Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v4.6
   1/*
   2 * super.c
   3 *
   4 * PURPOSE
   5 *  Super block routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * DESCRIPTION
   8 *  OSTA-UDF(tm) = Optical Storage Technology Association
   9 *  Universal Disk Format.
  10 *
  11 *  This code is based on version 2.00 of the UDF specification,
  12 *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
  13 *    http://www.osta.org/
  14 *    http://www.ecma.ch/
  15 *    http://www.iso.org/
  16 *
  17 * COPYRIGHT
  18 *  This file is distributed under the terms of the GNU General Public
  19 *  License (GPL). Copies of the GPL can be obtained from:
  20 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  21 *  Each contributing author retains all rights to their own work.
  22 *
  23 *  (C) 1998 Dave Boynton
  24 *  (C) 1998-2004 Ben Fennema
  25 *  (C) 2000 Stelias Computing Inc
  26 *
  27 * HISTORY
  28 *
  29 *  09/24/98 dgb  changed to allow compiling outside of kernel, and
  30 *                added some debugging.
  31 *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
  32 *  10/16/98      attempting some multi-session support
  33 *  10/17/98      added freespace count for "df"
  34 *  11/11/98 gr   added novrs option
  35 *  11/26/98 dgb  added fileset,anchor mount options
  36 *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
  37 *                vol descs. rewrote option handling based on isofs
  38 *  12/20/98      find the free space bitmap (if it exists)
  39 */
  40
  41#include "udfdecl.h"
  42
  43#include <linux/blkdev.h>
  44#include <linux/slab.h>
  45#include <linux/kernel.h>
  46#include <linux/module.h>
  47#include <linux/parser.h>
  48#include <linux/stat.h>
  49#include <linux/cdrom.h>
  50#include <linux/nls.h>
  51#include <linux/vfs.h>
  52#include <linux/vmalloc.h>
  53#include <linux/errno.h>
  54#include <linux/mount.h>
  55#include <linux/seq_file.h>
  56#include <linux/bitmap.h>
  57#include <linux/crc-itu-t.h>
  58#include <linux/log2.h>
  59#include <asm/byteorder.h>
  60
  61#include "udf_sb.h"
  62#include "udf_i.h"
  63
  64#include <linux/init.h>
  65#include <linux/uaccess.h>
  66
  67#define VDS_POS_PRIMARY_VOL_DESC	0
  68#define VDS_POS_UNALLOC_SPACE_DESC	1
  69#define VDS_POS_LOGICAL_VOL_DESC	2
  70#define VDS_POS_PARTITION_DESC		3
  71#define VDS_POS_IMP_USE_VOL_DESC	4
  72#define VDS_POS_VOL_DESC_PTR		5
  73#define VDS_POS_TERMINATING_DESC	6
  74#define VDS_POS_LENGTH			7
  75
  76#define UDF_DEFAULT_BLOCKSIZE 2048
  77
  78#define VSD_FIRST_SECTOR_OFFSET		32768
  79#define VSD_MAX_SECTOR_OFFSET		0x800000
  80
 
 
 
 
 
 
 
 
 
  81enum { UDF_MAX_LINKS = 0xffff };
  82
  83/* These are the "meat" - everything else is stuffing */
  84static int udf_fill_super(struct super_block *, void *, int);
  85static void udf_put_super(struct super_block *);
  86static int udf_sync_fs(struct super_block *, int);
  87static int udf_remount_fs(struct super_block *, int *, char *);
  88static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
  89static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
  90			    struct kernel_lb_addr *);
  91static void udf_load_fileset(struct super_block *, struct buffer_head *,
  92			     struct kernel_lb_addr *);
  93static void udf_open_lvid(struct super_block *);
  94static void udf_close_lvid(struct super_block *);
  95static unsigned int udf_count_free(struct super_block *);
  96static int udf_statfs(struct dentry *, struct kstatfs *);
  97static int udf_show_options(struct seq_file *, struct dentry *);
  98
  99struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
 100{
 101	struct logicalVolIntegrityDesc *lvid;
 102	unsigned int partnum;
 103	unsigned int offset;
 104
 105	if (!UDF_SB(sb)->s_lvid_bh)
 106		return NULL;
 107	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
 108	partnum = le32_to_cpu(lvid->numOfPartitions);
 109	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
 110	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
 111	     (2 * sizeof(uint32_t)) < partnum) {
 112		udf_err(sb, "Logical volume integrity descriptor corrupted "
 113			"(numOfPartitions = %u)!\n", partnum);
 114		return NULL;
 115	}
 116	/* The offset is to skip freeSpaceTable and sizeTable arrays */
 117	offset = partnum * 2 * sizeof(uint32_t);
 118	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
 119}
 120
 121/* UDF filesystem type */
 122static struct dentry *udf_mount(struct file_system_type *fs_type,
 123		      int flags, const char *dev_name, void *data)
 124{
 125	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
 126}
 127
 128static struct file_system_type udf_fstype = {
 129	.owner		= THIS_MODULE,
 130	.name		= "udf",
 131	.mount		= udf_mount,
 132	.kill_sb	= kill_block_super,
 133	.fs_flags	= FS_REQUIRES_DEV,
 134};
 135MODULE_ALIAS_FS("udf");
 136
 137static struct kmem_cache *udf_inode_cachep;
 138
 139static struct inode *udf_alloc_inode(struct super_block *sb)
 140{
 141	struct udf_inode_info *ei;
 142	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
 143	if (!ei)
 144		return NULL;
 145
 146	ei->i_unique = 0;
 147	ei->i_lenExtents = 0;
 148	ei->i_next_alloc_block = 0;
 149	ei->i_next_alloc_goal = 0;
 150	ei->i_strat4096 = 0;
 151	init_rwsem(&ei->i_data_sem);
 152	ei->cached_extent.lstart = -1;
 153	spin_lock_init(&ei->i_extent_cache_lock);
 154
 155	return &ei->vfs_inode;
 156}
 157
 158static void udf_i_callback(struct rcu_head *head)
 159{
 160	struct inode *inode = container_of(head, struct inode, i_rcu);
 161	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
 162}
 163
 164static void udf_destroy_inode(struct inode *inode)
 165{
 166	call_rcu(&inode->i_rcu, udf_i_callback);
 167}
 168
 169static void init_once(void *foo)
 170{
 171	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
 172
 173	ei->i_ext.i_data = NULL;
 174	inode_init_once(&ei->vfs_inode);
 175}
 176
 177static int __init init_inodecache(void)
 178{
 179	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
 180					     sizeof(struct udf_inode_info),
 181					     0, (SLAB_RECLAIM_ACCOUNT |
 182						 SLAB_MEM_SPREAD |
 183						 SLAB_ACCOUNT),
 184					     init_once);
 185	if (!udf_inode_cachep)
 186		return -ENOMEM;
 187	return 0;
 188}
 189
 190static void destroy_inodecache(void)
 191{
 192	/*
 193	 * Make sure all delayed rcu free inodes are flushed before we
 194	 * destroy cache.
 195	 */
 196	rcu_barrier();
 197	kmem_cache_destroy(udf_inode_cachep);
 198}
 199
 200/* Superblock operations */
 201static const struct super_operations udf_sb_ops = {
 202	.alloc_inode	= udf_alloc_inode,
 203	.destroy_inode	= udf_destroy_inode,
 204	.write_inode	= udf_write_inode,
 205	.evict_inode	= udf_evict_inode,
 206	.put_super	= udf_put_super,
 207	.sync_fs	= udf_sync_fs,
 208	.statfs		= udf_statfs,
 209	.remount_fs	= udf_remount_fs,
 210	.show_options	= udf_show_options,
 211};
 212
 213struct udf_options {
 214	unsigned char novrs;
 215	unsigned int blocksize;
 216	unsigned int session;
 217	unsigned int lastblock;
 218	unsigned int anchor;
 219	unsigned int volume;
 220	unsigned short partition;
 221	unsigned int fileset;
 222	unsigned int rootdir;
 223	unsigned int flags;
 224	umode_t umask;
 225	kgid_t gid;
 226	kuid_t uid;
 227	umode_t fmode;
 228	umode_t dmode;
 229	struct nls_table *nls_map;
 230};
 231
 232static int __init init_udf_fs(void)
 233{
 234	int err;
 235
 236	err = init_inodecache();
 237	if (err)
 238		goto out1;
 239	err = register_filesystem(&udf_fstype);
 240	if (err)
 241		goto out;
 242
 243	return 0;
 244
 245out:
 246	destroy_inodecache();
 247
 248out1:
 249	return err;
 250}
 251
 252static void __exit exit_udf_fs(void)
 253{
 254	unregister_filesystem(&udf_fstype);
 255	destroy_inodecache();
 256}
 257
 258module_init(init_udf_fs)
 259module_exit(exit_udf_fs)
 260
 261static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
 262{
 263	struct udf_sb_info *sbi = UDF_SB(sb);
 264
 265	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
 266				  GFP_KERNEL);
 267	if (!sbi->s_partmaps) {
 268		udf_err(sb, "Unable to allocate space for %d partition maps\n",
 269			count);
 270		sbi->s_partitions = 0;
 271		return -ENOMEM;
 272	}
 273
 274	sbi->s_partitions = count;
 275	return 0;
 276}
 277
 278static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
 279{
 280	int i;
 281	int nr_groups = bitmap->s_nr_groups;
 282
 283	for (i = 0; i < nr_groups; i++)
 284		if (bitmap->s_block_bitmap[i])
 285			brelse(bitmap->s_block_bitmap[i]);
 286
 287	kvfree(bitmap);
 288}
 289
 290static void udf_free_partition(struct udf_part_map *map)
 291{
 292	int i;
 293	struct udf_meta_data *mdata;
 294
 295	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
 296		iput(map->s_uspace.s_table);
 297	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
 298		iput(map->s_fspace.s_table);
 299	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
 300		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
 301	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
 302		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
 303	if (map->s_partition_type == UDF_SPARABLE_MAP15)
 304		for (i = 0; i < 4; i++)
 305			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
 306	else if (map->s_partition_type == UDF_METADATA_MAP25) {
 307		mdata = &map->s_type_specific.s_metadata;
 308		iput(mdata->s_metadata_fe);
 309		mdata->s_metadata_fe = NULL;
 310
 311		iput(mdata->s_mirror_fe);
 312		mdata->s_mirror_fe = NULL;
 313
 314		iput(mdata->s_bitmap_fe);
 315		mdata->s_bitmap_fe = NULL;
 316	}
 317}
 318
 319static void udf_sb_free_partitions(struct super_block *sb)
 320{
 321	struct udf_sb_info *sbi = UDF_SB(sb);
 322	int i;
 323	if (sbi->s_partmaps == NULL)
 324		return;
 325	for (i = 0; i < sbi->s_partitions; i++)
 326		udf_free_partition(&sbi->s_partmaps[i]);
 327	kfree(sbi->s_partmaps);
 328	sbi->s_partmaps = NULL;
 329}
 330
 331static int udf_show_options(struct seq_file *seq, struct dentry *root)
 332{
 333	struct super_block *sb = root->d_sb;
 334	struct udf_sb_info *sbi = UDF_SB(sb);
 335
 336	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
 337		seq_puts(seq, ",nostrict");
 338	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
 339		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
 340	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
 341		seq_puts(seq, ",unhide");
 342	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
 343		seq_puts(seq, ",undelete");
 344	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
 345		seq_puts(seq, ",noadinicb");
 346	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
 347		seq_puts(seq, ",shortad");
 348	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
 349		seq_puts(seq, ",uid=forget");
 350	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
 351		seq_puts(seq, ",uid=ignore");
 352	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
 353		seq_puts(seq, ",gid=forget");
 354	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
 355		seq_puts(seq, ",gid=ignore");
 356	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
 357		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
 358	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
 359		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
 360	if (sbi->s_umask != 0)
 361		seq_printf(seq, ",umask=%ho", sbi->s_umask);
 362	if (sbi->s_fmode != UDF_INVALID_MODE)
 363		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
 364	if (sbi->s_dmode != UDF_INVALID_MODE)
 365		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
 366	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
 367		seq_printf(seq, ",session=%u", sbi->s_session);
 368	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
 369		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
 370	if (sbi->s_anchor != 0)
 371		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
 372	/*
 373	 * volume, partition, fileset and rootdir seem to be ignored
 374	 * currently
 375	 */
 376	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
 377		seq_puts(seq, ",utf8");
 378	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
 379		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
 380
 381	return 0;
 382}
 383
 384/*
 385 * udf_parse_options
 386 *
 387 * PURPOSE
 388 *	Parse mount options.
 389 *
 390 * DESCRIPTION
 391 *	The following mount options are supported:
 392 *
 393 *	gid=		Set the default group.
 394 *	umask=		Set the default umask.
 395 *	mode=		Set the default file permissions.
 396 *	dmode=		Set the default directory permissions.
 397 *	uid=		Set the default user.
 398 *	bs=		Set the block size.
 399 *	unhide		Show otherwise hidden files.
 400 *	undelete	Show deleted files in lists.
 401 *	adinicb		Embed data in the inode (default)
 402 *	noadinicb	Don't embed data in the inode
 403 *	shortad		Use short ad's
 404 *	longad		Use long ad's (default)
 405 *	nostrict	Unset strict conformance
 406 *	iocharset=	Set the NLS character set
 407 *
 408 *	The remaining are for debugging and disaster recovery:
 409 *
 410 *	novrs		Skip volume sequence recognition
 411 *
 412 *	The following expect a offset from 0.
 413 *
 414 *	session=	Set the CDROM session (default= last session)
 415 *	anchor=		Override standard anchor location. (default= 256)
 416 *	volume=		Override the VolumeDesc location. (unused)
 417 *	partition=	Override the PartitionDesc location. (unused)
 418 *	lastblock=	Set the last block of the filesystem/
 419 *
 420 *	The following expect a offset from the partition root.
 421 *
 422 *	fileset=	Override the fileset block location. (unused)
 423 *	rootdir=	Override the root directory location. (unused)
 424 *		WARNING: overriding the rootdir to a non-directory may
 425 *		yield highly unpredictable results.
 426 *
 427 * PRE-CONDITIONS
 428 *	options		Pointer to mount options string.
 429 *	uopts		Pointer to mount options variable.
 430 *
 431 * POST-CONDITIONS
 432 *	<return>	1	Mount options parsed okay.
 433 *	<return>	0	Error parsing mount options.
 434 *
 435 * HISTORY
 436 *	July 1, 1997 - Andrew E. Mileski
 437 *	Written, tested, and released.
 438 */
 439
 440enum {
 441	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
 442	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
 443	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
 444	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
 445	Opt_rootdir, Opt_utf8, Opt_iocharset,
 446	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
 447	Opt_fmode, Opt_dmode
 448};
 449
 450static const match_table_t tokens = {
 451	{Opt_novrs,	"novrs"},
 452	{Opt_nostrict,	"nostrict"},
 453	{Opt_bs,	"bs=%u"},
 454	{Opt_unhide,	"unhide"},
 455	{Opt_undelete,	"undelete"},
 456	{Opt_noadinicb,	"noadinicb"},
 457	{Opt_adinicb,	"adinicb"},
 458	{Opt_shortad,	"shortad"},
 459	{Opt_longad,	"longad"},
 460	{Opt_uforget,	"uid=forget"},
 461	{Opt_uignore,	"uid=ignore"},
 462	{Opt_gforget,	"gid=forget"},
 463	{Opt_gignore,	"gid=ignore"},
 464	{Opt_gid,	"gid=%u"},
 465	{Opt_uid,	"uid=%u"},
 466	{Opt_umask,	"umask=%o"},
 467	{Opt_session,	"session=%u"},
 468	{Opt_lastblock,	"lastblock=%u"},
 469	{Opt_anchor,	"anchor=%u"},
 470	{Opt_volume,	"volume=%u"},
 471	{Opt_partition,	"partition=%u"},
 472	{Opt_fileset,	"fileset=%u"},
 473	{Opt_rootdir,	"rootdir=%u"},
 474	{Opt_utf8,	"utf8"},
 475	{Opt_iocharset,	"iocharset=%s"},
 476	{Opt_fmode,     "mode=%o"},
 477	{Opt_dmode,     "dmode=%o"},
 478	{Opt_err,	NULL}
 479};
 480
 481static int udf_parse_options(char *options, struct udf_options *uopt,
 482			     bool remount)
 483{
 484	char *p;
 485	int option;
 486
 487	uopt->novrs = 0;
 488	uopt->partition = 0xFFFF;
 489	uopt->session = 0xFFFFFFFF;
 490	uopt->lastblock = 0;
 491	uopt->anchor = 0;
 492	uopt->volume = 0xFFFFFFFF;
 493	uopt->rootdir = 0xFFFFFFFF;
 494	uopt->fileset = 0xFFFFFFFF;
 495	uopt->nls_map = NULL;
 496
 497	if (!options)
 498		return 1;
 499
 500	while ((p = strsep(&options, ",")) != NULL) {
 501		substring_t args[MAX_OPT_ARGS];
 502		int token;
 503		unsigned n;
 504		if (!*p)
 505			continue;
 506
 507		token = match_token(p, tokens, args);
 508		switch (token) {
 509		case Opt_novrs:
 510			uopt->novrs = 1;
 511			break;
 512		case Opt_bs:
 513			if (match_int(&args[0], &option))
 514				return 0;
 515			n = option;
 516			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
 517				return 0;
 518			uopt->blocksize = n;
 519			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
 520			break;
 521		case Opt_unhide:
 522			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
 523			break;
 524		case Opt_undelete:
 525			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
 526			break;
 527		case Opt_noadinicb:
 528			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
 529			break;
 530		case Opt_adinicb:
 531			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
 532			break;
 533		case Opt_shortad:
 534			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
 535			break;
 536		case Opt_longad:
 537			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
 538			break;
 539		case Opt_gid:
 540			if (match_int(args, &option))
 541				return 0;
 542			uopt->gid = make_kgid(current_user_ns(), option);
 543			if (!gid_valid(uopt->gid))
 544				return 0;
 545			uopt->flags |= (1 << UDF_FLAG_GID_SET);
 546			break;
 547		case Opt_uid:
 548			if (match_int(args, &option))
 549				return 0;
 550			uopt->uid = make_kuid(current_user_ns(), option);
 551			if (!uid_valid(uopt->uid))
 552				return 0;
 553			uopt->flags |= (1 << UDF_FLAG_UID_SET);
 554			break;
 555		case Opt_umask:
 556			if (match_octal(args, &option))
 557				return 0;
 558			uopt->umask = option;
 559			break;
 560		case Opt_nostrict:
 561			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
 562			break;
 563		case Opt_session:
 564			if (match_int(args, &option))
 565				return 0;
 566			uopt->session = option;
 567			if (!remount)
 568				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
 569			break;
 570		case Opt_lastblock:
 571			if (match_int(args, &option))
 572				return 0;
 573			uopt->lastblock = option;
 574			if (!remount)
 575				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
 576			break;
 577		case Opt_anchor:
 578			if (match_int(args, &option))
 579				return 0;
 580			uopt->anchor = option;
 581			break;
 582		case Opt_volume:
 583			if (match_int(args, &option))
 584				return 0;
 585			uopt->volume = option;
 586			break;
 587		case Opt_partition:
 588			if (match_int(args, &option))
 589				return 0;
 590			uopt->partition = option;
 591			break;
 592		case Opt_fileset:
 593			if (match_int(args, &option))
 594				return 0;
 595			uopt->fileset = option;
 596			break;
 597		case Opt_rootdir:
 598			if (match_int(args, &option))
 599				return 0;
 600			uopt->rootdir = option;
 601			break;
 602		case Opt_utf8:
 603			uopt->flags |= (1 << UDF_FLAG_UTF8);
 604			break;
 605#ifdef CONFIG_UDF_NLS
 606		case Opt_iocharset:
 607			uopt->nls_map = load_nls(args[0].from);
 608			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
 609			break;
 610#endif
 611		case Opt_uignore:
 612			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
 613			break;
 614		case Opt_uforget:
 615			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
 616			break;
 617		case Opt_gignore:
 618			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
 619			break;
 620		case Opt_gforget:
 621			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
 622			break;
 623		case Opt_fmode:
 624			if (match_octal(args, &option))
 625				return 0;
 626			uopt->fmode = option & 0777;
 627			break;
 628		case Opt_dmode:
 629			if (match_octal(args, &option))
 630				return 0;
 631			uopt->dmode = option & 0777;
 632			break;
 633		default:
 634			pr_err("bad mount option \"%s\" or missing value\n", p);
 635			return 0;
 636		}
 637	}
 638	return 1;
 639}
 640
 641static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
 642{
 643	struct udf_options uopt;
 644	struct udf_sb_info *sbi = UDF_SB(sb);
 645	int error = 0;
 646	struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
 647
 648	sync_filesystem(sb);
 649	if (lvidiu) {
 650		int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
 651		if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
 652			return -EACCES;
 653	}
 654
 655	uopt.flags = sbi->s_flags;
 656	uopt.uid   = sbi->s_uid;
 657	uopt.gid   = sbi->s_gid;
 658	uopt.umask = sbi->s_umask;
 659	uopt.fmode = sbi->s_fmode;
 660	uopt.dmode = sbi->s_dmode;
 661
 662	if (!udf_parse_options(options, &uopt, true))
 663		return -EINVAL;
 664
 665	write_lock(&sbi->s_cred_lock);
 666	sbi->s_flags = uopt.flags;
 667	sbi->s_uid   = uopt.uid;
 668	sbi->s_gid   = uopt.gid;
 669	sbi->s_umask = uopt.umask;
 670	sbi->s_fmode = uopt.fmode;
 671	sbi->s_dmode = uopt.dmode;
 672	write_unlock(&sbi->s_cred_lock);
 673
 674	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
 675		goto out_unlock;
 676
 677	if (*flags & MS_RDONLY)
 678		udf_close_lvid(sb);
 679	else
 680		udf_open_lvid(sb);
 681
 682out_unlock:
 683	return error;
 684}
 685
 686/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
 687/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
 688static loff_t udf_check_vsd(struct super_block *sb)
 689{
 690	struct volStructDesc *vsd = NULL;
 691	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
 692	int sectorsize;
 693	struct buffer_head *bh = NULL;
 694	int nsr02 = 0;
 695	int nsr03 = 0;
 696	struct udf_sb_info *sbi;
 697
 698	sbi = UDF_SB(sb);
 699	if (sb->s_blocksize < sizeof(struct volStructDesc))
 700		sectorsize = sizeof(struct volStructDesc);
 701	else
 702		sectorsize = sb->s_blocksize;
 703
 704	sector += (sbi->s_session << sb->s_blocksize_bits);
 705
 706	udf_debug("Starting at sector %u (%ld byte sectors)\n",
 707		  (unsigned int)(sector >> sb->s_blocksize_bits),
 708		  sb->s_blocksize);
 709	/* Process the sequence (if applicable). The hard limit on the sector
 710	 * offset is arbitrary, hopefully large enough so that all valid UDF
 711	 * filesystems will be recognised. There is no mention of an upper
 712	 * bound to the size of the volume recognition area in the standard.
 713	 *  The limit will prevent the code to read all the sectors of a
 714	 * specially crafted image (like a bluray disc full of CD001 sectors),
 715	 * potentially causing minutes or even hours of uninterruptible I/O
 716	 * activity. This actually happened with uninitialised SSD partitions
 717	 * (all 0xFF) before the check for the limit and all valid IDs were
 718	 * added */
 719	for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
 720	     sector += sectorsize) {
 721		/* Read a block */
 722		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
 723		if (!bh)
 724			break;
 725
 726		/* Look for ISO  descriptors */
 727		vsd = (struct volStructDesc *)(bh->b_data +
 728					      (sector & (sb->s_blocksize - 1)));
 729
 730		if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
 731				    VSD_STD_ID_LEN)) {
 732			switch (vsd->structType) {
 733			case 0:
 734				udf_debug("ISO9660 Boot Record found\n");
 735				break;
 736			case 1:
 737				udf_debug("ISO9660 Primary Volume Descriptor found\n");
 738				break;
 739			case 2:
 740				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
 741				break;
 742			case 3:
 743				udf_debug("ISO9660 Volume Partition Descriptor found\n");
 744				break;
 745			case 255:
 746				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
 747				break;
 748			default:
 749				udf_debug("ISO9660 VRS (%u) found\n",
 750					  vsd->structType);
 751				break;
 752			}
 753		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
 754				    VSD_STD_ID_LEN))
 755			; /* nothing */
 756		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
 757				    VSD_STD_ID_LEN)) {
 758			brelse(bh);
 759			break;
 760		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
 761				    VSD_STD_ID_LEN))
 762			nsr02 = sector;
 763		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
 764				    VSD_STD_ID_LEN))
 765			nsr03 = sector;
 766		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
 767				    VSD_STD_ID_LEN))
 768			; /* nothing */
 769		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
 770				    VSD_STD_ID_LEN))
 771			; /* nothing */
 772		else {
 773			/* invalid id : end of volume recognition area */
 774			brelse(bh);
 775			break;
 776		}
 777		brelse(bh);
 778	}
 779
 780	if (nsr03)
 781		return nsr03;
 782	else if (nsr02)
 783		return nsr02;
 784	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
 785			VSD_FIRST_SECTOR_OFFSET)
 786		return -1;
 787	else
 788		return 0;
 789}
 790
 791static int udf_find_fileset(struct super_block *sb,
 792			    struct kernel_lb_addr *fileset,
 793			    struct kernel_lb_addr *root)
 794{
 795	struct buffer_head *bh = NULL;
 796	long lastblock;
 797	uint16_t ident;
 798	struct udf_sb_info *sbi;
 799
 800	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
 801	    fileset->partitionReferenceNum != 0xFFFF) {
 802		bh = udf_read_ptagged(sb, fileset, 0, &ident);
 803
 804		if (!bh) {
 805			return 1;
 806		} else if (ident != TAG_IDENT_FSD) {
 807			brelse(bh);
 808			return 1;
 809		}
 810
 811	}
 812
 813	sbi = UDF_SB(sb);
 814	if (!bh) {
 815		/* Search backwards through the partitions */
 816		struct kernel_lb_addr newfileset;
 817
 818/* --> cvg: FIXME - is it reasonable? */
 819		return 1;
 820
 821		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
 822		     (newfileset.partitionReferenceNum != 0xFFFF &&
 823		      fileset->logicalBlockNum == 0xFFFFFFFF &&
 824		      fileset->partitionReferenceNum == 0xFFFF);
 825		     newfileset.partitionReferenceNum--) {
 826			lastblock = sbi->s_partmaps
 827					[newfileset.partitionReferenceNum]
 828						.s_partition_len;
 829			newfileset.logicalBlockNum = 0;
 830
 831			do {
 832				bh = udf_read_ptagged(sb, &newfileset, 0,
 833						      &ident);
 834				if (!bh) {
 835					newfileset.logicalBlockNum++;
 836					continue;
 837				}
 838
 839				switch (ident) {
 840				case TAG_IDENT_SBD:
 841				{
 842					struct spaceBitmapDesc *sp;
 843					sp = (struct spaceBitmapDesc *)
 844								bh->b_data;
 845					newfileset.logicalBlockNum += 1 +
 846						((le32_to_cpu(sp->numOfBytes) +
 847						  sizeof(struct spaceBitmapDesc)
 848						  - 1) >> sb->s_blocksize_bits);
 849					brelse(bh);
 850					break;
 851				}
 852				case TAG_IDENT_FSD:
 853					*fileset = newfileset;
 854					break;
 855				default:
 856					newfileset.logicalBlockNum++;
 857					brelse(bh);
 858					bh = NULL;
 859					break;
 860				}
 861			} while (newfileset.logicalBlockNum < lastblock &&
 862				 fileset->logicalBlockNum == 0xFFFFFFFF &&
 863				 fileset->partitionReferenceNum == 0xFFFF);
 864		}
 865	}
 866
 867	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
 868	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
 869		udf_debug("Fileset at block=%d, partition=%d\n",
 870			  fileset->logicalBlockNum,
 871			  fileset->partitionReferenceNum);
 872
 873		sbi->s_partition = fileset->partitionReferenceNum;
 874		udf_load_fileset(sb, bh, root);
 875		brelse(bh);
 876		return 0;
 877	}
 878	return 1;
 879}
 880
 881/*
 882 * Load primary Volume Descriptor Sequence
 883 *
 884 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
 885 * should be tried.
 886 */
 887static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
 888{
 889	struct primaryVolDesc *pvoldesc;
 890	uint8_t *outstr;
 891	struct buffer_head *bh;
 892	uint16_t ident;
 893	int ret = -ENOMEM;
 894
 895	outstr = kmalloc(128, GFP_NOFS);
 896	if (!outstr)
 897		return -ENOMEM;
 898
 899	bh = udf_read_tagged(sb, block, block, &ident);
 900	if (!bh) {
 901		ret = -EAGAIN;
 902		goto out2;
 903	}
 904
 905	if (ident != TAG_IDENT_PVD) {
 906		ret = -EIO;
 907		goto out_bh;
 908	}
 909
 910	pvoldesc = (struct primaryVolDesc *)bh->b_data;
 911
 912	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
 913			      pvoldesc->recordingDateAndTime)) {
 914#ifdef UDFFS_DEBUG
 915		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
 916		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
 917			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
 918			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
 919#endif
 920	}
 921
 922	ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
 923	if (ret < 0)
 924		goto out_bh;
 925
 926	strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
 927	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
 928
 929	ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
 930	if (ret < 0)
 931		goto out_bh;
 932
 933	outstr[ret] = 0;
 934	udf_debug("volSetIdent[] = '%s'\n", outstr);
 935
 936	ret = 0;
 937out_bh:
 938	brelse(bh);
 939out2:
 940	kfree(outstr);
 941	return ret;
 942}
 943
 944struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
 945					u32 meta_file_loc, u32 partition_num)
 946{
 947	struct kernel_lb_addr addr;
 948	struct inode *metadata_fe;
 949
 950	addr.logicalBlockNum = meta_file_loc;
 951	addr.partitionReferenceNum = partition_num;
 952
 953	metadata_fe = udf_iget_special(sb, &addr);
 954
 955	if (IS_ERR(metadata_fe)) {
 956		udf_warn(sb, "metadata inode efe not found\n");
 957		return metadata_fe;
 958	}
 959	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
 960		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
 961		iput(metadata_fe);
 962		return ERR_PTR(-EIO);
 963	}
 964
 965	return metadata_fe;
 966}
 967
 968static int udf_load_metadata_files(struct super_block *sb, int partition)
 
 969{
 970	struct udf_sb_info *sbi = UDF_SB(sb);
 971	struct udf_part_map *map;
 972	struct udf_meta_data *mdata;
 973	struct kernel_lb_addr addr;
 974	struct inode *fe;
 975
 976	map = &sbi->s_partmaps[partition];
 977	mdata = &map->s_type_specific.s_metadata;
 
 978
 979	/* metadata address */
 980	udf_debug("Metadata file location: block = %d part = %d\n",
 981		  mdata->s_meta_file_loc, map->s_partition_num);
 982
 983	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
 984					 map->s_partition_num);
 985	if (IS_ERR(fe)) {
 986		/* mirror file entry */
 987		udf_debug("Mirror metadata file location: block = %d part = %d\n",
 988			  mdata->s_mirror_file_loc, map->s_partition_num);
 989
 990		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
 991						 map->s_partition_num);
 992
 993		if (IS_ERR(fe)) {
 994			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
 995			return PTR_ERR(fe);
 996		}
 997		mdata->s_mirror_fe = fe;
 998	} else
 999		mdata->s_metadata_fe = fe;
1000
1001
1002	/*
1003	 * bitmap file entry
1004	 * Note:
1005	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1006	*/
1007	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1008		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1009		addr.partitionReferenceNum = map->s_partition_num;
1010
1011		udf_debug("Bitmap file location: block = %d part = %d\n",
1012			  addr.logicalBlockNum, addr.partitionReferenceNum);
1013
1014		fe = udf_iget_special(sb, &addr);
1015		if (IS_ERR(fe)) {
1016			if (sb->s_flags & MS_RDONLY)
1017				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1018			else {
1019				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1020				return PTR_ERR(fe);
1021			}
1022		} else
1023			mdata->s_bitmap_fe = fe;
1024	}
1025
1026	udf_debug("udf_load_metadata_files Ok\n");
1027	return 0;
1028}
1029
1030static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1031			     struct kernel_lb_addr *root)
1032{
1033	struct fileSetDesc *fset;
1034
1035	fset = (struct fileSetDesc *)bh->b_data;
1036
1037	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1038
1039	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1040
1041	udf_debug("Rootdir at block=%d, partition=%d\n",
1042		  root->logicalBlockNum, root->partitionReferenceNum);
1043}
1044
1045int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1046{
1047	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1048	return DIV_ROUND_UP(map->s_partition_len +
1049			    (sizeof(struct spaceBitmapDesc) << 3),
1050			    sb->s_blocksize * 8);
1051}
1052
1053static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1054{
1055	struct udf_bitmap *bitmap;
1056	int nr_groups;
1057	int size;
1058
1059	nr_groups = udf_compute_nr_groups(sb, index);
1060	size = sizeof(struct udf_bitmap) +
1061		(sizeof(struct buffer_head *) * nr_groups);
1062
1063	if (size <= PAGE_SIZE)
1064		bitmap = kzalloc(size, GFP_KERNEL);
1065	else
1066		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1067
1068	if (bitmap == NULL)
1069		return NULL;
1070
1071	bitmap->s_nr_groups = nr_groups;
1072	return bitmap;
1073}
1074
1075static int udf_fill_partdesc_info(struct super_block *sb,
1076		struct partitionDesc *p, int p_index)
1077{
1078	struct udf_part_map *map;
1079	struct udf_sb_info *sbi = UDF_SB(sb);
1080	struct partitionHeaderDesc *phd;
1081
1082	map = &sbi->s_partmaps[p_index];
1083
1084	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1085	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1086
1087	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1088		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1089	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1090		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1091	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1092		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1093	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1094		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1095
1096	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1097		  p_index, map->s_partition_type,
1098		  map->s_partition_root, map->s_partition_len);
1099
1100	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1101	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1102		return 0;
1103
1104	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1105	if (phd->unallocSpaceTable.extLength) {
1106		struct kernel_lb_addr loc = {
1107			.logicalBlockNum = le32_to_cpu(
1108				phd->unallocSpaceTable.extPosition),
1109			.partitionReferenceNum = p_index,
1110		};
1111		struct inode *inode;
1112
1113		inode = udf_iget_special(sb, &loc);
1114		if (IS_ERR(inode)) {
1115			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1116				  p_index);
1117			return PTR_ERR(inode);
1118		}
1119		map->s_uspace.s_table = inode;
1120		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1121		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1122			  p_index, map->s_uspace.s_table->i_ino);
1123	}
1124
1125	if (phd->unallocSpaceBitmap.extLength) {
1126		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1127		if (!bitmap)
1128			return -ENOMEM;
1129		map->s_uspace.s_bitmap = bitmap;
1130		bitmap->s_extPosition = le32_to_cpu(
1131				phd->unallocSpaceBitmap.extPosition);
1132		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1133		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1134			  p_index, bitmap->s_extPosition);
1135	}
1136
1137	if (phd->partitionIntegrityTable.extLength)
1138		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1139
1140	if (phd->freedSpaceTable.extLength) {
1141		struct kernel_lb_addr loc = {
1142			.logicalBlockNum = le32_to_cpu(
1143				phd->freedSpaceTable.extPosition),
1144			.partitionReferenceNum = p_index,
1145		};
1146		struct inode *inode;
1147
1148		inode = udf_iget_special(sb, &loc);
1149		if (IS_ERR(inode)) {
1150			udf_debug("cannot load freedSpaceTable (part %d)\n",
1151				  p_index);
1152			return PTR_ERR(inode);
1153		}
1154		map->s_fspace.s_table = inode;
1155		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1156		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1157			  p_index, map->s_fspace.s_table->i_ino);
1158	}
1159
1160	if (phd->freedSpaceBitmap.extLength) {
1161		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1162		if (!bitmap)
1163			return -ENOMEM;
1164		map->s_fspace.s_bitmap = bitmap;
1165		bitmap->s_extPosition = le32_to_cpu(
1166				phd->freedSpaceBitmap.extPosition);
1167		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1168		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1169			  p_index, bitmap->s_extPosition);
1170	}
1171	return 0;
1172}
1173
1174static void udf_find_vat_block(struct super_block *sb, int p_index,
1175			       int type1_index, sector_t start_block)
1176{
1177	struct udf_sb_info *sbi = UDF_SB(sb);
1178	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1179	sector_t vat_block;
1180	struct kernel_lb_addr ino;
1181	struct inode *inode;
1182
1183	/*
1184	 * VAT file entry is in the last recorded block. Some broken disks have
1185	 * it a few blocks before so try a bit harder...
1186	 */
1187	ino.partitionReferenceNum = type1_index;
1188	for (vat_block = start_block;
1189	     vat_block >= map->s_partition_root &&
1190	     vat_block >= start_block - 3; vat_block--) {
1191		ino.logicalBlockNum = vat_block - map->s_partition_root;
1192		inode = udf_iget_special(sb, &ino);
1193		if (!IS_ERR(inode)) {
1194			sbi->s_vat_inode = inode;
1195			break;
1196		}
1197	}
1198}
1199
1200static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1201{
1202	struct udf_sb_info *sbi = UDF_SB(sb);
1203	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1204	struct buffer_head *bh = NULL;
1205	struct udf_inode_info *vati;
1206	uint32_t pos;
1207	struct virtualAllocationTable20 *vat20;
1208	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1209
1210	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1211	if (!sbi->s_vat_inode &&
1212	    sbi->s_last_block != blocks - 1) {
1213		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1214			  (unsigned long)sbi->s_last_block,
1215			  (unsigned long)blocks - 1);
1216		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1217	}
1218	if (!sbi->s_vat_inode)
1219		return -EIO;
1220
1221	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1222		map->s_type_specific.s_virtual.s_start_offset = 0;
1223		map->s_type_specific.s_virtual.s_num_entries =
1224			(sbi->s_vat_inode->i_size - 36) >> 2;
1225	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1226		vati = UDF_I(sbi->s_vat_inode);
1227		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1228			pos = udf_block_map(sbi->s_vat_inode, 0);
1229			bh = sb_bread(sb, pos);
1230			if (!bh)
1231				return -EIO;
1232			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1233		} else {
1234			vat20 = (struct virtualAllocationTable20 *)
1235							vati->i_ext.i_data;
1236		}
1237
1238		map->s_type_specific.s_virtual.s_start_offset =
1239			le16_to_cpu(vat20->lengthHeader);
1240		map->s_type_specific.s_virtual.s_num_entries =
1241			(sbi->s_vat_inode->i_size -
1242				map->s_type_specific.s_virtual.
1243					s_start_offset) >> 2;
1244		brelse(bh);
1245	}
1246	return 0;
1247}
1248
1249/*
1250 * Load partition descriptor block
1251 *
1252 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1253 * sequence.
1254 */
1255static int udf_load_partdesc(struct super_block *sb, sector_t block)
1256{
1257	struct buffer_head *bh;
1258	struct partitionDesc *p;
1259	struct udf_part_map *map;
1260	struct udf_sb_info *sbi = UDF_SB(sb);
1261	int i, type1_idx;
1262	uint16_t partitionNumber;
1263	uint16_t ident;
1264	int ret;
1265
1266	bh = udf_read_tagged(sb, block, block, &ident);
1267	if (!bh)
1268		return -EAGAIN;
1269	if (ident != TAG_IDENT_PD) {
1270		ret = 0;
1271		goto out_bh;
1272	}
1273
1274	p = (struct partitionDesc *)bh->b_data;
1275	partitionNumber = le16_to_cpu(p->partitionNumber);
1276
1277	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1278	for (i = 0; i < sbi->s_partitions; i++) {
1279		map = &sbi->s_partmaps[i];
1280		udf_debug("Searching map: (%d == %d)\n",
1281			  map->s_partition_num, partitionNumber);
1282		if (map->s_partition_num == partitionNumber &&
1283		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1284		     map->s_partition_type == UDF_SPARABLE_MAP15))
1285			break;
1286	}
1287
1288	if (i >= sbi->s_partitions) {
1289		udf_debug("Partition (%d) not found in partition map\n",
1290			  partitionNumber);
1291		ret = 0;
1292		goto out_bh;
1293	}
1294
1295	ret = udf_fill_partdesc_info(sb, p, i);
1296	if (ret < 0)
1297		goto out_bh;
1298
1299	/*
1300	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1301	 * PHYSICAL partitions are already set up
1302	 */
1303	type1_idx = i;
1304#ifdef UDFFS_DEBUG
1305	map = NULL; /* supress 'maybe used uninitialized' warning */
1306#endif
1307	for (i = 0; i < sbi->s_partitions; i++) {
1308		map = &sbi->s_partmaps[i];
1309
1310		if (map->s_partition_num == partitionNumber &&
1311		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1312		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1313		     map->s_partition_type == UDF_METADATA_MAP25))
1314			break;
1315	}
1316
1317	if (i >= sbi->s_partitions) {
1318		ret = 0;
1319		goto out_bh;
1320	}
1321
1322	ret = udf_fill_partdesc_info(sb, p, i);
1323	if (ret < 0)
1324		goto out_bh;
1325
1326	if (map->s_partition_type == UDF_METADATA_MAP25) {
1327		ret = udf_load_metadata_files(sb, i);
1328		if (ret < 0) {
1329			udf_err(sb, "error loading MetaData partition map %d\n",
1330				i);
1331			goto out_bh;
1332		}
1333	} else {
1334		/*
1335		 * If we have a partition with virtual map, we don't handle
1336		 * writing to it (we overwrite blocks instead of relocating
1337		 * them).
1338		 */
1339		if (!(sb->s_flags & MS_RDONLY)) {
1340			ret = -EACCES;
1341			goto out_bh;
1342		}
1343		ret = udf_load_vat(sb, i, type1_idx);
1344		if (ret < 0)
1345			goto out_bh;
1346	}
1347	ret = 0;
1348out_bh:
1349	/* In case loading failed, we handle cleanup in udf_fill_super */
1350	brelse(bh);
1351	return ret;
1352}
1353
1354static int udf_load_sparable_map(struct super_block *sb,
1355				 struct udf_part_map *map,
1356				 struct sparablePartitionMap *spm)
1357{
1358	uint32_t loc;
1359	uint16_t ident;
1360	struct sparingTable *st;
1361	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1362	int i;
1363	struct buffer_head *bh;
1364
1365	map->s_partition_type = UDF_SPARABLE_MAP15;
1366	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1367	if (!is_power_of_2(sdata->s_packet_len)) {
1368		udf_err(sb, "error loading logical volume descriptor: "
1369			"Invalid packet length %u\n",
1370			(unsigned)sdata->s_packet_len);
1371		return -EIO;
1372	}
1373	if (spm->numSparingTables > 4) {
1374		udf_err(sb, "error loading logical volume descriptor: "
1375			"Too many sparing tables (%d)\n",
1376			(int)spm->numSparingTables);
1377		return -EIO;
1378	}
1379
1380	for (i = 0; i < spm->numSparingTables; i++) {
1381		loc = le32_to_cpu(spm->locSparingTable[i]);
1382		bh = udf_read_tagged(sb, loc, loc, &ident);
1383		if (!bh)
1384			continue;
1385
1386		st = (struct sparingTable *)bh->b_data;
1387		if (ident != 0 ||
1388		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1389			    strlen(UDF_ID_SPARING)) ||
1390		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1391							sb->s_blocksize) {
1392			brelse(bh);
1393			continue;
1394		}
1395
1396		sdata->s_spar_map[i] = bh;
1397	}
1398	map->s_partition_func = udf_get_pblock_spar15;
1399	return 0;
1400}
1401
1402static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1403			       struct kernel_lb_addr *fileset)
1404{
1405	struct logicalVolDesc *lvd;
1406	int i, offset;
1407	uint8_t type;
1408	struct udf_sb_info *sbi = UDF_SB(sb);
1409	struct genericPartitionMap *gpm;
1410	uint16_t ident;
1411	struct buffer_head *bh;
1412	unsigned int table_len;
1413	int ret;
1414
1415	bh = udf_read_tagged(sb, block, block, &ident);
1416	if (!bh)
1417		return -EAGAIN;
1418	BUG_ON(ident != TAG_IDENT_LVD);
1419	lvd = (struct logicalVolDesc *)bh->b_data;
1420	table_len = le32_to_cpu(lvd->mapTableLength);
1421	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1422		udf_err(sb, "error loading logical volume descriptor: "
1423			"Partition table too long (%u > %lu)\n", table_len,
1424			sb->s_blocksize - sizeof(*lvd));
1425		ret = -EIO;
1426		goto out_bh;
1427	}
1428
1429	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1430	if (ret)
1431		goto out_bh;
1432
1433	for (i = 0, offset = 0;
1434	     i < sbi->s_partitions && offset < table_len;
1435	     i++, offset += gpm->partitionMapLength) {
1436		struct udf_part_map *map = &sbi->s_partmaps[i];
1437		gpm = (struct genericPartitionMap *)
1438				&(lvd->partitionMaps[offset]);
1439		type = gpm->partitionMapType;
1440		if (type == 1) {
1441			struct genericPartitionMap1 *gpm1 =
1442				(struct genericPartitionMap1 *)gpm;
1443			map->s_partition_type = UDF_TYPE1_MAP15;
1444			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1445			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1446			map->s_partition_func = NULL;
1447		} else if (type == 2) {
1448			struct udfPartitionMap2 *upm2 =
1449						(struct udfPartitionMap2 *)gpm;
1450			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1451						strlen(UDF_ID_VIRTUAL))) {
1452				u16 suf =
1453					le16_to_cpu(((__le16 *)upm2->partIdent.
1454							identSuffix)[0]);
1455				if (suf < 0x0200) {
1456					map->s_partition_type =
1457							UDF_VIRTUAL_MAP15;
1458					map->s_partition_func =
1459							udf_get_pblock_virt15;
1460				} else {
1461					map->s_partition_type =
1462							UDF_VIRTUAL_MAP20;
1463					map->s_partition_func =
1464							udf_get_pblock_virt20;
1465				}
1466			} else if (!strncmp(upm2->partIdent.ident,
1467						UDF_ID_SPARABLE,
1468						strlen(UDF_ID_SPARABLE))) {
1469				ret = udf_load_sparable_map(sb, map,
1470					(struct sparablePartitionMap *)gpm);
1471				if (ret < 0)
1472					goto out_bh;
1473			} else if (!strncmp(upm2->partIdent.ident,
1474						UDF_ID_METADATA,
1475						strlen(UDF_ID_METADATA))) {
1476				struct udf_meta_data *mdata =
1477					&map->s_type_specific.s_metadata;
1478				struct metadataPartitionMap *mdm =
1479						(struct metadataPartitionMap *)
1480						&(lvd->partitionMaps[offset]);
1481				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1482					  i, type, UDF_ID_METADATA);
1483
1484				map->s_partition_type = UDF_METADATA_MAP25;
1485				map->s_partition_func = udf_get_pblock_meta25;
1486
1487				mdata->s_meta_file_loc   =
1488					le32_to_cpu(mdm->metadataFileLoc);
1489				mdata->s_mirror_file_loc =
1490					le32_to_cpu(mdm->metadataMirrorFileLoc);
1491				mdata->s_bitmap_file_loc =
1492					le32_to_cpu(mdm->metadataBitmapFileLoc);
1493				mdata->s_alloc_unit_size =
1494					le32_to_cpu(mdm->allocUnitSize);
1495				mdata->s_align_unit_size =
1496					le16_to_cpu(mdm->alignUnitSize);
1497				if (mdm->flags & 0x01)
1498					mdata->s_flags |= MF_DUPLICATE_MD;
1499
1500				udf_debug("Metadata Ident suffix=0x%x\n",
1501					  le16_to_cpu(*(__le16 *)
1502						      mdm->partIdent.identSuffix));
1503				udf_debug("Metadata part num=%d\n",
1504					  le16_to_cpu(mdm->partitionNum));
1505				udf_debug("Metadata part alloc unit size=%d\n",
1506					  le32_to_cpu(mdm->allocUnitSize));
1507				udf_debug("Metadata file loc=%d\n",
1508					  le32_to_cpu(mdm->metadataFileLoc));
1509				udf_debug("Mirror file loc=%d\n",
1510					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1511				udf_debug("Bitmap file loc=%d\n",
1512					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1513				udf_debug("Flags: %d %d\n",
1514					  mdata->s_flags, mdm->flags);
1515			} else {
1516				udf_debug("Unknown ident: %s\n",
1517					  upm2->partIdent.ident);
1518				continue;
1519			}
1520			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1521			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1522		}
1523		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1524			  i, map->s_partition_num, type, map->s_volumeseqnum);
1525	}
1526
1527	if (fileset) {
1528		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1529
1530		*fileset = lelb_to_cpu(la->extLocation);
1531		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1532			  fileset->logicalBlockNum,
1533			  fileset->partitionReferenceNum);
1534	}
1535	if (lvd->integritySeqExt.extLength)
1536		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1537	ret = 0;
1538out_bh:
1539	brelse(bh);
1540	return ret;
1541}
1542
1543/*
1544 * udf_load_logicalvolint
1545 *
1546 */
1547static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1548{
1549	struct buffer_head *bh = NULL;
1550	uint16_t ident;
1551	struct udf_sb_info *sbi = UDF_SB(sb);
1552	struct logicalVolIntegrityDesc *lvid;
 
1553
1554	while (loc.extLength > 0 &&
1555	       (bh = udf_read_tagged(sb, loc.extLocation,
1556				     loc.extLocation, &ident)) &&
1557	       ident == TAG_IDENT_LVID) {
1558		sbi->s_lvid_bh = bh;
1559		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1560
1561		if (lvid->nextIntegrityExt.extLength)
1562			udf_load_logicalvolint(sb,
1563				leea_to_cpu(lvid->nextIntegrityExt));
1564
1565		if (sbi->s_lvid_bh != bh)
1566			brelse(bh);
1567		loc.extLength -= sb->s_blocksize;
1568		loc.extLocation++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569	}
1570	if (sbi->s_lvid_bh != bh)
1571		brelse(bh);
 
 
 
1572}
1573
1574/*
1575 * Maximum number of Terminating Descriptor redirections. The chosen number is
1576 * arbitrary - just that we hopefully don't limit any real use of rewritten
1577 * inode on write-once media but avoid looping for too long on corrupted media.
1578 */
1579#define UDF_MAX_TD_NESTING 64
1580
1581/*
1582 * Process a main/reserve volume descriptor sequence.
1583 *   @block		First block of first extent of the sequence.
1584 *   @lastblock		Lastblock of first extent of the sequence.
1585 *   @fileset		There we store extent containing root fileset
1586 *
1587 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1588 * sequence
1589 */
1590static noinline int udf_process_sequence(
1591		struct super_block *sb,
1592		sector_t block, sector_t lastblock,
1593		struct kernel_lb_addr *fileset)
1594{
1595	struct buffer_head *bh = NULL;
1596	struct udf_vds_record vds[VDS_POS_LENGTH];
1597	struct udf_vds_record *curr;
1598	struct generic_desc *gd;
1599	struct volDescPtr *vdp;
1600	bool done = false;
1601	uint32_t vdsn;
1602	uint16_t ident;
1603	long next_s = 0, next_e = 0;
1604	int ret;
1605	unsigned int indirections = 0;
1606
1607	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1608
1609	/*
1610	 * Read the main descriptor sequence and find which descriptors
1611	 * are in it.
1612	 */
1613	for (; (!done && block <= lastblock); block++) {
1614
1615		bh = udf_read_tagged(sb, block, block, &ident);
1616		if (!bh) {
1617			udf_err(sb,
1618				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1619				(unsigned long long)block);
1620			return -EAGAIN;
1621		}
1622
1623		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1624		gd = (struct generic_desc *)bh->b_data;
1625		vdsn = le32_to_cpu(gd->volDescSeqNum);
1626		switch (ident) {
1627		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1628			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1629			if (vdsn >= curr->volDescSeqNum) {
1630				curr->volDescSeqNum = vdsn;
1631				curr->block = block;
1632			}
1633			break;
1634		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1635			curr = &vds[VDS_POS_VOL_DESC_PTR];
1636			if (vdsn >= curr->volDescSeqNum) {
1637				curr->volDescSeqNum = vdsn;
1638				curr->block = block;
1639
1640				vdp = (struct volDescPtr *)bh->b_data;
1641				next_s = le32_to_cpu(
1642					vdp->nextVolDescSeqExt.extLocation);
1643				next_e = le32_to_cpu(
1644					vdp->nextVolDescSeqExt.extLength);
1645				next_e = next_e >> sb->s_blocksize_bits;
1646				next_e += next_s;
1647			}
1648			break;
1649		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1650			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1651			if (vdsn >= curr->volDescSeqNum) {
1652				curr->volDescSeqNum = vdsn;
1653				curr->block = block;
1654			}
1655			break;
1656		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1657			curr = &vds[VDS_POS_PARTITION_DESC];
1658			if (!curr->block)
1659				curr->block = block;
1660			break;
1661		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1662			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1663			if (vdsn >= curr->volDescSeqNum) {
1664				curr->volDescSeqNum = vdsn;
1665				curr->block = block;
1666			}
1667			break;
1668		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1669			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1670			if (vdsn >= curr->volDescSeqNum) {
1671				curr->volDescSeqNum = vdsn;
1672				curr->block = block;
1673			}
1674			break;
1675		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1676			if (++indirections > UDF_MAX_TD_NESTING) {
1677				udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1678				brelse(bh);
1679				return -EIO;
1680			}
1681
1682			vds[VDS_POS_TERMINATING_DESC].block = block;
1683			if (next_e) {
1684				block = next_s;
1685				lastblock = next_e;
1686				next_s = next_e = 0;
1687			} else
1688				done = true;
1689			break;
1690		}
1691		brelse(bh);
1692	}
1693	/*
1694	 * Now read interesting descriptors again and process them
1695	 * in a suitable order
1696	 */
1697	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1698		udf_err(sb, "Primary Volume Descriptor not found!\n");
1699		return -EAGAIN;
1700	}
1701	ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1702	if (ret < 0)
1703		return ret;
1704
1705	if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1706		ret = udf_load_logicalvol(sb,
1707					  vds[VDS_POS_LOGICAL_VOL_DESC].block,
1708					  fileset);
1709		if (ret < 0)
1710			return ret;
1711	}
1712
1713	if (vds[VDS_POS_PARTITION_DESC].block) {
1714		/*
1715		 * We rescan the whole descriptor sequence to find
1716		 * partition descriptor blocks and process them.
1717		 */
1718		for (block = vds[VDS_POS_PARTITION_DESC].block;
1719		     block < vds[VDS_POS_TERMINATING_DESC].block;
1720		     block++) {
1721			ret = udf_load_partdesc(sb, block);
1722			if (ret < 0)
1723				return ret;
1724		}
1725	}
1726
1727	return 0;
1728}
1729
1730/*
1731 * Load Volume Descriptor Sequence described by anchor in bh
1732 *
1733 * Returns <0 on error, 0 on success
1734 */
1735static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1736			     struct kernel_lb_addr *fileset)
1737{
1738	struct anchorVolDescPtr *anchor;
1739	sector_t main_s, main_e, reserve_s, reserve_e;
1740	int ret;
1741
1742	anchor = (struct anchorVolDescPtr *)bh->b_data;
1743
1744	/* Locate the main sequence */
1745	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1746	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1747	main_e = main_e >> sb->s_blocksize_bits;
1748	main_e += main_s;
1749
1750	/* Locate the reserve sequence */
1751	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1752	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1753	reserve_e = reserve_e >> sb->s_blocksize_bits;
1754	reserve_e += reserve_s;
1755
1756	/* Process the main & reserve sequences */
1757	/* responsible for finding the PartitionDesc(s) */
1758	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1759	if (ret != -EAGAIN)
1760		return ret;
1761	udf_sb_free_partitions(sb);
1762	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1763	if (ret < 0) {
1764		udf_sb_free_partitions(sb);
1765		/* No sequence was OK, return -EIO */
1766		if (ret == -EAGAIN)
1767			ret = -EIO;
1768	}
1769	return ret;
1770}
1771
1772/*
1773 * Check whether there is an anchor block in the given block and
1774 * load Volume Descriptor Sequence if so.
1775 *
1776 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1777 * block
1778 */
1779static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1780				  struct kernel_lb_addr *fileset)
1781{
1782	struct buffer_head *bh;
1783	uint16_t ident;
1784	int ret;
1785
1786	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1787	    udf_fixed_to_variable(block) >=
1788	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1789		return -EAGAIN;
1790
1791	bh = udf_read_tagged(sb, block, block, &ident);
1792	if (!bh)
1793		return -EAGAIN;
1794	if (ident != TAG_IDENT_AVDP) {
1795		brelse(bh);
1796		return -EAGAIN;
1797	}
1798	ret = udf_load_sequence(sb, bh, fileset);
1799	brelse(bh);
1800	return ret;
1801}
1802
1803/*
1804 * Search for an anchor volume descriptor pointer.
1805 *
1806 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1807 * of anchors.
1808 */
1809static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1810			    struct kernel_lb_addr *fileset)
1811{
1812	sector_t last[6];
1813	int i;
1814	struct udf_sb_info *sbi = UDF_SB(sb);
1815	int last_count = 0;
1816	int ret;
1817
1818	/* First try user provided anchor */
1819	if (sbi->s_anchor) {
1820		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1821		if (ret != -EAGAIN)
1822			return ret;
1823	}
1824	/*
1825	 * according to spec, anchor is in either:
1826	 *     block 256
1827	 *     lastblock-256
1828	 *     lastblock
1829	 *  however, if the disc isn't closed, it could be 512.
1830	 */
1831	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1832	if (ret != -EAGAIN)
1833		return ret;
1834	/*
1835	 * The trouble is which block is the last one. Drives often misreport
1836	 * this so we try various possibilities.
1837	 */
1838	last[last_count++] = *lastblock;
1839	if (*lastblock >= 1)
1840		last[last_count++] = *lastblock - 1;
1841	last[last_count++] = *lastblock + 1;
1842	if (*lastblock >= 2)
1843		last[last_count++] = *lastblock - 2;
1844	if (*lastblock >= 150)
1845		last[last_count++] = *lastblock - 150;
1846	if (*lastblock >= 152)
1847		last[last_count++] = *lastblock - 152;
1848
1849	for (i = 0; i < last_count; i++) {
1850		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1851				sb->s_blocksize_bits)
1852			continue;
1853		ret = udf_check_anchor_block(sb, last[i], fileset);
1854		if (ret != -EAGAIN) {
1855			if (!ret)
1856				*lastblock = last[i];
1857			return ret;
1858		}
1859		if (last[i] < 256)
1860			continue;
1861		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1862		if (ret != -EAGAIN) {
1863			if (!ret)
1864				*lastblock = last[i];
1865			return ret;
1866		}
1867	}
1868
1869	/* Finally try block 512 in case media is open */
1870	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1871}
1872
1873/*
1874 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1875 * area specified by it. The function expects sbi->s_lastblock to be the last
1876 * block on the media.
1877 *
1878 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1879 * was not found.
1880 */
1881static int udf_find_anchor(struct super_block *sb,
1882			   struct kernel_lb_addr *fileset)
1883{
1884	struct udf_sb_info *sbi = UDF_SB(sb);
1885	sector_t lastblock = sbi->s_last_block;
1886	int ret;
1887
1888	ret = udf_scan_anchors(sb, &lastblock, fileset);
1889	if (ret != -EAGAIN)
1890		goto out;
1891
1892	/* No anchor found? Try VARCONV conversion of block numbers */
1893	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1894	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1895	/* Firstly, we try to not convert number of the last block */
1896	ret = udf_scan_anchors(sb, &lastblock, fileset);
1897	if (ret != -EAGAIN)
1898		goto out;
1899
1900	lastblock = sbi->s_last_block;
1901	/* Secondly, we try with converted number of the last block */
1902	ret = udf_scan_anchors(sb, &lastblock, fileset);
1903	if (ret < 0) {
1904		/* VARCONV didn't help. Clear it. */
1905		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1906	}
1907out:
1908	if (ret == 0)
1909		sbi->s_last_block = lastblock;
1910	return ret;
1911}
1912
1913/*
1914 * Check Volume Structure Descriptor, find Anchor block and load Volume
1915 * Descriptor Sequence.
1916 *
1917 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1918 * block was not found.
1919 */
1920static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1921			int silent, struct kernel_lb_addr *fileset)
1922{
1923	struct udf_sb_info *sbi = UDF_SB(sb);
1924	loff_t nsr_off;
1925	int ret;
1926
1927	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1928		if (!silent)
1929			udf_warn(sb, "Bad block size\n");
1930		return -EINVAL;
1931	}
1932	sbi->s_last_block = uopt->lastblock;
1933	if (!uopt->novrs) {
1934		/* Check that it is NSR02 compliant */
1935		nsr_off = udf_check_vsd(sb);
1936		if (!nsr_off) {
1937			if (!silent)
1938				udf_warn(sb, "No VRS found\n");
1939			return 0;
1940		}
1941		if (nsr_off == -1)
1942			udf_debug("Failed to read sector at offset %d. "
1943				  "Assuming open disc. Skipping validity "
1944				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1945		if (!sbi->s_last_block)
1946			sbi->s_last_block = udf_get_last_block(sb);
1947	} else {
1948		udf_debug("Validity check skipped because of novrs option\n");
1949	}
1950
1951	/* Look for anchor block and load Volume Descriptor Sequence */
1952	sbi->s_anchor = uopt->anchor;
1953	ret = udf_find_anchor(sb, fileset);
1954	if (ret < 0) {
1955		if (!silent && ret == -EAGAIN)
1956			udf_warn(sb, "No anchor found\n");
1957		return ret;
1958	}
1959	return 0;
1960}
1961
1962static void udf_open_lvid(struct super_block *sb)
1963{
1964	struct udf_sb_info *sbi = UDF_SB(sb);
1965	struct buffer_head *bh = sbi->s_lvid_bh;
1966	struct logicalVolIntegrityDesc *lvid;
1967	struct logicalVolIntegrityDescImpUse *lvidiu;
1968
1969	if (!bh)
1970		return;
1971	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1972	lvidiu = udf_sb_lvidiu(sb);
1973	if (!lvidiu)
1974		return;
1975
1976	mutex_lock(&sbi->s_alloc_mutex);
1977	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1978	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1979	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1980				CURRENT_TIME);
1981	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1982
1983	lvid->descTag.descCRC = cpu_to_le16(
1984		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1985			le16_to_cpu(lvid->descTag.descCRCLength)));
1986
1987	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1988	mark_buffer_dirty(bh);
1989	sbi->s_lvid_dirty = 0;
1990	mutex_unlock(&sbi->s_alloc_mutex);
1991	/* Make opening of filesystem visible on the media immediately */
1992	sync_dirty_buffer(bh);
1993}
1994
1995static void udf_close_lvid(struct super_block *sb)
1996{
1997	struct udf_sb_info *sbi = UDF_SB(sb);
1998	struct buffer_head *bh = sbi->s_lvid_bh;
1999	struct logicalVolIntegrityDesc *lvid;
2000	struct logicalVolIntegrityDescImpUse *lvidiu;
2001
2002	if (!bh)
2003		return;
2004	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2005	lvidiu = udf_sb_lvidiu(sb);
2006	if (!lvidiu)
2007		return;
2008
2009	mutex_lock(&sbi->s_alloc_mutex);
2010	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2011	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2012	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2013	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2014		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2015	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2016		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2017	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2018		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2019	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2020
2021	lvid->descTag.descCRC = cpu_to_le16(
2022			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2023				le16_to_cpu(lvid->descTag.descCRCLength)));
2024
2025	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2026	/*
2027	 * We set buffer uptodate unconditionally here to avoid spurious
2028	 * warnings from mark_buffer_dirty() when previous EIO has marked
2029	 * the buffer as !uptodate
2030	 */
2031	set_buffer_uptodate(bh);
2032	mark_buffer_dirty(bh);
2033	sbi->s_lvid_dirty = 0;
2034	mutex_unlock(&sbi->s_alloc_mutex);
2035	/* Make closing of filesystem visible on the media immediately */
2036	sync_dirty_buffer(bh);
2037}
2038
2039u64 lvid_get_unique_id(struct super_block *sb)
2040{
2041	struct buffer_head *bh;
2042	struct udf_sb_info *sbi = UDF_SB(sb);
2043	struct logicalVolIntegrityDesc *lvid;
2044	struct logicalVolHeaderDesc *lvhd;
2045	u64 uniqueID;
2046	u64 ret;
2047
2048	bh = sbi->s_lvid_bh;
2049	if (!bh)
2050		return 0;
2051
2052	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2053	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2054
2055	mutex_lock(&sbi->s_alloc_mutex);
2056	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2057	if (!(++uniqueID & 0xFFFFFFFF))
2058		uniqueID += 16;
2059	lvhd->uniqueID = cpu_to_le64(uniqueID);
2060	mutex_unlock(&sbi->s_alloc_mutex);
2061	mark_buffer_dirty(bh);
2062
2063	return ret;
2064}
2065
2066static int udf_fill_super(struct super_block *sb, void *options, int silent)
2067{
2068	int ret = -EINVAL;
2069	struct inode *inode = NULL;
2070	struct udf_options uopt;
2071	struct kernel_lb_addr rootdir, fileset;
2072	struct udf_sb_info *sbi;
2073	bool lvid_open = false;
2074
2075	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2076	uopt.uid = INVALID_UID;
2077	uopt.gid = INVALID_GID;
2078	uopt.umask = 0;
2079	uopt.fmode = UDF_INVALID_MODE;
2080	uopt.dmode = UDF_INVALID_MODE;
2081
2082	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2083	if (!sbi)
2084		return -ENOMEM;
2085
2086	sb->s_fs_info = sbi;
2087
2088	mutex_init(&sbi->s_alloc_mutex);
2089
2090	if (!udf_parse_options((char *)options, &uopt, false))
2091		goto parse_options_failure;
2092
2093	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2094	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2095		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2096		goto parse_options_failure;
2097	}
2098#ifdef CONFIG_UDF_NLS
2099	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2100		uopt.nls_map = load_nls_default();
2101		if (!uopt.nls_map)
2102			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2103		else
2104			udf_debug("Using default NLS map\n");
2105	}
2106#endif
2107	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2108		uopt.flags |= (1 << UDF_FLAG_UTF8);
2109
2110	fileset.logicalBlockNum = 0xFFFFFFFF;
2111	fileset.partitionReferenceNum = 0xFFFF;
2112
2113	sbi->s_flags = uopt.flags;
2114	sbi->s_uid = uopt.uid;
2115	sbi->s_gid = uopt.gid;
2116	sbi->s_umask = uopt.umask;
2117	sbi->s_fmode = uopt.fmode;
2118	sbi->s_dmode = uopt.dmode;
2119	sbi->s_nls_map = uopt.nls_map;
2120	rwlock_init(&sbi->s_cred_lock);
2121
2122	if (uopt.session == 0xFFFFFFFF)
2123		sbi->s_session = udf_get_last_session(sb);
2124	else
2125		sbi->s_session = uopt.session;
2126
2127	udf_debug("Multi-session=%d\n", sbi->s_session);
2128
2129	/* Fill in the rest of the superblock */
2130	sb->s_op = &udf_sb_ops;
2131	sb->s_export_op = &udf_export_ops;
2132
2133	sb->s_magic = UDF_SUPER_MAGIC;
2134	sb->s_time_gran = 1000;
2135
2136	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2137		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2138	} else {
2139		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2140		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2141		if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2142			if (!silent)
2143				pr_notice("Rescanning with blocksize %d\n",
2144					  UDF_DEFAULT_BLOCKSIZE);
2145			brelse(sbi->s_lvid_bh);
2146			sbi->s_lvid_bh = NULL;
2147			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2148			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2149		}
2150	}
2151	if (ret < 0) {
2152		if (ret == -EAGAIN) {
2153			udf_warn(sb, "No partition found (1)\n");
2154			ret = -EINVAL;
2155		}
2156		goto error_out;
2157	}
2158
2159	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2160
2161	if (sbi->s_lvid_bh) {
2162		struct logicalVolIntegrityDescImpUse *lvidiu =
2163							udf_sb_lvidiu(sb);
2164		uint16_t minUDFReadRev;
2165		uint16_t minUDFWriteRev;
2166
2167		if (!lvidiu) {
2168			ret = -EINVAL;
2169			goto error_out;
2170		}
2171		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2172		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2173		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2174			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2175				minUDFReadRev,
2176				UDF_MAX_READ_VERSION);
2177			ret = -EINVAL;
2178			goto error_out;
2179		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2180			   !(sb->s_flags & MS_RDONLY)) {
2181			ret = -EACCES;
2182			goto error_out;
2183		}
2184
2185		sbi->s_udfrev = minUDFWriteRev;
2186
2187		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2188			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2189		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2190			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2191	}
2192
2193	if (!sbi->s_partitions) {
2194		udf_warn(sb, "No partition found (2)\n");
2195		ret = -EINVAL;
2196		goto error_out;
2197	}
2198
2199	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2200			UDF_PART_FLAG_READ_ONLY &&
2201	    !(sb->s_flags & MS_RDONLY)) {
2202		ret = -EACCES;
2203		goto error_out;
2204	}
2205
2206	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2207		udf_warn(sb, "No fileset found\n");
2208		ret = -EINVAL;
2209		goto error_out;
2210	}
2211
2212	if (!silent) {
2213		struct timestamp ts;
2214		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2215		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2216			 sbi->s_volume_ident,
2217			 le16_to_cpu(ts.year), ts.month, ts.day,
2218			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2219	}
2220	if (!(sb->s_flags & MS_RDONLY)) {
2221		udf_open_lvid(sb);
2222		lvid_open = true;
2223	}
2224
2225	/* Assign the root inode */
2226	/* assign inodes by physical block number */
2227	/* perhaps it's not extensible enough, but for now ... */
2228	inode = udf_iget(sb, &rootdir);
2229	if (IS_ERR(inode)) {
2230		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2231		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2232		ret = PTR_ERR(inode);
2233		goto error_out;
2234	}
2235
2236	/* Allocate a dentry for the root inode */
2237	sb->s_root = d_make_root(inode);
2238	if (!sb->s_root) {
2239		udf_err(sb, "Couldn't allocate root dentry\n");
2240		ret = -ENOMEM;
2241		goto error_out;
2242	}
2243	sb->s_maxbytes = MAX_LFS_FILESIZE;
2244	sb->s_max_links = UDF_MAX_LINKS;
2245	return 0;
2246
2247error_out:
2248	iput(sbi->s_vat_inode);
2249parse_options_failure:
2250#ifdef CONFIG_UDF_NLS
2251	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2252		unload_nls(sbi->s_nls_map);
2253#endif
2254	if (lvid_open)
2255		udf_close_lvid(sb);
2256	brelse(sbi->s_lvid_bh);
2257	udf_sb_free_partitions(sb);
2258	kfree(sbi);
2259	sb->s_fs_info = NULL;
2260
2261	return ret;
2262}
2263
2264void _udf_err(struct super_block *sb, const char *function,
2265	      const char *fmt, ...)
2266{
2267	struct va_format vaf;
2268	va_list args;
2269
2270	va_start(args, fmt);
2271
2272	vaf.fmt = fmt;
2273	vaf.va = &args;
2274
2275	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2276
2277	va_end(args);
2278}
2279
2280void _udf_warn(struct super_block *sb, const char *function,
2281	       const char *fmt, ...)
2282{
2283	struct va_format vaf;
2284	va_list args;
2285
2286	va_start(args, fmt);
2287
2288	vaf.fmt = fmt;
2289	vaf.va = &args;
2290
2291	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2292
2293	va_end(args);
2294}
2295
2296static void udf_put_super(struct super_block *sb)
2297{
2298	struct udf_sb_info *sbi;
2299
2300	sbi = UDF_SB(sb);
2301
2302	iput(sbi->s_vat_inode);
2303#ifdef CONFIG_UDF_NLS
2304	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2305		unload_nls(sbi->s_nls_map);
2306#endif
2307	if (!(sb->s_flags & MS_RDONLY))
2308		udf_close_lvid(sb);
2309	brelse(sbi->s_lvid_bh);
2310	udf_sb_free_partitions(sb);
2311	mutex_destroy(&sbi->s_alloc_mutex);
2312	kfree(sb->s_fs_info);
2313	sb->s_fs_info = NULL;
2314}
2315
2316static int udf_sync_fs(struct super_block *sb, int wait)
2317{
2318	struct udf_sb_info *sbi = UDF_SB(sb);
2319
2320	mutex_lock(&sbi->s_alloc_mutex);
2321	if (sbi->s_lvid_dirty) {
2322		/*
2323		 * Blockdevice will be synced later so we don't have to submit
2324		 * the buffer for IO
2325		 */
2326		mark_buffer_dirty(sbi->s_lvid_bh);
2327		sbi->s_lvid_dirty = 0;
2328	}
2329	mutex_unlock(&sbi->s_alloc_mutex);
2330
2331	return 0;
2332}
2333
2334static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2335{
2336	struct super_block *sb = dentry->d_sb;
2337	struct udf_sb_info *sbi = UDF_SB(sb);
2338	struct logicalVolIntegrityDescImpUse *lvidiu;
2339	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2340
2341	lvidiu = udf_sb_lvidiu(sb);
2342	buf->f_type = UDF_SUPER_MAGIC;
2343	buf->f_bsize = sb->s_blocksize;
2344	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2345	buf->f_bfree = udf_count_free(sb);
2346	buf->f_bavail = buf->f_bfree;
2347	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2348					  le32_to_cpu(lvidiu->numDirs)) : 0)
2349			+ buf->f_bfree;
2350	buf->f_ffree = buf->f_bfree;
2351	buf->f_namelen = UDF_NAME_LEN;
2352	buf->f_fsid.val[0] = (u32)id;
2353	buf->f_fsid.val[1] = (u32)(id >> 32);
2354
2355	return 0;
2356}
2357
2358static unsigned int udf_count_free_bitmap(struct super_block *sb,
2359					  struct udf_bitmap *bitmap)
2360{
2361	struct buffer_head *bh = NULL;
2362	unsigned int accum = 0;
2363	int index;
2364	int block = 0, newblock;
2365	struct kernel_lb_addr loc;
2366	uint32_t bytes;
2367	uint8_t *ptr;
2368	uint16_t ident;
2369	struct spaceBitmapDesc *bm;
2370
2371	loc.logicalBlockNum = bitmap->s_extPosition;
2372	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2373	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2374
2375	if (!bh) {
2376		udf_err(sb, "udf_count_free failed\n");
2377		goto out;
2378	} else if (ident != TAG_IDENT_SBD) {
2379		brelse(bh);
2380		udf_err(sb, "udf_count_free failed\n");
2381		goto out;
2382	}
2383
2384	bm = (struct spaceBitmapDesc *)bh->b_data;
2385	bytes = le32_to_cpu(bm->numOfBytes);
2386	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2387	ptr = (uint8_t *)bh->b_data;
2388
2389	while (bytes > 0) {
2390		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2391		accum += bitmap_weight((const unsigned long *)(ptr + index),
2392					cur_bytes * 8);
2393		bytes -= cur_bytes;
2394		if (bytes) {
2395			brelse(bh);
2396			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2397			bh = udf_tread(sb, newblock);
2398			if (!bh) {
2399				udf_debug("read failed\n");
2400				goto out;
2401			}
2402			index = 0;
2403			ptr = (uint8_t *)bh->b_data;
2404		}
2405	}
2406	brelse(bh);
2407out:
2408	return accum;
2409}
2410
2411static unsigned int udf_count_free_table(struct super_block *sb,
2412					 struct inode *table)
2413{
2414	unsigned int accum = 0;
2415	uint32_t elen;
2416	struct kernel_lb_addr eloc;
2417	int8_t etype;
2418	struct extent_position epos;
2419
2420	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2421	epos.block = UDF_I(table)->i_location;
2422	epos.offset = sizeof(struct unallocSpaceEntry);
2423	epos.bh = NULL;
2424
2425	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2426		accum += (elen >> table->i_sb->s_blocksize_bits);
2427
2428	brelse(epos.bh);
2429	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2430
2431	return accum;
2432}
2433
2434static unsigned int udf_count_free(struct super_block *sb)
2435{
2436	unsigned int accum = 0;
2437	struct udf_sb_info *sbi;
2438	struct udf_part_map *map;
2439
2440	sbi = UDF_SB(sb);
2441	if (sbi->s_lvid_bh) {
2442		struct logicalVolIntegrityDesc *lvid =
2443			(struct logicalVolIntegrityDesc *)
2444			sbi->s_lvid_bh->b_data;
2445		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2446			accum = le32_to_cpu(
2447					lvid->freeSpaceTable[sbi->s_partition]);
2448			if (accum == 0xFFFFFFFF)
2449				accum = 0;
2450		}
2451	}
2452
2453	if (accum)
2454		return accum;
2455
2456	map = &sbi->s_partmaps[sbi->s_partition];
2457	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2458		accum += udf_count_free_bitmap(sb,
2459					       map->s_uspace.s_bitmap);
2460	}
2461	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2462		accum += udf_count_free_bitmap(sb,
2463					       map->s_fspace.s_bitmap);
2464	}
2465	if (accum)
2466		return accum;
2467
2468	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2469		accum += udf_count_free_table(sb,
2470					      map->s_uspace.s_table);
2471	}
2472	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2473		accum += udf_count_free_table(sb,
2474					      map->s_fspace.s_table);
2475	}
2476
2477	return accum;
2478}
v4.10.11
   1/*
   2 * super.c
   3 *
   4 * PURPOSE
   5 *  Super block routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * DESCRIPTION
   8 *  OSTA-UDF(tm) = Optical Storage Technology Association
   9 *  Universal Disk Format.
  10 *
  11 *  This code is based on version 2.00 of the UDF specification,
  12 *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
  13 *    http://www.osta.org/
  14 *    http://www.ecma.ch/
  15 *    http://www.iso.org/
  16 *
  17 * COPYRIGHT
  18 *  This file is distributed under the terms of the GNU General Public
  19 *  License (GPL). Copies of the GPL can be obtained from:
  20 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  21 *  Each contributing author retains all rights to their own work.
  22 *
  23 *  (C) 1998 Dave Boynton
  24 *  (C) 1998-2004 Ben Fennema
  25 *  (C) 2000 Stelias Computing Inc
  26 *
  27 * HISTORY
  28 *
  29 *  09/24/98 dgb  changed to allow compiling outside of kernel, and
  30 *                added some debugging.
  31 *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
  32 *  10/16/98      attempting some multi-session support
  33 *  10/17/98      added freespace count for "df"
  34 *  11/11/98 gr   added novrs option
  35 *  11/26/98 dgb  added fileset,anchor mount options
  36 *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
  37 *                vol descs. rewrote option handling based on isofs
  38 *  12/20/98      find the free space bitmap (if it exists)
  39 */
  40
  41#include "udfdecl.h"
  42
  43#include <linux/blkdev.h>
  44#include <linux/slab.h>
  45#include <linux/kernel.h>
  46#include <linux/module.h>
  47#include <linux/parser.h>
  48#include <linux/stat.h>
  49#include <linux/cdrom.h>
  50#include <linux/nls.h>
  51#include <linux/vfs.h>
  52#include <linux/vmalloc.h>
  53#include <linux/errno.h>
  54#include <linux/mount.h>
  55#include <linux/seq_file.h>
  56#include <linux/bitmap.h>
  57#include <linux/crc-itu-t.h>
  58#include <linux/log2.h>
  59#include <asm/byteorder.h>
  60
  61#include "udf_sb.h"
  62#include "udf_i.h"
  63
  64#include <linux/init.h>
  65#include <linux/uaccess.h>
  66
  67#define VDS_POS_PRIMARY_VOL_DESC	0
  68#define VDS_POS_UNALLOC_SPACE_DESC	1
  69#define VDS_POS_LOGICAL_VOL_DESC	2
  70#define VDS_POS_PARTITION_DESC		3
  71#define VDS_POS_IMP_USE_VOL_DESC	4
  72#define VDS_POS_VOL_DESC_PTR		5
  73#define VDS_POS_TERMINATING_DESC	6
  74#define VDS_POS_LENGTH			7
  75
  76#define UDF_DEFAULT_BLOCKSIZE 2048
  77
  78#define VSD_FIRST_SECTOR_OFFSET		32768
  79#define VSD_MAX_SECTOR_OFFSET		0x800000
  80
  81/*
  82 * Maximum number of Terminating Descriptor / Logical Volume Integrity
  83 * Descriptor redirections. The chosen numbers are arbitrary - just that we
  84 * hopefully don't limit any real use of rewritten inode on write-once media
  85 * but avoid looping for too long on corrupted media.
  86 */
  87#define UDF_MAX_TD_NESTING 64
  88#define UDF_MAX_LVID_NESTING 1000
  89
  90enum { UDF_MAX_LINKS = 0xffff };
  91
  92/* These are the "meat" - everything else is stuffing */
  93static int udf_fill_super(struct super_block *, void *, int);
  94static void udf_put_super(struct super_block *);
  95static int udf_sync_fs(struct super_block *, int);
  96static int udf_remount_fs(struct super_block *, int *, char *);
  97static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
  98static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
  99			    struct kernel_lb_addr *);
 100static void udf_load_fileset(struct super_block *, struct buffer_head *,
 101			     struct kernel_lb_addr *);
 102static void udf_open_lvid(struct super_block *);
 103static void udf_close_lvid(struct super_block *);
 104static unsigned int udf_count_free(struct super_block *);
 105static int udf_statfs(struct dentry *, struct kstatfs *);
 106static int udf_show_options(struct seq_file *, struct dentry *);
 107
 108struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
 109{
 110	struct logicalVolIntegrityDesc *lvid;
 111	unsigned int partnum;
 112	unsigned int offset;
 113
 114	if (!UDF_SB(sb)->s_lvid_bh)
 115		return NULL;
 116	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
 117	partnum = le32_to_cpu(lvid->numOfPartitions);
 118	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
 119	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
 120	     (2 * sizeof(uint32_t)) < partnum) {
 121		udf_err(sb, "Logical volume integrity descriptor corrupted "
 122			"(numOfPartitions = %u)!\n", partnum);
 123		return NULL;
 124	}
 125	/* The offset is to skip freeSpaceTable and sizeTable arrays */
 126	offset = partnum * 2 * sizeof(uint32_t);
 127	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
 128}
 129
 130/* UDF filesystem type */
 131static struct dentry *udf_mount(struct file_system_type *fs_type,
 132		      int flags, const char *dev_name, void *data)
 133{
 134	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
 135}
 136
 137static struct file_system_type udf_fstype = {
 138	.owner		= THIS_MODULE,
 139	.name		= "udf",
 140	.mount		= udf_mount,
 141	.kill_sb	= kill_block_super,
 142	.fs_flags	= FS_REQUIRES_DEV,
 143};
 144MODULE_ALIAS_FS("udf");
 145
 146static struct kmem_cache *udf_inode_cachep;
 147
 148static struct inode *udf_alloc_inode(struct super_block *sb)
 149{
 150	struct udf_inode_info *ei;
 151	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
 152	if (!ei)
 153		return NULL;
 154
 155	ei->i_unique = 0;
 156	ei->i_lenExtents = 0;
 157	ei->i_next_alloc_block = 0;
 158	ei->i_next_alloc_goal = 0;
 159	ei->i_strat4096 = 0;
 160	init_rwsem(&ei->i_data_sem);
 161	ei->cached_extent.lstart = -1;
 162	spin_lock_init(&ei->i_extent_cache_lock);
 163
 164	return &ei->vfs_inode;
 165}
 166
 167static void udf_i_callback(struct rcu_head *head)
 168{
 169	struct inode *inode = container_of(head, struct inode, i_rcu);
 170	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
 171}
 172
 173static void udf_destroy_inode(struct inode *inode)
 174{
 175	call_rcu(&inode->i_rcu, udf_i_callback);
 176}
 177
 178static void init_once(void *foo)
 179{
 180	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
 181
 182	ei->i_ext.i_data = NULL;
 183	inode_init_once(&ei->vfs_inode);
 184}
 185
 186static int __init init_inodecache(void)
 187{
 188	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
 189					     sizeof(struct udf_inode_info),
 190					     0, (SLAB_RECLAIM_ACCOUNT |
 191						 SLAB_MEM_SPREAD |
 192						 SLAB_ACCOUNT),
 193					     init_once);
 194	if (!udf_inode_cachep)
 195		return -ENOMEM;
 196	return 0;
 197}
 198
 199static void destroy_inodecache(void)
 200{
 201	/*
 202	 * Make sure all delayed rcu free inodes are flushed before we
 203	 * destroy cache.
 204	 */
 205	rcu_barrier();
 206	kmem_cache_destroy(udf_inode_cachep);
 207}
 208
 209/* Superblock operations */
 210static const struct super_operations udf_sb_ops = {
 211	.alloc_inode	= udf_alloc_inode,
 212	.destroy_inode	= udf_destroy_inode,
 213	.write_inode	= udf_write_inode,
 214	.evict_inode	= udf_evict_inode,
 215	.put_super	= udf_put_super,
 216	.sync_fs	= udf_sync_fs,
 217	.statfs		= udf_statfs,
 218	.remount_fs	= udf_remount_fs,
 219	.show_options	= udf_show_options,
 220};
 221
 222struct udf_options {
 223	unsigned char novrs;
 224	unsigned int blocksize;
 225	unsigned int session;
 226	unsigned int lastblock;
 227	unsigned int anchor;
 228	unsigned int volume;
 229	unsigned short partition;
 230	unsigned int fileset;
 231	unsigned int rootdir;
 232	unsigned int flags;
 233	umode_t umask;
 234	kgid_t gid;
 235	kuid_t uid;
 236	umode_t fmode;
 237	umode_t dmode;
 238	struct nls_table *nls_map;
 239};
 240
 241static int __init init_udf_fs(void)
 242{
 243	int err;
 244
 245	err = init_inodecache();
 246	if (err)
 247		goto out1;
 248	err = register_filesystem(&udf_fstype);
 249	if (err)
 250		goto out;
 251
 252	return 0;
 253
 254out:
 255	destroy_inodecache();
 256
 257out1:
 258	return err;
 259}
 260
 261static void __exit exit_udf_fs(void)
 262{
 263	unregister_filesystem(&udf_fstype);
 264	destroy_inodecache();
 265}
 266
 267module_init(init_udf_fs)
 268module_exit(exit_udf_fs)
 269
 270static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
 271{
 272	struct udf_sb_info *sbi = UDF_SB(sb);
 273
 274	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
 275				  GFP_KERNEL);
 276	if (!sbi->s_partmaps) {
 277		udf_err(sb, "Unable to allocate space for %d partition maps\n",
 278			count);
 279		sbi->s_partitions = 0;
 280		return -ENOMEM;
 281	}
 282
 283	sbi->s_partitions = count;
 284	return 0;
 285}
 286
 287static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
 288{
 289	int i;
 290	int nr_groups = bitmap->s_nr_groups;
 291
 292	for (i = 0; i < nr_groups; i++)
 293		if (bitmap->s_block_bitmap[i])
 294			brelse(bitmap->s_block_bitmap[i]);
 295
 296	kvfree(bitmap);
 297}
 298
 299static void udf_free_partition(struct udf_part_map *map)
 300{
 301	int i;
 302	struct udf_meta_data *mdata;
 303
 304	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
 305		iput(map->s_uspace.s_table);
 306	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
 307		iput(map->s_fspace.s_table);
 308	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
 309		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
 310	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
 311		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
 312	if (map->s_partition_type == UDF_SPARABLE_MAP15)
 313		for (i = 0; i < 4; i++)
 314			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
 315	else if (map->s_partition_type == UDF_METADATA_MAP25) {
 316		mdata = &map->s_type_specific.s_metadata;
 317		iput(mdata->s_metadata_fe);
 318		mdata->s_metadata_fe = NULL;
 319
 320		iput(mdata->s_mirror_fe);
 321		mdata->s_mirror_fe = NULL;
 322
 323		iput(mdata->s_bitmap_fe);
 324		mdata->s_bitmap_fe = NULL;
 325	}
 326}
 327
 328static void udf_sb_free_partitions(struct super_block *sb)
 329{
 330	struct udf_sb_info *sbi = UDF_SB(sb);
 331	int i;
 332	if (sbi->s_partmaps == NULL)
 333		return;
 334	for (i = 0; i < sbi->s_partitions; i++)
 335		udf_free_partition(&sbi->s_partmaps[i]);
 336	kfree(sbi->s_partmaps);
 337	sbi->s_partmaps = NULL;
 338}
 339
 340static int udf_show_options(struct seq_file *seq, struct dentry *root)
 341{
 342	struct super_block *sb = root->d_sb;
 343	struct udf_sb_info *sbi = UDF_SB(sb);
 344
 345	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
 346		seq_puts(seq, ",nostrict");
 347	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
 348		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
 349	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
 350		seq_puts(seq, ",unhide");
 351	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
 352		seq_puts(seq, ",undelete");
 353	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
 354		seq_puts(seq, ",noadinicb");
 355	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
 356		seq_puts(seq, ",shortad");
 357	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
 358		seq_puts(seq, ",uid=forget");
 359	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
 360		seq_puts(seq, ",uid=ignore");
 361	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
 362		seq_puts(seq, ",gid=forget");
 363	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
 364		seq_puts(seq, ",gid=ignore");
 365	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
 366		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
 367	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
 368		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
 369	if (sbi->s_umask != 0)
 370		seq_printf(seq, ",umask=%ho", sbi->s_umask);
 371	if (sbi->s_fmode != UDF_INVALID_MODE)
 372		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
 373	if (sbi->s_dmode != UDF_INVALID_MODE)
 374		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
 375	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
 376		seq_printf(seq, ",session=%u", sbi->s_session);
 377	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
 378		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
 379	if (sbi->s_anchor != 0)
 380		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
 381	/*
 382	 * volume, partition, fileset and rootdir seem to be ignored
 383	 * currently
 384	 */
 385	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
 386		seq_puts(seq, ",utf8");
 387	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
 388		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
 389
 390	return 0;
 391}
 392
 393/*
 394 * udf_parse_options
 395 *
 396 * PURPOSE
 397 *	Parse mount options.
 398 *
 399 * DESCRIPTION
 400 *	The following mount options are supported:
 401 *
 402 *	gid=		Set the default group.
 403 *	umask=		Set the default umask.
 404 *	mode=		Set the default file permissions.
 405 *	dmode=		Set the default directory permissions.
 406 *	uid=		Set the default user.
 407 *	bs=		Set the block size.
 408 *	unhide		Show otherwise hidden files.
 409 *	undelete	Show deleted files in lists.
 410 *	adinicb		Embed data in the inode (default)
 411 *	noadinicb	Don't embed data in the inode
 412 *	shortad		Use short ad's
 413 *	longad		Use long ad's (default)
 414 *	nostrict	Unset strict conformance
 415 *	iocharset=	Set the NLS character set
 416 *
 417 *	The remaining are for debugging and disaster recovery:
 418 *
 419 *	novrs		Skip volume sequence recognition
 420 *
 421 *	The following expect a offset from 0.
 422 *
 423 *	session=	Set the CDROM session (default= last session)
 424 *	anchor=		Override standard anchor location. (default= 256)
 425 *	volume=		Override the VolumeDesc location. (unused)
 426 *	partition=	Override the PartitionDesc location. (unused)
 427 *	lastblock=	Set the last block of the filesystem/
 428 *
 429 *	The following expect a offset from the partition root.
 430 *
 431 *	fileset=	Override the fileset block location. (unused)
 432 *	rootdir=	Override the root directory location. (unused)
 433 *		WARNING: overriding the rootdir to a non-directory may
 434 *		yield highly unpredictable results.
 435 *
 436 * PRE-CONDITIONS
 437 *	options		Pointer to mount options string.
 438 *	uopts		Pointer to mount options variable.
 439 *
 440 * POST-CONDITIONS
 441 *	<return>	1	Mount options parsed okay.
 442 *	<return>	0	Error parsing mount options.
 443 *
 444 * HISTORY
 445 *	July 1, 1997 - Andrew E. Mileski
 446 *	Written, tested, and released.
 447 */
 448
 449enum {
 450	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
 451	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
 452	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
 453	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
 454	Opt_rootdir, Opt_utf8, Opt_iocharset,
 455	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
 456	Opt_fmode, Opt_dmode
 457};
 458
 459static const match_table_t tokens = {
 460	{Opt_novrs,	"novrs"},
 461	{Opt_nostrict,	"nostrict"},
 462	{Opt_bs,	"bs=%u"},
 463	{Opt_unhide,	"unhide"},
 464	{Opt_undelete,	"undelete"},
 465	{Opt_noadinicb,	"noadinicb"},
 466	{Opt_adinicb,	"adinicb"},
 467	{Opt_shortad,	"shortad"},
 468	{Opt_longad,	"longad"},
 469	{Opt_uforget,	"uid=forget"},
 470	{Opt_uignore,	"uid=ignore"},
 471	{Opt_gforget,	"gid=forget"},
 472	{Opt_gignore,	"gid=ignore"},
 473	{Opt_gid,	"gid=%u"},
 474	{Opt_uid,	"uid=%u"},
 475	{Opt_umask,	"umask=%o"},
 476	{Opt_session,	"session=%u"},
 477	{Opt_lastblock,	"lastblock=%u"},
 478	{Opt_anchor,	"anchor=%u"},
 479	{Opt_volume,	"volume=%u"},
 480	{Opt_partition,	"partition=%u"},
 481	{Opt_fileset,	"fileset=%u"},
 482	{Opt_rootdir,	"rootdir=%u"},
 483	{Opt_utf8,	"utf8"},
 484	{Opt_iocharset,	"iocharset=%s"},
 485	{Opt_fmode,     "mode=%o"},
 486	{Opt_dmode,     "dmode=%o"},
 487	{Opt_err,	NULL}
 488};
 489
 490static int udf_parse_options(char *options, struct udf_options *uopt,
 491			     bool remount)
 492{
 493	char *p;
 494	int option;
 495
 496	uopt->novrs = 0;
 497	uopt->partition = 0xFFFF;
 498	uopt->session = 0xFFFFFFFF;
 499	uopt->lastblock = 0;
 500	uopt->anchor = 0;
 501	uopt->volume = 0xFFFFFFFF;
 502	uopt->rootdir = 0xFFFFFFFF;
 503	uopt->fileset = 0xFFFFFFFF;
 504	uopt->nls_map = NULL;
 505
 506	if (!options)
 507		return 1;
 508
 509	while ((p = strsep(&options, ",")) != NULL) {
 510		substring_t args[MAX_OPT_ARGS];
 511		int token;
 512		unsigned n;
 513		if (!*p)
 514			continue;
 515
 516		token = match_token(p, tokens, args);
 517		switch (token) {
 518		case Opt_novrs:
 519			uopt->novrs = 1;
 520			break;
 521		case Opt_bs:
 522			if (match_int(&args[0], &option))
 523				return 0;
 524			n = option;
 525			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
 526				return 0;
 527			uopt->blocksize = n;
 528			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
 529			break;
 530		case Opt_unhide:
 531			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
 532			break;
 533		case Opt_undelete:
 534			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
 535			break;
 536		case Opt_noadinicb:
 537			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
 538			break;
 539		case Opt_adinicb:
 540			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
 541			break;
 542		case Opt_shortad:
 543			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
 544			break;
 545		case Opt_longad:
 546			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
 547			break;
 548		case Opt_gid:
 549			if (match_int(args, &option))
 550				return 0;
 551			uopt->gid = make_kgid(current_user_ns(), option);
 552			if (!gid_valid(uopt->gid))
 553				return 0;
 554			uopt->flags |= (1 << UDF_FLAG_GID_SET);
 555			break;
 556		case Opt_uid:
 557			if (match_int(args, &option))
 558				return 0;
 559			uopt->uid = make_kuid(current_user_ns(), option);
 560			if (!uid_valid(uopt->uid))
 561				return 0;
 562			uopt->flags |= (1 << UDF_FLAG_UID_SET);
 563			break;
 564		case Opt_umask:
 565			if (match_octal(args, &option))
 566				return 0;
 567			uopt->umask = option;
 568			break;
 569		case Opt_nostrict:
 570			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
 571			break;
 572		case Opt_session:
 573			if (match_int(args, &option))
 574				return 0;
 575			uopt->session = option;
 576			if (!remount)
 577				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
 578			break;
 579		case Opt_lastblock:
 580			if (match_int(args, &option))
 581				return 0;
 582			uopt->lastblock = option;
 583			if (!remount)
 584				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
 585			break;
 586		case Opt_anchor:
 587			if (match_int(args, &option))
 588				return 0;
 589			uopt->anchor = option;
 590			break;
 591		case Opt_volume:
 592			if (match_int(args, &option))
 593				return 0;
 594			uopt->volume = option;
 595			break;
 596		case Opt_partition:
 597			if (match_int(args, &option))
 598				return 0;
 599			uopt->partition = option;
 600			break;
 601		case Opt_fileset:
 602			if (match_int(args, &option))
 603				return 0;
 604			uopt->fileset = option;
 605			break;
 606		case Opt_rootdir:
 607			if (match_int(args, &option))
 608				return 0;
 609			uopt->rootdir = option;
 610			break;
 611		case Opt_utf8:
 612			uopt->flags |= (1 << UDF_FLAG_UTF8);
 613			break;
 614#ifdef CONFIG_UDF_NLS
 615		case Opt_iocharset:
 616			uopt->nls_map = load_nls(args[0].from);
 617			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
 618			break;
 619#endif
 620		case Opt_uignore:
 621			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
 622			break;
 623		case Opt_uforget:
 624			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
 625			break;
 626		case Opt_gignore:
 627			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
 628			break;
 629		case Opt_gforget:
 630			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
 631			break;
 632		case Opt_fmode:
 633			if (match_octal(args, &option))
 634				return 0;
 635			uopt->fmode = option & 0777;
 636			break;
 637		case Opt_dmode:
 638			if (match_octal(args, &option))
 639				return 0;
 640			uopt->dmode = option & 0777;
 641			break;
 642		default:
 643			pr_err("bad mount option \"%s\" or missing value\n", p);
 644			return 0;
 645		}
 646	}
 647	return 1;
 648}
 649
 650static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
 651{
 652	struct udf_options uopt;
 653	struct udf_sb_info *sbi = UDF_SB(sb);
 654	int error = 0;
 655	struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
 656
 657	sync_filesystem(sb);
 658	if (lvidiu) {
 659		int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
 660		if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
 661			return -EACCES;
 662	}
 663
 664	uopt.flags = sbi->s_flags;
 665	uopt.uid   = sbi->s_uid;
 666	uopt.gid   = sbi->s_gid;
 667	uopt.umask = sbi->s_umask;
 668	uopt.fmode = sbi->s_fmode;
 669	uopt.dmode = sbi->s_dmode;
 670
 671	if (!udf_parse_options(options, &uopt, true))
 672		return -EINVAL;
 673
 674	write_lock(&sbi->s_cred_lock);
 675	sbi->s_flags = uopt.flags;
 676	sbi->s_uid   = uopt.uid;
 677	sbi->s_gid   = uopt.gid;
 678	sbi->s_umask = uopt.umask;
 679	sbi->s_fmode = uopt.fmode;
 680	sbi->s_dmode = uopt.dmode;
 681	write_unlock(&sbi->s_cred_lock);
 682
 683	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
 684		goto out_unlock;
 685
 686	if (*flags & MS_RDONLY)
 687		udf_close_lvid(sb);
 688	else
 689		udf_open_lvid(sb);
 690
 691out_unlock:
 692	return error;
 693}
 694
 695/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
 696/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
 697static loff_t udf_check_vsd(struct super_block *sb)
 698{
 699	struct volStructDesc *vsd = NULL;
 700	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
 701	int sectorsize;
 702	struct buffer_head *bh = NULL;
 703	int nsr02 = 0;
 704	int nsr03 = 0;
 705	struct udf_sb_info *sbi;
 706
 707	sbi = UDF_SB(sb);
 708	if (sb->s_blocksize < sizeof(struct volStructDesc))
 709		sectorsize = sizeof(struct volStructDesc);
 710	else
 711		sectorsize = sb->s_blocksize;
 712
 713	sector += (sbi->s_session << sb->s_blocksize_bits);
 714
 715	udf_debug("Starting at sector %u (%ld byte sectors)\n",
 716		  (unsigned int)(sector >> sb->s_blocksize_bits),
 717		  sb->s_blocksize);
 718	/* Process the sequence (if applicable). The hard limit on the sector
 719	 * offset is arbitrary, hopefully large enough so that all valid UDF
 720	 * filesystems will be recognised. There is no mention of an upper
 721	 * bound to the size of the volume recognition area in the standard.
 722	 *  The limit will prevent the code to read all the sectors of a
 723	 * specially crafted image (like a bluray disc full of CD001 sectors),
 724	 * potentially causing minutes or even hours of uninterruptible I/O
 725	 * activity. This actually happened with uninitialised SSD partitions
 726	 * (all 0xFF) before the check for the limit and all valid IDs were
 727	 * added */
 728	for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
 729	     sector += sectorsize) {
 730		/* Read a block */
 731		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
 732		if (!bh)
 733			break;
 734
 735		/* Look for ISO  descriptors */
 736		vsd = (struct volStructDesc *)(bh->b_data +
 737					      (sector & (sb->s_blocksize - 1)));
 738
 739		if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
 740				    VSD_STD_ID_LEN)) {
 741			switch (vsd->structType) {
 742			case 0:
 743				udf_debug("ISO9660 Boot Record found\n");
 744				break;
 745			case 1:
 746				udf_debug("ISO9660 Primary Volume Descriptor found\n");
 747				break;
 748			case 2:
 749				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
 750				break;
 751			case 3:
 752				udf_debug("ISO9660 Volume Partition Descriptor found\n");
 753				break;
 754			case 255:
 755				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
 756				break;
 757			default:
 758				udf_debug("ISO9660 VRS (%u) found\n",
 759					  vsd->structType);
 760				break;
 761			}
 762		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
 763				    VSD_STD_ID_LEN))
 764			; /* nothing */
 765		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
 766				    VSD_STD_ID_LEN)) {
 767			brelse(bh);
 768			break;
 769		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
 770				    VSD_STD_ID_LEN))
 771			nsr02 = sector;
 772		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
 773				    VSD_STD_ID_LEN))
 774			nsr03 = sector;
 775		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
 776				    VSD_STD_ID_LEN))
 777			; /* nothing */
 778		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
 779				    VSD_STD_ID_LEN))
 780			; /* nothing */
 781		else {
 782			/* invalid id : end of volume recognition area */
 783			brelse(bh);
 784			break;
 785		}
 786		brelse(bh);
 787	}
 788
 789	if (nsr03)
 790		return nsr03;
 791	else if (nsr02)
 792		return nsr02;
 793	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
 794			VSD_FIRST_SECTOR_OFFSET)
 795		return -1;
 796	else
 797		return 0;
 798}
 799
 800static int udf_find_fileset(struct super_block *sb,
 801			    struct kernel_lb_addr *fileset,
 802			    struct kernel_lb_addr *root)
 803{
 804	struct buffer_head *bh = NULL;
 805	long lastblock;
 806	uint16_t ident;
 807	struct udf_sb_info *sbi;
 808
 809	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
 810	    fileset->partitionReferenceNum != 0xFFFF) {
 811		bh = udf_read_ptagged(sb, fileset, 0, &ident);
 812
 813		if (!bh) {
 814			return 1;
 815		} else if (ident != TAG_IDENT_FSD) {
 816			brelse(bh);
 817			return 1;
 818		}
 819
 820	}
 821
 822	sbi = UDF_SB(sb);
 823	if (!bh) {
 824		/* Search backwards through the partitions */
 825		struct kernel_lb_addr newfileset;
 826
 827/* --> cvg: FIXME - is it reasonable? */
 828		return 1;
 829
 830		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
 831		     (newfileset.partitionReferenceNum != 0xFFFF &&
 832		      fileset->logicalBlockNum == 0xFFFFFFFF &&
 833		      fileset->partitionReferenceNum == 0xFFFF);
 834		     newfileset.partitionReferenceNum--) {
 835			lastblock = sbi->s_partmaps
 836					[newfileset.partitionReferenceNum]
 837						.s_partition_len;
 838			newfileset.logicalBlockNum = 0;
 839
 840			do {
 841				bh = udf_read_ptagged(sb, &newfileset, 0,
 842						      &ident);
 843				if (!bh) {
 844					newfileset.logicalBlockNum++;
 845					continue;
 846				}
 847
 848				switch (ident) {
 849				case TAG_IDENT_SBD:
 850				{
 851					struct spaceBitmapDesc *sp;
 852					sp = (struct spaceBitmapDesc *)
 853								bh->b_data;
 854					newfileset.logicalBlockNum += 1 +
 855						((le32_to_cpu(sp->numOfBytes) +
 856						  sizeof(struct spaceBitmapDesc)
 857						  - 1) >> sb->s_blocksize_bits);
 858					brelse(bh);
 859					break;
 860				}
 861				case TAG_IDENT_FSD:
 862					*fileset = newfileset;
 863					break;
 864				default:
 865					newfileset.logicalBlockNum++;
 866					brelse(bh);
 867					bh = NULL;
 868					break;
 869				}
 870			} while (newfileset.logicalBlockNum < lastblock &&
 871				 fileset->logicalBlockNum == 0xFFFFFFFF &&
 872				 fileset->partitionReferenceNum == 0xFFFF);
 873		}
 874	}
 875
 876	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
 877	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
 878		udf_debug("Fileset at block=%d, partition=%d\n",
 879			  fileset->logicalBlockNum,
 880			  fileset->partitionReferenceNum);
 881
 882		sbi->s_partition = fileset->partitionReferenceNum;
 883		udf_load_fileset(sb, bh, root);
 884		brelse(bh);
 885		return 0;
 886	}
 887	return 1;
 888}
 889
 890/*
 891 * Load primary Volume Descriptor Sequence
 892 *
 893 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
 894 * should be tried.
 895 */
 896static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
 897{
 898	struct primaryVolDesc *pvoldesc;
 899	uint8_t *outstr;
 900	struct buffer_head *bh;
 901	uint16_t ident;
 902	int ret = -ENOMEM;
 903
 904	outstr = kmalloc(128, GFP_NOFS);
 905	if (!outstr)
 906		return -ENOMEM;
 907
 908	bh = udf_read_tagged(sb, block, block, &ident);
 909	if (!bh) {
 910		ret = -EAGAIN;
 911		goto out2;
 912	}
 913
 914	if (ident != TAG_IDENT_PVD) {
 915		ret = -EIO;
 916		goto out_bh;
 917	}
 918
 919	pvoldesc = (struct primaryVolDesc *)bh->b_data;
 920
 921	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
 922			      pvoldesc->recordingDateAndTime)) {
 923#ifdef UDFFS_DEBUG
 924		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
 925		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
 926			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
 927			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
 928#endif
 929	}
 930
 931	ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
 932	if (ret < 0)
 933		goto out_bh;
 934
 935	strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
 936	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
 937
 938	ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
 939	if (ret < 0)
 940		goto out_bh;
 941
 942	outstr[ret] = 0;
 943	udf_debug("volSetIdent[] = '%s'\n", outstr);
 944
 945	ret = 0;
 946out_bh:
 947	brelse(bh);
 948out2:
 949	kfree(outstr);
 950	return ret;
 951}
 952
 953struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
 954					u32 meta_file_loc, u32 partition_ref)
 955{
 956	struct kernel_lb_addr addr;
 957	struct inode *metadata_fe;
 958
 959	addr.logicalBlockNum = meta_file_loc;
 960	addr.partitionReferenceNum = partition_ref;
 961
 962	metadata_fe = udf_iget_special(sb, &addr);
 963
 964	if (IS_ERR(metadata_fe)) {
 965		udf_warn(sb, "metadata inode efe not found\n");
 966		return metadata_fe;
 967	}
 968	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
 969		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
 970		iput(metadata_fe);
 971		return ERR_PTR(-EIO);
 972	}
 973
 974	return metadata_fe;
 975}
 976
 977static int udf_load_metadata_files(struct super_block *sb, int partition,
 978				   int type1_index)
 979{
 980	struct udf_sb_info *sbi = UDF_SB(sb);
 981	struct udf_part_map *map;
 982	struct udf_meta_data *mdata;
 983	struct kernel_lb_addr addr;
 984	struct inode *fe;
 985
 986	map = &sbi->s_partmaps[partition];
 987	mdata = &map->s_type_specific.s_metadata;
 988	mdata->s_phys_partition_ref = type1_index;
 989
 990	/* metadata address */
 991	udf_debug("Metadata file location: block = %d part = %d\n",
 992		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
 993
 994	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
 995					 mdata->s_phys_partition_ref);
 996	if (IS_ERR(fe)) {
 997		/* mirror file entry */
 998		udf_debug("Mirror metadata file location: block = %d part = %d\n",
 999			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
1000
1001		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1002						 mdata->s_phys_partition_ref);
1003
1004		if (IS_ERR(fe)) {
1005			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1006			return PTR_ERR(fe);
1007		}
1008		mdata->s_mirror_fe = fe;
1009	} else
1010		mdata->s_metadata_fe = fe;
1011
1012
1013	/*
1014	 * bitmap file entry
1015	 * Note:
1016	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1017	*/
1018	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1019		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1020		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1021
1022		udf_debug("Bitmap file location: block = %d part = %d\n",
1023			  addr.logicalBlockNum, addr.partitionReferenceNum);
1024
1025		fe = udf_iget_special(sb, &addr);
1026		if (IS_ERR(fe)) {
1027			if (sb->s_flags & MS_RDONLY)
1028				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1029			else {
1030				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1031				return PTR_ERR(fe);
1032			}
1033		} else
1034			mdata->s_bitmap_fe = fe;
1035	}
1036
1037	udf_debug("udf_load_metadata_files Ok\n");
1038	return 0;
1039}
1040
1041static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1042			     struct kernel_lb_addr *root)
1043{
1044	struct fileSetDesc *fset;
1045
1046	fset = (struct fileSetDesc *)bh->b_data;
1047
1048	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1049
1050	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1051
1052	udf_debug("Rootdir at block=%d, partition=%d\n",
1053		  root->logicalBlockNum, root->partitionReferenceNum);
1054}
1055
1056int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1057{
1058	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1059	return DIV_ROUND_UP(map->s_partition_len +
1060			    (sizeof(struct spaceBitmapDesc) << 3),
1061			    sb->s_blocksize * 8);
1062}
1063
1064static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1065{
1066	struct udf_bitmap *bitmap;
1067	int nr_groups;
1068	int size;
1069
1070	nr_groups = udf_compute_nr_groups(sb, index);
1071	size = sizeof(struct udf_bitmap) +
1072		(sizeof(struct buffer_head *) * nr_groups);
1073
1074	if (size <= PAGE_SIZE)
1075		bitmap = kzalloc(size, GFP_KERNEL);
1076	else
1077		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1078
1079	if (bitmap == NULL)
1080		return NULL;
1081
1082	bitmap->s_nr_groups = nr_groups;
1083	return bitmap;
1084}
1085
1086static int udf_fill_partdesc_info(struct super_block *sb,
1087		struct partitionDesc *p, int p_index)
1088{
1089	struct udf_part_map *map;
1090	struct udf_sb_info *sbi = UDF_SB(sb);
1091	struct partitionHeaderDesc *phd;
1092
1093	map = &sbi->s_partmaps[p_index];
1094
1095	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1096	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1097
1098	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1099		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1100	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1101		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1102	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1103		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1104	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1105		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1106
1107	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1108		  p_index, map->s_partition_type,
1109		  map->s_partition_root, map->s_partition_len);
1110
1111	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1112	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1113		return 0;
1114
1115	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1116	if (phd->unallocSpaceTable.extLength) {
1117		struct kernel_lb_addr loc = {
1118			.logicalBlockNum = le32_to_cpu(
1119				phd->unallocSpaceTable.extPosition),
1120			.partitionReferenceNum = p_index,
1121		};
1122		struct inode *inode;
1123
1124		inode = udf_iget_special(sb, &loc);
1125		if (IS_ERR(inode)) {
1126			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1127				  p_index);
1128			return PTR_ERR(inode);
1129		}
1130		map->s_uspace.s_table = inode;
1131		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1132		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1133			  p_index, map->s_uspace.s_table->i_ino);
1134	}
1135
1136	if (phd->unallocSpaceBitmap.extLength) {
1137		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1138		if (!bitmap)
1139			return -ENOMEM;
1140		map->s_uspace.s_bitmap = bitmap;
1141		bitmap->s_extPosition = le32_to_cpu(
1142				phd->unallocSpaceBitmap.extPosition);
1143		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1144		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1145			  p_index, bitmap->s_extPosition);
1146	}
1147
1148	if (phd->partitionIntegrityTable.extLength)
1149		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1150
1151	if (phd->freedSpaceTable.extLength) {
1152		struct kernel_lb_addr loc = {
1153			.logicalBlockNum = le32_to_cpu(
1154				phd->freedSpaceTable.extPosition),
1155			.partitionReferenceNum = p_index,
1156		};
1157		struct inode *inode;
1158
1159		inode = udf_iget_special(sb, &loc);
1160		if (IS_ERR(inode)) {
1161			udf_debug("cannot load freedSpaceTable (part %d)\n",
1162				  p_index);
1163			return PTR_ERR(inode);
1164		}
1165		map->s_fspace.s_table = inode;
1166		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1167		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1168			  p_index, map->s_fspace.s_table->i_ino);
1169	}
1170
1171	if (phd->freedSpaceBitmap.extLength) {
1172		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1173		if (!bitmap)
1174			return -ENOMEM;
1175		map->s_fspace.s_bitmap = bitmap;
1176		bitmap->s_extPosition = le32_to_cpu(
1177				phd->freedSpaceBitmap.extPosition);
1178		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1179		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1180			  p_index, bitmap->s_extPosition);
1181	}
1182	return 0;
1183}
1184
1185static void udf_find_vat_block(struct super_block *sb, int p_index,
1186			       int type1_index, sector_t start_block)
1187{
1188	struct udf_sb_info *sbi = UDF_SB(sb);
1189	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1190	sector_t vat_block;
1191	struct kernel_lb_addr ino;
1192	struct inode *inode;
1193
1194	/*
1195	 * VAT file entry is in the last recorded block. Some broken disks have
1196	 * it a few blocks before so try a bit harder...
1197	 */
1198	ino.partitionReferenceNum = type1_index;
1199	for (vat_block = start_block;
1200	     vat_block >= map->s_partition_root &&
1201	     vat_block >= start_block - 3; vat_block--) {
1202		ino.logicalBlockNum = vat_block - map->s_partition_root;
1203		inode = udf_iget_special(sb, &ino);
1204		if (!IS_ERR(inode)) {
1205			sbi->s_vat_inode = inode;
1206			break;
1207		}
1208	}
1209}
1210
1211static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1212{
1213	struct udf_sb_info *sbi = UDF_SB(sb);
1214	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1215	struct buffer_head *bh = NULL;
1216	struct udf_inode_info *vati;
1217	uint32_t pos;
1218	struct virtualAllocationTable20 *vat20;
1219	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1220
1221	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1222	if (!sbi->s_vat_inode &&
1223	    sbi->s_last_block != blocks - 1) {
1224		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1225			  (unsigned long)sbi->s_last_block,
1226			  (unsigned long)blocks - 1);
1227		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1228	}
1229	if (!sbi->s_vat_inode)
1230		return -EIO;
1231
1232	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1233		map->s_type_specific.s_virtual.s_start_offset = 0;
1234		map->s_type_specific.s_virtual.s_num_entries =
1235			(sbi->s_vat_inode->i_size - 36) >> 2;
1236	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1237		vati = UDF_I(sbi->s_vat_inode);
1238		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1239			pos = udf_block_map(sbi->s_vat_inode, 0);
1240			bh = sb_bread(sb, pos);
1241			if (!bh)
1242				return -EIO;
1243			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1244		} else {
1245			vat20 = (struct virtualAllocationTable20 *)
1246							vati->i_ext.i_data;
1247		}
1248
1249		map->s_type_specific.s_virtual.s_start_offset =
1250			le16_to_cpu(vat20->lengthHeader);
1251		map->s_type_specific.s_virtual.s_num_entries =
1252			(sbi->s_vat_inode->i_size -
1253				map->s_type_specific.s_virtual.
1254					s_start_offset) >> 2;
1255		brelse(bh);
1256	}
1257	return 0;
1258}
1259
1260/*
1261 * Load partition descriptor block
1262 *
1263 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1264 * sequence.
1265 */
1266static int udf_load_partdesc(struct super_block *sb, sector_t block)
1267{
1268	struct buffer_head *bh;
1269	struct partitionDesc *p;
1270	struct udf_part_map *map;
1271	struct udf_sb_info *sbi = UDF_SB(sb);
1272	int i, type1_idx;
1273	uint16_t partitionNumber;
1274	uint16_t ident;
1275	int ret;
1276
1277	bh = udf_read_tagged(sb, block, block, &ident);
1278	if (!bh)
1279		return -EAGAIN;
1280	if (ident != TAG_IDENT_PD) {
1281		ret = 0;
1282		goto out_bh;
1283	}
1284
1285	p = (struct partitionDesc *)bh->b_data;
1286	partitionNumber = le16_to_cpu(p->partitionNumber);
1287
1288	/* First scan for TYPE1 and SPARABLE partitions */
1289	for (i = 0; i < sbi->s_partitions; i++) {
1290		map = &sbi->s_partmaps[i];
1291		udf_debug("Searching map: (%d == %d)\n",
1292			  map->s_partition_num, partitionNumber);
1293		if (map->s_partition_num == partitionNumber &&
1294		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1295		     map->s_partition_type == UDF_SPARABLE_MAP15))
1296			break;
1297	}
1298
1299	if (i >= sbi->s_partitions) {
1300		udf_debug("Partition (%d) not found in partition map\n",
1301			  partitionNumber);
1302		ret = 0;
1303		goto out_bh;
1304	}
1305
1306	ret = udf_fill_partdesc_info(sb, p, i);
1307	if (ret < 0)
1308		goto out_bh;
1309
1310	/*
1311	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1312	 * PHYSICAL partitions are already set up
1313	 */
1314	type1_idx = i;
1315#ifdef UDFFS_DEBUG
1316	map = NULL; /* supress 'maybe used uninitialized' warning */
1317#endif
1318	for (i = 0; i < sbi->s_partitions; i++) {
1319		map = &sbi->s_partmaps[i];
1320
1321		if (map->s_partition_num == partitionNumber &&
1322		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1323		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1324		     map->s_partition_type == UDF_METADATA_MAP25))
1325			break;
1326	}
1327
1328	if (i >= sbi->s_partitions) {
1329		ret = 0;
1330		goto out_bh;
1331	}
1332
1333	ret = udf_fill_partdesc_info(sb, p, i);
1334	if (ret < 0)
1335		goto out_bh;
1336
1337	if (map->s_partition_type == UDF_METADATA_MAP25) {
1338		ret = udf_load_metadata_files(sb, i, type1_idx);
1339		if (ret < 0) {
1340			udf_err(sb, "error loading MetaData partition map %d\n",
1341				i);
1342			goto out_bh;
1343		}
1344	} else {
1345		/*
1346		 * If we have a partition with virtual map, we don't handle
1347		 * writing to it (we overwrite blocks instead of relocating
1348		 * them).
1349		 */
1350		if (!(sb->s_flags & MS_RDONLY)) {
1351			ret = -EACCES;
1352			goto out_bh;
1353		}
1354		ret = udf_load_vat(sb, i, type1_idx);
1355		if (ret < 0)
1356			goto out_bh;
1357	}
1358	ret = 0;
1359out_bh:
1360	/* In case loading failed, we handle cleanup in udf_fill_super */
1361	brelse(bh);
1362	return ret;
1363}
1364
1365static int udf_load_sparable_map(struct super_block *sb,
1366				 struct udf_part_map *map,
1367				 struct sparablePartitionMap *spm)
1368{
1369	uint32_t loc;
1370	uint16_t ident;
1371	struct sparingTable *st;
1372	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1373	int i;
1374	struct buffer_head *bh;
1375
1376	map->s_partition_type = UDF_SPARABLE_MAP15;
1377	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1378	if (!is_power_of_2(sdata->s_packet_len)) {
1379		udf_err(sb, "error loading logical volume descriptor: "
1380			"Invalid packet length %u\n",
1381			(unsigned)sdata->s_packet_len);
1382		return -EIO;
1383	}
1384	if (spm->numSparingTables > 4) {
1385		udf_err(sb, "error loading logical volume descriptor: "
1386			"Too many sparing tables (%d)\n",
1387			(int)spm->numSparingTables);
1388		return -EIO;
1389	}
1390
1391	for (i = 0; i < spm->numSparingTables; i++) {
1392		loc = le32_to_cpu(spm->locSparingTable[i]);
1393		bh = udf_read_tagged(sb, loc, loc, &ident);
1394		if (!bh)
1395			continue;
1396
1397		st = (struct sparingTable *)bh->b_data;
1398		if (ident != 0 ||
1399		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1400			    strlen(UDF_ID_SPARING)) ||
1401		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1402							sb->s_blocksize) {
1403			brelse(bh);
1404			continue;
1405		}
1406
1407		sdata->s_spar_map[i] = bh;
1408	}
1409	map->s_partition_func = udf_get_pblock_spar15;
1410	return 0;
1411}
1412
1413static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1414			       struct kernel_lb_addr *fileset)
1415{
1416	struct logicalVolDesc *lvd;
1417	int i, offset;
1418	uint8_t type;
1419	struct udf_sb_info *sbi = UDF_SB(sb);
1420	struct genericPartitionMap *gpm;
1421	uint16_t ident;
1422	struct buffer_head *bh;
1423	unsigned int table_len;
1424	int ret;
1425
1426	bh = udf_read_tagged(sb, block, block, &ident);
1427	if (!bh)
1428		return -EAGAIN;
1429	BUG_ON(ident != TAG_IDENT_LVD);
1430	lvd = (struct logicalVolDesc *)bh->b_data;
1431	table_len = le32_to_cpu(lvd->mapTableLength);
1432	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1433		udf_err(sb, "error loading logical volume descriptor: "
1434			"Partition table too long (%u > %lu)\n", table_len,
1435			sb->s_blocksize - sizeof(*lvd));
1436		ret = -EIO;
1437		goto out_bh;
1438	}
1439
1440	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1441	if (ret)
1442		goto out_bh;
1443
1444	for (i = 0, offset = 0;
1445	     i < sbi->s_partitions && offset < table_len;
1446	     i++, offset += gpm->partitionMapLength) {
1447		struct udf_part_map *map = &sbi->s_partmaps[i];
1448		gpm = (struct genericPartitionMap *)
1449				&(lvd->partitionMaps[offset]);
1450		type = gpm->partitionMapType;
1451		if (type == 1) {
1452			struct genericPartitionMap1 *gpm1 =
1453				(struct genericPartitionMap1 *)gpm;
1454			map->s_partition_type = UDF_TYPE1_MAP15;
1455			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1456			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1457			map->s_partition_func = NULL;
1458		} else if (type == 2) {
1459			struct udfPartitionMap2 *upm2 =
1460						(struct udfPartitionMap2 *)gpm;
1461			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1462						strlen(UDF_ID_VIRTUAL))) {
1463				u16 suf =
1464					le16_to_cpu(((__le16 *)upm2->partIdent.
1465							identSuffix)[0]);
1466				if (suf < 0x0200) {
1467					map->s_partition_type =
1468							UDF_VIRTUAL_MAP15;
1469					map->s_partition_func =
1470							udf_get_pblock_virt15;
1471				} else {
1472					map->s_partition_type =
1473							UDF_VIRTUAL_MAP20;
1474					map->s_partition_func =
1475							udf_get_pblock_virt20;
1476				}
1477			} else if (!strncmp(upm2->partIdent.ident,
1478						UDF_ID_SPARABLE,
1479						strlen(UDF_ID_SPARABLE))) {
1480				ret = udf_load_sparable_map(sb, map,
1481					(struct sparablePartitionMap *)gpm);
1482				if (ret < 0)
1483					goto out_bh;
1484			} else if (!strncmp(upm2->partIdent.ident,
1485						UDF_ID_METADATA,
1486						strlen(UDF_ID_METADATA))) {
1487				struct udf_meta_data *mdata =
1488					&map->s_type_specific.s_metadata;
1489				struct metadataPartitionMap *mdm =
1490						(struct metadataPartitionMap *)
1491						&(lvd->partitionMaps[offset]);
1492				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1493					  i, type, UDF_ID_METADATA);
1494
1495				map->s_partition_type = UDF_METADATA_MAP25;
1496				map->s_partition_func = udf_get_pblock_meta25;
1497
1498				mdata->s_meta_file_loc   =
1499					le32_to_cpu(mdm->metadataFileLoc);
1500				mdata->s_mirror_file_loc =
1501					le32_to_cpu(mdm->metadataMirrorFileLoc);
1502				mdata->s_bitmap_file_loc =
1503					le32_to_cpu(mdm->metadataBitmapFileLoc);
1504				mdata->s_alloc_unit_size =
1505					le32_to_cpu(mdm->allocUnitSize);
1506				mdata->s_align_unit_size =
1507					le16_to_cpu(mdm->alignUnitSize);
1508				if (mdm->flags & 0x01)
1509					mdata->s_flags |= MF_DUPLICATE_MD;
1510
1511				udf_debug("Metadata Ident suffix=0x%x\n",
1512					  le16_to_cpu(*(__le16 *)
1513						      mdm->partIdent.identSuffix));
1514				udf_debug("Metadata part num=%d\n",
1515					  le16_to_cpu(mdm->partitionNum));
1516				udf_debug("Metadata part alloc unit size=%d\n",
1517					  le32_to_cpu(mdm->allocUnitSize));
1518				udf_debug("Metadata file loc=%d\n",
1519					  le32_to_cpu(mdm->metadataFileLoc));
1520				udf_debug("Mirror file loc=%d\n",
1521					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1522				udf_debug("Bitmap file loc=%d\n",
1523					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1524				udf_debug("Flags: %d %d\n",
1525					  mdata->s_flags, mdm->flags);
1526			} else {
1527				udf_debug("Unknown ident: %s\n",
1528					  upm2->partIdent.ident);
1529				continue;
1530			}
1531			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1532			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1533		}
1534		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1535			  i, map->s_partition_num, type, map->s_volumeseqnum);
1536	}
1537
1538	if (fileset) {
1539		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1540
1541		*fileset = lelb_to_cpu(la->extLocation);
1542		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1543			  fileset->logicalBlockNum,
1544			  fileset->partitionReferenceNum);
1545	}
1546	if (lvd->integritySeqExt.extLength)
1547		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1548	ret = 0;
1549out_bh:
1550	brelse(bh);
1551	return ret;
1552}
1553
1554/*
1555 * Find the prevailing Logical Volume Integrity Descriptor.
 
1556 */
1557static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1558{
1559	struct buffer_head *bh, *final_bh;
1560	uint16_t ident;
1561	struct udf_sb_info *sbi = UDF_SB(sb);
1562	struct logicalVolIntegrityDesc *lvid;
1563	int indirections = 0;
1564
1565	while (++indirections <= UDF_MAX_LVID_NESTING) {
1566		final_bh = NULL;
1567		while (loc.extLength > 0 &&
1568			(bh = udf_read_tagged(sb, loc.extLocation,
1569					loc.extLocation, &ident))) {
1570			if (ident != TAG_IDENT_LVID) {
1571				brelse(bh);
1572				break;
1573			}
 
1574
1575			brelse(final_bh);
1576			final_bh = bh;
1577
1578			loc.extLength -= sb->s_blocksize;
1579			loc.extLocation++;
1580		}
1581
1582		if (!final_bh)
1583			return;
1584
1585		brelse(sbi->s_lvid_bh);
1586		sbi->s_lvid_bh = final_bh;
1587
1588		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1589		if (lvid->nextIntegrityExt.extLength == 0)
1590			return;
1591
1592		loc = leea_to_cpu(lvid->nextIntegrityExt);
1593	}
1594
1595	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1596		UDF_MAX_LVID_NESTING);
1597	brelse(sbi->s_lvid_bh);
1598	sbi->s_lvid_bh = NULL;
1599}
1600
 
 
 
 
 
 
1601
1602/*
1603 * Process a main/reserve volume descriptor sequence.
1604 *   @block		First block of first extent of the sequence.
1605 *   @lastblock		Lastblock of first extent of the sequence.
1606 *   @fileset		There we store extent containing root fileset
1607 *
1608 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1609 * sequence
1610 */
1611static noinline int udf_process_sequence(
1612		struct super_block *sb,
1613		sector_t block, sector_t lastblock,
1614		struct kernel_lb_addr *fileset)
1615{
1616	struct buffer_head *bh = NULL;
1617	struct udf_vds_record vds[VDS_POS_LENGTH];
1618	struct udf_vds_record *curr;
1619	struct generic_desc *gd;
1620	struct volDescPtr *vdp;
1621	bool done = false;
1622	uint32_t vdsn;
1623	uint16_t ident;
1624	long next_s = 0, next_e = 0;
1625	int ret;
1626	unsigned int indirections = 0;
1627
1628	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1629
1630	/*
1631	 * Read the main descriptor sequence and find which descriptors
1632	 * are in it.
1633	 */
1634	for (; (!done && block <= lastblock); block++) {
1635
1636		bh = udf_read_tagged(sb, block, block, &ident);
1637		if (!bh) {
1638			udf_err(sb,
1639				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1640				(unsigned long long)block);
1641			return -EAGAIN;
1642		}
1643
1644		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1645		gd = (struct generic_desc *)bh->b_data;
1646		vdsn = le32_to_cpu(gd->volDescSeqNum);
1647		switch (ident) {
1648		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1649			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1650			if (vdsn >= curr->volDescSeqNum) {
1651				curr->volDescSeqNum = vdsn;
1652				curr->block = block;
1653			}
1654			break;
1655		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1656			curr = &vds[VDS_POS_VOL_DESC_PTR];
1657			if (vdsn >= curr->volDescSeqNum) {
1658				curr->volDescSeqNum = vdsn;
1659				curr->block = block;
1660
1661				vdp = (struct volDescPtr *)bh->b_data;
1662				next_s = le32_to_cpu(
1663					vdp->nextVolDescSeqExt.extLocation);
1664				next_e = le32_to_cpu(
1665					vdp->nextVolDescSeqExt.extLength);
1666				next_e = next_e >> sb->s_blocksize_bits;
1667				next_e += next_s;
1668			}
1669			break;
1670		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1671			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1672			if (vdsn >= curr->volDescSeqNum) {
1673				curr->volDescSeqNum = vdsn;
1674				curr->block = block;
1675			}
1676			break;
1677		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1678			curr = &vds[VDS_POS_PARTITION_DESC];
1679			if (!curr->block)
1680				curr->block = block;
1681			break;
1682		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1683			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1684			if (vdsn >= curr->volDescSeqNum) {
1685				curr->volDescSeqNum = vdsn;
1686				curr->block = block;
1687			}
1688			break;
1689		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1690			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1691			if (vdsn >= curr->volDescSeqNum) {
1692				curr->volDescSeqNum = vdsn;
1693				curr->block = block;
1694			}
1695			break;
1696		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1697			if (++indirections > UDF_MAX_TD_NESTING) {
1698				udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1699				brelse(bh);
1700				return -EIO;
1701			}
1702
1703			vds[VDS_POS_TERMINATING_DESC].block = block;
1704			if (next_e) {
1705				block = next_s;
1706				lastblock = next_e;
1707				next_s = next_e = 0;
1708			} else
1709				done = true;
1710			break;
1711		}
1712		brelse(bh);
1713	}
1714	/*
1715	 * Now read interesting descriptors again and process them
1716	 * in a suitable order
1717	 */
1718	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1719		udf_err(sb, "Primary Volume Descriptor not found!\n");
1720		return -EAGAIN;
1721	}
1722	ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1723	if (ret < 0)
1724		return ret;
1725
1726	if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1727		ret = udf_load_logicalvol(sb,
1728					  vds[VDS_POS_LOGICAL_VOL_DESC].block,
1729					  fileset);
1730		if (ret < 0)
1731			return ret;
1732	}
1733
1734	if (vds[VDS_POS_PARTITION_DESC].block) {
1735		/*
1736		 * We rescan the whole descriptor sequence to find
1737		 * partition descriptor blocks and process them.
1738		 */
1739		for (block = vds[VDS_POS_PARTITION_DESC].block;
1740		     block < vds[VDS_POS_TERMINATING_DESC].block;
1741		     block++) {
1742			ret = udf_load_partdesc(sb, block);
1743			if (ret < 0)
1744				return ret;
1745		}
1746	}
1747
1748	return 0;
1749}
1750
1751/*
1752 * Load Volume Descriptor Sequence described by anchor in bh
1753 *
1754 * Returns <0 on error, 0 on success
1755 */
1756static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1757			     struct kernel_lb_addr *fileset)
1758{
1759	struct anchorVolDescPtr *anchor;
1760	sector_t main_s, main_e, reserve_s, reserve_e;
1761	int ret;
1762
1763	anchor = (struct anchorVolDescPtr *)bh->b_data;
1764
1765	/* Locate the main sequence */
1766	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1767	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1768	main_e = main_e >> sb->s_blocksize_bits;
1769	main_e += main_s;
1770
1771	/* Locate the reserve sequence */
1772	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1773	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1774	reserve_e = reserve_e >> sb->s_blocksize_bits;
1775	reserve_e += reserve_s;
1776
1777	/* Process the main & reserve sequences */
1778	/* responsible for finding the PartitionDesc(s) */
1779	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1780	if (ret != -EAGAIN)
1781		return ret;
1782	udf_sb_free_partitions(sb);
1783	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1784	if (ret < 0) {
1785		udf_sb_free_partitions(sb);
1786		/* No sequence was OK, return -EIO */
1787		if (ret == -EAGAIN)
1788			ret = -EIO;
1789	}
1790	return ret;
1791}
1792
1793/*
1794 * Check whether there is an anchor block in the given block and
1795 * load Volume Descriptor Sequence if so.
1796 *
1797 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1798 * block
1799 */
1800static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1801				  struct kernel_lb_addr *fileset)
1802{
1803	struct buffer_head *bh;
1804	uint16_t ident;
1805	int ret;
1806
1807	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1808	    udf_fixed_to_variable(block) >=
1809	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1810		return -EAGAIN;
1811
1812	bh = udf_read_tagged(sb, block, block, &ident);
1813	if (!bh)
1814		return -EAGAIN;
1815	if (ident != TAG_IDENT_AVDP) {
1816		brelse(bh);
1817		return -EAGAIN;
1818	}
1819	ret = udf_load_sequence(sb, bh, fileset);
1820	brelse(bh);
1821	return ret;
1822}
1823
1824/*
1825 * Search for an anchor volume descriptor pointer.
1826 *
1827 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1828 * of anchors.
1829 */
1830static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1831			    struct kernel_lb_addr *fileset)
1832{
1833	sector_t last[6];
1834	int i;
1835	struct udf_sb_info *sbi = UDF_SB(sb);
1836	int last_count = 0;
1837	int ret;
1838
1839	/* First try user provided anchor */
1840	if (sbi->s_anchor) {
1841		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1842		if (ret != -EAGAIN)
1843			return ret;
1844	}
1845	/*
1846	 * according to spec, anchor is in either:
1847	 *     block 256
1848	 *     lastblock-256
1849	 *     lastblock
1850	 *  however, if the disc isn't closed, it could be 512.
1851	 */
1852	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1853	if (ret != -EAGAIN)
1854		return ret;
1855	/*
1856	 * The trouble is which block is the last one. Drives often misreport
1857	 * this so we try various possibilities.
1858	 */
1859	last[last_count++] = *lastblock;
1860	if (*lastblock >= 1)
1861		last[last_count++] = *lastblock - 1;
1862	last[last_count++] = *lastblock + 1;
1863	if (*lastblock >= 2)
1864		last[last_count++] = *lastblock - 2;
1865	if (*lastblock >= 150)
1866		last[last_count++] = *lastblock - 150;
1867	if (*lastblock >= 152)
1868		last[last_count++] = *lastblock - 152;
1869
1870	for (i = 0; i < last_count; i++) {
1871		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1872				sb->s_blocksize_bits)
1873			continue;
1874		ret = udf_check_anchor_block(sb, last[i], fileset);
1875		if (ret != -EAGAIN) {
1876			if (!ret)
1877				*lastblock = last[i];
1878			return ret;
1879		}
1880		if (last[i] < 256)
1881			continue;
1882		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1883		if (ret != -EAGAIN) {
1884			if (!ret)
1885				*lastblock = last[i];
1886			return ret;
1887		}
1888	}
1889
1890	/* Finally try block 512 in case media is open */
1891	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1892}
1893
1894/*
1895 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1896 * area specified by it. The function expects sbi->s_lastblock to be the last
1897 * block on the media.
1898 *
1899 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1900 * was not found.
1901 */
1902static int udf_find_anchor(struct super_block *sb,
1903			   struct kernel_lb_addr *fileset)
1904{
1905	struct udf_sb_info *sbi = UDF_SB(sb);
1906	sector_t lastblock = sbi->s_last_block;
1907	int ret;
1908
1909	ret = udf_scan_anchors(sb, &lastblock, fileset);
1910	if (ret != -EAGAIN)
1911		goto out;
1912
1913	/* No anchor found? Try VARCONV conversion of block numbers */
1914	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1915	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1916	/* Firstly, we try to not convert number of the last block */
1917	ret = udf_scan_anchors(sb, &lastblock, fileset);
1918	if (ret != -EAGAIN)
1919		goto out;
1920
1921	lastblock = sbi->s_last_block;
1922	/* Secondly, we try with converted number of the last block */
1923	ret = udf_scan_anchors(sb, &lastblock, fileset);
1924	if (ret < 0) {
1925		/* VARCONV didn't help. Clear it. */
1926		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1927	}
1928out:
1929	if (ret == 0)
1930		sbi->s_last_block = lastblock;
1931	return ret;
1932}
1933
1934/*
1935 * Check Volume Structure Descriptor, find Anchor block and load Volume
1936 * Descriptor Sequence.
1937 *
1938 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1939 * block was not found.
1940 */
1941static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1942			int silent, struct kernel_lb_addr *fileset)
1943{
1944	struct udf_sb_info *sbi = UDF_SB(sb);
1945	loff_t nsr_off;
1946	int ret;
1947
1948	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1949		if (!silent)
1950			udf_warn(sb, "Bad block size\n");
1951		return -EINVAL;
1952	}
1953	sbi->s_last_block = uopt->lastblock;
1954	if (!uopt->novrs) {
1955		/* Check that it is NSR02 compliant */
1956		nsr_off = udf_check_vsd(sb);
1957		if (!nsr_off) {
1958			if (!silent)
1959				udf_warn(sb, "No VRS found\n");
1960			return 0;
1961		}
1962		if (nsr_off == -1)
1963			udf_debug("Failed to read sector at offset %d. "
1964				  "Assuming open disc. Skipping validity "
1965				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1966		if (!sbi->s_last_block)
1967			sbi->s_last_block = udf_get_last_block(sb);
1968	} else {
1969		udf_debug("Validity check skipped because of novrs option\n");
1970	}
1971
1972	/* Look for anchor block and load Volume Descriptor Sequence */
1973	sbi->s_anchor = uopt->anchor;
1974	ret = udf_find_anchor(sb, fileset);
1975	if (ret < 0) {
1976		if (!silent && ret == -EAGAIN)
1977			udf_warn(sb, "No anchor found\n");
1978		return ret;
1979	}
1980	return 0;
1981}
1982
1983static void udf_open_lvid(struct super_block *sb)
1984{
1985	struct udf_sb_info *sbi = UDF_SB(sb);
1986	struct buffer_head *bh = sbi->s_lvid_bh;
1987	struct logicalVolIntegrityDesc *lvid;
1988	struct logicalVolIntegrityDescImpUse *lvidiu;
1989
1990	if (!bh)
1991		return;
1992	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1993	lvidiu = udf_sb_lvidiu(sb);
1994	if (!lvidiu)
1995		return;
1996
1997	mutex_lock(&sbi->s_alloc_mutex);
1998	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1999	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2000	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
2001				CURRENT_TIME);
2002	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2003
2004	lvid->descTag.descCRC = cpu_to_le16(
2005		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2006			le16_to_cpu(lvid->descTag.descCRCLength)));
2007
2008	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2009	mark_buffer_dirty(bh);
2010	sbi->s_lvid_dirty = 0;
2011	mutex_unlock(&sbi->s_alloc_mutex);
2012	/* Make opening of filesystem visible on the media immediately */
2013	sync_dirty_buffer(bh);
2014}
2015
2016static void udf_close_lvid(struct super_block *sb)
2017{
2018	struct udf_sb_info *sbi = UDF_SB(sb);
2019	struct buffer_head *bh = sbi->s_lvid_bh;
2020	struct logicalVolIntegrityDesc *lvid;
2021	struct logicalVolIntegrityDescImpUse *lvidiu;
2022
2023	if (!bh)
2024		return;
2025	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2026	lvidiu = udf_sb_lvidiu(sb);
2027	if (!lvidiu)
2028		return;
2029
2030	mutex_lock(&sbi->s_alloc_mutex);
2031	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2032	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2033	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2034	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2035		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2036	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2037		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2038	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2039		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2040	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2041
2042	lvid->descTag.descCRC = cpu_to_le16(
2043			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2044				le16_to_cpu(lvid->descTag.descCRCLength)));
2045
2046	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2047	/*
2048	 * We set buffer uptodate unconditionally here to avoid spurious
2049	 * warnings from mark_buffer_dirty() when previous EIO has marked
2050	 * the buffer as !uptodate
2051	 */
2052	set_buffer_uptodate(bh);
2053	mark_buffer_dirty(bh);
2054	sbi->s_lvid_dirty = 0;
2055	mutex_unlock(&sbi->s_alloc_mutex);
2056	/* Make closing of filesystem visible on the media immediately */
2057	sync_dirty_buffer(bh);
2058}
2059
2060u64 lvid_get_unique_id(struct super_block *sb)
2061{
2062	struct buffer_head *bh;
2063	struct udf_sb_info *sbi = UDF_SB(sb);
2064	struct logicalVolIntegrityDesc *lvid;
2065	struct logicalVolHeaderDesc *lvhd;
2066	u64 uniqueID;
2067	u64 ret;
2068
2069	bh = sbi->s_lvid_bh;
2070	if (!bh)
2071		return 0;
2072
2073	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2074	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2075
2076	mutex_lock(&sbi->s_alloc_mutex);
2077	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2078	if (!(++uniqueID & 0xFFFFFFFF))
2079		uniqueID += 16;
2080	lvhd->uniqueID = cpu_to_le64(uniqueID);
2081	mutex_unlock(&sbi->s_alloc_mutex);
2082	mark_buffer_dirty(bh);
2083
2084	return ret;
2085}
2086
2087static int udf_fill_super(struct super_block *sb, void *options, int silent)
2088{
2089	int ret = -EINVAL;
2090	struct inode *inode = NULL;
2091	struct udf_options uopt;
2092	struct kernel_lb_addr rootdir, fileset;
2093	struct udf_sb_info *sbi;
2094	bool lvid_open = false;
2095
2096	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2097	uopt.uid = INVALID_UID;
2098	uopt.gid = INVALID_GID;
2099	uopt.umask = 0;
2100	uopt.fmode = UDF_INVALID_MODE;
2101	uopt.dmode = UDF_INVALID_MODE;
2102
2103	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2104	if (!sbi)
2105		return -ENOMEM;
2106
2107	sb->s_fs_info = sbi;
2108
2109	mutex_init(&sbi->s_alloc_mutex);
2110
2111	if (!udf_parse_options((char *)options, &uopt, false))
2112		goto parse_options_failure;
2113
2114	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2115	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2116		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2117		goto parse_options_failure;
2118	}
2119#ifdef CONFIG_UDF_NLS
2120	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2121		uopt.nls_map = load_nls_default();
2122		if (!uopt.nls_map)
2123			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2124		else
2125			udf_debug("Using default NLS map\n");
2126	}
2127#endif
2128	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2129		uopt.flags |= (1 << UDF_FLAG_UTF8);
2130
2131	fileset.logicalBlockNum = 0xFFFFFFFF;
2132	fileset.partitionReferenceNum = 0xFFFF;
2133
2134	sbi->s_flags = uopt.flags;
2135	sbi->s_uid = uopt.uid;
2136	sbi->s_gid = uopt.gid;
2137	sbi->s_umask = uopt.umask;
2138	sbi->s_fmode = uopt.fmode;
2139	sbi->s_dmode = uopt.dmode;
2140	sbi->s_nls_map = uopt.nls_map;
2141	rwlock_init(&sbi->s_cred_lock);
2142
2143	if (uopt.session == 0xFFFFFFFF)
2144		sbi->s_session = udf_get_last_session(sb);
2145	else
2146		sbi->s_session = uopt.session;
2147
2148	udf_debug("Multi-session=%d\n", sbi->s_session);
2149
2150	/* Fill in the rest of the superblock */
2151	sb->s_op = &udf_sb_ops;
2152	sb->s_export_op = &udf_export_ops;
2153
2154	sb->s_magic = UDF_SUPER_MAGIC;
2155	sb->s_time_gran = 1000;
2156
2157	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2158		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2159	} else {
2160		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2161		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2162		if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2163			if (!silent)
2164				pr_notice("Rescanning with blocksize %d\n",
2165					  UDF_DEFAULT_BLOCKSIZE);
2166			brelse(sbi->s_lvid_bh);
2167			sbi->s_lvid_bh = NULL;
2168			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2169			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2170		}
2171	}
2172	if (ret < 0) {
2173		if (ret == -EAGAIN) {
2174			udf_warn(sb, "No partition found (1)\n");
2175			ret = -EINVAL;
2176		}
2177		goto error_out;
2178	}
2179
2180	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2181
2182	if (sbi->s_lvid_bh) {
2183		struct logicalVolIntegrityDescImpUse *lvidiu =
2184							udf_sb_lvidiu(sb);
2185		uint16_t minUDFReadRev;
2186		uint16_t minUDFWriteRev;
2187
2188		if (!lvidiu) {
2189			ret = -EINVAL;
2190			goto error_out;
2191		}
2192		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2193		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2194		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2195			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2196				minUDFReadRev,
2197				UDF_MAX_READ_VERSION);
2198			ret = -EINVAL;
2199			goto error_out;
2200		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2201			   !(sb->s_flags & MS_RDONLY)) {
2202			ret = -EACCES;
2203			goto error_out;
2204		}
2205
2206		sbi->s_udfrev = minUDFWriteRev;
2207
2208		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2209			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2210		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2211			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2212	}
2213
2214	if (!sbi->s_partitions) {
2215		udf_warn(sb, "No partition found (2)\n");
2216		ret = -EINVAL;
2217		goto error_out;
2218	}
2219
2220	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2221			UDF_PART_FLAG_READ_ONLY &&
2222	    !(sb->s_flags & MS_RDONLY)) {
2223		ret = -EACCES;
2224		goto error_out;
2225	}
2226
2227	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2228		udf_warn(sb, "No fileset found\n");
2229		ret = -EINVAL;
2230		goto error_out;
2231	}
2232
2233	if (!silent) {
2234		struct timestamp ts;
2235		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2236		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2237			 sbi->s_volume_ident,
2238			 le16_to_cpu(ts.year), ts.month, ts.day,
2239			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2240	}
2241	if (!(sb->s_flags & MS_RDONLY)) {
2242		udf_open_lvid(sb);
2243		lvid_open = true;
2244	}
2245
2246	/* Assign the root inode */
2247	/* assign inodes by physical block number */
2248	/* perhaps it's not extensible enough, but for now ... */
2249	inode = udf_iget(sb, &rootdir);
2250	if (IS_ERR(inode)) {
2251		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2252		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2253		ret = PTR_ERR(inode);
2254		goto error_out;
2255	}
2256
2257	/* Allocate a dentry for the root inode */
2258	sb->s_root = d_make_root(inode);
2259	if (!sb->s_root) {
2260		udf_err(sb, "Couldn't allocate root dentry\n");
2261		ret = -ENOMEM;
2262		goto error_out;
2263	}
2264	sb->s_maxbytes = MAX_LFS_FILESIZE;
2265	sb->s_max_links = UDF_MAX_LINKS;
2266	return 0;
2267
2268error_out:
2269	iput(sbi->s_vat_inode);
2270parse_options_failure:
2271#ifdef CONFIG_UDF_NLS
2272	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2273		unload_nls(sbi->s_nls_map);
2274#endif
2275	if (lvid_open)
2276		udf_close_lvid(sb);
2277	brelse(sbi->s_lvid_bh);
2278	udf_sb_free_partitions(sb);
2279	kfree(sbi);
2280	sb->s_fs_info = NULL;
2281
2282	return ret;
2283}
2284
2285void _udf_err(struct super_block *sb, const char *function,
2286	      const char *fmt, ...)
2287{
2288	struct va_format vaf;
2289	va_list args;
2290
2291	va_start(args, fmt);
2292
2293	vaf.fmt = fmt;
2294	vaf.va = &args;
2295
2296	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2297
2298	va_end(args);
2299}
2300
2301void _udf_warn(struct super_block *sb, const char *function,
2302	       const char *fmt, ...)
2303{
2304	struct va_format vaf;
2305	va_list args;
2306
2307	va_start(args, fmt);
2308
2309	vaf.fmt = fmt;
2310	vaf.va = &args;
2311
2312	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2313
2314	va_end(args);
2315}
2316
2317static void udf_put_super(struct super_block *sb)
2318{
2319	struct udf_sb_info *sbi;
2320
2321	sbi = UDF_SB(sb);
2322
2323	iput(sbi->s_vat_inode);
2324#ifdef CONFIG_UDF_NLS
2325	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2326		unload_nls(sbi->s_nls_map);
2327#endif
2328	if (!(sb->s_flags & MS_RDONLY))
2329		udf_close_lvid(sb);
2330	brelse(sbi->s_lvid_bh);
2331	udf_sb_free_partitions(sb);
2332	mutex_destroy(&sbi->s_alloc_mutex);
2333	kfree(sb->s_fs_info);
2334	sb->s_fs_info = NULL;
2335}
2336
2337static int udf_sync_fs(struct super_block *sb, int wait)
2338{
2339	struct udf_sb_info *sbi = UDF_SB(sb);
2340
2341	mutex_lock(&sbi->s_alloc_mutex);
2342	if (sbi->s_lvid_dirty) {
2343		/*
2344		 * Blockdevice will be synced later so we don't have to submit
2345		 * the buffer for IO
2346		 */
2347		mark_buffer_dirty(sbi->s_lvid_bh);
2348		sbi->s_lvid_dirty = 0;
2349	}
2350	mutex_unlock(&sbi->s_alloc_mutex);
2351
2352	return 0;
2353}
2354
2355static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2356{
2357	struct super_block *sb = dentry->d_sb;
2358	struct udf_sb_info *sbi = UDF_SB(sb);
2359	struct logicalVolIntegrityDescImpUse *lvidiu;
2360	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2361
2362	lvidiu = udf_sb_lvidiu(sb);
2363	buf->f_type = UDF_SUPER_MAGIC;
2364	buf->f_bsize = sb->s_blocksize;
2365	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2366	buf->f_bfree = udf_count_free(sb);
2367	buf->f_bavail = buf->f_bfree;
2368	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2369					  le32_to_cpu(lvidiu->numDirs)) : 0)
2370			+ buf->f_bfree;
2371	buf->f_ffree = buf->f_bfree;
2372	buf->f_namelen = UDF_NAME_LEN;
2373	buf->f_fsid.val[0] = (u32)id;
2374	buf->f_fsid.val[1] = (u32)(id >> 32);
2375
2376	return 0;
2377}
2378
2379static unsigned int udf_count_free_bitmap(struct super_block *sb,
2380					  struct udf_bitmap *bitmap)
2381{
2382	struct buffer_head *bh = NULL;
2383	unsigned int accum = 0;
2384	int index;
2385	int block = 0, newblock;
2386	struct kernel_lb_addr loc;
2387	uint32_t bytes;
2388	uint8_t *ptr;
2389	uint16_t ident;
2390	struct spaceBitmapDesc *bm;
2391
2392	loc.logicalBlockNum = bitmap->s_extPosition;
2393	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2394	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2395
2396	if (!bh) {
2397		udf_err(sb, "udf_count_free failed\n");
2398		goto out;
2399	} else if (ident != TAG_IDENT_SBD) {
2400		brelse(bh);
2401		udf_err(sb, "udf_count_free failed\n");
2402		goto out;
2403	}
2404
2405	bm = (struct spaceBitmapDesc *)bh->b_data;
2406	bytes = le32_to_cpu(bm->numOfBytes);
2407	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2408	ptr = (uint8_t *)bh->b_data;
2409
2410	while (bytes > 0) {
2411		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2412		accum += bitmap_weight((const unsigned long *)(ptr + index),
2413					cur_bytes * 8);
2414		bytes -= cur_bytes;
2415		if (bytes) {
2416			brelse(bh);
2417			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2418			bh = udf_tread(sb, newblock);
2419			if (!bh) {
2420				udf_debug("read failed\n");
2421				goto out;
2422			}
2423			index = 0;
2424			ptr = (uint8_t *)bh->b_data;
2425		}
2426	}
2427	brelse(bh);
2428out:
2429	return accum;
2430}
2431
2432static unsigned int udf_count_free_table(struct super_block *sb,
2433					 struct inode *table)
2434{
2435	unsigned int accum = 0;
2436	uint32_t elen;
2437	struct kernel_lb_addr eloc;
2438	int8_t etype;
2439	struct extent_position epos;
2440
2441	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2442	epos.block = UDF_I(table)->i_location;
2443	epos.offset = sizeof(struct unallocSpaceEntry);
2444	epos.bh = NULL;
2445
2446	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2447		accum += (elen >> table->i_sb->s_blocksize_bits);
2448
2449	brelse(epos.bh);
2450	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2451
2452	return accum;
2453}
2454
2455static unsigned int udf_count_free(struct super_block *sb)
2456{
2457	unsigned int accum = 0;
2458	struct udf_sb_info *sbi;
2459	struct udf_part_map *map;
2460
2461	sbi = UDF_SB(sb);
2462	if (sbi->s_lvid_bh) {
2463		struct logicalVolIntegrityDesc *lvid =
2464			(struct logicalVolIntegrityDesc *)
2465			sbi->s_lvid_bh->b_data;
2466		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2467			accum = le32_to_cpu(
2468					lvid->freeSpaceTable[sbi->s_partition]);
2469			if (accum == 0xFFFFFFFF)
2470				accum = 0;
2471		}
2472	}
2473
2474	if (accum)
2475		return accum;
2476
2477	map = &sbi->s_partmaps[sbi->s_partition];
2478	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2479		accum += udf_count_free_bitmap(sb,
2480					       map->s_uspace.s_bitmap);
2481	}
2482	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2483		accum += udf_count_free_bitmap(sb,
2484					       map->s_fspace.s_bitmap);
2485	}
2486	if (accum)
2487		return accum;
2488
2489	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2490		accum += udf_count_free_table(sb,
2491					      map->s_uspace.s_table);
2492	}
2493	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2494		accum += udf_count_free_table(sb,
2495					      map->s_fspace.s_table);
2496	}
2497
2498	return accum;
2499}