Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 *  linux/mm/swap.c
  3 *
  4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  5 */
  6
  7/*
  8 * This file contains the default values for the operation of the
  9 * Linux VM subsystem. Fine-tuning documentation can be found in
 10 * Documentation/sysctl/vm.txt.
 11 * Started 18.12.91
 12 * Swap aging added 23.2.95, Stephen Tweedie.
 13 * Buffermem limits added 12.3.98, Rik van Riel.
 14 */
 15
 16#include <linux/mm.h>
 17#include <linux/sched.h>
 18#include <linux/kernel_stat.h>
 19#include <linux/swap.h>
 20#include <linux/mman.h>
 21#include <linux/pagemap.h>
 22#include <linux/pagevec.h>
 23#include <linux/init.h>
 24#include <linux/export.h>
 25#include <linux/mm_inline.h>
 26#include <linux/percpu_counter.h>
 27#include <linux/memremap.h>
 28#include <linux/percpu.h>
 29#include <linux/cpu.h>
 30#include <linux/notifier.h>
 31#include <linux/backing-dev.h>
 32#include <linux/memcontrol.h>
 33#include <linux/gfp.h>
 34#include <linux/uio.h>
 35#include <linux/hugetlb.h>
 36#include <linux/page_idle.h>
 37
 38#include "internal.h"
 39
 40#define CREATE_TRACE_POINTS
 41#include <trace/events/pagemap.h>
 42
 43/* How many pages do we try to swap or page in/out together? */
 44int page_cluster;
 45
 46static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
 47static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
 48static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
 49static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
 
 
 
 50
 51/*
 52 * This path almost never happens for VM activity - pages are normally
 53 * freed via pagevecs.  But it gets used by networking.
 54 */
 55static void __page_cache_release(struct page *page)
 56{
 57	if (PageLRU(page)) {
 58		struct zone *zone = page_zone(page);
 59		struct lruvec *lruvec;
 60		unsigned long flags;
 61
 62		spin_lock_irqsave(&zone->lru_lock, flags);
 63		lruvec = mem_cgroup_page_lruvec(page, zone);
 64		VM_BUG_ON_PAGE(!PageLRU(page), page);
 65		__ClearPageLRU(page);
 66		del_page_from_lru_list(page, lruvec, page_off_lru(page));
 67		spin_unlock_irqrestore(&zone->lru_lock, flags);
 68	}
 
 69	mem_cgroup_uncharge(page);
 70}
 71
 72static void __put_single_page(struct page *page)
 73{
 74	__page_cache_release(page);
 75	free_hot_cold_page(page, false);
 76}
 77
 78static void __put_compound_page(struct page *page)
 79{
 80	compound_page_dtor *dtor;
 81
 82	/*
 83	 * __page_cache_release() is supposed to be called for thp, not for
 84	 * hugetlb. This is because hugetlb page does never have PageLRU set
 85	 * (it's never listed to any LRU lists) and no memcg routines should
 86	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
 87	 */
 88	if (!PageHuge(page))
 89		__page_cache_release(page);
 90	dtor = get_compound_page_dtor(page);
 91	(*dtor)(page);
 92}
 93
 94void __put_page(struct page *page)
 95{
 96	if (unlikely(PageCompound(page)))
 97		__put_compound_page(page);
 98	else
 99		__put_single_page(page);
100}
101EXPORT_SYMBOL(__put_page);
102
103/**
104 * put_pages_list() - release a list of pages
105 * @pages: list of pages threaded on page->lru
106 *
107 * Release a list of pages which are strung together on page.lru.  Currently
108 * used by read_cache_pages() and related error recovery code.
109 */
110void put_pages_list(struct list_head *pages)
111{
112	while (!list_empty(pages)) {
113		struct page *victim;
114
115		victim = list_entry(pages->prev, struct page, lru);
116		list_del(&victim->lru);
117		put_page(victim);
118	}
119}
120EXPORT_SYMBOL(put_pages_list);
121
122/*
123 * get_kernel_pages() - pin kernel pages in memory
124 * @kiov:	An array of struct kvec structures
125 * @nr_segs:	number of segments to pin
126 * @write:	pinning for read/write, currently ignored
127 * @pages:	array that receives pointers to the pages pinned.
128 *		Should be at least nr_segs long.
129 *
130 * Returns number of pages pinned. This may be fewer than the number
131 * requested. If nr_pages is 0 or negative, returns 0. If no pages
132 * were pinned, returns -errno. Each page returned must be released
133 * with a put_page() call when it is finished with.
134 */
135int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
136		struct page **pages)
137{
138	int seg;
139
140	for (seg = 0; seg < nr_segs; seg++) {
141		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
142			return seg;
143
144		pages[seg] = kmap_to_page(kiov[seg].iov_base);
145		get_page(pages[seg]);
146	}
147
148	return seg;
149}
150EXPORT_SYMBOL_GPL(get_kernel_pages);
151
152/*
153 * get_kernel_page() - pin a kernel page in memory
154 * @start:	starting kernel address
155 * @write:	pinning for read/write, currently ignored
156 * @pages:	array that receives pointer to the page pinned.
157 *		Must be at least nr_segs long.
158 *
159 * Returns 1 if page is pinned. If the page was not pinned, returns
160 * -errno. The page returned must be released with a put_page() call
161 * when it is finished with.
162 */
163int get_kernel_page(unsigned long start, int write, struct page **pages)
164{
165	const struct kvec kiov = {
166		.iov_base = (void *)start,
167		.iov_len = PAGE_SIZE
168	};
169
170	return get_kernel_pages(&kiov, 1, write, pages);
171}
172EXPORT_SYMBOL_GPL(get_kernel_page);
173
174static void pagevec_lru_move_fn(struct pagevec *pvec,
175	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
176	void *arg)
177{
178	int i;
179	struct zone *zone = NULL;
180	struct lruvec *lruvec;
181	unsigned long flags = 0;
182
183	for (i = 0; i < pagevec_count(pvec); i++) {
184		struct page *page = pvec->pages[i];
185		struct zone *pagezone = page_zone(page);
186
187		if (pagezone != zone) {
188			if (zone)
189				spin_unlock_irqrestore(&zone->lru_lock, flags);
190			zone = pagezone;
191			spin_lock_irqsave(&zone->lru_lock, flags);
192		}
193
194		lruvec = mem_cgroup_page_lruvec(page, zone);
195		(*move_fn)(page, lruvec, arg);
196	}
197	if (zone)
198		spin_unlock_irqrestore(&zone->lru_lock, flags);
199	release_pages(pvec->pages, pvec->nr, pvec->cold);
200	pagevec_reinit(pvec);
201}
202
203static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
204				 void *arg)
205{
206	int *pgmoved = arg;
207
208	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
209		enum lru_list lru = page_lru_base_type(page);
210		list_move_tail(&page->lru, &lruvec->lists[lru]);
211		(*pgmoved)++;
212	}
213}
214
215/*
216 * pagevec_move_tail() must be called with IRQ disabled.
217 * Otherwise this may cause nasty races.
218 */
219static void pagevec_move_tail(struct pagevec *pvec)
220{
221	int pgmoved = 0;
222
223	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
224	__count_vm_events(PGROTATED, pgmoved);
225}
226
227/*
228 * Writeback is about to end against a page which has been marked for immediate
229 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
230 * inactive list.
231 */
232void rotate_reclaimable_page(struct page *page)
233{
234	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
235	    !PageUnevictable(page) && PageLRU(page)) {
236		struct pagevec *pvec;
237		unsigned long flags;
238
239		get_page(page);
240		local_irq_save(flags);
241		pvec = this_cpu_ptr(&lru_rotate_pvecs);
242		if (!pagevec_add(pvec, page))
243			pagevec_move_tail(pvec);
244		local_irq_restore(flags);
245	}
246}
247
248static void update_page_reclaim_stat(struct lruvec *lruvec,
249				     int file, int rotated)
250{
251	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
252
253	reclaim_stat->recent_scanned[file]++;
254	if (rotated)
255		reclaim_stat->recent_rotated[file]++;
256}
257
258static void __activate_page(struct page *page, struct lruvec *lruvec,
259			    void *arg)
260{
261	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
262		int file = page_is_file_cache(page);
263		int lru = page_lru_base_type(page);
264
265		del_page_from_lru_list(page, lruvec, lru);
266		SetPageActive(page);
267		lru += LRU_ACTIVE;
268		add_page_to_lru_list(page, lruvec, lru);
269		trace_mm_lru_activate(page);
270
271		__count_vm_event(PGACTIVATE);
272		update_page_reclaim_stat(lruvec, file, 1);
273	}
274}
275
276#ifdef CONFIG_SMP
277static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
278
279static void activate_page_drain(int cpu)
280{
281	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
282
283	if (pagevec_count(pvec))
284		pagevec_lru_move_fn(pvec, __activate_page, NULL);
285}
286
287static bool need_activate_page_drain(int cpu)
288{
289	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
290}
291
292void activate_page(struct page *page)
293{
 
294	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
295		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
296
297		get_page(page);
298		if (!pagevec_add(pvec, page))
299			pagevec_lru_move_fn(pvec, __activate_page, NULL);
300		put_cpu_var(activate_page_pvecs);
301	}
302}
303
304#else
305static inline void activate_page_drain(int cpu)
306{
307}
308
309static bool need_activate_page_drain(int cpu)
310{
311	return false;
312}
313
314void activate_page(struct page *page)
315{
316	struct zone *zone = page_zone(page);
317
318	spin_lock_irq(&zone->lru_lock);
319	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
320	spin_unlock_irq(&zone->lru_lock);
 
321}
322#endif
323
324static void __lru_cache_activate_page(struct page *page)
325{
326	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
327	int i;
328
329	/*
330	 * Search backwards on the optimistic assumption that the page being
331	 * activated has just been added to this pagevec. Note that only
332	 * the local pagevec is examined as a !PageLRU page could be in the
333	 * process of being released, reclaimed, migrated or on a remote
334	 * pagevec that is currently being drained. Furthermore, marking
335	 * a remote pagevec's page PageActive potentially hits a race where
336	 * a page is marked PageActive just after it is added to the inactive
337	 * list causing accounting errors and BUG_ON checks to trigger.
338	 */
339	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
340		struct page *pagevec_page = pvec->pages[i];
341
342		if (pagevec_page == page) {
343			SetPageActive(page);
344			break;
345		}
346	}
347
348	put_cpu_var(lru_add_pvec);
349}
350
351/*
352 * Mark a page as having seen activity.
353 *
354 * inactive,unreferenced	->	inactive,referenced
355 * inactive,referenced		->	active,unreferenced
356 * active,unreferenced		->	active,referenced
357 *
358 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
359 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
360 */
361void mark_page_accessed(struct page *page)
362{
363	page = compound_head(page);
364	if (!PageActive(page) && !PageUnevictable(page) &&
365			PageReferenced(page)) {
366
367		/*
368		 * If the page is on the LRU, queue it for activation via
369		 * activate_page_pvecs. Otherwise, assume the page is on a
370		 * pagevec, mark it active and it'll be moved to the active
371		 * LRU on the next drain.
372		 */
373		if (PageLRU(page))
374			activate_page(page);
375		else
376			__lru_cache_activate_page(page);
377		ClearPageReferenced(page);
378		if (page_is_file_cache(page))
379			workingset_activation(page);
380	} else if (!PageReferenced(page)) {
381		SetPageReferenced(page);
382	}
383	if (page_is_idle(page))
384		clear_page_idle(page);
385}
386EXPORT_SYMBOL(mark_page_accessed);
387
388static void __lru_cache_add(struct page *page)
389{
390	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
391
392	get_page(page);
393	if (!pagevec_space(pvec))
394		__pagevec_lru_add(pvec);
395	pagevec_add(pvec, page);
396	put_cpu_var(lru_add_pvec);
397}
398
399/**
400 * lru_cache_add: add a page to the page lists
401 * @page: the page to add
402 */
403void lru_cache_add_anon(struct page *page)
404{
405	if (PageActive(page))
406		ClearPageActive(page);
407	__lru_cache_add(page);
408}
409
410void lru_cache_add_file(struct page *page)
411{
412	if (PageActive(page))
413		ClearPageActive(page);
414	__lru_cache_add(page);
415}
416EXPORT_SYMBOL(lru_cache_add_file);
417
418/**
419 * lru_cache_add - add a page to a page list
420 * @page: the page to be added to the LRU.
421 *
422 * Queue the page for addition to the LRU via pagevec. The decision on whether
423 * to add the page to the [in]active [file|anon] list is deferred until the
424 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
425 * have the page added to the active list using mark_page_accessed().
426 */
427void lru_cache_add(struct page *page)
428{
429	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
430	VM_BUG_ON_PAGE(PageLRU(page), page);
431	__lru_cache_add(page);
432}
433
434/**
435 * add_page_to_unevictable_list - add a page to the unevictable list
436 * @page:  the page to be added to the unevictable list
437 *
438 * Add page directly to its zone's unevictable list.  To avoid races with
439 * tasks that might be making the page evictable, through eg. munlock,
440 * munmap or exit, while it's not on the lru, we want to add the page
441 * while it's locked or otherwise "invisible" to other tasks.  This is
442 * difficult to do when using the pagevec cache, so bypass that.
443 */
444void add_page_to_unevictable_list(struct page *page)
445{
446	struct zone *zone = page_zone(page);
447	struct lruvec *lruvec;
448
449	spin_lock_irq(&zone->lru_lock);
450	lruvec = mem_cgroup_page_lruvec(page, zone);
451	ClearPageActive(page);
452	SetPageUnevictable(page);
453	SetPageLRU(page);
454	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
455	spin_unlock_irq(&zone->lru_lock);
456}
457
458/**
459 * lru_cache_add_active_or_unevictable
460 * @page:  the page to be added to LRU
461 * @vma:   vma in which page is mapped for determining reclaimability
462 *
463 * Place @page on the active or unevictable LRU list, depending on its
464 * evictability.  Note that if the page is not evictable, it goes
465 * directly back onto it's zone's unevictable list, it does NOT use a
466 * per cpu pagevec.
467 */
468void lru_cache_add_active_or_unevictable(struct page *page,
469					 struct vm_area_struct *vma)
470{
471	VM_BUG_ON_PAGE(PageLRU(page), page);
472
473	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
474		SetPageActive(page);
475		lru_cache_add(page);
476		return;
477	}
478
479	if (!TestSetPageMlocked(page)) {
480		/*
481		 * We use the irq-unsafe __mod_zone_page_stat because this
482		 * counter is not modified from interrupt context, and the pte
483		 * lock is held(spinlock), which implies preemption disabled.
484		 */
485		__mod_zone_page_state(page_zone(page), NR_MLOCK,
486				    hpage_nr_pages(page));
487		count_vm_event(UNEVICTABLE_PGMLOCKED);
488	}
489	add_page_to_unevictable_list(page);
490}
491
492/*
493 * If the page can not be invalidated, it is moved to the
494 * inactive list to speed up its reclaim.  It is moved to the
495 * head of the list, rather than the tail, to give the flusher
496 * threads some time to write it out, as this is much more
497 * effective than the single-page writeout from reclaim.
498 *
499 * If the page isn't page_mapped and dirty/writeback, the page
500 * could reclaim asap using PG_reclaim.
501 *
502 * 1. active, mapped page -> none
503 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
504 * 3. inactive, mapped page -> none
505 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
506 * 5. inactive, clean -> inactive, tail
507 * 6. Others -> none
508 *
509 * In 4, why it moves inactive's head, the VM expects the page would
510 * be write it out by flusher threads as this is much more effective
511 * than the single-page writeout from reclaim.
512 */
513static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
514			      void *arg)
515{
516	int lru, file;
517	bool active;
518
519	if (!PageLRU(page))
520		return;
521
522	if (PageUnevictable(page))
523		return;
524
525	/* Some processes are using the page */
526	if (page_mapped(page))
527		return;
528
529	active = PageActive(page);
530	file = page_is_file_cache(page);
531	lru = page_lru_base_type(page);
532
533	del_page_from_lru_list(page, lruvec, lru + active);
534	ClearPageActive(page);
535	ClearPageReferenced(page);
536	add_page_to_lru_list(page, lruvec, lru);
537
538	if (PageWriteback(page) || PageDirty(page)) {
539		/*
540		 * PG_reclaim could be raced with end_page_writeback
541		 * It can make readahead confusing.  But race window
542		 * is _really_ small and  it's non-critical problem.
543		 */
544		SetPageReclaim(page);
545	} else {
546		/*
547		 * The page's writeback ends up during pagevec
548		 * We moves tha page into tail of inactive.
549		 */
550		list_move_tail(&page->lru, &lruvec->lists[lru]);
551		__count_vm_event(PGROTATED);
552	}
553
554	if (active)
555		__count_vm_event(PGDEACTIVATE);
556	update_page_reclaim_stat(lruvec, file, 0);
557}
558
559
560static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
561			    void *arg)
562{
563	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
564		int file = page_is_file_cache(page);
565		int lru = page_lru_base_type(page);
566
567		del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
568		ClearPageActive(page);
569		ClearPageReferenced(page);
570		add_page_to_lru_list(page, lruvec, lru);
571
572		__count_vm_event(PGDEACTIVATE);
573		update_page_reclaim_stat(lruvec, file, 0);
574	}
575}
576
577/*
578 * Drain pages out of the cpu's pagevecs.
579 * Either "cpu" is the current CPU, and preemption has already been
580 * disabled; or "cpu" is being hot-unplugged, and is already dead.
581 */
582void lru_add_drain_cpu(int cpu)
583{
584	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
585
586	if (pagevec_count(pvec))
587		__pagevec_lru_add(pvec);
588
589	pvec = &per_cpu(lru_rotate_pvecs, cpu);
590	if (pagevec_count(pvec)) {
591		unsigned long flags;
592
593		/* No harm done if a racing interrupt already did this */
594		local_irq_save(flags);
595		pagevec_move_tail(pvec);
596		local_irq_restore(flags);
597	}
598
599	pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
600	if (pagevec_count(pvec))
601		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
602
603	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
604	if (pagevec_count(pvec))
605		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
606
607	activate_page_drain(cpu);
608}
609
610/**
611 * deactivate_file_page - forcefully deactivate a file page
612 * @page: page to deactivate
613 *
614 * This function hints the VM that @page is a good reclaim candidate,
615 * for example if its invalidation fails due to the page being dirty
616 * or under writeback.
617 */
618void deactivate_file_page(struct page *page)
619{
620	/*
621	 * In a workload with many unevictable page such as mprotect,
622	 * unevictable page deactivation for accelerating reclaim is pointless.
623	 */
624	if (PageUnevictable(page))
625		return;
626
627	if (likely(get_page_unless_zero(page))) {
628		struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
629
630		if (!pagevec_add(pvec, page))
631			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
632		put_cpu_var(lru_deactivate_file_pvecs);
633	}
634}
635
636/**
637 * deactivate_page - deactivate a page
638 * @page: page to deactivate
639 *
640 * deactivate_page() moves @page to the inactive list if @page was on the active
641 * list and was not an unevictable page.  This is done to accelerate the reclaim
642 * of @page.
643 */
644void deactivate_page(struct page *page)
645{
646	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
647		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
648
649		get_page(page);
650		if (!pagevec_add(pvec, page))
651			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
652		put_cpu_var(lru_deactivate_pvecs);
653	}
654}
655
656void lru_add_drain(void)
657{
658	lru_add_drain_cpu(get_cpu());
659	put_cpu();
660}
661
662static void lru_add_drain_per_cpu(struct work_struct *dummy)
663{
664	lru_add_drain();
665}
666
667static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669void lru_add_drain_all(void)
670{
671	static DEFINE_MUTEX(lock);
672	static struct cpumask has_work;
673	int cpu;
674
675	mutex_lock(&lock);
676	get_online_cpus();
677	cpumask_clear(&has_work);
678
679	for_each_online_cpu(cpu) {
680		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
681
682		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
683		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
684		    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
685		    pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
686		    need_activate_page_drain(cpu)) {
687			INIT_WORK(work, lru_add_drain_per_cpu);
688			schedule_work_on(cpu, work);
689			cpumask_set_cpu(cpu, &has_work);
690		}
691	}
692
693	for_each_cpu(cpu, &has_work)
694		flush_work(&per_cpu(lru_add_drain_work, cpu));
695
696	put_online_cpus();
697	mutex_unlock(&lock);
698}
699
700/**
701 * release_pages - batched put_page()
702 * @pages: array of pages to release
703 * @nr: number of pages
704 * @cold: whether the pages are cache cold
705 *
706 * Decrement the reference count on all the pages in @pages.  If it
707 * fell to zero, remove the page from the LRU and free it.
708 */
709void release_pages(struct page **pages, int nr, bool cold)
710{
711	int i;
712	LIST_HEAD(pages_to_free);
713	struct zone *zone = NULL;
714	struct lruvec *lruvec;
715	unsigned long uninitialized_var(flags);
716	unsigned int uninitialized_var(lock_batch);
717
718	for (i = 0; i < nr; i++) {
719		struct page *page = pages[i];
720
721		/*
722		 * Make sure the IRQ-safe lock-holding time does not get
723		 * excessive with a continuous string of pages from the
724		 * same zone. The lock is held only if zone != NULL.
725		 */
726		if (zone && ++lock_batch == SWAP_CLUSTER_MAX) {
727			spin_unlock_irqrestore(&zone->lru_lock, flags);
728			zone = NULL;
729		}
730
731		if (is_huge_zero_page(page)) {
732			put_huge_zero_page();
733			continue;
734		}
735
736		page = compound_head(page);
737		if (!put_page_testzero(page))
738			continue;
739
740		if (PageCompound(page)) {
741			if (zone) {
742				spin_unlock_irqrestore(&zone->lru_lock, flags);
743				zone = NULL;
744			}
745			__put_compound_page(page);
746			continue;
747		}
748
749		if (PageLRU(page)) {
750			struct zone *pagezone = page_zone(page);
751
752			if (pagezone != zone) {
753				if (zone)
754					spin_unlock_irqrestore(&zone->lru_lock,
755									flags);
756				lock_batch = 0;
757				zone = pagezone;
758				spin_lock_irqsave(&zone->lru_lock, flags);
759			}
760
761			lruvec = mem_cgroup_page_lruvec(page, zone);
762			VM_BUG_ON_PAGE(!PageLRU(page), page);
763			__ClearPageLRU(page);
764			del_page_from_lru_list(page, lruvec, page_off_lru(page));
765		}
766
767		/* Clear Active bit in case of parallel mark_page_accessed */
768		__ClearPageActive(page);
 
769
770		list_add(&page->lru, &pages_to_free);
771	}
772	if (zone)
773		spin_unlock_irqrestore(&zone->lru_lock, flags);
774
775	mem_cgroup_uncharge_list(&pages_to_free);
776	free_hot_cold_page_list(&pages_to_free, cold);
777}
778EXPORT_SYMBOL(release_pages);
779
780/*
781 * The pages which we're about to release may be in the deferred lru-addition
782 * queues.  That would prevent them from really being freed right now.  That's
783 * OK from a correctness point of view but is inefficient - those pages may be
784 * cache-warm and we want to give them back to the page allocator ASAP.
785 *
786 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
787 * and __pagevec_lru_add_active() call release_pages() directly to avoid
788 * mutual recursion.
789 */
790void __pagevec_release(struct pagevec *pvec)
791{
792	lru_add_drain();
793	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
794	pagevec_reinit(pvec);
795}
796EXPORT_SYMBOL(__pagevec_release);
797
798#ifdef CONFIG_TRANSPARENT_HUGEPAGE
799/* used by __split_huge_page_refcount() */
800void lru_add_page_tail(struct page *page, struct page *page_tail,
801		       struct lruvec *lruvec, struct list_head *list)
802{
803	const int file = 0;
804
805	VM_BUG_ON_PAGE(!PageHead(page), page);
806	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
807	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
808	VM_BUG_ON(NR_CPUS != 1 &&
809		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
810
811	if (!list)
812		SetPageLRU(page_tail);
813
814	if (likely(PageLRU(page)))
815		list_add_tail(&page_tail->lru, &page->lru);
816	else if (list) {
817		/* page reclaim is reclaiming a huge page */
818		get_page(page_tail);
819		list_add_tail(&page_tail->lru, list);
820	} else {
821		struct list_head *list_head;
822		/*
823		 * Head page has not yet been counted, as an hpage,
824		 * so we must account for each subpage individually.
825		 *
826		 * Use the standard add function to put page_tail on the list,
827		 * but then correct its position so they all end up in order.
828		 */
829		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
830		list_head = page_tail->lru.prev;
831		list_move_tail(&page_tail->lru, list_head);
832	}
833
834	if (!PageUnevictable(page))
835		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
836}
837#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
838
839static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
840				 void *arg)
841{
842	int file = page_is_file_cache(page);
843	int active = PageActive(page);
844	enum lru_list lru = page_lru(page);
845
846	VM_BUG_ON_PAGE(PageLRU(page), page);
847
848	SetPageLRU(page);
849	add_page_to_lru_list(page, lruvec, lru);
850	update_page_reclaim_stat(lruvec, file, active);
851	trace_mm_lru_insertion(page, lru);
852}
853
854/*
855 * Add the passed pages to the LRU, then drop the caller's refcount
856 * on them.  Reinitialises the caller's pagevec.
857 */
858void __pagevec_lru_add(struct pagevec *pvec)
859{
860	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
861}
862EXPORT_SYMBOL(__pagevec_lru_add);
863
864/**
865 * pagevec_lookup_entries - gang pagecache lookup
866 * @pvec:	Where the resulting entries are placed
867 * @mapping:	The address_space to search
868 * @start:	The starting entry index
869 * @nr_entries:	The maximum number of entries
870 * @indices:	The cache indices corresponding to the entries in @pvec
871 *
872 * pagevec_lookup_entries() will search for and return a group of up
873 * to @nr_entries pages and shadow entries in the mapping.  All
874 * entries are placed in @pvec.  pagevec_lookup_entries() takes a
875 * reference against actual pages in @pvec.
876 *
877 * The search returns a group of mapping-contiguous entries with
878 * ascending indexes.  There may be holes in the indices due to
879 * not-present entries.
880 *
881 * pagevec_lookup_entries() returns the number of entries which were
882 * found.
883 */
884unsigned pagevec_lookup_entries(struct pagevec *pvec,
885				struct address_space *mapping,
886				pgoff_t start, unsigned nr_pages,
887				pgoff_t *indices)
888{
889	pvec->nr = find_get_entries(mapping, start, nr_pages,
890				    pvec->pages, indices);
891	return pagevec_count(pvec);
892}
893
894/**
895 * pagevec_remove_exceptionals - pagevec exceptionals pruning
896 * @pvec:	The pagevec to prune
897 *
898 * pagevec_lookup_entries() fills both pages and exceptional radix
899 * tree entries into the pagevec.  This function prunes all
900 * exceptionals from @pvec without leaving holes, so that it can be
901 * passed on to page-only pagevec operations.
902 */
903void pagevec_remove_exceptionals(struct pagevec *pvec)
904{
905	int i, j;
906
907	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
908		struct page *page = pvec->pages[i];
909		if (!radix_tree_exceptional_entry(page))
910			pvec->pages[j++] = page;
911	}
912	pvec->nr = j;
913}
914
915/**
916 * pagevec_lookup - gang pagecache lookup
917 * @pvec:	Where the resulting pages are placed
918 * @mapping:	The address_space to search
919 * @start:	The starting page index
920 * @nr_pages:	The maximum number of pages
921 *
922 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
923 * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
924 * reference against the pages in @pvec.
925 *
926 * The search returns a group of mapping-contiguous pages with ascending
927 * indexes.  There may be holes in the indices due to not-present pages.
928 *
929 * pagevec_lookup() returns the number of pages which were found.
930 */
931unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
932		pgoff_t start, unsigned nr_pages)
933{
934	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
935	return pagevec_count(pvec);
936}
937EXPORT_SYMBOL(pagevec_lookup);
938
939unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
940		pgoff_t *index, int tag, unsigned nr_pages)
941{
942	pvec->nr = find_get_pages_tag(mapping, index, tag,
943					nr_pages, pvec->pages);
944	return pagevec_count(pvec);
945}
946EXPORT_SYMBOL(pagevec_lookup_tag);
947
948/*
949 * Perform any setup for the swap system
950 */
951void __init swap_setup(void)
952{
953	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
954#ifdef CONFIG_SWAP
955	int i;
956
957	for (i = 0; i < MAX_SWAPFILES; i++)
958		spin_lock_init(&swapper_spaces[i].tree_lock);
959#endif
960
961	/* Use a smaller cluster for small-memory machines */
962	if (megs < 16)
963		page_cluster = 2;
964	else
965		page_cluster = 3;
966	/*
967	 * Right now other parts of the system means that we
968	 * _really_ don't want to cluster much more
969	 */
970}
v4.10.11
  1/*
  2 *  linux/mm/swap.c
  3 *
  4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  5 */
  6
  7/*
  8 * This file contains the default values for the operation of the
  9 * Linux VM subsystem. Fine-tuning documentation can be found in
 10 * Documentation/sysctl/vm.txt.
 11 * Started 18.12.91
 12 * Swap aging added 23.2.95, Stephen Tweedie.
 13 * Buffermem limits added 12.3.98, Rik van Riel.
 14 */
 15
 16#include <linux/mm.h>
 17#include <linux/sched.h>
 18#include <linux/kernel_stat.h>
 19#include <linux/swap.h>
 20#include <linux/mman.h>
 21#include <linux/pagemap.h>
 22#include <linux/pagevec.h>
 23#include <linux/init.h>
 24#include <linux/export.h>
 25#include <linux/mm_inline.h>
 26#include <linux/percpu_counter.h>
 27#include <linux/memremap.h>
 28#include <linux/percpu.h>
 29#include <linux/cpu.h>
 30#include <linux/notifier.h>
 31#include <linux/backing-dev.h>
 32#include <linux/memcontrol.h>
 33#include <linux/gfp.h>
 34#include <linux/uio.h>
 35#include <linux/hugetlb.h>
 36#include <linux/page_idle.h>
 37
 38#include "internal.h"
 39
 40#define CREATE_TRACE_POINTS
 41#include <trace/events/pagemap.h>
 42
 43/* How many pages do we try to swap or page in/out together? */
 44int page_cluster;
 45
 46static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
 47static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
 48static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
 49static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
 50#ifdef CONFIG_SMP
 51static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
 52#endif
 53
 54/*
 55 * This path almost never happens for VM activity - pages are normally
 56 * freed via pagevecs.  But it gets used by networking.
 57 */
 58static void __page_cache_release(struct page *page)
 59{
 60	if (PageLRU(page)) {
 61		struct zone *zone = page_zone(page);
 62		struct lruvec *lruvec;
 63		unsigned long flags;
 64
 65		spin_lock_irqsave(zone_lru_lock(zone), flags);
 66		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
 67		VM_BUG_ON_PAGE(!PageLRU(page), page);
 68		__ClearPageLRU(page);
 69		del_page_from_lru_list(page, lruvec, page_off_lru(page));
 70		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
 71	}
 72	__ClearPageWaiters(page);
 73	mem_cgroup_uncharge(page);
 74}
 75
 76static void __put_single_page(struct page *page)
 77{
 78	__page_cache_release(page);
 79	free_hot_cold_page(page, false);
 80}
 81
 82static void __put_compound_page(struct page *page)
 83{
 84	compound_page_dtor *dtor;
 85
 86	/*
 87	 * __page_cache_release() is supposed to be called for thp, not for
 88	 * hugetlb. This is because hugetlb page does never have PageLRU set
 89	 * (it's never listed to any LRU lists) and no memcg routines should
 90	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
 91	 */
 92	if (!PageHuge(page))
 93		__page_cache_release(page);
 94	dtor = get_compound_page_dtor(page);
 95	(*dtor)(page);
 96}
 97
 98void __put_page(struct page *page)
 99{
100	if (unlikely(PageCompound(page)))
101		__put_compound_page(page);
102	else
103		__put_single_page(page);
104}
105EXPORT_SYMBOL(__put_page);
106
107/**
108 * put_pages_list() - release a list of pages
109 * @pages: list of pages threaded on page->lru
110 *
111 * Release a list of pages which are strung together on page.lru.  Currently
112 * used by read_cache_pages() and related error recovery code.
113 */
114void put_pages_list(struct list_head *pages)
115{
116	while (!list_empty(pages)) {
117		struct page *victim;
118
119		victim = list_entry(pages->prev, struct page, lru);
120		list_del(&victim->lru);
121		put_page(victim);
122	}
123}
124EXPORT_SYMBOL(put_pages_list);
125
126/*
127 * get_kernel_pages() - pin kernel pages in memory
128 * @kiov:	An array of struct kvec structures
129 * @nr_segs:	number of segments to pin
130 * @write:	pinning for read/write, currently ignored
131 * @pages:	array that receives pointers to the pages pinned.
132 *		Should be at least nr_segs long.
133 *
134 * Returns number of pages pinned. This may be fewer than the number
135 * requested. If nr_pages is 0 or negative, returns 0. If no pages
136 * were pinned, returns -errno. Each page returned must be released
137 * with a put_page() call when it is finished with.
138 */
139int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
140		struct page **pages)
141{
142	int seg;
143
144	for (seg = 0; seg < nr_segs; seg++) {
145		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
146			return seg;
147
148		pages[seg] = kmap_to_page(kiov[seg].iov_base);
149		get_page(pages[seg]);
150	}
151
152	return seg;
153}
154EXPORT_SYMBOL_GPL(get_kernel_pages);
155
156/*
157 * get_kernel_page() - pin a kernel page in memory
158 * @start:	starting kernel address
159 * @write:	pinning for read/write, currently ignored
160 * @pages:	array that receives pointer to the page pinned.
161 *		Must be at least nr_segs long.
162 *
163 * Returns 1 if page is pinned. If the page was not pinned, returns
164 * -errno. The page returned must be released with a put_page() call
165 * when it is finished with.
166 */
167int get_kernel_page(unsigned long start, int write, struct page **pages)
168{
169	const struct kvec kiov = {
170		.iov_base = (void *)start,
171		.iov_len = PAGE_SIZE
172	};
173
174	return get_kernel_pages(&kiov, 1, write, pages);
175}
176EXPORT_SYMBOL_GPL(get_kernel_page);
177
178static void pagevec_lru_move_fn(struct pagevec *pvec,
179	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
180	void *arg)
181{
182	int i;
183	struct pglist_data *pgdat = NULL;
184	struct lruvec *lruvec;
185	unsigned long flags = 0;
186
187	for (i = 0; i < pagevec_count(pvec); i++) {
188		struct page *page = pvec->pages[i];
189		struct pglist_data *pagepgdat = page_pgdat(page);
190
191		if (pagepgdat != pgdat) {
192			if (pgdat)
193				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
194			pgdat = pagepgdat;
195			spin_lock_irqsave(&pgdat->lru_lock, flags);
196		}
197
198		lruvec = mem_cgroup_page_lruvec(page, pgdat);
199		(*move_fn)(page, lruvec, arg);
200	}
201	if (pgdat)
202		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
203	release_pages(pvec->pages, pvec->nr, pvec->cold);
204	pagevec_reinit(pvec);
205}
206
207static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
208				 void *arg)
209{
210	int *pgmoved = arg;
211
212	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
213		enum lru_list lru = page_lru_base_type(page);
214		list_move_tail(&page->lru, &lruvec->lists[lru]);
215		(*pgmoved)++;
216	}
217}
218
219/*
220 * pagevec_move_tail() must be called with IRQ disabled.
221 * Otherwise this may cause nasty races.
222 */
223static void pagevec_move_tail(struct pagevec *pvec)
224{
225	int pgmoved = 0;
226
227	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
228	__count_vm_events(PGROTATED, pgmoved);
229}
230
231/*
232 * Writeback is about to end against a page which has been marked for immediate
233 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
234 * inactive list.
235 */
236void rotate_reclaimable_page(struct page *page)
237{
238	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
239	    !PageUnevictable(page) && PageLRU(page)) {
240		struct pagevec *pvec;
241		unsigned long flags;
242
243		get_page(page);
244		local_irq_save(flags);
245		pvec = this_cpu_ptr(&lru_rotate_pvecs);
246		if (!pagevec_add(pvec, page) || PageCompound(page))
247			pagevec_move_tail(pvec);
248		local_irq_restore(flags);
249	}
250}
251
252static void update_page_reclaim_stat(struct lruvec *lruvec,
253				     int file, int rotated)
254{
255	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
256
257	reclaim_stat->recent_scanned[file]++;
258	if (rotated)
259		reclaim_stat->recent_rotated[file]++;
260}
261
262static void __activate_page(struct page *page, struct lruvec *lruvec,
263			    void *arg)
264{
265	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
266		int file = page_is_file_cache(page);
267		int lru = page_lru_base_type(page);
268
269		del_page_from_lru_list(page, lruvec, lru);
270		SetPageActive(page);
271		lru += LRU_ACTIVE;
272		add_page_to_lru_list(page, lruvec, lru);
273		trace_mm_lru_activate(page);
274
275		__count_vm_event(PGACTIVATE);
276		update_page_reclaim_stat(lruvec, file, 1);
277	}
278}
279
280#ifdef CONFIG_SMP
 
 
281static void activate_page_drain(int cpu)
282{
283	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
284
285	if (pagevec_count(pvec))
286		pagevec_lru_move_fn(pvec, __activate_page, NULL);
287}
288
289static bool need_activate_page_drain(int cpu)
290{
291	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
292}
293
294void activate_page(struct page *page)
295{
296	page = compound_head(page);
297	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
298		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
299
300		get_page(page);
301		if (!pagevec_add(pvec, page) || PageCompound(page))
302			pagevec_lru_move_fn(pvec, __activate_page, NULL);
303		put_cpu_var(activate_page_pvecs);
304	}
305}
306
307#else
308static inline void activate_page_drain(int cpu)
309{
310}
311
312static bool need_activate_page_drain(int cpu)
313{
314	return false;
315}
316
317void activate_page(struct page *page)
318{
319	struct zone *zone = page_zone(page);
320
321	page = compound_head(page);
322	spin_lock_irq(zone_lru_lock(zone));
323	__activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
324	spin_unlock_irq(zone_lru_lock(zone));
325}
326#endif
327
328static void __lru_cache_activate_page(struct page *page)
329{
330	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
331	int i;
332
333	/*
334	 * Search backwards on the optimistic assumption that the page being
335	 * activated has just been added to this pagevec. Note that only
336	 * the local pagevec is examined as a !PageLRU page could be in the
337	 * process of being released, reclaimed, migrated or on a remote
338	 * pagevec that is currently being drained. Furthermore, marking
339	 * a remote pagevec's page PageActive potentially hits a race where
340	 * a page is marked PageActive just after it is added to the inactive
341	 * list causing accounting errors and BUG_ON checks to trigger.
342	 */
343	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
344		struct page *pagevec_page = pvec->pages[i];
345
346		if (pagevec_page == page) {
347			SetPageActive(page);
348			break;
349		}
350	}
351
352	put_cpu_var(lru_add_pvec);
353}
354
355/*
356 * Mark a page as having seen activity.
357 *
358 * inactive,unreferenced	->	inactive,referenced
359 * inactive,referenced		->	active,unreferenced
360 * active,unreferenced		->	active,referenced
361 *
362 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
363 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
364 */
365void mark_page_accessed(struct page *page)
366{
367	page = compound_head(page);
368	if (!PageActive(page) && !PageUnevictable(page) &&
369			PageReferenced(page)) {
370
371		/*
372		 * If the page is on the LRU, queue it for activation via
373		 * activate_page_pvecs. Otherwise, assume the page is on a
374		 * pagevec, mark it active and it'll be moved to the active
375		 * LRU on the next drain.
376		 */
377		if (PageLRU(page))
378			activate_page(page);
379		else
380			__lru_cache_activate_page(page);
381		ClearPageReferenced(page);
382		if (page_is_file_cache(page))
383			workingset_activation(page);
384	} else if (!PageReferenced(page)) {
385		SetPageReferenced(page);
386	}
387	if (page_is_idle(page))
388		clear_page_idle(page);
389}
390EXPORT_SYMBOL(mark_page_accessed);
391
392static void __lru_cache_add(struct page *page)
393{
394	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
395
396	get_page(page);
397	if (!pagevec_add(pvec, page) || PageCompound(page))
398		__pagevec_lru_add(pvec);
 
399	put_cpu_var(lru_add_pvec);
400}
401
402/**
403 * lru_cache_add: add a page to the page lists
404 * @page: the page to add
405 */
406void lru_cache_add_anon(struct page *page)
407{
408	if (PageActive(page))
409		ClearPageActive(page);
410	__lru_cache_add(page);
411}
412
413void lru_cache_add_file(struct page *page)
414{
415	if (PageActive(page))
416		ClearPageActive(page);
417	__lru_cache_add(page);
418}
419EXPORT_SYMBOL(lru_cache_add_file);
420
421/**
422 * lru_cache_add - add a page to a page list
423 * @page: the page to be added to the LRU.
424 *
425 * Queue the page for addition to the LRU via pagevec. The decision on whether
426 * to add the page to the [in]active [file|anon] list is deferred until the
427 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
428 * have the page added to the active list using mark_page_accessed().
429 */
430void lru_cache_add(struct page *page)
431{
432	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
433	VM_BUG_ON_PAGE(PageLRU(page), page);
434	__lru_cache_add(page);
435}
436
437/**
438 * add_page_to_unevictable_list - add a page to the unevictable list
439 * @page:  the page to be added to the unevictable list
440 *
441 * Add page directly to its zone's unevictable list.  To avoid races with
442 * tasks that might be making the page evictable, through eg. munlock,
443 * munmap or exit, while it's not on the lru, we want to add the page
444 * while it's locked or otherwise "invisible" to other tasks.  This is
445 * difficult to do when using the pagevec cache, so bypass that.
446 */
447void add_page_to_unevictable_list(struct page *page)
448{
449	struct pglist_data *pgdat = page_pgdat(page);
450	struct lruvec *lruvec;
451
452	spin_lock_irq(&pgdat->lru_lock);
453	lruvec = mem_cgroup_page_lruvec(page, pgdat);
454	ClearPageActive(page);
455	SetPageUnevictable(page);
456	SetPageLRU(page);
457	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
458	spin_unlock_irq(&pgdat->lru_lock);
459}
460
461/**
462 * lru_cache_add_active_or_unevictable
463 * @page:  the page to be added to LRU
464 * @vma:   vma in which page is mapped for determining reclaimability
465 *
466 * Place @page on the active or unevictable LRU list, depending on its
467 * evictability.  Note that if the page is not evictable, it goes
468 * directly back onto it's zone's unevictable list, it does NOT use a
469 * per cpu pagevec.
470 */
471void lru_cache_add_active_or_unevictable(struct page *page,
472					 struct vm_area_struct *vma)
473{
474	VM_BUG_ON_PAGE(PageLRU(page), page);
475
476	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
477		SetPageActive(page);
478		lru_cache_add(page);
479		return;
480	}
481
482	if (!TestSetPageMlocked(page)) {
483		/*
484		 * We use the irq-unsafe __mod_zone_page_stat because this
485		 * counter is not modified from interrupt context, and the pte
486		 * lock is held(spinlock), which implies preemption disabled.
487		 */
488		__mod_zone_page_state(page_zone(page), NR_MLOCK,
489				    hpage_nr_pages(page));
490		count_vm_event(UNEVICTABLE_PGMLOCKED);
491	}
492	add_page_to_unevictable_list(page);
493}
494
495/*
496 * If the page can not be invalidated, it is moved to the
497 * inactive list to speed up its reclaim.  It is moved to the
498 * head of the list, rather than the tail, to give the flusher
499 * threads some time to write it out, as this is much more
500 * effective than the single-page writeout from reclaim.
501 *
502 * If the page isn't page_mapped and dirty/writeback, the page
503 * could reclaim asap using PG_reclaim.
504 *
505 * 1. active, mapped page -> none
506 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
507 * 3. inactive, mapped page -> none
508 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
509 * 5. inactive, clean -> inactive, tail
510 * 6. Others -> none
511 *
512 * In 4, why it moves inactive's head, the VM expects the page would
513 * be write it out by flusher threads as this is much more effective
514 * than the single-page writeout from reclaim.
515 */
516static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
517			      void *arg)
518{
519	int lru, file;
520	bool active;
521
522	if (!PageLRU(page))
523		return;
524
525	if (PageUnevictable(page))
526		return;
527
528	/* Some processes are using the page */
529	if (page_mapped(page))
530		return;
531
532	active = PageActive(page);
533	file = page_is_file_cache(page);
534	lru = page_lru_base_type(page);
535
536	del_page_from_lru_list(page, lruvec, lru + active);
537	ClearPageActive(page);
538	ClearPageReferenced(page);
539	add_page_to_lru_list(page, lruvec, lru);
540
541	if (PageWriteback(page) || PageDirty(page)) {
542		/*
543		 * PG_reclaim could be raced with end_page_writeback
544		 * It can make readahead confusing.  But race window
545		 * is _really_ small and  it's non-critical problem.
546		 */
547		SetPageReclaim(page);
548	} else {
549		/*
550		 * The page's writeback ends up during pagevec
551		 * We moves tha page into tail of inactive.
552		 */
553		list_move_tail(&page->lru, &lruvec->lists[lru]);
554		__count_vm_event(PGROTATED);
555	}
556
557	if (active)
558		__count_vm_event(PGDEACTIVATE);
559	update_page_reclaim_stat(lruvec, file, 0);
560}
561
562
563static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
564			    void *arg)
565{
566	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
567		int file = page_is_file_cache(page);
568		int lru = page_lru_base_type(page);
569
570		del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
571		ClearPageActive(page);
572		ClearPageReferenced(page);
573		add_page_to_lru_list(page, lruvec, lru);
574
575		__count_vm_event(PGDEACTIVATE);
576		update_page_reclaim_stat(lruvec, file, 0);
577	}
578}
579
580/*
581 * Drain pages out of the cpu's pagevecs.
582 * Either "cpu" is the current CPU, and preemption has already been
583 * disabled; or "cpu" is being hot-unplugged, and is already dead.
584 */
585void lru_add_drain_cpu(int cpu)
586{
587	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
588
589	if (pagevec_count(pvec))
590		__pagevec_lru_add(pvec);
591
592	pvec = &per_cpu(lru_rotate_pvecs, cpu);
593	if (pagevec_count(pvec)) {
594		unsigned long flags;
595
596		/* No harm done if a racing interrupt already did this */
597		local_irq_save(flags);
598		pagevec_move_tail(pvec);
599		local_irq_restore(flags);
600	}
601
602	pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
603	if (pagevec_count(pvec))
604		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
605
606	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
607	if (pagevec_count(pvec))
608		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
609
610	activate_page_drain(cpu);
611}
612
613/**
614 * deactivate_file_page - forcefully deactivate a file page
615 * @page: page to deactivate
616 *
617 * This function hints the VM that @page is a good reclaim candidate,
618 * for example if its invalidation fails due to the page being dirty
619 * or under writeback.
620 */
621void deactivate_file_page(struct page *page)
622{
623	/*
624	 * In a workload with many unevictable page such as mprotect,
625	 * unevictable page deactivation for accelerating reclaim is pointless.
626	 */
627	if (PageUnevictable(page))
628		return;
629
630	if (likely(get_page_unless_zero(page))) {
631		struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
632
633		if (!pagevec_add(pvec, page) || PageCompound(page))
634			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
635		put_cpu_var(lru_deactivate_file_pvecs);
636	}
637}
638
639/**
640 * deactivate_page - deactivate a page
641 * @page: page to deactivate
642 *
643 * deactivate_page() moves @page to the inactive list if @page was on the active
644 * list and was not an unevictable page.  This is done to accelerate the reclaim
645 * of @page.
646 */
647void deactivate_page(struct page *page)
648{
649	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
650		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
651
652		get_page(page);
653		if (!pagevec_add(pvec, page) || PageCompound(page))
654			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
655		put_cpu_var(lru_deactivate_pvecs);
656	}
657}
658
659void lru_add_drain(void)
660{
661	lru_add_drain_cpu(get_cpu());
662	put_cpu();
663}
664
665static void lru_add_drain_per_cpu(struct work_struct *dummy)
666{
667	lru_add_drain();
668}
669
670static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
671
672/*
673 * lru_add_drain_wq is used to do lru_add_drain_all() from a WQ_MEM_RECLAIM
674 * workqueue, aiding in getting memory freed.
675 */
676static struct workqueue_struct *lru_add_drain_wq;
677
678static int __init lru_init(void)
679{
680	lru_add_drain_wq = alloc_workqueue("lru-add-drain", WQ_MEM_RECLAIM, 0);
681
682	if (WARN(!lru_add_drain_wq,
683		"Failed to create workqueue lru_add_drain_wq"))
684		return -ENOMEM;
685
686	return 0;
687}
688early_initcall(lru_init);
689
690void lru_add_drain_all(void)
691{
692	static DEFINE_MUTEX(lock);
693	static struct cpumask has_work;
694	int cpu;
695
696	mutex_lock(&lock);
697	get_online_cpus();
698	cpumask_clear(&has_work);
699
700	for_each_online_cpu(cpu) {
701		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
702
703		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
704		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
705		    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
706		    pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
707		    need_activate_page_drain(cpu)) {
708			INIT_WORK(work, lru_add_drain_per_cpu);
709			queue_work_on(cpu, lru_add_drain_wq, work);
710			cpumask_set_cpu(cpu, &has_work);
711		}
712	}
713
714	for_each_cpu(cpu, &has_work)
715		flush_work(&per_cpu(lru_add_drain_work, cpu));
716
717	put_online_cpus();
718	mutex_unlock(&lock);
719}
720
721/**
722 * release_pages - batched put_page()
723 * @pages: array of pages to release
724 * @nr: number of pages
725 * @cold: whether the pages are cache cold
726 *
727 * Decrement the reference count on all the pages in @pages.  If it
728 * fell to zero, remove the page from the LRU and free it.
729 */
730void release_pages(struct page **pages, int nr, bool cold)
731{
732	int i;
733	LIST_HEAD(pages_to_free);
734	struct pglist_data *locked_pgdat = NULL;
735	struct lruvec *lruvec;
736	unsigned long uninitialized_var(flags);
737	unsigned int uninitialized_var(lock_batch);
738
739	for (i = 0; i < nr; i++) {
740		struct page *page = pages[i];
741
742		/*
743		 * Make sure the IRQ-safe lock-holding time does not get
744		 * excessive with a continuous string of pages from the
745		 * same pgdat. The lock is held only if pgdat != NULL.
746		 */
747		if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
748			spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
749			locked_pgdat = NULL;
750		}
751
752		if (is_huge_zero_page(page))
 
753			continue;
 
754
755		page = compound_head(page);
756		if (!put_page_testzero(page))
757			continue;
758
759		if (PageCompound(page)) {
760			if (locked_pgdat) {
761				spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
762				locked_pgdat = NULL;
763			}
764			__put_compound_page(page);
765			continue;
766		}
767
768		if (PageLRU(page)) {
769			struct pglist_data *pgdat = page_pgdat(page);
770
771			if (pgdat != locked_pgdat) {
772				if (locked_pgdat)
773					spin_unlock_irqrestore(&locked_pgdat->lru_lock,
774									flags);
775				lock_batch = 0;
776				locked_pgdat = pgdat;
777				spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
778			}
779
780			lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
781			VM_BUG_ON_PAGE(!PageLRU(page), page);
782			__ClearPageLRU(page);
783			del_page_from_lru_list(page, lruvec, page_off_lru(page));
784		}
785
786		/* Clear Active bit in case of parallel mark_page_accessed */
787		__ClearPageActive(page);
788		__ClearPageWaiters(page);
789
790		list_add(&page->lru, &pages_to_free);
791	}
792	if (locked_pgdat)
793		spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
794
795	mem_cgroup_uncharge_list(&pages_to_free);
796	free_hot_cold_page_list(&pages_to_free, cold);
797}
798EXPORT_SYMBOL(release_pages);
799
800/*
801 * The pages which we're about to release may be in the deferred lru-addition
802 * queues.  That would prevent them from really being freed right now.  That's
803 * OK from a correctness point of view but is inefficient - those pages may be
804 * cache-warm and we want to give them back to the page allocator ASAP.
805 *
806 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
807 * and __pagevec_lru_add_active() call release_pages() directly to avoid
808 * mutual recursion.
809 */
810void __pagevec_release(struct pagevec *pvec)
811{
812	lru_add_drain();
813	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
814	pagevec_reinit(pvec);
815}
816EXPORT_SYMBOL(__pagevec_release);
817
818#ifdef CONFIG_TRANSPARENT_HUGEPAGE
819/* used by __split_huge_page_refcount() */
820void lru_add_page_tail(struct page *page, struct page *page_tail,
821		       struct lruvec *lruvec, struct list_head *list)
822{
823	const int file = 0;
824
825	VM_BUG_ON_PAGE(!PageHead(page), page);
826	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
827	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
828	VM_BUG_ON(NR_CPUS != 1 &&
829		  !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock));
830
831	if (!list)
832		SetPageLRU(page_tail);
833
834	if (likely(PageLRU(page)))
835		list_add_tail(&page_tail->lru, &page->lru);
836	else if (list) {
837		/* page reclaim is reclaiming a huge page */
838		get_page(page_tail);
839		list_add_tail(&page_tail->lru, list);
840	} else {
841		struct list_head *list_head;
842		/*
843		 * Head page has not yet been counted, as an hpage,
844		 * so we must account for each subpage individually.
845		 *
846		 * Use the standard add function to put page_tail on the list,
847		 * but then correct its position so they all end up in order.
848		 */
849		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
850		list_head = page_tail->lru.prev;
851		list_move_tail(&page_tail->lru, list_head);
852	}
853
854	if (!PageUnevictable(page))
855		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
856}
857#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
858
859static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
860				 void *arg)
861{
862	int file = page_is_file_cache(page);
863	int active = PageActive(page);
864	enum lru_list lru = page_lru(page);
865
866	VM_BUG_ON_PAGE(PageLRU(page), page);
867
868	SetPageLRU(page);
869	add_page_to_lru_list(page, lruvec, lru);
870	update_page_reclaim_stat(lruvec, file, active);
871	trace_mm_lru_insertion(page, lru);
872}
873
874/*
875 * Add the passed pages to the LRU, then drop the caller's refcount
876 * on them.  Reinitialises the caller's pagevec.
877 */
878void __pagevec_lru_add(struct pagevec *pvec)
879{
880	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
881}
882EXPORT_SYMBOL(__pagevec_lru_add);
883
884/**
885 * pagevec_lookup_entries - gang pagecache lookup
886 * @pvec:	Where the resulting entries are placed
887 * @mapping:	The address_space to search
888 * @start:	The starting entry index
889 * @nr_entries:	The maximum number of entries
890 * @indices:	The cache indices corresponding to the entries in @pvec
891 *
892 * pagevec_lookup_entries() will search for and return a group of up
893 * to @nr_entries pages and shadow entries in the mapping.  All
894 * entries are placed in @pvec.  pagevec_lookup_entries() takes a
895 * reference against actual pages in @pvec.
896 *
897 * The search returns a group of mapping-contiguous entries with
898 * ascending indexes.  There may be holes in the indices due to
899 * not-present entries.
900 *
901 * pagevec_lookup_entries() returns the number of entries which were
902 * found.
903 */
904unsigned pagevec_lookup_entries(struct pagevec *pvec,
905				struct address_space *mapping,
906				pgoff_t start, unsigned nr_pages,
907				pgoff_t *indices)
908{
909	pvec->nr = find_get_entries(mapping, start, nr_pages,
910				    pvec->pages, indices);
911	return pagevec_count(pvec);
912}
913
914/**
915 * pagevec_remove_exceptionals - pagevec exceptionals pruning
916 * @pvec:	The pagevec to prune
917 *
918 * pagevec_lookup_entries() fills both pages and exceptional radix
919 * tree entries into the pagevec.  This function prunes all
920 * exceptionals from @pvec without leaving holes, so that it can be
921 * passed on to page-only pagevec operations.
922 */
923void pagevec_remove_exceptionals(struct pagevec *pvec)
924{
925	int i, j;
926
927	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
928		struct page *page = pvec->pages[i];
929		if (!radix_tree_exceptional_entry(page))
930			pvec->pages[j++] = page;
931	}
932	pvec->nr = j;
933}
934
935/**
936 * pagevec_lookup - gang pagecache lookup
937 * @pvec:	Where the resulting pages are placed
938 * @mapping:	The address_space to search
939 * @start:	The starting page index
940 * @nr_pages:	The maximum number of pages
941 *
942 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
943 * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
944 * reference against the pages in @pvec.
945 *
946 * The search returns a group of mapping-contiguous pages with ascending
947 * indexes.  There may be holes in the indices due to not-present pages.
948 *
949 * pagevec_lookup() returns the number of pages which were found.
950 */
951unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
952		pgoff_t start, unsigned nr_pages)
953{
954	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
955	return pagevec_count(pvec);
956}
957EXPORT_SYMBOL(pagevec_lookup);
958
959unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
960		pgoff_t *index, int tag, unsigned nr_pages)
961{
962	pvec->nr = find_get_pages_tag(mapping, index, tag,
963					nr_pages, pvec->pages);
964	return pagevec_count(pvec);
965}
966EXPORT_SYMBOL(pagevec_lookup_tag);
967
968/*
969 * Perform any setup for the swap system
970 */
971void __init swap_setup(void)
972{
973	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
974#ifdef CONFIG_SWAP
975	int i;
976
977	for (i = 0; i < MAX_SWAPFILES; i++)
978		spin_lock_init(&swapper_spaces[i].tree_lock);
979#endif
980
981	/* Use a smaller cluster for small-memory machines */
982	if (megs < 16)
983		page_cluster = 2;
984	else
985		page_cluster = 3;
986	/*
987	 * Right now other parts of the system means that we
988	 * _really_ don't want to cluster much more
989	 */
990}