Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v4.6
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
  17#include <linux/fs.h>
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <asm/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"	/* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58	return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63	/* Is it explicitly or implicitly ignored? */
  64	return handler == SIG_IGN ||
  65		(handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  69{
  70	void __user *handler;
  71
  72	handler = sig_handler(t, sig);
  73
  74	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75			handler == SIG_DFL && !force)
  76		return 1;
  77
  78	return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83	/*
  84	 * Blocked signals are never ignored, since the
  85	 * signal handler may change by the time it is
  86	 * unblocked.
  87	 */
  88	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89		return 0;
  90
  91	if (!sig_task_ignored(t, sig, force))
  92		return 0;
  93
  94	/*
  95	 * Tracers may want to know about even ignored signals.
  96	 */
  97	return !t->ptrace;
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106	unsigned long ready;
 107	long i;
 108
 109	switch (_NSIG_WORDS) {
 110	default:
 111		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112			ready |= signal->sig[i] &~ blocked->sig[i];
 113		break;
 114
 115	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116		ready |= signal->sig[2] &~ blocked->sig[2];
 117		ready |= signal->sig[1] &~ blocked->sig[1];
 118		ready |= signal->sig[0] &~ blocked->sig[0];
 119		break;
 120
 121	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122		ready |= signal->sig[0] &~ blocked->sig[0];
 123		break;
 124
 125	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126	}
 127	return ready !=	0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135	    PENDING(&t->pending, &t->blocked) ||
 136	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 137		set_tsk_thread_flag(t, TIF_SIGPENDING);
 138		return 1;
 139	}
 140	/*
 141	 * We must never clear the flag in another thread, or in current
 142	 * when it's possible the current syscall is returning -ERESTART*.
 143	 * So we don't clear it here, and only callers who know they should do.
 144	 */
 145	return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154	if (recalc_sigpending_tsk(t))
 155		signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160	if (!recalc_sigpending_tsk(current) && !freezing(current))
 161		clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173	unsigned long i, *s, *m, x;
 174	int sig = 0;
 175
 176	s = pending->signal.sig;
 177	m = mask->sig;
 178
 179	/*
 180	 * Handle the first word specially: it contains the
 181	 * synchronous signals that need to be dequeued first.
 182	 */
 183	x = *s &~ *m;
 184	if (x) {
 185		if (x & SYNCHRONOUS_MASK)
 186			x &= SYNCHRONOUS_MASK;
 187		sig = ffz(~x) + 1;
 188		return sig;
 189	}
 190
 191	switch (_NSIG_WORDS) {
 192	default:
 193		for (i = 1; i < _NSIG_WORDS; ++i) {
 194			x = *++s &~ *++m;
 195			if (!x)
 196				continue;
 197			sig = ffz(~x) + i*_NSIG_BPW + 1;
 198			break;
 199		}
 200		break;
 201
 202	case 2:
 203		x = s[1] &~ m[1];
 204		if (!x)
 205			break;
 206		sig = ffz(~x) + _NSIG_BPW + 1;
 207		break;
 208
 209	case 1:
 210		/* Nothing to do */
 211		break;
 212	}
 213
 214	return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221	if (!print_fatal_signals)
 222		return;
 223
 224	if (!__ratelimit(&ratelimit_state))
 225		return;
 226
 227	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228				current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 249{
 250	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255		return false;
 256
 257	if (mask & JOBCTL_STOP_SIGMASK)
 258		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260	task->jobctl |= mask;
 261	return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279		task->jobctl &= ~JOBCTL_TRAPPING;
 280		smp_mb();	/* advised by wake_up_bit() */
 281		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 282	}
 283}
 284
 285/**
 286 * task_clear_jobctl_pending - clear jobctl pending bits
 287 * @task: target task
 288 * @mask: pending bits to clear
 289 *
 290 * Clear @mask from @task->jobctl.  @mask must be subset of
 291 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 292 * STOP bits are cleared together.
 293 *
 294 * If clearing of @mask leaves no stop or trap pending, this function calls
 295 * task_clear_jobctl_trapping().
 296 *
 297 * CONTEXT:
 298 * Must be called with @task->sighand->siglock held.
 299 */
 300void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 301{
 302	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 303
 304	if (mask & JOBCTL_STOP_PENDING)
 305		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 306
 307	task->jobctl &= ~mask;
 308
 309	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 310		task_clear_jobctl_trapping(task);
 311}
 312
 313/**
 314 * task_participate_group_stop - participate in a group stop
 315 * @task: task participating in a group stop
 316 *
 317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 318 * Group stop states are cleared and the group stop count is consumed if
 319 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 320 * stop, the appropriate %SIGNAL_* flags are set.
 321 *
 322 * CONTEXT:
 323 * Must be called with @task->sighand->siglock held.
 324 *
 325 * RETURNS:
 326 * %true if group stop completion should be notified to the parent, %false
 327 * otherwise.
 328 */
 329static bool task_participate_group_stop(struct task_struct *task)
 330{
 331	struct signal_struct *sig = task->signal;
 332	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 333
 334	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 335
 336	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 337
 338	if (!consume)
 339		return false;
 340
 341	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 342		sig->group_stop_count--;
 343
 344	/*
 345	 * Tell the caller to notify completion iff we are entering into a
 346	 * fresh group stop.  Read comment in do_signal_stop() for details.
 347	 */
 348	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 349		sig->flags = SIGNAL_STOP_STOPPED;
 350		return true;
 351	}
 352	return false;
 353}
 354
 355/*
 356 * allocate a new signal queue record
 357 * - this may be called without locks if and only if t == current, otherwise an
 358 *   appropriate lock must be held to stop the target task from exiting
 359 */
 360static struct sigqueue *
 361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 362{
 363	struct sigqueue *q = NULL;
 364	struct user_struct *user;
 365
 366	/*
 367	 * Protect access to @t credentials. This can go away when all
 368	 * callers hold rcu read lock.
 369	 */
 370	rcu_read_lock();
 371	user = get_uid(__task_cred(t)->user);
 372	atomic_inc(&user->sigpending);
 373	rcu_read_unlock();
 374
 375	if (override_rlimit ||
 376	    atomic_read(&user->sigpending) <=
 377			task_rlimit(t, RLIMIT_SIGPENDING)) {
 378		q = kmem_cache_alloc(sigqueue_cachep, flags);
 379	} else {
 380		print_dropped_signal(sig);
 381	}
 382
 383	if (unlikely(q == NULL)) {
 384		atomic_dec(&user->sigpending);
 385		free_uid(user);
 386	} else {
 387		INIT_LIST_HEAD(&q->list);
 388		q->flags = 0;
 389		q->user = user;
 390	}
 391
 392	return q;
 393}
 394
 395static void __sigqueue_free(struct sigqueue *q)
 396{
 397	if (q->flags & SIGQUEUE_PREALLOC)
 398		return;
 399	atomic_dec(&q->user->sigpending);
 400	free_uid(q->user);
 401	kmem_cache_free(sigqueue_cachep, q);
 402}
 403
 404void flush_sigqueue(struct sigpending *queue)
 405{
 406	struct sigqueue *q;
 407
 408	sigemptyset(&queue->signal);
 409	while (!list_empty(&queue->list)) {
 410		q = list_entry(queue->list.next, struct sigqueue , list);
 411		list_del_init(&q->list);
 412		__sigqueue_free(q);
 413	}
 414}
 415
 416/*
 417 * Flush all pending signals for this kthread.
 418 */
 419void flush_signals(struct task_struct *t)
 420{
 421	unsigned long flags;
 422
 423	spin_lock_irqsave(&t->sighand->siglock, flags);
 424	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 425	flush_sigqueue(&t->pending);
 426	flush_sigqueue(&t->signal->shared_pending);
 427	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 428}
 429
 
 430static void __flush_itimer_signals(struct sigpending *pending)
 431{
 432	sigset_t signal, retain;
 433	struct sigqueue *q, *n;
 434
 435	signal = pending->signal;
 436	sigemptyset(&retain);
 437
 438	list_for_each_entry_safe(q, n, &pending->list, list) {
 439		int sig = q->info.si_signo;
 440
 441		if (likely(q->info.si_code != SI_TIMER)) {
 442			sigaddset(&retain, sig);
 443		} else {
 444			sigdelset(&signal, sig);
 445			list_del_init(&q->list);
 446			__sigqueue_free(q);
 447		}
 448	}
 449
 450	sigorsets(&pending->signal, &signal, &retain);
 451}
 452
 453void flush_itimer_signals(void)
 454{
 455	struct task_struct *tsk = current;
 456	unsigned long flags;
 457
 458	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 459	__flush_itimer_signals(&tsk->pending);
 460	__flush_itimer_signals(&tsk->signal->shared_pending);
 461	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 462}
 
 463
 464void ignore_signals(struct task_struct *t)
 465{
 466	int i;
 467
 468	for (i = 0; i < _NSIG; ++i)
 469		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 470
 471	flush_signals(t);
 472}
 473
 474/*
 475 * Flush all handlers for a task.
 476 */
 477
 478void
 479flush_signal_handlers(struct task_struct *t, int force_default)
 480{
 481	int i;
 482	struct k_sigaction *ka = &t->sighand->action[0];
 483	for (i = _NSIG ; i != 0 ; i--) {
 484		if (force_default || ka->sa.sa_handler != SIG_IGN)
 485			ka->sa.sa_handler = SIG_DFL;
 486		ka->sa.sa_flags = 0;
 487#ifdef __ARCH_HAS_SA_RESTORER
 488		ka->sa.sa_restorer = NULL;
 489#endif
 490		sigemptyset(&ka->sa.sa_mask);
 491		ka++;
 492	}
 493}
 494
 495int unhandled_signal(struct task_struct *tsk, int sig)
 496{
 497	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 498	if (is_global_init(tsk))
 499		return 1;
 500	if (handler != SIG_IGN && handler != SIG_DFL)
 501		return 0;
 502	/* if ptraced, let the tracer determine */
 503	return !tsk->ptrace;
 504}
 505
 506static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 507{
 508	struct sigqueue *q, *first = NULL;
 509
 510	/*
 511	 * Collect the siginfo appropriate to this signal.  Check if
 512	 * there is another siginfo for the same signal.
 513	*/
 514	list_for_each_entry(q, &list->list, list) {
 515		if (q->info.si_signo == sig) {
 516			if (first)
 517				goto still_pending;
 518			first = q;
 519		}
 520	}
 521
 522	sigdelset(&list->signal, sig);
 523
 524	if (first) {
 525still_pending:
 526		list_del_init(&first->list);
 527		copy_siginfo(info, &first->info);
 528		__sigqueue_free(first);
 529	} else {
 530		/*
 531		 * Ok, it wasn't in the queue.  This must be
 532		 * a fast-pathed signal or we must have been
 533		 * out of queue space.  So zero out the info.
 534		 */
 535		info->si_signo = sig;
 536		info->si_errno = 0;
 537		info->si_code = SI_USER;
 538		info->si_pid = 0;
 539		info->si_uid = 0;
 540	}
 541}
 542
 543static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 544			siginfo_t *info)
 545{
 546	int sig = next_signal(pending, mask);
 547
 548	if (sig)
 549		collect_signal(sig, pending, info);
 550	return sig;
 551}
 552
 553/*
 554 * Dequeue a signal and return the element to the caller, which is
 555 * expected to free it.
 556 *
 557 * All callers have to hold the siglock.
 558 */
 559int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 560{
 561	int signr;
 562
 563	/* We only dequeue private signals from ourselves, we don't let
 564	 * signalfd steal them
 565	 */
 566	signr = __dequeue_signal(&tsk->pending, mask, info);
 567	if (!signr) {
 568		signr = __dequeue_signal(&tsk->signal->shared_pending,
 569					 mask, info);
 
 570		/*
 571		 * itimer signal ?
 572		 *
 573		 * itimers are process shared and we restart periodic
 574		 * itimers in the signal delivery path to prevent DoS
 575		 * attacks in the high resolution timer case. This is
 576		 * compliant with the old way of self-restarting
 577		 * itimers, as the SIGALRM is a legacy signal and only
 578		 * queued once. Changing the restart behaviour to
 579		 * restart the timer in the signal dequeue path is
 580		 * reducing the timer noise on heavy loaded !highres
 581		 * systems too.
 582		 */
 583		if (unlikely(signr == SIGALRM)) {
 584			struct hrtimer *tmr = &tsk->signal->real_timer;
 585
 586			if (!hrtimer_is_queued(tmr) &&
 587			    tsk->signal->it_real_incr.tv64 != 0) {
 588				hrtimer_forward(tmr, tmr->base->get_time(),
 589						tsk->signal->it_real_incr);
 590				hrtimer_restart(tmr);
 591			}
 592		}
 
 593	}
 594
 595	recalc_sigpending();
 596	if (!signr)
 597		return 0;
 598
 599	if (unlikely(sig_kernel_stop(signr))) {
 600		/*
 601		 * Set a marker that we have dequeued a stop signal.  Our
 602		 * caller might release the siglock and then the pending
 603		 * stop signal it is about to process is no longer in the
 604		 * pending bitmasks, but must still be cleared by a SIGCONT
 605		 * (and overruled by a SIGKILL).  So those cases clear this
 606		 * shared flag after we've set it.  Note that this flag may
 607		 * remain set after the signal we return is ignored or
 608		 * handled.  That doesn't matter because its only purpose
 609		 * is to alert stop-signal processing code when another
 610		 * processor has come along and cleared the flag.
 611		 */
 612		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 613	}
 
 614	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 615		/*
 616		 * Release the siglock to ensure proper locking order
 617		 * of timer locks outside of siglocks.  Note, we leave
 618		 * irqs disabled here, since the posix-timers code is
 619		 * about to disable them again anyway.
 620		 */
 621		spin_unlock(&tsk->sighand->siglock);
 622		do_schedule_next_timer(info);
 623		spin_lock(&tsk->sighand->siglock);
 624	}
 
 625	return signr;
 626}
 627
 628/*
 629 * Tell a process that it has a new active signal..
 630 *
 631 * NOTE! we rely on the previous spin_lock to
 632 * lock interrupts for us! We can only be called with
 633 * "siglock" held, and the local interrupt must
 634 * have been disabled when that got acquired!
 635 *
 636 * No need to set need_resched since signal event passing
 637 * goes through ->blocked
 638 */
 639void signal_wake_up_state(struct task_struct *t, unsigned int state)
 640{
 641	set_tsk_thread_flag(t, TIF_SIGPENDING);
 642	/*
 643	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 644	 * case. We don't check t->state here because there is a race with it
 645	 * executing another processor and just now entering stopped state.
 646	 * By using wake_up_state, we ensure the process will wake up and
 647	 * handle its death signal.
 648	 */
 649	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 650		kick_process(t);
 651}
 652
 653/*
 654 * Remove signals in mask from the pending set and queue.
 655 * Returns 1 if any signals were found.
 656 *
 657 * All callers must be holding the siglock.
 658 */
 659static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 660{
 661	struct sigqueue *q, *n;
 662	sigset_t m;
 663
 664	sigandsets(&m, mask, &s->signal);
 665	if (sigisemptyset(&m))
 666		return 0;
 667
 668	sigandnsets(&s->signal, &s->signal, mask);
 669	list_for_each_entry_safe(q, n, &s->list, list) {
 670		if (sigismember(mask, q->info.si_signo)) {
 671			list_del_init(&q->list);
 672			__sigqueue_free(q);
 673		}
 674	}
 675	return 1;
 676}
 677
 678static inline int is_si_special(const struct siginfo *info)
 679{
 680	return info <= SEND_SIG_FORCED;
 681}
 682
 683static inline bool si_fromuser(const struct siginfo *info)
 684{
 685	return info == SEND_SIG_NOINFO ||
 686		(!is_si_special(info) && SI_FROMUSER(info));
 687}
 688
 689/*
 690 * called with RCU read lock from check_kill_permission()
 691 */
 692static int kill_ok_by_cred(struct task_struct *t)
 693{
 694	const struct cred *cred = current_cred();
 695	const struct cred *tcred = __task_cred(t);
 696
 697	if (uid_eq(cred->euid, tcred->suid) ||
 698	    uid_eq(cred->euid, tcred->uid)  ||
 699	    uid_eq(cred->uid,  tcred->suid) ||
 700	    uid_eq(cred->uid,  tcred->uid))
 701		return 1;
 702
 703	if (ns_capable(tcred->user_ns, CAP_KILL))
 704		return 1;
 705
 706	return 0;
 707}
 708
 709/*
 710 * Bad permissions for sending the signal
 711 * - the caller must hold the RCU read lock
 712 */
 713static int check_kill_permission(int sig, struct siginfo *info,
 714				 struct task_struct *t)
 715{
 716	struct pid *sid;
 717	int error;
 718
 719	if (!valid_signal(sig))
 720		return -EINVAL;
 721
 722	if (!si_fromuser(info))
 723		return 0;
 724
 725	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 726	if (error)
 727		return error;
 728
 729	if (!same_thread_group(current, t) &&
 730	    !kill_ok_by_cred(t)) {
 731		switch (sig) {
 732		case SIGCONT:
 733			sid = task_session(t);
 734			/*
 735			 * We don't return the error if sid == NULL. The
 736			 * task was unhashed, the caller must notice this.
 737			 */
 738			if (!sid || sid == task_session(current))
 739				break;
 740		default:
 741			return -EPERM;
 742		}
 743	}
 744
 745	return security_task_kill(t, info, sig, 0);
 746}
 747
 748/**
 749 * ptrace_trap_notify - schedule trap to notify ptracer
 750 * @t: tracee wanting to notify tracer
 751 *
 752 * This function schedules sticky ptrace trap which is cleared on the next
 753 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 754 * ptracer.
 755 *
 756 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 757 * ptracer is listening for events, tracee is woken up so that it can
 758 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 759 * eventually taken without returning to userland after the existing traps
 760 * are finished by PTRACE_CONT.
 761 *
 762 * CONTEXT:
 763 * Must be called with @task->sighand->siglock held.
 764 */
 765static void ptrace_trap_notify(struct task_struct *t)
 766{
 767	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 768	assert_spin_locked(&t->sighand->siglock);
 769
 770	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 771	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 772}
 773
 774/*
 775 * Handle magic process-wide effects of stop/continue signals. Unlike
 776 * the signal actions, these happen immediately at signal-generation
 777 * time regardless of blocking, ignoring, or handling.  This does the
 778 * actual continuing for SIGCONT, but not the actual stopping for stop
 779 * signals. The process stop is done as a signal action for SIG_DFL.
 780 *
 781 * Returns true if the signal should be actually delivered, otherwise
 782 * it should be dropped.
 783 */
 784static bool prepare_signal(int sig, struct task_struct *p, bool force)
 785{
 786	struct signal_struct *signal = p->signal;
 787	struct task_struct *t;
 788	sigset_t flush;
 789
 790	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 791		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 792			return sig == SIGKILL;
 793		/*
 794		 * The process is in the middle of dying, nothing to do.
 795		 */
 796	} else if (sig_kernel_stop(sig)) {
 797		/*
 798		 * This is a stop signal.  Remove SIGCONT from all queues.
 799		 */
 800		siginitset(&flush, sigmask(SIGCONT));
 801		flush_sigqueue_mask(&flush, &signal->shared_pending);
 802		for_each_thread(p, t)
 803			flush_sigqueue_mask(&flush, &t->pending);
 804	} else if (sig == SIGCONT) {
 805		unsigned int why;
 806		/*
 807		 * Remove all stop signals from all queues, wake all threads.
 808		 */
 809		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 810		flush_sigqueue_mask(&flush, &signal->shared_pending);
 811		for_each_thread(p, t) {
 812			flush_sigqueue_mask(&flush, &t->pending);
 813			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 814			if (likely(!(t->ptrace & PT_SEIZED)))
 815				wake_up_state(t, __TASK_STOPPED);
 816			else
 817				ptrace_trap_notify(t);
 818		}
 819
 820		/*
 821		 * Notify the parent with CLD_CONTINUED if we were stopped.
 822		 *
 823		 * If we were in the middle of a group stop, we pretend it
 824		 * was already finished, and then continued. Since SIGCHLD
 825		 * doesn't queue we report only CLD_STOPPED, as if the next
 826		 * CLD_CONTINUED was dropped.
 827		 */
 828		why = 0;
 829		if (signal->flags & SIGNAL_STOP_STOPPED)
 830			why |= SIGNAL_CLD_CONTINUED;
 831		else if (signal->group_stop_count)
 832			why |= SIGNAL_CLD_STOPPED;
 833
 834		if (why) {
 835			/*
 836			 * The first thread which returns from do_signal_stop()
 837			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 838			 * notify its parent. See get_signal_to_deliver().
 839			 */
 840			signal->flags = why | SIGNAL_STOP_CONTINUED;
 841			signal->group_stop_count = 0;
 842			signal->group_exit_code = 0;
 843		}
 844	}
 845
 846	return !sig_ignored(p, sig, force);
 847}
 848
 849/*
 850 * Test if P wants to take SIG.  After we've checked all threads with this,
 851 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 852 * blocking SIG were ruled out because they are not running and already
 853 * have pending signals.  Such threads will dequeue from the shared queue
 854 * as soon as they're available, so putting the signal on the shared queue
 855 * will be equivalent to sending it to one such thread.
 856 */
 857static inline int wants_signal(int sig, struct task_struct *p)
 858{
 859	if (sigismember(&p->blocked, sig))
 860		return 0;
 861	if (p->flags & PF_EXITING)
 862		return 0;
 863	if (sig == SIGKILL)
 864		return 1;
 865	if (task_is_stopped_or_traced(p))
 866		return 0;
 867	return task_curr(p) || !signal_pending(p);
 868}
 869
 870static void complete_signal(int sig, struct task_struct *p, int group)
 871{
 872	struct signal_struct *signal = p->signal;
 873	struct task_struct *t;
 874
 875	/*
 876	 * Now find a thread we can wake up to take the signal off the queue.
 877	 *
 878	 * If the main thread wants the signal, it gets first crack.
 879	 * Probably the least surprising to the average bear.
 880	 */
 881	if (wants_signal(sig, p))
 882		t = p;
 883	else if (!group || thread_group_empty(p))
 884		/*
 885		 * There is just one thread and it does not need to be woken.
 886		 * It will dequeue unblocked signals before it runs again.
 887		 */
 888		return;
 889	else {
 890		/*
 891		 * Otherwise try to find a suitable thread.
 892		 */
 893		t = signal->curr_target;
 894		while (!wants_signal(sig, t)) {
 895			t = next_thread(t);
 896			if (t == signal->curr_target)
 897				/*
 898				 * No thread needs to be woken.
 899				 * Any eligible threads will see
 900				 * the signal in the queue soon.
 901				 */
 902				return;
 903		}
 904		signal->curr_target = t;
 905	}
 906
 907	/*
 908	 * Found a killable thread.  If the signal will be fatal,
 909	 * then start taking the whole group down immediately.
 910	 */
 911	if (sig_fatal(p, sig) &&
 912	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 913	    !sigismember(&t->real_blocked, sig) &&
 914	    (sig == SIGKILL || !t->ptrace)) {
 915		/*
 916		 * This signal will be fatal to the whole group.
 917		 */
 918		if (!sig_kernel_coredump(sig)) {
 919			/*
 920			 * Start a group exit and wake everybody up.
 921			 * This way we don't have other threads
 922			 * running and doing things after a slower
 923			 * thread has the fatal signal pending.
 924			 */
 925			signal->flags = SIGNAL_GROUP_EXIT;
 926			signal->group_exit_code = sig;
 927			signal->group_stop_count = 0;
 928			t = p;
 929			do {
 930				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 931				sigaddset(&t->pending.signal, SIGKILL);
 932				signal_wake_up(t, 1);
 933			} while_each_thread(p, t);
 934			return;
 935		}
 936	}
 937
 938	/*
 939	 * The signal is already in the shared-pending queue.
 940	 * Tell the chosen thread to wake up and dequeue it.
 941	 */
 942	signal_wake_up(t, sig == SIGKILL);
 943	return;
 944}
 945
 946static inline int legacy_queue(struct sigpending *signals, int sig)
 947{
 948	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 949}
 950
 951#ifdef CONFIG_USER_NS
 952static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 953{
 954	if (current_user_ns() == task_cred_xxx(t, user_ns))
 955		return;
 956
 957	if (SI_FROMKERNEL(info))
 958		return;
 959
 960	rcu_read_lock();
 961	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
 962					make_kuid(current_user_ns(), info->si_uid));
 963	rcu_read_unlock();
 964}
 965#else
 966static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 967{
 968	return;
 969}
 970#endif
 971
 972static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
 973			int group, int from_ancestor_ns)
 974{
 975	struct sigpending *pending;
 976	struct sigqueue *q;
 977	int override_rlimit;
 978	int ret = 0, result;
 979
 980	assert_spin_locked(&t->sighand->siglock);
 981
 982	result = TRACE_SIGNAL_IGNORED;
 983	if (!prepare_signal(sig, t,
 984			from_ancestor_ns || (info == SEND_SIG_FORCED)))
 985		goto ret;
 986
 987	pending = group ? &t->signal->shared_pending : &t->pending;
 988	/*
 989	 * Short-circuit ignored signals and support queuing
 990	 * exactly one non-rt signal, so that we can get more
 991	 * detailed information about the cause of the signal.
 992	 */
 993	result = TRACE_SIGNAL_ALREADY_PENDING;
 994	if (legacy_queue(pending, sig))
 995		goto ret;
 996
 997	result = TRACE_SIGNAL_DELIVERED;
 998	/*
 999	 * fast-pathed signals for kernel-internal things like SIGSTOP
1000	 * or SIGKILL.
1001	 */
1002	if (info == SEND_SIG_FORCED)
1003		goto out_set;
1004
1005	/*
1006	 * Real-time signals must be queued if sent by sigqueue, or
1007	 * some other real-time mechanism.  It is implementation
1008	 * defined whether kill() does so.  We attempt to do so, on
1009	 * the principle of least surprise, but since kill is not
1010	 * allowed to fail with EAGAIN when low on memory we just
1011	 * make sure at least one signal gets delivered and don't
1012	 * pass on the info struct.
1013	 */
1014	if (sig < SIGRTMIN)
1015		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1016	else
1017		override_rlimit = 0;
1018
1019	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1020		override_rlimit);
1021	if (q) {
1022		list_add_tail(&q->list, &pending->list);
1023		switch ((unsigned long) info) {
1024		case (unsigned long) SEND_SIG_NOINFO:
1025			q->info.si_signo = sig;
1026			q->info.si_errno = 0;
1027			q->info.si_code = SI_USER;
1028			q->info.si_pid = task_tgid_nr_ns(current,
1029							task_active_pid_ns(t));
1030			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1031			break;
1032		case (unsigned long) SEND_SIG_PRIV:
1033			q->info.si_signo = sig;
1034			q->info.si_errno = 0;
1035			q->info.si_code = SI_KERNEL;
1036			q->info.si_pid = 0;
1037			q->info.si_uid = 0;
1038			break;
1039		default:
1040			copy_siginfo(&q->info, info);
1041			if (from_ancestor_ns)
1042				q->info.si_pid = 0;
1043			break;
1044		}
1045
1046		userns_fixup_signal_uid(&q->info, t);
1047
1048	} else if (!is_si_special(info)) {
1049		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1050			/*
1051			 * Queue overflow, abort.  We may abort if the
1052			 * signal was rt and sent by user using something
1053			 * other than kill().
1054			 */
1055			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1056			ret = -EAGAIN;
1057			goto ret;
1058		} else {
1059			/*
1060			 * This is a silent loss of information.  We still
1061			 * send the signal, but the *info bits are lost.
1062			 */
1063			result = TRACE_SIGNAL_LOSE_INFO;
1064		}
1065	}
1066
1067out_set:
1068	signalfd_notify(t, sig);
1069	sigaddset(&pending->signal, sig);
1070	complete_signal(sig, t, group);
1071ret:
1072	trace_signal_generate(sig, info, t, group, result);
1073	return ret;
1074}
1075
1076static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1077			int group)
1078{
1079	int from_ancestor_ns = 0;
1080
1081#ifdef CONFIG_PID_NS
1082	from_ancestor_ns = si_fromuser(info) &&
1083			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1084#endif
1085
1086	return __send_signal(sig, info, t, group, from_ancestor_ns);
1087}
1088
1089static void print_fatal_signal(int signr)
1090{
1091	struct pt_regs *regs = signal_pt_regs();
1092	printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1093
1094#if defined(__i386__) && !defined(__arch_um__)
1095	printk(KERN_INFO "code at %08lx: ", regs->ip);
1096	{
1097		int i;
1098		for (i = 0; i < 16; i++) {
1099			unsigned char insn;
1100
1101			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1102				break;
1103			printk(KERN_CONT "%02x ", insn);
1104		}
1105	}
1106	printk(KERN_CONT "\n");
1107#endif
1108	preempt_disable();
1109	show_regs(regs);
1110	preempt_enable();
1111}
1112
1113static int __init setup_print_fatal_signals(char *str)
1114{
1115	get_option (&str, &print_fatal_signals);
1116
1117	return 1;
1118}
1119
1120__setup("print-fatal-signals=", setup_print_fatal_signals);
1121
1122int
1123__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1124{
1125	return send_signal(sig, info, p, 1);
1126}
1127
1128static int
1129specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1130{
1131	return send_signal(sig, info, t, 0);
1132}
1133
1134int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1135			bool group)
1136{
1137	unsigned long flags;
1138	int ret = -ESRCH;
1139
1140	if (lock_task_sighand(p, &flags)) {
1141		ret = send_signal(sig, info, p, group);
1142		unlock_task_sighand(p, &flags);
1143	}
1144
1145	return ret;
1146}
1147
1148/*
1149 * Force a signal that the process can't ignore: if necessary
1150 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1151 *
1152 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1153 * since we do not want to have a signal handler that was blocked
1154 * be invoked when user space had explicitly blocked it.
1155 *
1156 * We don't want to have recursive SIGSEGV's etc, for example,
1157 * that is why we also clear SIGNAL_UNKILLABLE.
1158 */
1159int
1160force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1161{
1162	unsigned long int flags;
1163	int ret, blocked, ignored;
1164	struct k_sigaction *action;
1165
1166	spin_lock_irqsave(&t->sighand->siglock, flags);
1167	action = &t->sighand->action[sig-1];
1168	ignored = action->sa.sa_handler == SIG_IGN;
1169	blocked = sigismember(&t->blocked, sig);
1170	if (blocked || ignored) {
1171		action->sa.sa_handler = SIG_DFL;
1172		if (blocked) {
1173			sigdelset(&t->blocked, sig);
1174			recalc_sigpending_and_wake(t);
1175		}
1176	}
1177	if (action->sa.sa_handler == SIG_DFL)
1178		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1179	ret = specific_send_sig_info(sig, info, t);
1180	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1181
1182	return ret;
1183}
1184
1185/*
1186 * Nuke all other threads in the group.
1187 */
1188int zap_other_threads(struct task_struct *p)
1189{
1190	struct task_struct *t = p;
1191	int count = 0;
1192
1193	p->signal->group_stop_count = 0;
1194
1195	while_each_thread(p, t) {
1196		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1197		count++;
1198
1199		/* Don't bother with already dead threads */
1200		if (t->exit_state)
1201			continue;
1202		sigaddset(&t->pending.signal, SIGKILL);
1203		signal_wake_up(t, 1);
1204	}
1205
1206	return count;
1207}
1208
1209struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1210					   unsigned long *flags)
1211{
1212	struct sighand_struct *sighand;
1213
1214	for (;;) {
1215		/*
1216		 * Disable interrupts early to avoid deadlocks.
1217		 * See rcu_read_unlock() comment header for details.
1218		 */
1219		local_irq_save(*flags);
1220		rcu_read_lock();
1221		sighand = rcu_dereference(tsk->sighand);
1222		if (unlikely(sighand == NULL)) {
1223			rcu_read_unlock();
1224			local_irq_restore(*flags);
1225			break;
1226		}
1227		/*
1228		 * This sighand can be already freed and even reused, but
1229		 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1230		 * initializes ->siglock: this slab can't go away, it has
1231		 * the same object type, ->siglock can't be reinitialized.
1232		 *
1233		 * We need to ensure that tsk->sighand is still the same
1234		 * after we take the lock, we can race with de_thread() or
1235		 * __exit_signal(). In the latter case the next iteration
1236		 * must see ->sighand == NULL.
1237		 */
1238		spin_lock(&sighand->siglock);
1239		if (likely(sighand == tsk->sighand)) {
1240			rcu_read_unlock();
1241			break;
1242		}
1243		spin_unlock(&sighand->siglock);
1244		rcu_read_unlock();
1245		local_irq_restore(*flags);
1246	}
1247
1248	return sighand;
1249}
1250
1251/*
1252 * send signal info to all the members of a group
1253 */
1254int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1255{
1256	int ret;
1257
1258	rcu_read_lock();
1259	ret = check_kill_permission(sig, info, p);
1260	rcu_read_unlock();
1261
1262	if (!ret && sig)
1263		ret = do_send_sig_info(sig, info, p, true);
1264
1265	return ret;
1266}
1267
1268/*
1269 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1270 * control characters do (^C, ^Z etc)
1271 * - the caller must hold at least a readlock on tasklist_lock
1272 */
1273int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1274{
1275	struct task_struct *p = NULL;
1276	int retval, success;
1277
1278	success = 0;
1279	retval = -ESRCH;
1280	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1281		int err = group_send_sig_info(sig, info, p);
1282		success |= !err;
1283		retval = err;
1284	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1285	return success ? 0 : retval;
1286}
1287
1288int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1289{
1290	int error = -ESRCH;
1291	struct task_struct *p;
1292
1293	for (;;) {
1294		rcu_read_lock();
1295		p = pid_task(pid, PIDTYPE_PID);
1296		if (p)
1297			error = group_send_sig_info(sig, info, p);
1298		rcu_read_unlock();
1299		if (likely(!p || error != -ESRCH))
1300			return error;
1301
1302		/*
1303		 * The task was unhashed in between, try again.  If it
1304		 * is dead, pid_task() will return NULL, if we race with
1305		 * de_thread() it will find the new leader.
1306		 */
1307	}
1308}
1309
1310int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1311{
1312	int error;
1313	rcu_read_lock();
1314	error = kill_pid_info(sig, info, find_vpid(pid));
1315	rcu_read_unlock();
1316	return error;
1317}
1318
1319static int kill_as_cred_perm(const struct cred *cred,
1320			     struct task_struct *target)
1321{
1322	const struct cred *pcred = __task_cred(target);
1323	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1324	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1325		return 0;
1326	return 1;
1327}
1328
1329/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1330int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1331			 const struct cred *cred, u32 secid)
1332{
1333	int ret = -EINVAL;
1334	struct task_struct *p;
1335	unsigned long flags;
1336
1337	if (!valid_signal(sig))
1338		return ret;
1339
1340	rcu_read_lock();
1341	p = pid_task(pid, PIDTYPE_PID);
1342	if (!p) {
1343		ret = -ESRCH;
1344		goto out_unlock;
1345	}
1346	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1347		ret = -EPERM;
1348		goto out_unlock;
1349	}
1350	ret = security_task_kill(p, info, sig, secid);
1351	if (ret)
1352		goto out_unlock;
1353
1354	if (sig) {
1355		if (lock_task_sighand(p, &flags)) {
1356			ret = __send_signal(sig, info, p, 1, 0);
1357			unlock_task_sighand(p, &flags);
1358		} else
1359			ret = -ESRCH;
1360	}
1361out_unlock:
1362	rcu_read_unlock();
1363	return ret;
1364}
1365EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1366
1367/*
1368 * kill_something_info() interprets pid in interesting ways just like kill(2).
1369 *
1370 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1371 * is probably wrong.  Should make it like BSD or SYSV.
1372 */
1373
1374static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1375{
1376	int ret;
1377
1378	if (pid > 0) {
1379		rcu_read_lock();
1380		ret = kill_pid_info(sig, info, find_vpid(pid));
1381		rcu_read_unlock();
1382		return ret;
1383	}
1384
1385	read_lock(&tasklist_lock);
1386	if (pid != -1) {
1387		ret = __kill_pgrp_info(sig, info,
1388				pid ? find_vpid(-pid) : task_pgrp(current));
1389	} else {
1390		int retval = 0, count = 0;
1391		struct task_struct * p;
1392
1393		for_each_process(p) {
1394			if (task_pid_vnr(p) > 1 &&
1395					!same_thread_group(p, current)) {
1396				int err = group_send_sig_info(sig, info, p);
1397				++count;
1398				if (err != -EPERM)
1399					retval = err;
1400			}
1401		}
1402		ret = count ? retval : -ESRCH;
1403	}
1404	read_unlock(&tasklist_lock);
1405
1406	return ret;
1407}
1408
1409/*
1410 * These are for backward compatibility with the rest of the kernel source.
1411 */
1412
1413int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1414{
1415	/*
1416	 * Make sure legacy kernel users don't send in bad values
1417	 * (normal paths check this in check_kill_permission).
1418	 */
1419	if (!valid_signal(sig))
1420		return -EINVAL;
1421
1422	return do_send_sig_info(sig, info, p, false);
1423}
1424
1425#define __si_special(priv) \
1426	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1427
1428int
1429send_sig(int sig, struct task_struct *p, int priv)
1430{
1431	return send_sig_info(sig, __si_special(priv), p);
1432}
1433
1434void
1435force_sig(int sig, struct task_struct *p)
1436{
1437	force_sig_info(sig, SEND_SIG_PRIV, p);
1438}
1439
1440/*
1441 * When things go south during signal handling, we
1442 * will force a SIGSEGV. And if the signal that caused
1443 * the problem was already a SIGSEGV, we'll want to
1444 * make sure we don't even try to deliver the signal..
1445 */
1446int
1447force_sigsegv(int sig, struct task_struct *p)
1448{
1449	if (sig == SIGSEGV) {
1450		unsigned long flags;
1451		spin_lock_irqsave(&p->sighand->siglock, flags);
1452		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1453		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1454	}
1455	force_sig(SIGSEGV, p);
1456	return 0;
1457}
1458
1459int kill_pgrp(struct pid *pid, int sig, int priv)
1460{
1461	int ret;
1462
1463	read_lock(&tasklist_lock);
1464	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1465	read_unlock(&tasklist_lock);
1466
1467	return ret;
1468}
1469EXPORT_SYMBOL(kill_pgrp);
1470
1471int kill_pid(struct pid *pid, int sig, int priv)
1472{
1473	return kill_pid_info(sig, __si_special(priv), pid);
1474}
1475EXPORT_SYMBOL(kill_pid);
1476
1477/*
1478 * These functions support sending signals using preallocated sigqueue
1479 * structures.  This is needed "because realtime applications cannot
1480 * afford to lose notifications of asynchronous events, like timer
1481 * expirations or I/O completions".  In the case of POSIX Timers
1482 * we allocate the sigqueue structure from the timer_create.  If this
1483 * allocation fails we are able to report the failure to the application
1484 * with an EAGAIN error.
1485 */
1486struct sigqueue *sigqueue_alloc(void)
1487{
1488	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1489
1490	if (q)
1491		q->flags |= SIGQUEUE_PREALLOC;
1492
1493	return q;
1494}
1495
1496void sigqueue_free(struct sigqueue *q)
1497{
1498	unsigned long flags;
1499	spinlock_t *lock = &current->sighand->siglock;
1500
1501	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1502	/*
1503	 * We must hold ->siglock while testing q->list
1504	 * to serialize with collect_signal() or with
1505	 * __exit_signal()->flush_sigqueue().
1506	 */
1507	spin_lock_irqsave(lock, flags);
1508	q->flags &= ~SIGQUEUE_PREALLOC;
1509	/*
1510	 * If it is queued it will be freed when dequeued,
1511	 * like the "regular" sigqueue.
1512	 */
1513	if (!list_empty(&q->list))
1514		q = NULL;
1515	spin_unlock_irqrestore(lock, flags);
1516
1517	if (q)
1518		__sigqueue_free(q);
1519}
1520
1521int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1522{
1523	int sig = q->info.si_signo;
1524	struct sigpending *pending;
1525	unsigned long flags;
1526	int ret, result;
1527
1528	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1529
1530	ret = -1;
1531	if (!likely(lock_task_sighand(t, &flags)))
1532		goto ret;
1533
1534	ret = 1; /* the signal is ignored */
1535	result = TRACE_SIGNAL_IGNORED;
1536	if (!prepare_signal(sig, t, false))
1537		goto out;
1538
1539	ret = 0;
1540	if (unlikely(!list_empty(&q->list))) {
1541		/*
1542		 * If an SI_TIMER entry is already queue just increment
1543		 * the overrun count.
1544		 */
1545		BUG_ON(q->info.si_code != SI_TIMER);
1546		q->info.si_overrun++;
1547		result = TRACE_SIGNAL_ALREADY_PENDING;
1548		goto out;
1549	}
1550	q->info.si_overrun = 0;
1551
1552	signalfd_notify(t, sig);
1553	pending = group ? &t->signal->shared_pending : &t->pending;
1554	list_add_tail(&q->list, &pending->list);
1555	sigaddset(&pending->signal, sig);
1556	complete_signal(sig, t, group);
1557	result = TRACE_SIGNAL_DELIVERED;
1558out:
1559	trace_signal_generate(sig, &q->info, t, group, result);
1560	unlock_task_sighand(t, &flags);
1561ret:
1562	return ret;
1563}
1564
1565/*
1566 * Let a parent know about the death of a child.
1567 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1568 *
1569 * Returns true if our parent ignored us and so we've switched to
1570 * self-reaping.
1571 */
1572bool do_notify_parent(struct task_struct *tsk, int sig)
1573{
1574	struct siginfo info;
1575	unsigned long flags;
1576	struct sighand_struct *psig;
1577	bool autoreap = false;
1578	cputime_t utime, stime;
1579
1580	BUG_ON(sig == -1);
1581
1582 	/* do_notify_parent_cldstop should have been called instead.  */
1583 	BUG_ON(task_is_stopped_or_traced(tsk));
1584
1585	BUG_ON(!tsk->ptrace &&
1586	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1587
1588	if (sig != SIGCHLD) {
1589		/*
1590		 * This is only possible if parent == real_parent.
1591		 * Check if it has changed security domain.
1592		 */
1593		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1594			sig = SIGCHLD;
1595	}
1596
1597	info.si_signo = sig;
1598	info.si_errno = 0;
1599	/*
1600	 * We are under tasklist_lock here so our parent is tied to
1601	 * us and cannot change.
1602	 *
1603	 * task_active_pid_ns will always return the same pid namespace
1604	 * until a task passes through release_task.
1605	 *
1606	 * write_lock() currently calls preempt_disable() which is the
1607	 * same as rcu_read_lock(), but according to Oleg, this is not
1608	 * correct to rely on this
1609	 */
1610	rcu_read_lock();
1611	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1612	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1613				       task_uid(tsk));
1614	rcu_read_unlock();
1615
1616	task_cputime(tsk, &utime, &stime);
1617	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1618	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1619
1620	info.si_status = tsk->exit_code & 0x7f;
1621	if (tsk->exit_code & 0x80)
1622		info.si_code = CLD_DUMPED;
1623	else if (tsk->exit_code & 0x7f)
1624		info.si_code = CLD_KILLED;
1625	else {
1626		info.si_code = CLD_EXITED;
1627		info.si_status = tsk->exit_code >> 8;
1628	}
1629
1630	psig = tsk->parent->sighand;
1631	spin_lock_irqsave(&psig->siglock, flags);
1632	if (!tsk->ptrace && sig == SIGCHLD &&
1633	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1634	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1635		/*
1636		 * We are exiting and our parent doesn't care.  POSIX.1
1637		 * defines special semantics for setting SIGCHLD to SIG_IGN
1638		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1639		 * automatically and not left for our parent's wait4 call.
1640		 * Rather than having the parent do it as a magic kind of
1641		 * signal handler, we just set this to tell do_exit that we
1642		 * can be cleaned up without becoming a zombie.  Note that
1643		 * we still call __wake_up_parent in this case, because a
1644		 * blocked sys_wait4 might now return -ECHILD.
1645		 *
1646		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1647		 * is implementation-defined: we do (if you don't want
1648		 * it, just use SIG_IGN instead).
1649		 */
1650		autoreap = true;
1651		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1652			sig = 0;
1653	}
1654	if (valid_signal(sig) && sig)
1655		__group_send_sig_info(sig, &info, tsk->parent);
1656	__wake_up_parent(tsk, tsk->parent);
1657	spin_unlock_irqrestore(&psig->siglock, flags);
1658
1659	return autoreap;
1660}
1661
1662/**
1663 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1664 * @tsk: task reporting the state change
1665 * @for_ptracer: the notification is for ptracer
1666 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1667 *
1668 * Notify @tsk's parent that the stopped/continued state has changed.  If
1669 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1670 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1671 *
1672 * CONTEXT:
1673 * Must be called with tasklist_lock at least read locked.
1674 */
1675static void do_notify_parent_cldstop(struct task_struct *tsk,
1676				     bool for_ptracer, int why)
1677{
1678	struct siginfo info;
1679	unsigned long flags;
1680	struct task_struct *parent;
1681	struct sighand_struct *sighand;
1682	cputime_t utime, stime;
1683
1684	if (for_ptracer) {
1685		parent = tsk->parent;
1686	} else {
1687		tsk = tsk->group_leader;
1688		parent = tsk->real_parent;
1689	}
1690
1691	info.si_signo = SIGCHLD;
1692	info.si_errno = 0;
1693	/*
1694	 * see comment in do_notify_parent() about the following 4 lines
1695	 */
1696	rcu_read_lock();
1697	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1698	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1699	rcu_read_unlock();
1700
1701	task_cputime(tsk, &utime, &stime);
1702	info.si_utime = cputime_to_clock_t(utime);
1703	info.si_stime = cputime_to_clock_t(stime);
1704
1705 	info.si_code = why;
1706 	switch (why) {
1707 	case CLD_CONTINUED:
1708 		info.si_status = SIGCONT;
1709 		break;
1710 	case CLD_STOPPED:
1711 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1712 		break;
1713 	case CLD_TRAPPED:
1714 		info.si_status = tsk->exit_code & 0x7f;
1715 		break;
1716 	default:
1717 		BUG();
1718 	}
1719
1720	sighand = parent->sighand;
1721	spin_lock_irqsave(&sighand->siglock, flags);
1722	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1723	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1724		__group_send_sig_info(SIGCHLD, &info, parent);
1725	/*
1726	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1727	 */
1728	__wake_up_parent(tsk, parent);
1729	spin_unlock_irqrestore(&sighand->siglock, flags);
1730}
1731
1732static inline int may_ptrace_stop(void)
1733{
1734	if (!likely(current->ptrace))
1735		return 0;
1736	/*
1737	 * Are we in the middle of do_coredump?
1738	 * If so and our tracer is also part of the coredump stopping
1739	 * is a deadlock situation, and pointless because our tracer
1740	 * is dead so don't allow us to stop.
1741	 * If SIGKILL was already sent before the caller unlocked
1742	 * ->siglock we must see ->core_state != NULL. Otherwise it
1743	 * is safe to enter schedule().
1744	 *
1745	 * This is almost outdated, a task with the pending SIGKILL can't
1746	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1747	 * after SIGKILL was already dequeued.
1748	 */
1749	if (unlikely(current->mm->core_state) &&
1750	    unlikely(current->mm == current->parent->mm))
1751		return 0;
1752
1753	return 1;
1754}
1755
1756/*
1757 * Return non-zero if there is a SIGKILL that should be waking us up.
1758 * Called with the siglock held.
1759 */
1760static int sigkill_pending(struct task_struct *tsk)
1761{
1762	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1763		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1764}
1765
1766/*
1767 * This must be called with current->sighand->siglock held.
1768 *
1769 * This should be the path for all ptrace stops.
1770 * We always set current->last_siginfo while stopped here.
1771 * That makes it a way to test a stopped process for
1772 * being ptrace-stopped vs being job-control-stopped.
1773 *
1774 * If we actually decide not to stop at all because the tracer
1775 * is gone, we keep current->exit_code unless clear_code.
1776 */
1777static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1778	__releases(&current->sighand->siglock)
1779	__acquires(&current->sighand->siglock)
1780{
1781	bool gstop_done = false;
1782
1783	if (arch_ptrace_stop_needed(exit_code, info)) {
1784		/*
1785		 * The arch code has something special to do before a
1786		 * ptrace stop.  This is allowed to block, e.g. for faults
1787		 * on user stack pages.  We can't keep the siglock while
1788		 * calling arch_ptrace_stop, so we must release it now.
1789		 * To preserve proper semantics, we must do this before
1790		 * any signal bookkeeping like checking group_stop_count.
1791		 * Meanwhile, a SIGKILL could come in before we retake the
1792		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1793		 * So after regaining the lock, we must check for SIGKILL.
1794		 */
1795		spin_unlock_irq(&current->sighand->siglock);
1796		arch_ptrace_stop(exit_code, info);
1797		spin_lock_irq(&current->sighand->siglock);
1798		if (sigkill_pending(current))
1799			return;
1800	}
1801
1802	/*
1803	 * We're committing to trapping.  TRACED should be visible before
1804	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1805	 * Also, transition to TRACED and updates to ->jobctl should be
1806	 * atomic with respect to siglock and should be done after the arch
1807	 * hook as siglock is released and regrabbed across it.
1808	 */
1809	set_current_state(TASK_TRACED);
1810
1811	current->last_siginfo = info;
1812	current->exit_code = exit_code;
1813
1814	/*
1815	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1816	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1817	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1818	 * could be clear now.  We act as if SIGCONT is received after
1819	 * TASK_TRACED is entered - ignore it.
1820	 */
1821	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1822		gstop_done = task_participate_group_stop(current);
1823
1824	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1825	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1826	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1827		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1828
1829	/* entering a trap, clear TRAPPING */
1830	task_clear_jobctl_trapping(current);
1831
1832	spin_unlock_irq(&current->sighand->siglock);
1833	read_lock(&tasklist_lock);
1834	if (may_ptrace_stop()) {
1835		/*
1836		 * Notify parents of the stop.
1837		 *
1838		 * While ptraced, there are two parents - the ptracer and
1839		 * the real_parent of the group_leader.  The ptracer should
1840		 * know about every stop while the real parent is only
1841		 * interested in the completion of group stop.  The states
1842		 * for the two don't interact with each other.  Notify
1843		 * separately unless they're gonna be duplicates.
1844		 */
1845		do_notify_parent_cldstop(current, true, why);
1846		if (gstop_done && ptrace_reparented(current))
1847			do_notify_parent_cldstop(current, false, why);
1848
1849		/*
1850		 * Don't want to allow preemption here, because
1851		 * sys_ptrace() needs this task to be inactive.
1852		 *
1853		 * XXX: implement read_unlock_no_resched().
1854		 */
1855		preempt_disable();
1856		read_unlock(&tasklist_lock);
1857		preempt_enable_no_resched();
1858		freezable_schedule();
1859	} else {
1860		/*
1861		 * By the time we got the lock, our tracer went away.
1862		 * Don't drop the lock yet, another tracer may come.
1863		 *
1864		 * If @gstop_done, the ptracer went away between group stop
1865		 * completion and here.  During detach, it would have set
1866		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1867		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1868		 * the real parent of the group stop completion is enough.
1869		 */
1870		if (gstop_done)
1871			do_notify_parent_cldstop(current, false, why);
1872
1873		/* tasklist protects us from ptrace_freeze_traced() */
1874		__set_current_state(TASK_RUNNING);
1875		if (clear_code)
1876			current->exit_code = 0;
1877		read_unlock(&tasklist_lock);
1878	}
1879
1880	/*
1881	 * We are back.  Now reacquire the siglock before touching
1882	 * last_siginfo, so that we are sure to have synchronized with
1883	 * any signal-sending on another CPU that wants to examine it.
1884	 */
1885	spin_lock_irq(&current->sighand->siglock);
1886	current->last_siginfo = NULL;
1887
1888	/* LISTENING can be set only during STOP traps, clear it */
1889	current->jobctl &= ~JOBCTL_LISTENING;
1890
1891	/*
1892	 * Queued signals ignored us while we were stopped for tracing.
1893	 * So check for any that we should take before resuming user mode.
1894	 * This sets TIF_SIGPENDING, but never clears it.
1895	 */
1896	recalc_sigpending_tsk(current);
1897}
1898
1899static void ptrace_do_notify(int signr, int exit_code, int why)
1900{
1901	siginfo_t info;
1902
1903	memset(&info, 0, sizeof info);
1904	info.si_signo = signr;
1905	info.si_code = exit_code;
1906	info.si_pid = task_pid_vnr(current);
1907	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1908
1909	/* Let the debugger run.  */
1910	ptrace_stop(exit_code, why, 1, &info);
1911}
1912
1913void ptrace_notify(int exit_code)
1914{
1915	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1916	if (unlikely(current->task_works))
1917		task_work_run();
1918
1919	spin_lock_irq(&current->sighand->siglock);
1920	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1921	spin_unlock_irq(&current->sighand->siglock);
1922}
1923
1924/**
1925 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1926 * @signr: signr causing group stop if initiating
1927 *
1928 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1929 * and participate in it.  If already set, participate in the existing
1930 * group stop.  If participated in a group stop (and thus slept), %true is
1931 * returned with siglock released.
1932 *
1933 * If ptraced, this function doesn't handle stop itself.  Instead,
1934 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1935 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1936 * places afterwards.
1937 *
1938 * CONTEXT:
1939 * Must be called with @current->sighand->siglock held, which is released
1940 * on %true return.
1941 *
1942 * RETURNS:
1943 * %false if group stop is already cancelled or ptrace trap is scheduled.
1944 * %true if participated in group stop.
1945 */
1946static bool do_signal_stop(int signr)
1947	__releases(&current->sighand->siglock)
1948{
1949	struct signal_struct *sig = current->signal;
1950
1951	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1952		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1953		struct task_struct *t;
1954
1955		/* signr will be recorded in task->jobctl for retries */
1956		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1957
1958		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1959		    unlikely(signal_group_exit(sig)))
1960			return false;
1961		/*
1962		 * There is no group stop already in progress.  We must
1963		 * initiate one now.
1964		 *
1965		 * While ptraced, a task may be resumed while group stop is
1966		 * still in effect and then receive a stop signal and
1967		 * initiate another group stop.  This deviates from the
1968		 * usual behavior as two consecutive stop signals can't
1969		 * cause two group stops when !ptraced.  That is why we
1970		 * also check !task_is_stopped(t) below.
1971		 *
1972		 * The condition can be distinguished by testing whether
1973		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1974		 * group_exit_code in such case.
1975		 *
1976		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1977		 * an intervening stop signal is required to cause two
1978		 * continued events regardless of ptrace.
1979		 */
1980		if (!(sig->flags & SIGNAL_STOP_STOPPED))
1981			sig->group_exit_code = signr;
1982
1983		sig->group_stop_count = 0;
1984
1985		if (task_set_jobctl_pending(current, signr | gstop))
1986			sig->group_stop_count++;
1987
1988		t = current;
1989		while_each_thread(current, t) {
1990			/*
1991			 * Setting state to TASK_STOPPED for a group
1992			 * stop is always done with the siglock held,
1993			 * so this check has no races.
1994			 */
1995			if (!task_is_stopped(t) &&
1996			    task_set_jobctl_pending(t, signr | gstop)) {
1997				sig->group_stop_count++;
1998				if (likely(!(t->ptrace & PT_SEIZED)))
1999					signal_wake_up(t, 0);
2000				else
2001					ptrace_trap_notify(t);
2002			}
2003		}
2004	}
2005
2006	if (likely(!current->ptrace)) {
2007		int notify = 0;
2008
2009		/*
2010		 * If there are no other threads in the group, or if there
2011		 * is a group stop in progress and we are the last to stop,
2012		 * report to the parent.
2013		 */
2014		if (task_participate_group_stop(current))
2015			notify = CLD_STOPPED;
2016
2017		__set_current_state(TASK_STOPPED);
2018		spin_unlock_irq(&current->sighand->siglock);
2019
2020		/*
2021		 * Notify the parent of the group stop completion.  Because
2022		 * we're not holding either the siglock or tasklist_lock
2023		 * here, ptracer may attach inbetween; however, this is for
2024		 * group stop and should always be delivered to the real
2025		 * parent of the group leader.  The new ptracer will get
2026		 * its notification when this task transitions into
2027		 * TASK_TRACED.
2028		 */
2029		if (notify) {
2030			read_lock(&tasklist_lock);
2031			do_notify_parent_cldstop(current, false, notify);
2032			read_unlock(&tasklist_lock);
2033		}
2034
2035		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2036		freezable_schedule();
2037		return true;
2038	} else {
2039		/*
2040		 * While ptraced, group stop is handled by STOP trap.
2041		 * Schedule it and let the caller deal with it.
2042		 */
2043		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2044		return false;
2045	}
2046}
2047
2048/**
2049 * do_jobctl_trap - take care of ptrace jobctl traps
2050 *
2051 * When PT_SEIZED, it's used for both group stop and explicit
2052 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2053 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2054 * the stop signal; otherwise, %SIGTRAP.
2055 *
2056 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2057 * number as exit_code and no siginfo.
2058 *
2059 * CONTEXT:
2060 * Must be called with @current->sighand->siglock held, which may be
2061 * released and re-acquired before returning with intervening sleep.
2062 */
2063static void do_jobctl_trap(void)
2064{
2065	struct signal_struct *signal = current->signal;
2066	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2067
2068	if (current->ptrace & PT_SEIZED) {
2069		if (!signal->group_stop_count &&
2070		    !(signal->flags & SIGNAL_STOP_STOPPED))
2071			signr = SIGTRAP;
2072		WARN_ON_ONCE(!signr);
2073		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2074				 CLD_STOPPED);
2075	} else {
2076		WARN_ON_ONCE(!signr);
2077		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2078		current->exit_code = 0;
2079	}
2080}
2081
2082static int ptrace_signal(int signr, siginfo_t *info)
2083{
2084	ptrace_signal_deliver();
2085	/*
2086	 * We do not check sig_kernel_stop(signr) but set this marker
2087	 * unconditionally because we do not know whether debugger will
2088	 * change signr. This flag has no meaning unless we are going
2089	 * to stop after return from ptrace_stop(). In this case it will
2090	 * be checked in do_signal_stop(), we should only stop if it was
2091	 * not cleared by SIGCONT while we were sleeping. See also the
2092	 * comment in dequeue_signal().
2093	 */
2094	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2095	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2096
2097	/* We're back.  Did the debugger cancel the sig?  */
2098	signr = current->exit_code;
2099	if (signr == 0)
2100		return signr;
2101
2102	current->exit_code = 0;
2103
2104	/*
2105	 * Update the siginfo structure if the signal has
2106	 * changed.  If the debugger wanted something
2107	 * specific in the siginfo structure then it should
2108	 * have updated *info via PTRACE_SETSIGINFO.
2109	 */
2110	if (signr != info->si_signo) {
2111		info->si_signo = signr;
2112		info->si_errno = 0;
2113		info->si_code = SI_USER;
2114		rcu_read_lock();
2115		info->si_pid = task_pid_vnr(current->parent);
2116		info->si_uid = from_kuid_munged(current_user_ns(),
2117						task_uid(current->parent));
2118		rcu_read_unlock();
2119	}
2120
2121	/* If the (new) signal is now blocked, requeue it.  */
2122	if (sigismember(&current->blocked, signr)) {
2123		specific_send_sig_info(signr, info, current);
2124		signr = 0;
2125	}
2126
2127	return signr;
2128}
2129
2130int get_signal(struct ksignal *ksig)
2131{
2132	struct sighand_struct *sighand = current->sighand;
2133	struct signal_struct *signal = current->signal;
2134	int signr;
2135
2136	if (unlikely(current->task_works))
2137		task_work_run();
2138
2139	if (unlikely(uprobe_deny_signal()))
2140		return 0;
2141
2142	/*
2143	 * Do this once, we can't return to user-mode if freezing() == T.
2144	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2145	 * thus do not need another check after return.
2146	 */
2147	try_to_freeze();
2148
2149relock:
2150	spin_lock_irq(&sighand->siglock);
2151	/*
2152	 * Every stopped thread goes here after wakeup. Check to see if
2153	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2154	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2155	 */
2156	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2157		int why;
2158
2159		if (signal->flags & SIGNAL_CLD_CONTINUED)
2160			why = CLD_CONTINUED;
2161		else
2162			why = CLD_STOPPED;
2163
2164		signal->flags &= ~SIGNAL_CLD_MASK;
2165
2166		spin_unlock_irq(&sighand->siglock);
2167
2168		/*
2169		 * Notify the parent that we're continuing.  This event is
2170		 * always per-process and doesn't make whole lot of sense
2171		 * for ptracers, who shouldn't consume the state via
2172		 * wait(2) either, but, for backward compatibility, notify
2173		 * the ptracer of the group leader too unless it's gonna be
2174		 * a duplicate.
2175		 */
2176		read_lock(&tasklist_lock);
2177		do_notify_parent_cldstop(current, false, why);
2178
2179		if (ptrace_reparented(current->group_leader))
2180			do_notify_parent_cldstop(current->group_leader,
2181						true, why);
2182		read_unlock(&tasklist_lock);
2183
2184		goto relock;
2185	}
2186
2187	for (;;) {
2188		struct k_sigaction *ka;
2189
2190		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2191		    do_signal_stop(0))
2192			goto relock;
2193
2194		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2195			do_jobctl_trap();
2196			spin_unlock_irq(&sighand->siglock);
2197			goto relock;
2198		}
2199
2200		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2201
2202		if (!signr)
2203			break; /* will return 0 */
2204
2205		if (unlikely(current->ptrace) && signr != SIGKILL) {
2206			signr = ptrace_signal(signr, &ksig->info);
2207			if (!signr)
2208				continue;
2209		}
2210
2211		ka = &sighand->action[signr-1];
2212
2213		/* Trace actually delivered signals. */
2214		trace_signal_deliver(signr, &ksig->info, ka);
2215
2216		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2217			continue;
2218		if (ka->sa.sa_handler != SIG_DFL) {
2219			/* Run the handler.  */
2220			ksig->ka = *ka;
2221
2222			if (ka->sa.sa_flags & SA_ONESHOT)
2223				ka->sa.sa_handler = SIG_DFL;
2224
2225			break; /* will return non-zero "signr" value */
2226		}
2227
2228		/*
2229		 * Now we are doing the default action for this signal.
2230		 */
2231		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2232			continue;
2233
2234		/*
2235		 * Global init gets no signals it doesn't want.
2236		 * Container-init gets no signals it doesn't want from same
2237		 * container.
2238		 *
2239		 * Note that if global/container-init sees a sig_kernel_only()
2240		 * signal here, the signal must have been generated internally
2241		 * or must have come from an ancestor namespace. In either
2242		 * case, the signal cannot be dropped.
2243		 */
2244		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2245				!sig_kernel_only(signr))
2246			continue;
2247
2248		if (sig_kernel_stop(signr)) {
2249			/*
2250			 * The default action is to stop all threads in
2251			 * the thread group.  The job control signals
2252			 * do nothing in an orphaned pgrp, but SIGSTOP
2253			 * always works.  Note that siglock needs to be
2254			 * dropped during the call to is_orphaned_pgrp()
2255			 * because of lock ordering with tasklist_lock.
2256			 * This allows an intervening SIGCONT to be posted.
2257			 * We need to check for that and bail out if necessary.
2258			 */
2259			if (signr != SIGSTOP) {
2260				spin_unlock_irq(&sighand->siglock);
2261
2262				/* signals can be posted during this window */
2263
2264				if (is_current_pgrp_orphaned())
2265					goto relock;
2266
2267				spin_lock_irq(&sighand->siglock);
2268			}
2269
2270			if (likely(do_signal_stop(ksig->info.si_signo))) {
2271				/* It released the siglock.  */
2272				goto relock;
2273			}
2274
2275			/*
2276			 * We didn't actually stop, due to a race
2277			 * with SIGCONT or something like that.
2278			 */
2279			continue;
2280		}
2281
2282		spin_unlock_irq(&sighand->siglock);
2283
2284		/*
2285		 * Anything else is fatal, maybe with a core dump.
2286		 */
2287		current->flags |= PF_SIGNALED;
2288
2289		if (sig_kernel_coredump(signr)) {
2290			if (print_fatal_signals)
2291				print_fatal_signal(ksig->info.si_signo);
2292			proc_coredump_connector(current);
2293			/*
2294			 * If it was able to dump core, this kills all
2295			 * other threads in the group and synchronizes with
2296			 * their demise.  If we lost the race with another
2297			 * thread getting here, it set group_exit_code
2298			 * first and our do_group_exit call below will use
2299			 * that value and ignore the one we pass it.
2300			 */
2301			do_coredump(&ksig->info);
2302		}
2303
2304		/*
2305		 * Death signals, no core dump.
2306		 */
2307		do_group_exit(ksig->info.si_signo);
2308		/* NOTREACHED */
2309	}
2310	spin_unlock_irq(&sighand->siglock);
2311
2312	ksig->sig = signr;
2313	return ksig->sig > 0;
2314}
2315
2316/**
2317 * signal_delivered - 
2318 * @ksig:		kernel signal struct
2319 * @stepping:		nonzero if debugger single-step or block-step in use
2320 *
2321 * This function should be called when a signal has successfully been
2322 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2323 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2324 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2325 */
2326static void signal_delivered(struct ksignal *ksig, int stepping)
2327{
2328	sigset_t blocked;
2329
2330	/* A signal was successfully delivered, and the
2331	   saved sigmask was stored on the signal frame,
2332	   and will be restored by sigreturn.  So we can
2333	   simply clear the restore sigmask flag.  */
2334	clear_restore_sigmask();
2335
2336	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2337	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2338		sigaddset(&blocked, ksig->sig);
2339	set_current_blocked(&blocked);
2340	tracehook_signal_handler(stepping);
2341}
2342
2343void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2344{
2345	if (failed)
2346		force_sigsegv(ksig->sig, current);
2347	else
2348		signal_delivered(ksig, stepping);
2349}
2350
2351/*
2352 * It could be that complete_signal() picked us to notify about the
2353 * group-wide signal. Other threads should be notified now to take
2354 * the shared signals in @which since we will not.
2355 */
2356static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2357{
2358	sigset_t retarget;
2359	struct task_struct *t;
2360
2361	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2362	if (sigisemptyset(&retarget))
2363		return;
2364
2365	t = tsk;
2366	while_each_thread(tsk, t) {
2367		if (t->flags & PF_EXITING)
2368			continue;
2369
2370		if (!has_pending_signals(&retarget, &t->blocked))
2371			continue;
2372		/* Remove the signals this thread can handle. */
2373		sigandsets(&retarget, &retarget, &t->blocked);
2374
2375		if (!signal_pending(t))
2376			signal_wake_up(t, 0);
2377
2378		if (sigisemptyset(&retarget))
2379			break;
2380	}
2381}
2382
2383void exit_signals(struct task_struct *tsk)
2384{
2385	int group_stop = 0;
2386	sigset_t unblocked;
2387
2388	/*
2389	 * @tsk is about to have PF_EXITING set - lock out users which
2390	 * expect stable threadgroup.
2391	 */
2392	threadgroup_change_begin(tsk);
2393
2394	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2395		tsk->flags |= PF_EXITING;
2396		threadgroup_change_end(tsk);
2397		return;
2398	}
2399
2400	spin_lock_irq(&tsk->sighand->siglock);
2401	/*
2402	 * From now this task is not visible for group-wide signals,
2403	 * see wants_signal(), do_signal_stop().
2404	 */
2405	tsk->flags |= PF_EXITING;
2406
2407	threadgroup_change_end(tsk);
2408
2409	if (!signal_pending(tsk))
2410		goto out;
2411
2412	unblocked = tsk->blocked;
2413	signotset(&unblocked);
2414	retarget_shared_pending(tsk, &unblocked);
2415
2416	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2417	    task_participate_group_stop(tsk))
2418		group_stop = CLD_STOPPED;
2419out:
2420	spin_unlock_irq(&tsk->sighand->siglock);
2421
2422	/*
2423	 * If group stop has completed, deliver the notification.  This
2424	 * should always go to the real parent of the group leader.
2425	 */
2426	if (unlikely(group_stop)) {
2427		read_lock(&tasklist_lock);
2428		do_notify_parent_cldstop(tsk, false, group_stop);
2429		read_unlock(&tasklist_lock);
2430	}
2431}
2432
2433EXPORT_SYMBOL(recalc_sigpending);
2434EXPORT_SYMBOL_GPL(dequeue_signal);
2435EXPORT_SYMBOL(flush_signals);
2436EXPORT_SYMBOL(force_sig);
2437EXPORT_SYMBOL(send_sig);
2438EXPORT_SYMBOL(send_sig_info);
2439EXPORT_SYMBOL(sigprocmask);
2440
2441/*
2442 * System call entry points.
2443 */
2444
2445/**
2446 *  sys_restart_syscall - restart a system call
2447 */
2448SYSCALL_DEFINE0(restart_syscall)
2449{
2450	struct restart_block *restart = &current->restart_block;
2451	return restart->fn(restart);
2452}
2453
2454long do_no_restart_syscall(struct restart_block *param)
2455{
2456	return -EINTR;
2457}
2458
2459static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2460{
2461	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2462		sigset_t newblocked;
2463		/* A set of now blocked but previously unblocked signals. */
2464		sigandnsets(&newblocked, newset, &current->blocked);
2465		retarget_shared_pending(tsk, &newblocked);
2466	}
2467	tsk->blocked = *newset;
2468	recalc_sigpending();
2469}
2470
2471/**
2472 * set_current_blocked - change current->blocked mask
2473 * @newset: new mask
2474 *
2475 * It is wrong to change ->blocked directly, this helper should be used
2476 * to ensure the process can't miss a shared signal we are going to block.
2477 */
2478void set_current_blocked(sigset_t *newset)
2479{
2480	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2481	__set_current_blocked(newset);
2482}
2483
2484void __set_current_blocked(const sigset_t *newset)
2485{
2486	struct task_struct *tsk = current;
2487
 
 
 
 
 
 
 
2488	spin_lock_irq(&tsk->sighand->siglock);
2489	__set_task_blocked(tsk, newset);
2490	spin_unlock_irq(&tsk->sighand->siglock);
2491}
2492
2493/*
2494 * This is also useful for kernel threads that want to temporarily
2495 * (or permanently) block certain signals.
2496 *
2497 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2498 * interface happily blocks "unblockable" signals like SIGKILL
2499 * and friends.
2500 */
2501int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2502{
2503	struct task_struct *tsk = current;
2504	sigset_t newset;
2505
2506	/* Lockless, only current can change ->blocked, never from irq */
2507	if (oldset)
2508		*oldset = tsk->blocked;
2509
2510	switch (how) {
2511	case SIG_BLOCK:
2512		sigorsets(&newset, &tsk->blocked, set);
2513		break;
2514	case SIG_UNBLOCK:
2515		sigandnsets(&newset, &tsk->blocked, set);
2516		break;
2517	case SIG_SETMASK:
2518		newset = *set;
2519		break;
2520	default:
2521		return -EINVAL;
2522	}
2523
2524	__set_current_blocked(&newset);
2525	return 0;
2526}
2527
2528/**
2529 *  sys_rt_sigprocmask - change the list of currently blocked signals
2530 *  @how: whether to add, remove, or set signals
2531 *  @nset: stores pending signals
2532 *  @oset: previous value of signal mask if non-null
2533 *  @sigsetsize: size of sigset_t type
2534 */
2535SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2536		sigset_t __user *, oset, size_t, sigsetsize)
2537{
2538	sigset_t old_set, new_set;
2539	int error;
2540
2541	/* XXX: Don't preclude handling different sized sigset_t's.  */
2542	if (sigsetsize != sizeof(sigset_t))
2543		return -EINVAL;
2544
2545	old_set = current->blocked;
2546
2547	if (nset) {
2548		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2549			return -EFAULT;
2550		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2551
2552		error = sigprocmask(how, &new_set, NULL);
2553		if (error)
2554			return error;
2555	}
2556
2557	if (oset) {
2558		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2559			return -EFAULT;
2560	}
2561
2562	return 0;
2563}
2564
2565#ifdef CONFIG_COMPAT
2566COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2567		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2568{
2569#ifdef __BIG_ENDIAN
2570	sigset_t old_set = current->blocked;
2571
2572	/* XXX: Don't preclude handling different sized sigset_t's.  */
2573	if (sigsetsize != sizeof(sigset_t))
2574		return -EINVAL;
2575
2576	if (nset) {
2577		compat_sigset_t new32;
2578		sigset_t new_set;
2579		int error;
2580		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2581			return -EFAULT;
2582
2583		sigset_from_compat(&new_set, &new32);
2584		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2585
2586		error = sigprocmask(how, &new_set, NULL);
2587		if (error)
2588			return error;
2589	}
2590	if (oset) {
2591		compat_sigset_t old32;
2592		sigset_to_compat(&old32, &old_set);
2593		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2594			return -EFAULT;
2595	}
2596	return 0;
2597#else
2598	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2599				  (sigset_t __user *)oset, sigsetsize);
2600#endif
2601}
2602#endif
2603
2604static int do_sigpending(void *set, unsigned long sigsetsize)
2605{
2606	if (sigsetsize > sizeof(sigset_t))
2607		return -EINVAL;
2608
2609	spin_lock_irq(&current->sighand->siglock);
2610	sigorsets(set, &current->pending.signal,
2611		  &current->signal->shared_pending.signal);
2612	spin_unlock_irq(&current->sighand->siglock);
2613
2614	/* Outside the lock because only this thread touches it.  */
2615	sigandsets(set, &current->blocked, set);
2616	return 0;
2617}
2618
2619/**
2620 *  sys_rt_sigpending - examine a pending signal that has been raised
2621 *			while blocked
2622 *  @uset: stores pending signals
2623 *  @sigsetsize: size of sigset_t type or larger
2624 */
2625SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2626{
2627	sigset_t set;
2628	int err = do_sigpending(&set, sigsetsize);
2629	if (!err && copy_to_user(uset, &set, sigsetsize))
2630		err = -EFAULT;
2631	return err;
2632}
2633
2634#ifdef CONFIG_COMPAT
2635COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2636		compat_size_t, sigsetsize)
2637{
2638#ifdef __BIG_ENDIAN
2639	sigset_t set;
2640	int err = do_sigpending(&set, sigsetsize);
2641	if (!err) {
2642		compat_sigset_t set32;
2643		sigset_to_compat(&set32, &set);
2644		/* we can get here only if sigsetsize <= sizeof(set) */
2645		if (copy_to_user(uset, &set32, sigsetsize))
2646			err = -EFAULT;
2647	}
2648	return err;
2649#else
2650	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2651#endif
2652}
2653#endif
2654
2655#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2656
2657int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2658{
2659	int err;
2660
2661	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2662		return -EFAULT;
2663	if (from->si_code < 0)
2664		return __copy_to_user(to, from, sizeof(siginfo_t))
2665			? -EFAULT : 0;
2666	/*
2667	 * If you change siginfo_t structure, please be sure
2668	 * this code is fixed accordingly.
2669	 * Please remember to update the signalfd_copyinfo() function
2670	 * inside fs/signalfd.c too, in case siginfo_t changes.
2671	 * It should never copy any pad contained in the structure
2672	 * to avoid security leaks, but must copy the generic
2673	 * 3 ints plus the relevant union member.
2674	 */
2675	err = __put_user(from->si_signo, &to->si_signo);
2676	err |= __put_user(from->si_errno, &to->si_errno);
2677	err |= __put_user((short)from->si_code, &to->si_code);
2678	switch (from->si_code & __SI_MASK) {
2679	case __SI_KILL:
2680		err |= __put_user(from->si_pid, &to->si_pid);
2681		err |= __put_user(from->si_uid, &to->si_uid);
2682		break;
2683	case __SI_TIMER:
2684		 err |= __put_user(from->si_tid, &to->si_tid);
2685		 err |= __put_user(from->si_overrun, &to->si_overrun);
2686		 err |= __put_user(from->si_ptr, &to->si_ptr);
2687		break;
2688	case __SI_POLL:
2689		err |= __put_user(from->si_band, &to->si_band);
2690		err |= __put_user(from->si_fd, &to->si_fd);
2691		break;
2692	case __SI_FAULT:
2693		err |= __put_user(from->si_addr, &to->si_addr);
2694#ifdef __ARCH_SI_TRAPNO
2695		err |= __put_user(from->si_trapno, &to->si_trapno);
2696#endif
2697#ifdef BUS_MCEERR_AO
2698		/*
2699		 * Other callers might not initialize the si_lsb field,
2700		 * so check explicitly for the right codes here.
2701		 */
2702		if (from->si_signo == SIGBUS &&
2703		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2704			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2705#endif
2706#ifdef SEGV_BNDERR
2707		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2708			err |= __put_user(from->si_lower, &to->si_lower);
2709			err |= __put_user(from->si_upper, &to->si_upper);
2710		}
2711#endif
2712#ifdef SEGV_PKUERR
2713		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2714			err |= __put_user(from->si_pkey, &to->si_pkey);
2715#endif
2716		break;
2717	case __SI_CHLD:
2718		err |= __put_user(from->si_pid, &to->si_pid);
2719		err |= __put_user(from->si_uid, &to->si_uid);
2720		err |= __put_user(from->si_status, &to->si_status);
2721		err |= __put_user(from->si_utime, &to->si_utime);
2722		err |= __put_user(from->si_stime, &to->si_stime);
2723		break;
2724	case __SI_RT: /* This is not generated by the kernel as of now. */
2725	case __SI_MESGQ: /* But this is */
2726		err |= __put_user(from->si_pid, &to->si_pid);
2727		err |= __put_user(from->si_uid, &to->si_uid);
2728		err |= __put_user(from->si_ptr, &to->si_ptr);
2729		break;
2730#ifdef __ARCH_SIGSYS
2731	case __SI_SYS:
2732		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2733		err |= __put_user(from->si_syscall, &to->si_syscall);
2734		err |= __put_user(from->si_arch, &to->si_arch);
2735		break;
2736#endif
2737	default: /* this is just in case for now ... */
2738		err |= __put_user(from->si_pid, &to->si_pid);
2739		err |= __put_user(from->si_uid, &to->si_uid);
2740		break;
2741	}
2742	return err;
2743}
2744
2745#endif
2746
2747/**
2748 *  do_sigtimedwait - wait for queued signals specified in @which
2749 *  @which: queued signals to wait for
2750 *  @info: if non-null, the signal's siginfo is returned here
2751 *  @ts: upper bound on process time suspension
2752 */
2753int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2754			const struct timespec *ts)
2755{
 
2756	struct task_struct *tsk = current;
2757	long timeout = MAX_SCHEDULE_TIMEOUT;
2758	sigset_t mask = *which;
2759	int sig;
2760
2761	if (ts) {
2762		if (!timespec_valid(ts))
2763			return -EINVAL;
2764		timeout = timespec_to_jiffies(ts);
2765		/*
2766		 * We can be close to the next tick, add another one
2767		 * to ensure we will wait at least the time asked for.
2768		 */
2769		if (ts->tv_sec || ts->tv_nsec)
2770			timeout++;
2771	}
2772
2773	/*
2774	 * Invert the set of allowed signals to get those we want to block.
2775	 */
2776	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2777	signotset(&mask);
2778
2779	spin_lock_irq(&tsk->sighand->siglock);
2780	sig = dequeue_signal(tsk, &mask, info);
2781	if (!sig && timeout) {
2782		/*
2783		 * None ready, temporarily unblock those we're interested
2784		 * while we are sleeping in so that we'll be awakened when
2785		 * they arrive. Unblocking is always fine, we can avoid
2786		 * set_current_blocked().
2787		 */
2788		tsk->real_blocked = tsk->blocked;
2789		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2790		recalc_sigpending();
2791		spin_unlock_irq(&tsk->sighand->siglock);
2792
2793		timeout = freezable_schedule_timeout_interruptible(timeout);
2794
 
2795		spin_lock_irq(&tsk->sighand->siglock);
2796		__set_task_blocked(tsk, &tsk->real_blocked);
2797		sigemptyset(&tsk->real_blocked);
2798		sig = dequeue_signal(tsk, &mask, info);
2799	}
2800	spin_unlock_irq(&tsk->sighand->siglock);
2801
2802	if (sig)
2803		return sig;
2804	return timeout ? -EINTR : -EAGAIN;
2805}
2806
2807/**
2808 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2809 *			in @uthese
2810 *  @uthese: queued signals to wait for
2811 *  @uinfo: if non-null, the signal's siginfo is returned here
2812 *  @uts: upper bound on process time suspension
2813 *  @sigsetsize: size of sigset_t type
2814 */
2815SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2816		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2817		size_t, sigsetsize)
2818{
2819	sigset_t these;
2820	struct timespec ts;
2821	siginfo_t info;
2822	int ret;
2823
2824	/* XXX: Don't preclude handling different sized sigset_t's.  */
2825	if (sigsetsize != sizeof(sigset_t))
2826		return -EINVAL;
2827
2828	if (copy_from_user(&these, uthese, sizeof(these)))
2829		return -EFAULT;
2830
2831	if (uts) {
2832		if (copy_from_user(&ts, uts, sizeof(ts)))
2833			return -EFAULT;
2834	}
2835
2836	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2837
2838	if (ret > 0 && uinfo) {
2839		if (copy_siginfo_to_user(uinfo, &info))
2840			ret = -EFAULT;
2841	}
2842
2843	return ret;
2844}
2845
2846/**
2847 *  sys_kill - send a signal to a process
2848 *  @pid: the PID of the process
2849 *  @sig: signal to be sent
2850 */
2851SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2852{
2853	struct siginfo info;
2854
2855	info.si_signo = sig;
2856	info.si_errno = 0;
2857	info.si_code = SI_USER;
2858	info.si_pid = task_tgid_vnr(current);
2859	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2860
2861	return kill_something_info(sig, &info, pid);
2862}
2863
2864static int
2865do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2866{
2867	struct task_struct *p;
2868	int error = -ESRCH;
2869
2870	rcu_read_lock();
2871	p = find_task_by_vpid(pid);
2872	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2873		error = check_kill_permission(sig, info, p);
2874		/*
2875		 * The null signal is a permissions and process existence
2876		 * probe.  No signal is actually delivered.
2877		 */
2878		if (!error && sig) {
2879			error = do_send_sig_info(sig, info, p, false);
2880			/*
2881			 * If lock_task_sighand() failed we pretend the task
2882			 * dies after receiving the signal. The window is tiny,
2883			 * and the signal is private anyway.
2884			 */
2885			if (unlikely(error == -ESRCH))
2886				error = 0;
2887		}
2888	}
2889	rcu_read_unlock();
2890
2891	return error;
2892}
2893
2894static int do_tkill(pid_t tgid, pid_t pid, int sig)
2895{
2896	struct siginfo info = {};
2897
2898	info.si_signo = sig;
2899	info.si_errno = 0;
2900	info.si_code = SI_TKILL;
2901	info.si_pid = task_tgid_vnr(current);
2902	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2903
2904	return do_send_specific(tgid, pid, sig, &info);
2905}
2906
2907/**
2908 *  sys_tgkill - send signal to one specific thread
2909 *  @tgid: the thread group ID of the thread
2910 *  @pid: the PID of the thread
2911 *  @sig: signal to be sent
2912 *
2913 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2914 *  exists but it's not belonging to the target process anymore. This
2915 *  method solves the problem of threads exiting and PIDs getting reused.
2916 */
2917SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2918{
2919	/* This is only valid for single tasks */
2920	if (pid <= 0 || tgid <= 0)
2921		return -EINVAL;
2922
2923	return do_tkill(tgid, pid, sig);
2924}
2925
2926/**
2927 *  sys_tkill - send signal to one specific task
2928 *  @pid: the PID of the task
2929 *  @sig: signal to be sent
2930 *
2931 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2932 */
2933SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2934{
2935	/* This is only valid for single tasks */
2936	if (pid <= 0)
2937		return -EINVAL;
2938
2939	return do_tkill(0, pid, sig);
2940}
2941
2942static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2943{
2944	/* Not even root can pretend to send signals from the kernel.
2945	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2946	 */
2947	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2948	    (task_pid_vnr(current) != pid))
2949		return -EPERM;
2950
2951	info->si_signo = sig;
2952
2953	/* POSIX.1b doesn't mention process groups.  */
2954	return kill_proc_info(sig, info, pid);
2955}
2956
2957/**
2958 *  sys_rt_sigqueueinfo - send signal information to a signal
2959 *  @pid: the PID of the thread
2960 *  @sig: signal to be sent
2961 *  @uinfo: signal info to be sent
2962 */
2963SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2964		siginfo_t __user *, uinfo)
2965{
2966	siginfo_t info;
2967	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2968		return -EFAULT;
2969	return do_rt_sigqueueinfo(pid, sig, &info);
2970}
2971
2972#ifdef CONFIG_COMPAT
2973COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2974			compat_pid_t, pid,
2975			int, sig,
2976			struct compat_siginfo __user *, uinfo)
2977{
2978	siginfo_t info = {};
2979	int ret = copy_siginfo_from_user32(&info, uinfo);
2980	if (unlikely(ret))
2981		return ret;
2982	return do_rt_sigqueueinfo(pid, sig, &info);
2983}
2984#endif
2985
2986static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2987{
2988	/* This is only valid for single tasks */
2989	if (pid <= 0 || tgid <= 0)
2990		return -EINVAL;
2991
2992	/* Not even root can pretend to send signals from the kernel.
2993	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2994	 */
2995	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2996	    (task_pid_vnr(current) != pid))
2997		return -EPERM;
2998
2999	info->si_signo = sig;
3000
3001	return do_send_specific(tgid, pid, sig, info);
3002}
3003
3004SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3005		siginfo_t __user *, uinfo)
3006{
3007	siginfo_t info;
3008
3009	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3010		return -EFAULT;
3011
3012	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3013}
3014
3015#ifdef CONFIG_COMPAT
3016COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3017			compat_pid_t, tgid,
3018			compat_pid_t, pid,
3019			int, sig,
3020			struct compat_siginfo __user *, uinfo)
3021{
3022	siginfo_t info = {};
3023
3024	if (copy_siginfo_from_user32(&info, uinfo))
3025		return -EFAULT;
3026	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3027}
3028#endif
3029
3030/*
3031 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3032 */
3033void kernel_sigaction(int sig, __sighandler_t action)
3034{
3035	spin_lock_irq(&current->sighand->siglock);
3036	current->sighand->action[sig - 1].sa.sa_handler = action;
3037	if (action == SIG_IGN) {
3038		sigset_t mask;
3039
3040		sigemptyset(&mask);
3041		sigaddset(&mask, sig);
3042
3043		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3044		flush_sigqueue_mask(&mask, &current->pending);
3045		recalc_sigpending();
3046	}
3047	spin_unlock_irq(&current->sighand->siglock);
3048}
3049EXPORT_SYMBOL(kernel_sigaction);
3050
 
 
 
 
 
3051int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3052{
3053	struct task_struct *p = current, *t;
3054	struct k_sigaction *k;
3055	sigset_t mask;
3056
3057	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3058		return -EINVAL;
3059
3060	k = &p->sighand->action[sig-1];
3061
3062	spin_lock_irq(&p->sighand->siglock);
3063	if (oact)
3064		*oact = *k;
3065
 
 
3066	if (act) {
3067		sigdelsetmask(&act->sa.sa_mask,
3068			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3069		*k = *act;
3070		/*
3071		 * POSIX 3.3.1.3:
3072		 *  "Setting a signal action to SIG_IGN for a signal that is
3073		 *   pending shall cause the pending signal to be discarded,
3074		 *   whether or not it is blocked."
3075		 *
3076		 *  "Setting a signal action to SIG_DFL for a signal that is
3077		 *   pending and whose default action is to ignore the signal
3078		 *   (for example, SIGCHLD), shall cause the pending signal to
3079		 *   be discarded, whether or not it is blocked"
3080		 */
3081		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3082			sigemptyset(&mask);
3083			sigaddset(&mask, sig);
3084			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3085			for_each_thread(p, t)
3086				flush_sigqueue_mask(&mask, &t->pending);
3087		}
3088	}
3089
3090	spin_unlock_irq(&p->sighand->siglock);
3091	return 0;
3092}
3093
3094static int
3095do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3096{
3097	stack_t oss;
3098	int error;
3099
3100	oss.ss_sp = (void __user *) current->sas_ss_sp;
3101	oss.ss_size = current->sas_ss_size;
3102	oss.ss_flags = sas_ss_flags(sp);
 
3103
3104	if (uss) {
3105		void __user *ss_sp;
3106		size_t ss_size;
3107		int ss_flags;
 
3108
3109		error = -EFAULT;
3110		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3111			goto out;
3112		error = __get_user(ss_sp, &uss->ss_sp) |
3113			__get_user(ss_flags, &uss->ss_flags) |
3114			__get_user(ss_size, &uss->ss_size);
3115		if (error)
3116			goto out;
3117
3118		error = -EPERM;
3119		if (on_sig_stack(sp))
3120			goto out;
3121
 
3122		error = -EINVAL;
3123		/*
3124		 * Note - this code used to test ss_flags incorrectly:
3125		 *  	  old code may have been written using ss_flags==0
3126		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3127		 *	  way that worked) - this fix preserves that older
3128		 *	  mechanism.
3129		 */
3130		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3131			goto out;
3132
3133		if (ss_flags == SS_DISABLE) {
3134			ss_size = 0;
3135			ss_sp = NULL;
3136		} else {
3137			error = -ENOMEM;
3138			if (ss_size < MINSIGSTKSZ)
3139				goto out;
3140		}
3141
3142		current->sas_ss_sp = (unsigned long) ss_sp;
3143		current->sas_ss_size = ss_size;
 
3144	}
3145
3146	error = 0;
3147	if (uoss) {
3148		error = -EFAULT;
3149		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3150			goto out;
3151		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3152			__put_user(oss.ss_size, &uoss->ss_size) |
3153			__put_user(oss.ss_flags, &uoss->ss_flags);
3154	}
3155
3156out:
3157	return error;
3158}
3159SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3160{
3161	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3162}
3163
3164int restore_altstack(const stack_t __user *uss)
3165{
3166	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3167	/* squash all but EFAULT for now */
3168	return err == -EFAULT ? err : 0;
3169}
3170
3171int __save_altstack(stack_t __user *uss, unsigned long sp)
3172{
3173	struct task_struct *t = current;
3174	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3175		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3176		__put_user(t->sas_ss_size, &uss->ss_size);
 
 
 
 
 
3177}
3178
3179#ifdef CONFIG_COMPAT
3180COMPAT_SYSCALL_DEFINE2(sigaltstack,
3181			const compat_stack_t __user *, uss_ptr,
3182			compat_stack_t __user *, uoss_ptr)
3183{
3184	stack_t uss, uoss;
3185	int ret;
3186	mm_segment_t seg;
3187
3188	if (uss_ptr) {
3189		compat_stack_t uss32;
3190
3191		memset(&uss, 0, sizeof(stack_t));
3192		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3193			return -EFAULT;
3194		uss.ss_sp = compat_ptr(uss32.ss_sp);
3195		uss.ss_flags = uss32.ss_flags;
3196		uss.ss_size = uss32.ss_size;
3197	}
3198	seg = get_fs();
3199	set_fs(KERNEL_DS);
3200	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3201			     (stack_t __force __user *) &uoss,
3202			     compat_user_stack_pointer());
3203	set_fs(seg);
3204	if (ret >= 0 && uoss_ptr)  {
3205		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3206		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3207		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3208		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3209			ret = -EFAULT;
3210	}
3211	return ret;
3212}
3213
3214int compat_restore_altstack(const compat_stack_t __user *uss)
3215{
3216	int err = compat_sys_sigaltstack(uss, NULL);
3217	/* squash all but -EFAULT for now */
3218	return err == -EFAULT ? err : 0;
3219}
3220
3221int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3222{
 
3223	struct task_struct *t = current;
3224	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3225		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
 
3226		__put_user(t->sas_ss_size, &uss->ss_size);
 
 
 
 
 
3227}
3228#endif
3229
3230#ifdef __ARCH_WANT_SYS_SIGPENDING
3231
3232/**
3233 *  sys_sigpending - examine pending signals
3234 *  @set: where mask of pending signal is returned
3235 */
3236SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3237{
3238	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
3239}
3240
3241#endif
3242
3243#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3244/**
3245 *  sys_sigprocmask - examine and change blocked signals
3246 *  @how: whether to add, remove, or set signals
3247 *  @nset: signals to add or remove (if non-null)
3248 *  @oset: previous value of signal mask if non-null
3249 *
3250 * Some platforms have their own version with special arguments;
3251 * others support only sys_rt_sigprocmask.
3252 */
3253
3254SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3255		old_sigset_t __user *, oset)
3256{
3257	old_sigset_t old_set, new_set;
3258	sigset_t new_blocked;
3259
3260	old_set = current->blocked.sig[0];
3261
3262	if (nset) {
3263		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3264			return -EFAULT;
3265
3266		new_blocked = current->blocked;
3267
3268		switch (how) {
3269		case SIG_BLOCK:
3270			sigaddsetmask(&new_blocked, new_set);
3271			break;
3272		case SIG_UNBLOCK:
3273			sigdelsetmask(&new_blocked, new_set);
3274			break;
3275		case SIG_SETMASK:
3276			new_blocked.sig[0] = new_set;
3277			break;
3278		default:
3279			return -EINVAL;
3280		}
3281
3282		set_current_blocked(&new_blocked);
3283	}
3284
3285	if (oset) {
3286		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3287			return -EFAULT;
3288	}
3289
3290	return 0;
3291}
3292#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3293
3294#ifndef CONFIG_ODD_RT_SIGACTION
3295/**
3296 *  sys_rt_sigaction - alter an action taken by a process
3297 *  @sig: signal to be sent
3298 *  @act: new sigaction
3299 *  @oact: used to save the previous sigaction
3300 *  @sigsetsize: size of sigset_t type
3301 */
3302SYSCALL_DEFINE4(rt_sigaction, int, sig,
3303		const struct sigaction __user *, act,
3304		struct sigaction __user *, oact,
3305		size_t, sigsetsize)
3306{
3307	struct k_sigaction new_sa, old_sa;
3308	int ret = -EINVAL;
3309
3310	/* XXX: Don't preclude handling different sized sigset_t's.  */
3311	if (sigsetsize != sizeof(sigset_t))
3312		goto out;
3313
3314	if (act) {
3315		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3316			return -EFAULT;
3317	}
3318
3319	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3320
3321	if (!ret && oact) {
3322		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3323			return -EFAULT;
3324	}
3325out:
3326	return ret;
3327}
3328#ifdef CONFIG_COMPAT
3329COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3330		const struct compat_sigaction __user *, act,
3331		struct compat_sigaction __user *, oact,
3332		compat_size_t, sigsetsize)
3333{
3334	struct k_sigaction new_ka, old_ka;
3335	compat_sigset_t mask;
3336#ifdef __ARCH_HAS_SA_RESTORER
3337	compat_uptr_t restorer;
3338#endif
3339	int ret;
3340
3341	/* XXX: Don't preclude handling different sized sigset_t's.  */
3342	if (sigsetsize != sizeof(compat_sigset_t))
3343		return -EINVAL;
3344
3345	if (act) {
3346		compat_uptr_t handler;
3347		ret = get_user(handler, &act->sa_handler);
3348		new_ka.sa.sa_handler = compat_ptr(handler);
3349#ifdef __ARCH_HAS_SA_RESTORER
3350		ret |= get_user(restorer, &act->sa_restorer);
3351		new_ka.sa.sa_restorer = compat_ptr(restorer);
3352#endif
3353		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3354		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3355		if (ret)
3356			return -EFAULT;
3357		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3358	}
3359
3360	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3361	if (!ret && oact) {
3362		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3363		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3364			       &oact->sa_handler);
3365		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3366		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3367#ifdef __ARCH_HAS_SA_RESTORER
3368		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3369				&oact->sa_restorer);
3370#endif
3371	}
3372	return ret;
3373}
3374#endif
3375#endif /* !CONFIG_ODD_RT_SIGACTION */
3376
3377#ifdef CONFIG_OLD_SIGACTION
3378SYSCALL_DEFINE3(sigaction, int, sig,
3379		const struct old_sigaction __user *, act,
3380	        struct old_sigaction __user *, oact)
3381{
3382	struct k_sigaction new_ka, old_ka;
3383	int ret;
3384
3385	if (act) {
3386		old_sigset_t mask;
3387		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3388		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3389		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3390		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3391		    __get_user(mask, &act->sa_mask))
3392			return -EFAULT;
3393#ifdef __ARCH_HAS_KA_RESTORER
3394		new_ka.ka_restorer = NULL;
3395#endif
3396		siginitset(&new_ka.sa.sa_mask, mask);
3397	}
3398
3399	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3400
3401	if (!ret && oact) {
3402		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3403		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3404		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3405		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3406		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3407			return -EFAULT;
3408	}
3409
3410	return ret;
3411}
3412#endif
3413#ifdef CONFIG_COMPAT_OLD_SIGACTION
3414COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3415		const struct compat_old_sigaction __user *, act,
3416	        struct compat_old_sigaction __user *, oact)
3417{
3418	struct k_sigaction new_ka, old_ka;
3419	int ret;
3420	compat_old_sigset_t mask;
3421	compat_uptr_t handler, restorer;
3422
3423	if (act) {
3424		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3425		    __get_user(handler, &act->sa_handler) ||
3426		    __get_user(restorer, &act->sa_restorer) ||
3427		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3428		    __get_user(mask, &act->sa_mask))
3429			return -EFAULT;
3430
3431#ifdef __ARCH_HAS_KA_RESTORER
3432		new_ka.ka_restorer = NULL;
3433#endif
3434		new_ka.sa.sa_handler = compat_ptr(handler);
3435		new_ka.sa.sa_restorer = compat_ptr(restorer);
3436		siginitset(&new_ka.sa.sa_mask, mask);
3437	}
3438
3439	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3440
3441	if (!ret && oact) {
3442		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3443		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3444			       &oact->sa_handler) ||
3445		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3446			       &oact->sa_restorer) ||
3447		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3448		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3449			return -EFAULT;
3450	}
3451	return ret;
3452}
3453#endif
3454
3455#ifdef CONFIG_SGETMASK_SYSCALL
3456
3457/*
3458 * For backwards compatibility.  Functionality superseded by sigprocmask.
3459 */
3460SYSCALL_DEFINE0(sgetmask)
3461{
3462	/* SMP safe */
3463	return current->blocked.sig[0];
3464}
3465
3466SYSCALL_DEFINE1(ssetmask, int, newmask)
3467{
3468	int old = current->blocked.sig[0];
3469	sigset_t newset;
3470
3471	siginitset(&newset, newmask);
3472	set_current_blocked(&newset);
3473
3474	return old;
3475}
3476#endif /* CONFIG_SGETMASK_SYSCALL */
3477
3478#ifdef __ARCH_WANT_SYS_SIGNAL
3479/*
3480 * For backwards compatibility.  Functionality superseded by sigaction.
3481 */
3482SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3483{
3484	struct k_sigaction new_sa, old_sa;
3485	int ret;
3486
3487	new_sa.sa.sa_handler = handler;
3488	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3489	sigemptyset(&new_sa.sa.sa_mask);
3490
3491	ret = do_sigaction(sig, &new_sa, &old_sa);
3492
3493	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3494}
3495#endif /* __ARCH_WANT_SYS_SIGNAL */
3496
3497#ifdef __ARCH_WANT_SYS_PAUSE
3498
3499SYSCALL_DEFINE0(pause)
3500{
3501	while (!signal_pending(current)) {
3502		__set_current_state(TASK_INTERRUPTIBLE);
3503		schedule();
3504	}
3505	return -ERESTARTNOHAND;
3506}
3507
3508#endif
3509
3510static int sigsuspend(sigset_t *set)
3511{
3512	current->saved_sigmask = current->blocked;
3513	set_current_blocked(set);
3514
3515	while (!signal_pending(current)) {
3516		__set_current_state(TASK_INTERRUPTIBLE);
3517		schedule();
3518	}
3519	set_restore_sigmask();
3520	return -ERESTARTNOHAND;
3521}
3522
3523/**
3524 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3525 *	@unewset value until a signal is received
3526 *  @unewset: new signal mask value
3527 *  @sigsetsize: size of sigset_t type
3528 */
3529SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3530{
3531	sigset_t newset;
3532
3533	/* XXX: Don't preclude handling different sized sigset_t's.  */
3534	if (sigsetsize != sizeof(sigset_t))
3535		return -EINVAL;
3536
3537	if (copy_from_user(&newset, unewset, sizeof(newset)))
3538		return -EFAULT;
3539	return sigsuspend(&newset);
3540}
3541 
3542#ifdef CONFIG_COMPAT
3543COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3544{
3545#ifdef __BIG_ENDIAN
3546	sigset_t newset;
3547	compat_sigset_t newset32;
3548
3549	/* XXX: Don't preclude handling different sized sigset_t's.  */
3550	if (sigsetsize != sizeof(sigset_t))
3551		return -EINVAL;
3552
3553	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3554		return -EFAULT;
3555	sigset_from_compat(&newset, &newset32);
3556	return sigsuspend(&newset);
3557#else
3558	/* on little-endian bitmaps don't care about granularity */
3559	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3560#endif
3561}
3562#endif
3563
3564#ifdef CONFIG_OLD_SIGSUSPEND
3565SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3566{
3567	sigset_t blocked;
3568	siginitset(&blocked, mask);
3569	return sigsuspend(&blocked);
3570}
3571#endif
3572#ifdef CONFIG_OLD_SIGSUSPEND3
3573SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3574{
3575	sigset_t blocked;
3576	siginitset(&blocked, mask);
3577	return sigsuspend(&blocked);
3578}
3579#endif
3580
3581__weak const char *arch_vma_name(struct vm_area_struct *vma)
3582{
3583	return NULL;
3584}
3585
3586void __init signals_init(void)
3587{
3588	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3589	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3590		!= offsetof(struct siginfo, _sifields._pad));
3591
3592	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3593}
3594
3595#ifdef CONFIG_KGDB_KDB
3596#include <linux/kdb.h>
3597/*
3598 * kdb_send_sig_info - Allows kdb to send signals without exposing
3599 * signal internals.  This function checks if the required locks are
3600 * available before calling the main signal code, to avoid kdb
3601 * deadlocks.
3602 */
3603void
3604kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3605{
3606	static struct task_struct *kdb_prev_t;
3607	int sig, new_t;
3608	if (!spin_trylock(&t->sighand->siglock)) {
3609		kdb_printf("Can't do kill command now.\n"
3610			   "The sigmask lock is held somewhere else in "
3611			   "kernel, try again later\n");
3612		return;
3613	}
3614	spin_unlock(&t->sighand->siglock);
3615	new_t = kdb_prev_t != t;
3616	kdb_prev_t = t;
3617	if (t->state != TASK_RUNNING && new_t) {
3618		kdb_printf("Process is not RUNNING, sending a signal from "
3619			   "kdb risks deadlock\n"
3620			   "on the run queue locks. "
3621			   "The signal has _not_ been sent.\n"
3622			   "Reissue the kill command if you want to risk "
3623			   "the deadlock.\n");
3624		return;
3625	}
3626	sig = info->si_signo;
3627	if (send_sig_info(sig, info, t))
3628		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3629			   sig, t->pid);
3630	else
3631		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3632}
3633#endif	/* CONFIG_KGDB_KDB */
v4.10.11
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
  17#include <linux/fs.h>
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <linux/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"	/* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58	return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63	/* Is it explicitly or implicitly ignored? */
  64	return handler == SIG_IGN ||
  65		(handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  69{
  70	void __user *handler;
  71
  72	handler = sig_handler(t, sig);
  73
  74	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75			handler == SIG_DFL && !force)
  76		return 1;
  77
  78	return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83	/*
  84	 * Blocked signals are never ignored, since the
  85	 * signal handler may change by the time it is
  86	 * unblocked.
  87	 */
  88	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89		return 0;
  90
  91	if (!sig_task_ignored(t, sig, force))
  92		return 0;
  93
  94	/*
  95	 * Tracers may want to know about even ignored signals.
  96	 */
  97	return !t->ptrace;
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106	unsigned long ready;
 107	long i;
 108
 109	switch (_NSIG_WORDS) {
 110	default:
 111		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112			ready |= signal->sig[i] &~ blocked->sig[i];
 113		break;
 114
 115	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116		ready |= signal->sig[2] &~ blocked->sig[2];
 117		ready |= signal->sig[1] &~ blocked->sig[1];
 118		ready |= signal->sig[0] &~ blocked->sig[0];
 119		break;
 120
 121	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122		ready |= signal->sig[0] &~ blocked->sig[0];
 123		break;
 124
 125	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126	}
 127	return ready !=	0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135	    PENDING(&t->pending, &t->blocked) ||
 136	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 137		set_tsk_thread_flag(t, TIF_SIGPENDING);
 138		return 1;
 139	}
 140	/*
 141	 * We must never clear the flag in another thread, or in current
 142	 * when it's possible the current syscall is returning -ERESTART*.
 143	 * So we don't clear it here, and only callers who know they should do.
 144	 */
 145	return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154	if (recalc_sigpending_tsk(t))
 155		signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160	if (!recalc_sigpending_tsk(current) && !freezing(current))
 161		clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173	unsigned long i, *s, *m, x;
 174	int sig = 0;
 175
 176	s = pending->signal.sig;
 177	m = mask->sig;
 178
 179	/*
 180	 * Handle the first word specially: it contains the
 181	 * synchronous signals that need to be dequeued first.
 182	 */
 183	x = *s &~ *m;
 184	if (x) {
 185		if (x & SYNCHRONOUS_MASK)
 186			x &= SYNCHRONOUS_MASK;
 187		sig = ffz(~x) + 1;
 188		return sig;
 189	}
 190
 191	switch (_NSIG_WORDS) {
 192	default:
 193		for (i = 1; i < _NSIG_WORDS; ++i) {
 194			x = *++s &~ *++m;
 195			if (!x)
 196				continue;
 197			sig = ffz(~x) + i*_NSIG_BPW + 1;
 198			break;
 199		}
 200		break;
 201
 202	case 2:
 203		x = s[1] &~ m[1];
 204		if (!x)
 205			break;
 206		sig = ffz(~x) + _NSIG_BPW + 1;
 207		break;
 208
 209	case 1:
 210		/* Nothing to do */
 211		break;
 212	}
 213
 214	return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221	if (!print_fatal_signals)
 222		return;
 223
 224	if (!__ratelimit(&ratelimit_state))
 225		return;
 226
 227	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228				current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 249{
 250	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255		return false;
 256
 257	if (mask & JOBCTL_STOP_SIGMASK)
 258		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260	task->jobctl |= mask;
 261	return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279		task->jobctl &= ~JOBCTL_TRAPPING;
 280		smp_mb();	/* advised by wake_up_bit() */
 281		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 282	}
 283}
 284
 285/**
 286 * task_clear_jobctl_pending - clear jobctl pending bits
 287 * @task: target task
 288 * @mask: pending bits to clear
 289 *
 290 * Clear @mask from @task->jobctl.  @mask must be subset of
 291 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 292 * STOP bits are cleared together.
 293 *
 294 * If clearing of @mask leaves no stop or trap pending, this function calls
 295 * task_clear_jobctl_trapping().
 296 *
 297 * CONTEXT:
 298 * Must be called with @task->sighand->siglock held.
 299 */
 300void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 301{
 302	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 303
 304	if (mask & JOBCTL_STOP_PENDING)
 305		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 306
 307	task->jobctl &= ~mask;
 308
 309	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 310		task_clear_jobctl_trapping(task);
 311}
 312
 313/**
 314 * task_participate_group_stop - participate in a group stop
 315 * @task: task participating in a group stop
 316 *
 317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 318 * Group stop states are cleared and the group stop count is consumed if
 319 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 320 * stop, the appropriate %SIGNAL_* flags are set.
 321 *
 322 * CONTEXT:
 323 * Must be called with @task->sighand->siglock held.
 324 *
 325 * RETURNS:
 326 * %true if group stop completion should be notified to the parent, %false
 327 * otherwise.
 328 */
 329static bool task_participate_group_stop(struct task_struct *task)
 330{
 331	struct signal_struct *sig = task->signal;
 332	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 333
 334	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 335
 336	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 337
 338	if (!consume)
 339		return false;
 340
 341	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 342		sig->group_stop_count--;
 343
 344	/*
 345	 * Tell the caller to notify completion iff we are entering into a
 346	 * fresh group stop.  Read comment in do_signal_stop() for details.
 347	 */
 348	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 349		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 350		return true;
 351	}
 352	return false;
 353}
 354
 355/*
 356 * allocate a new signal queue record
 357 * - this may be called without locks if and only if t == current, otherwise an
 358 *   appropriate lock must be held to stop the target task from exiting
 359 */
 360static struct sigqueue *
 361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 362{
 363	struct sigqueue *q = NULL;
 364	struct user_struct *user;
 365
 366	/*
 367	 * Protect access to @t credentials. This can go away when all
 368	 * callers hold rcu read lock.
 369	 */
 370	rcu_read_lock();
 371	user = get_uid(__task_cred(t)->user);
 372	atomic_inc(&user->sigpending);
 373	rcu_read_unlock();
 374
 375	if (override_rlimit ||
 376	    atomic_read(&user->sigpending) <=
 377			task_rlimit(t, RLIMIT_SIGPENDING)) {
 378		q = kmem_cache_alloc(sigqueue_cachep, flags);
 379	} else {
 380		print_dropped_signal(sig);
 381	}
 382
 383	if (unlikely(q == NULL)) {
 384		atomic_dec(&user->sigpending);
 385		free_uid(user);
 386	} else {
 387		INIT_LIST_HEAD(&q->list);
 388		q->flags = 0;
 389		q->user = user;
 390	}
 391
 392	return q;
 393}
 394
 395static void __sigqueue_free(struct sigqueue *q)
 396{
 397	if (q->flags & SIGQUEUE_PREALLOC)
 398		return;
 399	atomic_dec(&q->user->sigpending);
 400	free_uid(q->user);
 401	kmem_cache_free(sigqueue_cachep, q);
 402}
 403
 404void flush_sigqueue(struct sigpending *queue)
 405{
 406	struct sigqueue *q;
 407
 408	sigemptyset(&queue->signal);
 409	while (!list_empty(&queue->list)) {
 410		q = list_entry(queue->list.next, struct sigqueue , list);
 411		list_del_init(&q->list);
 412		__sigqueue_free(q);
 413	}
 414}
 415
 416/*
 417 * Flush all pending signals for this kthread.
 418 */
 419void flush_signals(struct task_struct *t)
 420{
 421	unsigned long flags;
 422
 423	spin_lock_irqsave(&t->sighand->siglock, flags);
 424	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 425	flush_sigqueue(&t->pending);
 426	flush_sigqueue(&t->signal->shared_pending);
 427	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 428}
 429
 430#ifdef CONFIG_POSIX_TIMERS
 431static void __flush_itimer_signals(struct sigpending *pending)
 432{
 433	sigset_t signal, retain;
 434	struct sigqueue *q, *n;
 435
 436	signal = pending->signal;
 437	sigemptyset(&retain);
 438
 439	list_for_each_entry_safe(q, n, &pending->list, list) {
 440		int sig = q->info.si_signo;
 441
 442		if (likely(q->info.si_code != SI_TIMER)) {
 443			sigaddset(&retain, sig);
 444		} else {
 445			sigdelset(&signal, sig);
 446			list_del_init(&q->list);
 447			__sigqueue_free(q);
 448		}
 449	}
 450
 451	sigorsets(&pending->signal, &signal, &retain);
 452}
 453
 454void flush_itimer_signals(void)
 455{
 456	struct task_struct *tsk = current;
 457	unsigned long flags;
 458
 459	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 460	__flush_itimer_signals(&tsk->pending);
 461	__flush_itimer_signals(&tsk->signal->shared_pending);
 462	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 463}
 464#endif
 465
 466void ignore_signals(struct task_struct *t)
 467{
 468	int i;
 469
 470	for (i = 0; i < _NSIG; ++i)
 471		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 472
 473	flush_signals(t);
 474}
 475
 476/*
 477 * Flush all handlers for a task.
 478 */
 479
 480void
 481flush_signal_handlers(struct task_struct *t, int force_default)
 482{
 483	int i;
 484	struct k_sigaction *ka = &t->sighand->action[0];
 485	for (i = _NSIG ; i != 0 ; i--) {
 486		if (force_default || ka->sa.sa_handler != SIG_IGN)
 487			ka->sa.sa_handler = SIG_DFL;
 488		ka->sa.sa_flags = 0;
 489#ifdef __ARCH_HAS_SA_RESTORER
 490		ka->sa.sa_restorer = NULL;
 491#endif
 492		sigemptyset(&ka->sa.sa_mask);
 493		ka++;
 494	}
 495}
 496
 497int unhandled_signal(struct task_struct *tsk, int sig)
 498{
 499	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 500	if (is_global_init(tsk))
 501		return 1;
 502	if (handler != SIG_IGN && handler != SIG_DFL)
 503		return 0;
 504	/* if ptraced, let the tracer determine */
 505	return !tsk->ptrace;
 506}
 507
 508static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 509{
 510	struct sigqueue *q, *first = NULL;
 511
 512	/*
 513	 * Collect the siginfo appropriate to this signal.  Check if
 514	 * there is another siginfo for the same signal.
 515	*/
 516	list_for_each_entry(q, &list->list, list) {
 517		if (q->info.si_signo == sig) {
 518			if (first)
 519				goto still_pending;
 520			first = q;
 521		}
 522	}
 523
 524	sigdelset(&list->signal, sig);
 525
 526	if (first) {
 527still_pending:
 528		list_del_init(&first->list);
 529		copy_siginfo(info, &first->info);
 530		__sigqueue_free(first);
 531	} else {
 532		/*
 533		 * Ok, it wasn't in the queue.  This must be
 534		 * a fast-pathed signal or we must have been
 535		 * out of queue space.  So zero out the info.
 536		 */
 537		info->si_signo = sig;
 538		info->si_errno = 0;
 539		info->si_code = SI_USER;
 540		info->si_pid = 0;
 541		info->si_uid = 0;
 542	}
 543}
 544
 545static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 546			siginfo_t *info)
 547{
 548	int sig = next_signal(pending, mask);
 549
 550	if (sig)
 551		collect_signal(sig, pending, info);
 552	return sig;
 553}
 554
 555/*
 556 * Dequeue a signal and return the element to the caller, which is
 557 * expected to free it.
 558 *
 559 * All callers have to hold the siglock.
 560 */
 561int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 562{
 563	int signr;
 564
 565	/* We only dequeue private signals from ourselves, we don't let
 566	 * signalfd steal them
 567	 */
 568	signr = __dequeue_signal(&tsk->pending, mask, info);
 569	if (!signr) {
 570		signr = __dequeue_signal(&tsk->signal->shared_pending,
 571					 mask, info);
 572#ifdef CONFIG_POSIX_TIMERS
 573		/*
 574		 * itimer signal ?
 575		 *
 576		 * itimers are process shared and we restart periodic
 577		 * itimers in the signal delivery path to prevent DoS
 578		 * attacks in the high resolution timer case. This is
 579		 * compliant with the old way of self-restarting
 580		 * itimers, as the SIGALRM is a legacy signal and only
 581		 * queued once. Changing the restart behaviour to
 582		 * restart the timer in the signal dequeue path is
 583		 * reducing the timer noise on heavy loaded !highres
 584		 * systems too.
 585		 */
 586		if (unlikely(signr == SIGALRM)) {
 587			struct hrtimer *tmr = &tsk->signal->real_timer;
 588
 589			if (!hrtimer_is_queued(tmr) &&
 590			    tsk->signal->it_real_incr != 0) {
 591				hrtimer_forward(tmr, tmr->base->get_time(),
 592						tsk->signal->it_real_incr);
 593				hrtimer_restart(tmr);
 594			}
 595		}
 596#endif
 597	}
 598
 599	recalc_sigpending();
 600	if (!signr)
 601		return 0;
 602
 603	if (unlikely(sig_kernel_stop(signr))) {
 604		/*
 605		 * Set a marker that we have dequeued a stop signal.  Our
 606		 * caller might release the siglock and then the pending
 607		 * stop signal it is about to process is no longer in the
 608		 * pending bitmasks, but must still be cleared by a SIGCONT
 609		 * (and overruled by a SIGKILL).  So those cases clear this
 610		 * shared flag after we've set it.  Note that this flag may
 611		 * remain set after the signal we return is ignored or
 612		 * handled.  That doesn't matter because its only purpose
 613		 * is to alert stop-signal processing code when another
 614		 * processor has come along and cleared the flag.
 615		 */
 616		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 617	}
 618#ifdef CONFIG_POSIX_TIMERS
 619	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 620		/*
 621		 * Release the siglock to ensure proper locking order
 622		 * of timer locks outside of siglocks.  Note, we leave
 623		 * irqs disabled here, since the posix-timers code is
 624		 * about to disable them again anyway.
 625		 */
 626		spin_unlock(&tsk->sighand->siglock);
 627		do_schedule_next_timer(info);
 628		spin_lock(&tsk->sighand->siglock);
 629	}
 630#endif
 631	return signr;
 632}
 633
 634/*
 635 * Tell a process that it has a new active signal..
 636 *
 637 * NOTE! we rely on the previous spin_lock to
 638 * lock interrupts for us! We can only be called with
 639 * "siglock" held, and the local interrupt must
 640 * have been disabled when that got acquired!
 641 *
 642 * No need to set need_resched since signal event passing
 643 * goes through ->blocked
 644 */
 645void signal_wake_up_state(struct task_struct *t, unsigned int state)
 646{
 647	set_tsk_thread_flag(t, TIF_SIGPENDING);
 648	/*
 649	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 650	 * case. We don't check t->state here because there is a race with it
 651	 * executing another processor and just now entering stopped state.
 652	 * By using wake_up_state, we ensure the process will wake up and
 653	 * handle its death signal.
 654	 */
 655	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 656		kick_process(t);
 657}
 658
 659/*
 660 * Remove signals in mask from the pending set and queue.
 661 * Returns 1 if any signals were found.
 662 *
 663 * All callers must be holding the siglock.
 664 */
 665static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 666{
 667	struct sigqueue *q, *n;
 668	sigset_t m;
 669
 670	sigandsets(&m, mask, &s->signal);
 671	if (sigisemptyset(&m))
 672		return 0;
 673
 674	sigandnsets(&s->signal, &s->signal, mask);
 675	list_for_each_entry_safe(q, n, &s->list, list) {
 676		if (sigismember(mask, q->info.si_signo)) {
 677			list_del_init(&q->list);
 678			__sigqueue_free(q);
 679		}
 680	}
 681	return 1;
 682}
 683
 684static inline int is_si_special(const struct siginfo *info)
 685{
 686	return info <= SEND_SIG_FORCED;
 687}
 688
 689static inline bool si_fromuser(const struct siginfo *info)
 690{
 691	return info == SEND_SIG_NOINFO ||
 692		(!is_si_special(info) && SI_FROMUSER(info));
 693}
 694
 695/*
 696 * called with RCU read lock from check_kill_permission()
 697 */
 698static int kill_ok_by_cred(struct task_struct *t)
 699{
 700	const struct cred *cred = current_cred();
 701	const struct cred *tcred = __task_cred(t);
 702
 703	if (uid_eq(cred->euid, tcred->suid) ||
 704	    uid_eq(cred->euid, tcred->uid)  ||
 705	    uid_eq(cred->uid,  tcred->suid) ||
 706	    uid_eq(cred->uid,  tcred->uid))
 707		return 1;
 708
 709	if (ns_capable(tcred->user_ns, CAP_KILL))
 710		return 1;
 711
 712	return 0;
 713}
 714
 715/*
 716 * Bad permissions for sending the signal
 717 * - the caller must hold the RCU read lock
 718 */
 719static int check_kill_permission(int sig, struct siginfo *info,
 720				 struct task_struct *t)
 721{
 722	struct pid *sid;
 723	int error;
 724
 725	if (!valid_signal(sig))
 726		return -EINVAL;
 727
 728	if (!si_fromuser(info))
 729		return 0;
 730
 731	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 732	if (error)
 733		return error;
 734
 735	if (!same_thread_group(current, t) &&
 736	    !kill_ok_by_cred(t)) {
 737		switch (sig) {
 738		case SIGCONT:
 739			sid = task_session(t);
 740			/*
 741			 * We don't return the error if sid == NULL. The
 742			 * task was unhashed, the caller must notice this.
 743			 */
 744			if (!sid || sid == task_session(current))
 745				break;
 746		default:
 747			return -EPERM;
 748		}
 749	}
 750
 751	return security_task_kill(t, info, sig, 0);
 752}
 753
 754/**
 755 * ptrace_trap_notify - schedule trap to notify ptracer
 756 * @t: tracee wanting to notify tracer
 757 *
 758 * This function schedules sticky ptrace trap which is cleared on the next
 759 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 760 * ptracer.
 761 *
 762 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 763 * ptracer is listening for events, tracee is woken up so that it can
 764 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 765 * eventually taken without returning to userland after the existing traps
 766 * are finished by PTRACE_CONT.
 767 *
 768 * CONTEXT:
 769 * Must be called with @task->sighand->siglock held.
 770 */
 771static void ptrace_trap_notify(struct task_struct *t)
 772{
 773	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 774	assert_spin_locked(&t->sighand->siglock);
 775
 776	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 777	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 778}
 779
 780/*
 781 * Handle magic process-wide effects of stop/continue signals. Unlike
 782 * the signal actions, these happen immediately at signal-generation
 783 * time regardless of blocking, ignoring, or handling.  This does the
 784 * actual continuing for SIGCONT, but not the actual stopping for stop
 785 * signals. The process stop is done as a signal action for SIG_DFL.
 786 *
 787 * Returns true if the signal should be actually delivered, otherwise
 788 * it should be dropped.
 789 */
 790static bool prepare_signal(int sig, struct task_struct *p, bool force)
 791{
 792	struct signal_struct *signal = p->signal;
 793	struct task_struct *t;
 794	sigset_t flush;
 795
 796	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 797		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 798			return sig == SIGKILL;
 799		/*
 800		 * The process is in the middle of dying, nothing to do.
 801		 */
 802	} else if (sig_kernel_stop(sig)) {
 803		/*
 804		 * This is a stop signal.  Remove SIGCONT from all queues.
 805		 */
 806		siginitset(&flush, sigmask(SIGCONT));
 807		flush_sigqueue_mask(&flush, &signal->shared_pending);
 808		for_each_thread(p, t)
 809			flush_sigqueue_mask(&flush, &t->pending);
 810	} else if (sig == SIGCONT) {
 811		unsigned int why;
 812		/*
 813		 * Remove all stop signals from all queues, wake all threads.
 814		 */
 815		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 816		flush_sigqueue_mask(&flush, &signal->shared_pending);
 817		for_each_thread(p, t) {
 818			flush_sigqueue_mask(&flush, &t->pending);
 819			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 820			if (likely(!(t->ptrace & PT_SEIZED)))
 821				wake_up_state(t, __TASK_STOPPED);
 822			else
 823				ptrace_trap_notify(t);
 824		}
 825
 826		/*
 827		 * Notify the parent with CLD_CONTINUED if we were stopped.
 828		 *
 829		 * If we were in the middle of a group stop, we pretend it
 830		 * was already finished, and then continued. Since SIGCHLD
 831		 * doesn't queue we report only CLD_STOPPED, as if the next
 832		 * CLD_CONTINUED was dropped.
 833		 */
 834		why = 0;
 835		if (signal->flags & SIGNAL_STOP_STOPPED)
 836			why |= SIGNAL_CLD_CONTINUED;
 837		else if (signal->group_stop_count)
 838			why |= SIGNAL_CLD_STOPPED;
 839
 840		if (why) {
 841			/*
 842			 * The first thread which returns from do_signal_stop()
 843			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 844			 * notify its parent. See get_signal_to_deliver().
 845			 */
 846			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 847			signal->group_stop_count = 0;
 848			signal->group_exit_code = 0;
 849		}
 850	}
 851
 852	return !sig_ignored(p, sig, force);
 853}
 854
 855/*
 856 * Test if P wants to take SIG.  After we've checked all threads with this,
 857 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 858 * blocking SIG were ruled out because they are not running and already
 859 * have pending signals.  Such threads will dequeue from the shared queue
 860 * as soon as they're available, so putting the signal on the shared queue
 861 * will be equivalent to sending it to one such thread.
 862 */
 863static inline int wants_signal(int sig, struct task_struct *p)
 864{
 865	if (sigismember(&p->blocked, sig))
 866		return 0;
 867	if (p->flags & PF_EXITING)
 868		return 0;
 869	if (sig == SIGKILL)
 870		return 1;
 871	if (task_is_stopped_or_traced(p))
 872		return 0;
 873	return task_curr(p) || !signal_pending(p);
 874}
 875
 876static void complete_signal(int sig, struct task_struct *p, int group)
 877{
 878	struct signal_struct *signal = p->signal;
 879	struct task_struct *t;
 880
 881	/*
 882	 * Now find a thread we can wake up to take the signal off the queue.
 883	 *
 884	 * If the main thread wants the signal, it gets first crack.
 885	 * Probably the least surprising to the average bear.
 886	 */
 887	if (wants_signal(sig, p))
 888		t = p;
 889	else if (!group || thread_group_empty(p))
 890		/*
 891		 * There is just one thread and it does not need to be woken.
 892		 * It will dequeue unblocked signals before it runs again.
 893		 */
 894		return;
 895	else {
 896		/*
 897		 * Otherwise try to find a suitable thread.
 898		 */
 899		t = signal->curr_target;
 900		while (!wants_signal(sig, t)) {
 901			t = next_thread(t);
 902			if (t == signal->curr_target)
 903				/*
 904				 * No thread needs to be woken.
 905				 * Any eligible threads will see
 906				 * the signal in the queue soon.
 907				 */
 908				return;
 909		}
 910		signal->curr_target = t;
 911	}
 912
 913	/*
 914	 * Found a killable thread.  If the signal will be fatal,
 915	 * then start taking the whole group down immediately.
 916	 */
 917	if (sig_fatal(p, sig) &&
 918	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 919	    !sigismember(&t->real_blocked, sig) &&
 920	    (sig == SIGKILL || !t->ptrace)) {
 921		/*
 922		 * This signal will be fatal to the whole group.
 923		 */
 924		if (!sig_kernel_coredump(sig)) {
 925			/*
 926			 * Start a group exit and wake everybody up.
 927			 * This way we don't have other threads
 928			 * running and doing things after a slower
 929			 * thread has the fatal signal pending.
 930			 */
 931			signal->flags = SIGNAL_GROUP_EXIT;
 932			signal->group_exit_code = sig;
 933			signal->group_stop_count = 0;
 934			t = p;
 935			do {
 936				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 937				sigaddset(&t->pending.signal, SIGKILL);
 938				signal_wake_up(t, 1);
 939			} while_each_thread(p, t);
 940			return;
 941		}
 942	}
 943
 944	/*
 945	 * The signal is already in the shared-pending queue.
 946	 * Tell the chosen thread to wake up and dequeue it.
 947	 */
 948	signal_wake_up(t, sig == SIGKILL);
 949	return;
 950}
 951
 952static inline int legacy_queue(struct sigpending *signals, int sig)
 953{
 954	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 955}
 956
 957#ifdef CONFIG_USER_NS
 958static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 959{
 960	if (current_user_ns() == task_cred_xxx(t, user_ns))
 961		return;
 962
 963	if (SI_FROMKERNEL(info))
 964		return;
 965
 966	rcu_read_lock();
 967	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
 968					make_kuid(current_user_ns(), info->si_uid));
 969	rcu_read_unlock();
 970}
 971#else
 972static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 973{
 974	return;
 975}
 976#endif
 977
 978static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
 979			int group, int from_ancestor_ns)
 980{
 981	struct sigpending *pending;
 982	struct sigqueue *q;
 983	int override_rlimit;
 984	int ret = 0, result;
 985
 986	assert_spin_locked(&t->sighand->siglock);
 987
 988	result = TRACE_SIGNAL_IGNORED;
 989	if (!prepare_signal(sig, t,
 990			from_ancestor_ns || (info == SEND_SIG_FORCED)))
 991		goto ret;
 992
 993	pending = group ? &t->signal->shared_pending : &t->pending;
 994	/*
 995	 * Short-circuit ignored signals and support queuing
 996	 * exactly one non-rt signal, so that we can get more
 997	 * detailed information about the cause of the signal.
 998	 */
 999	result = TRACE_SIGNAL_ALREADY_PENDING;
1000	if (legacy_queue(pending, sig))
1001		goto ret;
1002
1003	result = TRACE_SIGNAL_DELIVERED;
1004	/*
1005	 * fast-pathed signals for kernel-internal things like SIGSTOP
1006	 * or SIGKILL.
1007	 */
1008	if (info == SEND_SIG_FORCED)
1009		goto out_set;
1010
1011	/*
1012	 * Real-time signals must be queued if sent by sigqueue, or
1013	 * some other real-time mechanism.  It is implementation
1014	 * defined whether kill() does so.  We attempt to do so, on
1015	 * the principle of least surprise, but since kill is not
1016	 * allowed to fail with EAGAIN when low on memory we just
1017	 * make sure at least one signal gets delivered and don't
1018	 * pass on the info struct.
1019	 */
1020	if (sig < SIGRTMIN)
1021		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1022	else
1023		override_rlimit = 0;
1024
1025	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1026		override_rlimit);
1027	if (q) {
1028		list_add_tail(&q->list, &pending->list);
1029		switch ((unsigned long) info) {
1030		case (unsigned long) SEND_SIG_NOINFO:
1031			q->info.si_signo = sig;
1032			q->info.si_errno = 0;
1033			q->info.si_code = SI_USER;
1034			q->info.si_pid = task_tgid_nr_ns(current,
1035							task_active_pid_ns(t));
1036			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1037			break;
1038		case (unsigned long) SEND_SIG_PRIV:
1039			q->info.si_signo = sig;
1040			q->info.si_errno = 0;
1041			q->info.si_code = SI_KERNEL;
1042			q->info.si_pid = 0;
1043			q->info.si_uid = 0;
1044			break;
1045		default:
1046			copy_siginfo(&q->info, info);
1047			if (from_ancestor_ns)
1048				q->info.si_pid = 0;
1049			break;
1050		}
1051
1052		userns_fixup_signal_uid(&q->info, t);
1053
1054	} else if (!is_si_special(info)) {
1055		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1056			/*
1057			 * Queue overflow, abort.  We may abort if the
1058			 * signal was rt and sent by user using something
1059			 * other than kill().
1060			 */
1061			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1062			ret = -EAGAIN;
1063			goto ret;
1064		} else {
1065			/*
1066			 * This is a silent loss of information.  We still
1067			 * send the signal, but the *info bits are lost.
1068			 */
1069			result = TRACE_SIGNAL_LOSE_INFO;
1070		}
1071	}
1072
1073out_set:
1074	signalfd_notify(t, sig);
1075	sigaddset(&pending->signal, sig);
1076	complete_signal(sig, t, group);
1077ret:
1078	trace_signal_generate(sig, info, t, group, result);
1079	return ret;
1080}
1081
1082static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1083			int group)
1084{
1085	int from_ancestor_ns = 0;
1086
1087#ifdef CONFIG_PID_NS
1088	from_ancestor_ns = si_fromuser(info) &&
1089			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1090#endif
1091
1092	return __send_signal(sig, info, t, group, from_ancestor_ns);
1093}
1094
1095static void print_fatal_signal(int signr)
1096{
1097	struct pt_regs *regs = signal_pt_regs();
1098	pr_info("potentially unexpected fatal signal %d.\n", signr);
1099
1100#if defined(__i386__) && !defined(__arch_um__)
1101	pr_info("code at %08lx: ", regs->ip);
1102	{
1103		int i;
1104		for (i = 0; i < 16; i++) {
1105			unsigned char insn;
1106
1107			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1108				break;
1109			pr_cont("%02x ", insn);
1110		}
1111	}
1112	pr_cont("\n");
1113#endif
1114	preempt_disable();
1115	show_regs(regs);
1116	preempt_enable();
1117}
1118
1119static int __init setup_print_fatal_signals(char *str)
1120{
1121	get_option (&str, &print_fatal_signals);
1122
1123	return 1;
1124}
1125
1126__setup("print-fatal-signals=", setup_print_fatal_signals);
1127
1128int
1129__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1130{
1131	return send_signal(sig, info, p, 1);
1132}
1133
1134static int
1135specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1136{
1137	return send_signal(sig, info, t, 0);
1138}
1139
1140int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1141			bool group)
1142{
1143	unsigned long flags;
1144	int ret = -ESRCH;
1145
1146	if (lock_task_sighand(p, &flags)) {
1147		ret = send_signal(sig, info, p, group);
1148		unlock_task_sighand(p, &flags);
1149	}
1150
1151	return ret;
1152}
1153
1154/*
1155 * Force a signal that the process can't ignore: if necessary
1156 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1157 *
1158 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1159 * since we do not want to have a signal handler that was blocked
1160 * be invoked when user space had explicitly blocked it.
1161 *
1162 * We don't want to have recursive SIGSEGV's etc, for example,
1163 * that is why we also clear SIGNAL_UNKILLABLE.
1164 */
1165int
1166force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1167{
1168	unsigned long int flags;
1169	int ret, blocked, ignored;
1170	struct k_sigaction *action;
1171
1172	spin_lock_irqsave(&t->sighand->siglock, flags);
1173	action = &t->sighand->action[sig-1];
1174	ignored = action->sa.sa_handler == SIG_IGN;
1175	blocked = sigismember(&t->blocked, sig);
1176	if (blocked || ignored) {
1177		action->sa.sa_handler = SIG_DFL;
1178		if (blocked) {
1179			sigdelset(&t->blocked, sig);
1180			recalc_sigpending_and_wake(t);
1181		}
1182	}
1183	if (action->sa.sa_handler == SIG_DFL)
1184		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1185	ret = specific_send_sig_info(sig, info, t);
1186	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1187
1188	return ret;
1189}
1190
1191/*
1192 * Nuke all other threads in the group.
1193 */
1194int zap_other_threads(struct task_struct *p)
1195{
1196	struct task_struct *t = p;
1197	int count = 0;
1198
1199	p->signal->group_stop_count = 0;
1200
1201	while_each_thread(p, t) {
1202		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1203		count++;
1204
1205		/* Don't bother with already dead threads */
1206		if (t->exit_state)
1207			continue;
1208		sigaddset(&t->pending.signal, SIGKILL);
1209		signal_wake_up(t, 1);
1210	}
1211
1212	return count;
1213}
1214
1215struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1216					   unsigned long *flags)
1217{
1218	struct sighand_struct *sighand;
1219
1220	for (;;) {
1221		/*
1222		 * Disable interrupts early to avoid deadlocks.
1223		 * See rcu_read_unlock() comment header for details.
1224		 */
1225		local_irq_save(*flags);
1226		rcu_read_lock();
1227		sighand = rcu_dereference(tsk->sighand);
1228		if (unlikely(sighand == NULL)) {
1229			rcu_read_unlock();
1230			local_irq_restore(*flags);
1231			break;
1232		}
1233		/*
1234		 * This sighand can be already freed and even reused, but
1235		 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1236		 * initializes ->siglock: this slab can't go away, it has
1237		 * the same object type, ->siglock can't be reinitialized.
1238		 *
1239		 * We need to ensure that tsk->sighand is still the same
1240		 * after we take the lock, we can race with de_thread() or
1241		 * __exit_signal(). In the latter case the next iteration
1242		 * must see ->sighand == NULL.
1243		 */
1244		spin_lock(&sighand->siglock);
1245		if (likely(sighand == tsk->sighand)) {
1246			rcu_read_unlock();
1247			break;
1248		}
1249		spin_unlock(&sighand->siglock);
1250		rcu_read_unlock();
1251		local_irq_restore(*flags);
1252	}
1253
1254	return sighand;
1255}
1256
1257/*
1258 * send signal info to all the members of a group
1259 */
1260int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1261{
1262	int ret;
1263
1264	rcu_read_lock();
1265	ret = check_kill_permission(sig, info, p);
1266	rcu_read_unlock();
1267
1268	if (!ret && sig)
1269		ret = do_send_sig_info(sig, info, p, true);
1270
1271	return ret;
1272}
1273
1274/*
1275 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1276 * control characters do (^C, ^Z etc)
1277 * - the caller must hold at least a readlock on tasklist_lock
1278 */
1279int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1280{
1281	struct task_struct *p = NULL;
1282	int retval, success;
1283
1284	success = 0;
1285	retval = -ESRCH;
1286	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1287		int err = group_send_sig_info(sig, info, p);
1288		success |= !err;
1289		retval = err;
1290	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1291	return success ? 0 : retval;
1292}
1293
1294int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1295{
1296	int error = -ESRCH;
1297	struct task_struct *p;
1298
1299	for (;;) {
1300		rcu_read_lock();
1301		p = pid_task(pid, PIDTYPE_PID);
1302		if (p)
1303			error = group_send_sig_info(sig, info, p);
1304		rcu_read_unlock();
1305		if (likely(!p || error != -ESRCH))
1306			return error;
1307
1308		/*
1309		 * The task was unhashed in between, try again.  If it
1310		 * is dead, pid_task() will return NULL, if we race with
1311		 * de_thread() it will find the new leader.
1312		 */
1313	}
1314}
1315
1316int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1317{
1318	int error;
1319	rcu_read_lock();
1320	error = kill_pid_info(sig, info, find_vpid(pid));
1321	rcu_read_unlock();
1322	return error;
1323}
1324
1325static int kill_as_cred_perm(const struct cred *cred,
1326			     struct task_struct *target)
1327{
1328	const struct cred *pcred = __task_cred(target);
1329	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1330	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1331		return 0;
1332	return 1;
1333}
1334
1335/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1336int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1337			 const struct cred *cred, u32 secid)
1338{
1339	int ret = -EINVAL;
1340	struct task_struct *p;
1341	unsigned long flags;
1342
1343	if (!valid_signal(sig))
1344		return ret;
1345
1346	rcu_read_lock();
1347	p = pid_task(pid, PIDTYPE_PID);
1348	if (!p) {
1349		ret = -ESRCH;
1350		goto out_unlock;
1351	}
1352	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1353		ret = -EPERM;
1354		goto out_unlock;
1355	}
1356	ret = security_task_kill(p, info, sig, secid);
1357	if (ret)
1358		goto out_unlock;
1359
1360	if (sig) {
1361		if (lock_task_sighand(p, &flags)) {
1362			ret = __send_signal(sig, info, p, 1, 0);
1363			unlock_task_sighand(p, &flags);
1364		} else
1365			ret = -ESRCH;
1366	}
1367out_unlock:
1368	rcu_read_unlock();
1369	return ret;
1370}
1371EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1372
1373/*
1374 * kill_something_info() interprets pid in interesting ways just like kill(2).
1375 *
1376 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1377 * is probably wrong.  Should make it like BSD or SYSV.
1378 */
1379
1380static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1381{
1382	int ret;
1383
1384	if (pid > 0) {
1385		rcu_read_lock();
1386		ret = kill_pid_info(sig, info, find_vpid(pid));
1387		rcu_read_unlock();
1388		return ret;
1389	}
1390
1391	read_lock(&tasklist_lock);
1392	if (pid != -1) {
1393		ret = __kill_pgrp_info(sig, info,
1394				pid ? find_vpid(-pid) : task_pgrp(current));
1395	} else {
1396		int retval = 0, count = 0;
1397		struct task_struct * p;
1398
1399		for_each_process(p) {
1400			if (task_pid_vnr(p) > 1 &&
1401					!same_thread_group(p, current)) {
1402				int err = group_send_sig_info(sig, info, p);
1403				++count;
1404				if (err != -EPERM)
1405					retval = err;
1406			}
1407		}
1408		ret = count ? retval : -ESRCH;
1409	}
1410	read_unlock(&tasklist_lock);
1411
1412	return ret;
1413}
1414
1415/*
1416 * These are for backward compatibility with the rest of the kernel source.
1417 */
1418
1419int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1420{
1421	/*
1422	 * Make sure legacy kernel users don't send in bad values
1423	 * (normal paths check this in check_kill_permission).
1424	 */
1425	if (!valid_signal(sig))
1426		return -EINVAL;
1427
1428	return do_send_sig_info(sig, info, p, false);
1429}
1430
1431#define __si_special(priv) \
1432	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1433
1434int
1435send_sig(int sig, struct task_struct *p, int priv)
1436{
1437	return send_sig_info(sig, __si_special(priv), p);
1438}
1439
1440void
1441force_sig(int sig, struct task_struct *p)
1442{
1443	force_sig_info(sig, SEND_SIG_PRIV, p);
1444}
1445
1446/*
1447 * When things go south during signal handling, we
1448 * will force a SIGSEGV. And if the signal that caused
1449 * the problem was already a SIGSEGV, we'll want to
1450 * make sure we don't even try to deliver the signal..
1451 */
1452int
1453force_sigsegv(int sig, struct task_struct *p)
1454{
1455	if (sig == SIGSEGV) {
1456		unsigned long flags;
1457		spin_lock_irqsave(&p->sighand->siglock, flags);
1458		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1459		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1460	}
1461	force_sig(SIGSEGV, p);
1462	return 0;
1463}
1464
1465int kill_pgrp(struct pid *pid, int sig, int priv)
1466{
1467	int ret;
1468
1469	read_lock(&tasklist_lock);
1470	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1471	read_unlock(&tasklist_lock);
1472
1473	return ret;
1474}
1475EXPORT_SYMBOL(kill_pgrp);
1476
1477int kill_pid(struct pid *pid, int sig, int priv)
1478{
1479	return kill_pid_info(sig, __si_special(priv), pid);
1480}
1481EXPORT_SYMBOL(kill_pid);
1482
1483/*
1484 * These functions support sending signals using preallocated sigqueue
1485 * structures.  This is needed "because realtime applications cannot
1486 * afford to lose notifications of asynchronous events, like timer
1487 * expirations or I/O completions".  In the case of POSIX Timers
1488 * we allocate the sigqueue structure from the timer_create.  If this
1489 * allocation fails we are able to report the failure to the application
1490 * with an EAGAIN error.
1491 */
1492struct sigqueue *sigqueue_alloc(void)
1493{
1494	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1495
1496	if (q)
1497		q->flags |= SIGQUEUE_PREALLOC;
1498
1499	return q;
1500}
1501
1502void sigqueue_free(struct sigqueue *q)
1503{
1504	unsigned long flags;
1505	spinlock_t *lock = &current->sighand->siglock;
1506
1507	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1508	/*
1509	 * We must hold ->siglock while testing q->list
1510	 * to serialize with collect_signal() or with
1511	 * __exit_signal()->flush_sigqueue().
1512	 */
1513	spin_lock_irqsave(lock, flags);
1514	q->flags &= ~SIGQUEUE_PREALLOC;
1515	/*
1516	 * If it is queued it will be freed when dequeued,
1517	 * like the "regular" sigqueue.
1518	 */
1519	if (!list_empty(&q->list))
1520		q = NULL;
1521	spin_unlock_irqrestore(lock, flags);
1522
1523	if (q)
1524		__sigqueue_free(q);
1525}
1526
1527int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1528{
1529	int sig = q->info.si_signo;
1530	struct sigpending *pending;
1531	unsigned long flags;
1532	int ret, result;
1533
1534	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1535
1536	ret = -1;
1537	if (!likely(lock_task_sighand(t, &flags)))
1538		goto ret;
1539
1540	ret = 1; /* the signal is ignored */
1541	result = TRACE_SIGNAL_IGNORED;
1542	if (!prepare_signal(sig, t, false))
1543		goto out;
1544
1545	ret = 0;
1546	if (unlikely(!list_empty(&q->list))) {
1547		/*
1548		 * If an SI_TIMER entry is already queue just increment
1549		 * the overrun count.
1550		 */
1551		BUG_ON(q->info.si_code != SI_TIMER);
1552		q->info.si_overrun++;
1553		result = TRACE_SIGNAL_ALREADY_PENDING;
1554		goto out;
1555	}
1556	q->info.si_overrun = 0;
1557
1558	signalfd_notify(t, sig);
1559	pending = group ? &t->signal->shared_pending : &t->pending;
1560	list_add_tail(&q->list, &pending->list);
1561	sigaddset(&pending->signal, sig);
1562	complete_signal(sig, t, group);
1563	result = TRACE_SIGNAL_DELIVERED;
1564out:
1565	trace_signal_generate(sig, &q->info, t, group, result);
1566	unlock_task_sighand(t, &flags);
1567ret:
1568	return ret;
1569}
1570
1571/*
1572 * Let a parent know about the death of a child.
1573 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1574 *
1575 * Returns true if our parent ignored us and so we've switched to
1576 * self-reaping.
1577 */
1578bool do_notify_parent(struct task_struct *tsk, int sig)
1579{
1580	struct siginfo info;
1581	unsigned long flags;
1582	struct sighand_struct *psig;
1583	bool autoreap = false;
1584	cputime_t utime, stime;
1585
1586	BUG_ON(sig == -1);
1587
1588 	/* do_notify_parent_cldstop should have been called instead.  */
1589 	BUG_ON(task_is_stopped_or_traced(tsk));
1590
1591	BUG_ON(!tsk->ptrace &&
1592	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1593
1594	if (sig != SIGCHLD) {
1595		/*
1596		 * This is only possible if parent == real_parent.
1597		 * Check if it has changed security domain.
1598		 */
1599		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1600			sig = SIGCHLD;
1601	}
1602
1603	info.si_signo = sig;
1604	info.si_errno = 0;
1605	/*
1606	 * We are under tasklist_lock here so our parent is tied to
1607	 * us and cannot change.
1608	 *
1609	 * task_active_pid_ns will always return the same pid namespace
1610	 * until a task passes through release_task.
1611	 *
1612	 * write_lock() currently calls preempt_disable() which is the
1613	 * same as rcu_read_lock(), but according to Oleg, this is not
1614	 * correct to rely on this
1615	 */
1616	rcu_read_lock();
1617	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1618	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1619				       task_uid(tsk));
1620	rcu_read_unlock();
1621
1622	task_cputime(tsk, &utime, &stime);
1623	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1624	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1625
1626	info.si_status = tsk->exit_code & 0x7f;
1627	if (tsk->exit_code & 0x80)
1628		info.si_code = CLD_DUMPED;
1629	else if (tsk->exit_code & 0x7f)
1630		info.si_code = CLD_KILLED;
1631	else {
1632		info.si_code = CLD_EXITED;
1633		info.si_status = tsk->exit_code >> 8;
1634	}
1635
1636	psig = tsk->parent->sighand;
1637	spin_lock_irqsave(&psig->siglock, flags);
1638	if (!tsk->ptrace && sig == SIGCHLD &&
1639	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1640	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1641		/*
1642		 * We are exiting and our parent doesn't care.  POSIX.1
1643		 * defines special semantics for setting SIGCHLD to SIG_IGN
1644		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1645		 * automatically and not left for our parent's wait4 call.
1646		 * Rather than having the parent do it as a magic kind of
1647		 * signal handler, we just set this to tell do_exit that we
1648		 * can be cleaned up without becoming a zombie.  Note that
1649		 * we still call __wake_up_parent in this case, because a
1650		 * blocked sys_wait4 might now return -ECHILD.
1651		 *
1652		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1653		 * is implementation-defined: we do (if you don't want
1654		 * it, just use SIG_IGN instead).
1655		 */
1656		autoreap = true;
1657		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1658			sig = 0;
1659	}
1660	if (valid_signal(sig) && sig)
1661		__group_send_sig_info(sig, &info, tsk->parent);
1662	__wake_up_parent(tsk, tsk->parent);
1663	spin_unlock_irqrestore(&psig->siglock, flags);
1664
1665	return autoreap;
1666}
1667
1668/**
1669 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1670 * @tsk: task reporting the state change
1671 * @for_ptracer: the notification is for ptracer
1672 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1673 *
1674 * Notify @tsk's parent that the stopped/continued state has changed.  If
1675 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1676 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1677 *
1678 * CONTEXT:
1679 * Must be called with tasklist_lock at least read locked.
1680 */
1681static void do_notify_parent_cldstop(struct task_struct *tsk,
1682				     bool for_ptracer, int why)
1683{
1684	struct siginfo info;
1685	unsigned long flags;
1686	struct task_struct *parent;
1687	struct sighand_struct *sighand;
1688	cputime_t utime, stime;
1689
1690	if (for_ptracer) {
1691		parent = tsk->parent;
1692	} else {
1693		tsk = tsk->group_leader;
1694		parent = tsk->real_parent;
1695	}
1696
1697	info.si_signo = SIGCHLD;
1698	info.si_errno = 0;
1699	/*
1700	 * see comment in do_notify_parent() about the following 4 lines
1701	 */
1702	rcu_read_lock();
1703	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1704	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1705	rcu_read_unlock();
1706
1707	task_cputime(tsk, &utime, &stime);
1708	info.si_utime = cputime_to_clock_t(utime);
1709	info.si_stime = cputime_to_clock_t(stime);
1710
1711 	info.si_code = why;
1712 	switch (why) {
1713 	case CLD_CONTINUED:
1714 		info.si_status = SIGCONT;
1715 		break;
1716 	case CLD_STOPPED:
1717 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1718 		break;
1719 	case CLD_TRAPPED:
1720 		info.si_status = tsk->exit_code & 0x7f;
1721 		break;
1722 	default:
1723 		BUG();
1724 	}
1725
1726	sighand = parent->sighand;
1727	spin_lock_irqsave(&sighand->siglock, flags);
1728	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1729	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1730		__group_send_sig_info(SIGCHLD, &info, parent);
1731	/*
1732	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1733	 */
1734	__wake_up_parent(tsk, parent);
1735	spin_unlock_irqrestore(&sighand->siglock, flags);
1736}
1737
1738static inline int may_ptrace_stop(void)
1739{
1740	if (!likely(current->ptrace))
1741		return 0;
1742	/*
1743	 * Are we in the middle of do_coredump?
1744	 * If so and our tracer is also part of the coredump stopping
1745	 * is a deadlock situation, and pointless because our tracer
1746	 * is dead so don't allow us to stop.
1747	 * If SIGKILL was already sent before the caller unlocked
1748	 * ->siglock we must see ->core_state != NULL. Otherwise it
1749	 * is safe to enter schedule().
1750	 *
1751	 * This is almost outdated, a task with the pending SIGKILL can't
1752	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1753	 * after SIGKILL was already dequeued.
1754	 */
1755	if (unlikely(current->mm->core_state) &&
1756	    unlikely(current->mm == current->parent->mm))
1757		return 0;
1758
1759	return 1;
1760}
1761
1762/*
1763 * Return non-zero if there is a SIGKILL that should be waking us up.
1764 * Called with the siglock held.
1765 */
1766static int sigkill_pending(struct task_struct *tsk)
1767{
1768	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1769		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1770}
1771
1772/*
1773 * This must be called with current->sighand->siglock held.
1774 *
1775 * This should be the path for all ptrace stops.
1776 * We always set current->last_siginfo while stopped here.
1777 * That makes it a way to test a stopped process for
1778 * being ptrace-stopped vs being job-control-stopped.
1779 *
1780 * If we actually decide not to stop at all because the tracer
1781 * is gone, we keep current->exit_code unless clear_code.
1782 */
1783static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1784	__releases(&current->sighand->siglock)
1785	__acquires(&current->sighand->siglock)
1786{
1787	bool gstop_done = false;
1788
1789	if (arch_ptrace_stop_needed(exit_code, info)) {
1790		/*
1791		 * The arch code has something special to do before a
1792		 * ptrace stop.  This is allowed to block, e.g. for faults
1793		 * on user stack pages.  We can't keep the siglock while
1794		 * calling arch_ptrace_stop, so we must release it now.
1795		 * To preserve proper semantics, we must do this before
1796		 * any signal bookkeeping like checking group_stop_count.
1797		 * Meanwhile, a SIGKILL could come in before we retake the
1798		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1799		 * So after regaining the lock, we must check for SIGKILL.
1800		 */
1801		spin_unlock_irq(&current->sighand->siglock);
1802		arch_ptrace_stop(exit_code, info);
1803		spin_lock_irq(&current->sighand->siglock);
1804		if (sigkill_pending(current))
1805			return;
1806	}
1807
1808	/*
1809	 * We're committing to trapping.  TRACED should be visible before
1810	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1811	 * Also, transition to TRACED and updates to ->jobctl should be
1812	 * atomic with respect to siglock and should be done after the arch
1813	 * hook as siglock is released and regrabbed across it.
1814	 */
1815	set_current_state(TASK_TRACED);
1816
1817	current->last_siginfo = info;
1818	current->exit_code = exit_code;
1819
1820	/*
1821	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1822	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1823	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1824	 * could be clear now.  We act as if SIGCONT is received after
1825	 * TASK_TRACED is entered - ignore it.
1826	 */
1827	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1828		gstop_done = task_participate_group_stop(current);
1829
1830	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1831	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1832	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1833		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1834
1835	/* entering a trap, clear TRAPPING */
1836	task_clear_jobctl_trapping(current);
1837
1838	spin_unlock_irq(&current->sighand->siglock);
1839	read_lock(&tasklist_lock);
1840	if (may_ptrace_stop()) {
1841		/*
1842		 * Notify parents of the stop.
1843		 *
1844		 * While ptraced, there are two parents - the ptracer and
1845		 * the real_parent of the group_leader.  The ptracer should
1846		 * know about every stop while the real parent is only
1847		 * interested in the completion of group stop.  The states
1848		 * for the two don't interact with each other.  Notify
1849		 * separately unless they're gonna be duplicates.
1850		 */
1851		do_notify_parent_cldstop(current, true, why);
1852		if (gstop_done && ptrace_reparented(current))
1853			do_notify_parent_cldstop(current, false, why);
1854
1855		/*
1856		 * Don't want to allow preemption here, because
1857		 * sys_ptrace() needs this task to be inactive.
1858		 *
1859		 * XXX: implement read_unlock_no_resched().
1860		 */
1861		preempt_disable();
1862		read_unlock(&tasklist_lock);
1863		preempt_enable_no_resched();
1864		freezable_schedule();
1865	} else {
1866		/*
1867		 * By the time we got the lock, our tracer went away.
1868		 * Don't drop the lock yet, another tracer may come.
1869		 *
1870		 * If @gstop_done, the ptracer went away between group stop
1871		 * completion and here.  During detach, it would have set
1872		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1873		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1874		 * the real parent of the group stop completion is enough.
1875		 */
1876		if (gstop_done)
1877			do_notify_parent_cldstop(current, false, why);
1878
1879		/* tasklist protects us from ptrace_freeze_traced() */
1880		__set_current_state(TASK_RUNNING);
1881		if (clear_code)
1882			current->exit_code = 0;
1883		read_unlock(&tasklist_lock);
1884	}
1885
1886	/*
1887	 * We are back.  Now reacquire the siglock before touching
1888	 * last_siginfo, so that we are sure to have synchronized with
1889	 * any signal-sending on another CPU that wants to examine it.
1890	 */
1891	spin_lock_irq(&current->sighand->siglock);
1892	current->last_siginfo = NULL;
1893
1894	/* LISTENING can be set only during STOP traps, clear it */
1895	current->jobctl &= ~JOBCTL_LISTENING;
1896
1897	/*
1898	 * Queued signals ignored us while we were stopped for tracing.
1899	 * So check for any that we should take before resuming user mode.
1900	 * This sets TIF_SIGPENDING, but never clears it.
1901	 */
1902	recalc_sigpending_tsk(current);
1903}
1904
1905static void ptrace_do_notify(int signr, int exit_code, int why)
1906{
1907	siginfo_t info;
1908
1909	memset(&info, 0, sizeof info);
1910	info.si_signo = signr;
1911	info.si_code = exit_code;
1912	info.si_pid = task_pid_vnr(current);
1913	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1914
1915	/* Let the debugger run.  */
1916	ptrace_stop(exit_code, why, 1, &info);
1917}
1918
1919void ptrace_notify(int exit_code)
1920{
1921	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1922	if (unlikely(current->task_works))
1923		task_work_run();
1924
1925	spin_lock_irq(&current->sighand->siglock);
1926	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1927	spin_unlock_irq(&current->sighand->siglock);
1928}
1929
1930/**
1931 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1932 * @signr: signr causing group stop if initiating
1933 *
1934 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1935 * and participate in it.  If already set, participate in the existing
1936 * group stop.  If participated in a group stop (and thus slept), %true is
1937 * returned with siglock released.
1938 *
1939 * If ptraced, this function doesn't handle stop itself.  Instead,
1940 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1941 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1942 * places afterwards.
1943 *
1944 * CONTEXT:
1945 * Must be called with @current->sighand->siglock held, which is released
1946 * on %true return.
1947 *
1948 * RETURNS:
1949 * %false if group stop is already cancelled or ptrace trap is scheduled.
1950 * %true if participated in group stop.
1951 */
1952static bool do_signal_stop(int signr)
1953	__releases(&current->sighand->siglock)
1954{
1955	struct signal_struct *sig = current->signal;
1956
1957	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1958		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1959		struct task_struct *t;
1960
1961		/* signr will be recorded in task->jobctl for retries */
1962		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1963
1964		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1965		    unlikely(signal_group_exit(sig)))
1966			return false;
1967		/*
1968		 * There is no group stop already in progress.  We must
1969		 * initiate one now.
1970		 *
1971		 * While ptraced, a task may be resumed while group stop is
1972		 * still in effect and then receive a stop signal and
1973		 * initiate another group stop.  This deviates from the
1974		 * usual behavior as two consecutive stop signals can't
1975		 * cause two group stops when !ptraced.  That is why we
1976		 * also check !task_is_stopped(t) below.
1977		 *
1978		 * The condition can be distinguished by testing whether
1979		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1980		 * group_exit_code in such case.
1981		 *
1982		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1983		 * an intervening stop signal is required to cause two
1984		 * continued events regardless of ptrace.
1985		 */
1986		if (!(sig->flags & SIGNAL_STOP_STOPPED))
1987			sig->group_exit_code = signr;
1988
1989		sig->group_stop_count = 0;
1990
1991		if (task_set_jobctl_pending(current, signr | gstop))
1992			sig->group_stop_count++;
1993
1994		t = current;
1995		while_each_thread(current, t) {
1996			/*
1997			 * Setting state to TASK_STOPPED for a group
1998			 * stop is always done with the siglock held,
1999			 * so this check has no races.
2000			 */
2001			if (!task_is_stopped(t) &&
2002			    task_set_jobctl_pending(t, signr | gstop)) {
2003				sig->group_stop_count++;
2004				if (likely(!(t->ptrace & PT_SEIZED)))
2005					signal_wake_up(t, 0);
2006				else
2007					ptrace_trap_notify(t);
2008			}
2009		}
2010	}
2011
2012	if (likely(!current->ptrace)) {
2013		int notify = 0;
2014
2015		/*
2016		 * If there are no other threads in the group, or if there
2017		 * is a group stop in progress and we are the last to stop,
2018		 * report to the parent.
2019		 */
2020		if (task_participate_group_stop(current))
2021			notify = CLD_STOPPED;
2022
2023		__set_current_state(TASK_STOPPED);
2024		spin_unlock_irq(&current->sighand->siglock);
2025
2026		/*
2027		 * Notify the parent of the group stop completion.  Because
2028		 * we're not holding either the siglock or tasklist_lock
2029		 * here, ptracer may attach inbetween; however, this is for
2030		 * group stop and should always be delivered to the real
2031		 * parent of the group leader.  The new ptracer will get
2032		 * its notification when this task transitions into
2033		 * TASK_TRACED.
2034		 */
2035		if (notify) {
2036			read_lock(&tasklist_lock);
2037			do_notify_parent_cldstop(current, false, notify);
2038			read_unlock(&tasklist_lock);
2039		}
2040
2041		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2042		freezable_schedule();
2043		return true;
2044	} else {
2045		/*
2046		 * While ptraced, group stop is handled by STOP trap.
2047		 * Schedule it and let the caller deal with it.
2048		 */
2049		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2050		return false;
2051	}
2052}
2053
2054/**
2055 * do_jobctl_trap - take care of ptrace jobctl traps
2056 *
2057 * When PT_SEIZED, it's used for both group stop and explicit
2058 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2059 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2060 * the stop signal; otherwise, %SIGTRAP.
2061 *
2062 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2063 * number as exit_code and no siginfo.
2064 *
2065 * CONTEXT:
2066 * Must be called with @current->sighand->siglock held, which may be
2067 * released and re-acquired before returning with intervening sleep.
2068 */
2069static void do_jobctl_trap(void)
2070{
2071	struct signal_struct *signal = current->signal;
2072	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2073
2074	if (current->ptrace & PT_SEIZED) {
2075		if (!signal->group_stop_count &&
2076		    !(signal->flags & SIGNAL_STOP_STOPPED))
2077			signr = SIGTRAP;
2078		WARN_ON_ONCE(!signr);
2079		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2080				 CLD_STOPPED);
2081	} else {
2082		WARN_ON_ONCE(!signr);
2083		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2084		current->exit_code = 0;
2085	}
2086}
2087
2088static int ptrace_signal(int signr, siginfo_t *info)
2089{
2090	ptrace_signal_deliver();
2091	/*
2092	 * We do not check sig_kernel_stop(signr) but set this marker
2093	 * unconditionally because we do not know whether debugger will
2094	 * change signr. This flag has no meaning unless we are going
2095	 * to stop after return from ptrace_stop(). In this case it will
2096	 * be checked in do_signal_stop(), we should only stop if it was
2097	 * not cleared by SIGCONT while we were sleeping. See also the
2098	 * comment in dequeue_signal().
2099	 */
2100	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2101	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2102
2103	/* We're back.  Did the debugger cancel the sig?  */
2104	signr = current->exit_code;
2105	if (signr == 0)
2106		return signr;
2107
2108	current->exit_code = 0;
2109
2110	/*
2111	 * Update the siginfo structure if the signal has
2112	 * changed.  If the debugger wanted something
2113	 * specific in the siginfo structure then it should
2114	 * have updated *info via PTRACE_SETSIGINFO.
2115	 */
2116	if (signr != info->si_signo) {
2117		info->si_signo = signr;
2118		info->si_errno = 0;
2119		info->si_code = SI_USER;
2120		rcu_read_lock();
2121		info->si_pid = task_pid_vnr(current->parent);
2122		info->si_uid = from_kuid_munged(current_user_ns(),
2123						task_uid(current->parent));
2124		rcu_read_unlock();
2125	}
2126
2127	/* If the (new) signal is now blocked, requeue it.  */
2128	if (sigismember(&current->blocked, signr)) {
2129		specific_send_sig_info(signr, info, current);
2130		signr = 0;
2131	}
2132
2133	return signr;
2134}
2135
2136int get_signal(struct ksignal *ksig)
2137{
2138	struct sighand_struct *sighand = current->sighand;
2139	struct signal_struct *signal = current->signal;
2140	int signr;
2141
2142	if (unlikely(current->task_works))
2143		task_work_run();
2144
2145	if (unlikely(uprobe_deny_signal()))
2146		return 0;
2147
2148	/*
2149	 * Do this once, we can't return to user-mode if freezing() == T.
2150	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2151	 * thus do not need another check after return.
2152	 */
2153	try_to_freeze();
2154
2155relock:
2156	spin_lock_irq(&sighand->siglock);
2157	/*
2158	 * Every stopped thread goes here after wakeup. Check to see if
2159	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2160	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2161	 */
2162	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2163		int why;
2164
2165		if (signal->flags & SIGNAL_CLD_CONTINUED)
2166			why = CLD_CONTINUED;
2167		else
2168			why = CLD_STOPPED;
2169
2170		signal->flags &= ~SIGNAL_CLD_MASK;
2171
2172		spin_unlock_irq(&sighand->siglock);
2173
2174		/*
2175		 * Notify the parent that we're continuing.  This event is
2176		 * always per-process and doesn't make whole lot of sense
2177		 * for ptracers, who shouldn't consume the state via
2178		 * wait(2) either, but, for backward compatibility, notify
2179		 * the ptracer of the group leader too unless it's gonna be
2180		 * a duplicate.
2181		 */
2182		read_lock(&tasklist_lock);
2183		do_notify_parent_cldstop(current, false, why);
2184
2185		if (ptrace_reparented(current->group_leader))
2186			do_notify_parent_cldstop(current->group_leader,
2187						true, why);
2188		read_unlock(&tasklist_lock);
2189
2190		goto relock;
2191	}
2192
2193	for (;;) {
2194		struct k_sigaction *ka;
2195
2196		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2197		    do_signal_stop(0))
2198			goto relock;
2199
2200		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2201			do_jobctl_trap();
2202			spin_unlock_irq(&sighand->siglock);
2203			goto relock;
2204		}
2205
2206		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2207
2208		if (!signr)
2209			break; /* will return 0 */
2210
2211		if (unlikely(current->ptrace) && signr != SIGKILL) {
2212			signr = ptrace_signal(signr, &ksig->info);
2213			if (!signr)
2214				continue;
2215		}
2216
2217		ka = &sighand->action[signr-1];
2218
2219		/* Trace actually delivered signals. */
2220		trace_signal_deliver(signr, &ksig->info, ka);
2221
2222		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2223			continue;
2224		if (ka->sa.sa_handler != SIG_DFL) {
2225			/* Run the handler.  */
2226			ksig->ka = *ka;
2227
2228			if (ka->sa.sa_flags & SA_ONESHOT)
2229				ka->sa.sa_handler = SIG_DFL;
2230
2231			break; /* will return non-zero "signr" value */
2232		}
2233
2234		/*
2235		 * Now we are doing the default action for this signal.
2236		 */
2237		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2238			continue;
2239
2240		/*
2241		 * Global init gets no signals it doesn't want.
2242		 * Container-init gets no signals it doesn't want from same
2243		 * container.
2244		 *
2245		 * Note that if global/container-init sees a sig_kernel_only()
2246		 * signal here, the signal must have been generated internally
2247		 * or must have come from an ancestor namespace. In either
2248		 * case, the signal cannot be dropped.
2249		 */
2250		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2251				!sig_kernel_only(signr))
2252			continue;
2253
2254		if (sig_kernel_stop(signr)) {
2255			/*
2256			 * The default action is to stop all threads in
2257			 * the thread group.  The job control signals
2258			 * do nothing in an orphaned pgrp, but SIGSTOP
2259			 * always works.  Note that siglock needs to be
2260			 * dropped during the call to is_orphaned_pgrp()
2261			 * because of lock ordering with tasklist_lock.
2262			 * This allows an intervening SIGCONT to be posted.
2263			 * We need to check for that and bail out if necessary.
2264			 */
2265			if (signr != SIGSTOP) {
2266				spin_unlock_irq(&sighand->siglock);
2267
2268				/* signals can be posted during this window */
2269
2270				if (is_current_pgrp_orphaned())
2271					goto relock;
2272
2273				spin_lock_irq(&sighand->siglock);
2274			}
2275
2276			if (likely(do_signal_stop(ksig->info.si_signo))) {
2277				/* It released the siglock.  */
2278				goto relock;
2279			}
2280
2281			/*
2282			 * We didn't actually stop, due to a race
2283			 * with SIGCONT or something like that.
2284			 */
2285			continue;
2286		}
2287
2288		spin_unlock_irq(&sighand->siglock);
2289
2290		/*
2291		 * Anything else is fatal, maybe with a core dump.
2292		 */
2293		current->flags |= PF_SIGNALED;
2294
2295		if (sig_kernel_coredump(signr)) {
2296			if (print_fatal_signals)
2297				print_fatal_signal(ksig->info.si_signo);
2298			proc_coredump_connector(current);
2299			/*
2300			 * If it was able to dump core, this kills all
2301			 * other threads in the group and synchronizes with
2302			 * their demise.  If we lost the race with another
2303			 * thread getting here, it set group_exit_code
2304			 * first and our do_group_exit call below will use
2305			 * that value and ignore the one we pass it.
2306			 */
2307			do_coredump(&ksig->info);
2308		}
2309
2310		/*
2311		 * Death signals, no core dump.
2312		 */
2313		do_group_exit(ksig->info.si_signo);
2314		/* NOTREACHED */
2315	}
2316	spin_unlock_irq(&sighand->siglock);
2317
2318	ksig->sig = signr;
2319	return ksig->sig > 0;
2320}
2321
2322/**
2323 * signal_delivered - 
2324 * @ksig:		kernel signal struct
2325 * @stepping:		nonzero if debugger single-step or block-step in use
2326 *
2327 * This function should be called when a signal has successfully been
2328 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2329 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2330 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2331 */
2332static void signal_delivered(struct ksignal *ksig, int stepping)
2333{
2334	sigset_t blocked;
2335
2336	/* A signal was successfully delivered, and the
2337	   saved sigmask was stored on the signal frame,
2338	   and will be restored by sigreturn.  So we can
2339	   simply clear the restore sigmask flag.  */
2340	clear_restore_sigmask();
2341
2342	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2343	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2344		sigaddset(&blocked, ksig->sig);
2345	set_current_blocked(&blocked);
2346	tracehook_signal_handler(stepping);
2347}
2348
2349void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2350{
2351	if (failed)
2352		force_sigsegv(ksig->sig, current);
2353	else
2354		signal_delivered(ksig, stepping);
2355}
2356
2357/*
2358 * It could be that complete_signal() picked us to notify about the
2359 * group-wide signal. Other threads should be notified now to take
2360 * the shared signals in @which since we will not.
2361 */
2362static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2363{
2364	sigset_t retarget;
2365	struct task_struct *t;
2366
2367	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2368	if (sigisemptyset(&retarget))
2369		return;
2370
2371	t = tsk;
2372	while_each_thread(tsk, t) {
2373		if (t->flags & PF_EXITING)
2374			continue;
2375
2376		if (!has_pending_signals(&retarget, &t->blocked))
2377			continue;
2378		/* Remove the signals this thread can handle. */
2379		sigandsets(&retarget, &retarget, &t->blocked);
2380
2381		if (!signal_pending(t))
2382			signal_wake_up(t, 0);
2383
2384		if (sigisemptyset(&retarget))
2385			break;
2386	}
2387}
2388
2389void exit_signals(struct task_struct *tsk)
2390{
2391	int group_stop = 0;
2392	sigset_t unblocked;
2393
2394	/*
2395	 * @tsk is about to have PF_EXITING set - lock out users which
2396	 * expect stable threadgroup.
2397	 */
2398	threadgroup_change_begin(tsk);
2399
2400	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2401		tsk->flags |= PF_EXITING;
2402		threadgroup_change_end(tsk);
2403		return;
2404	}
2405
2406	spin_lock_irq(&tsk->sighand->siglock);
2407	/*
2408	 * From now this task is not visible for group-wide signals,
2409	 * see wants_signal(), do_signal_stop().
2410	 */
2411	tsk->flags |= PF_EXITING;
2412
2413	threadgroup_change_end(tsk);
2414
2415	if (!signal_pending(tsk))
2416		goto out;
2417
2418	unblocked = tsk->blocked;
2419	signotset(&unblocked);
2420	retarget_shared_pending(tsk, &unblocked);
2421
2422	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2423	    task_participate_group_stop(tsk))
2424		group_stop = CLD_STOPPED;
2425out:
2426	spin_unlock_irq(&tsk->sighand->siglock);
2427
2428	/*
2429	 * If group stop has completed, deliver the notification.  This
2430	 * should always go to the real parent of the group leader.
2431	 */
2432	if (unlikely(group_stop)) {
2433		read_lock(&tasklist_lock);
2434		do_notify_parent_cldstop(tsk, false, group_stop);
2435		read_unlock(&tasklist_lock);
2436	}
2437}
2438
2439EXPORT_SYMBOL(recalc_sigpending);
2440EXPORT_SYMBOL_GPL(dequeue_signal);
2441EXPORT_SYMBOL(flush_signals);
2442EXPORT_SYMBOL(force_sig);
2443EXPORT_SYMBOL(send_sig);
2444EXPORT_SYMBOL(send_sig_info);
2445EXPORT_SYMBOL(sigprocmask);
2446
2447/*
2448 * System call entry points.
2449 */
2450
2451/**
2452 *  sys_restart_syscall - restart a system call
2453 */
2454SYSCALL_DEFINE0(restart_syscall)
2455{
2456	struct restart_block *restart = &current->restart_block;
2457	return restart->fn(restart);
2458}
2459
2460long do_no_restart_syscall(struct restart_block *param)
2461{
2462	return -EINTR;
2463}
2464
2465static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2466{
2467	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2468		sigset_t newblocked;
2469		/* A set of now blocked but previously unblocked signals. */
2470		sigandnsets(&newblocked, newset, &current->blocked);
2471		retarget_shared_pending(tsk, &newblocked);
2472	}
2473	tsk->blocked = *newset;
2474	recalc_sigpending();
2475}
2476
2477/**
2478 * set_current_blocked - change current->blocked mask
2479 * @newset: new mask
2480 *
2481 * It is wrong to change ->blocked directly, this helper should be used
2482 * to ensure the process can't miss a shared signal we are going to block.
2483 */
2484void set_current_blocked(sigset_t *newset)
2485{
2486	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2487	__set_current_blocked(newset);
2488}
2489
2490void __set_current_blocked(const sigset_t *newset)
2491{
2492	struct task_struct *tsk = current;
2493
2494	/*
2495	 * In case the signal mask hasn't changed, there is nothing we need
2496	 * to do. The current->blocked shouldn't be modified by other task.
2497	 */
2498	if (sigequalsets(&tsk->blocked, newset))
2499		return;
2500
2501	spin_lock_irq(&tsk->sighand->siglock);
2502	__set_task_blocked(tsk, newset);
2503	spin_unlock_irq(&tsk->sighand->siglock);
2504}
2505
2506/*
2507 * This is also useful for kernel threads that want to temporarily
2508 * (or permanently) block certain signals.
2509 *
2510 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2511 * interface happily blocks "unblockable" signals like SIGKILL
2512 * and friends.
2513 */
2514int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2515{
2516	struct task_struct *tsk = current;
2517	sigset_t newset;
2518
2519	/* Lockless, only current can change ->blocked, never from irq */
2520	if (oldset)
2521		*oldset = tsk->blocked;
2522
2523	switch (how) {
2524	case SIG_BLOCK:
2525		sigorsets(&newset, &tsk->blocked, set);
2526		break;
2527	case SIG_UNBLOCK:
2528		sigandnsets(&newset, &tsk->blocked, set);
2529		break;
2530	case SIG_SETMASK:
2531		newset = *set;
2532		break;
2533	default:
2534		return -EINVAL;
2535	}
2536
2537	__set_current_blocked(&newset);
2538	return 0;
2539}
2540
2541/**
2542 *  sys_rt_sigprocmask - change the list of currently blocked signals
2543 *  @how: whether to add, remove, or set signals
2544 *  @nset: stores pending signals
2545 *  @oset: previous value of signal mask if non-null
2546 *  @sigsetsize: size of sigset_t type
2547 */
2548SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2549		sigset_t __user *, oset, size_t, sigsetsize)
2550{
2551	sigset_t old_set, new_set;
2552	int error;
2553
2554	/* XXX: Don't preclude handling different sized sigset_t's.  */
2555	if (sigsetsize != sizeof(sigset_t))
2556		return -EINVAL;
2557
2558	old_set = current->blocked;
2559
2560	if (nset) {
2561		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2562			return -EFAULT;
2563		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2564
2565		error = sigprocmask(how, &new_set, NULL);
2566		if (error)
2567			return error;
2568	}
2569
2570	if (oset) {
2571		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2572			return -EFAULT;
2573	}
2574
2575	return 0;
2576}
2577
2578#ifdef CONFIG_COMPAT
2579COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2580		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2581{
2582#ifdef __BIG_ENDIAN
2583	sigset_t old_set = current->blocked;
2584
2585	/* XXX: Don't preclude handling different sized sigset_t's.  */
2586	if (sigsetsize != sizeof(sigset_t))
2587		return -EINVAL;
2588
2589	if (nset) {
2590		compat_sigset_t new32;
2591		sigset_t new_set;
2592		int error;
2593		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2594			return -EFAULT;
2595
2596		sigset_from_compat(&new_set, &new32);
2597		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2598
2599		error = sigprocmask(how, &new_set, NULL);
2600		if (error)
2601			return error;
2602	}
2603	if (oset) {
2604		compat_sigset_t old32;
2605		sigset_to_compat(&old32, &old_set);
2606		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2607			return -EFAULT;
2608	}
2609	return 0;
2610#else
2611	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2612				  (sigset_t __user *)oset, sigsetsize);
2613#endif
2614}
2615#endif
2616
2617static int do_sigpending(void *set, unsigned long sigsetsize)
2618{
2619	if (sigsetsize > sizeof(sigset_t))
2620		return -EINVAL;
2621
2622	spin_lock_irq(&current->sighand->siglock);
2623	sigorsets(set, &current->pending.signal,
2624		  &current->signal->shared_pending.signal);
2625	spin_unlock_irq(&current->sighand->siglock);
2626
2627	/* Outside the lock because only this thread touches it.  */
2628	sigandsets(set, &current->blocked, set);
2629	return 0;
2630}
2631
2632/**
2633 *  sys_rt_sigpending - examine a pending signal that has been raised
2634 *			while blocked
2635 *  @uset: stores pending signals
2636 *  @sigsetsize: size of sigset_t type or larger
2637 */
2638SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2639{
2640	sigset_t set;
2641	int err = do_sigpending(&set, sigsetsize);
2642	if (!err && copy_to_user(uset, &set, sigsetsize))
2643		err = -EFAULT;
2644	return err;
2645}
2646
2647#ifdef CONFIG_COMPAT
2648COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2649		compat_size_t, sigsetsize)
2650{
2651#ifdef __BIG_ENDIAN
2652	sigset_t set;
2653	int err = do_sigpending(&set, sigsetsize);
2654	if (!err) {
2655		compat_sigset_t set32;
2656		sigset_to_compat(&set32, &set);
2657		/* we can get here only if sigsetsize <= sizeof(set) */
2658		if (copy_to_user(uset, &set32, sigsetsize))
2659			err = -EFAULT;
2660	}
2661	return err;
2662#else
2663	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2664#endif
2665}
2666#endif
2667
2668#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2669
2670int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2671{
2672	int err;
2673
2674	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2675		return -EFAULT;
2676	if (from->si_code < 0)
2677		return __copy_to_user(to, from, sizeof(siginfo_t))
2678			? -EFAULT : 0;
2679	/*
2680	 * If you change siginfo_t structure, please be sure
2681	 * this code is fixed accordingly.
2682	 * Please remember to update the signalfd_copyinfo() function
2683	 * inside fs/signalfd.c too, in case siginfo_t changes.
2684	 * It should never copy any pad contained in the structure
2685	 * to avoid security leaks, but must copy the generic
2686	 * 3 ints plus the relevant union member.
2687	 */
2688	err = __put_user(from->si_signo, &to->si_signo);
2689	err |= __put_user(from->si_errno, &to->si_errno);
2690	err |= __put_user((short)from->si_code, &to->si_code);
2691	switch (from->si_code & __SI_MASK) {
2692	case __SI_KILL:
2693		err |= __put_user(from->si_pid, &to->si_pid);
2694		err |= __put_user(from->si_uid, &to->si_uid);
2695		break;
2696	case __SI_TIMER:
2697		 err |= __put_user(from->si_tid, &to->si_tid);
2698		 err |= __put_user(from->si_overrun, &to->si_overrun);
2699		 err |= __put_user(from->si_ptr, &to->si_ptr);
2700		break;
2701	case __SI_POLL:
2702		err |= __put_user(from->si_band, &to->si_band);
2703		err |= __put_user(from->si_fd, &to->si_fd);
2704		break;
2705	case __SI_FAULT:
2706		err |= __put_user(from->si_addr, &to->si_addr);
2707#ifdef __ARCH_SI_TRAPNO
2708		err |= __put_user(from->si_trapno, &to->si_trapno);
2709#endif
2710#ifdef BUS_MCEERR_AO
2711		/*
2712		 * Other callers might not initialize the si_lsb field,
2713		 * so check explicitly for the right codes here.
2714		 */
2715		if (from->si_signo == SIGBUS &&
2716		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2717			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2718#endif
2719#ifdef SEGV_BNDERR
2720		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2721			err |= __put_user(from->si_lower, &to->si_lower);
2722			err |= __put_user(from->si_upper, &to->si_upper);
2723		}
2724#endif
2725#ifdef SEGV_PKUERR
2726		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2727			err |= __put_user(from->si_pkey, &to->si_pkey);
2728#endif
2729		break;
2730	case __SI_CHLD:
2731		err |= __put_user(from->si_pid, &to->si_pid);
2732		err |= __put_user(from->si_uid, &to->si_uid);
2733		err |= __put_user(from->si_status, &to->si_status);
2734		err |= __put_user(from->si_utime, &to->si_utime);
2735		err |= __put_user(from->si_stime, &to->si_stime);
2736		break;
2737	case __SI_RT: /* This is not generated by the kernel as of now. */
2738	case __SI_MESGQ: /* But this is */
2739		err |= __put_user(from->si_pid, &to->si_pid);
2740		err |= __put_user(from->si_uid, &to->si_uid);
2741		err |= __put_user(from->si_ptr, &to->si_ptr);
2742		break;
2743#ifdef __ARCH_SIGSYS
2744	case __SI_SYS:
2745		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2746		err |= __put_user(from->si_syscall, &to->si_syscall);
2747		err |= __put_user(from->si_arch, &to->si_arch);
2748		break;
2749#endif
2750	default: /* this is just in case for now ... */
2751		err |= __put_user(from->si_pid, &to->si_pid);
2752		err |= __put_user(from->si_uid, &to->si_uid);
2753		break;
2754	}
2755	return err;
2756}
2757
2758#endif
2759
2760/**
2761 *  do_sigtimedwait - wait for queued signals specified in @which
2762 *  @which: queued signals to wait for
2763 *  @info: if non-null, the signal's siginfo is returned here
2764 *  @ts: upper bound on process time suspension
2765 */
2766int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2767		    const struct timespec *ts)
2768{
2769	ktime_t *to = NULL, timeout = KTIME_MAX;
2770	struct task_struct *tsk = current;
 
2771	sigset_t mask = *which;
2772	int sig, ret = 0;
2773
2774	if (ts) {
2775		if (!timespec_valid(ts))
2776			return -EINVAL;
2777		timeout = timespec_to_ktime(*ts);
2778		to = &timeout;
 
 
 
 
 
2779	}
2780
2781	/*
2782	 * Invert the set of allowed signals to get those we want to block.
2783	 */
2784	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2785	signotset(&mask);
2786
2787	spin_lock_irq(&tsk->sighand->siglock);
2788	sig = dequeue_signal(tsk, &mask, info);
2789	if (!sig && timeout) {
2790		/*
2791		 * None ready, temporarily unblock those we're interested
2792		 * while we are sleeping in so that we'll be awakened when
2793		 * they arrive. Unblocking is always fine, we can avoid
2794		 * set_current_blocked().
2795		 */
2796		tsk->real_blocked = tsk->blocked;
2797		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2798		recalc_sigpending();
2799		spin_unlock_irq(&tsk->sighand->siglock);
2800
2801		__set_current_state(TASK_INTERRUPTIBLE);
2802		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2803							 HRTIMER_MODE_REL);
2804		spin_lock_irq(&tsk->sighand->siglock);
2805		__set_task_blocked(tsk, &tsk->real_blocked);
2806		sigemptyset(&tsk->real_blocked);
2807		sig = dequeue_signal(tsk, &mask, info);
2808	}
2809	spin_unlock_irq(&tsk->sighand->siglock);
2810
2811	if (sig)
2812		return sig;
2813	return ret ? -EINTR : -EAGAIN;
2814}
2815
2816/**
2817 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2818 *			in @uthese
2819 *  @uthese: queued signals to wait for
2820 *  @uinfo: if non-null, the signal's siginfo is returned here
2821 *  @uts: upper bound on process time suspension
2822 *  @sigsetsize: size of sigset_t type
2823 */
2824SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2825		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2826		size_t, sigsetsize)
2827{
2828	sigset_t these;
2829	struct timespec ts;
2830	siginfo_t info;
2831	int ret;
2832
2833	/* XXX: Don't preclude handling different sized sigset_t's.  */
2834	if (sigsetsize != sizeof(sigset_t))
2835		return -EINVAL;
2836
2837	if (copy_from_user(&these, uthese, sizeof(these)))
2838		return -EFAULT;
2839
2840	if (uts) {
2841		if (copy_from_user(&ts, uts, sizeof(ts)))
2842			return -EFAULT;
2843	}
2844
2845	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2846
2847	if (ret > 0 && uinfo) {
2848		if (copy_siginfo_to_user(uinfo, &info))
2849			ret = -EFAULT;
2850	}
2851
2852	return ret;
2853}
2854
2855/**
2856 *  sys_kill - send a signal to a process
2857 *  @pid: the PID of the process
2858 *  @sig: signal to be sent
2859 */
2860SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2861{
2862	struct siginfo info;
2863
2864	info.si_signo = sig;
2865	info.si_errno = 0;
2866	info.si_code = SI_USER;
2867	info.si_pid = task_tgid_vnr(current);
2868	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2869
2870	return kill_something_info(sig, &info, pid);
2871}
2872
2873static int
2874do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2875{
2876	struct task_struct *p;
2877	int error = -ESRCH;
2878
2879	rcu_read_lock();
2880	p = find_task_by_vpid(pid);
2881	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2882		error = check_kill_permission(sig, info, p);
2883		/*
2884		 * The null signal is a permissions and process existence
2885		 * probe.  No signal is actually delivered.
2886		 */
2887		if (!error && sig) {
2888			error = do_send_sig_info(sig, info, p, false);
2889			/*
2890			 * If lock_task_sighand() failed we pretend the task
2891			 * dies after receiving the signal. The window is tiny,
2892			 * and the signal is private anyway.
2893			 */
2894			if (unlikely(error == -ESRCH))
2895				error = 0;
2896		}
2897	}
2898	rcu_read_unlock();
2899
2900	return error;
2901}
2902
2903static int do_tkill(pid_t tgid, pid_t pid, int sig)
2904{
2905	struct siginfo info = {};
2906
2907	info.si_signo = sig;
2908	info.si_errno = 0;
2909	info.si_code = SI_TKILL;
2910	info.si_pid = task_tgid_vnr(current);
2911	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2912
2913	return do_send_specific(tgid, pid, sig, &info);
2914}
2915
2916/**
2917 *  sys_tgkill - send signal to one specific thread
2918 *  @tgid: the thread group ID of the thread
2919 *  @pid: the PID of the thread
2920 *  @sig: signal to be sent
2921 *
2922 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2923 *  exists but it's not belonging to the target process anymore. This
2924 *  method solves the problem of threads exiting and PIDs getting reused.
2925 */
2926SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2927{
2928	/* This is only valid for single tasks */
2929	if (pid <= 0 || tgid <= 0)
2930		return -EINVAL;
2931
2932	return do_tkill(tgid, pid, sig);
2933}
2934
2935/**
2936 *  sys_tkill - send signal to one specific task
2937 *  @pid: the PID of the task
2938 *  @sig: signal to be sent
2939 *
2940 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2941 */
2942SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2943{
2944	/* This is only valid for single tasks */
2945	if (pid <= 0)
2946		return -EINVAL;
2947
2948	return do_tkill(0, pid, sig);
2949}
2950
2951static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2952{
2953	/* Not even root can pretend to send signals from the kernel.
2954	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2955	 */
2956	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2957	    (task_pid_vnr(current) != pid))
2958		return -EPERM;
2959
2960	info->si_signo = sig;
2961
2962	/* POSIX.1b doesn't mention process groups.  */
2963	return kill_proc_info(sig, info, pid);
2964}
2965
2966/**
2967 *  sys_rt_sigqueueinfo - send signal information to a signal
2968 *  @pid: the PID of the thread
2969 *  @sig: signal to be sent
2970 *  @uinfo: signal info to be sent
2971 */
2972SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2973		siginfo_t __user *, uinfo)
2974{
2975	siginfo_t info;
2976	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2977		return -EFAULT;
2978	return do_rt_sigqueueinfo(pid, sig, &info);
2979}
2980
2981#ifdef CONFIG_COMPAT
2982COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2983			compat_pid_t, pid,
2984			int, sig,
2985			struct compat_siginfo __user *, uinfo)
2986{
2987	siginfo_t info = {};
2988	int ret = copy_siginfo_from_user32(&info, uinfo);
2989	if (unlikely(ret))
2990		return ret;
2991	return do_rt_sigqueueinfo(pid, sig, &info);
2992}
2993#endif
2994
2995static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2996{
2997	/* This is only valid for single tasks */
2998	if (pid <= 0 || tgid <= 0)
2999		return -EINVAL;
3000
3001	/* Not even root can pretend to send signals from the kernel.
3002	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3003	 */
3004	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3005	    (task_pid_vnr(current) != pid))
3006		return -EPERM;
3007
3008	info->si_signo = sig;
3009
3010	return do_send_specific(tgid, pid, sig, info);
3011}
3012
3013SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3014		siginfo_t __user *, uinfo)
3015{
3016	siginfo_t info;
3017
3018	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3019		return -EFAULT;
3020
3021	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3022}
3023
3024#ifdef CONFIG_COMPAT
3025COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3026			compat_pid_t, tgid,
3027			compat_pid_t, pid,
3028			int, sig,
3029			struct compat_siginfo __user *, uinfo)
3030{
3031	siginfo_t info = {};
3032
3033	if (copy_siginfo_from_user32(&info, uinfo))
3034		return -EFAULT;
3035	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3036}
3037#endif
3038
3039/*
3040 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3041 */
3042void kernel_sigaction(int sig, __sighandler_t action)
3043{
3044	spin_lock_irq(&current->sighand->siglock);
3045	current->sighand->action[sig - 1].sa.sa_handler = action;
3046	if (action == SIG_IGN) {
3047		sigset_t mask;
3048
3049		sigemptyset(&mask);
3050		sigaddset(&mask, sig);
3051
3052		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3053		flush_sigqueue_mask(&mask, &current->pending);
3054		recalc_sigpending();
3055	}
3056	spin_unlock_irq(&current->sighand->siglock);
3057}
3058EXPORT_SYMBOL(kernel_sigaction);
3059
3060void __weak sigaction_compat_abi(struct k_sigaction *act,
3061		struct k_sigaction *oact)
3062{
3063}
3064
3065int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3066{
3067	struct task_struct *p = current, *t;
3068	struct k_sigaction *k;
3069	sigset_t mask;
3070
3071	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3072		return -EINVAL;
3073
3074	k = &p->sighand->action[sig-1];
3075
3076	spin_lock_irq(&p->sighand->siglock);
3077	if (oact)
3078		*oact = *k;
3079
3080	sigaction_compat_abi(act, oact);
3081
3082	if (act) {
3083		sigdelsetmask(&act->sa.sa_mask,
3084			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3085		*k = *act;
3086		/*
3087		 * POSIX 3.3.1.3:
3088		 *  "Setting a signal action to SIG_IGN for a signal that is
3089		 *   pending shall cause the pending signal to be discarded,
3090		 *   whether or not it is blocked."
3091		 *
3092		 *  "Setting a signal action to SIG_DFL for a signal that is
3093		 *   pending and whose default action is to ignore the signal
3094		 *   (for example, SIGCHLD), shall cause the pending signal to
3095		 *   be discarded, whether or not it is blocked"
3096		 */
3097		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3098			sigemptyset(&mask);
3099			sigaddset(&mask, sig);
3100			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3101			for_each_thread(p, t)
3102				flush_sigqueue_mask(&mask, &t->pending);
3103		}
3104	}
3105
3106	spin_unlock_irq(&p->sighand->siglock);
3107	return 0;
3108}
3109
3110static int
3111do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3112{
3113	stack_t oss;
3114	int error;
3115
3116	oss.ss_sp = (void __user *) current->sas_ss_sp;
3117	oss.ss_size = current->sas_ss_size;
3118	oss.ss_flags = sas_ss_flags(sp) |
3119		(current->sas_ss_flags & SS_FLAG_BITS);
3120
3121	if (uss) {
3122		void __user *ss_sp;
3123		size_t ss_size;
3124		unsigned ss_flags;
3125		int ss_mode;
3126
3127		error = -EFAULT;
3128		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3129			goto out;
3130		error = __get_user(ss_sp, &uss->ss_sp) |
3131			__get_user(ss_flags, &uss->ss_flags) |
3132			__get_user(ss_size, &uss->ss_size);
3133		if (error)
3134			goto out;
3135
3136		error = -EPERM;
3137		if (on_sig_stack(sp))
3138			goto out;
3139
3140		ss_mode = ss_flags & ~SS_FLAG_BITS;
3141		error = -EINVAL;
3142		if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3143				ss_mode != 0)
 
 
 
 
 
 
3144			goto out;
3145
3146		if (ss_mode == SS_DISABLE) {
3147			ss_size = 0;
3148			ss_sp = NULL;
3149		} else {
3150			error = -ENOMEM;
3151			if (ss_size < MINSIGSTKSZ)
3152				goto out;
3153		}
3154
3155		current->sas_ss_sp = (unsigned long) ss_sp;
3156		current->sas_ss_size = ss_size;
3157		current->sas_ss_flags = ss_flags;
3158	}
3159
3160	error = 0;
3161	if (uoss) {
3162		error = -EFAULT;
3163		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3164			goto out;
3165		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3166			__put_user(oss.ss_size, &uoss->ss_size) |
3167			__put_user(oss.ss_flags, &uoss->ss_flags);
3168	}
3169
3170out:
3171	return error;
3172}
3173SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3174{
3175	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3176}
3177
3178int restore_altstack(const stack_t __user *uss)
3179{
3180	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3181	/* squash all but EFAULT for now */
3182	return err == -EFAULT ? err : 0;
3183}
3184
3185int __save_altstack(stack_t __user *uss, unsigned long sp)
3186{
3187	struct task_struct *t = current;
3188	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3189		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3190		__put_user(t->sas_ss_size, &uss->ss_size);
3191	if (err)
3192		return err;
3193	if (t->sas_ss_flags & SS_AUTODISARM)
3194		sas_ss_reset(t);
3195	return 0;
3196}
3197
3198#ifdef CONFIG_COMPAT
3199COMPAT_SYSCALL_DEFINE2(sigaltstack,
3200			const compat_stack_t __user *, uss_ptr,
3201			compat_stack_t __user *, uoss_ptr)
3202{
3203	stack_t uss, uoss;
3204	int ret;
3205	mm_segment_t seg;
3206
3207	if (uss_ptr) {
3208		compat_stack_t uss32;
3209
3210		memset(&uss, 0, sizeof(stack_t));
3211		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3212			return -EFAULT;
3213		uss.ss_sp = compat_ptr(uss32.ss_sp);
3214		uss.ss_flags = uss32.ss_flags;
3215		uss.ss_size = uss32.ss_size;
3216	}
3217	seg = get_fs();
3218	set_fs(KERNEL_DS);
3219	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3220			     (stack_t __force __user *) &uoss,
3221			     compat_user_stack_pointer());
3222	set_fs(seg);
3223	if (ret >= 0 && uoss_ptr)  {
3224		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3225		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3226		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3227		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3228			ret = -EFAULT;
3229	}
3230	return ret;
3231}
3232
3233int compat_restore_altstack(const compat_stack_t __user *uss)
3234{
3235	int err = compat_sys_sigaltstack(uss, NULL);
3236	/* squash all but -EFAULT for now */
3237	return err == -EFAULT ? err : 0;
3238}
3239
3240int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3241{
3242	int err;
3243	struct task_struct *t = current;
3244	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3245			 &uss->ss_sp) |
3246		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3247		__put_user(t->sas_ss_size, &uss->ss_size);
3248	if (err)
3249		return err;
3250	if (t->sas_ss_flags & SS_AUTODISARM)
3251		sas_ss_reset(t);
3252	return 0;
3253}
3254#endif
3255
3256#ifdef __ARCH_WANT_SYS_SIGPENDING
3257
3258/**
3259 *  sys_sigpending - examine pending signals
3260 *  @set: where mask of pending signal is returned
3261 */
3262SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3263{
3264	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
3265}
3266
3267#endif
3268
3269#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3270/**
3271 *  sys_sigprocmask - examine and change blocked signals
3272 *  @how: whether to add, remove, or set signals
3273 *  @nset: signals to add or remove (if non-null)
3274 *  @oset: previous value of signal mask if non-null
3275 *
3276 * Some platforms have their own version with special arguments;
3277 * others support only sys_rt_sigprocmask.
3278 */
3279
3280SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3281		old_sigset_t __user *, oset)
3282{
3283	old_sigset_t old_set, new_set;
3284	sigset_t new_blocked;
3285
3286	old_set = current->blocked.sig[0];
3287
3288	if (nset) {
3289		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3290			return -EFAULT;
3291
3292		new_blocked = current->blocked;
3293
3294		switch (how) {
3295		case SIG_BLOCK:
3296			sigaddsetmask(&new_blocked, new_set);
3297			break;
3298		case SIG_UNBLOCK:
3299			sigdelsetmask(&new_blocked, new_set);
3300			break;
3301		case SIG_SETMASK:
3302			new_blocked.sig[0] = new_set;
3303			break;
3304		default:
3305			return -EINVAL;
3306		}
3307
3308		set_current_blocked(&new_blocked);
3309	}
3310
3311	if (oset) {
3312		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3313			return -EFAULT;
3314	}
3315
3316	return 0;
3317}
3318#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3319
3320#ifndef CONFIG_ODD_RT_SIGACTION
3321/**
3322 *  sys_rt_sigaction - alter an action taken by a process
3323 *  @sig: signal to be sent
3324 *  @act: new sigaction
3325 *  @oact: used to save the previous sigaction
3326 *  @sigsetsize: size of sigset_t type
3327 */
3328SYSCALL_DEFINE4(rt_sigaction, int, sig,
3329		const struct sigaction __user *, act,
3330		struct sigaction __user *, oact,
3331		size_t, sigsetsize)
3332{
3333	struct k_sigaction new_sa, old_sa;
3334	int ret = -EINVAL;
3335
3336	/* XXX: Don't preclude handling different sized sigset_t's.  */
3337	if (sigsetsize != sizeof(sigset_t))
3338		goto out;
3339
3340	if (act) {
3341		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3342			return -EFAULT;
3343	}
3344
3345	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3346
3347	if (!ret && oact) {
3348		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3349			return -EFAULT;
3350	}
3351out:
3352	return ret;
3353}
3354#ifdef CONFIG_COMPAT
3355COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3356		const struct compat_sigaction __user *, act,
3357		struct compat_sigaction __user *, oact,
3358		compat_size_t, sigsetsize)
3359{
3360	struct k_sigaction new_ka, old_ka;
3361	compat_sigset_t mask;
3362#ifdef __ARCH_HAS_SA_RESTORER
3363	compat_uptr_t restorer;
3364#endif
3365	int ret;
3366
3367	/* XXX: Don't preclude handling different sized sigset_t's.  */
3368	if (sigsetsize != sizeof(compat_sigset_t))
3369		return -EINVAL;
3370
3371	if (act) {
3372		compat_uptr_t handler;
3373		ret = get_user(handler, &act->sa_handler);
3374		new_ka.sa.sa_handler = compat_ptr(handler);
3375#ifdef __ARCH_HAS_SA_RESTORER
3376		ret |= get_user(restorer, &act->sa_restorer);
3377		new_ka.sa.sa_restorer = compat_ptr(restorer);
3378#endif
3379		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3380		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3381		if (ret)
3382			return -EFAULT;
3383		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3384	}
3385
3386	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3387	if (!ret && oact) {
3388		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3389		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3390			       &oact->sa_handler);
3391		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3392		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3393#ifdef __ARCH_HAS_SA_RESTORER
3394		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3395				&oact->sa_restorer);
3396#endif
3397	}
3398	return ret;
3399}
3400#endif
3401#endif /* !CONFIG_ODD_RT_SIGACTION */
3402
3403#ifdef CONFIG_OLD_SIGACTION
3404SYSCALL_DEFINE3(sigaction, int, sig,
3405		const struct old_sigaction __user *, act,
3406	        struct old_sigaction __user *, oact)
3407{
3408	struct k_sigaction new_ka, old_ka;
3409	int ret;
3410
3411	if (act) {
3412		old_sigset_t mask;
3413		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3414		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3415		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3416		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3417		    __get_user(mask, &act->sa_mask))
3418			return -EFAULT;
3419#ifdef __ARCH_HAS_KA_RESTORER
3420		new_ka.ka_restorer = NULL;
3421#endif
3422		siginitset(&new_ka.sa.sa_mask, mask);
3423	}
3424
3425	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3426
3427	if (!ret && oact) {
3428		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3429		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3430		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3431		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3432		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3433			return -EFAULT;
3434	}
3435
3436	return ret;
3437}
3438#endif
3439#ifdef CONFIG_COMPAT_OLD_SIGACTION
3440COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3441		const struct compat_old_sigaction __user *, act,
3442	        struct compat_old_sigaction __user *, oact)
3443{
3444	struct k_sigaction new_ka, old_ka;
3445	int ret;
3446	compat_old_sigset_t mask;
3447	compat_uptr_t handler, restorer;
3448
3449	if (act) {
3450		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3451		    __get_user(handler, &act->sa_handler) ||
3452		    __get_user(restorer, &act->sa_restorer) ||
3453		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3454		    __get_user(mask, &act->sa_mask))
3455			return -EFAULT;
3456
3457#ifdef __ARCH_HAS_KA_RESTORER
3458		new_ka.ka_restorer = NULL;
3459#endif
3460		new_ka.sa.sa_handler = compat_ptr(handler);
3461		new_ka.sa.sa_restorer = compat_ptr(restorer);
3462		siginitset(&new_ka.sa.sa_mask, mask);
3463	}
3464
3465	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3466
3467	if (!ret && oact) {
3468		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3469		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3470			       &oact->sa_handler) ||
3471		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3472			       &oact->sa_restorer) ||
3473		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3474		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3475			return -EFAULT;
3476	}
3477	return ret;
3478}
3479#endif
3480
3481#ifdef CONFIG_SGETMASK_SYSCALL
3482
3483/*
3484 * For backwards compatibility.  Functionality superseded by sigprocmask.
3485 */
3486SYSCALL_DEFINE0(sgetmask)
3487{
3488	/* SMP safe */
3489	return current->blocked.sig[0];
3490}
3491
3492SYSCALL_DEFINE1(ssetmask, int, newmask)
3493{
3494	int old = current->blocked.sig[0];
3495	sigset_t newset;
3496
3497	siginitset(&newset, newmask);
3498	set_current_blocked(&newset);
3499
3500	return old;
3501}
3502#endif /* CONFIG_SGETMASK_SYSCALL */
3503
3504#ifdef __ARCH_WANT_SYS_SIGNAL
3505/*
3506 * For backwards compatibility.  Functionality superseded by sigaction.
3507 */
3508SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3509{
3510	struct k_sigaction new_sa, old_sa;
3511	int ret;
3512
3513	new_sa.sa.sa_handler = handler;
3514	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3515	sigemptyset(&new_sa.sa.sa_mask);
3516
3517	ret = do_sigaction(sig, &new_sa, &old_sa);
3518
3519	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3520}
3521#endif /* __ARCH_WANT_SYS_SIGNAL */
3522
3523#ifdef __ARCH_WANT_SYS_PAUSE
3524
3525SYSCALL_DEFINE0(pause)
3526{
3527	while (!signal_pending(current)) {
3528		__set_current_state(TASK_INTERRUPTIBLE);
3529		schedule();
3530	}
3531	return -ERESTARTNOHAND;
3532}
3533
3534#endif
3535
3536static int sigsuspend(sigset_t *set)
3537{
3538	current->saved_sigmask = current->blocked;
3539	set_current_blocked(set);
3540
3541	while (!signal_pending(current)) {
3542		__set_current_state(TASK_INTERRUPTIBLE);
3543		schedule();
3544	}
3545	set_restore_sigmask();
3546	return -ERESTARTNOHAND;
3547}
3548
3549/**
3550 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3551 *	@unewset value until a signal is received
3552 *  @unewset: new signal mask value
3553 *  @sigsetsize: size of sigset_t type
3554 */
3555SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3556{
3557	sigset_t newset;
3558
3559	/* XXX: Don't preclude handling different sized sigset_t's.  */
3560	if (sigsetsize != sizeof(sigset_t))
3561		return -EINVAL;
3562
3563	if (copy_from_user(&newset, unewset, sizeof(newset)))
3564		return -EFAULT;
3565	return sigsuspend(&newset);
3566}
3567 
3568#ifdef CONFIG_COMPAT
3569COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3570{
3571#ifdef __BIG_ENDIAN
3572	sigset_t newset;
3573	compat_sigset_t newset32;
3574
3575	/* XXX: Don't preclude handling different sized sigset_t's.  */
3576	if (sigsetsize != sizeof(sigset_t))
3577		return -EINVAL;
3578
3579	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3580		return -EFAULT;
3581	sigset_from_compat(&newset, &newset32);
3582	return sigsuspend(&newset);
3583#else
3584	/* on little-endian bitmaps don't care about granularity */
3585	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3586#endif
3587}
3588#endif
3589
3590#ifdef CONFIG_OLD_SIGSUSPEND
3591SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3592{
3593	sigset_t blocked;
3594	siginitset(&blocked, mask);
3595	return sigsuspend(&blocked);
3596}
3597#endif
3598#ifdef CONFIG_OLD_SIGSUSPEND3
3599SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3600{
3601	sigset_t blocked;
3602	siginitset(&blocked, mask);
3603	return sigsuspend(&blocked);
3604}
3605#endif
3606
3607__weak const char *arch_vma_name(struct vm_area_struct *vma)
3608{
3609	return NULL;
3610}
3611
3612void __init signals_init(void)
3613{
3614	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3615	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3616		!= offsetof(struct siginfo, _sifields._pad));
3617
3618	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3619}
3620
3621#ifdef CONFIG_KGDB_KDB
3622#include <linux/kdb.h>
3623/*
3624 * kdb_send_sig_info - Allows kdb to send signals without exposing
3625 * signal internals.  This function checks if the required locks are
3626 * available before calling the main signal code, to avoid kdb
3627 * deadlocks.
3628 */
3629void
3630kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3631{
3632	static struct task_struct *kdb_prev_t;
3633	int sig, new_t;
3634	if (!spin_trylock(&t->sighand->siglock)) {
3635		kdb_printf("Can't do kill command now.\n"
3636			   "The sigmask lock is held somewhere else in "
3637			   "kernel, try again later\n");
3638		return;
3639	}
3640	spin_unlock(&t->sighand->siglock);
3641	new_t = kdb_prev_t != t;
3642	kdb_prev_t = t;
3643	if (t->state != TASK_RUNNING && new_t) {
3644		kdb_printf("Process is not RUNNING, sending a signal from "
3645			   "kdb risks deadlock\n"
3646			   "on the run queue locks. "
3647			   "The signal has _not_ been sent.\n"
3648			   "Reissue the kill command if you want to risk "
3649			   "the deadlock.\n");
3650		return;
3651	}
3652	sig = info->si_signo;
3653	if (send_sig_info(sig, info, t))
3654		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3655			   sig, t->pid);
3656	else
3657		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3658}
3659#endif	/* CONFIG_KGDB_KDB */