Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * linux/fs/jbd2/revoke.c
  3 *
  4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
  5 *
  6 * Copyright 2000 Red Hat corp --- All Rights Reserved
  7 *
  8 * This file is part of the Linux kernel and is made available under
  9 * the terms of the GNU General Public License, version 2, or at your
 10 * option, any later version, incorporated herein by reference.
 11 *
 12 * Journal revoke routines for the generic filesystem journaling code;
 13 * part of the ext2fs journaling system.
 14 *
 15 * Revoke is the mechanism used to prevent old log records for deleted
 16 * metadata from being replayed on top of newer data using the same
 17 * blocks.  The revoke mechanism is used in two separate places:
 18 *
 19 * + Commit: during commit we write the entire list of the current
 20 *   transaction's revoked blocks to the journal
 21 *
 22 * + Recovery: during recovery we record the transaction ID of all
 23 *   revoked blocks.  If there are multiple revoke records in the log
 24 *   for a single block, only the last one counts, and if there is a log
 25 *   entry for a block beyond the last revoke, then that log entry still
 26 *   gets replayed.
 27 *
 28 * We can get interactions between revokes and new log data within a
 29 * single transaction:
 30 *
 31 * Block is revoked and then journaled:
 32 *   The desired end result is the journaling of the new block, so we
 33 *   cancel the revoke before the transaction commits.
 34 *
 35 * Block is journaled and then revoked:
 36 *   The revoke must take precedence over the write of the block, so we
 37 *   need either to cancel the journal entry or to write the revoke
 38 *   later in the log than the log block.  In this case, we choose the
 39 *   latter: journaling a block cancels any revoke record for that block
 40 *   in the current transaction, so any revoke for that block in the
 41 *   transaction must have happened after the block was journaled and so
 42 *   the revoke must take precedence.
 43 *
 44 * Block is revoked and then written as data:
 45 *   The data write is allowed to succeed, but the revoke is _not_
 46 *   cancelled.  We still need to prevent old log records from
 47 *   overwriting the new data.  We don't even need to clear the revoke
 48 *   bit here.
 49 *
 50 * We cache revoke status of a buffer in the current transaction in b_states
 51 * bits.  As the name says, revokevalid flag indicates that the cached revoke
 52 * status of a buffer is valid and we can rely on the cached status.
 53 *
 54 * Revoke information on buffers is a tri-state value:
 55 *
 56 * RevokeValid clear:	no cached revoke status, need to look it up
 57 * RevokeValid set, Revoked clear:
 58 *			buffer has not been revoked, and cancel_revoke
 59 *			need do nothing.
 60 * RevokeValid set, Revoked set:
 61 *			buffer has been revoked.
 62 *
 63 * Locking rules:
 64 * We keep two hash tables of revoke records. One hashtable belongs to the
 65 * running transaction (is pointed to by journal->j_revoke), the other one
 66 * belongs to the committing transaction. Accesses to the second hash table
 67 * happen only from the kjournald and no other thread touches this table.  Also
 68 * journal_switch_revoke_table() which switches which hashtable belongs to the
 69 * running and which to the committing transaction is called only from
 70 * kjournald. Therefore we need no locks when accessing the hashtable belonging
 71 * to the committing transaction.
 72 *
 73 * All users operating on the hash table belonging to the running transaction
 74 * have a handle to the transaction. Therefore they are safe from kjournald
 75 * switching hash tables under them. For operations on the lists of entries in
 76 * the hash table j_revoke_lock is used.
 77 *
 78 * Finally, also replay code uses the hash tables but at this moment no one else
 79 * can touch them (filesystem isn't mounted yet) and hence no locking is
 80 * needed.
 81 */
 82
 83#ifndef __KERNEL__
 84#include "jfs_user.h"
 85#else
 86#include <linux/time.h>
 87#include <linux/fs.h>
 88#include <linux/jbd2.h>
 89#include <linux/errno.h>
 90#include <linux/slab.h>
 91#include <linux/list.h>
 92#include <linux/init.h>
 93#include <linux/bio.h>
 94#include <linux/log2.h>
 95#include <linux/hash.h>
 96#endif
 97
 98static struct kmem_cache *jbd2_revoke_record_cache;
 99static struct kmem_cache *jbd2_revoke_table_cache;
100
101/* Each revoke record represents one single revoked block.  During
102   journal replay, this involves recording the transaction ID of the
103   last transaction to revoke this block. */
104
105struct jbd2_revoke_record_s
106{
107	struct list_head  hash;
108	tid_t		  sequence;	/* Used for recovery only */
109	unsigned long long	  blocknr;
110};
111
112
113/* The revoke table is just a simple hash table of revoke records. */
114struct jbd2_revoke_table_s
115{
116	/* It is conceivable that we might want a larger hash table
117	 * for recovery.  Must be a power of two. */
118	int		  hash_size;
119	int		  hash_shift;
120	struct list_head *hash_table;
121};
122
123
124#ifdef __KERNEL__
125static void write_one_revoke_record(transaction_t *,
126				    struct list_head *,
127				    struct buffer_head **, int *,
128				    struct jbd2_revoke_record_s *);
129static void flush_descriptor(journal_t *, struct buffer_head *, int);
130#endif
131
132/* Utility functions to maintain the revoke table */
133
134static inline int hash(journal_t *journal, unsigned long long block)
135{
136	return hash_64(block, journal->j_revoke->hash_shift);
137}
138
139static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
140			      tid_t seq)
141{
142	struct list_head *hash_list;
143	struct jbd2_revoke_record_s *record;
144	gfp_t gfp_mask = GFP_NOFS;
145
146	if (journal_oom_retry)
147		gfp_mask |= __GFP_NOFAIL;
148	record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask);
149	if (!record)
150		return -ENOMEM;
151
152	record->sequence = seq;
153	record->blocknr = blocknr;
154	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
155	spin_lock(&journal->j_revoke_lock);
156	list_add(&record->hash, hash_list);
157	spin_unlock(&journal->j_revoke_lock);
158	return 0;
159}
160
161/* Find a revoke record in the journal's hash table. */
162
163static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
164						      unsigned long long blocknr)
165{
166	struct list_head *hash_list;
167	struct jbd2_revoke_record_s *record;
168
169	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
170
171	spin_lock(&journal->j_revoke_lock);
172	record = (struct jbd2_revoke_record_s *) hash_list->next;
173	while (&(record->hash) != hash_list) {
174		if (record->blocknr == blocknr) {
175			spin_unlock(&journal->j_revoke_lock);
176			return record;
177		}
178		record = (struct jbd2_revoke_record_s *) record->hash.next;
179	}
180	spin_unlock(&journal->j_revoke_lock);
181	return NULL;
182}
183
184void jbd2_journal_destroy_revoke_caches(void)
185{
186	if (jbd2_revoke_record_cache) {
187		kmem_cache_destroy(jbd2_revoke_record_cache);
188		jbd2_revoke_record_cache = NULL;
189	}
190	if (jbd2_revoke_table_cache) {
191		kmem_cache_destroy(jbd2_revoke_table_cache);
192		jbd2_revoke_table_cache = NULL;
193	}
194}
195
196int __init jbd2_journal_init_revoke_caches(void)
197{
198	J_ASSERT(!jbd2_revoke_record_cache);
199	J_ASSERT(!jbd2_revoke_table_cache);
200
201	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
202					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
203	if (!jbd2_revoke_record_cache)
204		goto record_cache_failure;
205
206	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
207					     SLAB_TEMPORARY);
208	if (!jbd2_revoke_table_cache)
209		goto table_cache_failure;
210	return 0;
211table_cache_failure:
212	jbd2_journal_destroy_revoke_caches();
213record_cache_failure:
214		return -ENOMEM;
215}
216
217static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
218{
219	int shift = 0;
220	int tmp = hash_size;
221	struct jbd2_revoke_table_s *table;
222
223	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
224	if (!table)
225		goto out;
226
227	while((tmp >>= 1UL) != 0UL)
228		shift++;
229
230	table->hash_size = hash_size;
231	table->hash_shift = shift;
232	table->hash_table =
233		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
234	if (!table->hash_table) {
235		kmem_cache_free(jbd2_revoke_table_cache, table);
236		table = NULL;
237		goto out;
238	}
239
240	for (tmp = 0; tmp < hash_size; tmp++)
241		INIT_LIST_HEAD(&table->hash_table[tmp]);
242
243out:
244	return table;
245}
246
247static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
248{
249	int i;
250	struct list_head *hash_list;
251
252	for (i = 0; i < table->hash_size; i++) {
253		hash_list = &table->hash_table[i];
254		J_ASSERT(list_empty(hash_list));
255	}
256
257	kfree(table->hash_table);
258	kmem_cache_free(jbd2_revoke_table_cache, table);
259}
260
261/* Initialise the revoke table for a given journal to a given size. */
262int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
263{
264	J_ASSERT(journal->j_revoke_table[0] == NULL);
265	J_ASSERT(is_power_of_2(hash_size));
266
267	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
268	if (!journal->j_revoke_table[0])
269		goto fail0;
270
271	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
272	if (!journal->j_revoke_table[1])
273		goto fail1;
274
275	journal->j_revoke = journal->j_revoke_table[1];
276
277	spin_lock_init(&journal->j_revoke_lock);
278
279	return 0;
280
281fail1:
282	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
 
283fail0:
284	return -ENOMEM;
285}
286
287/* Destroy a journal's revoke table.  The table must already be empty! */
288void jbd2_journal_destroy_revoke(journal_t *journal)
289{
290	journal->j_revoke = NULL;
291	if (journal->j_revoke_table[0])
292		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
293	if (journal->j_revoke_table[1])
294		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
295}
296
297
298#ifdef __KERNEL__
299
300/*
301 * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
302 * prevents the block from being replayed during recovery if we take a
303 * crash after this current transaction commits.  Any subsequent
304 * metadata writes of the buffer in this transaction cancel the
305 * revoke.
306 *
307 * Note that this call may block --- it is up to the caller to make
308 * sure that there are no further calls to journal_write_metadata
309 * before the revoke is complete.  In ext3, this implies calling the
310 * revoke before clearing the block bitmap when we are deleting
311 * metadata.
312 *
313 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
314 * parameter, but does _not_ forget the buffer_head if the bh was only
315 * found implicitly.
316 *
317 * bh_in may not be a journalled buffer - it may have come off
318 * the hash tables without an attached journal_head.
319 *
320 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
321 * by one.
322 */
323
324int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
325		   struct buffer_head *bh_in)
326{
327	struct buffer_head *bh = NULL;
328	journal_t *journal;
329	struct block_device *bdev;
330	int err;
331
332	might_sleep();
333	if (bh_in)
334		BUFFER_TRACE(bh_in, "enter");
335
336	journal = handle->h_transaction->t_journal;
337	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
338		J_ASSERT (!"Cannot set revoke feature!");
339		return -EINVAL;
340	}
341
342	bdev = journal->j_fs_dev;
343	bh = bh_in;
344
345	if (!bh) {
346		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
347		if (bh)
348			BUFFER_TRACE(bh, "found on hash");
349	}
350#ifdef JBD2_EXPENSIVE_CHECKING
351	else {
352		struct buffer_head *bh2;
353
354		/* If there is a different buffer_head lying around in
355		 * memory anywhere... */
356		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
357		if (bh2) {
358			/* ... and it has RevokeValid status... */
359			if (bh2 != bh && buffer_revokevalid(bh2))
360				/* ...then it better be revoked too,
361				 * since it's illegal to create a revoke
362				 * record against a buffer_head which is
363				 * not marked revoked --- that would
364				 * risk missing a subsequent revoke
365				 * cancel. */
366				J_ASSERT_BH(bh2, buffer_revoked(bh2));
367			put_bh(bh2);
368		}
369	}
370#endif
371
372	/* We really ought not ever to revoke twice in a row without
373           first having the revoke cancelled: it's illegal to free a
374           block twice without allocating it in between! */
375	if (bh) {
376		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
377				 "inconsistent data on disk")) {
378			if (!bh_in)
379				brelse(bh);
380			return -EIO;
381		}
382		set_buffer_revoked(bh);
383		set_buffer_revokevalid(bh);
384		if (bh_in) {
385			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
386			jbd2_journal_forget(handle, bh_in);
387		} else {
388			BUFFER_TRACE(bh, "call brelse");
389			__brelse(bh);
390		}
391	}
392
393	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
394	err = insert_revoke_hash(journal, blocknr,
395				handle->h_transaction->t_tid);
396	BUFFER_TRACE(bh_in, "exit");
397	return err;
398}
399
400/*
401 * Cancel an outstanding revoke.  For use only internally by the
402 * journaling code (called from jbd2_journal_get_write_access).
403 *
404 * We trust buffer_revoked() on the buffer if the buffer is already
405 * being journaled: if there is no revoke pending on the buffer, then we
406 * don't do anything here.
407 *
408 * This would break if it were possible for a buffer to be revoked and
409 * discarded, and then reallocated within the same transaction.  In such
410 * a case we would have lost the revoked bit, but when we arrived here
411 * the second time we would still have a pending revoke to cancel.  So,
412 * do not trust the Revoked bit on buffers unless RevokeValid is also
413 * set.
414 */
415int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
416{
417	struct jbd2_revoke_record_s *record;
418	journal_t *journal = handle->h_transaction->t_journal;
419	int need_cancel;
420	int did_revoke = 0;	/* akpm: debug */
421	struct buffer_head *bh = jh2bh(jh);
422
423	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
424
425	/* Is the existing Revoke bit valid?  If so, we trust it, and
426	 * only perform the full cancel if the revoke bit is set.  If
427	 * not, we can't trust the revoke bit, and we need to do the
428	 * full search for a revoke record. */
429	if (test_set_buffer_revokevalid(bh)) {
430		need_cancel = test_clear_buffer_revoked(bh);
431	} else {
432		need_cancel = 1;
433		clear_buffer_revoked(bh);
434	}
435
436	if (need_cancel) {
437		record = find_revoke_record(journal, bh->b_blocknr);
438		if (record) {
439			jbd_debug(4, "cancelled existing revoke on "
440				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
441			spin_lock(&journal->j_revoke_lock);
442			list_del(&record->hash);
443			spin_unlock(&journal->j_revoke_lock);
444			kmem_cache_free(jbd2_revoke_record_cache, record);
445			did_revoke = 1;
446		}
447	}
448
449#ifdef JBD2_EXPENSIVE_CHECKING
450	/* There better not be one left behind by now! */
451	record = find_revoke_record(journal, bh->b_blocknr);
452	J_ASSERT_JH(jh, record == NULL);
453#endif
454
455	/* Finally, have we just cleared revoke on an unhashed
456	 * buffer_head?  If so, we'd better make sure we clear the
457	 * revoked status on any hashed alias too, otherwise the revoke
458	 * state machine will get very upset later on. */
459	if (need_cancel) {
460		struct buffer_head *bh2;
461		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
462		if (bh2) {
463			if (bh2 != bh)
464				clear_buffer_revoked(bh2);
465			__brelse(bh2);
466		}
467	}
468	return did_revoke;
469}
470
471/*
472 * journal_clear_revoked_flag clears revoked flag of buffers in
473 * revoke table to reflect there is no revoked buffers in the next
474 * transaction which is going to be started.
475 */
476void jbd2_clear_buffer_revoked_flags(journal_t *journal)
477{
478	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
479	int i = 0;
480
481	for (i = 0; i < revoke->hash_size; i++) {
482		struct list_head *hash_list;
483		struct list_head *list_entry;
484		hash_list = &revoke->hash_table[i];
485
486		list_for_each(list_entry, hash_list) {
487			struct jbd2_revoke_record_s *record;
488			struct buffer_head *bh;
489			record = (struct jbd2_revoke_record_s *)list_entry;
490			bh = __find_get_block(journal->j_fs_dev,
491					      record->blocknr,
492					      journal->j_blocksize);
493			if (bh) {
494				clear_buffer_revoked(bh);
495				__brelse(bh);
496			}
497		}
498	}
499}
500
501/* journal_switch_revoke table select j_revoke for next transaction
502 * we do not want to suspend any processing until all revokes are
503 * written -bzzz
504 */
505void jbd2_journal_switch_revoke_table(journal_t *journal)
506{
507	int i;
508
509	if (journal->j_revoke == journal->j_revoke_table[0])
510		journal->j_revoke = journal->j_revoke_table[1];
511	else
512		journal->j_revoke = journal->j_revoke_table[0];
513
514	for (i = 0; i < journal->j_revoke->hash_size; i++)
515		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
516}
517
518/*
519 * Write revoke records to the journal for all entries in the current
520 * revoke hash, deleting the entries as we go.
521 */
522void jbd2_journal_write_revoke_records(transaction_t *transaction,
523				       struct list_head *log_bufs)
524{
525	journal_t *journal = transaction->t_journal;
526	struct buffer_head *descriptor;
527	struct jbd2_revoke_record_s *record;
528	struct jbd2_revoke_table_s *revoke;
529	struct list_head *hash_list;
530	int i, offset, count;
531
532	descriptor = NULL;
533	offset = 0;
534	count = 0;
535
536	/* select revoke table for committing transaction */
537	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
538		journal->j_revoke_table[1] : journal->j_revoke_table[0];
539
540	for (i = 0; i < revoke->hash_size; i++) {
541		hash_list = &revoke->hash_table[i];
542
543		while (!list_empty(hash_list)) {
544			record = (struct jbd2_revoke_record_s *)
545				hash_list->next;
546			write_one_revoke_record(transaction, log_bufs,
547						&descriptor, &offset, record);
548			count++;
549			list_del(&record->hash);
550			kmem_cache_free(jbd2_revoke_record_cache, record);
551		}
552	}
553	if (descriptor)
554		flush_descriptor(journal, descriptor, offset);
555	jbd_debug(1, "Wrote %d revoke records\n", count);
556}
557
558/*
559 * Write out one revoke record.  We need to create a new descriptor
560 * block if the old one is full or if we have not already created one.
561 */
562
563static void write_one_revoke_record(transaction_t *transaction,
564				    struct list_head *log_bufs,
565				    struct buffer_head **descriptorp,
566				    int *offsetp,
567				    struct jbd2_revoke_record_s *record)
568{
569	journal_t *journal = transaction->t_journal;
570	int csum_size = 0;
571	struct buffer_head *descriptor;
572	int sz, offset;
573
574	/* If we are already aborting, this all becomes a noop.  We
575           still need to go round the loop in
576           jbd2_journal_write_revoke_records in order to free all of the
577           revoke records: only the IO to the journal is omitted. */
578	if (is_journal_aborted(journal))
579		return;
580
581	descriptor = *descriptorp;
582	offset = *offsetp;
583
584	/* Do we need to leave space at the end for a checksum? */
585	if (jbd2_journal_has_csum_v2or3(journal))
586		csum_size = sizeof(struct jbd2_journal_block_tail);
587
588	if (jbd2_has_feature_64bit(journal))
589		sz = 8;
590	else
591		sz = 4;
592
593	/* Make sure we have a descriptor with space left for the record */
594	if (descriptor) {
595		if (offset + sz > journal->j_blocksize - csum_size) {
596			flush_descriptor(journal, descriptor, offset);
597			descriptor = NULL;
598		}
599	}
600
601	if (!descriptor) {
602		descriptor = jbd2_journal_get_descriptor_buffer(transaction,
603							JBD2_REVOKE_BLOCK);
604		if (!descriptor)
605			return;
606
607		/* Record it so that we can wait for IO completion later */
608		BUFFER_TRACE(descriptor, "file in log_bufs");
609		jbd2_file_log_bh(log_bufs, descriptor);
610
611		offset = sizeof(jbd2_journal_revoke_header_t);
612		*descriptorp = descriptor;
613	}
614
615	if (jbd2_has_feature_64bit(journal))
616		* ((__be64 *)(&descriptor->b_data[offset])) =
617			cpu_to_be64(record->blocknr);
618	else
619		* ((__be32 *)(&descriptor->b_data[offset])) =
620			cpu_to_be32(record->blocknr);
621	offset += sz;
622
623	*offsetp = offset;
624}
625
626/*
627 * Flush a revoke descriptor out to the journal.  If we are aborting,
628 * this is a noop; otherwise we are generating a buffer which needs to
629 * be waited for during commit, so it has to go onto the appropriate
630 * journal buffer list.
631 */
632
633static void flush_descriptor(journal_t *journal,
634			     struct buffer_head *descriptor,
635			     int offset)
636{
637	jbd2_journal_revoke_header_t *header;
638
639	if (is_journal_aborted(journal)) {
640		put_bh(descriptor);
641		return;
642	}
643
644	header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
645	header->r_count = cpu_to_be32(offset);
646	jbd2_descriptor_block_csum_set(journal, descriptor);
647
648	set_buffer_jwrite(descriptor);
649	BUFFER_TRACE(descriptor, "write");
650	set_buffer_dirty(descriptor);
651	write_dirty_buffer(descriptor, WRITE_SYNC);
652}
653#endif
654
655/*
656 * Revoke support for recovery.
657 *
658 * Recovery needs to be able to:
659 *
660 *  record all revoke records, including the tid of the latest instance
661 *  of each revoke in the journal
662 *
663 *  check whether a given block in a given transaction should be replayed
664 *  (ie. has not been revoked by a revoke record in that or a subsequent
665 *  transaction)
666 *
667 *  empty the revoke table after recovery.
668 */
669
670/*
671 * First, setting revoke records.  We create a new revoke record for
672 * every block ever revoked in the log as we scan it for recovery, and
673 * we update the existing records if we find multiple revokes for a
674 * single block.
675 */
676
677int jbd2_journal_set_revoke(journal_t *journal,
678		       unsigned long long blocknr,
679		       tid_t sequence)
680{
681	struct jbd2_revoke_record_s *record;
682
683	record = find_revoke_record(journal, blocknr);
684	if (record) {
685		/* If we have multiple occurrences, only record the
686		 * latest sequence number in the hashed record */
687		if (tid_gt(sequence, record->sequence))
688			record->sequence = sequence;
689		return 0;
690	}
691	return insert_revoke_hash(journal, blocknr, sequence);
692}
693
694/*
695 * Test revoke records.  For a given block referenced in the log, has
696 * that block been revoked?  A revoke record with a given transaction
697 * sequence number revokes all blocks in that transaction and earlier
698 * ones, but later transactions still need replayed.
699 */
700
701int jbd2_journal_test_revoke(journal_t *journal,
702			unsigned long long blocknr,
703			tid_t sequence)
704{
705	struct jbd2_revoke_record_s *record;
706
707	record = find_revoke_record(journal, blocknr);
708	if (!record)
709		return 0;
710	if (tid_gt(sequence, record->sequence))
711		return 0;
712	return 1;
713}
714
715/*
716 * Finally, once recovery is over, we need to clear the revoke table so
717 * that it can be reused by the running filesystem.
718 */
719
720void jbd2_journal_clear_revoke(journal_t *journal)
721{
722	int i;
723	struct list_head *hash_list;
724	struct jbd2_revoke_record_s *record;
725	struct jbd2_revoke_table_s *revoke;
726
727	revoke = journal->j_revoke;
728
729	for (i = 0; i < revoke->hash_size; i++) {
730		hash_list = &revoke->hash_table[i];
731		while (!list_empty(hash_list)) {
732			record = (struct jbd2_revoke_record_s*) hash_list->next;
733			list_del(&record->hash);
734			kmem_cache_free(jbd2_revoke_record_cache, record);
735		}
736	}
737}
v4.10.11
  1/*
  2 * linux/fs/jbd2/revoke.c
  3 *
  4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
  5 *
  6 * Copyright 2000 Red Hat corp --- All Rights Reserved
  7 *
  8 * This file is part of the Linux kernel and is made available under
  9 * the terms of the GNU General Public License, version 2, or at your
 10 * option, any later version, incorporated herein by reference.
 11 *
 12 * Journal revoke routines for the generic filesystem journaling code;
 13 * part of the ext2fs journaling system.
 14 *
 15 * Revoke is the mechanism used to prevent old log records for deleted
 16 * metadata from being replayed on top of newer data using the same
 17 * blocks.  The revoke mechanism is used in two separate places:
 18 *
 19 * + Commit: during commit we write the entire list of the current
 20 *   transaction's revoked blocks to the journal
 21 *
 22 * + Recovery: during recovery we record the transaction ID of all
 23 *   revoked blocks.  If there are multiple revoke records in the log
 24 *   for a single block, only the last one counts, and if there is a log
 25 *   entry for a block beyond the last revoke, then that log entry still
 26 *   gets replayed.
 27 *
 28 * We can get interactions between revokes and new log data within a
 29 * single transaction:
 30 *
 31 * Block is revoked and then journaled:
 32 *   The desired end result is the journaling of the new block, so we
 33 *   cancel the revoke before the transaction commits.
 34 *
 35 * Block is journaled and then revoked:
 36 *   The revoke must take precedence over the write of the block, so we
 37 *   need either to cancel the journal entry or to write the revoke
 38 *   later in the log than the log block.  In this case, we choose the
 39 *   latter: journaling a block cancels any revoke record for that block
 40 *   in the current transaction, so any revoke for that block in the
 41 *   transaction must have happened after the block was journaled and so
 42 *   the revoke must take precedence.
 43 *
 44 * Block is revoked and then written as data:
 45 *   The data write is allowed to succeed, but the revoke is _not_
 46 *   cancelled.  We still need to prevent old log records from
 47 *   overwriting the new data.  We don't even need to clear the revoke
 48 *   bit here.
 49 *
 50 * We cache revoke status of a buffer in the current transaction in b_states
 51 * bits.  As the name says, revokevalid flag indicates that the cached revoke
 52 * status of a buffer is valid and we can rely on the cached status.
 53 *
 54 * Revoke information on buffers is a tri-state value:
 55 *
 56 * RevokeValid clear:	no cached revoke status, need to look it up
 57 * RevokeValid set, Revoked clear:
 58 *			buffer has not been revoked, and cancel_revoke
 59 *			need do nothing.
 60 * RevokeValid set, Revoked set:
 61 *			buffer has been revoked.
 62 *
 63 * Locking rules:
 64 * We keep two hash tables of revoke records. One hashtable belongs to the
 65 * running transaction (is pointed to by journal->j_revoke), the other one
 66 * belongs to the committing transaction. Accesses to the second hash table
 67 * happen only from the kjournald and no other thread touches this table.  Also
 68 * journal_switch_revoke_table() which switches which hashtable belongs to the
 69 * running and which to the committing transaction is called only from
 70 * kjournald. Therefore we need no locks when accessing the hashtable belonging
 71 * to the committing transaction.
 72 *
 73 * All users operating on the hash table belonging to the running transaction
 74 * have a handle to the transaction. Therefore they are safe from kjournald
 75 * switching hash tables under them. For operations on the lists of entries in
 76 * the hash table j_revoke_lock is used.
 77 *
 78 * Finally, also replay code uses the hash tables but at this moment no one else
 79 * can touch them (filesystem isn't mounted yet) and hence no locking is
 80 * needed.
 81 */
 82
 83#ifndef __KERNEL__
 84#include "jfs_user.h"
 85#else
 86#include <linux/time.h>
 87#include <linux/fs.h>
 88#include <linux/jbd2.h>
 89#include <linux/errno.h>
 90#include <linux/slab.h>
 91#include <linux/list.h>
 92#include <linux/init.h>
 93#include <linux/bio.h>
 94#include <linux/log2.h>
 95#include <linux/hash.h>
 96#endif
 97
 98static struct kmem_cache *jbd2_revoke_record_cache;
 99static struct kmem_cache *jbd2_revoke_table_cache;
100
101/* Each revoke record represents one single revoked block.  During
102   journal replay, this involves recording the transaction ID of the
103   last transaction to revoke this block. */
104
105struct jbd2_revoke_record_s
106{
107	struct list_head  hash;
108	tid_t		  sequence;	/* Used for recovery only */
109	unsigned long long	  blocknr;
110};
111
112
113/* The revoke table is just a simple hash table of revoke records. */
114struct jbd2_revoke_table_s
115{
116	/* It is conceivable that we might want a larger hash table
117	 * for recovery.  Must be a power of two. */
118	int		  hash_size;
119	int		  hash_shift;
120	struct list_head *hash_table;
121};
122
123
124#ifdef __KERNEL__
125static void write_one_revoke_record(transaction_t *,
126				    struct list_head *,
127				    struct buffer_head **, int *,
128				    struct jbd2_revoke_record_s *);
129static void flush_descriptor(journal_t *, struct buffer_head *, int);
130#endif
131
132/* Utility functions to maintain the revoke table */
133
134static inline int hash(journal_t *journal, unsigned long long block)
135{
136	return hash_64(block, journal->j_revoke->hash_shift);
137}
138
139static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
140			      tid_t seq)
141{
142	struct list_head *hash_list;
143	struct jbd2_revoke_record_s *record;
144	gfp_t gfp_mask = GFP_NOFS;
145
146	if (journal_oom_retry)
147		gfp_mask |= __GFP_NOFAIL;
148	record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask);
149	if (!record)
150		return -ENOMEM;
151
152	record->sequence = seq;
153	record->blocknr = blocknr;
154	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
155	spin_lock(&journal->j_revoke_lock);
156	list_add(&record->hash, hash_list);
157	spin_unlock(&journal->j_revoke_lock);
158	return 0;
159}
160
161/* Find a revoke record in the journal's hash table. */
162
163static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
164						      unsigned long long blocknr)
165{
166	struct list_head *hash_list;
167	struct jbd2_revoke_record_s *record;
168
169	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
170
171	spin_lock(&journal->j_revoke_lock);
172	record = (struct jbd2_revoke_record_s *) hash_list->next;
173	while (&(record->hash) != hash_list) {
174		if (record->blocknr == blocknr) {
175			spin_unlock(&journal->j_revoke_lock);
176			return record;
177		}
178		record = (struct jbd2_revoke_record_s *) record->hash.next;
179	}
180	spin_unlock(&journal->j_revoke_lock);
181	return NULL;
182}
183
184void jbd2_journal_destroy_revoke_caches(void)
185{
186	if (jbd2_revoke_record_cache) {
187		kmem_cache_destroy(jbd2_revoke_record_cache);
188		jbd2_revoke_record_cache = NULL;
189	}
190	if (jbd2_revoke_table_cache) {
191		kmem_cache_destroy(jbd2_revoke_table_cache);
192		jbd2_revoke_table_cache = NULL;
193	}
194}
195
196int __init jbd2_journal_init_revoke_caches(void)
197{
198	J_ASSERT(!jbd2_revoke_record_cache);
199	J_ASSERT(!jbd2_revoke_table_cache);
200
201	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
202					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
203	if (!jbd2_revoke_record_cache)
204		goto record_cache_failure;
205
206	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
207					     SLAB_TEMPORARY);
208	if (!jbd2_revoke_table_cache)
209		goto table_cache_failure;
210	return 0;
211table_cache_failure:
212	jbd2_journal_destroy_revoke_caches();
213record_cache_failure:
214		return -ENOMEM;
215}
216
217static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
218{
219	int shift = 0;
220	int tmp = hash_size;
221	struct jbd2_revoke_table_s *table;
222
223	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
224	if (!table)
225		goto out;
226
227	while((tmp >>= 1UL) != 0UL)
228		shift++;
229
230	table->hash_size = hash_size;
231	table->hash_shift = shift;
232	table->hash_table =
233		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
234	if (!table->hash_table) {
235		kmem_cache_free(jbd2_revoke_table_cache, table);
236		table = NULL;
237		goto out;
238	}
239
240	for (tmp = 0; tmp < hash_size; tmp++)
241		INIT_LIST_HEAD(&table->hash_table[tmp]);
242
243out:
244	return table;
245}
246
247static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
248{
249	int i;
250	struct list_head *hash_list;
251
252	for (i = 0; i < table->hash_size; i++) {
253		hash_list = &table->hash_table[i];
254		J_ASSERT(list_empty(hash_list));
255	}
256
257	kfree(table->hash_table);
258	kmem_cache_free(jbd2_revoke_table_cache, table);
259}
260
261/* Initialise the revoke table for a given journal to a given size. */
262int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
263{
264	J_ASSERT(journal->j_revoke_table[0] == NULL);
265	J_ASSERT(is_power_of_2(hash_size));
266
267	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
268	if (!journal->j_revoke_table[0])
269		goto fail0;
270
271	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
272	if (!journal->j_revoke_table[1])
273		goto fail1;
274
275	journal->j_revoke = journal->j_revoke_table[1];
276
277	spin_lock_init(&journal->j_revoke_lock);
278
279	return 0;
280
281fail1:
282	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
283	journal->j_revoke_table[0] = NULL;
284fail0:
285	return -ENOMEM;
286}
287
288/* Destroy a journal's revoke table.  The table must already be empty! */
289void jbd2_journal_destroy_revoke(journal_t *journal)
290{
291	journal->j_revoke = NULL;
292	if (journal->j_revoke_table[0])
293		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
294	if (journal->j_revoke_table[1])
295		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
296}
297
298
299#ifdef __KERNEL__
300
301/*
302 * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
303 * prevents the block from being replayed during recovery if we take a
304 * crash after this current transaction commits.  Any subsequent
305 * metadata writes of the buffer in this transaction cancel the
306 * revoke.
307 *
308 * Note that this call may block --- it is up to the caller to make
309 * sure that there are no further calls to journal_write_metadata
310 * before the revoke is complete.  In ext3, this implies calling the
311 * revoke before clearing the block bitmap when we are deleting
312 * metadata.
313 *
314 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
315 * parameter, but does _not_ forget the buffer_head if the bh was only
316 * found implicitly.
317 *
318 * bh_in may not be a journalled buffer - it may have come off
319 * the hash tables without an attached journal_head.
320 *
321 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
322 * by one.
323 */
324
325int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
326		   struct buffer_head *bh_in)
327{
328	struct buffer_head *bh = NULL;
329	journal_t *journal;
330	struct block_device *bdev;
331	int err;
332
333	might_sleep();
334	if (bh_in)
335		BUFFER_TRACE(bh_in, "enter");
336
337	journal = handle->h_transaction->t_journal;
338	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
339		J_ASSERT (!"Cannot set revoke feature!");
340		return -EINVAL;
341	}
342
343	bdev = journal->j_fs_dev;
344	bh = bh_in;
345
346	if (!bh) {
347		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
348		if (bh)
349			BUFFER_TRACE(bh, "found on hash");
350	}
351#ifdef JBD2_EXPENSIVE_CHECKING
352	else {
353		struct buffer_head *bh2;
354
355		/* If there is a different buffer_head lying around in
356		 * memory anywhere... */
357		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
358		if (bh2) {
359			/* ... and it has RevokeValid status... */
360			if (bh2 != bh && buffer_revokevalid(bh2))
361				/* ...then it better be revoked too,
362				 * since it's illegal to create a revoke
363				 * record against a buffer_head which is
364				 * not marked revoked --- that would
365				 * risk missing a subsequent revoke
366				 * cancel. */
367				J_ASSERT_BH(bh2, buffer_revoked(bh2));
368			put_bh(bh2);
369		}
370	}
371#endif
372
373	/* We really ought not ever to revoke twice in a row without
374           first having the revoke cancelled: it's illegal to free a
375           block twice without allocating it in between! */
376	if (bh) {
377		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
378				 "inconsistent data on disk")) {
379			if (!bh_in)
380				brelse(bh);
381			return -EIO;
382		}
383		set_buffer_revoked(bh);
384		set_buffer_revokevalid(bh);
385		if (bh_in) {
386			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
387			jbd2_journal_forget(handle, bh_in);
388		} else {
389			BUFFER_TRACE(bh, "call brelse");
390			__brelse(bh);
391		}
392	}
393
394	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
395	err = insert_revoke_hash(journal, blocknr,
396				handle->h_transaction->t_tid);
397	BUFFER_TRACE(bh_in, "exit");
398	return err;
399}
400
401/*
402 * Cancel an outstanding revoke.  For use only internally by the
403 * journaling code (called from jbd2_journal_get_write_access).
404 *
405 * We trust buffer_revoked() on the buffer if the buffer is already
406 * being journaled: if there is no revoke pending on the buffer, then we
407 * don't do anything here.
408 *
409 * This would break if it were possible for a buffer to be revoked and
410 * discarded, and then reallocated within the same transaction.  In such
411 * a case we would have lost the revoked bit, but when we arrived here
412 * the second time we would still have a pending revoke to cancel.  So,
413 * do not trust the Revoked bit on buffers unless RevokeValid is also
414 * set.
415 */
416int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
417{
418	struct jbd2_revoke_record_s *record;
419	journal_t *journal = handle->h_transaction->t_journal;
420	int need_cancel;
421	int did_revoke = 0;	/* akpm: debug */
422	struct buffer_head *bh = jh2bh(jh);
423
424	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
425
426	/* Is the existing Revoke bit valid?  If so, we trust it, and
427	 * only perform the full cancel if the revoke bit is set.  If
428	 * not, we can't trust the revoke bit, and we need to do the
429	 * full search for a revoke record. */
430	if (test_set_buffer_revokevalid(bh)) {
431		need_cancel = test_clear_buffer_revoked(bh);
432	} else {
433		need_cancel = 1;
434		clear_buffer_revoked(bh);
435	}
436
437	if (need_cancel) {
438		record = find_revoke_record(journal, bh->b_blocknr);
439		if (record) {
440			jbd_debug(4, "cancelled existing revoke on "
441				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
442			spin_lock(&journal->j_revoke_lock);
443			list_del(&record->hash);
444			spin_unlock(&journal->j_revoke_lock);
445			kmem_cache_free(jbd2_revoke_record_cache, record);
446			did_revoke = 1;
447		}
448	}
449
450#ifdef JBD2_EXPENSIVE_CHECKING
451	/* There better not be one left behind by now! */
452	record = find_revoke_record(journal, bh->b_blocknr);
453	J_ASSERT_JH(jh, record == NULL);
454#endif
455
456	/* Finally, have we just cleared revoke on an unhashed
457	 * buffer_head?  If so, we'd better make sure we clear the
458	 * revoked status on any hashed alias too, otherwise the revoke
459	 * state machine will get very upset later on. */
460	if (need_cancel) {
461		struct buffer_head *bh2;
462		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
463		if (bh2) {
464			if (bh2 != bh)
465				clear_buffer_revoked(bh2);
466			__brelse(bh2);
467		}
468	}
469	return did_revoke;
470}
471
472/*
473 * journal_clear_revoked_flag clears revoked flag of buffers in
474 * revoke table to reflect there is no revoked buffers in the next
475 * transaction which is going to be started.
476 */
477void jbd2_clear_buffer_revoked_flags(journal_t *journal)
478{
479	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
480	int i = 0;
481
482	for (i = 0; i < revoke->hash_size; i++) {
483		struct list_head *hash_list;
484		struct list_head *list_entry;
485		hash_list = &revoke->hash_table[i];
486
487		list_for_each(list_entry, hash_list) {
488			struct jbd2_revoke_record_s *record;
489			struct buffer_head *bh;
490			record = (struct jbd2_revoke_record_s *)list_entry;
491			bh = __find_get_block(journal->j_fs_dev,
492					      record->blocknr,
493					      journal->j_blocksize);
494			if (bh) {
495				clear_buffer_revoked(bh);
496				__brelse(bh);
497			}
498		}
499	}
500}
501
502/* journal_switch_revoke table select j_revoke for next transaction
503 * we do not want to suspend any processing until all revokes are
504 * written -bzzz
505 */
506void jbd2_journal_switch_revoke_table(journal_t *journal)
507{
508	int i;
509
510	if (journal->j_revoke == journal->j_revoke_table[0])
511		journal->j_revoke = journal->j_revoke_table[1];
512	else
513		journal->j_revoke = journal->j_revoke_table[0];
514
515	for (i = 0; i < journal->j_revoke->hash_size; i++)
516		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
517}
518
519/*
520 * Write revoke records to the journal for all entries in the current
521 * revoke hash, deleting the entries as we go.
522 */
523void jbd2_journal_write_revoke_records(transaction_t *transaction,
524				       struct list_head *log_bufs)
525{
526	journal_t *journal = transaction->t_journal;
527	struct buffer_head *descriptor;
528	struct jbd2_revoke_record_s *record;
529	struct jbd2_revoke_table_s *revoke;
530	struct list_head *hash_list;
531	int i, offset, count;
532
533	descriptor = NULL;
534	offset = 0;
535	count = 0;
536
537	/* select revoke table for committing transaction */
538	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
539		journal->j_revoke_table[1] : journal->j_revoke_table[0];
540
541	for (i = 0; i < revoke->hash_size; i++) {
542		hash_list = &revoke->hash_table[i];
543
544		while (!list_empty(hash_list)) {
545			record = (struct jbd2_revoke_record_s *)
546				hash_list->next;
547			write_one_revoke_record(transaction, log_bufs,
548						&descriptor, &offset, record);
549			count++;
550			list_del(&record->hash);
551			kmem_cache_free(jbd2_revoke_record_cache, record);
552		}
553	}
554	if (descriptor)
555		flush_descriptor(journal, descriptor, offset);
556	jbd_debug(1, "Wrote %d revoke records\n", count);
557}
558
559/*
560 * Write out one revoke record.  We need to create a new descriptor
561 * block if the old one is full or if we have not already created one.
562 */
563
564static void write_one_revoke_record(transaction_t *transaction,
565				    struct list_head *log_bufs,
566				    struct buffer_head **descriptorp,
567				    int *offsetp,
568				    struct jbd2_revoke_record_s *record)
569{
570	journal_t *journal = transaction->t_journal;
571	int csum_size = 0;
572	struct buffer_head *descriptor;
573	int sz, offset;
574
575	/* If we are already aborting, this all becomes a noop.  We
576           still need to go round the loop in
577           jbd2_journal_write_revoke_records in order to free all of the
578           revoke records: only the IO to the journal is omitted. */
579	if (is_journal_aborted(journal))
580		return;
581
582	descriptor = *descriptorp;
583	offset = *offsetp;
584
585	/* Do we need to leave space at the end for a checksum? */
586	if (jbd2_journal_has_csum_v2or3(journal))
587		csum_size = sizeof(struct jbd2_journal_block_tail);
588
589	if (jbd2_has_feature_64bit(journal))
590		sz = 8;
591	else
592		sz = 4;
593
594	/* Make sure we have a descriptor with space left for the record */
595	if (descriptor) {
596		if (offset + sz > journal->j_blocksize - csum_size) {
597			flush_descriptor(journal, descriptor, offset);
598			descriptor = NULL;
599		}
600	}
601
602	if (!descriptor) {
603		descriptor = jbd2_journal_get_descriptor_buffer(transaction,
604							JBD2_REVOKE_BLOCK);
605		if (!descriptor)
606			return;
607
608		/* Record it so that we can wait for IO completion later */
609		BUFFER_TRACE(descriptor, "file in log_bufs");
610		jbd2_file_log_bh(log_bufs, descriptor);
611
612		offset = sizeof(jbd2_journal_revoke_header_t);
613		*descriptorp = descriptor;
614	}
615
616	if (jbd2_has_feature_64bit(journal))
617		* ((__be64 *)(&descriptor->b_data[offset])) =
618			cpu_to_be64(record->blocknr);
619	else
620		* ((__be32 *)(&descriptor->b_data[offset])) =
621			cpu_to_be32(record->blocknr);
622	offset += sz;
623
624	*offsetp = offset;
625}
626
627/*
628 * Flush a revoke descriptor out to the journal.  If we are aborting,
629 * this is a noop; otherwise we are generating a buffer which needs to
630 * be waited for during commit, so it has to go onto the appropriate
631 * journal buffer list.
632 */
633
634static void flush_descriptor(journal_t *journal,
635			     struct buffer_head *descriptor,
636			     int offset)
637{
638	jbd2_journal_revoke_header_t *header;
639
640	if (is_journal_aborted(journal)) {
641		put_bh(descriptor);
642		return;
643	}
644
645	header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
646	header->r_count = cpu_to_be32(offset);
647	jbd2_descriptor_block_csum_set(journal, descriptor);
648
649	set_buffer_jwrite(descriptor);
650	BUFFER_TRACE(descriptor, "write");
651	set_buffer_dirty(descriptor);
652	write_dirty_buffer(descriptor, REQ_SYNC);
653}
654#endif
655
656/*
657 * Revoke support for recovery.
658 *
659 * Recovery needs to be able to:
660 *
661 *  record all revoke records, including the tid of the latest instance
662 *  of each revoke in the journal
663 *
664 *  check whether a given block in a given transaction should be replayed
665 *  (ie. has not been revoked by a revoke record in that or a subsequent
666 *  transaction)
667 *
668 *  empty the revoke table after recovery.
669 */
670
671/*
672 * First, setting revoke records.  We create a new revoke record for
673 * every block ever revoked in the log as we scan it for recovery, and
674 * we update the existing records if we find multiple revokes for a
675 * single block.
676 */
677
678int jbd2_journal_set_revoke(journal_t *journal,
679		       unsigned long long blocknr,
680		       tid_t sequence)
681{
682	struct jbd2_revoke_record_s *record;
683
684	record = find_revoke_record(journal, blocknr);
685	if (record) {
686		/* If we have multiple occurrences, only record the
687		 * latest sequence number in the hashed record */
688		if (tid_gt(sequence, record->sequence))
689			record->sequence = sequence;
690		return 0;
691	}
692	return insert_revoke_hash(journal, blocknr, sequence);
693}
694
695/*
696 * Test revoke records.  For a given block referenced in the log, has
697 * that block been revoked?  A revoke record with a given transaction
698 * sequence number revokes all blocks in that transaction and earlier
699 * ones, but later transactions still need replayed.
700 */
701
702int jbd2_journal_test_revoke(journal_t *journal,
703			unsigned long long blocknr,
704			tid_t sequence)
705{
706	struct jbd2_revoke_record_s *record;
707
708	record = find_revoke_record(journal, blocknr);
709	if (!record)
710		return 0;
711	if (tid_gt(sequence, record->sequence))
712		return 0;
713	return 1;
714}
715
716/*
717 * Finally, once recovery is over, we need to clear the revoke table so
718 * that it can be reused by the running filesystem.
719 */
720
721void jbd2_journal_clear_revoke(journal_t *journal)
722{
723	int i;
724	struct list_head *hash_list;
725	struct jbd2_revoke_record_s *record;
726	struct jbd2_revoke_table_s *revoke;
727
728	revoke = journal->j_revoke;
729
730	for (i = 0; i < revoke->hash_size; i++) {
731		hash_list = &revoke->hash_table[i];
732		while (!list_empty(hash_list)) {
733			record = (struct jbd2_revoke_record_s*) hash_list->next;
734			list_del(&record->hash);
735			kmem_cache_free(jbd2_revoke_record_cache, record);
736		}
737	}
738}