Linux Audio

Check our new training course

Loading...
v4.6
  1
  2#ifdef CONFIG_SCHEDSTATS
  3
  4/*
  5 * Expects runqueue lock to be held for atomicity of update
  6 */
  7static inline void
  8rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
  9{
 10	if (rq) {
 11		rq->rq_sched_info.run_delay += delta;
 12		rq->rq_sched_info.pcount++;
 13	}
 14}
 15
 16/*
 17 * Expects runqueue lock to be held for atomicity of update
 18 */
 19static inline void
 20rq_sched_info_depart(struct rq *rq, unsigned long long delta)
 21{
 22	if (rq)
 23		rq->rq_cpu_time += delta;
 24}
 25
 26static inline void
 27rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
 28{
 29	if (rq)
 30		rq->rq_sched_info.run_delay += delta;
 31}
 32# define schedstat_enabled()		static_branch_unlikely(&sched_schedstats)
 33# define schedstat_inc(rq, field)	do { if (schedstat_enabled()) { (rq)->field++; } } while (0)
 34# define schedstat_add(rq, field, amt)	do { if (schedstat_enabled()) { (rq)->field += (amt); } } while (0)
 35# define schedstat_set(var, val)	do { if (schedstat_enabled()) { var = (val); } } while (0)
 
 
 
 36#else /* !CONFIG_SCHEDSTATS */
 37static inline void
 38rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
 39{}
 40static inline void
 41rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
 42{}
 43static inline void
 44rq_sched_info_depart(struct rq *rq, unsigned long long delta)
 45{}
 46# define schedstat_enabled()		0
 47# define schedstat_inc(rq, field)	do { } while (0)
 48# define schedstat_add(rq, field, amt)	do { } while (0)
 49# define schedstat_set(var, val)	do { } while (0)
 50#endif
 
 
 51
 52#ifdef CONFIG_SCHED_INFO
 53static inline void sched_info_reset_dequeued(struct task_struct *t)
 54{
 55	t->sched_info.last_queued = 0;
 56}
 57
 58/*
 59 * We are interested in knowing how long it was from the *first* time a
 60 * task was queued to the time that it finally hit a cpu, we call this routine
 61 * from dequeue_task() to account for possible rq->clock skew across cpus. The
 62 * delta taken on each cpu would annul the skew.
 63 */
 64static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
 65{
 66	unsigned long long now = rq_clock(rq), delta = 0;
 67
 68	if (unlikely(sched_info_on()))
 69		if (t->sched_info.last_queued)
 70			delta = now - t->sched_info.last_queued;
 71	sched_info_reset_dequeued(t);
 72	t->sched_info.run_delay += delta;
 73
 74	rq_sched_info_dequeued(rq, delta);
 75}
 76
 77/*
 78 * Called when a task finally hits the cpu.  We can now calculate how
 79 * long it was waiting to run.  We also note when it began so that we
 80 * can keep stats on how long its timeslice is.
 81 */
 82static void sched_info_arrive(struct rq *rq, struct task_struct *t)
 83{
 84	unsigned long long now = rq_clock(rq), delta = 0;
 85
 86	if (t->sched_info.last_queued)
 87		delta = now - t->sched_info.last_queued;
 88	sched_info_reset_dequeued(t);
 89	t->sched_info.run_delay += delta;
 90	t->sched_info.last_arrival = now;
 91	t->sched_info.pcount++;
 92
 93	rq_sched_info_arrive(rq, delta);
 94}
 95
 96/*
 97 * This function is only called from enqueue_task(), but also only updates
 98 * the timestamp if it is already not set.  It's assumed that
 99 * sched_info_dequeued() will clear that stamp when appropriate.
100 */
101static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
102{
103	if (unlikely(sched_info_on()))
104		if (!t->sched_info.last_queued)
105			t->sched_info.last_queued = rq_clock(rq);
106}
107
108/*
109 * Called when a process ceases being the active-running process involuntarily
110 * due, typically, to expiring its time slice (this may also be called when
111 * switching to the idle task).  Now we can calculate how long we ran.
112 * Also, if the process is still in the TASK_RUNNING state, call
113 * sched_info_queued() to mark that it has now again started waiting on
114 * the runqueue.
115 */
116static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
117{
118	unsigned long long delta = rq_clock(rq) -
119					t->sched_info.last_arrival;
120
121	rq_sched_info_depart(rq, delta);
122
123	if (t->state == TASK_RUNNING)
124		sched_info_queued(rq, t);
125}
126
127/*
128 * Called when tasks are switched involuntarily due, typically, to expiring
129 * their time slice.  (This may also be called when switching to or from
130 * the idle task.)  We are only called when prev != next.
131 */
132static inline void
133__sched_info_switch(struct rq *rq,
134		    struct task_struct *prev, struct task_struct *next)
135{
136	/*
137	 * prev now departs the cpu.  It's not interesting to record
138	 * stats about how efficient we were at scheduling the idle
139	 * process, however.
140	 */
141	if (prev != rq->idle)
142		sched_info_depart(rq, prev);
143
144	if (next != rq->idle)
145		sched_info_arrive(rq, next);
146}
147static inline void
148sched_info_switch(struct rq *rq,
149		  struct task_struct *prev, struct task_struct *next)
150{
151	if (unlikely(sched_info_on()))
152		__sched_info_switch(rq, prev, next);
153}
154#else
155#define sched_info_queued(rq, t)		do { } while (0)
156#define sched_info_reset_dequeued(t)	do { } while (0)
157#define sched_info_dequeued(rq, t)		do { } while (0)
158#define sched_info_depart(rq, t)		do { } while (0)
159#define sched_info_arrive(rq, next)		do { } while (0)
160#define sched_info_switch(rq, t, next)		do { } while (0)
161#endif /* CONFIG_SCHED_INFO */
162
163/*
164 * The following are functions that support scheduler-internal time accounting.
165 * These functions are generally called at the timer tick.  None of this depends
166 * on CONFIG_SCHEDSTATS.
167 */
168
169/**
170 * cputimer_running - return true if cputimer is running
171 *
172 * @tsk:	Pointer to target task.
173 */
174static inline bool cputimer_running(struct task_struct *tsk)
175
176{
177	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
178
179	/* Check if cputimer isn't running. This is accessed without locking. */
180	if (!READ_ONCE(cputimer->running))
181		return false;
182
183	/*
184	 * After we flush the task's sum_exec_runtime to sig->sum_sched_runtime
185	 * in __exit_signal(), we won't account to the signal struct further
186	 * cputime consumed by that task, even though the task can still be
187	 * ticking after __exit_signal().
188	 *
189	 * In order to keep a consistent behaviour between thread group cputime
190	 * and thread group cputimer accounting, lets also ignore the cputime
191	 * elapsing after __exit_signal() in any thread group timer running.
192	 *
193	 * This makes sure that POSIX CPU clocks and timers are synchronized, so
194	 * that a POSIX CPU timer won't expire while the corresponding POSIX CPU
195	 * clock delta is behind the expiring timer value.
196	 */
197	if (unlikely(!tsk->sighand))
198		return false;
199
200	return true;
201}
202
203/**
204 * account_group_user_time - Maintain utime for a thread group.
205 *
206 * @tsk:	Pointer to task structure.
207 * @cputime:	Time value by which to increment the utime field of the
208 *		thread_group_cputime structure.
209 *
210 * If thread group time is being maintained, get the structure for the
211 * running CPU and update the utime field there.
212 */
213static inline void account_group_user_time(struct task_struct *tsk,
214					   cputime_t cputime)
215{
216	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
217
218	if (!cputimer_running(tsk))
219		return;
220
221	atomic64_add(cputime, &cputimer->cputime_atomic.utime);
222}
223
224/**
225 * account_group_system_time - Maintain stime for a thread group.
226 *
227 * @tsk:	Pointer to task structure.
228 * @cputime:	Time value by which to increment the stime field of the
229 *		thread_group_cputime structure.
230 *
231 * If thread group time is being maintained, get the structure for the
232 * running CPU and update the stime field there.
233 */
234static inline void account_group_system_time(struct task_struct *tsk,
235					     cputime_t cputime)
236{
237	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
238
239	if (!cputimer_running(tsk))
240		return;
241
242	atomic64_add(cputime, &cputimer->cputime_atomic.stime);
243}
244
245/**
246 * account_group_exec_runtime - Maintain exec runtime for a thread group.
247 *
248 * @tsk:	Pointer to task structure.
249 * @ns:		Time value by which to increment the sum_exec_runtime field
250 *		of the thread_group_cputime structure.
251 *
252 * If thread group time is being maintained, get the structure for the
253 * running CPU and update the sum_exec_runtime field there.
254 */
255static inline void account_group_exec_runtime(struct task_struct *tsk,
256					      unsigned long long ns)
257{
258	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
259
260	if (!cputimer_running(tsk))
261		return;
262
263	atomic64_add(ns, &cputimer->cputime_atomic.sum_exec_runtime);
264}
v4.10.11
  1
  2#ifdef CONFIG_SCHEDSTATS
  3
  4/*
  5 * Expects runqueue lock to be held for atomicity of update
  6 */
  7static inline void
  8rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
  9{
 10	if (rq) {
 11		rq->rq_sched_info.run_delay += delta;
 12		rq->rq_sched_info.pcount++;
 13	}
 14}
 15
 16/*
 17 * Expects runqueue lock to be held for atomicity of update
 18 */
 19static inline void
 20rq_sched_info_depart(struct rq *rq, unsigned long long delta)
 21{
 22	if (rq)
 23		rq->rq_cpu_time += delta;
 24}
 25
 26static inline void
 27rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
 28{
 29	if (rq)
 30		rq->rq_sched_info.run_delay += delta;
 31}
 32#define schedstat_enabled()		static_branch_unlikely(&sched_schedstats)
 33#define schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0)
 34#define schedstat_add(var, amt)		do { if (schedstat_enabled()) { var += (amt); } } while (0)
 35#define schedstat_set(var, val)		do { if (schedstat_enabled()) { var = (val); } } while (0)
 36#define schedstat_val(var)		(var)
 37#define schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0)
 38
 39#else /* !CONFIG_SCHEDSTATS */
 40static inline void
 41rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
 42{}
 43static inline void
 44rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
 45{}
 46static inline void
 47rq_sched_info_depart(struct rq *rq, unsigned long long delta)
 48{}
 49#define schedstat_enabled()		0
 50#define schedstat_inc(var)		do { } while (0)
 51#define schedstat_add(var, amt)		do { } while (0)
 52#define schedstat_set(var, val)		do { } while (0)
 53#define schedstat_val(var)		0
 54#define schedstat_val_or_zero(var)	0
 55#endif /* CONFIG_SCHEDSTATS */
 56
 57#ifdef CONFIG_SCHED_INFO
 58static inline void sched_info_reset_dequeued(struct task_struct *t)
 59{
 60	t->sched_info.last_queued = 0;
 61}
 62
 63/*
 64 * We are interested in knowing how long it was from the *first* time a
 65 * task was queued to the time that it finally hit a cpu, we call this routine
 66 * from dequeue_task() to account for possible rq->clock skew across cpus. The
 67 * delta taken on each cpu would annul the skew.
 68 */
 69static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
 70{
 71	unsigned long long now = rq_clock(rq), delta = 0;
 72
 73	if (unlikely(sched_info_on()))
 74		if (t->sched_info.last_queued)
 75			delta = now - t->sched_info.last_queued;
 76	sched_info_reset_dequeued(t);
 77	t->sched_info.run_delay += delta;
 78
 79	rq_sched_info_dequeued(rq, delta);
 80}
 81
 82/*
 83 * Called when a task finally hits the cpu.  We can now calculate how
 84 * long it was waiting to run.  We also note when it began so that we
 85 * can keep stats on how long its timeslice is.
 86 */
 87static void sched_info_arrive(struct rq *rq, struct task_struct *t)
 88{
 89	unsigned long long now = rq_clock(rq), delta = 0;
 90
 91	if (t->sched_info.last_queued)
 92		delta = now - t->sched_info.last_queued;
 93	sched_info_reset_dequeued(t);
 94	t->sched_info.run_delay += delta;
 95	t->sched_info.last_arrival = now;
 96	t->sched_info.pcount++;
 97
 98	rq_sched_info_arrive(rq, delta);
 99}
100
101/*
102 * This function is only called from enqueue_task(), but also only updates
103 * the timestamp if it is already not set.  It's assumed that
104 * sched_info_dequeued() will clear that stamp when appropriate.
105 */
106static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
107{
108	if (unlikely(sched_info_on()))
109		if (!t->sched_info.last_queued)
110			t->sched_info.last_queued = rq_clock(rq);
111}
112
113/*
114 * Called when a process ceases being the active-running process involuntarily
115 * due, typically, to expiring its time slice (this may also be called when
116 * switching to the idle task).  Now we can calculate how long we ran.
117 * Also, if the process is still in the TASK_RUNNING state, call
118 * sched_info_queued() to mark that it has now again started waiting on
119 * the runqueue.
120 */
121static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
122{
123	unsigned long long delta = rq_clock(rq) -
124					t->sched_info.last_arrival;
125
126	rq_sched_info_depart(rq, delta);
127
128	if (t->state == TASK_RUNNING)
129		sched_info_queued(rq, t);
130}
131
132/*
133 * Called when tasks are switched involuntarily due, typically, to expiring
134 * their time slice.  (This may also be called when switching to or from
135 * the idle task.)  We are only called when prev != next.
136 */
137static inline void
138__sched_info_switch(struct rq *rq,
139		    struct task_struct *prev, struct task_struct *next)
140{
141	/*
142	 * prev now departs the cpu.  It's not interesting to record
143	 * stats about how efficient we were at scheduling the idle
144	 * process, however.
145	 */
146	if (prev != rq->idle)
147		sched_info_depart(rq, prev);
148
149	if (next != rq->idle)
150		sched_info_arrive(rq, next);
151}
152static inline void
153sched_info_switch(struct rq *rq,
154		  struct task_struct *prev, struct task_struct *next)
155{
156	if (unlikely(sched_info_on()))
157		__sched_info_switch(rq, prev, next);
158}
159#else
160#define sched_info_queued(rq, t)		do { } while (0)
161#define sched_info_reset_dequeued(t)	do { } while (0)
162#define sched_info_dequeued(rq, t)		do { } while (0)
163#define sched_info_depart(rq, t)		do { } while (0)
164#define sched_info_arrive(rq, next)		do { } while (0)
165#define sched_info_switch(rq, t, next)		do { } while (0)
166#endif /* CONFIG_SCHED_INFO */
167
168/*
169 * The following are functions that support scheduler-internal time accounting.
170 * These functions are generally called at the timer tick.  None of this depends
171 * on CONFIG_SCHEDSTATS.
172 */
173
174/**
175 * cputimer_running - return true if cputimer is running
176 *
177 * @tsk:	Pointer to target task.
178 */
179static inline bool cputimer_running(struct task_struct *tsk)
180
181{
182	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
183
184	/* Check if cputimer isn't running. This is accessed without locking. */
185	if (!READ_ONCE(cputimer->running))
186		return false;
187
188	/*
189	 * After we flush the task's sum_exec_runtime to sig->sum_sched_runtime
190	 * in __exit_signal(), we won't account to the signal struct further
191	 * cputime consumed by that task, even though the task can still be
192	 * ticking after __exit_signal().
193	 *
194	 * In order to keep a consistent behaviour between thread group cputime
195	 * and thread group cputimer accounting, lets also ignore the cputime
196	 * elapsing after __exit_signal() in any thread group timer running.
197	 *
198	 * This makes sure that POSIX CPU clocks and timers are synchronized, so
199	 * that a POSIX CPU timer won't expire while the corresponding POSIX CPU
200	 * clock delta is behind the expiring timer value.
201	 */
202	if (unlikely(!tsk->sighand))
203		return false;
204
205	return true;
206}
207
208/**
209 * account_group_user_time - Maintain utime for a thread group.
210 *
211 * @tsk:	Pointer to task structure.
212 * @cputime:	Time value by which to increment the utime field of the
213 *		thread_group_cputime structure.
214 *
215 * If thread group time is being maintained, get the structure for the
216 * running CPU and update the utime field there.
217 */
218static inline void account_group_user_time(struct task_struct *tsk,
219					   cputime_t cputime)
220{
221	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
222
223	if (!cputimer_running(tsk))
224		return;
225
226	atomic64_add(cputime, &cputimer->cputime_atomic.utime);
227}
228
229/**
230 * account_group_system_time - Maintain stime for a thread group.
231 *
232 * @tsk:	Pointer to task structure.
233 * @cputime:	Time value by which to increment the stime field of the
234 *		thread_group_cputime structure.
235 *
236 * If thread group time is being maintained, get the structure for the
237 * running CPU and update the stime field there.
238 */
239static inline void account_group_system_time(struct task_struct *tsk,
240					     cputime_t cputime)
241{
242	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
243
244	if (!cputimer_running(tsk))
245		return;
246
247	atomic64_add(cputime, &cputimer->cputime_atomic.stime);
248}
249
250/**
251 * account_group_exec_runtime - Maintain exec runtime for a thread group.
252 *
253 * @tsk:	Pointer to task structure.
254 * @ns:		Time value by which to increment the sum_exec_runtime field
255 *		of the thread_group_cputime structure.
256 *
257 * If thread group time is being maintained, get the structure for the
258 * running CPU and update the sum_exec_runtime field there.
259 */
260static inline void account_group_exec_runtime(struct task_struct *tsk,
261					      unsigned long long ns)
262{
263	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
264
265	if (!cputimer_running(tsk))
266		return;
267
268	atomic64_add(ns, &cputimer->cputime_atomic.sum_exec_runtime);
269}