
 277	/* Overflow */
 278	if (m2 < m1)
 279		m3 += 0x100000000ull;
 280
 281	result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
 282	result.m_high = m3 + (m2 >> 32);
 283
 284	return result;
 285}
 286
 287static uint128_t add_128_128(uint128_t a, uint128_t b)
 288{
 289	uint128_t result;
 290
 291	result.m_low = a.m_low + b.m_low;
 292	result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
 293
 294	return result;
 295}
 296
 297static void vli_mult(u64 *result, const u64 *left, const u64 *right,
 298		     unsigned int ndigits)
 299{
 300	uint128_t r01 = { 0, 0 };
 301	u64 r2 = 0;
 302	unsigned int i, k;
 303
 304	/* Compute each digit of result in sequence, maintaining the
 305	 * carries.
 306	 */
 307	for (k = 0; k < ndigits * 2 - 1; k++) {
 308		unsigned int min;
 309
 310		if (k < ndigits)
 311			min = 0;
 312		else
 313			min = (k + 1) - ndigits;
 314
 315		for (i = min; i <= k && i < ndigits; i++) {
 316			uint128_t product;
 317
 318			product = mul_64_64(left[i], right[k - i]);
 319
 320			r01 = add_128_128(r01, product);
 321			r2 += (r01.m_high < product.m_high);
 322		}
 323
 324		result[k] = r01.m_low;
 325		r01.m_low = r01.m_high;
 326		r01.m_high = r2;
 327		r2 = 0;
 328	}
 329
 330	result[ndigits * 2 - 1] = r01.m_low;
 331}
 332
 333static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
 334{
 335	uint128_t r01 = { 0, 0 };
 336	u64 r2 = 0;
 337	int i, k;
 338
 339	for (k = 0; k < ndigits * 2 - 1; k++) {
 340		unsigned int min;
 341
 342		if (k < ndigits)
 343			min = 0;
 344		else
 345			min = (k + 1) - ndigits;
 346
 347		for (i = min; i <= k && i <= k - i; i++) {
 348			uint128_t product;
 349
 350			product = mul_64_64(left[i], left[k - i]);
 351
 352			if (i < k - i) {
 353				r2 += product.m_high >> 63;
 354				product.m_high = (product.m_high << 1) |
 355						 (product.m_low >> 63);
 356				product.m_low <<= 1;
 357			}
 358
 359			r01 = add_128_128(r01, product);
 360			r2 += (r01.m_high < product.m_high);
 361		}
 362
 363		result[k] = r01.m_low;
 364		r01.m_low = r01.m_high;
 365		r01.m_high = r2;
 366		r2 = 0;
 367	}
 368
 369	result[ndigits * 2 - 1] = r01.m_low;
 370}
 371
 372/* Computes result = (left + right) % mod.
 373 * Assumes that left < mod and right < mod, result != mod.
 374 */
 375static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
 376			const u64 *mod, unsigned int ndigits)
 377{
 378	u64 carry;
 379
 380	carry = vli_add(result, left, right, ndigits);
 381
 382	/* result > mod (result = mod + remainder), so subtract mod to
 383	 * get remainder.
 384	 */
 385	if (carry || vli_cmp(result, mod, ndigits) >= 0)
 386		vli_sub(result, result, mod, ndigits);
 387}
 388
 389/* Computes result = (left - right) % mod.
 390 * Assumes that left < mod and right < mod, result != mod.
 391 */
 392static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
 393			const u64 *mod, unsigned int ndigits)
 394{
 395	u64 borrow = vli_sub(result, left, right, ndigits);
 396
 397	/* In this case, p_result == -diff == (max int) - diff.
 398	 * Since -x % d == d - x, we can get the correct result from
 399	 * result + mod (with overflow).
 400	 */
 401	if (borrow)
 402		vli_add(result, result, mod, ndigits);
 403}
 404
 405/* Computes p_result = p_product % curve_p.
 406 * See algorithm 5 and 6 from
 407 * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
 408 */
 409static void vli_mmod_fast_192(u64 *result, const u64 *product,
 410			      const u64 *curve_prime, u64 *tmp)
 411{
 412	const unsigned int ndigits = 3;
 413	int carry;
 414
 415	vli_set(result, product, ndigits);
 416
 417	vli_set(tmp, &product[3], ndigits);
 418	carry = vli_add(result, result, tmp, ndigits);
 419
 420	tmp[0] = 0;
 421	tmp[1] = product[3];
 422	tmp[2] = product[4];
 423	carry += vli_add(result, result, tmp, ndigits);
 424
 425	tmp[0] = tmp[1] = product[5];
 426	tmp[2] = 0;
 427	carry += vli_add(result, result, tmp, ndigits);
 428
 429	while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
 430		carry -= vli_sub(result, result, curve_prime, ndigits);
 431}
 432
 433/* Computes result = product % curve_prime
 434 * from http://www.nsa.gov/ia/_files/nist-routines.pdf
 435 */
 436static void vli_mmod_fast_256(u64 *result, const u64 *product,
 437			      const u64 *curve_prime, u64 *tmp)
 438{
 439	int carry;
 440	const unsigned int ndigits = 4;
 441
 442	/* t */
 443	vli_set(result, product, ndigits);
 444
 445	/* s1 */
 446	tmp[0] = 0;
 447	tmp[1] = product[5] & 0xffffffff00000000ull;
 448	tmp[2] = product[6];
 449	tmp[3] = product[7];
 450	carry = vli_lshift(tmp, tmp, 1, ndigits);
 451	carry += vli_add(result, result, tmp, ndigits);
 452
 453	/* s2 */
 454	tmp[1] = product[6] << 32;
 455	tmp[2] = (product[6] >> 32) | (product[7] << 32);
 456	tmp[3] = product[7] >> 32;
 457	carry += vli_lshift(tmp, tmp, 1, ndigits);
 458	carry += vli_add(result, result, tmp, ndigits);
 459
 460	/* s3 */
 461	tmp[0] = product[4];
 462	tmp[1] = product[5] & 0xffffffff;
 463	tmp[2] = 0;
 464	tmp[3] = product[7];
 465	carry += vli_add(result, result, tmp, ndigits);
 466
 467	/* s4 */
 468	tmp[0] = (product[4] >> 32) | (product[5] << 32);
 469	tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
 470	tmp[2] = product[7];
 471	tmp[3] = (product[6] >> 32) | (product[4] << 32);
 472	carry += vli_add(result, result, tmp, ndigits);
 473
 474	/* d1 */
 475	tmp[0] = (product[5] >> 32) | (product[6] << 32);
 476	tmp[1] = (product[6] >> 32);
 477	tmp[2] = 0;
 478	tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
 479	carry -= vli_sub(result, result, tmp, ndigits);
 480
 481	/* d2 */
 482	tmp[0] = product[6];
 483	tmp[1] = product[7];
 484	tmp[2] = 0;
 485	tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
 486	carry -= vli_sub(result, result, tmp, ndigits);
 487
 488	/* d3 */
 489	tmp[0] = (product[6] >> 32) | (product[7] << 32);
 490	tmp[1] = (product[7] >> 32) | (product[4] << 32);
 491	tmp[2] = (product[4] >> 32) | (product[5] << 32);
 492	tmp[3] = (product[6] << 32);
 493	carry -= vli_sub(result, result, tmp, ndigits);
 494
 495	/* d4 */
 496	tmp[0] = product[7];
 497	tmp[1] = product[4] & 0xffffffff00000000ull;
 498	tmp[2] = product[5];
 499	tmp[3] = product[6] & 0xffffffff00000000ull;
 500	carry -= vli_sub(result, result, tmp, ndigits);
 501
 502	if (carry < 0) {
 503		do {
 504			carry += vli_add(result, result, curve_prime, ndigits);
 505		} while (carry < 0);
 506	} else {
 507		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
 508			carry -= vli_sub(result, result, curve_prime, ndigits);
 509	}
 510}
 511
 512/* Computes result = product % curve_prime
 513 *  from http://www.nsa.gov/ia/_files/nist-routines.pdf
 514*/
 515static bool vli_mmod_fast(u64 *result, u64 *product,
 516			  const u64 *curve_prime, unsigned int ndigits)
 517{
 518	u64 tmp[2 * ndigits];
 519
 520	switch (ndigits) {
 521	case 3:
 522		vli_mmod_fast_192(result, product, curve_prime, tmp);
 523		break;
 524	case 4:
 525		vli_mmod_fast_256(result, product, curve_prime, tmp);
 526		break;
 527	default:
 528		pr_err("unsupports digits size!\n");
 529		return false;
 530	}
 531
 532	return true;
 533}
 534
 535/* Computes result = (left * right) % curve_prime. */
 536static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
 537			      const u64 *curve_prime, unsigned int ndigits)
 538{
 539	u64 product[2 * ndigits];
 540
 541	vli_mult(product, left, right, ndigits);
 542	vli_mmod_fast(result, product, curve_prime, ndigits);
 543}
 544
 545/* Computes result = left^2 % curve_prime. */
 546static void vli_mod_square_fast(u64 *result, const u64 *left,
 547				const u64 *curve_prime, unsigned int ndigits)
 548{
 549	u64 product[2 * ndigits];
 550
 551	vli_square(product, left, ndigits);
 552	vli_mmod_fast(result, product, curve_prime, ndigits);
 553}
 554
 555#define EVEN(vli) (!(vli[0] & 1))
 556/* Computes result = (1 / p_input) % mod. All VLIs are the same size.
 557 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
 558 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
 559 */
 560static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
 561			unsigned int ndigits)
 562{
 563	u64 a[ndigits], b[ndigits];
 564	u64 u[ndigits], v[ndigits];
 565	u64 carry;
 566	int cmp_result;
 567
 568	if (vli_is_zero(input, ndigits)) {
 569		vli_clear(result, ndigits);
 570		return;
 571	}
 572
 573	vli_set(a, input, ndigits);
 574	vli_set(b, mod, ndigits);
 575	vli_clear(u, ndigits);
 576	u[0] = 1;
 577	vli_clear(v, ndigits);
 578
 579	while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
 580		carry = 0;
 581
 582		if (EVEN(a)) {
 583			vli_rshift1(a, ndigits);
 584
 585			if (!EVEN(u))
 586				carry = vli_add(u, u, mod, ndigits);
 587
 588			vli_rshift1(u, ndigits);
 589			if (carry)
 590				u[ndigits - 1] |= 0x8000000000000000ull;
 591		} else if (EVEN(b)) {
 592			vli_rshift1(b, ndigits);
 593
 594			if (!EVEN(v))
 595				carry = vli_add(v, v, mod, ndigits);
 596
 597			vli_rshift1(v, ndigits);
 598			if (carry)
 599				v[ndigits - 1] |= 0x8000000000000000ull;
 600		} else if (cmp_result > 0) {
 601			vli_sub(a, a, b, ndigits);
 602			vli_rshift1(a, ndigits);
 603
 604			if (vli_cmp(u, v, ndigits) < 0)
 605				vli_add(u, u, mod, ndigits);
 606
 607			vli_sub(u, u, v, ndigits);
 608			if (!EVEN(u))
 609				carry = vli_add(u, u, mod, ndigits);
 610
 611			vli_rshift1(u, ndigits);
 612			if (carry)
 613				u[ndigits - 1] |= 0x8000000000000000ull;
 614		} else {
 615			vli_sub(b, b, a, ndigits);
 616			vli_rshift1(b, ndigits);
 617
 618			if (vli_cmp(v, u, ndigits) < 0)
 619				vli_add(v, v, mod, ndigits);
 620
 621			vli_sub(v, v, u, ndigits);
 622			if (!EVEN(v))
 623				carry = vli_add(v, v, mod, ndigits);
 624
 625			vli_rshift1(v, ndigits);
 626			if (carry)
 627				v[ndigits - 1] |= 0x8000000000000000ull;
 628		}
 629	}
 630
 631	vli_set(result, u, ndigits);
 632}
 633
 634/* ------ Point operations ------ */
 635
 636/* Returns true if p_point is the point at infinity, false otherwise. */
 637static bool ecc_point_is_zero(const struct ecc_point *point)
 638{
 639	return (vli_is_zero(point->x, point->ndigits) &&
 640		vli_is_zero(point->y, point->ndigits));
 641}
 642
 643/* Point multiplication algorithm using Montgomery's ladder with co-Z
 644 * coordinates. From http://eprint.iacr.org/2011/338.pdf
 645 */
 646
 647/* Double in place */
 648static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
 649				      u64 *curve_prime, unsigned int ndigits)
 650{
 651	/* t1 = x, t2 = y, t3 = z */
 652	u64 t4[ndigits];
 653	u64 t5[ndigits];
 654
 655	if (vli_is_zero(z1, ndigits))
 656		return;
 657
 658	/* t4 = y1^2 */
 659	vli_mod_square_fast(t4, y1, curve_prime, ndigits);
 660	/* t5 = x1*y1^2 = A */
 661	vli_mod_mult_fast(t5, x1, t4, curve_prime, ndigits);
 662	/* t4 = y1^4 */
 663	vli_mod_square_fast(t4, t4, curve_prime, ndigits);
 664	/* t2 = y1*z1 = z3 */
 665	vli_mod_mult_fast(y1, y1, z1, curve_prime, ndigits);
 666	/* t3 = z1^2 */
 667	vli_mod_square_fast(z1, z1, curve_prime, ndigits);
 668
 669	/* t1 = x1 + z1^2 */
 670	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
 671	/* t3 = 2*z1^2 */
 672	vli_mod_add(z1, z1, z1, curve_prime, ndigits);
 673	/* t3 = x1 - z1^2 */
 674	vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
 675	/* t1 = x1^2 - z1^4 */
 676	vli_mod_mult_fast(x1, x1, z1, curve_prime, ndigits);
 677
 678	/* t3 = 2*(x1^2 - z1^4) */
 679	vli_mod_add(z1, x1, x1, curve_prime, ndigits);
 680	/* t1 = 3*(x1^2 - z1^4) */
 681	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
 682	if (vli_test_bit(x1, 0)) {
 683		u64 carry = vli_add(x1, x1, curve_prime, ndigits);
 684
 685		vli_rshift1(x1, ndigits);
 686		x1[ndigits - 1] |= carry << 63;
 687	} else {
 688		vli_rshift1(x1, ndigits);
 689	}
 690	/* t1 = 3/2*(x1^2 - z1^4) = B */
 691
 692	/* t3 = B^2 */
 693	vli_mod_square_fast(z1, x1, curve_prime, ndigits);
 694	/* t3 = B^2 - A */
 695	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
 696	/* t3 = B^2 - 2A = x3 */
 697	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
 698	/* t5 = A - x3 */
 699	vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
 700	/* t1 = B * (A - x3) */
 701	vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
 702	/* t4 = B * (A - x3) - y1^4 = y3 */
 703	vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
 704
 705	vli_set(x1, z1, ndigits);
 706	vli_set(z1, y1, ndigits);
 707	vli_set(y1, t4, ndigits);
 708}
 709
 710/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
 711static void apply_z(u64 *x1, u64 *y1, u64 *z, u64 *curve_prime,
 712		    unsigned int ndigits)
 713{
 714	u64 t1[ndigits];
 715
 716	vli_mod_square_fast(t1, z, curve_prime, ndigits);    /* z^2 */
 717	vli_mod_mult_fast(x1, x1, t1, curve_prime, ndigits); /* x1 * z^2 */
 718	vli_mod_mult_fast(t1, t1, z, curve_prime, ndigits);  /* z^3 */
 719	vli_mod_mult_fast(y1, y1, t1, curve_prime, ndigits); /* y1 * z^3 */
 720}
 721
 722/* P = (x1, y1) => 2P, (x2, y2) => P' */
 723static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
 724				u64 *p_initial_z, u64 *curve_prime,
 725				unsigned int ndigits)
 726{
 727	u64 z[ndigits];
 728
 729	vli_set(x2, x1, ndigits);
 730	vli_set(y2, y1, ndigits);
 731
 732	vli_clear(z, ndigits);
 733	z[0] = 1;
 734
 735	if (p_initial_z)
 736		vli_set(z, p_initial_z, ndigits);
 737
 738	apply_z(x1, y1, z, curve_prime, ndigits);
 739
 740	ecc_point_double_jacobian(x1, y1, z, curve_prime, ndigits);
 741
 742	apply_z(x2, y2, z, curve_prime, ndigits);
 743}
 744
 745/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
 746 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
 747 * or P => P', Q => P + Q
 748 */
 749static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
 750		     unsigned int ndigits)
 751{
 752	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
 753	u64 t5[ndigits];
 754
 755	/* t5 = x2 - x1 */
 756	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
 757	/* t5 = (x2 - x1)^2 = A */
 758	vli_mod_square_fast(t5, t5, curve_prime, ndigits);
 759	/* t1 = x1*A = B */
 760	vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
 761	/* t3 = x2*A = C */
 762	vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
 763	/* t4 = y2 - y1 */
 764	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
 765	/* t5 = (y2 - y1)^2 = D */
 766	vli_mod_square_fast(t5, y2, curve_prime, ndigits);
 767
 768	/* t5 = D - B */
 769	vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
 770	/* t5 = D - B - C = x3 */
 771	vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
 772	/* t3 = C - B */
 773	vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
 774	/* t2 = y1*(C - B) */
 775	vli_mod_mult_fast(y1, y1, x2, curve_prime, ndigits);
 776	/* t3 = B - x3 */
 777	vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
 778	/* t4 = (y2 - y1)*(B - x3) */
 779	vli_mod_mult_fast(y2, y2, x2, curve_prime, ndigits);
 780	/* t4 = y3 */
 781	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
 782
 783	vli_set(x2, t5, ndigits);
 784}
 785
 786/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
 787 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
 788 * or P => P - Q, Q => P + Q
 789 */
 790static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
 791		       unsigned int ndigits)
 792{
 793	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
 794	u64 t5[ndigits];
 795	u64 t6[ndigits];
 796	u64 t7[ndigits];
 797
 798	/* t5 = x2 - x1 */
 799	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
 800	/* t5 = (x2 - x1)^2 = A */
 801	vli_mod_square_fast(t5, t5, curve_prime, ndigits);
 802	/* t1 = x1*A = B */
 803	vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
 804	/* t3 = x2*A = C */
 805	vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
 806	/* t4 = y2 + y1 */
 807	vli_mod_add(t5, y2, y1, curve_prime, ndigits);
 808	/* t4 = y2 - y1 */
 809	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
 810
 811	/* t6 = C - B */
 812	vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
 813	/* t2 = y1 * (C - B) */
 814	vli_mod_mult_fast(y1, y1, t6, curve_prime, ndigits);
 815	/* t6 = B + C */
 816	vli_mod_add(t6, x1, x2, curve_prime, ndigits);
 817	/* t3 = (y2 - y1)^2 */
 818	vli_mod_square_fast(x2, y2, curve_prime, ndigits);
 819	/* t3 = x3 */
 820	vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
 821
 822	/* t7 = B - x3 */
 823	vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
 824	/* t4 = (y2 - y1)*(B - x3) */
 825	vli_mod_mult_fast(y2, y2, t7, curve_prime, ndigits);
 826	/* t4 = y3 */
 827	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
 828
 829	/* t7 = (y2 + y1)^2 = F */
 830	vli_mod_square_fast(t7, t5, curve_prime, ndigits);
 831	/* t7 = x3' */
 832	vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
 833	/* t6 = x3' - B */
 834	vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
 835	/* t6 = (y2 + y1)*(x3' - B) */
 836	vli_mod_mult_fast(t6, t6, t5, curve_prime, ndigits);
 837	/* t2 = y3' */
 838	vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
 839
 840	vli_set(x1, t7, ndigits);
 841}
 842
 843static void ecc_point_mult(struct ecc_point *result,
 844			   const struct ecc_point *point, const u64 *scalar,
 845			   u64 *initial_z, u64 *curve_prime,
 846			   unsigned int ndigits)
 847{
 848	/* R0 and R1 */
 849	u64 rx[2][ndigits];
 850	u64 ry[2][ndigits];
 851	u64 z[ndigits];
 852	int i, nb;
 853	int num_bits = vli_num_bits(scalar, ndigits);
 854
 855	vli_set(rx[1], point->x, ndigits);
 856	vli_set(ry[1], point->y, ndigits);
 857
 858	xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve_prime,
 859			    ndigits);
 860
 861	for (i = num_bits - 2; i > 0; i--) {
 862		nb = !vli_test_bit(scalar, i);
 863		xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
 864			   ndigits);
 865		xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime,
 866			 ndigits);
 867	}
 868
 869	nb = !vli_test_bit(scalar, 0);
 870	xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
 871		   ndigits);
 872
 873	/* Find final 1/Z value. */
 874	/* X1 - X0 */
 875	vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
 876	/* Yb * (X1 - X0) */
 877	vli_mod_mult_fast(z, z, ry[1 - nb], curve_prime, ndigits);
 878	/* xP * Yb * (X1 - X0) */
 879	vli_mod_mult_fast(z, z, point->x, curve_prime, ndigits);
 880
 881	/* 1 / (xP * Yb * (X1 - X0)) */
 882	vli_mod_inv(z, z, curve_prime, point->ndigits);
 883
 884	/* yP / (xP * Yb * (X1 - X0)) */
 885	vli_mod_mult_fast(z, z, point->y, curve_prime, ndigits);
 886	/* Xb * yP / (xP * Yb * (X1 - X0)) */
 887	vli_mod_mult_fast(z, z, rx[1 - nb], curve_prime, ndigits);
 888	/* End 1/Z calculation */
 889
 890	xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, ndigits);
 891
 892	apply_z(rx[0], ry[0], z, curve_prime, ndigits);
 893
 894	vli_set(result->x, rx[0], ndigits);
 895	vli_set(result->y, ry[0], ndigits);
 896}
 897
 898static inline void ecc_swap_digits(const u64 *in, u64 *out,
 899				   unsigned int ndigits)
 900{
 901	int i;
 902
 903	for (i = 0; i < ndigits; i++)
 904		out[i] = __swab64(in[ndigits - 1 - i]);
 905}
 906
 907int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
 908		     const u64 *private_key, unsigned int private_key_len)
 909{
 910	int nbytes;
 911	const struct ecc_curve *curve = ecc_get_curve(curve_id);
 912
 913	if (!private_key)
 914		return -EINVAL;
 915
 916	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
 917
 918	if (private_key_len != nbytes)
 919		return -EINVAL;
 920
 921	if (vli_is_zero(private_key, ndigits))
 922		return -EINVAL;
 923
 924	/* Make sure the private key is in the range [1, n-1]. */
 925	if (vli_cmp(curve->n, private_key, ndigits) != 1)
 926		return -EINVAL;
 927
 928	return 0;
 929}
 930
 931/*
 932 * ECC private keys are generated using the method of extra random bits,
 933 * equivalent to that described in FIPS 186-4, Appendix B.4.1.
 934 *
 935 * d = (c mod(n–1)) + 1    where c is a string of random bits, 64 bits longer
 936 *                         than requested
 937 * 0 <= c mod(n-1) <= n-2  and implies that
 938 * 1 <= d <= n-1
 939 *
 940 * This method generates a private key uniformly distributed in the range
 941 * [1, n-1].
 942 */
 943int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey)
 944{
 945	const struct ecc_curve *curve = ecc_get_curve(curve_id);
 946	u64 priv[ndigits];
 947	unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
 948	unsigned int nbits = vli_num_bits(curve->n, ndigits);
 949	int err;
 950
 951	/* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */
 952	if (nbits < 160)
 953		return -EINVAL;
 954
 955	/*
 956	 * FIPS 186-4 recommends that the private key should be obtained from a
 957	 * RBG with a security strength equal to or greater than the security
 958	 * strength associated with N.
 959	 *
 960	 * The maximum security strength identified by NIST SP800-57pt1r4 for
 961	 * ECC is 256 (N >= 512).
 962	 *
 963	 * This condition is met by the default RNG because it selects a favored
 964	 * DRBG with a security strength of 256.
 965	 */
 966	if (crypto_get_default_rng())
 967		return -EFAULT;
 968
 969	err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes);
 970	crypto_put_default_rng();
 971	if (err)
 972		return err;
 973
 974	if (vli_is_zero(priv, ndigits))
 975		return -EINVAL;
 976
 977	/* Make sure the private key is in the range [1, n-1]. */
 978	if (vli_cmp(curve->n, priv, ndigits) != 1)
 979		return -EINVAL;
 980
 981	ecc_swap_digits(priv, privkey, ndigits);
 982
 983	return 0;
 984}
 985
 986int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
 987		     const u64 *private_key, u64 *public_key)
 988{
 989	int ret = 0;
 990	struct ecc_point *pk;
 991	u64 priv[ndigits];
 992	const struct ecc_curve *curve = ecc_get_curve(curve_id);
 993
 994	if (!private_key || !curve) {
 995		ret = -EINVAL;
 996		goto out;
 997	}
 998
 999	ecc_swap_digits(private_key, priv, ndigits);
1000
1001	pk = ecc_alloc_point(ndigits);
1002	if (!pk) {
1003		ret = -ENOMEM;
1004		goto out;
1005	}
1006
1007	ecc_point_mult(pk, &curve->g, priv, NULL, curve->p, ndigits);
1008	if (ecc_point_is_zero(pk)) {
1009		ret = -EAGAIN;
1010		goto err_free_point;
1011	}
1012
1013	ecc_swap_digits(pk->x, public_key, ndigits);
1014	ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
1015
1016err_free_point:
1017	ecc_free_point(pk);
1018out:
1019	return ret;
1020}
1021
1022int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
1023			      const u64 *private_key, const u64 *public_key,
1024			      u64 *secret)
1025{
1026	int ret = 0;
1027	struct ecc_point *product, *pk;
1028	u64 *priv, *rand_z;
1029	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1030
1031	if (!private_key || !public_key || !curve) {
1032		ret = -EINVAL;
1033		goto out;
1034	}
1035
1036	priv = kmalloc_array(ndigits, sizeof(*priv), GFP_KERNEL);
1037	if (!priv) {
1038		ret = -ENOMEM;
1039		goto out;
1040	}
1041
1042	rand_z = kmalloc_array(ndigits, sizeof(*rand_z), GFP_KERNEL);
1043	if (!rand_z) {
1044		ret = -ENOMEM;
1045		goto kfree_out;
1046	}
1047
1048	pk = ecc_alloc_point(ndigits);
1049	if (!pk) {
1050		ret = -ENOMEM;
1051		goto kfree_out;
1052	}
1053
1054	product = ecc_alloc_point(ndigits);
1055	if (!product) {
1056		ret = -ENOMEM;
1057		goto err_alloc_product;
1058	}
1059
1060	get_random_bytes(rand_z, ndigits << ECC_DIGITS_TO_BYTES_SHIFT);
1061
1062	ecc_swap_digits(public_key, pk->x, ndigits);
1063	ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
1064	ecc_swap_digits(private_key, priv, ndigits);
1065
1066	ecc_point_mult(product, pk, priv, rand_z, curve->p, ndigits);
1067
1068	ecc_swap_digits(product->x, secret, ndigits);
1069
1070	if (ecc_point_is_zero(product))
1071		ret = -EFAULT;
1072
1073	ecc_free_point(product);
1074err_alloc_product:
1075	ecc_free_point(pk);
1076kfree_out:
1077	kzfree(priv);
1078	kzfree(rand_z);
1079out:
1080	return ret;
1081}