Loading...
1/*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/vfs.h>
52#include <linux/vmalloc.h>
53#include <linux/errno.h>
54#include <linux/mount.h>
55#include <linux/seq_file.h>
56#include <linux/bitmap.h>
57#include <linux/crc-itu-t.h>
58#include <linux/log2.h>
59#include <asm/byteorder.h>
60
61#include "udf_sb.h"
62#include "udf_i.h"
63
64#include <linux/init.h>
65#include <linux/uaccess.h>
66
67#define VDS_POS_PRIMARY_VOL_DESC 0
68#define VDS_POS_UNALLOC_SPACE_DESC 1
69#define VDS_POS_LOGICAL_VOL_DESC 2
70#define VDS_POS_PARTITION_DESC 3
71#define VDS_POS_IMP_USE_VOL_DESC 4
72#define VDS_POS_VOL_DESC_PTR 5
73#define VDS_POS_TERMINATING_DESC 6
74#define VDS_POS_LENGTH 7
75
76#define UDF_DEFAULT_BLOCKSIZE 2048
77
78#define VSD_FIRST_SECTOR_OFFSET 32768
79#define VSD_MAX_SECTOR_OFFSET 0x800000
80
81enum { UDF_MAX_LINKS = 0xffff };
82
83/* These are the "meat" - everything else is stuffing */
84static int udf_fill_super(struct super_block *, void *, int);
85static void udf_put_super(struct super_block *);
86static int udf_sync_fs(struct super_block *, int);
87static int udf_remount_fs(struct super_block *, int *, char *);
88static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
89static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
90 struct kernel_lb_addr *);
91static void udf_load_fileset(struct super_block *, struct buffer_head *,
92 struct kernel_lb_addr *);
93static void udf_open_lvid(struct super_block *);
94static void udf_close_lvid(struct super_block *);
95static unsigned int udf_count_free(struct super_block *);
96static int udf_statfs(struct dentry *, struct kstatfs *);
97static int udf_show_options(struct seq_file *, struct dentry *);
98
99struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
100{
101 struct logicalVolIntegrityDesc *lvid;
102 unsigned int partnum;
103 unsigned int offset;
104
105 if (!UDF_SB(sb)->s_lvid_bh)
106 return NULL;
107 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
108 partnum = le32_to_cpu(lvid->numOfPartitions);
109 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
110 offsetof(struct logicalVolIntegrityDesc, impUse)) /
111 (2 * sizeof(uint32_t)) < partnum) {
112 udf_err(sb, "Logical volume integrity descriptor corrupted "
113 "(numOfPartitions = %u)!\n", partnum);
114 return NULL;
115 }
116 /* The offset is to skip freeSpaceTable and sizeTable arrays */
117 offset = partnum * 2 * sizeof(uint32_t);
118 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
119}
120
121/* UDF filesystem type */
122static struct dentry *udf_mount(struct file_system_type *fs_type,
123 int flags, const char *dev_name, void *data)
124{
125 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126}
127
128static struct file_system_type udf_fstype = {
129 .owner = THIS_MODULE,
130 .name = "udf",
131 .mount = udf_mount,
132 .kill_sb = kill_block_super,
133 .fs_flags = FS_REQUIRES_DEV,
134};
135MODULE_ALIAS_FS("udf");
136
137static struct kmem_cache *udf_inode_cachep;
138
139static struct inode *udf_alloc_inode(struct super_block *sb)
140{
141 struct udf_inode_info *ei;
142 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
143 if (!ei)
144 return NULL;
145
146 ei->i_unique = 0;
147 ei->i_lenExtents = 0;
148 ei->i_next_alloc_block = 0;
149 ei->i_next_alloc_goal = 0;
150 ei->i_strat4096 = 0;
151 init_rwsem(&ei->i_data_sem);
152 ei->cached_extent.lstart = -1;
153 spin_lock_init(&ei->i_extent_cache_lock);
154
155 return &ei->vfs_inode;
156}
157
158static void udf_i_callback(struct rcu_head *head)
159{
160 struct inode *inode = container_of(head, struct inode, i_rcu);
161 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162}
163
164static void udf_destroy_inode(struct inode *inode)
165{
166 call_rcu(&inode->i_rcu, udf_i_callback);
167}
168
169static void init_once(void *foo)
170{
171 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
172
173 ei->i_ext.i_data = NULL;
174 inode_init_once(&ei->vfs_inode);
175}
176
177static int __init init_inodecache(void)
178{
179 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
180 sizeof(struct udf_inode_info),
181 0, (SLAB_RECLAIM_ACCOUNT |
182 SLAB_MEM_SPREAD |
183 SLAB_ACCOUNT),
184 init_once);
185 if (!udf_inode_cachep)
186 return -ENOMEM;
187 return 0;
188}
189
190static void destroy_inodecache(void)
191{
192 /*
193 * Make sure all delayed rcu free inodes are flushed before we
194 * destroy cache.
195 */
196 rcu_barrier();
197 kmem_cache_destroy(udf_inode_cachep);
198}
199
200/* Superblock operations */
201static const struct super_operations udf_sb_ops = {
202 .alloc_inode = udf_alloc_inode,
203 .destroy_inode = udf_destroy_inode,
204 .write_inode = udf_write_inode,
205 .evict_inode = udf_evict_inode,
206 .put_super = udf_put_super,
207 .sync_fs = udf_sync_fs,
208 .statfs = udf_statfs,
209 .remount_fs = udf_remount_fs,
210 .show_options = udf_show_options,
211};
212
213struct udf_options {
214 unsigned char novrs;
215 unsigned int blocksize;
216 unsigned int session;
217 unsigned int lastblock;
218 unsigned int anchor;
219 unsigned int volume;
220 unsigned short partition;
221 unsigned int fileset;
222 unsigned int rootdir;
223 unsigned int flags;
224 umode_t umask;
225 kgid_t gid;
226 kuid_t uid;
227 umode_t fmode;
228 umode_t dmode;
229 struct nls_table *nls_map;
230};
231
232static int __init init_udf_fs(void)
233{
234 int err;
235
236 err = init_inodecache();
237 if (err)
238 goto out1;
239 err = register_filesystem(&udf_fstype);
240 if (err)
241 goto out;
242
243 return 0;
244
245out:
246 destroy_inodecache();
247
248out1:
249 return err;
250}
251
252static void __exit exit_udf_fs(void)
253{
254 unregister_filesystem(&udf_fstype);
255 destroy_inodecache();
256}
257
258module_init(init_udf_fs)
259module_exit(exit_udf_fs)
260
261static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
262{
263 struct udf_sb_info *sbi = UDF_SB(sb);
264
265 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
266 GFP_KERNEL);
267 if (!sbi->s_partmaps) {
268 udf_err(sb, "Unable to allocate space for %d partition maps\n",
269 count);
270 sbi->s_partitions = 0;
271 return -ENOMEM;
272 }
273
274 sbi->s_partitions = count;
275 return 0;
276}
277
278static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
279{
280 int i;
281 int nr_groups = bitmap->s_nr_groups;
282
283 for (i = 0; i < nr_groups; i++)
284 if (bitmap->s_block_bitmap[i])
285 brelse(bitmap->s_block_bitmap[i]);
286
287 kvfree(bitmap);
288}
289
290static void udf_free_partition(struct udf_part_map *map)
291{
292 int i;
293 struct udf_meta_data *mdata;
294
295 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
296 iput(map->s_uspace.s_table);
297 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
298 iput(map->s_fspace.s_table);
299 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
300 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
301 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
302 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
303 if (map->s_partition_type == UDF_SPARABLE_MAP15)
304 for (i = 0; i < 4; i++)
305 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
306 else if (map->s_partition_type == UDF_METADATA_MAP25) {
307 mdata = &map->s_type_specific.s_metadata;
308 iput(mdata->s_metadata_fe);
309 mdata->s_metadata_fe = NULL;
310
311 iput(mdata->s_mirror_fe);
312 mdata->s_mirror_fe = NULL;
313
314 iput(mdata->s_bitmap_fe);
315 mdata->s_bitmap_fe = NULL;
316 }
317}
318
319static void udf_sb_free_partitions(struct super_block *sb)
320{
321 struct udf_sb_info *sbi = UDF_SB(sb);
322 int i;
323 if (sbi->s_partmaps == NULL)
324 return;
325 for (i = 0; i < sbi->s_partitions; i++)
326 udf_free_partition(&sbi->s_partmaps[i]);
327 kfree(sbi->s_partmaps);
328 sbi->s_partmaps = NULL;
329}
330
331static int udf_show_options(struct seq_file *seq, struct dentry *root)
332{
333 struct super_block *sb = root->d_sb;
334 struct udf_sb_info *sbi = UDF_SB(sb);
335
336 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
337 seq_puts(seq, ",nostrict");
338 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
339 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
340 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
341 seq_puts(seq, ",unhide");
342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
343 seq_puts(seq, ",undelete");
344 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
345 seq_puts(seq, ",noadinicb");
346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
347 seq_puts(seq, ",shortad");
348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
349 seq_puts(seq, ",uid=forget");
350 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
351 seq_puts(seq, ",uid=ignore");
352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
353 seq_puts(seq, ",gid=forget");
354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
355 seq_puts(seq, ",gid=ignore");
356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
357 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
359 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
360 if (sbi->s_umask != 0)
361 seq_printf(seq, ",umask=%ho", sbi->s_umask);
362 if (sbi->s_fmode != UDF_INVALID_MODE)
363 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
364 if (sbi->s_dmode != UDF_INVALID_MODE)
365 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
366 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
367 seq_printf(seq, ",session=%u", sbi->s_session);
368 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
369 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
370 if (sbi->s_anchor != 0)
371 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
372 /*
373 * volume, partition, fileset and rootdir seem to be ignored
374 * currently
375 */
376 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
377 seq_puts(seq, ",utf8");
378 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
379 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
380
381 return 0;
382}
383
384/*
385 * udf_parse_options
386 *
387 * PURPOSE
388 * Parse mount options.
389 *
390 * DESCRIPTION
391 * The following mount options are supported:
392 *
393 * gid= Set the default group.
394 * umask= Set the default umask.
395 * mode= Set the default file permissions.
396 * dmode= Set the default directory permissions.
397 * uid= Set the default user.
398 * bs= Set the block size.
399 * unhide Show otherwise hidden files.
400 * undelete Show deleted files in lists.
401 * adinicb Embed data in the inode (default)
402 * noadinicb Don't embed data in the inode
403 * shortad Use short ad's
404 * longad Use long ad's (default)
405 * nostrict Unset strict conformance
406 * iocharset= Set the NLS character set
407 *
408 * The remaining are for debugging and disaster recovery:
409 *
410 * novrs Skip volume sequence recognition
411 *
412 * The following expect a offset from 0.
413 *
414 * session= Set the CDROM session (default= last session)
415 * anchor= Override standard anchor location. (default= 256)
416 * volume= Override the VolumeDesc location. (unused)
417 * partition= Override the PartitionDesc location. (unused)
418 * lastblock= Set the last block of the filesystem/
419 *
420 * The following expect a offset from the partition root.
421 *
422 * fileset= Override the fileset block location. (unused)
423 * rootdir= Override the root directory location. (unused)
424 * WARNING: overriding the rootdir to a non-directory may
425 * yield highly unpredictable results.
426 *
427 * PRE-CONDITIONS
428 * options Pointer to mount options string.
429 * uopts Pointer to mount options variable.
430 *
431 * POST-CONDITIONS
432 * <return> 1 Mount options parsed okay.
433 * <return> 0 Error parsing mount options.
434 *
435 * HISTORY
436 * July 1, 1997 - Andrew E. Mileski
437 * Written, tested, and released.
438 */
439
440enum {
441 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
442 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
443 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
444 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
445 Opt_rootdir, Opt_utf8, Opt_iocharset,
446 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
447 Opt_fmode, Opt_dmode
448};
449
450static const match_table_t tokens = {
451 {Opt_novrs, "novrs"},
452 {Opt_nostrict, "nostrict"},
453 {Opt_bs, "bs=%u"},
454 {Opt_unhide, "unhide"},
455 {Opt_undelete, "undelete"},
456 {Opt_noadinicb, "noadinicb"},
457 {Opt_adinicb, "adinicb"},
458 {Opt_shortad, "shortad"},
459 {Opt_longad, "longad"},
460 {Opt_uforget, "uid=forget"},
461 {Opt_uignore, "uid=ignore"},
462 {Opt_gforget, "gid=forget"},
463 {Opt_gignore, "gid=ignore"},
464 {Opt_gid, "gid=%u"},
465 {Opt_uid, "uid=%u"},
466 {Opt_umask, "umask=%o"},
467 {Opt_session, "session=%u"},
468 {Opt_lastblock, "lastblock=%u"},
469 {Opt_anchor, "anchor=%u"},
470 {Opt_volume, "volume=%u"},
471 {Opt_partition, "partition=%u"},
472 {Opt_fileset, "fileset=%u"},
473 {Opt_rootdir, "rootdir=%u"},
474 {Opt_utf8, "utf8"},
475 {Opt_iocharset, "iocharset=%s"},
476 {Opt_fmode, "mode=%o"},
477 {Opt_dmode, "dmode=%o"},
478 {Opt_err, NULL}
479};
480
481static int udf_parse_options(char *options, struct udf_options *uopt,
482 bool remount)
483{
484 char *p;
485 int option;
486
487 uopt->novrs = 0;
488 uopt->partition = 0xFFFF;
489 uopt->session = 0xFFFFFFFF;
490 uopt->lastblock = 0;
491 uopt->anchor = 0;
492 uopt->volume = 0xFFFFFFFF;
493 uopt->rootdir = 0xFFFFFFFF;
494 uopt->fileset = 0xFFFFFFFF;
495 uopt->nls_map = NULL;
496
497 if (!options)
498 return 1;
499
500 while ((p = strsep(&options, ",")) != NULL) {
501 substring_t args[MAX_OPT_ARGS];
502 int token;
503 unsigned n;
504 if (!*p)
505 continue;
506
507 token = match_token(p, tokens, args);
508 switch (token) {
509 case Opt_novrs:
510 uopt->novrs = 1;
511 break;
512 case Opt_bs:
513 if (match_int(&args[0], &option))
514 return 0;
515 n = option;
516 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
517 return 0;
518 uopt->blocksize = n;
519 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
520 break;
521 case Opt_unhide:
522 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
523 break;
524 case Opt_undelete:
525 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
526 break;
527 case Opt_noadinicb:
528 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
529 break;
530 case Opt_adinicb:
531 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
532 break;
533 case Opt_shortad:
534 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
535 break;
536 case Opt_longad:
537 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
538 break;
539 case Opt_gid:
540 if (match_int(args, &option))
541 return 0;
542 uopt->gid = make_kgid(current_user_ns(), option);
543 if (!gid_valid(uopt->gid))
544 return 0;
545 uopt->flags |= (1 << UDF_FLAG_GID_SET);
546 break;
547 case Opt_uid:
548 if (match_int(args, &option))
549 return 0;
550 uopt->uid = make_kuid(current_user_ns(), option);
551 if (!uid_valid(uopt->uid))
552 return 0;
553 uopt->flags |= (1 << UDF_FLAG_UID_SET);
554 break;
555 case Opt_umask:
556 if (match_octal(args, &option))
557 return 0;
558 uopt->umask = option;
559 break;
560 case Opt_nostrict:
561 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
562 break;
563 case Opt_session:
564 if (match_int(args, &option))
565 return 0;
566 uopt->session = option;
567 if (!remount)
568 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
569 break;
570 case Opt_lastblock:
571 if (match_int(args, &option))
572 return 0;
573 uopt->lastblock = option;
574 if (!remount)
575 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
576 break;
577 case Opt_anchor:
578 if (match_int(args, &option))
579 return 0;
580 uopt->anchor = option;
581 break;
582 case Opt_volume:
583 if (match_int(args, &option))
584 return 0;
585 uopt->volume = option;
586 break;
587 case Opt_partition:
588 if (match_int(args, &option))
589 return 0;
590 uopt->partition = option;
591 break;
592 case Opt_fileset:
593 if (match_int(args, &option))
594 return 0;
595 uopt->fileset = option;
596 break;
597 case Opt_rootdir:
598 if (match_int(args, &option))
599 return 0;
600 uopt->rootdir = option;
601 break;
602 case Opt_utf8:
603 uopt->flags |= (1 << UDF_FLAG_UTF8);
604 break;
605#ifdef CONFIG_UDF_NLS
606 case Opt_iocharset:
607 uopt->nls_map = load_nls(args[0].from);
608 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
609 break;
610#endif
611 case Opt_uignore:
612 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
613 break;
614 case Opt_uforget:
615 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
616 break;
617 case Opt_gignore:
618 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
619 break;
620 case Opt_gforget:
621 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
622 break;
623 case Opt_fmode:
624 if (match_octal(args, &option))
625 return 0;
626 uopt->fmode = option & 0777;
627 break;
628 case Opt_dmode:
629 if (match_octal(args, &option))
630 return 0;
631 uopt->dmode = option & 0777;
632 break;
633 default:
634 pr_err("bad mount option \"%s\" or missing value\n", p);
635 return 0;
636 }
637 }
638 return 1;
639}
640
641static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
642{
643 struct udf_options uopt;
644 struct udf_sb_info *sbi = UDF_SB(sb);
645 int error = 0;
646 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
647
648 sync_filesystem(sb);
649 if (lvidiu) {
650 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
651 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
652 return -EACCES;
653 }
654
655 uopt.flags = sbi->s_flags;
656 uopt.uid = sbi->s_uid;
657 uopt.gid = sbi->s_gid;
658 uopt.umask = sbi->s_umask;
659 uopt.fmode = sbi->s_fmode;
660 uopt.dmode = sbi->s_dmode;
661
662 if (!udf_parse_options(options, &uopt, true))
663 return -EINVAL;
664
665 write_lock(&sbi->s_cred_lock);
666 sbi->s_flags = uopt.flags;
667 sbi->s_uid = uopt.uid;
668 sbi->s_gid = uopt.gid;
669 sbi->s_umask = uopt.umask;
670 sbi->s_fmode = uopt.fmode;
671 sbi->s_dmode = uopt.dmode;
672 write_unlock(&sbi->s_cred_lock);
673
674 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
675 goto out_unlock;
676
677 if (*flags & MS_RDONLY)
678 udf_close_lvid(sb);
679 else
680 udf_open_lvid(sb);
681
682out_unlock:
683 return error;
684}
685
686/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
687/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
688static loff_t udf_check_vsd(struct super_block *sb)
689{
690 struct volStructDesc *vsd = NULL;
691 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
692 int sectorsize;
693 struct buffer_head *bh = NULL;
694 int nsr02 = 0;
695 int nsr03 = 0;
696 struct udf_sb_info *sbi;
697
698 sbi = UDF_SB(sb);
699 if (sb->s_blocksize < sizeof(struct volStructDesc))
700 sectorsize = sizeof(struct volStructDesc);
701 else
702 sectorsize = sb->s_blocksize;
703
704 sector += (sbi->s_session << sb->s_blocksize_bits);
705
706 udf_debug("Starting at sector %u (%ld byte sectors)\n",
707 (unsigned int)(sector >> sb->s_blocksize_bits),
708 sb->s_blocksize);
709 /* Process the sequence (if applicable). The hard limit on the sector
710 * offset is arbitrary, hopefully large enough so that all valid UDF
711 * filesystems will be recognised. There is no mention of an upper
712 * bound to the size of the volume recognition area in the standard.
713 * The limit will prevent the code to read all the sectors of a
714 * specially crafted image (like a bluray disc full of CD001 sectors),
715 * potentially causing minutes or even hours of uninterruptible I/O
716 * activity. This actually happened with uninitialised SSD partitions
717 * (all 0xFF) before the check for the limit and all valid IDs were
718 * added */
719 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
720 sector += sectorsize) {
721 /* Read a block */
722 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
723 if (!bh)
724 break;
725
726 /* Look for ISO descriptors */
727 vsd = (struct volStructDesc *)(bh->b_data +
728 (sector & (sb->s_blocksize - 1)));
729
730 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
731 VSD_STD_ID_LEN)) {
732 switch (vsd->structType) {
733 case 0:
734 udf_debug("ISO9660 Boot Record found\n");
735 break;
736 case 1:
737 udf_debug("ISO9660 Primary Volume Descriptor found\n");
738 break;
739 case 2:
740 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
741 break;
742 case 3:
743 udf_debug("ISO9660 Volume Partition Descriptor found\n");
744 break;
745 case 255:
746 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
747 break;
748 default:
749 udf_debug("ISO9660 VRS (%u) found\n",
750 vsd->structType);
751 break;
752 }
753 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
754 VSD_STD_ID_LEN))
755 ; /* nothing */
756 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
757 VSD_STD_ID_LEN)) {
758 brelse(bh);
759 break;
760 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
761 VSD_STD_ID_LEN))
762 nsr02 = sector;
763 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
764 VSD_STD_ID_LEN))
765 nsr03 = sector;
766 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
767 VSD_STD_ID_LEN))
768 ; /* nothing */
769 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
770 VSD_STD_ID_LEN))
771 ; /* nothing */
772 else {
773 /* invalid id : end of volume recognition area */
774 brelse(bh);
775 break;
776 }
777 brelse(bh);
778 }
779
780 if (nsr03)
781 return nsr03;
782 else if (nsr02)
783 return nsr02;
784 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
785 VSD_FIRST_SECTOR_OFFSET)
786 return -1;
787 else
788 return 0;
789}
790
791static int udf_find_fileset(struct super_block *sb,
792 struct kernel_lb_addr *fileset,
793 struct kernel_lb_addr *root)
794{
795 struct buffer_head *bh = NULL;
796 long lastblock;
797 uint16_t ident;
798 struct udf_sb_info *sbi;
799
800 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
801 fileset->partitionReferenceNum != 0xFFFF) {
802 bh = udf_read_ptagged(sb, fileset, 0, &ident);
803
804 if (!bh) {
805 return 1;
806 } else if (ident != TAG_IDENT_FSD) {
807 brelse(bh);
808 return 1;
809 }
810
811 }
812
813 sbi = UDF_SB(sb);
814 if (!bh) {
815 /* Search backwards through the partitions */
816 struct kernel_lb_addr newfileset;
817
818/* --> cvg: FIXME - is it reasonable? */
819 return 1;
820
821 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
822 (newfileset.partitionReferenceNum != 0xFFFF &&
823 fileset->logicalBlockNum == 0xFFFFFFFF &&
824 fileset->partitionReferenceNum == 0xFFFF);
825 newfileset.partitionReferenceNum--) {
826 lastblock = sbi->s_partmaps
827 [newfileset.partitionReferenceNum]
828 .s_partition_len;
829 newfileset.logicalBlockNum = 0;
830
831 do {
832 bh = udf_read_ptagged(sb, &newfileset, 0,
833 &ident);
834 if (!bh) {
835 newfileset.logicalBlockNum++;
836 continue;
837 }
838
839 switch (ident) {
840 case TAG_IDENT_SBD:
841 {
842 struct spaceBitmapDesc *sp;
843 sp = (struct spaceBitmapDesc *)
844 bh->b_data;
845 newfileset.logicalBlockNum += 1 +
846 ((le32_to_cpu(sp->numOfBytes) +
847 sizeof(struct spaceBitmapDesc)
848 - 1) >> sb->s_blocksize_bits);
849 brelse(bh);
850 break;
851 }
852 case TAG_IDENT_FSD:
853 *fileset = newfileset;
854 break;
855 default:
856 newfileset.logicalBlockNum++;
857 brelse(bh);
858 bh = NULL;
859 break;
860 }
861 } while (newfileset.logicalBlockNum < lastblock &&
862 fileset->logicalBlockNum == 0xFFFFFFFF &&
863 fileset->partitionReferenceNum == 0xFFFF);
864 }
865 }
866
867 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
868 fileset->partitionReferenceNum != 0xFFFF) && bh) {
869 udf_debug("Fileset at block=%d, partition=%d\n",
870 fileset->logicalBlockNum,
871 fileset->partitionReferenceNum);
872
873 sbi->s_partition = fileset->partitionReferenceNum;
874 udf_load_fileset(sb, bh, root);
875 brelse(bh);
876 return 0;
877 }
878 return 1;
879}
880
881/*
882 * Load primary Volume Descriptor Sequence
883 *
884 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
885 * should be tried.
886 */
887static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
888{
889 struct primaryVolDesc *pvoldesc;
890 uint8_t *outstr;
891 struct buffer_head *bh;
892 uint16_t ident;
893 int ret = -ENOMEM;
894
895 outstr = kmalloc(128, GFP_NOFS);
896 if (!outstr)
897 return -ENOMEM;
898
899 bh = udf_read_tagged(sb, block, block, &ident);
900 if (!bh) {
901 ret = -EAGAIN;
902 goto out2;
903 }
904
905 if (ident != TAG_IDENT_PVD) {
906 ret = -EIO;
907 goto out_bh;
908 }
909
910 pvoldesc = (struct primaryVolDesc *)bh->b_data;
911
912 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
913 pvoldesc->recordingDateAndTime)) {
914#ifdef UDFFS_DEBUG
915 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
916 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
917 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
918 ts->minute, le16_to_cpu(ts->typeAndTimezone));
919#endif
920 }
921
922 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
923 if (ret < 0)
924 goto out_bh;
925
926 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
927 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
928
929 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
930 if (ret < 0)
931 goto out_bh;
932
933 outstr[ret] = 0;
934 udf_debug("volSetIdent[] = '%s'\n", outstr);
935
936 ret = 0;
937out_bh:
938 brelse(bh);
939out2:
940 kfree(outstr);
941 return ret;
942}
943
944struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
945 u32 meta_file_loc, u32 partition_num)
946{
947 struct kernel_lb_addr addr;
948 struct inode *metadata_fe;
949
950 addr.logicalBlockNum = meta_file_loc;
951 addr.partitionReferenceNum = partition_num;
952
953 metadata_fe = udf_iget_special(sb, &addr);
954
955 if (IS_ERR(metadata_fe)) {
956 udf_warn(sb, "metadata inode efe not found\n");
957 return metadata_fe;
958 }
959 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
960 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
961 iput(metadata_fe);
962 return ERR_PTR(-EIO);
963 }
964
965 return metadata_fe;
966}
967
968static int udf_load_metadata_files(struct super_block *sb, int partition)
969{
970 struct udf_sb_info *sbi = UDF_SB(sb);
971 struct udf_part_map *map;
972 struct udf_meta_data *mdata;
973 struct kernel_lb_addr addr;
974 struct inode *fe;
975
976 map = &sbi->s_partmaps[partition];
977 mdata = &map->s_type_specific.s_metadata;
978
979 /* metadata address */
980 udf_debug("Metadata file location: block = %d part = %d\n",
981 mdata->s_meta_file_loc, map->s_partition_num);
982
983 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
984 map->s_partition_num);
985 if (IS_ERR(fe)) {
986 /* mirror file entry */
987 udf_debug("Mirror metadata file location: block = %d part = %d\n",
988 mdata->s_mirror_file_loc, map->s_partition_num);
989
990 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
991 map->s_partition_num);
992
993 if (IS_ERR(fe)) {
994 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
995 return PTR_ERR(fe);
996 }
997 mdata->s_mirror_fe = fe;
998 } else
999 mdata->s_metadata_fe = fe;
1000
1001
1002 /*
1003 * bitmap file entry
1004 * Note:
1005 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1006 */
1007 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1008 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1009 addr.partitionReferenceNum = map->s_partition_num;
1010
1011 udf_debug("Bitmap file location: block = %d part = %d\n",
1012 addr.logicalBlockNum, addr.partitionReferenceNum);
1013
1014 fe = udf_iget_special(sb, &addr);
1015 if (IS_ERR(fe)) {
1016 if (sb->s_flags & MS_RDONLY)
1017 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1018 else {
1019 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1020 return PTR_ERR(fe);
1021 }
1022 } else
1023 mdata->s_bitmap_fe = fe;
1024 }
1025
1026 udf_debug("udf_load_metadata_files Ok\n");
1027 return 0;
1028}
1029
1030static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1031 struct kernel_lb_addr *root)
1032{
1033 struct fileSetDesc *fset;
1034
1035 fset = (struct fileSetDesc *)bh->b_data;
1036
1037 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1038
1039 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1040
1041 udf_debug("Rootdir at block=%d, partition=%d\n",
1042 root->logicalBlockNum, root->partitionReferenceNum);
1043}
1044
1045int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1046{
1047 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1048 return DIV_ROUND_UP(map->s_partition_len +
1049 (sizeof(struct spaceBitmapDesc) << 3),
1050 sb->s_blocksize * 8);
1051}
1052
1053static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1054{
1055 struct udf_bitmap *bitmap;
1056 int nr_groups;
1057 int size;
1058
1059 nr_groups = udf_compute_nr_groups(sb, index);
1060 size = sizeof(struct udf_bitmap) +
1061 (sizeof(struct buffer_head *) * nr_groups);
1062
1063 if (size <= PAGE_SIZE)
1064 bitmap = kzalloc(size, GFP_KERNEL);
1065 else
1066 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1067
1068 if (bitmap == NULL)
1069 return NULL;
1070
1071 bitmap->s_nr_groups = nr_groups;
1072 return bitmap;
1073}
1074
1075static int udf_fill_partdesc_info(struct super_block *sb,
1076 struct partitionDesc *p, int p_index)
1077{
1078 struct udf_part_map *map;
1079 struct udf_sb_info *sbi = UDF_SB(sb);
1080 struct partitionHeaderDesc *phd;
1081
1082 map = &sbi->s_partmaps[p_index];
1083
1084 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1085 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1086
1087 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1088 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1089 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1090 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1091 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1092 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1093 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1094 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1095
1096 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1097 p_index, map->s_partition_type,
1098 map->s_partition_root, map->s_partition_len);
1099
1100 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1101 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1102 return 0;
1103
1104 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1105 if (phd->unallocSpaceTable.extLength) {
1106 struct kernel_lb_addr loc = {
1107 .logicalBlockNum = le32_to_cpu(
1108 phd->unallocSpaceTable.extPosition),
1109 .partitionReferenceNum = p_index,
1110 };
1111 struct inode *inode;
1112
1113 inode = udf_iget_special(sb, &loc);
1114 if (IS_ERR(inode)) {
1115 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1116 p_index);
1117 return PTR_ERR(inode);
1118 }
1119 map->s_uspace.s_table = inode;
1120 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1121 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1122 p_index, map->s_uspace.s_table->i_ino);
1123 }
1124
1125 if (phd->unallocSpaceBitmap.extLength) {
1126 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1127 if (!bitmap)
1128 return -ENOMEM;
1129 map->s_uspace.s_bitmap = bitmap;
1130 bitmap->s_extPosition = le32_to_cpu(
1131 phd->unallocSpaceBitmap.extPosition);
1132 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1133 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1134 p_index, bitmap->s_extPosition);
1135 }
1136
1137 if (phd->partitionIntegrityTable.extLength)
1138 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1139
1140 if (phd->freedSpaceTable.extLength) {
1141 struct kernel_lb_addr loc = {
1142 .logicalBlockNum = le32_to_cpu(
1143 phd->freedSpaceTable.extPosition),
1144 .partitionReferenceNum = p_index,
1145 };
1146 struct inode *inode;
1147
1148 inode = udf_iget_special(sb, &loc);
1149 if (IS_ERR(inode)) {
1150 udf_debug("cannot load freedSpaceTable (part %d)\n",
1151 p_index);
1152 return PTR_ERR(inode);
1153 }
1154 map->s_fspace.s_table = inode;
1155 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1156 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1157 p_index, map->s_fspace.s_table->i_ino);
1158 }
1159
1160 if (phd->freedSpaceBitmap.extLength) {
1161 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1162 if (!bitmap)
1163 return -ENOMEM;
1164 map->s_fspace.s_bitmap = bitmap;
1165 bitmap->s_extPosition = le32_to_cpu(
1166 phd->freedSpaceBitmap.extPosition);
1167 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1168 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1169 p_index, bitmap->s_extPosition);
1170 }
1171 return 0;
1172}
1173
1174static void udf_find_vat_block(struct super_block *sb, int p_index,
1175 int type1_index, sector_t start_block)
1176{
1177 struct udf_sb_info *sbi = UDF_SB(sb);
1178 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1179 sector_t vat_block;
1180 struct kernel_lb_addr ino;
1181 struct inode *inode;
1182
1183 /*
1184 * VAT file entry is in the last recorded block. Some broken disks have
1185 * it a few blocks before so try a bit harder...
1186 */
1187 ino.partitionReferenceNum = type1_index;
1188 for (vat_block = start_block;
1189 vat_block >= map->s_partition_root &&
1190 vat_block >= start_block - 3; vat_block--) {
1191 ino.logicalBlockNum = vat_block - map->s_partition_root;
1192 inode = udf_iget_special(sb, &ino);
1193 if (!IS_ERR(inode)) {
1194 sbi->s_vat_inode = inode;
1195 break;
1196 }
1197 }
1198}
1199
1200static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1201{
1202 struct udf_sb_info *sbi = UDF_SB(sb);
1203 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1204 struct buffer_head *bh = NULL;
1205 struct udf_inode_info *vati;
1206 uint32_t pos;
1207 struct virtualAllocationTable20 *vat20;
1208 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1209
1210 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1211 if (!sbi->s_vat_inode &&
1212 sbi->s_last_block != blocks - 1) {
1213 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1214 (unsigned long)sbi->s_last_block,
1215 (unsigned long)blocks - 1);
1216 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1217 }
1218 if (!sbi->s_vat_inode)
1219 return -EIO;
1220
1221 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1222 map->s_type_specific.s_virtual.s_start_offset = 0;
1223 map->s_type_specific.s_virtual.s_num_entries =
1224 (sbi->s_vat_inode->i_size - 36) >> 2;
1225 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1226 vati = UDF_I(sbi->s_vat_inode);
1227 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1228 pos = udf_block_map(sbi->s_vat_inode, 0);
1229 bh = sb_bread(sb, pos);
1230 if (!bh)
1231 return -EIO;
1232 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1233 } else {
1234 vat20 = (struct virtualAllocationTable20 *)
1235 vati->i_ext.i_data;
1236 }
1237
1238 map->s_type_specific.s_virtual.s_start_offset =
1239 le16_to_cpu(vat20->lengthHeader);
1240 map->s_type_specific.s_virtual.s_num_entries =
1241 (sbi->s_vat_inode->i_size -
1242 map->s_type_specific.s_virtual.
1243 s_start_offset) >> 2;
1244 brelse(bh);
1245 }
1246 return 0;
1247}
1248
1249/*
1250 * Load partition descriptor block
1251 *
1252 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1253 * sequence.
1254 */
1255static int udf_load_partdesc(struct super_block *sb, sector_t block)
1256{
1257 struct buffer_head *bh;
1258 struct partitionDesc *p;
1259 struct udf_part_map *map;
1260 struct udf_sb_info *sbi = UDF_SB(sb);
1261 int i, type1_idx;
1262 uint16_t partitionNumber;
1263 uint16_t ident;
1264 int ret;
1265
1266 bh = udf_read_tagged(sb, block, block, &ident);
1267 if (!bh)
1268 return -EAGAIN;
1269 if (ident != TAG_IDENT_PD) {
1270 ret = 0;
1271 goto out_bh;
1272 }
1273
1274 p = (struct partitionDesc *)bh->b_data;
1275 partitionNumber = le16_to_cpu(p->partitionNumber);
1276
1277 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1278 for (i = 0; i < sbi->s_partitions; i++) {
1279 map = &sbi->s_partmaps[i];
1280 udf_debug("Searching map: (%d == %d)\n",
1281 map->s_partition_num, partitionNumber);
1282 if (map->s_partition_num == partitionNumber &&
1283 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1284 map->s_partition_type == UDF_SPARABLE_MAP15))
1285 break;
1286 }
1287
1288 if (i >= sbi->s_partitions) {
1289 udf_debug("Partition (%d) not found in partition map\n",
1290 partitionNumber);
1291 ret = 0;
1292 goto out_bh;
1293 }
1294
1295 ret = udf_fill_partdesc_info(sb, p, i);
1296 if (ret < 0)
1297 goto out_bh;
1298
1299 /*
1300 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1301 * PHYSICAL partitions are already set up
1302 */
1303 type1_idx = i;
1304#ifdef UDFFS_DEBUG
1305 map = NULL; /* supress 'maybe used uninitialized' warning */
1306#endif
1307 for (i = 0; i < sbi->s_partitions; i++) {
1308 map = &sbi->s_partmaps[i];
1309
1310 if (map->s_partition_num == partitionNumber &&
1311 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1312 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1313 map->s_partition_type == UDF_METADATA_MAP25))
1314 break;
1315 }
1316
1317 if (i >= sbi->s_partitions) {
1318 ret = 0;
1319 goto out_bh;
1320 }
1321
1322 ret = udf_fill_partdesc_info(sb, p, i);
1323 if (ret < 0)
1324 goto out_bh;
1325
1326 if (map->s_partition_type == UDF_METADATA_MAP25) {
1327 ret = udf_load_metadata_files(sb, i);
1328 if (ret < 0) {
1329 udf_err(sb, "error loading MetaData partition map %d\n",
1330 i);
1331 goto out_bh;
1332 }
1333 } else {
1334 /*
1335 * If we have a partition with virtual map, we don't handle
1336 * writing to it (we overwrite blocks instead of relocating
1337 * them).
1338 */
1339 if (!(sb->s_flags & MS_RDONLY)) {
1340 ret = -EACCES;
1341 goto out_bh;
1342 }
1343 ret = udf_load_vat(sb, i, type1_idx);
1344 if (ret < 0)
1345 goto out_bh;
1346 }
1347 ret = 0;
1348out_bh:
1349 /* In case loading failed, we handle cleanup in udf_fill_super */
1350 brelse(bh);
1351 return ret;
1352}
1353
1354static int udf_load_sparable_map(struct super_block *sb,
1355 struct udf_part_map *map,
1356 struct sparablePartitionMap *spm)
1357{
1358 uint32_t loc;
1359 uint16_t ident;
1360 struct sparingTable *st;
1361 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1362 int i;
1363 struct buffer_head *bh;
1364
1365 map->s_partition_type = UDF_SPARABLE_MAP15;
1366 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1367 if (!is_power_of_2(sdata->s_packet_len)) {
1368 udf_err(sb, "error loading logical volume descriptor: "
1369 "Invalid packet length %u\n",
1370 (unsigned)sdata->s_packet_len);
1371 return -EIO;
1372 }
1373 if (spm->numSparingTables > 4) {
1374 udf_err(sb, "error loading logical volume descriptor: "
1375 "Too many sparing tables (%d)\n",
1376 (int)spm->numSparingTables);
1377 return -EIO;
1378 }
1379
1380 for (i = 0; i < spm->numSparingTables; i++) {
1381 loc = le32_to_cpu(spm->locSparingTable[i]);
1382 bh = udf_read_tagged(sb, loc, loc, &ident);
1383 if (!bh)
1384 continue;
1385
1386 st = (struct sparingTable *)bh->b_data;
1387 if (ident != 0 ||
1388 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1389 strlen(UDF_ID_SPARING)) ||
1390 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1391 sb->s_blocksize) {
1392 brelse(bh);
1393 continue;
1394 }
1395
1396 sdata->s_spar_map[i] = bh;
1397 }
1398 map->s_partition_func = udf_get_pblock_spar15;
1399 return 0;
1400}
1401
1402static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1403 struct kernel_lb_addr *fileset)
1404{
1405 struct logicalVolDesc *lvd;
1406 int i, offset;
1407 uint8_t type;
1408 struct udf_sb_info *sbi = UDF_SB(sb);
1409 struct genericPartitionMap *gpm;
1410 uint16_t ident;
1411 struct buffer_head *bh;
1412 unsigned int table_len;
1413 int ret;
1414
1415 bh = udf_read_tagged(sb, block, block, &ident);
1416 if (!bh)
1417 return -EAGAIN;
1418 BUG_ON(ident != TAG_IDENT_LVD);
1419 lvd = (struct logicalVolDesc *)bh->b_data;
1420 table_len = le32_to_cpu(lvd->mapTableLength);
1421 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1422 udf_err(sb, "error loading logical volume descriptor: "
1423 "Partition table too long (%u > %lu)\n", table_len,
1424 sb->s_blocksize - sizeof(*lvd));
1425 ret = -EIO;
1426 goto out_bh;
1427 }
1428
1429 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1430 if (ret)
1431 goto out_bh;
1432
1433 for (i = 0, offset = 0;
1434 i < sbi->s_partitions && offset < table_len;
1435 i++, offset += gpm->partitionMapLength) {
1436 struct udf_part_map *map = &sbi->s_partmaps[i];
1437 gpm = (struct genericPartitionMap *)
1438 &(lvd->partitionMaps[offset]);
1439 type = gpm->partitionMapType;
1440 if (type == 1) {
1441 struct genericPartitionMap1 *gpm1 =
1442 (struct genericPartitionMap1 *)gpm;
1443 map->s_partition_type = UDF_TYPE1_MAP15;
1444 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1445 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1446 map->s_partition_func = NULL;
1447 } else if (type == 2) {
1448 struct udfPartitionMap2 *upm2 =
1449 (struct udfPartitionMap2 *)gpm;
1450 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1451 strlen(UDF_ID_VIRTUAL))) {
1452 u16 suf =
1453 le16_to_cpu(((__le16 *)upm2->partIdent.
1454 identSuffix)[0]);
1455 if (suf < 0x0200) {
1456 map->s_partition_type =
1457 UDF_VIRTUAL_MAP15;
1458 map->s_partition_func =
1459 udf_get_pblock_virt15;
1460 } else {
1461 map->s_partition_type =
1462 UDF_VIRTUAL_MAP20;
1463 map->s_partition_func =
1464 udf_get_pblock_virt20;
1465 }
1466 } else if (!strncmp(upm2->partIdent.ident,
1467 UDF_ID_SPARABLE,
1468 strlen(UDF_ID_SPARABLE))) {
1469 ret = udf_load_sparable_map(sb, map,
1470 (struct sparablePartitionMap *)gpm);
1471 if (ret < 0)
1472 goto out_bh;
1473 } else if (!strncmp(upm2->partIdent.ident,
1474 UDF_ID_METADATA,
1475 strlen(UDF_ID_METADATA))) {
1476 struct udf_meta_data *mdata =
1477 &map->s_type_specific.s_metadata;
1478 struct metadataPartitionMap *mdm =
1479 (struct metadataPartitionMap *)
1480 &(lvd->partitionMaps[offset]);
1481 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1482 i, type, UDF_ID_METADATA);
1483
1484 map->s_partition_type = UDF_METADATA_MAP25;
1485 map->s_partition_func = udf_get_pblock_meta25;
1486
1487 mdata->s_meta_file_loc =
1488 le32_to_cpu(mdm->metadataFileLoc);
1489 mdata->s_mirror_file_loc =
1490 le32_to_cpu(mdm->metadataMirrorFileLoc);
1491 mdata->s_bitmap_file_loc =
1492 le32_to_cpu(mdm->metadataBitmapFileLoc);
1493 mdata->s_alloc_unit_size =
1494 le32_to_cpu(mdm->allocUnitSize);
1495 mdata->s_align_unit_size =
1496 le16_to_cpu(mdm->alignUnitSize);
1497 if (mdm->flags & 0x01)
1498 mdata->s_flags |= MF_DUPLICATE_MD;
1499
1500 udf_debug("Metadata Ident suffix=0x%x\n",
1501 le16_to_cpu(*(__le16 *)
1502 mdm->partIdent.identSuffix));
1503 udf_debug("Metadata part num=%d\n",
1504 le16_to_cpu(mdm->partitionNum));
1505 udf_debug("Metadata part alloc unit size=%d\n",
1506 le32_to_cpu(mdm->allocUnitSize));
1507 udf_debug("Metadata file loc=%d\n",
1508 le32_to_cpu(mdm->metadataFileLoc));
1509 udf_debug("Mirror file loc=%d\n",
1510 le32_to_cpu(mdm->metadataMirrorFileLoc));
1511 udf_debug("Bitmap file loc=%d\n",
1512 le32_to_cpu(mdm->metadataBitmapFileLoc));
1513 udf_debug("Flags: %d %d\n",
1514 mdata->s_flags, mdm->flags);
1515 } else {
1516 udf_debug("Unknown ident: %s\n",
1517 upm2->partIdent.ident);
1518 continue;
1519 }
1520 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1521 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1522 }
1523 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1524 i, map->s_partition_num, type, map->s_volumeseqnum);
1525 }
1526
1527 if (fileset) {
1528 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1529
1530 *fileset = lelb_to_cpu(la->extLocation);
1531 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1532 fileset->logicalBlockNum,
1533 fileset->partitionReferenceNum);
1534 }
1535 if (lvd->integritySeqExt.extLength)
1536 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1537 ret = 0;
1538out_bh:
1539 brelse(bh);
1540 return ret;
1541}
1542
1543/*
1544 * udf_load_logicalvolint
1545 *
1546 */
1547static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1548{
1549 struct buffer_head *bh = NULL;
1550 uint16_t ident;
1551 struct udf_sb_info *sbi = UDF_SB(sb);
1552 struct logicalVolIntegrityDesc *lvid;
1553
1554 while (loc.extLength > 0 &&
1555 (bh = udf_read_tagged(sb, loc.extLocation,
1556 loc.extLocation, &ident)) &&
1557 ident == TAG_IDENT_LVID) {
1558 sbi->s_lvid_bh = bh;
1559 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1560
1561 if (lvid->nextIntegrityExt.extLength)
1562 udf_load_logicalvolint(sb,
1563 leea_to_cpu(lvid->nextIntegrityExt));
1564
1565 if (sbi->s_lvid_bh != bh)
1566 brelse(bh);
1567 loc.extLength -= sb->s_blocksize;
1568 loc.extLocation++;
1569 }
1570 if (sbi->s_lvid_bh != bh)
1571 brelse(bh);
1572}
1573
1574/*
1575 * Maximum number of Terminating Descriptor redirections. The chosen number is
1576 * arbitrary - just that we hopefully don't limit any real use of rewritten
1577 * inode on write-once media but avoid looping for too long on corrupted media.
1578 */
1579#define UDF_MAX_TD_NESTING 64
1580
1581/*
1582 * Process a main/reserve volume descriptor sequence.
1583 * @block First block of first extent of the sequence.
1584 * @lastblock Lastblock of first extent of the sequence.
1585 * @fileset There we store extent containing root fileset
1586 *
1587 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1588 * sequence
1589 */
1590static noinline int udf_process_sequence(
1591 struct super_block *sb,
1592 sector_t block, sector_t lastblock,
1593 struct kernel_lb_addr *fileset)
1594{
1595 struct buffer_head *bh = NULL;
1596 struct udf_vds_record vds[VDS_POS_LENGTH];
1597 struct udf_vds_record *curr;
1598 struct generic_desc *gd;
1599 struct volDescPtr *vdp;
1600 bool done = false;
1601 uint32_t vdsn;
1602 uint16_t ident;
1603 long next_s = 0, next_e = 0;
1604 int ret;
1605 unsigned int indirections = 0;
1606
1607 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1608
1609 /*
1610 * Read the main descriptor sequence and find which descriptors
1611 * are in it.
1612 */
1613 for (; (!done && block <= lastblock); block++) {
1614
1615 bh = udf_read_tagged(sb, block, block, &ident);
1616 if (!bh) {
1617 udf_err(sb,
1618 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1619 (unsigned long long)block);
1620 return -EAGAIN;
1621 }
1622
1623 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1624 gd = (struct generic_desc *)bh->b_data;
1625 vdsn = le32_to_cpu(gd->volDescSeqNum);
1626 switch (ident) {
1627 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1628 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1629 if (vdsn >= curr->volDescSeqNum) {
1630 curr->volDescSeqNum = vdsn;
1631 curr->block = block;
1632 }
1633 break;
1634 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1635 curr = &vds[VDS_POS_VOL_DESC_PTR];
1636 if (vdsn >= curr->volDescSeqNum) {
1637 curr->volDescSeqNum = vdsn;
1638 curr->block = block;
1639
1640 vdp = (struct volDescPtr *)bh->b_data;
1641 next_s = le32_to_cpu(
1642 vdp->nextVolDescSeqExt.extLocation);
1643 next_e = le32_to_cpu(
1644 vdp->nextVolDescSeqExt.extLength);
1645 next_e = next_e >> sb->s_blocksize_bits;
1646 next_e += next_s;
1647 }
1648 break;
1649 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1650 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1651 if (vdsn >= curr->volDescSeqNum) {
1652 curr->volDescSeqNum = vdsn;
1653 curr->block = block;
1654 }
1655 break;
1656 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1657 curr = &vds[VDS_POS_PARTITION_DESC];
1658 if (!curr->block)
1659 curr->block = block;
1660 break;
1661 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1662 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1663 if (vdsn >= curr->volDescSeqNum) {
1664 curr->volDescSeqNum = vdsn;
1665 curr->block = block;
1666 }
1667 break;
1668 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1669 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1670 if (vdsn >= curr->volDescSeqNum) {
1671 curr->volDescSeqNum = vdsn;
1672 curr->block = block;
1673 }
1674 break;
1675 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1676 if (++indirections > UDF_MAX_TD_NESTING) {
1677 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1678 brelse(bh);
1679 return -EIO;
1680 }
1681
1682 vds[VDS_POS_TERMINATING_DESC].block = block;
1683 if (next_e) {
1684 block = next_s;
1685 lastblock = next_e;
1686 next_s = next_e = 0;
1687 } else
1688 done = true;
1689 break;
1690 }
1691 brelse(bh);
1692 }
1693 /*
1694 * Now read interesting descriptors again and process them
1695 * in a suitable order
1696 */
1697 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1698 udf_err(sb, "Primary Volume Descriptor not found!\n");
1699 return -EAGAIN;
1700 }
1701 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1702 if (ret < 0)
1703 return ret;
1704
1705 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1706 ret = udf_load_logicalvol(sb,
1707 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1708 fileset);
1709 if (ret < 0)
1710 return ret;
1711 }
1712
1713 if (vds[VDS_POS_PARTITION_DESC].block) {
1714 /*
1715 * We rescan the whole descriptor sequence to find
1716 * partition descriptor blocks and process them.
1717 */
1718 for (block = vds[VDS_POS_PARTITION_DESC].block;
1719 block < vds[VDS_POS_TERMINATING_DESC].block;
1720 block++) {
1721 ret = udf_load_partdesc(sb, block);
1722 if (ret < 0)
1723 return ret;
1724 }
1725 }
1726
1727 return 0;
1728}
1729
1730/*
1731 * Load Volume Descriptor Sequence described by anchor in bh
1732 *
1733 * Returns <0 on error, 0 on success
1734 */
1735static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1736 struct kernel_lb_addr *fileset)
1737{
1738 struct anchorVolDescPtr *anchor;
1739 sector_t main_s, main_e, reserve_s, reserve_e;
1740 int ret;
1741
1742 anchor = (struct anchorVolDescPtr *)bh->b_data;
1743
1744 /* Locate the main sequence */
1745 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1746 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1747 main_e = main_e >> sb->s_blocksize_bits;
1748 main_e += main_s;
1749
1750 /* Locate the reserve sequence */
1751 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1752 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1753 reserve_e = reserve_e >> sb->s_blocksize_bits;
1754 reserve_e += reserve_s;
1755
1756 /* Process the main & reserve sequences */
1757 /* responsible for finding the PartitionDesc(s) */
1758 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1759 if (ret != -EAGAIN)
1760 return ret;
1761 udf_sb_free_partitions(sb);
1762 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1763 if (ret < 0) {
1764 udf_sb_free_partitions(sb);
1765 /* No sequence was OK, return -EIO */
1766 if (ret == -EAGAIN)
1767 ret = -EIO;
1768 }
1769 return ret;
1770}
1771
1772/*
1773 * Check whether there is an anchor block in the given block and
1774 * load Volume Descriptor Sequence if so.
1775 *
1776 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1777 * block
1778 */
1779static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1780 struct kernel_lb_addr *fileset)
1781{
1782 struct buffer_head *bh;
1783 uint16_t ident;
1784 int ret;
1785
1786 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1787 udf_fixed_to_variable(block) >=
1788 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1789 return -EAGAIN;
1790
1791 bh = udf_read_tagged(sb, block, block, &ident);
1792 if (!bh)
1793 return -EAGAIN;
1794 if (ident != TAG_IDENT_AVDP) {
1795 brelse(bh);
1796 return -EAGAIN;
1797 }
1798 ret = udf_load_sequence(sb, bh, fileset);
1799 brelse(bh);
1800 return ret;
1801}
1802
1803/*
1804 * Search for an anchor volume descriptor pointer.
1805 *
1806 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1807 * of anchors.
1808 */
1809static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1810 struct kernel_lb_addr *fileset)
1811{
1812 sector_t last[6];
1813 int i;
1814 struct udf_sb_info *sbi = UDF_SB(sb);
1815 int last_count = 0;
1816 int ret;
1817
1818 /* First try user provided anchor */
1819 if (sbi->s_anchor) {
1820 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1821 if (ret != -EAGAIN)
1822 return ret;
1823 }
1824 /*
1825 * according to spec, anchor is in either:
1826 * block 256
1827 * lastblock-256
1828 * lastblock
1829 * however, if the disc isn't closed, it could be 512.
1830 */
1831 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1832 if (ret != -EAGAIN)
1833 return ret;
1834 /*
1835 * The trouble is which block is the last one. Drives often misreport
1836 * this so we try various possibilities.
1837 */
1838 last[last_count++] = *lastblock;
1839 if (*lastblock >= 1)
1840 last[last_count++] = *lastblock - 1;
1841 last[last_count++] = *lastblock + 1;
1842 if (*lastblock >= 2)
1843 last[last_count++] = *lastblock - 2;
1844 if (*lastblock >= 150)
1845 last[last_count++] = *lastblock - 150;
1846 if (*lastblock >= 152)
1847 last[last_count++] = *lastblock - 152;
1848
1849 for (i = 0; i < last_count; i++) {
1850 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1851 sb->s_blocksize_bits)
1852 continue;
1853 ret = udf_check_anchor_block(sb, last[i], fileset);
1854 if (ret != -EAGAIN) {
1855 if (!ret)
1856 *lastblock = last[i];
1857 return ret;
1858 }
1859 if (last[i] < 256)
1860 continue;
1861 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1862 if (ret != -EAGAIN) {
1863 if (!ret)
1864 *lastblock = last[i];
1865 return ret;
1866 }
1867 }
1868
1869 /* Finally try block 512 in case media is open */
1870 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1871}
1872
1873/*
1874 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1875 * area specified by it. The function expects sbi->s_lastblock to be the last
1876 * block on the media.
1877 *
1878 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1879 * was not found.
1880 */
1881static int udf_find_anchor(struct super_block *sb,
1882 struct kernel_lb_addr *fileset)
1883{
1884 struct udf_sb_info *sbi = UDF_SB(sb);
1885 sector_t lastblock = sbi->s_last_block;
1886 int ret;
1887
1888 ret = udf_scan_anchors(sb, &lastblock, fileset);
1889 if (ret != -EAGAIN)
1890 goto out;
1891
1892 /* No anchor found? Try VARCONV conversion of block numbers */
1893 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1894 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1895 /* Firstly, we try to not convert number of the last block */
1896 ret = udf_scan_anchors(sb, &lastblock, fileset);
1897 if (ret != -EAGAIN)
1898 goto out;
1899
1900 lastblock = sbi->s_last_block;
1901 /* Secondly, we try with converted number of the last block */
1902 ret = udf_scan_anchors(sb, &lastblock, fileset);
1903 if (ret < 0) {
1904 /* VARCONV didn't help. Clear it. */
1905 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1906 }
1907out:
1908 if (ret == 0)
1909 sbi->s_last_block = lastblock;
1910 return ret;
1911}
1912
1913/*
1914 * Check Volume Structure Descriptor, find Anchor block and load Volume
1915 * Descriptor Sequence.
1916 *
1917 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1918 * block was not found.
1919 */
1920static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1921 int silent, struct kernel_lb_addr *fileset)
1922{
1923 struct udf_sb_info *sbi = UDF_SB(sb);
1924 loff_t nsr_off;
1925 int ret;
1926
1927 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1928 if (!silent)
1929 udf_warn(sb, "Bad block size\n");
1930 return -EINVAL;
1931 }
1932 sbi->s_last_block = uopt->lastblock;
1933 if (!uopt->novrs) {
1934 /* Check that it is NSR02 compliant */
1935 nsr_off = udf_check_vsd(sb);
1936 if (!nsr_off) {
1937 if (!silent)
1938 udf_warn(sb, "No VRS found\n");
1939 return 0;
1940 }
1941 if (nsr_off == -1)
1942 udf_debug("Failed to read sector at offset %d. "
1943 "Assuming open disc. Skipping validity "
1944 "check\n", VSD_FIRST_SECTOR_OFFSET);
1945 if (!sbi->s_last_block)
1946 sbi->s_last_block = udf_get_last_block(sb);
1947 } else {
1948 udf_debug("Validity check skipped because of novrs option\n");
1949 }
1950
1951 /* Look for anchor block and load Volume Descriptor Sequence */
1952 sbi->s_anchor = uopt->anchor;
1953 ret = udf_find_anchor(sb, fileset);
1954 if (ret < 0) {
1955 if (!silent && ret == -EAGAIN)
1956 udf_warn(sb, "No anchor found\n");
1957 return ret;
1958 }
1959 return 0;
1960}
1961
1962static void udf_open_lvid(struct super_block *sb)
1963{
1964 struct udf_sb_info *sbi = UDF_SB(sb);
1965 struct buffer_head *bh = sbi->s_lvid_bh;
1966 struct logicalVolIntegrityDesc *lvid;
1967 struct logicalVolIntegrityDescImpUse *lvidiu;
1968
1969 if (!bh)
1970 return;
1971 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1972 lvidiu = udf_sb_lvidiu(sb);
1973 if (!lvidiu)
1974 return;
1975
1976 mutex_lock(&sbi->s_alloc_mutex);
1977 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1978 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1979 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1980 CURRENT_TIME);
1981 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1982
1983 lvid->descTag.descCRC = cpu_to_le16(
1984 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1985 le16_to_cpu(lvid->descTag.descCRCLength)));
1986
1987 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1988 mark_buffer_dirty(bh);
1989 sbi->s_lvid_dirty = 0;
1990 mutex_unlock(&sbi->s_alloc_mutex);
1991 /* Make opening of filesystem visible on the media immediately */
1992 sync_dirty_buffer(bh);
1993}
1994
1995static void udf_close_lvid(struct super_block *sb)
1996{
1997 struct udf_sb_info *sbi = UDF_SB(sb);
1998 struct buffer_head *bh = sbi->s_lvid_bh;
1999 struct logicalVolIntegrityDesc *lvid;
2000 struct logicalVolIntegrityDescImpUse *lvidiu;
2001
2002 if (!bh)
2003 return;
2004 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2005 lvidiu = udf_sb_lvidiu(sb);
2006 if (!lvidiu)
2007 return;
2008
2009 mutex_lock(&sbi->s_alloc_mutex);
2010 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2011 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2012 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2013 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2014 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2015 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2016 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2017 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2018 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2019 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2020
2021 lvid->descTag.descCRC = cpu_to_le16(
2022 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2023 le16_to_cpu(lvid->descTag.descCRCLength)));
2024
2025 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2026 /*
2027 * We set buffer uptodate unconditionally here to avoid spurious
2028 * warnings from mark_buffer_dirty() when previous EIO has marked
2029 * the buffer as !uptodate
2030 */
2031 set_buffer_uptodate(bh);
2032 mark_buffer_dirty(bh);
2033 sbi->s_lvid_dirty = 0;
2034 mutex_unlock(&sbi->s_alloc_mutex);
2035 /* Make closing of filesystem visible on the media immediately */
2036 sync_dirty_buffer(bh);
2037}
2038
2039u64 lvid_get_unique_id(struct super_block *sb)
2040{
2041 struct buffer_head *bh;
2042 struct udf_sb_info *sbi = UDF_SB(sb);
2043 struct logicalVolIntegrityDesc *lvid;
2044 struct logicalVolHeaderDesc *lvhd;
2045 u64 uniqueID;
2046 u64 ret;
2047
2048 bh = sbi->s_lvid_bh;
2049 if (!bh)
2050 return 0;
2051
2052 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2053 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2054
2055 mutex_lock(&sbi->s_alloc_mutex);
2056 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2057 if (!(++uniqueID & 0xFFFFFFFF))
2058 uniqueID += 16;
2059 lvhd->uniqueID = cpu_to_le64(uniqueID);
2060 mutex_unlock(&sbi->s_alloc_mutex);
2061 mark_buffer_dirty(bh);
2062
2063 return ret;
2064}
2065
2066static int udf_fill_super(struct super_block *sb, void *options, int silent)
2067{
2068 int ret = -EINVAL;
2069 struct inode *inode = NULL;
2070 struct udf_options uopt;
2071 struct kernel_lb_addr rootdir, fileset;
2072 struct udf_sb_info *sbi;
2073 bool lvid_open = false;
2074
2075 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2076 uopt.uid = INVALID_UID;
2077 uopt.gid = INVALID_GID;
2078 uopt.umask = 0;
2079 uopt.fmode = UDF_INVALID_MODE;
2080 uopt.dmode = UDF_INVALID_MODE;
2081
2082 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2083 if (!sbi)
2084 return -ENOMEM;
2085
2086 sb->s_fs_info = sbi;
2087
2088 mutex_init(&sbi->s_alloc_mutex);
2089
2090 if (!udf_parse_options((char *)options, &uopt, false))
2091 goto parse_options_failure;
2092
2093 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2094 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2095 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2096 goto parse_options_failure;
2097 }
2098#ifdef CONFIG_UDF_NLS
2099 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2100 uopt.nls_map = load_nls_default();
2101 if (!uopt.nls_map)
2102 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2103 else
2104 udf_debug("Using default NLS map\n");
2105 }
2106#endif
2107 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2108 uopt.flags |= (1 << UDF_FLAG_UTF8);
2109
2110 fileset.logicalBlockNum = 0xFFFFFFFF;
2111 fileset.partitionReferenceNum = 0xFFFF;
2112
2113 sbi->s_flags = uopt.flags;
2114 sbi->s_uid = uopt.uid;
2115 sbi->s_gid = uopt.gid;
2116 sbi->s_umask = uopt.umask;
2117 sbi->s_fmode = uopt.fmode;
2118 sbi->s_dmode = uopt.dmode;
2119 sbi->s_nls_map = uopt.nls_map;
2120 rwlock_init(&sbi->s_cred_lock);
2121
2122 if (uopt.session == 0xFFFFFFFF)
2123 sbi->s_session = udf_get_last_session(sb);
2124 else
2125 sbi->s_session = uopt.session;
2126
2127 udf_debug("Multi-session=%d\n", sbi->s_session);
2128
2129 /* Fill in the rest of the superblock */
2130 sb->s_op = &udf_sb_ops;
2131 sb->s_export_op = &udf_export_ops;
2132
2133 sb->s_magic = UDF_SUPER_MAGIC;
2134 sb->s_time_gran = 1000;
2135
2136 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2137 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2138 } else {
2139 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2140 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2141 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2142 if (!silent)
2143 pr_notice("Rescanning with blocksize %d\n",
2144 UDF_DEFAULT_BLOCKSIZE);
2145 brelse(sbi->s_lvid_bh);
2146 sbi->s_lvid_bh = NULL;
2147 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2148 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2149 }
2150 }
2151 if (ret < 0) {
2152 if (ret == -EAGAIN) {
2153 udf_warn(sb, "No partition found (1)\n");
2154 ret = -EINVAL;
2155 }
2156 goto error_out;
2157 }
2158
2159 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2160
2161 if (sbi->s_lvid_bh) {
2162 struct logicalVolIntegrityDescImpUse *lvidiu =
2163 udf_sb_lvidiu(sb);
2164 uint16_t minUDFReadRev;
2165 uint16_t minUDFWriteRev;
2166
2167 if (!lvidiu) {
2168 ret = -EINVAL;
2169 goto error_out;
2170 }
2171 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2172 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2173 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2174 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2175 minUDFReadRev,
2176 UDF_MAX_READ_VERSION);
2177 ret = -EINVAL;
2178 goto error_out;
2179 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2180 !(sb->s_flags & MS_RDONLY)) {
2181 ret = -EACCES;
2182 goto error_out;
2183 }
2184
2185 sbi->s_udfrev = minUDFWriteRev;
2186
2187 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2188 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2189 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2190 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2191 }
2192
2193 if (!sbi->s_partitions) {
2194 udf_warn(sb, "No partition found (2)\n");
2195 ret = -EINVAL;
2196 goto error_out;
2197 }
2198
2199 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2200 UDF_PART_FLAG_READ_ONLY &&
2201 !(sb->s_flags & MS_RDONLY)) {
2202 ret = -EACCES;
2203 goto error_out;
2204 }
2205
2206 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2207 udf_warn(sb, "No fileset found\n");
2208 ret = -EINVAL;
2209 goto error_out;
2210 }
2211
2212 if (!silent) {
2213 struct timestamp ts;
2214 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2215 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2216 sbi->s_volume_ident,
2217 le16_to_cpu(ts.year), ts.month, ts.day,
2218 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2219 }
2220 if (!(sb->s_flags & MS_RDONLY)) {
2221 udf_open_lvid(sb);
2222 lvid_open = true;
2223 }
2224
2225 /* Assign the root inode */
2226 /* assign inodes by physical block number */
2227 /* perhaps it's not extensible enough, but for now ... */
2228 inode = udf_iget(sb, &rootdir);
2229 if (IS_ERR(inode)) {
2230 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2231 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2232 ret = PTR_ERR(inode);
2233 goto error_out;
2234 }
2235
2236 /* Allocate a dentry for the root inode */
2237 sb->s_root = d_make_root(inode);
2238 if (!sb->s_root) {
2239 udf_err(sb, "Couldn't allocate root dentry\n");
2240 ret = -ENOMEM;
2241 goto error_out;
2242 }
2243 sb->s_maxbytes = MAX_LFS_FILESIZE;
2244 sb->s_max_links = UDF_MAX_LINKS;
2245 return 0;
2246
2247error_out:
2248 iput(sbi->s_vat_inode);
2249parse_options_failure:
2250#ifdef CONFIG_UDF_NLS
2251 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2252 unload_nls(sbi->s_nls_map);
2253#endif
2254 if (lvid_open)
2255 udf_close_lvid(sb);
2256 brelse(sbi->s_lvid_bh);
2257 udf_sb_free_partitions(sb);
2258 kfree(sbi);
2259 sb->s_fs_info = NULL;
2260
2261 return ret;
2262}
2263
2264void _udf_err(struct super_block *sb, const char *function,
2265 const char *fmt, ...)
2266{
2267 struct va_format vaf;
2268 va_list args;
2269
2270 va_start(args, fmt);
2271
2272 vaf.fmt = fmt;
2273 vaf.va = &args;
2274
2275 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2276
2277 va_end(args);
2278}
2279
2280void _udf_warn(struct super_block *sb, const char *function,
2281 const char *fmt, ...)
2282{
2283 struct va_format vaf;
2284 va_list args;
2285
2286 va_start(args, fmt);
2287
2288 vaf.fmt = fmt;
2289 vaf.va = &args;
2290
2291 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2292
2293 va_end(args);
2294}
2295
2296static void udf_put_super(struct super_block *sb)
2297{
2298 struct udf_sb_info *sbi;
2299
2300 sbi = UDF_SB(sb);
2301
2302 iput(sbi->s_vat_inode);
2303#ifdef CONFIG_UDF_NLS
2304 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2305 unload_nls(sbi->s_nls_map);
2306#endif
2307 if (!(sb->s_flags & MS_RDONLY))
2308 udf_close_lvid(sb);
2309 brelse(sbi->s_lvid_bh);
2310 udf_sb_free_partitions(sb);
2311 mutex_destroy(&sbi->s_alloc_mutex);
2312 kfree(sb->s_fs_info);
2313 sb->s_fs_info = NULL;
2314}
2315
2316static int udf_sync_fs(struct super_block *sb, int wait)
2317{
2318 struct udf_sb_info *sbi = UDF_SB(sb);
2319
2320 mutex_lock(&sbi->s_alloc_mutex);
2321 if (sbi->s_lvid_dirty) {
2322 /*
2323 * Blockdevice will be synced later so we don't have to submit
2324 * the buffer for IO
2325 */
2326 mark_buffer_dirty(sbi->s_lvid_bh);
2327 sbi->s_lvid_dirty = 0;
2328 }
2329 mutex_unlock(&sbi->s_alloc_mutex);
2330
2331 return 0;
2332}
2333
2334static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2335{
2336 struct super_block *sb = dentry->d_sb;
2337 struct udf_sb_info *sbi = UDF_SB(sb);
2338 struct logicalVolIntegrityDescImpUse *lvidiu;
2339 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2340
2341 lvidiu = udf_sb_lvidiu(sb);
2342 buf->f_type = UDF_SUPER_MAGIC;
2343 buf->f_bsize = sb->s_blocksize;
2344 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2345 buf->f_bfree = udf_count_free(sb);
2346 buf->f_bavail = buf->f_bfree;
2347 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2348 le32_to_cpu(lvidiu->numDirs)) : 0)
2349 + buf->f_bfree;
2350 buf->f_ffree = buf->f_bfree;
2351 buf->f_namelen = UDF_NAME_LEN;
2352 buf->f_fsid.val[0] = (u32)id;
2353 buf->f_fsid.val[1] = (u32)(id >> 32);
2354
2355 return 0;
2356}
2357
2358static unsigned int udf_count_free_bitmap(struct super_block *sb,
2359 struct udf_bitmap *bitmap)
2360{
2361 struct buffer_head *bh = NULL;
2362 unsigned int accum = 0;
2363 int index;
2364 int block = 0, newblock;
2365 struct kernel_lb_addr loc;
2366 uint32_t bytes;
2367 uint8_t *ptr;
2368 uint16_t ident;
2369 struct spaceBitmapDesc *bm;
2370
2371 loc.logicalBlockNum = bitmap->s_extPosition;
2372 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2373 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2374
2375 if (!bh) {
2376 udf_err(sb, "udf_count_free failed\n");
2377 goto out;
2378 } else if (ident != TAG_IDENT_SBD) {
2379 brelse(bh);
2380 udf_err(sb, "udf_count_free failed\n");
2381 goto out;
2382 }
2383
2384 bm = (struct spaceBitmapDesc *)bh->b_data;
2385 bytes = le32_to_cpu(bm->numOfBytes);
2386 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2387 ptr = (uint8_t *)bh->b_data;
2388
2389 while (bytes > 0) {
2390 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2391 accum += bitmap_weight((const unsigned long *)(ptr + index),
2392 cur_bytes * 8);
2393 bytes -= cur_bytes;
2394 if (bytes) {
2395 brelse(bh);
2396 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2397 bh = udf_tread(sb, newblock);
2398 if (!bh) {
2399 udf_debug("read failed\n");
2400 goto out;
2401 }
2402 index = 0;
2403 ptr = (uint8_t *)bh->b_data;
2404 }
2405 }
2406 brelse(bh);
2407out:
2408 return accum;
2409}
2410
2411static unsigned int udf_count_free_table(struct super_block *sb,
2412 struct inode *table)
2413{
2414 unsigned int accum = 0;
2415 uint32_t elen;
2416 struct kernel_lb_addr eloc;
2417 int8_t etype;
2418 struct extent_position epos;
2419
2420 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2421 epos.block = UDF_I(table)->i_location;
2422 epos.offset = sizeof(struct unallocSpaceEntry);
2423 epos.bh = NULL;
2424
2425 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2426 accum += (elen >> table->i_sb->s_blocksize_bits);
2427
2428 brelse(epos.bh);
2429 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2430
2431 return accum;
2432}
2433
2434static unsigned int udf_count_free(struct super_block *sb)
2435{
2436 unsigned int accum = 0;
2437 struct udf_sb_info *sbi;
2438 struct udf_part_map *map;
2439
2440 sbi = UDF_SB(sb);
2441 if (sbi->s_lvid_bh) {
2442 struct logicalVolIntegrityDesc *lvid =
2443 (struct logicalVolIntegrityDesc *)
2444 sbi->s_lvid_bh->b_data;
2445 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2446 accum = le32_to_cpu(
2447 lvid->freeSpaceTable[sbi->s_partition]);
2448 if (accum == 0xFFFFFFFF)
2449 accum = 0;
2450 }
2451 }
2452
2453 if (accum)
2454 return accum;
2455
2456 map = &sbi->s_partmaps[sbi->s_partition];
2457 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2458 accum += udf_count_free_bitmap(sb,
2459 map->s_uspace.s_bitmap);
2460 }
2461 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2462 accum += udf_count_free_bitmap(sb,
2463 map->s_fspace.s_bitmap);
2464 }
2465 if (accum)
2466 return accum;
2467
2468 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2469 accum += udf_count_free_table(sb,
2470 map->s_uspace.s_table);
2471 }
2472 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2473 accum += udf_count_free_table(sb,
2474 map->s_fspace.s_table);
2475 }
2476
2477 return accum;
2478}
1/*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/vfs.h>
52#include <linux/vmalloc.h>
53#include <linux/errno.h>
54#include <linux/mount.h>
55#include <linux/seq_file.h>
56#include <linux/bitmap.h>
57#include <linux/crc-itu-t.h>
58#include <linux/log2.h>
59#include <asm/byteorder.h>
60
61#include "udf_sb.h"
62#include "udf_i.h"
63
64#include <linux/init.h>
65#include <linux/uaccess.h>
66
67#define VDS_POS_PRIMARY_VOL_DESC 0
68#define VDS_POS_UNALLOC_SPACE_DESC 1
69#define VDS_POS_LOGICAL_VOL_DESC 2
70#define VDS_POS_PARTITION_DESC 3
71#define VDS_POS_IMP_USE_VOL_DESC 4
72#define VDS_POS_VOL_DESC_PTR 5
73#define VDS_POS_TERMINATING_DESC 6
74#define VDS_POS_LENGTH 7
75
76#define UDF_DEFAULT_BLOCKSIZE 2048
77
78#define VSD_FIRST_SECTOR_OFFSET 32768
79#define VSD_MAX_SECTOR_OFFSET 0x800000
80
81/*
82 * Maximum number of Terminating Descriptor / Logical Volume Integrity
83 * Descriptor redirections. The chosen numbers are arbitrary - just that we
84 * hopefully don't limit any real use of rewritten inode on write-once media
85 * but avoid looping for too long on corrupted media.
86 */
87#define UDF_MAX_TD_NESTING 64
88#define UDF_MAX_LVID_NESTING 1000
89
90enum { UDF_MAX_LINKS = 0xffff };
91
92/* These are the "meat" - everything else is stuffing */
93static int udf_fill_super(struct super_block *, void *, int);
94static void udf_put_super(struct super_block *);
95static int udf_sync_fs(struct super_block *, int);
96static int udf_remount_fs(struct super_block *, int *, char *);
97static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
98static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
99 struct kernel_lb_addr *);
100static void udf_load_fileset(struct super_block *, struct buffer_head *,
101 struct kernel_lb_addr *);
102static void udf_open_lvid(struct super_block *);
103static void udf_close_lvid(struct super_block *);
104static unsigned int udf_count_free(struct super_block *);
105static int udf_statfs(struct dentry *, struct kstatfs *);
106static int udf_show_options(struct seq_file *, struct dentry *);
107
108struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
109{
110 struct logicalVolIntegrityDesc *lvid;
111 unsigned int partnum;
112 unsigned int offset;
113
114 if (!UDF_SB(sb)->s_lvid_bh)
115 return NULL;
116 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
117 partnum = le32_to_cpu(lvid->numOfPartitions);
118 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
119 offsetof(struct logicalVolIntegrityDesc, impUse)) /
120 (2 * sizeof(uint32_t)) < partnum) {
121 udf_err(sb, "Logical volume integrity descriptor corrupted "
122 "(numOfPartitions = %u)!\n", partnum);
123 return NULL;
124 }
125 /* The offset is to skip freeSpaceTable and sizeTable arrays */
126 offset = partnum * 2 * sizeof(uint32_t);
127 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
128}
129
130/* UDF filesystem type */
131static struct dentry *udf_mount(struct file_system_type *fs_type,
132 int flags, const char *dev_name, void *data)
133{
134 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
135}
136
137static struct file_system_type udf_fstype = {
138 .owner = THIS_MODULE,
139 .name = "udf",
140 .mount = udf_mount,
141 .kill_sb = kill_block_super,
142 .fs_flags = FS_REQUIRES_DEV,
143};
144MODULE_ALIAS_FS("udf");
145
146static struct kmem_cache *udf_inode_cachep;
147
148static struct inode *udf_alloc_inode(struct super_block *sb)
149{
150 struct udf_inode_info *ei;
151 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
152 if (!ei)
153 return NULL;
154
155 ei->i_unique = 0;
156 ei->i_lenExtents = 0;
157 ei->i_next_alloc_block = 0;
158 ei->i_next_alloc_goal = 0;
159 ei->i_strat4096 = 0;
160 init_rwsem(&ei->i_data_sem);
161 ei->cached_extent.lstart = -1;
162 spin_lock_init(&ei->i_extent_cache_lock);
163
164 return &ei->vfs_inode;
165}
166
167static void udf_i_callback(struct rcu_head *head)
168{
169 struct inode *inode = container_of(head, struct inode, i_rcu);
170 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
171}
172
173static void udf_destroy_inode(struct inode *inode)
174{
175 call_rcu(&inode->i_rcu, udf_i_callback);
176}
177
178static void init_once(void *foo)
179{
180 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
181
182 ei->i_ext.i_data = NULL;
183 inode_init_once(&ei->vfs_inode);
184}
185
186static int __init init_inodecache(void)
187{
188 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
189 sizeof(struct udf_inode_info),
190 0, (SLAB_RECLAIM_ACCOUNT |
191 SLAB_MEM_SPREAD |
192 SLAB_ACCOUNT),
193 init_once);
194 if (!udf_inode_cachep)
195 return -ENOMEM;
196 return 0;
197}
198
199static void destroy_inodecache(void)
200{
201 /*
202 * Make sure all delayed rcu free inodes are flushed before we
203 * destroy cache.
204 */
205 rcu_barrier();
206 kmem_cache_destroy(udf_inode_cachep);
207}
208
209/* Superblock operations */
210static const struct super_operations udf_sb_ops = {
211 .alloc_inode = udf_alloc_inode,
212 .destroy_inode = udf_destroy_inode,
213 .write_inode = udf_write_inode,
214 .evict_inode = udf_evict_inode,
215 .put_super = udf_put_super,
216 .sync_fs = udf_sync_fs,
217 .statfs = udf_statfs,
218 .remount_fs = udf_remount_fs,
219 .show_options = udf_show_options,
220};
221
222struct udf_options {
223 unsigned char novrs;
224 unsigned int blocksize;
225 unsigned int session;
226 unsigned int lastblock;
227 unsigned int anchor;
228 unsigned int volume;
229 unsigned short partition;
230 unsigned int fileset;
231 unsigned int rootdir;
232 unsigned int flags;
233 umode_t umask;
234 kgid_t gid;
235 kuid_t uid;
236 umode_t fmode;
237 umode_t dmode;
238 struct nls_table *nls_map;
239};
240
241static int __init init_udf_fs(void)
242{
243 int err;
244
245 err = init_inodecache();
246 if (err)
247 goto out1;
248 err = register_filesystem(&udf_fstype);
249 if (err)
250 goto out;
251
252 return 0;
253
254out:
255 destroy_inodecache();
256
257out1:
258 return err;
259}
260
261static void __exit exit_udf_fs(void)
262{
263 unregister_filesystem(&udf_fstype);
264 destroy_inodecache();
265}
266
267module_init(init_udf_fs)
268module_exit(exit_udf_fs)
269
270static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
271{
272 struct udf_sb_info *sbi = UDF_SB(sb);
273
274 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
275 GFP_KERNEL);
276 if (!sbi->s_partmaps) {
277 udf_err(sb, "Unable to allocate space for %d partition maps\n",
278 count);
279 sbi->s_partitions = 0;
280 return -ENOMEM;
281 }
282
283 sbi->s_partitions = count;
284 return 0;
285}
286
287static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
288{
289 int i;
290 int nr_groups = bitmap->s_nr_groups;
291
292 for (i = 0; i < nr_groups; i++)
293 if (bitmap->s_block_bitmap[i])
294 brelse(bitmap->s_block_bitmap[i]);
295
296 kvfree(bitmap);
297}
298
299static void udf_free_partition(struct udf_part_map *map)
300{
301 int i;
302 struct udf_meta_data *mdata;
303
304 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
305 iput(map->s_uspace.s_table);
306 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
307 iput(map->s_fspace.s_table);
308 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
309 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
310 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
311 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
312 if (map->s_partition_type == UDF_SPARABLE_MAP15)
313 for (i = 0; i < 4; i++)
314 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
315 else if (map->s_partition_type == UDF_METADATA_MAP25) {
316 mdata = &map->s_type_specific.s_metadata;
317 iput(mdata->s_metadata_fe);
318 mdata->s_metadata_fe = NULL;
319
320 iput(mdata->s_mirror_fe);
321 mdata->s_mirror_fe = NULL;
322
323 iput(mdata->s_bitmap_fe);
324 mdata->s_bitmap_fe = NULL;
325 }
326}
327
328static void udf_sb_free_partitions(struct super_block *sb)
329{
330 struct udf_sb_info *sbi = UDF_SB(sb);
331 int i;
332 if (sbi->s_partmaps == NULL)
333 return;
334 for (i = 0; i < sbi->s_partitions; i++)
335 udf_free_partition(&sbi->s_partmaps[i]);
336 kfree(sbi->s_partmaps);
337 sbi->s_partmaps = NULL;
338}
339
340static int udf_show_options(struct seq_file *seq, struct dentry *root)
341{
342 struct super_block *sb = root->d_sb;
343 struct udf_sb_info *sbi = UDF_SB(sb);
344
345 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
346 seq_puts(seq, ",nostrict");
347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
348 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
350 seq_puts(seq, ",unhide");
351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
352 seq_puts(seq, ",undelete");
353 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
354 seq_puts(seq, ",noadinicb");
355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
356 seq_puts(seq, ",shortad");
357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
358 seq_puts(seq, ",uid=forget");
359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
360 seq_puts(seq, ",uid=ignore");
361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
362 seq_puts(seq, ",gid=forget");
363 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
364 seq_puts(seq, ",gid=ignore");
365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
366 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
367 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
368 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
369 if (sbi->s_umask != 0)
370 seq_printf(seq, ",umask=%ho", sbi->s_umask);
371 if (sbi->s_fmode != UDF_INVALID_MODE)
372 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
373 if (sbi->s_dmode != UDF_INVALID_MODE)
374 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
375 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
376 seq_printf(seq, ",session=%u", sbi->s_session);
377 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
378 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
379 if (sbi->s_anchor != 0)
380 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
381 /*
382 * volume, partition, fileset and rootdir seem to be ignored
383 * currently
384 */
385 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
386 seq_puts(seq, ",utf8");
387 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
388 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
389
390 return 0;
391}
392
393/*
394 * udf_parse_options
395 *
396 * PURPOSE
397 * Parse mount options.
398 *
399 * DESCRIPTION
400 * The following mount options are supported:
401 *
402 * gid= Set the default group.
403 * umask= Set the default umask.
404 * mode= Set the default file permissions.
405 * dmode= Set the default directory permissions.
406 * uid= Set the default user.
407 * bs= Set the block size.
408 * unhide Show otherwise hidden files.
409 * undelete Show deleted files in lists.
410 * adinicb Embed data in the inode (default)
411 * noadinicb Don't embed data in the inode
412 * shortad Use short ad's
413 * longad Use long ad's (default)
414 * nostrict Unset strict conformance
415 * iocharset= Set the NLS character set
416 *
417 * The remaining are for debugging and disaster recovery:
418 *
419 * novrs Skip volume sequence recognition
420 *
421 * The following expect a offset from 0.
422 *
423 * session= Set the CDROM session (default= last session)
424 * anchor= Override standard anchor location. (default= 256)
425 * volume= Override the VolumeDesc location. (unused)
426 * partition= Override the PartitionDesc location. (unused)
427 * lastblock= Set the last block of the filesystem/
428 *
429 * The following expect a offset from the partition root.
430 *
431 * fileset= Override the fileset block location. (unused)
432 * rootdir= Override the root directory location. (unused)
433 * WARNING: overriding the rootdir to a non-directory may
434 * yield highly unpredictable results.
435 *
436 * PRE-CONDITIONS
437 * options Pointer to mount options string.
438 * uopts Pointer to mount options variable.
439 *
440 * POST-CONDITIONS
441 * <return> 1 Mount options parsed okay.
442 * <return> 0 Error parsing mount options.
443 *
444 * HISTORY
445 * July 1, 1997 - Andrew E. Mileski
446 * Written, tested, and released.
447 */
448
449enum {
450 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
451 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
452 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
453 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
454 Opt_rootdir, Opt_utf8, Opt_iocharset,
455 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
456 Opt_fmode, Opt_dmode
457};
458
459static const match_table_t tokens = {
460 {Opt_novrs, "novrs"},
461 {Opt_nostrict, "nostrict"},
462 {Opt_bs, "bs=%u"},
463 {Opt_unhide, "unhide"},
464 {Opt_undelete, "undelete"},
465 {Opt_noadinicb, "noadinicb"},
466 {Opt_adinicb, "adinicb"},
467 {Opt_shortad, "shortad"},
468 {Opt_longad, "longad"},
469 {Opt_uforget, "uid=forget"},
470 {Opt_uignore, "uid=ignore"},
471 {Opt_gforget, "gid=forget"},
472 {Opt_gignore, "gid=ignore"},
473 {Opt_gid, "gid=%u"},
474 {Opt_uid, "uid=%u"},
475 {Opt_umask, "umask=%o"},
476 {Opt_session, "session=%u"},
477 {Opt_lastblock, "lastblock=%u"},
478 {Opt_anchor, "anchor=%u"},
479 {Opt_volume, "volume=%u"},
480 {Opt_partition, "partition=%u"},
481 {Opt_fileset, "fileset=%u"},
482 {Opt_rootdir, "rootdir=%u"},
483 {Opt_utf8, "utf8"},
484 {Opt_iocharset, "iocharset=%s"},
485 {Opt_fmode, "mode=%o"},
486 {Opt_dmode, "dmode=%o"},
487 {Opt_err, NULL}
488};
489
490static int udf_parse_options(char *options, struct udf_options *uopt,
491 bool remount)
492{
493 char *p;
494 int option;
495
496 uopt->novrs = 0;
497 uopt->partition = 0xFFFF;
498 uopt->session = 0xFFFFFFFF;
499 uopt->lastblock = 0;
500 uopt->anchor = 0;
501 uopt->volume = 0xFFFFFFFF;
502 uopt->rootdir = 0xFFFFFFFF;
503 uopt->fileset = 0xFFFFFFFF;
504 uopt->nls_map = NULL;
505
506 if (!options)
507 return 1;
508
509 while ((p = strsep(&options, ",")) != NULL) {
510 substring_t args[MAX_OPT_ARGS];
511 int token;
512 unsigned n;
513 if (!*p)
514 continue;
515
516 token = match_token(p, tokens, args);
517 switch (token) {
518 case Opt_novrs:
519 uopt->novrs = 1;
520 break;
521 case Opt_bs:
522 if (match_int(&args[0], &option))
523 return 0;
524 n = option;
525 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
526 return 0;
527 uopt->blocksize = n;
528 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
529 break;
530 case Opt_unhide:
531 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
532 break;
533 case Opt_undelete:
534 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
535 break;
536 case Opt_noadinicb:
537 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
538 break;
539 case Opt_adinicb:
540 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
541 break;
542 case Opt_shortad:
543 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
544 break;
545 case Opt_longad:
546 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
547 break;
548 case Opt_gid:
549 if (match_int(args, &option))
550 return 0;
551 uopt->gid = make_kgid(current_user_ns(), option);
552 if (!gid_valid(uopt->gid))
553 return 0;
554 uopt->flags |= (1 << UDF_FLAG_GID_SET);
555 break;
556 case Opt_uid:
557 if (match_int(args, &option))
558 return 0;
559 uopt->uid = make_kuid(current_user_ns(), option);
560 if (!uid_valid(uopt->uid))
561 return 0;
562 uopt->flags |= (1 << UDF_FLAG_UID_SET);
563 break;
564 case Opt_umask:
565 if (match_octal(args, &option))
566 return 0;
567 uopt->umask = option;
568 break;
569 case Opt_nostrict:
570 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
571 break;
572 case Opt_session:
573 if (match_int(args, &option))
574 return 0;
575 uopt->session = option;
576 if (!remount)
577 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
578 break;
579 case Opt_lastblock:
580 if (match_int(args, &option))
581 return 0;
582 uopt->lastblock = option;
583 if (!remount)
584 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
585 break;
586 case Opt_anchor:
587 if (match_int(args, &option))
588 return 0;
589 uopt->anchor = option;
590 break;
591 case Opt_volume:
592 if (match_int(args, &option))
593 return 0;
594 uopt->volume = option;
595 break;
596 case Opt_partition:
597 if (match_int(args, &option))
598 return 0;
599 uopt->partition = option;
600 break;
601 case Opt_fileset:
602 if (match_int(args, &option))
603 return 0;
604 uopt->fileset = option;
605 break;
606 case Opt_rootdir:
607 if (match_int(args, &option))
608 return 0;
609 uopt->rootdir = option;
610 break;
611 case Opt_utf8:
612 uopt->flags |= (1 << UDF_FLAG_UTF8);
613 break;
614#ifdef CONFIG_UDF_NLS
615 case Opt_iocharset:
616 uopt->nls_map = load_nls(args[0].from);
617 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
618 break;
619#endif
620 case Opt_uignore:
621 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
622 break;
623 case Opt_uforget:
624 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
625 break;
626 case Opt_gignore:
627 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
628 break;
629 case Opt_gforget:
630 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
631 break;
632 case Opt_fmode:
633 if (match_octal(args, &option))
634 return 0;
635 uopt->fmode = option & 0777;
636 break;
637 case Opt_dmode:
638 if (match_octal(args, &option))
639 return 0;
640 uopt->dmode = option & 0777;
641 break;
642 default:
643 pr_err("bad mount option \"%s\" or missing value\n", p);
644 return 0;
645 }
646 }
647 return 1;
648}
649
650static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
651{
652 struct udf_options uopt;
653 struct udf_sb_info *sbi = UDF_SB(sb);
654 int error = 0;
655 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
656
657 sync_filesystem(sb);
658 if (lvidiu) {
659 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
660 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
661 return -EACCES;
662 }
663
664 uopt.flags = sbi->s_flags;
665 uopt.uid = sbi->s_uid;
666 uopt.gid = sbi->s_gid;
667 uopt.umask = sbi->s_umask;
668 uopt.fmode = sbi->s_fmode;
669 uopt.dmode = sbi->s_dmode;
670
671 if (!udf_parse_options(options, &uopt, true))
672 return -EINVAL;
673
674 write_lock(&sbi->s_cred_lock);
675 sbi->s_flags = uopt.flags;
676 sbi->s_uid = uopt.uid;
677 sbi->s_gid = uopt.gid;
678 sbi->s_umask = uopt.umask;
679 sbi->s_fmode = uopt.fmode;
680 sbi->s_dmode = uopt.dmode;
681 write_unlock(&sbi->s_cred_lock);
682
683 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
684 goto out_unlock;
685
686 if (*flags & MS_RDONLY)
687 udf_close_lvid(sb);
688 else
689 udf_open_lvid(sb);
690
691out_unlock:
692 return error;
693}
694
695/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
696/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
697static loff_t udf_check_vsd(struct super_block *sb)
698{
699 struct volStructDesc *vsd = NULL;
700 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
701 int sectorsize;
702 struct buffer_head *bh = NULL;
703 int nsr02 = 0;
704 int nsr03 = 0;
705 struct udf_sb_info *sbi;
706
707 sbi = UDF_SB(sb);
708 if (sb->s_blocksize < sizeof(struct volStructDesc))
709 sectorsize = sizeof(struct volStructDesc);
710 else
711 sectorsize = sb->s_blocksize;
712
713 sector += (sbi->s_session << sb->s_blocksize_bits);
714
715 udf_debug("Starting at sector %u (%ld byte sectors)\n",
716 (unsigned int)(sector >> sb->s_blocksize_bits),
717 sb->s_blocksize);
718 /* Process the sequence (if applicable). The hard limit on the sector
719 * offset is arbitrary, hopefully large enough so that all valid UDF
720 * filesystems will be recognised. There is no mention of an upper
721 * bound to the size of the volume recognition area in the standard.
722 * The limit will prevent the code to read all the sectors of a
723 * specially crafted image (like a bluray disc full of CD001 sectors),
724 * potentially causing minutes or even hours of uninterruptible I/O
725 * activity. This actually happened with uninitialised SSD partitions
726 * (all 0xFF) before the check for the limit and all valid IDs were
727 * added */
728 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
729 sector += sectorsize) {
730 /* Read a block */
731 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
732 if (!bh)
733 break;
734
735 /* Look for ISO descriptors */
736 vsd = (struct volStructDesc *)(bh->b_data +
737 (sector & (sb->s_blocksize - 1)));
738
739 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
740 VSD_STD_ID_LEN)) {
741 switch (vsd->structType) {
742 case 0:
743 udf_debug("ISO9660 Boot Record found\n");
744 break;
745 case 1:
746 udf_debug("ISO9660 Primary Volume Descriptor found\n");
747 break;
748 case 2:
749 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
750 break;
751 case 3:
752 udf_debug("ISO9660 Volume Partition Descriptor found\n");
753 break;
754 case 255:
755 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
756 break;
757 default:
758 udf_debug("ISO9660 VRS (%u) found\n",
759 vsd->structType);
760 break;
761 }
762 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
763 VSD_STD_ID_LEN))
764 ; /* nothing */
765 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
766 VSD_STD_ID_LEN)) {
767 brelse(bh);
768 break;
769 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
770 VSD_STD_ID_LEN))
771 nsr02 = sector;
772 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
773 VSD_STD_ID_LEN))
774 nsr03 = sector;
775 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
776 VSD_STD_ID_LEN))
777 ; /* nothing */
778 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
779 VSD_STD_ID_LEN))
780 ; /* nothing */
781 else {
782 /* invalid id : end of volume recognition area */
783 brelse(bh);
784 break;
785 }
786 brelse(bh);
787 }
788
789 if (nsr03)
790 return nsr03;
791 else if (nsr02)
792 return nsr02;
793 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
794 VSD_FIRST_SECTOR_OFFSET)
795 return -1;
796 else
797 return 0;
798}
799
800static int udf_find_fileset(struct super_block *sb,
801 struct kernel_lb_addr *fileset,
802 struct kernel_lb_addr *root)
803{
804 struct buffer_head *bh = NULL;
805 long lastblock;
806 uint16_t ident;
807 struct udf_sb_info *sbi;
808
809 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
810 fileset->partitionReferenceNum != 0xFFFF) {
811 bh = udf_read_ptagged(sb, fileset, 0, &ident);
812
813 if (!bh) {
814 return 1;
815 } else if (ident != TAG_IDENT_FSD) {
816 brelse(bh);
817 return 1;
818 }
819
820 }
821
822 sbi = UDF_SB(sb);
823 if (!bh) {
824 /* Search backwards through the partitions */
825 struct kernel_lb_addr newfileset;
826
827/* --> cvg: FIXME - is it reasonable? */
828 return 1;
829
830 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
831 (newfileset.partitionReferenceNum != 0xFFFF &&
832 fileset->logicalBlockNum == 0xFFFFFFFF &&
833 fileset->partitionReferenceNum == 0xFFFF);
834 newfileset.partitionReferenceNum--) {
835 lastblock = sbi->s_partmaps
836 [newfileset.partitionReferenceNum]
837 .s_partition_len;
838 newfileset.logicalBlockNum = 0;
839
840 do {
841 bh = udf_read_ptagged(sb, &newfileset, 0,
842 &ident);
843 if (!bh) {
844 newfileset.logicalBlockNum++;
845 continue;
846 }
847
848 switch (ident) {
849 case TAG_IDENT_SBD:
850 {
851 struct spaceBitmapDesc *sp;
852 sp = (struct spaceBitmapDesc *)
853 bh->b_data;
854 newfileset.logicalBlockNum += 1 +
855 ((le32_to_cpu(sp->numOfBytes) +
856 sizeof(struct spaceBitmapDesc)
857 - 1) >> sb->s_blocksize_bits);
858 brelse(bh);
859 break;
860 }
861 case TAG_IDENT_FSD:
862 *fileset = newfileset;
863 break;
864 default:
865 newfileset.logicalBlockNum++;
866 brelse(bh);
867 bh = NULL;
868 break;
869 }
870 } while (newfileset.logicalBlockNum < lastblock &&
871 fileset->logicalBlockNum == 0xFFFFFFFF &&
872 fileset->partitionReferenceNum == 0xFFFF);
873 }
874 }
875
876 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
877 fileset->partitionReferenceNum != 0xFFFF) && bh) {
878 udf_debug("Fileset at block=%d, partition=%d\n",
879 fileset->logicalBlockNum,
880 fileset->partitionReferenceNum);
881
882 sbi->s_partition = fileset->partitionReferenceNum;
883 udf_load_fileset(sb, bh, root);
884 brelse(bh);
885 return 0;
886 }
887 return 1;
888}
889
890/*
891 * Load primary Volume Descriptor Sequence
892 *
893 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
894 * should be tried.
895 */
896static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
897{
898 struct primaryVolDesc *pvoldesc;
899 uint8_t *outstr;
900 struct buffer_head *bh;
901 uint16_t ident;
902 int ret = -ENOMEM;
903
904 outstr = kmalloc(128, GFP_NOFS);
905 if (!outstr)
906 return -ENOMEM;
907
908 bh = udf_read_tagged(sb, block, block, &ident);
909 if (!bh) {
910 ret = -EAGAIN;
911 goto out2;
912 }
913
914 if (ident != TAG_IDENT_PVD) {
915 ret = -EIO;
916 goto out_bh;
917 }
918
919 pvoldesc = (struct primaryVolDesc *)bh->b_data;
920
921 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
922 pvoldesc->recordingDateAndTime)) {
923#ifdef UDFFS_DEBUG
924 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
925 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
926 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
927 ts->minute, le16_to_cpu(ts->typeAndTimezone));
928#endif
929 }
930
931 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
932 if (ret < 0)
933 goto out_bh;
934
935 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
936 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
937
938 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
939 if (ret < 0)
940 goto out_bh;
941
942 outstr[ret] = 0;
943 udf_debug("volSetIdent[] = '%s'\n", outstr);
944
945 ret = 0;
946out_bh:
947 brelse(bh);
948out2:
949 kfree(outstr);
950 return ret;
951}
952
953struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
954 u32 meta_file_loc, u32 partition_ref)
955{
956 struct kernel_lb_addr addr;
957 struct inode *metadata_fe;
958
959 addr.logicalBlockNum = meta_file_loc;
960 addr.partitionReferenceNum = partition_ref;
961
962 metadata_fe = udf_iget_special(sb, &addr);
963
964 if (IS_ERR(metadata_fe)) {
965 udf_warn(sb, "metadata inode efe not found\n");
966 return metadata_fe;
967 }
968 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
969 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
970 iput(metadata_fe);
971 return ERR_PTR(-EIO);
972 }
973
974 return metadata_fe;
975}
976
977static int udf_load_metadata_files(struct super_block *sb, int partition,
978 int type1_index)
979{
980 struct udf_sb_info *sbi = UDF_SB(sb);
981 struct udf_part_map *map;
982 struct udf_meta_data *mdata;
983 struct kernel_lb_addr addr;
984 struct inode *fe;
985
986 map = &sbi->s_partmaps[partition];
987 mdata = &map->s_type_specific.s_metadata;
988 mdata->s_phys_partition_ref = type1_index;
989
990 /* metadata address */
991 udf_debug("Metadata file location: block = %d part = %d\n",
992 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
993
994 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
995 mdata->s_phys_partition_ref);
996 if (IS_ERR(fe)) {
997 /* mirror file entry */
998 udf_debug("Mirror metadata file location: block = %d part = %d\n",
999 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
1000
1001 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1002 mdata->s_phys_partition_ref);
1003
1004 if (IS_ERR(fe)) {
1005 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1006 return PTR_ERR(fe);
1007 }
1008 mdata->s_mirror_fe = fe;
1009 } else
1010 mdata->s_metadata_fe = fe;
1011
1012
1013 /*
1014 * bitmap file entry
1015 * Note:
1016 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1017 */
1018 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1019 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1020 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1021
1022 udf_debug("Bitmap file location: block = %d part = %d\n",
1023 addr.logicalBlockNum, addr.partitionReferenceNum);
1024
1025 fe = udf_iget_special(sb, &addr);
1026 if (IS_ERR(fe)) {
1027 if (sb->s_flags & MS_RDONLY)
1028 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1029 else {
1030 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1031 return PTR_ERR(fe);
1032 }
1033 } else
1034 mdata->s_bitmap_fe = fe;
1035 }
1036
1037 udf_debug("udf_load_metadata_files Ok\n");
1038 return 0;
1039}
1040
1041static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1042 struct kernel_lb_addr *root)
1043{
1044 struct fileSetDesc *fset;
1045
1046 fset = (struct fileSetDesc *)bh->b_data;
1047
1048 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1049
1050 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1051
1052 udf_debug("Rootdir at block=%d, partition=%d\n",
1053 root->logicalBlockNum, root->partitionReferenceNum);
1054}
1055
1056int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1057{
1058 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1059 return DIV_ROUND_UP(map->s_partition_len +
1060 (sizeof(struct spaceBitmapDesc) << 3),
1061 sb->s_blocksize * 8);
1062}
1063
1064static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1065{
1066 struct udf_bitmap *bitmap;
1067 int nr_groups;
1068 int size;
1069
1070 nr_groups = udf_compute_nr_groups(sb, index);
1071 size = sizeof(struct udf_bitmap) +
1072 (sizeof(struct buffer_head *) * nr_groups);
1073
1074 if (size <= PAGE_SIZE)
1075 bitmap = kzalloc(size, GFP_KERNEL);
1076 else
1077 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1078
1079 if (bitmap == NULL)
1080 return NULL;
1081
1082 bitmap->s_nr_groups = nr_groups;
1083 return bitmap;
1084}
1085
1086static int udf_fill_partdesc_info(struct super_block *sb,
1087 struct partitionDesc *p, int p_index)
1088{
1089 struct udf_part_map *map;
1090 struct udf_sb_info *sbi = UDF_SB(sb);
1091 struct partitionHeaderDesc *phd;
1092
1093 map = &sbi->s_partmaps[p_index];
1094
1095 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1096 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1097
1098 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1099 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1100 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1101 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1102 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1103 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1104 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1105 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1106
1107 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1108 p_index, map->s_partition_type,
1109 map->s_partition_root, map->s_partition_len);
1110
1111 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1112 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1113 return 0;
1114
1115 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1116 if (phd->unallocSpaceTable.extLength) {
1117 struct kernel_lb_addr loc = {
1118 .logicalBlockNum = le32_to_cpu(
1119 phd->unallocSpaceTable.extPosition),
1120 .partitionReferenceNum = p_index,
1121 };
1122 struct inode *inode;
1123
1124 inode = udf_iget_special(sb, &loc);
1125 if (IS_ERR(inode)) {
1126 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1127 p_index);
1128 return PTR_ERR(inode);
1129 }
1130 map->s_uspace.s_table = inode;
1131 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1132 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1133 p_index, map->s_uspace.s_table->i_ino);
1134 }
1135
1136 if (phd->unallocSpaceBitmap.extLength) {
1137 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1138 if (!bitmap)
1139 return -ENOMEM;
1140 map->s_uspace.s_bitmap = bitmap;
1141 bitmap->s_extPosition = le32_to_cpu(
1142 phd->unallocSpaceBitmap.extPosition);
1143 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1144 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1145 p_index, bitmap->s_extPosition);
1146 }
1147
1148 if (phd->partitionIntegrityTable.extLength)
1149 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1150
1151 if (phd->freedSpaceTable.extLength) {
1152 struct kernel_lb_addr loc = {
1153 .logicalBlockNum = le32_to_cpu(
1154 phd->freedSpaceTable.extPosition),
1155 .partitionReferenceNum = p_index,
1156 };
1157 struct inode *inode;
1158
1159 inode = udf_iget_special(sb, &loc);
1160 if (IS_ERR(inode)) {
1161 udf_debug("cannot load freedSpaceTable (part %d)\n",
1162 p_index);
1163 return PTR_ERR(inode);
1164 }
1165 map->s_fspace.s_table = inode;
1166 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1167 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1168 p_index, map->s_fspace.s_table->i_ino);
1169 }
1170
1171 if (phd->freedSpaceBitmap.extLength) {
1172 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1173 if (!bitmap)
1174 return -ENOMEM;
1175 map->s_fspace.s_bitmap = bitmap;
1176 bitmap->s_extPosition = le32_to_cpu(
1177 phd->freedSpaceBitmap.extPosition);
1178 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1179 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1180 p_index, bitmap->s_extPosition);
1181 }
1182 return 0;
1183}
1184
1185static void udf_find_vat_block(struct super_block *sb, int p_index,
1186 int type1_index, sector_t start_block)
1187{
1188 struct udf_sb_info *sbi = UDF_SB(sb);
1189 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1190 sector_t vat_block;
1191 struct kernel_lb_addr ino;
1192 struct inode *inode;
1193
1194 /*
1195 * VAT file entry is in the last recorded block. Some broken disks have
1196 * it a few blocks before so try a bit harder...
1197 */
1198 ino.partitionReferenceNum = type1_index;
1199 for (vat_block = start_block;
1200 vat_block >= map->s_partition_root &&
1201 vat_block >= start_block - 3; vat_block--) {
1202 ino.logicalBlockNum = vat_block - map->s_partition_root;
1203 inode = udf_iget_special(sb, &ino);
1204 if (!IS_ERR(inode)) {
1205 sbi->s_vat_inode = inode;
1206 break;
1207 }
1208 }
1209}
1210
1211static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1212{
1213 struct udf_sb_info *sbi = UDF_SB(sb);
1214 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1215 struct buffer_head *bh = NULL;
1216 struct udf_inode_info *vati;
1217 uint32_t pos;
1218 struct virtualAllocationTable20 *vat20;
1219 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1220
1221 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1222 if (!sbi->s_vat_inode &&
1223 sbi->s_last_block != blocks - 1) {
1224 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1225 (unsigned long)sbi->s_last_block,
1226 (unsigned long)blocks - 1);
1227 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1228 }
1229 if (!sbi->s_vat_inode)
1230 return -EIO;
1231
1232 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1233 map->s_type_specific.s_virtual.s_start_offset = 0;
1234 map->s_type_specific.s_virtual.s_num_entries =
1235 (sbi->s_vat_inode->i_size - 36) >> 2;
1236 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1237 vati = UDF_I(sbi->s_vat_inode);
1238 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1239 pos = udf_block_map(sbi->s_vat_inode, 0);
1240 bh = sb_bread(sb, pos);
1241 if (!bh)
1242 return -EIO;
1243 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1244 } else {
1245 vat20 = (struct virtualAllocationTable20 *)
1246 vati->i_ext.i_data;
1247 }
1248
1249 map->s_type_specific.s_virtual.s_start_offset =
1250 le16_to_cpu(vat20->lengthHeader);
1251 map->s_type_specific.s_virtual.s_num_entries =
1252 (sbi->s_vat_inode->i_size -
1253 map->s_type_specific.s_virtual.
1254 s_start_offset) >> 2;
1255 brelse(bh);
1256 }
1257 return 0;
1258}
1259
1260/*
1261 * Load partition descriptor block
1262 *
1263 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1264 * sequence.
1265 */
1266static int udf_load_partdesc(struct super_block *sb, sector_t block)
1267{
1268 struct buffer_head *bh;
1269 struct partitionDesc *p;
1270 struct udf_part_map *map;
1271 struct udf_sb_info *sbi = UDF_SB(sb);
1272 int i, type1_idx;
1273 uint16_t partitionNumber;
1274 uint16_t ident;
1275 int ret;
1276
1277 bh = udf_read_tagged(sb, block, block, &ident);
1278 if (!bh)
1279 return -EAGAIN;
1280 if (ident != TAG_IDENT_PD) {
1281 ret = 0;
1282 goto out_bh;
1283 }
1284
1285 p = (struct partitionDesc *)bh->b_data;
1286 partitionNumber = le16_to_cpu(p->partitionNumber);
1287
1288 /* First scan for TYPE1 and SPARABLE partitions */
1289 for (i = 0; i < sbi->s_partitions; i++) {
1290 map = &sbi->s_partmaps[i];
1291 udf_debug("Searching map: (%d == %d)\n",
1292 map->s_partition_num, partitionNumber);
1293 if (map->s_partition_num == partitionNumber &&
1294 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1295 map->s_partition_type == UDF_SPARABLE_MAP15))
1296 break;
1297 }
1298
1299 if (i >= sbi->s_partitions) {
1300 udf_debug("Partition (%d) not found in partition map\n",
1301 partitionNumber);
1302 ret = 0;
1303 goto out_bh;
1304 }
1305
1306 ret = udf_fill_partdesc_info(sb, p, i);
1307 if (ret < 0)
1308 goto out_bh;
1309
1310 /*
1311 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1312 * PHYSICAL partitions are already set up
1313 */
1314 type1_idx = i;
1315#ifdef UDFFS_DEBUG
1316 map = NULL; /* supress 'maybe used uninitialized' warning */
1317#endif
1318 for (i = 0; i < sbi->s_partitions; i++) {
1319 map = &sbi->s_partmaps[i];
1320
1321 if (map->s_partition_num == partitionNumber &&
1322 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1323 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1324 map->s_partition_type == UDF_METADATA_MAP25))
1325 break;
1326 }
1327
1328 if (i >= sbi->s_partitions) {
1329 ret = 0;
1330 goto out_bh;
1331 }
1332
1333 ret = udf_fill_partdesc_info(sb, p, i);
1334 if (ret < 0)
1335 goto out_bh;
1336
1337 if (map->s_partition_type == UDF_METADATA_MAP25) {
1338 ret = udf_load_metadata_files(sb, i, type1_idx);
1339 if (ret < 0) {
1340 udf_err(sb, "error loading MetaData partition map %d\n",
1341 i);
1342 goto out_bh;
1343 }
1344 } else {
1345 /*
1346 * If we have a partition with virtual map, we don't handle
1347 * writing to it (we overwrite blocks instead of relocating
1348 * them).
1349 */
1350 if (!(sb->s_flags & MS_RDONLY)) {
1351 ret = -EACCES;
1352 goto out_bh;
1353 }
1354 ret = udf_load_vat(sb, i, type1_idx);
1355 if (ret < 0)
1356 goto out_bh;
1357 }
1358 ret = 0;
1359out_bh:
1360 /* In case loading failed, we handle cleanup in udf_fill_super */
1361 brelse(bh);
1362 return ret;
1363}
1364
1365static int udf_load_sparable_map(struct super_block *sb,
1366 struct udf_part_map *map,
1367 struct sparablePartitionMap *spm)
1368{
1369 uint32_t loc;
1370 uint16_t ident;
1371 struct sparingTable *st;
1372 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1373 int i;
1374 struct buffer_head *bh;
1375
1376 map->s_partition_type = UDF_SPARABLE_MAP15;
1377 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1378 if (!is_power_of_2(sdata->s_packet_len)) {
1379 udf_err(sb, "error loading logical volume descriptor: "
1380 "Invalid packet length %u\n",
1381 (unsigned)sdata->s_packet_len);
1382 return -EIO;
1383 }
1384 if (spm->numSparingTables > 4) {
1385 udf_err(sb, "error loading logical volume descriptor: "
1386 "Too many sparing tables (%d)\n",
1387 (int)spm->numSparingTables);
1388 return -EIO;
1389 }
1390
1391 for (i = 0; i < spm->numSparingTables; i++) {
1392 loc = le32_to_cpu(spm->locSparingTable[i]);
1393 bh = udf_read_tagged(sb, loc, loc, &ident);
1394 if (!bh)
1395 continue;
1396
1397 st = (struct sparingTable *)bh->b_data;
1398 if (ident != 0 ||
1399 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1400 strlen(UDF_ID_SPARING)) ||
1401 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1402 sb->s_blocksize) {
1403 brelse(bh);
1404 continue;
1405 }
1406
1407 sdata->s_spar_map[i] = bh;
1408 }
1409 map->s_partition_func = udf_get_pblock_spar15;
1410 return 0;
1411}
1412
1413static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1414 struct kernel_lb_addr *fileset)
1415{
1416 struct logicalVolDesc *lvd;
1417 int i, offset;
1418 uint8_t type;
1419 struct udf_sb_info *sbi = UDF_SB(sb);
1420 struct genericPartitionMap *gpm;
1421 uint16_t ident;
1422 struct buffer_head *bh;
1423 unsigned int table_len;
1424 int ret;
1425
1426 bh = udf_read_tagged(sb, block, block, &ident);
1427 if (!bh)
1428 return -EAGAIN;
1429 BUG_ON(ident != TAG_IDENT_LVD);
1430 lvd = (struct logicalVolDesc *)bh->b_data;
1431 table_len = le32_to_cpu(lvd->mapTableLength);
1432 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1433 udf_err(sb, "error loading logical volume descriptor: "
1434 "Partition table too long (%u > %lu)\n", table_len,
1435 sb->s_blocksize - sizeof(*lvd));
1436 ret = -EIO;
1437 goto out_bh;
1438 }
1439
1440 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1441 if (ret)
1442 goto out_bh;
1443
1444 for (i = 0, offset = 0;
1445 i < sbi->s_partitions && offset < table_len;
1446 i++, offset += gpm->partitionMapLength) {
1447 struct udf_part_map *map = &sbi->s_partmaps[i];
1448 gpm = (struct genericPartitionMap *)
1449 &(lvd->partitionMaps[offset]);
1450 type = gpm->partitionMapType;
1451 if (type == 1) {
1452 struct genericPartitionMap1 *gpm1 =
1453 (struct genericPartitionMap1 *)gpm;
1454 map->s_partition_type = UDF_TYPE1_MAP15;
1455 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1456 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1457 map->s_partition_func = NULL;
1458 } else if (type == 2) {
1459 struct udfPartitionMap2 *upm2 =
1460 (struct udfPartitionMap2 *)gpm;
1461 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1462 strlen(UDF_ID_VIRTUAL))) {
1463 u16 suf =
1464 le16_to_cpu(((__le16 *)upm2->partIdent.
1465 identSuffix)[0]);
1466 if (suf < 0x0200) {
1467 map->s_partition_type =
1468 UDF_VIRTUAL_MAP15;
1469 map->s_partition_func =
1470 udf_get_pblock_virt15;
1471 } else {
1472 map->s_partition_type =
1473 UDF_VIRTUAL_MAP20;
1474 map->s_partition_func =
1475 udf_get_pblock_virt20;
1476 }
1477 } else if (!strncmp(upm2->partIdent.ident,
1478 UDF_ID_SPARABLE,
1479 strlen(UDF_ID_SPARABLE))) {
1480 ret = udf_load_sparable_map(sb, map,
1481 (struct sparablePartitionMap *)gpm);
1482 if (ret < 0)
1483 goto out_bh;
1484 } else if (!strncmp(upm2->partIdent.ident,
1485 UDF_ID_METADATA,
1486 strlen(UDF_ID_METADATA))) {
1487 struct udf_meta_data *mdata =
1488 &map->s_type_specific.s_metadata;
1489 struct metadataPartitionMap *mdm =
1490 (struct metadataPartitionMap *)
1491 &(lvd->partitionMaps[offset]);
1492 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1493 i, type, UDF_ID_METADATA);
1494
1495 map->s_partition_type = UDF_METADATA_MAP25;
1496 map->s_partition_func = udf_get_pblock_meta25;
1497
1498 mdata->s_meta_file_loc =
1499 le32_to_cpu(mdm->metadataFileLoc);
1500 mdata->s_mirror_file_loc =
1501 le32_to_cpu(mdm->metadataMirrorFileLoc);
1502 mdata->s_bitmap_file_loc =
1503 le32_to_cpu(mdm->metadataBitmapFileLoc);
1504 mdata->s_alloc_unit_size =
1505 le32_to_cpu(mdm->allocUnitSize);
1506 mdata->s_align_unit_size =
1507 le16_to_cpu(mdm->alignUnitSize);
1508 if (mdm->flags & 0x01)
1509 mdata->s_flags |= MF_DUPLICATE_MD;
1510
1511 udf_debug("Metadata Ident suffix=0x%x\n",
1512 le16_to_cpu(*(__le16 *)
1513 mdm->partIdent.identSuffix));
1514 udf_debug("Metadata part num=%d\n",
1515 le16_to_cpu(mdm->partitionNum));
1516 udf_debug("Metadata part alloc unit size=%d\n",
1517 le32_to_cpu(mdm->allocUnitSize));
1518 udf_debug("Metadata file loc=%d\n",
1519 le32_to_cpu(mdm->metadataFileLoc));
1520 udf_debug("Mirror file loc=%d\n",
1521 le32_to_cpu(mdm->metadataMirrorFileLoc));
1522 udf_debug("Bitmap file loc=%d\n",
1523 le32_to_cpu(mdm->metadataBitmapFileLoc));
1524 udf_debug("Flags: %d %d\n",
1525 mdata->s_flags, mdm->flags);
1526 } else {
1527 udf_debug("Unknown ident: %s\n",
1528 upm2->partIdent.ident);
1529 continue;
1530 }
1531 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1532 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1533 }
1534 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1535 i, map->s_partition_num, type, map->s_volumeseqnum);
1536 }
1537
1538 if (fileset) {
1539 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1540
1541 *fileset = lelb_to_cpu(la->extLocation);
1542 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1543 fileset->logicalBlockNum,
1544 fileset->partitionReferenceNum);
1545 }
1546 if (lvd->integritySeqExt.extLength)
1547 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1548 ret = 0;
1549out_bh:
1550 brelse(bh);
1551 return ret;
1552}
1553
1554/*
1555 * Find the prevailing Logical Volume Integrity Descriptor.
1556 */
1557static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1558{
1559 struct buffer_head *bh, *final_bh;
1560 uint16_t ident;
1561 struct udf_sb_info *sbi = UDF_SB(sb);
1562 struct logicalVolIntegrityDesc *lvid;
1563 int indirections = 0;
1564
1565 while (++indirections <= UDF_MAX_LVID_NESTING) {
1566 final_bh = NULL;
1567 while (loc.extLength > 0 &&
1568 (bh = udf_read_tagged(sb, loc.extLocation,
1569 loc.extLocation, &ident))) {
1570 if (ident != TAG_IDENT_LVID) {
1571 brelse(bh);
1572 break;
1573 }
1574
1575 brelse(final_bh);
1576 final_bh = bh;
1577
1578 loc.extLength -= sb->s_blocksize;
1579 loc.extLocation++;
1580 }
1581
1582 if (!final_bh)
1583 return;
1584
1585 brelse(sbi->s_lvid_bh);
1586 sbi->s_lvid_bh = final_bh;
1587
1588 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1589 if (lvid->nextIntegrityExt.extLength == 0)
1590 return;
1591
1592 loc = leea_to_cpu(lvid->nextIntegrityExt);
1593 }
1594
1595 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1596 UDF_MAX_LVID_NESTING);
1597 brelse(sbi->s_lvid_bh);
1598 sbi->s_lvid_bh = NULL;
1599}
1600
1601
1602/*
1603 * Process a main/reserve volume descriptor sequence.
1604 * @block First block of first extent of the sequence.
1605 * @lastblock Lastblock of first extent of the sequence.
1606 * @fileset There we store extent containing root fileset
1607 *
1608 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1609 * sequence
1610 */
1611static noinline int udf_process_sequence(
1612 struct super_block *sb,
1613 sector_t block, sector_t lastblock,
1614 struct kernel_lb_addr *fileset)
1615{
1616 struct buffer_head *bh = NULL;
1617 struct udf_vds_record vds[VDS_POS_LENGTH];
1618 struct udf_vds_record *curr;
1619 struct generic_desc *gd;
1620 struct volDescPtr *vdp;
1621 bool done = false;
1622 uint32_t vdsn;
1623 uint16_t ident;
1624 long next_s = 0, next_e = 0;
1625 int ret;
1626 unsigned int indirections = 0;
1627
1628 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1629
1630 /*
1631 * Read the main descriptor sequence and find which descriptors
1632 * are in it.
1633 */
1634 for (; (!done && block <= lastblock); block++) {
1635
1636 bh = udf_read_tagged(sb, block, block, &ident);
1637 if (!bh) {
1638 udf_err(sb,
1639 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1640 (unsigned long long)block);
1641 return -EAGAIN;
1642 }
1643
1644 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1645 gd = (struct generic_desc *)bh->b_data;
1646 vdsn = le32_to_cpu(gd->volDescSeqNum);
1647 switch (ident) {
1648 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1649 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1650 if (vdsn >= curr->volDescSeqNum) {
1651 curr->volDescSeqNum = vdsn;
1652 curr->block = block;
1653 }
1654 break;
1655 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1656 curr = &vds[VDS_POS_VOL_DESC_PTR];
1657 if (vdsn >= curr->volDescSeqNum) {
1658 curr->volDescSeqNum = vdsn;
1659 curr->block = block;
1660
1661 vdp = (struct volDescPtr *)bh->b_data;
1662 next_s = le32_to_cpu(
1663 vdp->nextVolDescSeqExt.extLocation);
1664 next_e = le32_to_cpu(
1665 vdp->nextVolDescSeqExt.extLength);
1666 next_e = next_e >> sb->s_blocksize_bits;
1667 next_e += next_s;
1668 }
1669 break;
1670 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1671 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1672 if (vdsn >= curr->volDescSeqNum) {
1673 curr->volDescSeqNum = vdsn;
1674 curr->block = block;
1675 }
1676 break;
1677 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1678 curr = &vds[VDS_POS_PARTITION_DESC];
1679 if (!curr->block)
1680 curr->block = block;
1681 break;
1682 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1683 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1684 if (vdsn >= curr->volDescSeqNum) {
1685 curr->volDescSeqNum = vdsn;
1686 curr->block = block;
1687 }
1688 break;
1689 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1690 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1691 if (vdsn >= curr->volDescSeqNum) {
1692 curr->volDescSeqNum = vdsn;
1693 curr->block = block;
1694 }
1695 break;
1696 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1697 if (++indirections > UDF_MAX_TD_NESTING) {
1698 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1699 brelse(bh);
1700 return -EIO;
1701 }
1702
1703 vds[VDS_POS_TERMINATING_DESC].block = block;
1704 if (next_e) {
1705 block = next_s;
1706 lastblock = next_e;
1707 next_s = next_e = 0;
1708 } else
1709 done = true;
1710 break;
1711 }
1712 brelse(bh);
1713 }
1714 /*
1715 * Now read interesting descriptors again and process them
1716 * in a suitable order
1717 */
1718 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1719 udf_err(sb, "Primary Volume Descriptor not found!\n");
1720 return -EAGAIN;
1721 }
1722 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1723 if (ret < 0)
1724 return ret;
1725
1726 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1727 ret = udf_load_logicalvol(sb,
1728 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1729 fileset);
1730 if (ret < 0)
1731 return ret;
1732 }
1733
1734 if (vds[VDS_POS_PARTITION_DESC].block) {
1735 /*
1736 * We rescan the whole descriptor sequence to find
1737 * partition descriptor blocks and process them.
1738 */
1739 for (block = vds[VDS_POS_PARTITION_DESC].block;
1740 block < vds[VDS_POS_TERMINATING_DESC].block;
1741 block++) {
1742 ret = udf_load_partdesc(sb, block);
1743 if (ret < 0)
1744 return ret;
1745 }
1746 }
1747
1748 return 0;
1749}
1750
1751/*
1752 * Load Volume Descriptor Sequence described by anchor in bh
1753 *
1754 * Returns <0 on error, 0 on success
1755 */
1756static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1757 struct kernel_lb_addr *fileset)
1758{
1759 struct anchorVolDescPtr *anchor;
1760 sector_t main_s, main_e, reserve_s, reserve_e;
1761 int ret;
1762
1763 anchor = (struct anchorVolDescPtr *)bh->b_data;
1764
1765 /* Locate the main sequence */
1766 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1767 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1768 main_e = main_e >> sb->s_blocksize_bits;
1769 main_e += main_s;
1770
1771 /* Locate the reserve sequence */
1772 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1773 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1774 reserve_e = reserve_e >> sb->s_blocksize_bits;
1775 reserve_e += reserve_s;
1776
1777 /* Process the main & reserve sequences */
1778 /* responsible for finding the PartitionDesc(s) */
1779 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1780 if (ret != -EAGAIN)
1781 return ret;
1782 udf_sb_free_partitions(sb);
1783 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1784 if (ret < 0) {
1785 udf_sb_free_partitions(sb);
1786 /* No sequence was OK, return -EIO */
1787 if (ret == -EAGAIN)
1788 ret = -EIO;
1789 }
1790 return ret;
1791}
1792
1793/*
1794 * Check whether there is an anchor block in the given block and
1795 * load Volume Descriptor Sequence if so.
1796 *
1797 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1798 * block
1799 */
1800static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1801 struct kernel_lb_addr *fileset)
1802{
1803 struct buffer_head *bh;
1804 uint16_t ident;
1805 int ret;
1806
1807 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1808 udf_fixed_to_variable(block) >=
1809 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1810 return -EAGAIN;
1811
1812 bh = udf_read_tagged(sb, block, block, &ident);
1813 if (!bh)
1814 return -EAGAIN;
1815 if (ident != TAG_IDENT_AVDP) {
1816 brelse(bh);
1817 return -EAGAIN;
1818 }
1819 ret = udf_load_sequence(sb, bh, fileset);
1820 brelse(bh);
1821 return ret;
1822}
1823
1824/*
1825 * Search for an anchor volume descriptor pointer.
1826 *
1827 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1828 * of anchors.
1829 */
1830static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1831 struct kernel_lb_addr *fileset)
1832{
1833 sector_t last[6];
1834 int i;
1835 struct udf_sb_info *sbi = UDF_SB(sb);
1836 int last_count = 0;
1837 int ret;
1838
1839 /* First try user provided anchor */
1840 if (sbi->s_anchor) {
1841 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1842 if (ret != -EAGAIN)
1843 return ret;
1844 }
1845 /*
1846 * according to spec, anchor is in either:
1847 * block 256
1848 * lastblock-256
1849 * lastblock
1850 * however, if the disc isn't closed, it could be 512.
1851 */
1852 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1853 if (ret != -EAGAIN)
1854 return ret;
1855 /*
1856 * The trouble is which block is the last one. Drives often misreport
1857 * this so we try various possibilities.
1858 */
1859 last[last_count++] = *lastblock;
1860 if (*lastblock >= 1)
1861 last[last_count++] = *lastblock - 1;
1862 last[last_count++] = *lastblock + 1;
1863 if (*lastblock >= 2)
1864 last[last_count++] = *lastblock - 2;
1865 if (*lastblock >= 150)
1866 last[last_count++] = *lastblock - 150;
1867 if (*lastblock >= 152)
1868 last[last_count++] = *lastblock - 152;
1869
1870 for (i = 0; i < last_count; i++) {
1871 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1872 sb->s_blocksize_bits)
1873 continue;
1874 ret = udf_check_anchor_block(sb, last[i], fileset);
1875 if (ret != -EAGAIN) {
1876 if (!ret)
1877 *lastblock = last[i];
1878 return ret;
1879 }
1880 if (last[i] < 256)
1881 continue;
1882 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1883 if (ret != -EAGAIN) {
1884 if (!ret)
1885 *lastblock = last[i];
1886 return ret;
1887 }
1888 }
1889
1890 /* Finally try block 512 in case media is open */
1891 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1892}
1893
1894/*
1895 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1896 * area specified by it. The function expects sbi->s_lastblock to be the last
1897 * block on the media.
1898 *
1899 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1900 * was not found.
1901 */
1902static int udf_find_anchor(struct super_block *sb,
1903 struct kernel_lb_addr *fileset)
1904{
1905 struct udf_sb_info *sbi = UDF_SB(sb);
1906 sector_t lastblock = sbi->s_last_block;
1907 int ret;
1908
1909 ret = udf_scan_anchors(sb, &lastblock, fileset);
1910 if (ret != -EAGAIN)
1911 goto out;
1912
1913 /* No anchor found? Try VARCONV conversion of block numbers */
1914 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1915 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1916 /* Firstly, we try to not convert number of the last block */
1917 ret = udf_scan_anchors(sb, &lastblock, fileset);
1918 if (ret != -EAGAIN)
1919 goto out;
1920
1921 lastblock = sbi->s_last_block;
1922 /* Secondly, we try with converted number of the last block */
1923 ret = udf_scan_anchors(sb, &lastblock, fileset);
1924 if (ret < 0) {
1925 /* VARCONV didn't help. Clear it. */
1926 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1927 }
1928out:
1929 if (ret == 0)
1930 sbi->s_last_block = lastblock;
1931 return ret;
1932}
1933
1934/*
1935 * Check Volume Structure Descriptor, find Anchor block and load Volume
1936 * Descriptor Sequence.
1937 *
1938 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1939 * block was not found.
1940 */
1941static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1942 int silent, struct kernel_lb_addr *fileset)
1943{
1944 struct udf_sb_info *sbi = UDF_SB(sb);
1945 loff_t nsr_off;
1946 int ret;
1947
1948 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1949 if (!silent)
1950 udf_warn(sb, "Bad block size\n");
1951 return -EINVAL;
1952 }
1953 sbi->s_last_block = uopt->lastblock;
1954 if (!uopt->novrs) {
1955 /* Check that it is NSR02 compliant */
1956 nsr_off = udf_check_vsd(sb);
1957 if (!nsr_off) {
1958 if (!silent)
1959 udf_warn(sb, "No VRS found\n");
1960 return 0;
1961 }
1962 if (nsr_off == -1)
1963 udf_debug("Failed to read sector at offset %d. "
1964 "Assuming open disc. Skipping validity "
1965 "check\n", VSD_FIRST_SECTOR_OFFSET);
1966 if (!sbi->s_last_block)
1967 sbi->s_last_block = udf_get_last_block(sb);
1968 } else {
1969 udf_debug("Validity check skipped because of novrs option\n");
1970 }
1971
1972 /* Look for anchor block and load Volume Descriptor Sequence */
1973 sbi->s_anchor = uopt->anchor;
1974 ret = udf_find_anchor(sb, fileset);
1975 if (ret < 0) {
1976 if (!silent && ret == -EAGAIN)
1977 udf_warn(sb, "No anchor found\n");
1978 return ret;
1979 }
1980 return 0;
1981}
1982
1983static void udf_open_lvid(struct super_block *sb)
1984{
1985 struct udf_sb_info *sbi = UDF_SB(sb);
1986 struct buffer_head *bh = sbi->s_lvid_bh;
1987 struct logicalVolIntegrityDesc *lvid;
1988 struct logicalVolIntegrityDescImpUse *lvidiu;
1989
1990 if (!bh)
1991 return;
1992 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1993 lvidiu = udf_sb_lvidiu(sb);
1994 if (!lvidiu)
1995 return;
1996
1997 mutex_lock(&sbi->s_alloc_mutex);
1998 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1999 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2000 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
2001 CURRENT_TIME);
2002 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2003
2004 lvid->descTag.descCRC = cpu_to_le16(
2005 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2006 le16_to_cpu(lvid->descTag.descCRCLength)));
2007
2008 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2009 mark_buffer_dirty(bh);
2010 sbi->s_lvid_dirty = 0;
2011 mutex_unlock(&sbi->s_alloc_mutex);
2012 /* Make opening of filesystem visible on the media immediately */
2013 sync_dirty_buffer(bh);
2014}
2015
2016static void udf_close_lvid(struct super_block *sb)
2017{
2018 struct udf_sb_info *sbi = UDF_SB(sb);
2019 struct buffer_head *bh = sbi->s_lvid_bh;
2020 struct logicalVolIntegrityDesc *lvid;
2021 struct logicalVolIntegrityDescImpUse *lvidiu;
2022
2023 if (!bh)
2024 return;
2025 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2026 lvidiu = udf_sb_lvidiu(sb);
2027 if (!lvidiu)
2028 return;
2029
2030 mutex_lock(&sbi->s_alloc_mutex);
2031 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2032 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2033 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2034 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2035 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2036 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2037 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2038 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2039 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2040 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2041
2042 lvid->descTag.descCRC = cpu_to_le16(
2043 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2044 le16_to_cpu(lvid->descTag.descCRCLength)));
2045
2046 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2047 /*
2048 * We set buffer uptodate unconditionally here to avoid spurious
2049 * warnings from mark_buffer_dirty() when previous EIO has marked
2050 * the buffer as !uptodate
2051 */
2052 set_buffer_uptodate(bh);
2053 mark_buffer_dirty(bh);
2054 sbi->s_lvid_dirty = 0;
2055 mutex_unlock(&sbi->s_alloc_mutex);
2056 /* Make closing of filesystem visible on the media immediately */
2057 sync_dirty_buffer(bh);
2058}
2059
2060u64 lvid_get_unique_id(struct super_block *sb)
2061{
2062 struct buffer_head *bh;
2063 struct udf_sb_info *sbi = UDF_SB(sb);
2064 struct logicalVolIntegrityDesc *lvid;
2065 struct logicalVolHeaderDesc *lvhd;
2066 u64 uniqueID;
2067 u64 ret;
2068
2069 bh = sbi->s_lvid_bh;
2070 if (!bh)
2071 return 0;
2072
2073 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2074 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2075
2076 mutex_lock(&sbi->s_alloc_mutex);
2077 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2078 if (!(++uniqueID & 0xFFFFFFFF))
2079 uniqueID += 16;
2080 lvhd->uniqueID = cpu_to_le64(uniqueID);
2081 mutex_unlock(&sbi->s_alloc_mutex);
2082 mark_buffer_dirty(bh);
2083
2084 return ret;
2085}
2086
2087static int udf_fill_super(struct super_block *sb, void *options, int silent)
2088{
2089 int ret = -EINVAL;
2090 struct inode *inode = NULL;
2091 struct udf_options uopt;
2092 struct kernel_lb_addr rootdir, fileset;
2093 struct udf_sb_info *sbi;
2094 bool lvid_open = false;
2095
2096 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2097 uopt.uid = INVALID_UID;
2098 uopt.gid = INVALID_GID;
2099 uopt.umask = 0;
2100 uopt.fmode = UDF_INVALID_MODE;
2101 uopt.dmode = UDF_INVALID_MODE;
2102
2103 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2104 if (!sbi)
2105 return -ENOMEM;
2106
2107 sb->s_fs_info = sbi;
2108
2109 mutex_init(&sbi->s_alloc_mutex);
2110
2111 if (!udf_parse_options((char *)options, &uopt, false))
2112 goto parse_options_failure;
2113
2114 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2115 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2116 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2117 goto parse_options_failure;
2118 }
2119#ifdef CONFIG_UDF_NLS
2120 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2121 uopt.nls_map = load_nls_default();
2122 if (!uopt.nls_map)
2123 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2124 else
2125 udf_debug("Using default NLS map\n");
2126 }
2127#endif
2128 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2129 uopt.flags |= (1 << UDF_FLAG_UTF8);
2130
2131 fileset.logicalBlockNum = 0xFFFFFFFF;
2132 fileset.partitionReferenceNum = 0xFFFF;
2133
2134 sbi->s_flags = uopt.flags;
2135 sbi->s_uid = uopt.uid;
2136 sbi->s_gid = uopt.gid;
2137 sbi->s_umask = uopt.umask;
2138 sbi->s_fmode = uopt.fmode;
2139 sbi->s_dmode = uopt.dmode;
2140 sbi->s_nls_map = uopt.nls_map;
2141 rwlock_init(&sbi->s_cred_lock);
2142
2143 if (uopt.session == 0xFFFFFFFF)
2144 sbi->s_session = udf_get_last_session(sb);
2145 else
2146 sbi->s_session = uopt.session;
2147
2148 udf_debug("Multi-session=%d\n", sbi->s_session);
2149
2150 /* Fill in the rest of the superblock */
2151 sb->s_op = &udf_sb_ops;
2152 sb->s_export_op = &udf_export_ops;
2153
2154 sb->s_magic = UDF_SUPER_MAGIC;
2155 sb->s_time_gran = 1000;
2156
2157 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2158 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2159 } else {
2160 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2161 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2162 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2163 if (!silent)
2164 pr_notice("Rescanning with blocksize %d\n",
2165 UDF_DEFAULT_BLOCKSIZE);
2166 brelse(sbi->s_lvid_bh);
2167 sbi->s_lvid_bh = NULL;
2168 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2169 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2170 }
2171 }
2172 if (ret < 0) {
2173 if (ret == -EAGAIN) {
2174 udf_warn(sb, "No partition found (1)\n");
2175 ret = -EINVAL;
2176 }
2177 goto error_out;
2178 }
2179
2180 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2181
2182 if (sbi->s_lvid_bh) {
2183 struct logicalVolIntegrityDescImpUse *lvidiu =
2184 udf_sb_lvidiu(sb);
2185 uint16_t minUDFReadRev;
2186 uint16_t minUDFWriteRev;
2187
2188 if (!lvidiu) {
2189 ret = -EINVAL;
2190 goto error_out;
2191 }
2192 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2193 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2194 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2195 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2196 minUDFReadRev,
2197 UDF_MAX_READ_VERSION);
2198 ret = -EINVAL;
2199 goto error_out;
2200 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2201 !(sb->s_flags & MS_RDONLY)) {
2202 ret = -EACCES;
2203 goto error_out;
2204 }
2205
2206 sbi->s_udfrev = minUDFWriteRev;
2207
2208 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2209 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2210 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2211 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2212 }
2213
2214 if (!sbi->s_partitions) {
2215 udf_warn(sb, "No partition found (2)\n");
2216 ret = -EINVAL;
2217 goto error_out;
2218 }
2219
2220 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2221 UDF_PART_FLAG_READ_ONLY &&
2222 !(sb->s_flags & MS_RDONLY)) {
2223 ret = -EACCES;
2224 goto error_out;
2225 }
2226
2227 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2228 udf_warn(sb, "No fileset found\n");
2229 ret = -EINVAL;
2230 goto error_out;
2231 }
2232
2233 if (!silent) {
2234 struct timestamp ts;
2235 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2236 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2237 sbi->s_volume_ident,
2238 le16_to_cpu(ts.year), ts.month, ts.day,
2239 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2240 }
2241 if (!(sb->s_flags & MS_RDONLY)) {
2242 udf_open_lvid(sb);
2243 lvid_open = true;
2244 }
2245
2246 /* Assign the root inode */
2247 /* assign inodes by physical block number */
2248 /* perhaps it's not extensible enough, but for now ... */
2249 inode = udf_iget(sb, &rootdir);
2250 if (IS_ERR(inode)) {
2251 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2252 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2253 ret = PTR_ERR(inode);
2254 goto error_out;
2255 }
2256
2257 /* Allocate a dentry for the root inode */
2258 sb->s_root = d_make_root(inode);
2259 if (!sb->s_root) {
2260 udf_err(sb, "Couldn't allocate root dentry\n");
2261 ret = -ENOMEM;
2262 goto error_out;
2263 }
2264 sb->s_maxbytes = MAX_LFS_FILESIZE;
2265 sb->s_max_links = UDF_MAX_LINKS;
2266 return 0;
2267
2268error_out:
2269 iput(sbi->s_vat_inode);
2270parse_options_failure:
2271#ifdef CONFIG_UDF_NLS
2272 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2273 unload_nls(sbi->s_nls_map);
2274#endif
2275 if (lvid_open)
2276 udf_close_lvid(sb);
2277 brelse(sbi->s_lvid_bh);
2278 udf_sb_free_partitions(sb);
2279 kfree(sbi);
2280 sb->s_fs_info = NULL;
2281
2282 return ret;
2283}
2284
2285void _udf_err(struct super_block *sb, const char *function,
2286 const char *fmt, ...)
2287{
2288 struct va_format vaf;
2289 va_list args;
2290
2291 va_start(args, fmt);
2292
2293 vaf.fmt = fmt;
2294 vaf.va = &args;
2295
2296 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2297
2298 va_end(args);
2299}
2300
2301void _udf_warn(struct super_block *sb, const char *function,
2302 const char *fmt, ...)
2303{
2304 struct va_format vaf;
2305 va_list args;
2306
2307 va_start(args, fmt);
2308
2309 vaf.fmt = fmt;
2310 vaf.va = &args;
2311
2312 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2313
2314 va_end(args);
2315}
2316
2317static void udf_put_super(struct super_block *sb)
2318{
2319 struct udf_sb_info *sbi;
2320
2321 sbi = UDF_SB(sb);
2322
2323 iput(sbi->s_vat_inode);
2324#ifdef CONFIG_UDF_NLS
2325 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2326 unload_nls(sbi->s_nls_map);
2327#endif
2328 if (!(sb->s_flags & MS_RDONLY))
2329 udf_close_lvid(sb);
2330 brelse(sbi->s_lvid_bh);
2331 udf_sb_free_partitions(sb);
2332 mutex_destroy(&sbi->s_alloc_mutex);
2333 kfree(sb->s_fs_info);
2334 sb->s_fs_info = NULL;
2335}
2336
2337static int udf_sync_fs(struct super_block *sb, int wait)
2338{
2339 struct udf_sb_info *sbi = UDF_SB(sb);
2340
2341 mutex_lock(&sbi->s_alloc_mutex);
2342 if (sbi->s_lvid_dirty) {
2343 /*
2344 * Blockdevice will be synced later so we don't have to submit
2345 * the buffer for IO
2346 */
2347 mark_buffer_dirty(sbi->s_lvid_bh);
2348 sbi->s_lvid_dirty = 0;
2349 }
2350 mutex_unlock(&sbi->s_alloc_mutex);
2351
2352 return 0;
2353}
2354
2355static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2356{
2357 struct super_block *sb = dentry->d_sb;
2358 struct udf_sb_info *sbi = UDF_SB(sb);
2359 struct logicalVolIntegrityDescImpUse *lvidiu;
2360 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2361
2362 lvidiu = udf_sb_lvidiu(sb);
2363 buf->f_type = UDF_SUPER_MAGIC;
2364 buf->f_bsize = sb->s_blocksize;
2365 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2366 buf->f_bfree = udf_count_free(sb);
2367 buf->f_bavail = buf->f_bfree;
2368 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2369 le32_to_cpu(lvidiu->numDirs)) : 0)
2370 + buf->f_bfree;
2371 buf->f_ffree = buf->f_bfree;
2372 buf->f_namelen = UDF_NAME_LEN;
2373 buf->f_fsid.val[0] = (u32)id;
2374 buf->f_fsid.val[1] = (u32)(id >> 32);
2375
2376 return 0;
2377}
2378
2379static unsigned int udf_count_free_bitmap(struct super_block *sb,
2380 struct udf_bitmap *bitmap)
2381{
2382 struct buffer_head *bh = NULL;
2383 unsigned int accum = 0;
2384 int index;
2385 int block = 0, newblock;
2386 struct kernel_lb_addr loc;
2387 uint32_t bytes;
2388 uint8_t *ptr;
2389 uint16_t ident;
2390 struct spaceBitmapDesc *bm;
2391
2392 loc.logicalBlockNum = bitmap->s_extPosition;
2393 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2394 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2395
2396 if (!bh) {
2397 udf_err(sb, "udf_count_free failed\n");
2398 goto out;
2399 } else if (ident != TAG_IDENT_SBD) {
2400 brelse(bh);
2401 udf_err(sb, "udf_count_free failed\n");
2402 goto out;
2403 }
2404
2405 bm = (struct spaceBitmapDesc *)bh->b_data;
2406 bytes = le32_to_cpu(bm->numOfBytes);
2407 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2408 ptr = (uint8_t *)bh->b_data;
2409
2410 while (bytes > 0) {
2411 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2412 accum += bitmap_weight((const unsigned long *)(ptr + index),
2413 cur_bytes * 8);
2414 bytes -= cur_bytes;
2415 if (bytes) {
2416 brelse(bh);
2417 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2418 bh = udf_tread(sb, newblock);
2419 if (!bh) {
2420 udf_debug("read failed\n");
2421 goto out;
2422 }
2423 index = 0;
2424 ptr = (uint8_t *)bh->b_data;
2425 }
2426 }
2427 brelse(bh);
2428out:
2429 return accum;
2430}
2431
2432static unsigned int udf_count_free_table(struct super_block *sb,
2433 struct inode *table)
2434{
2435 unsigned int accum = 0;
2436 uint32_t elen;
2437 struct kernel_lb_addr eloc;
2438 int8_t etype;
2439 struct extent_position epos;
2440
2441 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2442 epos.block = UDF_I(table)->i_location;
2443 epos.offset = sizeof(struct unallocSpaceEntry);
2444 epos.bh = NULL;
2445
2446 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2447 accum += (elen >> table->i_sb->s_blocksize_bits);
2448
2449 brelse(epos.bh);
2450 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2451
2452 return accum;
2453}
2454
2455static unsigned int udf_count_free(struct super_block *sb)
2456{
2457 unsigned int accum = 0;
2458 struct udf_sb_info *sbi;
2459 struct udf_part_map *map;
2460
2461 sbi = UDF_SB(sb);
2462 if (sbi->s_lvid_bh) {
2463 struct logicalVolIntegrityDesc *lvid =
2464 (struct logicalVolIntegrityDesc *)
2465 sbi->s_lvid_bh->b_data;
2466 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2467 accum = le32_to_cpu(
2468 lvid->freeSpaceTable[sbi->s_partition]);
2469 if (accum == 0xFFFFFFFF)
2470 accum = 0;
2471 }
2472 }
2473
2474 if (accum)
2475 return accum;
2476
2477 map = &sbi->s_partmaps[sbi->s_partition];
2478 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2479 accum += udf_count_free_bitmap(sb,
2480 map->s_uspace.s_bitmap);
2481 }
2482 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2483 accum += udf_count_free_bitmap(sb,
2484 map->s_fspace.s_bitmap);
2485 }
2486 if (accum)
2487 return accum;
2488
2489 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2490 accum += udf_count_free_table(sb,
2491 map->s_uspace.s_table);
2492 }
2493 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2494 accum += udf_count_free_table(sb,
2495 map->s_fspace.s_table);
2496 }
2497
2498 return accum;
2499}