Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * f_fs.c -- user mode file system API for USB composite function controllers
   3 *
   4 * Copyright (C) 2010 Samsung Electronics
   5 * Author: Michal Nazarewicz <mina86@mina86.com>
   6 *
   7 * Based on inode.c (GadgetFS) which was:
   8 * Copyright (C) 2003-2004 David Brownell
   9 * Copyright (C) 2003 Agilent Technologies
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 */
  16
  17
  18/* #define DEBUG */
  19/* #define VERBOSE_DEBUG */
  20
  21#include <linux/blkdev.h>
  22#include <linux/pagemap.h>
  23#include <linux/export.h>
  24#include <linux/hid.h>
  25#include <linux/module.h>
  26#include <linux/uio.h>
  27#include <asm/unaligned.h>
  28
  29#include <linux/usb/composite.h>
  30#include <linux/usb/functionfs.h>
  31
  32#include <linux/aio.h>
  33#include <linux/mmu_context.h>
  34#include <linux/poll.h>
  35#include <linux/eventfd.h>
  36
  37#include "u_fs.h"
  38#include "u_f.h"
  39#include "u_os_desc.h"
  40#include "configfs.h"
  41
  42#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
  43
  44/* Reference counter handling */
  45static void ffs_data_get(struct ffs_data *ffs);
  46static void ffs_data_put(struct ffs_data *ffs);
  47/* Creates new ffs_data object. */
  48static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
  49
  50/* Opened counter handling. */
  51static void ffs_data_opened(struct ffs_data *ffs);
  52static void ffs_data_closed(struct ffs_data *ffs);
  53
  54/* Called with ffs->mutex held; take over ownership of data. */
  55static int __must_check
  56__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
  57static int __must_check
  58__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
  59
  60
  61/* The function structure ***************************************************/
  62
  63struct ffs_ep;
  64
  65struct ffs_function {
  66	struct usb_configuration	*conf;
  67	struct usb_gadget		*gadget;
  68	struct ffs_data			*ffs;
  69
  70	struct ffs_ep			*eps;
  71	u8				eps_revmap[16];
  72	short				*interfaces_nums;
  73
  74	struct usb_function		function;
  75};
  76
  77
  78static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
  79{
  80	return container_of(f, struct ffs_function, function);
  81}
  82
  83
  84static inline enum ffs_setup_state
  85ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
  86{
  87	return (enum ffs_setup_state)
  88		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
  89}
  90
  91
  92static void ffs_func_eps_disable(struct ffs_function *func);
  93static int __must_check ffs_func_eps_enable(struct ffs_function *func);
  94
  95static int ffs_func_bind(struct usb_configuration *,
  96			 struct usb_function *);
  97static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
  98static void ffs_func_disable(struct usb_function *);
  99static int ffs_func_setup(struct usb_function *,
 100			  const struct usb_ctrlrequest *);
 
 
 
 101static void ffs_func_suspend(struct usb_function *);
 102static void ffs_func_resume(struct usb_function *);
 103
 104
 105static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
 106static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
 107
 108
 109/* The endpoints structures *************************************************/
 110
 111struct ffs_ep {
 112	struct usb_ep			*ep;	/* P: ffs->eps_lock */
 113	struct usb_request		*req;	/* P: epfile->mutex */
 114
 115	/* [0]: full speed, [1]: high speed, [2]: super speed */
 116	struct usb_endpoint_descriptor	*descs[3];
 117
 118	u8				num;
 119
 120	int				status;	/* P: epfile->mutex */
 121};
 122
 123struct ffs_epfile {
 124	/* Protects ep->ep and ep->req. */
 125	struct mutex			mutex;
 126	wait_queue_head_t		wait;
 127
 128	struct ffs_data			*ffs;
 129	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
 130
 131	struct dentry			*dentry;
 132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 133	char				name[5];
 134
 135	unsigned char			in;	/* P: ffs->eps_lock */
 136	unsigned char			isoc;	/* P: ffs->eps_lock */
 137
 138	unsigned char			_pad;
 139};
 140
 
 
 
 
 
 
 141/*  ffs_io_data structure ***************************************************/
 142
 143struct ffs_io_data {
 144	bool aio;
 145	bool read;
 146
 147	struct kiocb *kiocb;
 148	struct iov_iter data;
 149	const void *to_free;
 150	char *buf;
 151
 152	struct mm_struct *mm;
 153	struct work_struct work;
 154
 155	struct usb_ep *ep;
 156	struct usb_request *req;
 157
 158	struct ffs_data *ffs;
 159};
 160
 161struct ffs_desc_helper {
 162	struct ffs_data *ffs;
 163	unsigned interfaces_count;
 164	unsigned eps_count;
 165};
 166
 167static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
 168static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
 169
 170static struct dentry *
 171ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
 172		   const struct file_operations *fops);
 173
 174/* Devices management *******************************************************/
 175
 176DEFINE_MUTEX(ffs_lock);
 177EXPORT_SYMBOL_GPL(ffs_lock);
 178
 179static struct ffs_dev *_ffs_find_dev(const char *name);
 180static struct ffs_dev *_ffs_alloc_dev(void);
 181static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
 182static void _ffs_free_dev(struct ffs_dev *dev);
 183static void *ffs_acquire_dev(const char *dev_name);
 184static void ffs_release_dev(struct ffs_data *ffs_data);
 185static int ffs_ready(struct ffs_data *ffs);
 186static void ffs_closed(struct ffs_data *ffs);
 187
 188/* Misc helper functions ****************************************************/
 189
 190static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
 191	__attribute__((warn_unused_result, nonnull));
 192static char *ffs_prepare_buffer(const char __user *buf, size_t len)
 193	__attribute__((warn_unused_result, nonnull));
 194
 195
 196/* Control file aka ep0 *****************************************************/
 197
 198static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
 199{
 200	struct ffs_data *ffs = req->context;
 201
 202	complete_all(&ffs->ep0req_completion);
 203}
 204
 205static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
 206{
 207	struct usb_request *req = ffs->ep0req;
 208	int ret;
 209
 210	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
 211
 212	spin_unlock_irq(&ffs->ev.waitq.lock);
 213
 214	req->buf      = data;
 215	req->length   = len;
 216
 217	/*
 218	 * UDC layer requires to provide a buffer even for ZLP, but should
 219	 * not use it at all. Let's provide some poisoned pointer to catch
 220	 * possible bug in the driver.
 221	 */
 222	if (req->buf == NULL)
 223		req->buf = (void *)0xDEADBABE;
 224
 225	reinit_completion(&ffs->ep0req_completion);
 226
 227	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
 228	if (unlikely(ret < 0))
 229		return ret;
 230
 231	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
 232	if (unlikely(ret)) {
 233		usb_ep_dequeue(ffs->gadget->ep0, req);
 234		return -EINTR;
 235	}
 236
 237	ffs->setup_state = FFS_NO_SETUP;
 238	return req->status ? req->status : req->actual;
 239}
 240
 241static int __ffs_ep0_stall(struct ffs_data *ffs)
 242{
 243	if (ffs->ev.can_stall) {
 244		pr_vdebug("ep0 stall\n");
 245		usb_ep_set_halt(ffs->gadget->ep0);
 246		ffs->setup_state = FFS_NO_SETUP;
 247		return -EL2HLT;
 248	} else {
 249		pr_debug("bogus ep0 stall!\n");
 250		return -ESRCH;
 251	}
 252}
 253
 254static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
 255			     size_t len, loff_t *ptr)
 256{
 257	struct ffs_data *ffs = file->private_data;
 258	ssize_t ret;
 259	char *data;
 260
 261	ENTER();
 262
 263	/* Fast check if setup was canceled */
 264	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 265		return -EIDRM;
 266
 267	/* Acquire mutex */
 268	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 269	if (unlikely(ret < 0))
 270		return ret;
 271
 272	/* Check state */
 273	switch (ffs->state) {
 274	case FFS_READ_DESCRIPTORS:
 275	case FFS_READ_STRINGS:
 276		/* Copy data */
 277		if (unlikely(len < 16)) {
 278			ret = -EINVAL;
 279			break;
 280		}
 281
 282		data = ffs_prepare_buffer(buf, len);
 283		if (IS_ERR(data)) {
 284			ret = PTR_ERR(data);
 285			break;
 286		}
 287
 288		/* Handle data */
 289		if (ffs->state == FFS_READ_DESCRIPTORS) {
 290			pr_info("read descriptors\n");
 291			ret = __ffs_data_got_descs(ffs, data, len);
 292			if (unlikely(ret < 0))
 293				break;
 294
 295			ffs->state = FFS_READ_STRINGS;
 296			ret = len;
 297		} else {
 298			pr_info("read strings\n");
 299			ret = __ffs_data_got_strings(ffs, data, len);
 300			if (unlikely(ret < 0))
 301				break;
 302
 303			ret = ffs_epfiles_create(ffs);
 304			if (unlikely(ret)) {
 305				ffs->state = FFS_CLOSING;
 306				break;
 307			}
 308
 309			ffs->state = FFS_ACTIVE;
 310			mutex_unlock(&ffs->mutex);
 311
 312			ret = ffs_ready(ffs);
 313			if (unlikely(ret < 0)) {
 314				ffs->state = FFS_CLOSING;
 315				return ret;
 316			}
 317
 318			return len;
 319		}
 320		break;
 321
 322	case FFS_ACTIVE:
 323		data = NULL;
 324		/*
 325		 * We're called from user space, we can use _irq
 326		 * rather then _irqsave
 327		 */
 328		spin_lock_irq(&ffs->ev.waitq.lock);
 329		switch (ffs_setup_state_clear_cancelled(ffs)) {
 330		case FFS_SETUP_CANCELLED:
 331			ret = -EIDRM;
 332			goto done_spin;
 333
 334		case FFS_NO_SETUP:
 335			ret = -ESRCH;
 336			goto done_spin;
 337
 338		case FFS_SETUP_PENDING:
 339			break;
 340		}
 341
 342		/* FFS_SETUP_PENDING */
 343		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
 344			spin_unlock_irq(&ffs->ev.waitq.lock);
 345			ret = __ffs_ep0_stall(ffs);
 346			break;
 347		}
 348
 349		/* FFS_SETUP_PENDING and not stall */
 350		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 351
 352		spin_unlock_irq(&ffs->ev.waitq.lock);
 353
 354		data = ffs_prepare_buffer(buf, len);
 355		if (IS_ERR(data)) {
 356			ret = PTR_ERR(data);
 357			break;
 358		}
 359
 360		spin_lock_irq(&ffs->ev.waitq.lock);
 361
 362		/*
 363		 * We are guaranteed to be still in FFS_ACTIVE state
 364		 * but the state of setup could have changed from
 365		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
 366		 * to check for that.  If that happened we copied data
 367		 * from user space in vain but it's unlikely.
 368		 *
 369		 * For sure we are not in FFS_NO_SETUP since this is
 370		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
 371		 * transition can be performed and it's protected by
 372		 * mutex.
 373		 */
 374		if (ffs_setup_state_clear_cancelled(ffs) ==
 375		    FFS_SETUP_CANCELLED) {
 376			ret = -EIDRM;
 377done_spin:
 378			spin_unlock_irq(&ffs->ev.waitq.lock);
 379		} else {
 380			/* unlocks spinlock */
 381			ret = __ffs_ep0_queue_wait(ffs, data, len);
 382		}
 383		kfree(data);
 384		break;
 385
 386	default:
 387		ret = -EBADFD;
 388		break;
 389	}
 390
 391	mutex_unlock(&ffs->mutex);
 392	return ret;
 393}
 394
 395/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
 396static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
 397				     size_t n)
 398{
 399	/*
 400	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
 401	 * size of ffs->ev.types array (which is four) so that's how much space
 402	 * we reserve.
 403	 */
 404	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
 405	const size_t size = n * sizeof *events;
 406	unsigned i = 0;
 407
 408	memset(events, 0, size);
 409
 410	do {
 411		events[i].type = ffs->ev.types[i];
 412		if (events[i].type == FUNCTIONFS_SETUP) {
 413			events[i].u.setup = ffs->ev.setup;
 414			ffs->setup_state = FFS_SETUP_PENDING;
 415		}
 416	} while (++i < n);
 417
 418	ffs->ev.count -= n;
 419	if (ffs->ev.count)
 420		memmove(ffs->ev.types, ffs->ev.types + n,
 421			ffs->ev.count * sizeof *ffs->ev.types);
 422
 423	spin_unlock_irq(&ffs->ev.waitq.lock);
 424	mutex_unlock(&ffs->mutex);
 425
 426	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
 427}
 428
 429static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
 430			    size_t len, loff_t *ptr)
 431{
 432	struct ffs_data *ffs = file->private_data;
 433	char *data = NULL;
 434	size_t n;
 435	int ret;
 436
 437	ENTER();
 438
 439	/* Fast check if setup was canceled */
 440	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 441		return -EIDRM;
 442
 443	/* Acquire mutex */
 444	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 445	if (unlikely(ret < 0))
 446		return ret;
 447
 448	/* Check state */
 449	if (ffs->state != FFS_ACTIVE) {
 450		ret = -EBADFD;
 451		goto done_mutex;
 452	}
 453
 454	/*
 455	 * We're called from user space, we can use _irq rather then
 456	 * _irqsave
 457	 */
 458	spin_lock_irq(&ffs->ev.waitq.lock);
 459
 460	switch (ffs_setup_state_clear_cancelled(ffs)) {
 461	case FFS_SETUP_CANCELLED:
 462		ret = -EIDRM;
 463		break;
 464
 465	case FFS_NO_SETUP:
 466		n = len / sizeof(struct usb_functionfs_event);
 467		if (unlikely(!n)) {
 468			ret = -EINVAL;
 469			break;
 470		}
 471
 472		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
 473			ret = -EAGAIN;
 474			break;
 475		}
 476
 477		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
 478							ffs->ev.count)) {
 479			ret = -EINTR;
 480			break;
 481		}
 482
 483		return __ffs_ep0_read_events(ffs, buf,
 484					     min(n, (size_t)ffs->ev.count));
 485
 486	case FFS_SETUP_PENDING:
 487		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
 488			spin_unlock_irq(&ffs->ev.waitq.lock);
 489			ret = __ffs_ep0_stall(ffs);
 490			goto done_mutex;
 491		}
 492
 493		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 494
 495		spin_unlock_irq(&ffs->ev.waitq.lock);
 496
 497		if (likely(len)) {
 498			data = kmalloc(len, GFP_KERNEL);
 499			if (unlikely(!data)) {
 500				ret = -ENOMEM;
 501				goto done_mutex;
 502			}
 503		}
 504
 505		spin_lock_irq(&ffs->ev.waitq.lock);
 506
 507		/* See ffs_ep0_write() */
 508		if (ffs_setup_state_clear_cancelled(ffs) ==
 509		    FFS_SETUP_CANCELLED) {
 510			ret = -EIDRM;
 511			break;
 512		}
 513
 514		/* unlocks spinlock */
 515		ret = __ffs_ep0_queue_wait(ffs, data, len);
 516		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
 517			ret = -EFAULT;
 518		goto done_mutex;
 519
 520	default:
 521		ret = -EBADFD;
 522		break;
 523	}
 524
 525	spin_unlock_irq(&ffs->ev.waitq.lock);
 526done_mutex:
 527	mutex_unlock(&ffs->mutex);
 528	kfree(data);
 529	return ret;
 530}
 531
 532static int ffs_ep0_open(struct inode *inode, struct file *file)
 533{
 534	struct ffs_data *ffs = inode->i_private;
 535
 536	ENTER();
 537
 538	if (unlikely(ffs->state == FFS_CLOSING))
 539		return -EBUSY;
 540
 541	file->private_data = ffs;
 542	ffs_data_opened(ffs);
 543
 544	return 0;
 545}
 546
 547static int ffs_ep0_release(struct inode *inode, struct file *file)
 548{
 549	struct ffs_data *ffs = file->private_data;
 550
 551	ENTER();
 552
 553	ffs_data_closed(ffs);
 554
 555	return 0;
 556}
 557
 558static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
 559{
 560	struct ffs_data *ffs = file->private_data;
 561	struct usb_gadget *gadget = ffs->gadget;
 562	long ret;
 563
 564	ENTER();
 565
 566	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
 567		struct ffs_function *func = ffs->func;
 568		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
 569	} else if (gadget && gadget->ops->ioctl) {
 570		ret = gadget->ops->ioctl(gadget, code, value);
 571	} else {
 572		ret = -ENOTTY;
 573	}
 574
 575	return ret;
 576}
 577
 578static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
 579{
 580	struct ffs_data *ffs = file->private_data;
 581	unsigned int mask = POLLWRNORM;
 582	int ret;
 583
 584	poll_wait(file, &ffs->ev.waitq, wait);
 585
 586	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 587	if (unlikely(ret < 0))
 588		return mask;
 589
 590	switch (ffs->state) {
 591	case FFS_READ_DESCRIPTORS:
 592	case FFS_READ_STRINGS:
 593		mask |= POLLOUT;
 594		break;
 595
 596	case FFS_ACTIVE:
 597		switch (ffs->setup_state) {
 598		case FFS_NO_SETUP:
 599			if (ffs->ev.count)
 600				mask |= POLLIN;
 601			break;
 602
 603		case FFS_SETUP_PENDING:
 604		case FFS_SETUP_CANCELLED:
 605			mask |= (POLLIN | POLLOUT);
 606			break;
 607		}
 608	case FFS_CLOSING:
 609		break;
 610	case FFS_DEACTIVATED:
 611		break;
 612	}
 613
 614	mutex_unlock(&ffs->mutex);
 615
 616	return mask;
 617}
 618
 619static const struct file_operations ffs_ep0_operations = {
 620	.llseek =	no_llseek,
 621
 622	.open =		ffs_ep0_open,
 623	.write =	ffs_ep0_write,
 624	.read =		ffs_ep0_read,
 625	.release =	ffs_ep0_release,
 626	.unlocked_ioctl =	ffs_ep0_ioctl,
 627	.poll =		ffs_ep0_poll,
 628};
 629
 630
 631/* "Normal" endpoints operations ********************************************/
 632
 633static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
 634{
 635	ENTER();
 636	if (likely(req->context)) {
 637		struct ffs_ep *ep = _ep->driver_data;
 638		ep->status = req->status ? req->status : req->actual;
 639		complete(req->context);
 640	}
 641}
 642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643static void ffs_user_copy_worker(struct work_struct *work)
 644{
 645	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
 646						   work);
 647	int ret = io_data->req->status ? io_data->req->status :
 648					 io_data->req->actual;
 649	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
 650
 651	if (io_data->read && ret > 0) {
 652		use_mm(io_data->mm);
 653		ret = copy_to_iter(io_data->buf, ret, &io_data->data);
 654		if (iov_iter_count(&io_data->data))
 655			ret = -EFAULT;
 656		unuse_mm(io_data->mm);
 657	}
 658
 659	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
 660
 661	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
 662		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
 663
 664	usb_ep_free_request(io_data->ep, io_data->req);
 665
 666	if (io_data->read)
 667		kfree(io_data->to_free);
 668	kfree(io_data->buf);
 669	kfree(io_data);
 670}
 671
 672static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
 673					 struct usb_request *req)
 674{
 675	struct ffs_io_data *io_data = req->context;
 676
 677	ENTER();
 678
 679	INIT_WORK(&io_data->work, ffs_user_copy_worker);
 680	schedule_work(&io_data->work);
 681}
 682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
 684{
 685	struct ffs_epfile *epfile = file->private_data;
 686	struct usb_request *req;
 687	struct ffs_ep *ep;
 688	char *data = NULL;
 689	ssize_t ret, data_len = -EINVAL;
 690	int halt;
 691
 692	/* Are we still active? */
 693	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 694		return -ENODEV;
 695
 696	/* Wait for endpoint to be enabled */
 697	ep = epfile->ep;
 698	if (!ep) {
 699		if (file->f_flags & O_NONBLOCK)
 700			return -EAGAIN;
 701
 702		ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
 703		if (ret)
 704			return -EINTR;
 705	}
 706
 707	/* Do we halt? */
 708	halt = (!io_data->read == !epfile->in);
 709	if (halt && epfile->isoc)
 710		return -EINVAL;
 711
 
 
 
 
 
 712	/* Allocate & copy */
 713	if (!halt) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 714		/*
 715		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
 716		 * before the waiting completes, so do not assign to 'gadget'
 717		 * earlier
 718		 */
 719		struct usb_gadget *gadget = epfile->ffs->gadget;
 720		size_t copied;
 721
 722		spin_lock_irq(&epfile->ffs->eps_lock);
 723		/* In the meantime, endpoint got disabled or changed. */
 724		if (epfile->ep != ep) {
 725			spin_unlock_irq(&epfile->ffs->eps_lock);
 726			return -ESHUTDOWN;
 727		}
 728		data_len = iov_iter_count(&io_data->data);
 729		/*
 730		 * Controller may require buffer size to be aligned to
 731		 * maxpacketsize of an out endpoint.
 732		 */
 733		if (io_data->read)
 734			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
 735		spin_unlock_irq(&epfile->ffs->eps_lock);
 736
 737		data = kmalloc(data_len, GFP_KERNEL);
 738		if (unlikely(!data))
 739			return -ENOMEM;
 740		if (!io_data->read) {
 741			copied = copy_from_iter(data, data_len, &io_data->data);
 742			if (copied != data_len) {
 743				ret = -EFAULT;
 744				goto error;
 745			}
 746		}
 747	}
 748
 749	/* We will be using request */
 750	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
 751	if (unlikely(ret))
 752		goto error;
 753
 754	spin_lock_irq(&epfile->ffs->eps_lock);
 755
 756	if (epfile->ep != ep) {
 757		/* In the meantime, endpoint got disabled or changed. */
 758		ret = -ESHUTDOWN;
 759	} else if (halt) {
 760		/* Halt */
 761		if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
 762			usb_ep_set_halt(ep->ep);
 763		ret = -EBADMSG;
 764	} else if (unlikely(data_len == -EINVAL)) {
 765		/*
 766		 * Sanity Check: even though data_len can't be used
 767		 * uninitialized at the time I write this comment, some
 768		 * compilers complain about this situation.
 769		 * In order to keep the code clean from warnings, data_len is
 770		 * being initialized to -EINVAL during its declaration, which
 771		 * means we can't rely on compiler anymore to warn no future
 772		 * changes won't result in data_len being used uninitialized.
 773		 * For such reason, we're adding this redundant sanity check
 774		 * here.
 775		 */
 776		WARN(1, "%s: data_len == -EINVAL\n", __func__);
 777		ret = -EINVAL;
 778	} else if (!io_data->aio) {
 779		DECLARE_COMPLETION_ONSTACK(done);
 780		bool interrupted = false;
 781
 782		req = ep->req;
 783		req->buf      = data;
 784		req->length   = data_len;
 785
 786		req->context  = &done;
 787		req->complete = ffs_epfile_io_complete;
 788
 789		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
 790		if (unlikely(ret < 0))
 791			goto error_lock;
 792
 793		spin_unlock_irq(&epfile->ffs->eps_lock);
 794
 795		if (unlikely(wait_for_completion_interruptible(&done))) {
 796			/*
 797			 * To avoid race condition with ffs_epfile_io_complete,
 798			 * dequeue the request first then check
 799			 * status. usb_ep_dequeue API should guarantee no race
 800			 * condition with req->complete callback.
 801			 */
 802			usb_ep_dequeue(ep->ep, req);
 803			interrupted = ep->status < 0;
 804		}
 805
 806		/*
 807		 * XXX We may end up silently droping data here.  Since data_len
 808		 * (i.e. req->length) may be bigger than len (after being
 809		 * rounded up to maxpacketsize), we may end up with more data
 810		 * then user space has space for.
 811		 */
 812		ret = interrupted ? -EINTR : ep->status;
 813		if (io_data->read && ret > 0) {
 814			ret = copy_to_iter(data, ret, &io_data->data);
 815			if (!ret)
 816				ret = -EFAULT;
 817		}
 818		goto error_mutex;
 819	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
 820		ret = -ENOMEM;
 821	} else {
 822		req->buf      = data;
 823		req->length   = data_len;
 824
 825		io_data->buf = data;
 826		io_data->ep = ep->ep;
 827		io_data->req = req;
 828		io_data->ffs = epfile->ffs;
 829
 830		req->context  = io_data;
 831		req->complete = ffs_epfile_async_io_complete;
 832
 833		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
 834		if (unlikely(ret)) {
 835			usb_ep_free_request(ep->ep, req);
 836			goto error_lock;
 837		}
 838
 839		ret = -EIOCBQUEUED;
 840		/*
 841		 * Do not kfree the buffer in this function.  It will be freed
 842		 * by ffs_user_copy_worker.
 843		 */
 844		data = NULL;
 845	}
 846
 847error_lock:
 848	spin_unlock_irq(&epfile->ffs->eps_lock);
 849error_mutex:
 850	mutex_unlock(&epfile->mutex);
 851error:
 852	kfree(data);
 853	return ret;
 854}
 855
 856static int
 857ffs_epfile_open(struct inode *inode, struct file *file)
 858{
 859	struct ffs_epfile *epfile = inode->i_private;
 860
 861	ENTER();
 862
 863	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 864		return -ENODEV;
 865
 866	file->private_data = epfile;
 867	ffs_data_opened(epfile->ffs);
 868
 869	return 0;
 870}
 871
 872static int ffs_aio_cancel(struct kiocb *kiocb)
 873{
 874	struct ffs_io_data *io_data = kiocb->private;
 875	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
 876	int value;
 877
 878	ENTER();
 879
 880	spin_lock_irq(&epfile->ffs->eps_lock);
 881
 882	if (likely(io_data && io_data->ep && io_data->req))
 883		value = usb_ep_dequeue(io_data->ep, io_data->req);
 884	else
 885		value = -EINVAL;
 886
 887	spin_unlock_irq(&epfile->ffs->eps_lock);
 888
 889	return value;
 890}
 891
 892static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
 893{
 894	struct ffs_io_data io_data, *p = &io_data;
 895	ssize_t res;
 896
 897	ENTER();
 898
 899	if (!is_sync_kiocb(kiocb)) {
 900		p = kmalloc(sizeof(io_data), GFP_KERNEL);
 901		if (unlikely(!p))
 902			return -ENOMEM;
 903		p->aio = true;
 904	} else {
 905		p->aio = false;
 906	}
 907
 908	p->read = false;
 909	p->kiocb = kiocb;
 910	p->data = *from;
 911	p->mm = current->mm;
 912
 913	kiocb->private = p;
 914
 915	if (p->aio)
 916		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
 917
 918	res = ffs_epfile_io(kiocb->ki_filp, p);
 919	if (res == -EIOCBQUEUED)
 920		return res;
 921	if (p->aio)
 922		kfree(p);
 923	else
 924		*from = p->data;
 925	return res;
 926}
 927
 928static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
 929{
 930	struct ffs_io_data io_data, *p = &io_data;
 931	ssize_t res;
 932
 933	ENTER();
 934
 935	if (!is_sync_kiocb(kiocb)) {
 936		p = kmalloc(sizeof(io_data), GFP_KERNEL);
 937		if (unlikely(!p))
 938			return -ENOMEM;
 939		p->aio = true;
 940	} else {
 941		p->aio = false;
 942	}
 943
 944	p->read = true;
 945	p->kiocb = kiocb;
 946	if (p->aio) {
 947		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
 948		if (!p->to_free) {
 949			kfree(p);
 950			return -ENOMEM;
 951		}
 952	} else {
 953		p->data = *to;
 954		p->to_free = NULL;
 955	}
 956	p->mm = current->mm;
 957
 958	kiocb->private = p;
 959
 960	if (p->aio)
 961		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
 962
 963	res = ffs_epfile_io(kiocb->ki_filp, p);
 964	if (res == -EIOCBQUEUED)
 965		return res;
 966
 967	if (p->aio) {
 968		kfree(p->to_free);
 969		kfree(p);
 970	} else {
 971		*to = p->data;
 972	}
 973	return res;
 974}
 975
 976static int
 977ffs_epfile_release(struct inode *inode, struct file *file)
 978{
 979	struct ffs_epfile *epfile = inode->i_private;
 980
 981	ENTER();
 982
 
 983	ffs_data_closed(epfile->ffs);
 984
 985	return 0;
 986}
 987
 988static long ffs_epfile_ioctl(struct file *file, unsigned code,
 989			     unsigned long value)
 990{
 991	struct ffs_epfile *epfile = file->private_data;
 992	int ret;
 993
 994	ENTER();
 995
 996	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 997		return -ENODEV;
 998
 999	spin_lock_irq(&epfile->ffs->eps_lock);
1000	if (likely(epfile->ep)) {
1001		switch (code) {
1002		case FUNCTIONFS_FIFO_STATUS:
1003			ret = usb_ep_fifo_status(epfile->ep->ep);
1004			break;
1005		case FUNCTIONFS_FIFO_FLUSH:
1006			usb_ep_fifo_flush(epfile->ep->ep);
1007			ret = 0;
1008			break;
1009		case FUNCTIONFS_CLEAR_HALT:
1010			ret = usb_ep_clear_halt(epfile->ep->ep);
1011			break;
1012		case FUNCTIONFS_ENDPOINT_REVMAP:
1013			ret = epfile->ep->num;
1014			break;
1015		case FUNCTIONFS_ENDPOINT_DESC:
1016		{
1017			int desc_idx;
1018			struct usb_endpoint_descriptor *desc;
1019
1020			switch (epfile->ffs->gadget->speed) {
1021			case USB_SPEED_SUPER:
1022				desc_idx = 2;
1023				break;
1024			case USB_SPEED_HIGH:
1025				desc_idx = 1;
1026				break;
1027			default:
1028				desc_idx = 0;
1029			}
1030			desc = epfile->ep->descs[desc_idx];
1031
1032			spin_unlock_irq(&epfile->ffs->eps_lock);
1033			ret = copy_to_user((void *)value, desc, sizeof(*desc));
1034			if (ret)
1035				ret = -EFAULT;
1036			return ret;
1037		}
1038		default:
1039			ret = -ENOTTY;
1040		}
1041	} else {
1042		ret = -ENODEV;
1043	}
1044	spin_unlock_irq(&epfile->ffs->eps_lock);
1045
1046	return ret;
1047}
1048
1049static const struct file_operations ffs_epfile_operations = {
1050	.llseek =	no_llseek,
1051
1052	.open =		ffs_epfile_open,
1053	.write_iter =	ffs_epfile_write_iter,
1054	.read_iter =	ffs_epfile_read_iter,
1055	.release =	ffs_epfile_release,
1056	.unlocked_ioctl =	ffs_epfile_ioctl,
1057};
1058
1059
1060/* File system and super block operations ***********************************/
1061
1062/*
1063 * Mounting the file system creates a controller file, used first for
1064 * function configuration then later for event monitoring.
1065 */
1066
1067static struct inode *__must_check
1068ffs_sb_make_inode(struct super_block *sb, void *data,
1069		  const struct file_operations *fops,
1070		  const struct inode_operations *iops,
1071		  struct ffs_file_perms *perms)
1072{
1073	struct inode *inode;
1074
1075	ENTER();
1076
1077	inode = new_inode(sb);
1078
1079	if (likely(inode)) {
1080		struct timespec current_time = CURRENT_TIME;
1081
1082		inode->i_ino	 = get_next_ino();
1083		inode->i_mode    = perms->mode;
1084		inode->i_uid     = perms->uid;
1085		inode->i_gid     = perms->gid;
1086		inode->i_atime   = current_time;
1087		inode->i_mtime   = current_time;
1088		inode->i_ctime   = current_time;
1089		inode->i_private = data;
1090		if (fops)
1091			inode->i_fop = fops;
1092		if (iops)
1093			inode->i_op  = iops;
1094	}
1095
1096	return inode;
1097}
1098
1099/* Create "regular" file */
1100static struct dentry *ffs_sb_create_file(struct super_block *sb,
1101					const char *name, void *data,
1102					const struct file_operations *fops)
1103{
1104	struct ffs_data	*ffs = sb->s_fs_info;
1105	struct dentry	*dentry;
1106	struct inode	*inode;
1107
1108	ENTER();
1109
1110	dentry = d_alloc_name(sb->s_root, name);
1111	if (unlikely(!dentry))
1112		return NULL;
1113
1114	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1115	if (unlikely(!inode)) {
1116		dput(dentry);
1117		return NULL;
1118	}
1119
1120	d_add(dentry, inode);
1121	return dentry;
1122}
1123
1124/* Super block */
1125static const struct super_operations ffs_sb_operations = {
1126	.statfs =	simple_statfs,
1127	.drop_inode =	generic_delete_inode,
1128};
1129
1130struct ffs_sb_fill_data {
1131	struct ffs_file_perms perms;
1132	umode_t root_mode;
1133	const char *dev_name;
1134	bool no_disconnect;
1135	struct ffs_data *ffs_data;
1136};
1137
1138static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1139{
1140	struct ffs_sb_fill_data *data = _data;
1141	struct inode	*inode;
1142	struct ffs_data	*ffs = data->ffs_data;
1143
1144	ENTER();
1145
1146	ffs->sb              = sb;
1147	data->ffs_data       = NULL;
1148	sb->s_fs_info        = ffs;
1149	sb->s_blocksize      = PAGE_SIZE;
1150	sb->s_blocksize_bits = PAGE_SHIFT;
1151	sb->s_magic          = FUNCTIONFS_MAGIC;
1152	sb->s_op             = &ffs_sb_operations;
1153	sb->s_time_gran      = 1;
1154
1155	/* Root inode */
1156	data->perms.mode = data->root_mode;
1157	inode = ffs_sb_make_inode(sb, NULL,
1158				  &simple_dir_operations,
1159				  &simple_dir_inode_operations,
1160				  &data->perms);
1161	sb->s_root = d_make_root(inode);
1162	if (unlikely(!sb->s_root))
1163		return -ENOMEM;
1164
1165	/* EP0 file */
1166	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1167					 &ffs_ep0_operations)))
1168		return -ENOMEM;
1169
1170	return 0;
1171}
1172
1173static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1174{
1175	ENTER();
1176
1177	if (!opts || !*opts)
1178		return 0;
1179
1180	for (;;) {
1181		unsigned long value;
1182		char *eq, *comma;
1183
1184		/* Option limit */
1185		comma = strchr(opts, ',');
1186		if (comma)
1187			*comma = 0;
1188
1189		/* Value limit */
1190		eq = strchr(opts, '=');
1191		if (unlikely(!eq)) {
1192			pr_err("'=' missing in %s\n", opts);
1193			return -EINVAL;
1194		}
1195		*eq = 0;
1196
1197		/* Parse value */
1198		if (kstrtoul(eq + 1, 0, &value)) {
1199			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1200			return -EINVAL;
1201		}
1202
1203		/* Interpret option */
1204		switch (eq - opts) {
1205		case 13:
1206			if (!memcmp(opts, "no_disconnect", 13))
1207				data->no_disconnect = !!value;
1208			else
1209				goto invalid;
1210			break;
1211		case 5:
1212			if (!memcmp(opts, "rmode", 5))
1213				data->root_mode  = (value & 0555) | S_IFDIR;
1214			else if (!memcmp(opts, "fmode", 5))
1215				data->perms.mode = (value & 0666) | S_IFREG;
1216			else
1217				goto invalid;
1218			break;
1219
1220		case 4:
1221			if (!memcmp(opts, "mode", 4)) {
1222				data->root_mode  = (value & 0555) | S_IFDIR;
1223				data->perms.mode = (value & 0666) | S_IFREG;
1224			} else {
1225				goto invalid;
1226			}
1227			break;
1228
1229		case 3:
1230			if (!memcmp(opts, "uid", 3)) {
1231				data->perms.uid = make_kuid(current_user_ns(), value);
1232				if (!uid_valid(data->perms.uid)) {
1233					pr_err("%s: unmapped value: %lu\n", opts, value);
1234					return -EINVAL;
1235				}
1236			} else if (!memcmp(opts, "gid", 3)) {
1237				data->perms.gid = make_kgid(current_user_ns(), value);
1238				if (!gid_valid(data->perms.gid)) {
1239					pr_err("%s: unmapped value: %lu\n", opts, value);
1240					return -EINVAL;
1241				}
1242			} else {
1243				goto invalid;
1244			}
1245			break;
1246
1247		default:
1248invalid:
1249			pr_err("%s: invalid option\n", opts);
1250			return -EINVAL;
1251		}
1252
1253		/* Next iteration */
1254		if (!comma)
1255			break;
1256		opts = comma + 1;
1257	}
1258
1259	return 0;
1260}
1261
1262/* "mount -t functionfs dev_name /dev/function" ends up here */
1263
1264static struct dentry *
1265ffs_fs_mount(struct file_system_type *t, int flags,
1266	      const char *dev_name, void *opts)
1267{
1268	struct ffs_sb_fill_data data = {
1269		.perms = {
1270			.mode = S_IFREG | 0600,
1271			.uid = GLOBAL_ROOT_UID,
1272			.gid = GLOBAL_ROOT_GID,
1273		},
1274		.root_mode = S_IFDIR | 0500,
1275		.no_disconnect = false,
1276	};
1277	struct dentry *rv;
1278	int ret;
1279	void *ffs_dev;
1280	struct ffs_data	*ffs;
1281
1282	ENTER();
1283
1284	ret = ffs_fs_parse_opts(&data, opts);
1285	if (unlikely(ret < 0))
1286		return ERR_PTR(ret);
1287
1288	ffs = ffs_data_new();
1289	if (unlikely(!ffs))
1290		return ERR_PTR(-ENOMEM);
1291	ffs->file_perms = data.perms;
1292	ffs->no_disconnect = data.no_disconnect;
1293
1294	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1295	if (unlikely(!ffs->dev_name)) {
1296		ffs_data_put(ffs);
1297		return ERR_PTR(-ENOMEM);
1298	}
1299
1300	ffs_dev = ffs_acquire_dev(dev_name);
1301	if (IS_ERR(ffs_dev)) {
1302		ffs_data_put(ffs);
1303		return ERR_CAST(ffs_dev);
1304	}
1305	ffs->private_data = ffs_dev;
1306	data.ffs_data = ffs;
1307
1308	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1309	if (IS_ERR(rv) && data.ffs_data) {
1310		ffs_release_dev(data.ffs_data);
1311		ffs_data_put(data.ffs_data);
1312	}
1313	return rv;
1314}
1315
1316static void
1317ffs_fs_kill_sb(struct super_block *sb)
1318{
1319	ENTER();
1320
1321	kill_litter_super(sb);
1322	if (sb->s_fs_info) {
1323		ffs_release_dev(sb->s_fs_info);
1324		ffs_data_closed(sb->s_fs_info);
1325		ffs_data_put(sb->s_fs_info);
1326	}
1327}
1328
1329static struct file_system_type ffs_fs_type = {
1330	.owner		= THIS_MODULE,
1331	.name		= "functionfs",
1332	.mount		= ffs_fs_mount,
1333	.kill_sb	= ffs_fs_kill_sb,
1334};
1335MODULE_ALIAS_FS("functionfs");
1336
1337
1338/* Driver's main init/cleanup functions *************************************/
1339
1340static int functionfs_init(void)
1341{
1342	int ret;
1343
1344	ENTER();
1345
1346	ret = register_filesystem(&ffs_fs_type);
1347	if (likely(!ret))
1348		pr_info("file system registered\n");
1349	else
1350		pr_err("failed registering file system (%d)\n", ret);
1351
1352	return ret;
1353}
1354
1355static void functionfs_cleanup(void)
1356{
1357	ENTER();
1358
1359	pr_info("unloading\n");
1360	unregister_filesystem(&ffs_fs_type);
1361}
1362
1363
1364/* ffs_data and ffs_function construction and destruction code **************/
1365
1366static void ffs_data_clear(struct ffs_data *ffs);
1367static void ffs_data_reset(struct ffs_data *ffs);
1368
1369static void ffs_data_get(struct ffs_data *ffs)
1370{
1371	ENTER();
1372
1373	atomic_inc(&ffs->ref);
1374}
1375
1376static void ffs_data_opened(struct ffs_data *ffs)
1377{
1378	ENTER();
1379
1380	atomic_inc(&ffs->ref);
1381	if (atomic_add_return(1, &ffs->opened) == 1 &&
1382			ffs->state == FFS_DEACTIVATED) {
1383		ffs->state = FFS_CLOSING;
1384		ffs_data_reset(ffs);
1385	}
1386}
1387
1388static void ffs_data_put(struct ffs_data *ffs)
1389{
1390	ENTER();
1391
1392	if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1393		pr_info("%s(): freeing\n", __func__);
1394		ffs_data_clear(ffs);
1395		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1396		       waitqueue_active(&ffs->ep0req_completion.wait));
1397		kfree(ffs->dev_name);
1398		kfree(ffs);
1399	}
1400}
1401
1402static void ffs_data_closed(struct ffs_data *ffs)
1403{
1404	ENTER();
1405
1406	if (atomic_dec_and_test(&ffs->opened)) {
1407		if (ffs->no_disconnect) {
1408			ffs->state = FFS_DEACTIVATED;
1409			if (ffs->epfiles) {
1410				ffs_epfiles_destroy(ffs->epfiles,
1411						   ffs->eps_count);
1412				ffs->epfiles = NULL;
1413			}
1414			if (ffs->setup_state == FFS_SETUP_PENDING)
1415				__ffs_ep0_stall(ffs);
1416		} else {
1417			ffs->state = FFS_CLOSING;
1418			ffs_data_reset(ffs);
1419		}
1420	}
1421	if (atomic_read(&ffs->opened) < 0) {
1422		ffs->state = FFS_CLOSING;
1423		ffs_data_reset(ffs);
1424	}
1425
1426	ffs_data_put(ffs);
1427}
1428
1429static struct ffs_data *ffs_data_new(void)
1430{
1431	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1432	if (unlikely(!ffs))
1433		return NULL;
1434
1435	ENTER();
1436
1437	atomic_set(&ffs->ref, 1);
1438	atomic_set(&ffs->opened, 0);
1439	ffs->state = FFS_READ_DESCRIPTORS;
1440	mutex_init(&ffs->mutex);
1441	spin_lock_init(&ffs->eps_lock);
1442	init_waitqueue_head(&ffs->ev.waitq);
1443	init_completion(&ffs->ep0req_completion);
1444
1445	/* XXX REVISIT need to update it in some places, or do we? */
1446	ffs->ev.can_stall = 1;
1447
1448	return ffs;
1449}
1450
1451static void ffs_data_clear(struct ffs_data *ffs)
1452{
1453	ENTER();
1454
1455	ffs_closed(ffs);
1456
1457	BUG_ON(ffs->gadget);
1458
1459	if (ffs->epfiles)
1460		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1461
1462	if (ffs->ffs_eventfd)
1463		eventfd_ctx_put(ffs->ffs_eventfd);
1464
1465	kfree(ffs->raw_descs_data);
1466	kfree(ffs->raw_strings);
1467	kfree(ffs->stringtabs);
1468}
1469
1470static void ffs_data_reset(struct ffs_data *ffs)
1471{
1472	ENTER();
1473
1474	ffs_data_clear(ffs);
1475
1476	ffs->epfiles = NULL;
1477	ffs->raw_descs_data = NULL;
1478	ffs->raw_descs = NULL;
1479	ffs->raw_strings = NULL;
1480	ffs->stringtabs = NULL;
1481
1482	ffs->raw_descs_length = 0;
1483	ffs->fs_descs_count = 0;
1484	ffs->hs_descs_count = 0;
1485	ffs->ss_descs_count = 0;
1486
1487	ffs->strings_count = 0;
1488	ffs->interfaces_count = 0;
1489	ffs->eps_count = 0;
1490
1491	ffs->ev.count = 0;
1492
1493	ffs->state = FFS_READ_DESCRIPTORS;
1494	ffs->setup_state = FFS_NO_SETUP;
1495	ffs->flags = 0;
1496}
1497
1498
1499static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1500{
1501	struct usb_gadget_strings **lang;
1502	int first_id;
1503
1504	ENTER();
1505
1506	if (WARN_ON(ffs->state != FFS_ACTIVE
1507		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1508		return -EBADFD;
1509
1510	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1511	if (unlikely(first_id < 0))
1512		return first_id;
1513
1514	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1515	if (unlikely(!ffs->ep0req))
1516		return -ENOMEM;
1517	ffs->ep0req->complete = ffs_ep0_complete;
1518	ffs->ep0req->context = ffs;
1519
1520	lang = ffs->stringtabs;
1521	if (lang) {
1522		for (; *lang; ++lang) {
1523			struct usb_string *str = (*lang)->strings;
1524			int id = first_id;
1525			for (; str->s; ++id, ++str)
1526				str->id = id;
1527		}
1528	}
1529
1530	ffs->gadget = cdev->gadget;
1531	ffs_data_get(ffs);
1532	return 0;
1533}
1534
1535static void functionfs_unbind(struct ffs_data *ffs)
1536{
1537	ENTER();
1538
1539	if (!WARN_ON(!ffs->gadget)) {
1540		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1541		ffs->ep0req = NULL;
1542		ffs->gadget = NULL;
1543		clear_bit(FFS_FL_BOUND, &ffs->flags);
1544		ffs_data_put(ffs);
1545	}
1546}
1547
1548static int ffs_epfiles_create(struct ffs_data *ffs)
1549{
1550	struct ffs_epfile *epfile, *epfiles;
1551	unsigned i, count;
1552
1553	ENTER();
1554
1555	count = ffs->eps_count;
1556	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1557	if (!epfiles)
1558		return -ENOMEM;
1559
1560	epfile = epfiles;
1561	for (i = 1; i <= count; ++i, ++epfile) {
1562		epfile->ffs = ffs;
1563		mutex_init(&epfile->mutex);
1564		init_waitqueue_head(&epfile->wait);
1565		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1566			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1567		else
1568			sprintf(epfile->name, "ep%u", i);
1569		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1570						 epfile,
1571						 &ffs_epfile_operations);
1572		if (unlikely(!epfile->dentry)) {
1573			ffs_epfiles_destroy(epfiles, i - 1);
1574			return -ENOMEM;
1575		}
1576	}
1577
1578	ffs->epfiles = epfiles;
1579	return 0;
1580}
1581
1582static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1583{
1584	struct ffs_epfile *epfile = epfiles;
1585
1586	ENTER();
1587
1588	for (; count; --count, ++epfile) {
1589		BUG_ON(mutex_is_locked(&epfile->mutex) ||
1590		       waitqueue_active(&epfile->wait));
1591		if (epfile->dentry) {
1592			d_delete(epfile->dentry);
1593			dput(epfile->dentry);
1594			epfile->dentry = NULL;
1595		}
1596	}
1597
1598	kfree(epfiles);
1599}
1600
1601static void ffs_func_eps_disable(struct ffs_function *func)
1602{
1603	struct ffs_ep *ep         = func->eps;
1604	struct ffs_epfile *epfile = func->ffs->epfiles;
1605	unsigned count            = func->ffs->eps_count;
1606	unsigned long flags;
1607
1608	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1609	do {
1610		/* pending requests get nuked */
1611		if (likely(ep->ep))
1612			usb_ep_disable(ep->ep);
1613		++ep;
1614
1615		if (epfile) {
1616			epfile->ep = NULL;
 
1617			++epfile;
1618		}
1619	} while (--count);
1620	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1621}
1622
1623static int ffs_func_eps_enable(struct ffs_function *func)
1624{
1625	struct ffs_data *ffs      = func->ffs;
1626	struct ffs_ep *ep         = func->eps;
1627	struct ffs_epfile *epfile = ffs->epfiles;
1628	unsigned count            = ffs->eps_count;
1629	unsigned long flags;
1630	int ret = 0;
1631
1632	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1633	do {
1634		struct usb_endpoint_descriptor *ds;
 
 
1635		int desc_idx;
1636
1637		if (ffs->gadget->speed == USB_SPEED_SUPER)
1638			desc_idx = 2;
1639		else if (ffs->gadget->speed == USB_SPEED_HIGH)
 
1640			desc_idx = 1;
1641		else
1642			desc_idx = 0;
1643
1644		/* fall-back to lower speed if desc missing for current speed */
1645		do {
1646			ds = ep->descs[desc_idx];
1647		} while (!ds && --desc_idx >= 0);
1648
1649		if (!ds) {
1650			ret = -EINVAL;
1651			break;
1652		}
1653
1654		ep->ep->driver_data = ep;
1655		ep->ep->desc = ds;
 
 
 
 
 
 
 
 
1656		ret = usb_ep_enable(ep->ep);
1657		if (likely(!ret)) {
1658			epfile->ep = ep;
1659			epfile->in = usb_endpoint_dir_in(ds);
1660			epfile->isoc = usb_endpoint_xfer_isoc(ds);
1661		} else {
1662			break;
1663		}
1664
1665		wake_up(&epfile->wait);
1666
1667		++ep;
1668		++epfile;
1669	} while (--count);
1670	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1671
1672	return ret;
1673}
1674
1675
1676/* Parsing and building descriptors and strings *****************************/
1677
1678/*
1679 * This validates if data pointed by data is a valid USB descriptor as
1680 * well as record how many interfaces, endpoints and strings are
1681 * required by given configuration.  Returns address after the
1682 * descriptor or NULL if data is invalid.
1683 */
1684
1685enum ffs_entity_type {
1686	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1687};
1688
1689enum ffs_os_desc_type {
1690	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1691};
1692
1693typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1694				   u8 *valuep,
1695				   struct usb_descriptor_header *desc,
1696				   void *priv);
1697
1698typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1699				    struct usb_os_desc_header *h, void *data,
1700				    unsigned len, void *priv);
1701
1702static int __must_check ffs_do_single_desc(char *data, unsigned len,
1703					   ffs_entity_callback entity,
1704					   void *priv)
1705{
1706	struct usb_descriptor_header *_ds = (void *)data;
1707	u8 length;
1708	int ret;
1709
1710	ENTER();
1711
1712	/* At least two bytes are required: length and type */
1713	if (len < 2) {
1714		pr_vdebug("descriptor too short\n");
1715		return -EINVAL;
1716	}
1717
1718	/* If we have at least as many bytes as the descriptor takes? */
1719	length = _ds->bLength;
1720	if (len < length) {
1721		pr_vdebug("descriptor longer then available data\n");
1722		return -EINVAL;
1723	}
1724
1725#define __entity_check_INTERFACE(val)  1
1726#define __entity_check_STRING(val)     (val)
1727#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1728#define __entity(type, val) do {					\
1729		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1730		if (unlikely(!__entity_check_ ##type(val))) {		\
1731			pr_vdebug("invalid entity's value\n");		\
1732			return -EINVAL;					\
1733		}							\
1734		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1735		if (unlikely(ret < 0)) {				\
1736			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1737				 (val), ret);				\
1738			return ret;					\
1739		}							\
1740	} while (0)
1741
1742	/* Parse descriptor depending on type. */
1743	switch (_ds->bDescriptorType) {
1744	case USB_DT_DEVICE:
1745	case USB_DT_CONFIG:
1746	case USB_DT_STRING:
1747	case USB_DT_DEVICE_QUALIFIER:
1748		/* function can't have any of those */
1749		pr_vdebug("descriptor reserved for gadget: %d\n",
1750		      _ds->bDescriptorType);
1751		return -EINVAL;
1752
1753	case USB_DT_INTERFACE: {
1754		struct usb_interface_descriptor *ds = (void *)_ds;
1755		pr_vdebug("interface descriptor\n");
1756		if (length != sizeof *ds)
1757			goto inv_length;
1758
1759		__entity(INTERFACE, ds->bInterfaceNumber);
1760		if (ds->iInterface)
1761			__entity(STRING, ds->iInterface);
1762	}
1763		break;
1764
1765	case USB_DT_ENDPOINT: {
1766		struct usb_endpoint_descriptor *ds = (void *)_ds;
1767		pr_vdebug("endpoint descriptor\n");
1768		if (length != USB_DT_ENDPOINT_SIZE &&
1769		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1770			goto inv_length;
1771		__entity(ENDPOINT, ds->bEndpointAddress);
1772	}
1773		break;
1774
1775	case HID_DT_HID:
1776		pr_vdebug("hid descriptor\n");
1777		if (length != sizeof(struct hid_descriptor))
1778			goto inv_length;
1779		break;
1780
1781	case USB_DT_OTG:
1782		if (length != sizeof(struct usb_otg_descriptor))
1783			goto inv_length;
1784		break;
1785
1786	case USB_DT_INTERFACE_ASSOCIATION: {
1787		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1788		pr_vdebug("interface association descriptor\n");
1789		if (length != sizeof *ds)
1790			goto inv_length;
1791		if (ds->iFunction)
1792			__entity(STRING, ds->iFunction);
1793	}
1794		break;
1795
1796	case USB_DT_SS_ENDPOINT_COMP:
1797		pr_vdebug("EP SS companion descriptor\n");
1798		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
1799			goto inv_length;
1800		break;
1801
1802	case USB_DT_OTHER_SPEED_CONFIG:
1803	case USB_DT_INTERFACE_POWER:
1804	case USB_DT_DEBUG:
1805	case USB_DT_SECURITY:
1806	case USB_DT_CS_RADIO_CONTROL:
1807		/* TODO */
1808		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
1809		return -EINVAL;
1810
1811	default:
1812		/* We should never be here */
1813		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
1814		return -EINVAL;
1815
1816inv_length:
1817		pr_vdebug("invalid length: %d (descriptor %d)\n",
1818			  _ds->bLength, _ds->bDescriptorType);
1819		return -EINVAL;
1820	}
1821
1822#undef __entity
1823#undef __entity_check_DESCRIPTOR
1824#undef __entity_check_INTERFACE
1825#undef __entity_check_STRING
1826#undef __entity_check_ENDPOINT
1827
1828	return length;
1829}
1830
1831static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
1832				     ffs_entity_callback entity, void *priv)
1833{
1834	const unsigned _len = len;
1835	unsigned long num = 0;
1836
1837	ENTER();
1838
1839	for (;;) {
1840		int ret;
1841
1842		if (num == count)
1843			data = NULL;
1844
1845		/* Record "descriptor" entity */
1846		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
1847		if (unlikely(ret < 0)) {
1848			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
1849				 num, ret);
1850			return ret;
1851		}
1852
1853		if (!data)
1854			return _len - len;
1855
1856		ret = ffs_do_single_desc(data, len, entity, priv);
1857		if (unlikely(ret < 0)) {
1858			pr_debug("%s returns %d\n", __func__, ret);
1859			return ret;
1860		}
1861
1862		len -= ret;
1863		data += ret;
1864		++num;
1865	}
1866}
1867
1868static int __ffs_data_do_entity(enum ffs_entity_type type,
1869				u8 *valuep, struct usb_descriptor_header *desc,
1870				void *priv)
1871{
1872	struct ffs_desc_helper *helper = priv;
1873	struct usb_endpoint_descriptor *d;
1874
1875	ENTER();
1876
1877	switch (type) {
1878	case FFS_DESCRIPTOR:
1879		break;
1880
1881	case FFS_INTERFACE:
1882		/*
1883		 * Interfaces are indexed from zero so if we
1884		 * encountered interface "n" then there are at least
1885		 * "n+1" interfaces.
1886		 */
1887		if (*valuep >= helper->interfaces_count)
1888			helper->interfaces_count = *valuep + 1;
1889		break;
1890
1891	case FFS_STRING:
1892		/*
1893		 * Strings are indexed from 1 (0 is magic ;) reserved
1894		 * for languages list or some such)
1895		 */
1896		if (*valuep > helper->ffs->strings_count)
1897			helper->ffs->strings_count = *valuep;
1898		break;
1899
1900	case FFS_ENDPOINT:
1901		d = (void *)desc;
1902		helper->eps_count++;
1903		if (helper->eps_count >= 15)
1904			return -EINVAL;
1905		/* Check if descriptors for any speed were already parsed */
1906		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
1907			helper->ffs->eps_addrmap[helper->eps_count] =
1908				d->bEndpointAddress;
1909		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
1910				d->bEndpointAddress)
1911			return -EINVAL;
1912		break;
1913	}
1914
1915	return 0;
1916}
1917
1918static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
1919				   struct usb_os_desc_header *desc)
1920{
1921	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
1922	u16 w_index = le16_to_cpu(desc->wIndex);
1923
1924	if (bcd_version != 1) {
1925		pr_vdebug("unsupported os descriptors version: %d",
1926			  bcd_version);
1927		return -EINVAL;
1928	}
1929	switch (w_index) {
1930	case 0x4:
1931		*next_type = FFS_OS_DESC_EXT_COMPAT;
1932		break;
1933	case 0x5:
1934		*next_type = FFS_OS_DESC_EXT_PROP;
1935		break;
1936	default:
1937		pr_vdebug("unsupported os descriptor type: %d", w_index);
1938		return -EINVAL;
1939	}
1940
1941	return sizeof(*desc);
1942}
1943
1944/*
1945 * Process all extended compatibility/extended property descriptors
1946 * of a feature descriptor
1947 */
1948static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
1949					      enum ffs_os_desc_type type,
1950					      u16 feature_count,
1951					      ffs_os_desc_callback entity,
1952					      void *priv,
1953					      struct usb_os_desc_header *h)
1954{
1955	int ret;
1956	const unsigned _len = len;
1957
1958	ENTER();
1959
1960	/* loop over all ext compat/ext prop descriptors */
1961	while (feature_count--) {
1962		ret = entity(type, h, data, len, priv);
1963		if (unlikely(ret < 0)) {
1964			pr_debug("bad OS descriptor, type: %d\n", type);
1965			return ret;
1966		}
1967		data += ret;
1968		len -= ret;
1969	}
1970	return _len - len;
1971}
1972
1973/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
1974static int __must_check ffs_do_os_descs(unsigned count,
1975					char *data, unsigned len,
1976					ffs_os_desc_callback entity, void *priv)
1977{
1978	const unsigned _len = len;
1979	unsigned long num = 0;
1980
1981	ENTER();
1982
1983	for (num = 0; num < count; ++num) {
1984		int ret;
1985		enum ffs_os_desc_type type;
1986		u16 feature_count;
1987		struct usb_os_desc_header *desc = (void *)data;
1988
1989		if (len < sizeof(*desc))
1990			return -EINVAL;
1991
1992		/*
1993		 * Record "descriptor" entity.
1994		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
1995		 * Move the data pointer to the beginning of extended
1996		 * compatibilities proper or extended properties proper
1997		 * portions of the data
1998		 */
1999		if (le32_to_cpu(desc->dwLength) > len)
2000			return -EINVAL;
2001
2002		ret = __ffs_do_os_desc_header(&type, desc);
2003		if (unlikely(ret < 0)) {
2004			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2005				 num, ret);
2006			return ret;
2007		}
2008		/*
2009		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2010		 */
2011		feature_count = le16_to_cpu(desc->wCount);
2012		if (type == FFS_OS_DESC_EXT_COMPAT &&
2013		    (feature_count > 255 || desc->Reserved))
2014				return -EINVAL;
2015		len -= ret;
2016		data += ret;
2017
2018		/*
2019		 * Process all function/property descriptors
2020		 * of this Feature Descriptor
2021		 */
2022		ret = ffs_do_single_os_desc(data, len, type,
2023					    feature_count, entity, priv, desc);
2024		if (unlikely(ret < 0)) {
2025			pr_debug("%s returns %d\n", __func__, ret);
2026			return ret;
2027		}
2028
2029		len -= ret;
2030		data += ret;
2031	}
2032	return _len - len;
2033}
2034
2035/**
2036 * Validate contents of the buffer from userspace related to OS descriptors.
2037 */
2038static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2039				 struct usb_os_desc_header *h, void *data,
2040				 unsigned len, void *priv)
2041{
2042	struct ffs_data *ffs = priv;
2043	u8 length;
2044
2045	ENTER();
2046
2047	switch (type) {
2048	case FFS_OS_DESC_EXT_COMPAT: {
2049		struct usb_ext_compat_desc *d = data;
2050		int i;
2051
2052		if (len < sizeof(*d) ||
2053		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2054		    d->Reserved1)
2055			return -EINVAL;
2056		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2057			if (d->Reserved2[i])
2058				return -EINVAL;
2059
2060		length = sizeof(struct usb_ext_compat_desc);
2061	}
2062		break;
2063	case FFS_OS_DESC_EXT_PROP: {
2064		struct usb_ext_prop_desc *d = data;
2065		u32 type, pdl;
2066		u16 pnl;
2067
2068		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2069			return -EINVAL;
2070		length = le32_to_cpu(d->dwSize);
 
 
2071		type = le32_to_cpu(d->dwPropertyDataType);
2072		if (type < USB_EXT_PROP_UNICODE ||
2073		    type > USB_EXT_PROP_UNICODE_MULTI) {
2074			pr_vdebug("unsupported os descriptor property type: %d",
2075				  type);
2076			return -EINVAL;
2077		}
2078		pnl = le16_to_cpu(d->wPropertyNameLength);
 
 
 
 
 
2079		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2080		if (length != 14 + pnl + pdl) {
2081			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2082				  length, pnl, pdl, type);
2083			return -EINVAL;
2084		}
2085		++ffs->ms_os_descs_ext_prop_count;
2086		/* property name reported to the host as "WCHAR"s */
2087		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2088		ffs->ms_os_descs_ext_prop_data_len += pdl;
2089	}
2090		break;
2091	default:
2092		pr_vdebug("unknown descriptor: %d\n", type);
2093		return -EINVAL;
2094	}
2095	return length;
2096}
2097
2098static int __ffs_data_got_descs(struct ffs_data *ffs,
2099				char *const _data, size_t len)
2100{
2101	char *data = _data, *raw_descs;
2102	unsigned os_descs_count = 0, counts[3], flags;
2103	int ret = -EINVAL, i;
2104	struct ffs_desc_helper helper;
2105
2106	ENTER();
2107
2108	if (get_unaligned_le32(data + 4) != len)
2109		goto error;
2110
2111	switch (get_unaligned_le32(data)) {
2112	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2113		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2114		data += 8;
2115		len  -= 8;
2116		break;
2117	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2118		flags = get_unaligned_le32(data + 8);
2119		ffs->user_flags = flags;
2120		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2121			      FUNCTIONFS_HAS_HS_DESC |
2122			      FUNCTIONFS_HAS_SS_DESC |
2123			      FUNCTIONFS_HAS_MS_OS_DESC |
2124			      FUNCTIONFS_VIRTUAL_ADDR |
2125			      FUNCTIONFS_EVENTFD)) {
 
 
2126			ret = -ENOSYS;
2127			goto error;
2128		}
2129		data += 12;
2130		len  -= 12;
2131		break;
2132	default:
2133		goto error;
2134	}
2135
2136	if (flags & FUNCTIONFS_EVENTFD) {
2137		if (len < 4)
2138			goto error;
2139		ffs->ffs_eventfd =
2140			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2141		if (IS_ERR(ffs->ffs_eventfd)) {
2142			ret = PTR_ERR(ffs->ffs_eventfd);
2143			ffs->ffs_eventfd = NULL;
2144			goto error;
2145		}
2146		data += 4;
2147		len  -= 4;
2148	}
2149
2150	/* Read fs_count, hs_count and ss_count (if present) */
2151	for (i = 0; i < 3; ++i) {
2152		if (!(flags & (1 << i))) {
2153			counts[i] = 0;
2154		} else if (len < 4) {
2155			goto error;
2156		} else {
2157			counts[i] = get_unaligned_le32(data);
2158			data += 4;
2159			len  -= 4;
2160		}
2161	}
2162	if (flags & (1 << i)) {
 
 
 
2163		os_descs_count = get_unaligned_le32(data);
2164		data += 4;
2165		len -= 4;
2166	};
2167
2168	/* Read descriptors */
2169	raw_descs = data;
2170	helper.ffs = ffs;
2171	for (i = 0; i < 3; ++i) {
2172		if (!counts[i])
2173			continue;
2174		helper.interfaces_count = 0;
2175		helper.eps_count = 0;
2176		ret = ffs_do_descs(counts[i], data, len,
2177				   __ffs_data_do_entity, &helper);
2178		if (ret < 0)
2179			goto error;
2180		if (!ffs->eps_count && !ffs->interfaces_count) {
2181			ffs->eps_count = helper.eps_count;
2182			ffs->interfaces_count = helper.interfaces_count;
2183		} else {
2184			if (ffs->eps_count != helper.eps_count) {
2185				ret = -EINVAL;
2186				goto error;
2187			}
2188			if (ffs->interfaces_count != helper.interfaces_count) {
2189				ret = -EINVAL;
2190				goto error;
2191			}
2192		}
2193		data += ret;
2194		len  -= ret;
2195	}
2196	if (os_descs_count) {
2197		ret = ffs_do_os_descs(os_descs_count, data, len,
2198				      __ffs_data_do_os_desc, ffs);
2199		if (ret < 0)
2200			goto error;
2201		data += ret;
2202		len -= ret;
2203	}
2204
2205	if (raw_descs == data || len) {
2206		ret = -EINVAL;
2207		goto error;
2208	}
2209
2210	ffs->raw_descs_data	= _data;
2211	ffs->raw_descs		= raw_descs;
2212	ffs->raw_descs_length	= data - raw_descs;
2213	ffs->fs_descs_count	= counts[0];
2214	ffs->hs_descs_count	= counts[1];
2215	ffs->ss_descs_count	= counts[2];
2216	ffs->ms_os_descs_count	= os_descs_count;
2217
2218	return 0;
2219
2220error:
2221	kfree(_data);
2222	return ret;
2223}
2224
2225static int __ffs_data_got_strings(struct ffs_data *ffs,
2226				  char *const _data, size_t len)
2227{
2228	u32 str_count, needed_count, lang_count;
2229	struct usb_gadget_strings **stringtabs, *t;
2230	struct usb_string *strings, *s;
2231	const char *data = _data;
 
2232
2233	ENTER();
2234
2235	if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
 
2236		     get_unaligned_le32(data + 4) != len))
2237		goto error;
2238	str_count  = get_unaligned_le32(data + 8);
2239	lang_count = get_unaligned_le32(data + 12);
2240
2241	/* if one is zero the other must be zero */
2242	if (unlikely(!str_count != !lang_count))
2243		goto error;
2244
2245	/* Do we have at least as many strings as descriptors need? */
2246	needed_count = ffs->strings_count;
2247	if (unlikely(str_count < needed_count))
2248		goto error;
2249
2250	/*
2251	 * If we don't need any strings just return and free all
2252	 * memory.
2253	 */
2254	if (!needed_count) {
2255		kfree(_data);
2256		return 0;
2257	}
2258
2259	/* Allocate everything in one chunk so there's less maintenance. */
2260	{
2261		unsigned i = 0;
2262		vla_group(d);
2263		vla_item(d, struct usb_gadget_strings *, stringtabs,
2264			lang_count + 1);
2265		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2266		vla_item(d, struct usb_string, strings,
2267			lang_count*(needed_count+1));
2268
2269		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2270
2271		if (unlikely(!vlabuf)) {
2272			kfree(_data);
2273			return -ENOMEM;
2274		}
2275
2276		/* Initialize the VLA pointers */
2277		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2278		t = vla_ptr(vlabuf, d, stringtab);
2279		i = lang_count;
2280		do {
2281			*stringtabs++ = t++;
2282		} while (--i);
2283		*stringtabs = NULL;
2284
2285		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2286		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2287		t = vla_ptr(vlabuf, d, stringtab);
2288		s = vla_ptr(vlabuf, d, strings);
2289		strings = s;
2290	}
2291
2292	/* For each language */
2293	data += 16;
2294	len -= 16;
2295
2296	do { /* lang_count > 0 so we can use do-while */
2297		unsigned needed = needed_count;
2298
2299		if (unlikely(len < 3))
2300			goto error_free;
2301		t->language = get_unaligned_le16(data);
2302		t->strings  = s;
2303		++t;
2304
2305		data += 2;
2306		len -= 2;
2307
2308		/* For each string */
2309		do { /* str_count > 0 so we can use do-while */
2310			size_t length = strnlen(data, len);
2311
2312			if (unlikely(length == len))
2313				goto error_free;
2314
2315			/*
2316			 * User may provide more strings then we need,
2317			 * if that's the case we simply ignore the
2318			 * rest
2319			 */
2320			if (likely(needed)) {
2321				/*
2322				 * s->id will be set while adding
2323				 * function to configuration so for
2324				 * now just leave garbage here.
2325				 */
2326				s->s = data;
2327				--needed;
2328				++s;
2329			}
2330
2331			data += length + 1;
2332			len -= length + 1;
2333		} while (--str_count);
2334
2335		s->id = 0;   /* terminator */
2336		s->s = NULL;
2337		++s;
2338
2339	} while (--lang_count);
2340
2341	/* Some garbage left? */
2342	if (unlikely(len))
2343		goto error_free;
2344
2345	/* Done! */
2346	ffs->stringtabs = stringtabs;
2347	ffs->raw_strings = _data;
2348
2349	return 0;
2350
2351error_free:
2352	kfree(stringtabs);
2353error:
2354	kfree(_data);
2355	return -EINVAL;
2356}
2357
2358
2359/* Events handling and management *******************************************/
2360
2361static void __ffs_event_add(struct ffs_data *ffs,
2362			    enum usb_functionfs_event_type type)
2363{
2364	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2365	int neg = 0;
2366
2367	/*
2368	 * Abort any unhandled setup
2369	 *
2370	 * We do not need to worry about some cmpxchg() changing value
2371	 * of ffs->setup_state without holding the lock because when
2372	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2373	 * the source does nothing.
2374	 */
2375	if (ffs->setup_state == FFS_SETUP_PENDING)
2376		ffs->setup_state = FFS_SETUP_CANCELLED;
2377
2378	/*
2379	 * Logic of this function guarantees that there are at most four pending
2380	 * evens on ffs->ev.types queue.  This is important because the queue
2381	 * has space for four elements only and __ffs_ep0_read_events function
2382	 * depends on that limit as well.  If more event types are added, those
2383	 * limits have to be revisited or guaranteed to still hold.
2384	 */
2385	switch (type) {
2386	case FUNCTIONFS_RESUME:
2387		rem_type2 = FUNCTIONFS_SUSPEND;
2388		/* FALL THROUGH */
2389	case FUNCTIONFS_SUSPEND:
2390	case FUNCTIONFS_SETUP:
2391		rem_type1 = type;
2392		/* Discard all similar events */
2393		break;
2394
2395	case FUNCTIONFS_BIND:
2396	case FUNCTIONFS_UNBIND:
2397	case FUNCTIONFS_DISABLE:
2398	case FUNCTIONFS_ENABLE:
2399		/* Discard everything other then power management. */
2400		rem_type1 = FUNCTIONFS_SUSPEND;
2401		rem_type2 = FUNCTIONFS_RESUME;
2402		neg = 1;
2403		break;
2404
2405	default:
2406		WARN(1, "%d: unknown event, this should not happen\n", type);
2407		return;
2408	}
2409
2410	{
2411		u8 *ev  = ffs->ev.types, *out = ev;
2412		unsigned n = ffs->ev.count;
2413		for (; n; --n, ++ev)
2414			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2415				*out++ = *ev;
2416			else
2417				pr_vdebug("purging event %d\n", *ev);
2418		ffs->ev.count = out - ffs->ev.types;
2419	}
2420
2421	pr_vdebug("adding event %d\n", type);
2422	ffs->ev.types[ffs->ev.count++] = type;
2423	wake_up_locked(&ffs->ev.waitq);
2424	if (ffs->ffs_eventfd)
2425		eventfd_signal(ffs->ffs_eventfd, 1);
2426}
2427
2428static void ffs_event_add(struct ffs_data *ffs,
2429			  enum usb_functionfs_event_type type)
2430{
2431	unsigned long flags;
2432	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2433	__ffs_event_add(ffs, type);
2434	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2435}
2436
2437/* Bind/unbind USB function hooks *******************************************/
2438
2439static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2440{
2441	int i;
2442
2443	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2444		if (ffs->eps_addrmap[i] == endpoint_address)
2445			return i;
2446	return -ENOENT;
2447}
2448
2449static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2450				    struct usb_descriptor_header *desc,
2451				    void *priv)
2452{
2453	struct usb_endpoint_descriptor *ds = (void *)desc;
2454	struct ffs_function *func = priv;
2455	struct ffs_ep *ffs_ep;
2456	unsigned ep_desc_id;
2457	int idx;
2458	static const char *speed_names[] = { "full", "high", "super" };
2459
2460	if (type != FFS_DESCRIPTOR)
2461		return 0;
2462
2463	/*
2464	 * If ss_descriptors is not NULL, we are reading super speed
2465	 * descriptors; if hs_descriptors is not NULL, we are reading high
2466	 * speed descriptors; otherwise, we are reading full speed
2467	 * descriptors.
2468	 */
2469	if (func->function.ss_descriptors) {
2470		ep_desc_id = 2;
2471		func->function.ss_descriptors[(long)valuep] = desc;
2472	} else if (func->function.hs_descriptors) {
2473		ep_desc_id = 1;
2474		func->function.hs_descriptors[(long)valuep] = desc;
2475	} else {
2476		ep_desc_id = 0;
2477		func->function.fs_descriptors[(long)valuep]    = desc;
2478	}
2479
2480	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2481		return 0;
2482
2483	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2484	if (idx < 0)
2485		return idx;
2486
2487	ffs_ep = func->eps + idx;
2488
2489	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2490		pr_err("two %sspeed descriptors for EP %d\n",
2491			  speed_names[ep_desc_id],
2492			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2493		return -EINVAL;
2494	}
2495	ffs_ep->descs[ep_desc_id] = ds;
2496
2497	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2498	if (ffs_ep->ep) {
2499		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2500		if (!ds->wMaxPacketSize)
2501			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2502	} else {
2503		struct usb_request *req;
2504		struct usb_ep *ep;
2505		u8 bEndpointAddress;
2506
2507		/*
2508		 * We back up bEndpointAddress because autoconfig overwrites
2509		 * it with physical endpoint address.
2510		 */
2511		bEndpointAddress = ds->bEndpointAddress;
2512		pr_vdebug("autoconfig\n");
2513		ep = usb_ep_autoconfig(func->gadget, ds);
2514		if (unlikely(!ep))
2515			return -ENOTSUPP;
2516		ep->driver_data = func->eps + idx;
2517
2518		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2519		if (unlikely(!req))
2520			return -ENOMEM;
2521
2522		ffs_ep->ep  = ep;
2523		ffs_ep->req = req;
2524		func->eps_revmap[ds->bEndpointAddress &
2525				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2526		/*
2527		 * If we use virtual address mapping, we restore
2528		 * original bEndpointAddress value.
2529		 */
2530		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2531			ds->bEndpointAddress = bEndpointAddress;
2532	}
2533	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2534
2535	return 0;
2536}
2537
2538static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2539				   struct usb_descriptor_header *desc,
2540				   void *priv)
2541{
2542	struct ffs_function *func = priv;
2543	unsigned idx;
2544	u8 newValue;
2545
2546	switch (type) {
2547	default:
2548	case FFS_DESCRIPTOR:
2549		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2550		return 0;
2551
2552	case FFS_INTERFACE:
2553		idx = *valuep;
2554		if (func->interfaces_nums[idx] < 0) {
2555			int id = usb_interface_id(func->conf, &func->function);
2556			if (unlikely(id < 0))
2557				return id;
2558			func->interfaces_nums[idx] = id;
2559		}
2560		newValue = func->interfaces_nums[idx];
2561		break;
2562
2563	case FFS_STRING:
2564		/* String' IDs are allocated when fsf_data is bound to cdev */
2565		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2566		break;
2567
2568	case FFS_ENDPOINT:
2569		/*
2570		 * USB_DT_ENDPOINT are handled in
2571		 * __ffs_func_bind_do_descs().
2572		 */
2573		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2574			return 0;
2575
2576		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2577		if (unlikely(!func->eps[idx].ep))
2578			return -EINVAL;
2579
2580		{
2581			struct usb_endpoint_descriptor **descs;
2582			descs = func->eps[idx].descs;
2583			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2584		}
2585		break;
2586	}
2587
2588	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2589	*valuep = newValue;
2590	return 0;
2591}
2592
2593static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2594				      struct usb_os_desc_header *h, void *data,
2595				      unsigned len, void *priv)
2596{
2597	struct ffs_function *func = priv;
2598	u8 length = 0;
2599
2600	switch (type) {
2601	case FFS_OS_DESC_EXT_COMPAT: {
2602		struct usb_ext_compat_desc *desc = data;
2603		struct usb_os_desc_table *t;
2604
2605		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2606		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2607		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2608		       ARRAY_SIZE(desc->CompatibleID) +
2609		       ARRAY_SIZE(desc->SubCompatibleID));
2610		length = sizeof(*desc);
2611	}
2612		break;
2613	case FFS_OS_DESC_EXT_PROP: {
2614		struct usb_ext_prop_desc *desc = data;
2615		struct usb_os_desc_table *t;
2616		struct usb_os_desc_ext_prop *ext_prop;
2617		char *ext_prop_name;
2618		char *ext_prop_data;
2619
2620		t = &func->function.os_desc_table[h->interface];
2621		t->if_id = func->interfaces_nums[h->interface];
2622
2623		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2624		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2625
2626		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2627		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2628		ext_prop->data_len = le32_to_cpu(*(u32 *)
2629			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2630		length = ext_prop->name_len + ext_prop->data_len + 14;
2631
2632		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2633		func->ffs->ms_os_descs_ext_prop_name_avail +=
2634			ext_prop->name_len;
2635
2636		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2637		func->ffs->ms_os_descs_ext_prop_data_avail +=
2638			ext_prop->data_len;
2639		memcpy(ext_prop_data,
2640		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2641		       ext_prop->data_len);
2642		/* unicode data reported to the host as "WCHAR"s */
2643		switch (ext_prop->type) {
2644		case USB_EXT_PROP_UNICODE:
2645		case USB_EXT_PROP_UNICODE_ENV:
2646		case USB_EXT_PROP_UNICODE_LINK:
2647		case USB_EXT_PROP_UNICODE_MULTI:
2648			ext_prop->data_len *= 2;
2649			break;
2650		}
2651		ext_prop->data = ext_prop_data;
2652
2653		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2654		       ext_prop->name_len);
2655		/* property name reported to the host as "WCHAR"s */
2656		ext_prop->name_len *= 2;
2657		ext_prop->name = ext_prop_name;
2658
2659		t->os_desc->ext_prop_len +=
2660			ext_prop->name_len + ext_prop->data_len + 14;
2661		++t->os_desc->ext_prop_count;
2662		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2663	}
2664		break;
2665	default:
2666		pr_vdebug("unknown descriptor: %d\n", type);
2667	}
2668
2669	return length;
2670}
2671
2672static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2673						struct usb_configuration *c)
2674{
2675	struct ffs_function *func = ffs_func_from_usb(f);
2676	struct f_fs_opts *ffs_opts =
2677		container_of(f->fi, struct f_fs_opts, func_inst);
2678	int ret;
2679
2680	ENTER();
2681
2682	/*
2683	 * Legacy gadget triggers binding in functionfs_ready_callback,
2684	 * which already uses locking; taking the same lock here would
2685	 * cause a deadlock.
2686	 *
2687	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2688	 */
2689	if (!ffs_opts->no_configfs)
2690		ffs_dev_lock();
2691	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2692	func->ffs = ffs_opts->dev->ffs_data;
2693	if (!ffs_opts->no_configfs)
2694		ffs_dev_unlock();
2695	if (ret)
2696		return ERR_PTR(ret);
2697
2698	func->conf = c;
2699	func->gadget = c->cdev->gadget;
2700
2701	/*
2702	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2703	 * configurations are bound in sequence with list_for_each_entry,
2704	 * in each configuration its functions are bound in sequence
2705	 * with list_for_each_entry, so we assume no race condition
2706	 * with regard to ffs_opts->bound access
2707	 */
2708	if (!ffs_opts->refcnt) {
2709		ret = functionfs_bind(func->ffs, c->cdev);
2710		if (ret)
2711			return ERR_PTR(ret);
2712	}
2713	ffs_opts->refcnt++;
2714	func->function.strings = func->ffs->stringtabs;
2715
2716	return ffs_opts;
2717}
2718
2719static int _ffs_func_bind(struct usb_configuration *c,
2720			  struct usb_function *f)
2721{
2722	struct ffs_function *func = ffs_func_from_usb(f);
2723	struct ffs_data *ffs = func->ffs;
2724
2725	const int full = !!func->ffs->fs_descs_count;
2726	const int high = gadget_is_dualspeed(func->gadget) &&
2727		func->ffs->hs_descs_count;
2728	const int super = gadget_is_superspeed(func->gadget) &&
2729		func->ffs->ss_descs_count;
2730
2731	int fs_len, hs_len, ss_len, ret, i;
 
2732
2733	/* Make it a single chunk, less management later on */
2734	vla_group(d);
2735	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2736	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2737		full ? ffs->fs_descs_count + 1 : 0);
2738	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2739		high ? ffs->hs_descs_count + 1 : 0);
2740	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2741		super ? ffs->ss_descs_count + 1 : 0);
2742	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2743	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2744			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2745	vla_item_with_sz(d, char[16], ext_compat,
2746			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2747	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2748			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2749	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2750			 ffs->ms_os_descs_ext_prop_count);
2751	vla_item_with_sz(d, char, ext_prop_name,
2752			 ffs->ms_os_descs_ext_prop_name_len);
2753	vla_item_with_sz(d, char, ext_prop_data,
2754			 ffs->ms_os_descs_ext_prop_data_len);
2755	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2756	char *vlabuf;
2757
2758	ENTER();
2759
2760	/* Has descriptors only for speeds gadget does not support */
2761	if (unlikely(!(full | high | super)))
2762		return -ENOTSUPP;
2763
2764	/* Allocate a single chunk, less management later on */
2765	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2766	if (unlikely(!vlabuf))
2767		return -ENOMEM;
2768
2769	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2770	ffs->ms_os_descs_ext_prop_name_avail =
2771		vla_ptr(vlabuf, d, ext_prop_name);
2772	ffs->ms_os_descs_ext_prop_data_avail =
2773		vla_ptr(vlabuf, d, ext_prop_data);
2774
2775	/* Copy descriptors  */
2776	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
2777	       ffs->raw_descs_length);
2778
2779	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2780	for (ret = ffs->eps_count; ret; --ret) {
2781		struct ffs_ep *ptr;
2782
2783		ptr = vla_ptr(vlabuf, d, eps);
2784		ptr[ret].num = -1;
2785	}
2786
2787	/* Save pointers
2788	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
2789	*/
2790	func->eps             = vla_ptr(vlabuf, d, eps);
2791	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
2792
2793	/*
2794	 * Go through all the endpoint descriptors and allocate
2795	 * endpoints first, so that later we can rewrite the endpoint
2796	 * numbers without worrying that it may be described later on.
2797	 */
2798	if (likely(full)) {
2799		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
2800		fs_len = ffs_do_descs(ffs->fs_descs_count,
2801				      vla_ptr(vlabuf, d, raw_descs),
2802				      d_raw_descs__sz,
2803				      __ffs_func_bind_do_descs, func);
2804		if (unlikely(fs_len < 0)) {
2805			ret = fs_len;
2806			goto error;
2807		}
2808	} else {
2809		fs_len = 0;
2810	}
2811
2812	if (likely(high)) {
2813		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
2814		hs_len = ffs_do_descs(ffs->hs_descs_count,
2815				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
2816				      d_raw_descs__sz - fs_len,
2817				      __ffs_func_bind_do_descs, func);
2818		if (unlikely(hs_len < 0)) {
2819			ret = hs_len;
2820			goto error;
2821		}
2822	} else {
2823		hs_len = 0;
2824	}
2825
2826	if (likely(super)) {
2827		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
2828		ss_len = ffs_do_descs(ffs->ss_descs_count,
2829				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
2830				d_raw_descs__sz - fs_len - hs_len,
2831				__ffs_func_bind_do_descs, func);
2832		if (unlikely(ss_len < 0)) {
2833			ret = ss_len;
2834			goto error;
2835		}
2836	} else {
2837		ss_len = 0;
2838	}
2839
2840	/*
2841	 * Now handle interface numbers allocation and interface and
2842	 * endpoint numbers rewriting.  We can do that in one go
2843	 * now.
2844	 */
2845	ret = ffs_do_descs(ffs->fs_descs_count +
2846			   (high ? ffs->hs_descs_count : 0) +
2847			   (super ? ffs->ss_descs_count : 0),
2848			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
2849			   __ffs_func_bind_do_nums, func);
2850	if (unlikely(ret < 0))
2851		goto error;
2852
2853	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
2854	if (c->cdev->use_os_string)
2855		for (i = 0; i < ffs->interfaces_count; ++i) {
2856			struct usb_os_desc *desc;
2857
2858			desc = func->function.os_desc_table[i].os_desc =
2859				vla_ptr(vlabuf, d, os_desc) +
2860				i * sizeof(struct usb_os_desc);
2861			desc->ext_compat_id =
2862				vla_ptr(vlabuf, d, ext_compat) + i * 16;
2863			INIT_LIST_HEAD(&desc->ext_prop);
2864		}
2865	ret = ffs_do_os_descs(ffs->ms_os_descs_count,
2866			      vla_ptr(vlabuf, d, raw_descs) +
2867			      fs_len + hs_len + ss_len,
2868			      d_raw_descs__sz - fs_len - hs_len - ss_len,
2869			      __ffs_func_bind_do_os_desc, func);
2870	if (unlikely(ret < 0))
2871		goto error;
 
 
2872	func->function.os_desc_n =
2873		c->cdev->use_os_string ? ffs->interfaces_count : 0;
2874
2875	/* And we're done */
2876	ffs_event_add(ffs, FUNCTIONFS_BIND);
2877	return 0;
2878
2879error:
2880	/* XXX Do we need to release all claimed endpoints here? */
2881	return ret;
2882}
2883
2884static int ffs_func_bind(struct usb_configuration *c,
2885			 struct usb_function *f)
2886{
2887	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
2888	struct ffs_function *func = ffs_func_from_usb(f);
2889	int ret;
2890
2891	if (IS_ERR(ffs_opts))
2892		return PTR_ERR(ffs_opts);
2893
2894	ret = _ffs_func_bind(c, f);
2895	if (ret && !--ffs_opts->refcnt)
2896		functionfs_unbind(func->ffs);
2897
2898	return ret;
2899}
2900
2901
2902/* Other USB function hooks *************************************************/
2903
2904static void ffs_reset_work(struct work_struct *work)
2905{
2906	struct ffs_data *ffs = container_of(work,
2907		struct ffs_data, reset_work);
2908	ffs_data_reset(ffs);
2909}
2910
2911static int ffs_func_set_alt(struct usb_function *f,
2912			    unsigned interface, unsigned alt)
2913{
2914	struct ffs_function *func = ffs_func_from_usb(f);
2915	struct ffs_data *ffs = func->ffs;
2916	int ret = 0, intf;
2917
2918	if (alt != (unsigned)-1) {
2919		intf = ffs_func_revmap_intf(func, interface);
2920		if (unlikely(intf < 0))
2921			return intf;
2922	}
2923
2924	if (ffs->func)
2925		ffs_func_eps_disable(ffs->func);
2926
2927	if (ffs->state == FFS_DEACTIVATED) {
2928		ffs->state = FFS_CLOSING;
2929		INIT_WORK(&ffs->reset_work, ffs_reset_work);
2930		schedule_work(&ffs->reset_work);
2931		return -ENODEV;
2932	}
2933
2934	if (ffs->state != FFS_ACTIVE)
2935		return -ENODEV;
2936
2937	if (alt == (unsigned)-1) {
2938		ffs->func = NULL;
2939		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
2940		return 0;
2941	}
2942
2943	ffs->func = func;
2944	ret = ffs_func_eps_enable(func);
2945	if (likely(ret >= 0))
2946		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
2947	return ret;
2948}
2949
2950static void ffs_func_disable(struct usb_function *f)
2951{
2952	ffs_func_set_alt(f, 0, (unsigned)-1);
2953}
2954
2955static int ffs_func_setup(struct usb_function *f,
2956			  const struct usb_ctrlrequest *creq)
2957{
2958	struct ffs_function *func = ffs_func_from_usb(f);
2959	struct ffs_data *ffs = func->ffs;
2960	unsigned long flags;
2961	int ret;
2962
2963	ENTER();
2964
2965	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
2966	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
2967	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
2968	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
2969	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
2970
2971	/*
2972	 * Most requests directed to interface go through here
2973	 * (notable exceptions are set/get interface) so we need to
2974	 * handle them.  All other either handled by composite or
2975	 * passed to usb_configuration->setup() (if one is set).  No
2976	 * matter, we will handle requests directed to endpoint here
2977	 * as well (as it's straightforward) but what to do with any
2978	 * other request?
 
2979	 */
2980	if (ffs->state != FFS_ACTIVE)
2981		return -ENODEV;
2982
2983	switch (creq->bRequestType & USB_RECIP_MASK) {
2984	case USB_RECIP_INTERFACE:
2985		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
2986		if (unlikely(ret < 0))
2987			return ret;
2988		break;
2989
2990	case USB_RECIP_ENDPOINT:
2991		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
2992		if (unlikely(ret < 0))
2993			return ret;
2994		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2995			ret = func->ffs->eps_addrmap[ret];
2996		break;
2997
2998	default:
2999		return -EOPNOTSUPP;
 
 
 
3000	}
3001
3002	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3003	ffs->ev.setup = *creq;
3004	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3005	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3006	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3007
3008	return 0;
3009}
3010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3011static void ffs_func_suspend(struct usb_function *f)
3012{
3013	ENTER();
3014	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3015}
3016
3017static void ffs_func_resume(struct usb_function *f)
3018{
3019	ENTER();
3020	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3021}
3022
3023
3024/* Endpoint and interface numbers reverse mapping ***************************/
3025
3026static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3027{
3028	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3029	return num ? num : -EDOM;
3030}
3031
3032static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3033{
3034	short *nums = func->interfaces_nums;
3035	unsigned count = func->ffs->interfaces_count;
3036
3037	for (; count; --count, ++nums) {
3038		if (*nums >= 0 && *nums == intf)
3039			return nums - func->interfaces_nums;
3040	}
3041
3042	return -EDOM;
3043}
3044
3045
3046/* Devices management *******************************************************/
3047
3048static LIST_HEAD(ffs_devices);
3049
3050static struct ffs_dev *_ffs_do_find_dev(const char *name)
3051{
3052	struct ffs_dev *dev;
3053
3054	list_for_each_entry(dev, &ffs_devices, entry) {
3055		if (!dev->name || !name)
3056			continue;
3057		if (strcmp(dev->name, name) == 0)
3058			return dev;
3059	}
3060
3061	return NULL;
3062}
3063
3064/*
3065 * ffs_lock must be taken by the caller of this function
3066 */
3067static struct ffs_dev *_ffs_get_single_dev(void)
3068{
3069	struct ffs_dev *dev;
3070
3071	if (list_is_singular(&ffs_devices)) {
3072		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3073		if (dev->single)
3074			return dev;
3075	}
3076
3077	return NULL;
3078}
3079
3080/*
3081 * ffs_lock must be taken by the caller of this function
3082 */
3083static struct ffs_dev *_ffs_find_dev(const char *name)
3084{
3085	struct ffs_dev *dev;
3086
3087	dev = _ffs_get_single_dev();
3088	if (dev)
3089		return dev;
3090
3091	return _ffs_do_find_dev(name);
3092}
3093
3094/* Configfs support *********************************************************/
3095
3096static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3097{
3098	return container_of(to_config_group(item), struct f_fs_opts,
3099			    func_inst.group);
3100}
3101
3102static void ffs_attr_release(struct config_item *item)
3103{
3104	struct f_fs_opts *opts = to_ffs_opts(item);
3105
3106	usb_put_function_instance(&opts->func_inst);
3107}
3108
3109static struct configfs_item_operations ffs_item_ops = {
3110	.release	= ffs_attr_release,
3111};
3112
3113static struct config_item_type ffs_func_type = {
3114	.ct_item_ops	= &ffs_item_ops,
3115	.ct_owner	= THIS_MODULE,
3116};
3117
3118
3119/* Function registration interface ******************************************/
3120
3121static void ffs_free_inst(struct usb_function_instance *f)
3122{
3123	struct f_fs_opts *opts;
3124
3125	opts = to_f_fs_opts(f);
3126	ffs_dev_lock();
3127	_ffs_free_dev(opts->dev);
3128	ffs_dev_unlock();
3129	kfree(opts);
3130}
3131
3132#define MAX_INST_NAME_LEN	40
3133
3134static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3135{
3136	struct f_fs_opts *opts;
3137	char *ptr;
3138	const char *tmp;
3139	int name_len, ret;
3140
3141	name_len = strlen(name) + 1;
3142	if (name_len > MAX_INST_NAME_LEN)
3143		return -ENAMETOOLONG;
3144
3145	ptr = kstrndup(name, name_len, GFP_KERNEL);
3146	if (!ptr)
3147		return -ENOMEM;
3148
3149	opts = to_f_fs_opts(fi);
3150	tmp = NULL;
3151
3152	ffs_dev_lock();
3153
3154	tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3155	ret = _ffs_name_dev(opts->dev, ptr);
3156	if (ret) {
3157		kfree(ptr);
3158		ffs_dev_unlock();
3159		return ret;
3160	}
3161	opts->dev->name_allocated = true;
3162
3163	ffs_dev_unlock();
3164
3165	kfree(tmp);
3166
3167	return 0;
3168}
3169
3170static struct usb_function_instance *ffs_alloc_inst(void)
3171{
3172	struct f_fs_opts *opts;
3173	struct ffs_dev *dev;
3174
3175	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3176	if (!opts)
3177		return ERR_PTR(-ENOMEM);
3178
3179	opts->func_inst.set_inst_name = ffs_set_inst_name;
3180	opts->func_inst.free_func_inst = ffs_free_inst;
3181	ffs_dev_lock();
3182	dev = _ffs_alloc_dev();
3183	ffs_dev_unlock();
3184	if (IS_ERR(dev)) {
3185		kfree(opts);
3186		return ERR_CAST(dev);
3187	}
3188	opts->dev = dev;
3189	dev->opts = opts;
3190
3191	config_group_init_type_name(&opts->func_inst.group, "",
3192				    &ffs_func_type);
3193	return &opts->func_inst;
3194}
3195
3196static void ffs_free(struct usb_function *f)
3197{
3198	kfree(ffs_func_from_usb(f));
3199}
3200
3201static void ffs_func_unbind(struct usb_configuration *c,
3202			    struct usb_function *f)
3203{
3204	struct ffs_function *func = ffs_func_from_usb(f);
3205	struct ffs_data *ffs = func->ffs;
3206	struct f_fs_opts *opts =
3207		container_of(f->fi, struct f_fs_opts, func_inst);
3208	struct ffs_ep *ep = func->eps;
3209	unsigned count = ffs->eps_count;
3210	unsigned long flags;
3211
3212	ENTER();
3213	if (ffs->func == func) {
3214		ffs_func_eps_disable(func);
3215		ffs->func = NULL;
3216	}
3217
3218	if (!--opts->refcnt)
3219		functionfs_unbind(ffs);
3220
3221	/* cleanup after autoconfig */
3222	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3223	do {
3224		if (ep->ep && ep->req)
3225			usb_ep_free_request(ep->ep, ep->req);
3226		ep->req = NULL;
3227		++ep;
3228	} while (--count);
3229	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3230	kfree(func->eps);
3231	func->eps = NULL;
3232	/*
3233	 * eps, descriptors and interfaces_nums are allocated in the
3234	 * same chunk so only one free is required.
3235	 */
3236	func->function.fs_descriptors = NULL;
3237	func->function.hs_descriptors = NULL;
3238	func->function.ss_descriptors = NULL;
3239	func->interfaces_nums = NULL;
3240
3241	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3242}
3243
3244static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3245{
3246	struct ffs_function *func;
3247
3248	ENTER();
3249
3250	func = kzalloc(sizeof(*func), GFP_KERNEL);
3251	if (unlikely(!func))
3252		return ERR_PTR(-ENOMEM);
3253
3254	func->function.name    = "Function FS Gadget";
3255
3256	func->function.bind    = ffs_func_bind;
3257	func->function.unbind  = ffs_func_unbind;
3258	func->function.set_alt = ffs_func_set_alt;
3259	func->function.disable = ffs_func_disable;
3260	func->function.setup   = ffs_func_setup;
 
3261	func->function.suspend = ffs_func_suspend;
3262	func->function.resume  = ffs_func_resume;
3263	func->function.free_func = ffs_free;
3264
3265	return &func->function;
3266}
3267
3268/*
3269 * ffs_lock must be taken by the caller of this function
3270 */
3271static struct ffs_dev *_ffs_alloc_dev(void)
3272{
3273	struct ffs_dev *dev;
3274	int ret;
3275
3276	if (_ffs_get_single_dev())
3277			return ERR_PTR(-EBUSY);
3278
3279	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3280	if (!dev)
3281		return ERR_PTR(-ENOMEM);
3282
3283	if (list_empty(&ffs_devices)) {
3284		ret = functionfs_init();
3285		if (ret) {
3286			kfree(dev);
3287			return ERR_PTR(ret);
3288		}
3289	}
3290
3291	list_add(&dev->entry, &ffs_devices);
3292
3293	return dev;
3294}
3295
3296/*
3297 * ffs_lock must be taken by the caller of this function
3298 * The caller is responsible for "name" being available whenever f_fs needs it
3299 */
3300static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3301{
3302	struct ffs_dev *existing;
3303
3304	existing = _ffs_do_find_dev(name);
3305	if (existing)
3306		return -EBUSY;
3307
3308	dev->name = name;
3309
3310	return 0;
3311}
3312
3313/*
3314 * The caller is responsible for "name" being available whenever f_fs needs it
3315 */
3316int ffs_name_dev(struct ffs_dev *dev, const char *name)
3317{
3318	int ret;
3319
3320	ffs_dev_lock();
3321	ret = _ffs_name_dev(dev, name);
3322	ffs_dev_unlock();
3323
3324	return ret;
3325}
3326EXPORT_SYMBOL_GPL(ffs_name_dev);
3327
3328int ffs_single_dev(struct ffs_dev *dev)
3329{
3330	int ret;
3331
3332	ret = 0;
3333	ffs_dev_lock();
3334
3335	if (!list_is_singular(&ffs_devices))
3336		ret = -EBUSY;
3337	else
3338		dev->single = true;
3339
3340	ffs_dev_unlock();
3341	return ret;
3342}
3343EXPORT_SYMBOL_GPL(ffs_single_dev);
3344
3345/*
3346 * ffs_lock must be taken by the caller of this function
3347 */
3348static void _ffs_free_dev(struct ffs_dev *dev)
3349{
3350	list_del(&dev->entry);
3351	if (dev->name_allocated)
3352		kfree(dev->name);
 
 
 
 
 
3353	kfree(dev);
3354	if (list_empty(&ffs_devices))
3355		functionfs_cleanup();
3356}
3357
3358static void *ffs_acquire_dev(const char *dev_name)
3359{
3360	struct ffs_dev *ffs_dev;
3361
3362	ENTER();
3363	ffs_dev_lock();
3364
3365	ffs_dev = _ffs_find_dev(dev_name);
3366	if (!ffs_dev)
3367		ffs_dev = ERR_PTR(-ENOENT);
3368	else if (ffs_dev->mounted)
3369		ffs_dev = ERR_PTR(-EBUSY);
3370	else if (ffs_dev->ffs_acquire_dev_callback &&
3371	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3372		ffs_dev = ERR_PTR(-ENOENT);
3373	else
3374		ffs_dev->mounted = true;
3375
3376	ffs_dev_unlock();
3377	return ffs_dev;
3378}
3379
3380static void ffs_release_dev(struct ffs_data *ffs_data)
3381{
3382	struct ffs_dev *ffs_dev;
3383
3384	ENTER();
3385	ffs_dev_lock();
3386
3387	ffs_dev = ffs_data->private_data;
3388	if (ffs_dev) {
3389		ffs_dev->mounted = false;
3390
3391		if (ffs_dev->ffs_release_dev_callback)
3392			ffs_dev->ffs_release_dev_callback(ffs_dev);
3393	}
3394
3395	ffs_dev_unlock();
3396}
3397
3398static int ffs_ready(struct ffs_data *ffs)
3399{
3400	struct ffs_dev *ffs_obj;
3401	int ret = 0;
3402
3403	ENTER();
3404	ffs_dev_lock();
3405
3406	ffs_obj = ffs->private_data;
3407	if (!ffs_obj) {
3408		ret = -EINVAL;
3409		goto done;
3410	}
3411	if (WARN_ON(ffs_obj->desc_ready)) {
3412		ret = -EBUSY;
3413		goto done;
3414	}
3415
3416	ffs_obj->desc_ready = true;
3417	ffs_obj->ffs_data = ffs;
3418
3419	if (ffs_obj->ffs_ready_callback) {
3420		ret = ffs_obj->ffs_ready_callback(ffs);
3421		if (ret)
3422			goto done;
3423	}
3424
3425	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3426done:
3427	ffs_dev_unlock();
3428	return ret;
3429}
3430
3431static void ffs_closed(struct ffs_data *ffs)
3432{
3433	struct ffs_dev *ffs_obj;
3434	struct f_fs_opts *opts;
 
3435
3436	ENTER();
3437	ffs_dev_lock();
3438
3439	ffs_obj = ffs->private_data;
3440	if (!ffs_obj)
3441		goto done;
3442
3443	ffs_obj->desc_ready = false;
3444
3445	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3446	    ffs_obj->ffs_closed_callback)
3447		ffs_obj->ffs_closed_callback(ffs);
3448
3449	if (ffs_obj->opts)
3450		opts = ffs_obj->opts;
3451	else
3452		goto done;
3453
3454	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3455	    || !atomic_read(&opts->func_inst.group.cg_item.ci_kref.refcount))
3456		goto done;
3457
3458	unregister_gadget_item(ffs_obj->opts->
3459			       func_inst.group.cg_item.ci_parent->ci_parent);
 
 
 
3460done:
3461	ffs_dev_unlock();
3462}
3463
3464/* Misc helper functions ****************************************************/
3465
3466static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3467{
3468	return nonblock
3469		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3470		: mutex_lock_interruptible(mutex);
3471}
3472
3473static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3474{
3475	char *data;
3476
3477	if (unlikely(!len))
3478		return NULL;
3479
3480	data = kmalloc(len, GFP_KERNEL);
3481	if (unlikely(!data))
3482		return ERR_PTR(-ENOMEM);
3483
3484	if (unlikely(copy_from_user(data, buf, len))) {
3485		kfree(data);
3486		return ERR_PTR(-EFAULT);
3487	}
3488
3489	pr_vdebug("Buffer from user space:\n");
3490	ffs_dump_mem("", data, len);
3491
3492	return data;
3493}
3494
3495DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3496MODULE_LICENSE("GPL");
3497MODULE_AUTHOR("Michal Nazarewicz");
v4.10.11
   1/*
   2 * f_fs.c -- user mode file system API for USB composite function controllers
   3 *
   4 * Copyright (C) 2010 Samsung Electronics
   5 * Author: Michal Nazarewicz <mina86@mina86.com>
   6 *
   7 * Based on inode.c (GadgetFS) which was:
   8 * Copyright (C) 2003-2004 David Brownell
   9 * Copyright (C) 2003 Agilent Technologies
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 */
  16
  17
  18/* #define DEBUG */
  19/* #define VERBOSE_DEBUG */
  20
  21#include <linux/blkdev.h>
  22#include <linux/pagemap.h>
  23#include <linux/export.h>
  24#include <linux/hid.h>
  25#include <linux/module.h>
  26#include <linux/uio.h>
  27#include <asm/unaligned.h>
  28
  29#include <linux/usb/composite.h>
  30#include <linux/usb/functionfs.h>
  31
  32#include <linux/aio.h>
  33#include <linux/mmu_context.h>
  34#include <linux/poll.h>
  35#include <linux/eventfd.h>
  36
  37#include "u_fs.h"
  38#include "u_f.h"
  39#include "u_os_desc.h"
  40#include "configfs.h"
  41
  42#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
  43
  44/* Reference counter handling */
  45static void ffs_data_get(struct ffs_data *ffs);
  46static void ffs_data_put(struct ffs_data *ffs);
  47/* Creates new ffs_data object. */
  48static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
  49
  50/* Opened counter handling. */
  51static void ffs_data_opened(struct ffs_data *ffs);
  52static void ffs_data_closed(struct ffs_data *ffs);
  53
  54/* Called with ffs->mutex held; take over ownership of data. */
  55static int __must_check
  56__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
  57static int __must_check
  58__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
  59
  60
  61/* The function structure ***************************************************/
  62
  63struct ffs_ep;
  64
  65struct ffs_function {
  66	struct usb_configuration	*conf;
  67	struct usb_gadget		*gadget;
  68	struct ffs_data			*ffs;
  69
  70	struct ffs_ep			*eps;
  71	u8				eps_revmap[16];
  72	short				*interfaces_nums;
  73
  74	struct usb_function		function;
  75};
  76
  77
  78static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
  79{
  80	return container_of(f, struct ffs_function, function);
  81}
  82
  83
  84static inline enum ffs_setup_state
  85ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
  86{
  87	return (enum ffs_setup_state)
  88		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
  89}
  90
  91
  92static void ffs_func_eps_disable(struct ffs_function *func);
  93static int __must_check ffs_func_eps_enable(struct ffs_function *func);
  94
  95static int ffs_func_bind(struct usb_configuration *,
  96			 struct usb_function *);
  97static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
  98static void ffs_func_disable(struct usb_function *);
  99static int ffs_func_setup(struct usb_function *,
 100			  const struct usb_ctrlrequest *);
 101static bool ffs_func_req_match(struct usb_function *,
 102			       const struct usb_ctrlrequest *,
 103			       bool config0);
 104static void ffs_func_suspend(struct usb_function *);
 105static void ffs_func_resume(struct usb_function *);
 106
 107
 108static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
 109static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
 110
 111
 112/* The endpoints structures *************************************************/
 113
 114struct ffs_ep {
 115	struct usb_ep			*ep;	/* P: ffs->eps_lock */
 116	struct usb_request		*req;	/* P: epfile->mutex */
 117
 118	/* [0]: full speed, [1]: high speed, [2]: super speed */
 119	struct usb_endpoint_descriptor	*descs[3];
 120
 121	u8				num;
 122
 123	int				status;	/* P: epfile->mutex */
 124};
 125
 126struct ffs_epfile {
 127	/* Protects ep->ep and ep->req. */
 128	struct mutex			mutex;
 129	wait_queue_head_t		wait;
 130
 131	struct ffs_data			*ffs;
 132	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
 133
 134	struct dentry			*dentry;
 135
 136	/*
 137	 * Buffer for holding data from partial reads which may happen since
 138	 * we’re rounding user read requests to a multiple of a max packet size.
 139	 *
 140	 * The pointer is initialised with NULL value and may be set by
 141	 * __ffs_epfile_read_data function to point to a temporary buffer.
 142	 *
 143	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
 144	 * data from said buffer and eventually free it.  Importantly, while the
 145	 * function is using the buffer, it sets the pointer to NULL.  This is
 146	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
 147	 * can never run concurrently (they are synchronised by epfile->mutex)
 148	 * so the latter will not assign a new value to the pointer.
 149	 *
 150	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
 151	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
 152	 * value is crux of the synchronisation between ffs_func_eps_disable and
 153	 * __ffs_epfile_read_data.
 154	 *
 155	 * Once __ffs_epfile_read_data is about to finish it will try to set the
 156	 * pointer back to its old value (as described above), but seeing as the
 157	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
 158	 * the buffer.
 159	 *
 160	 * == State transitions ==
 161	 *
 162	 * • ptr == NULL:  (initial state)
 163	 *   â—¦ __ffs_epfile_read_buffer_free: go to ptr == DROP
 164	 *   â—¦ __ffs_epfile_read_buffered:    nop
 165	 *   â—¦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
 166	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 167	 * • ptr == DROP:
 168	 *   â—¦ __ffs_epfile_read_buffer_free: nop
 169	 *   â—¦ __ffs_epfile_read_buffered:    go to ptr == NULL
 170	 *   â—¦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
 171	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 172	 * • ptr == buf:
 173	 *   â—¦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
 174	 *   â—¦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
 175	 *   â—¦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
 176	 *                                    is always called first
 177	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 178	 * • ptr == NULL and reading:
 179	 *   â—¦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
 180	 *   â—¦ __ffs_epfile_read_buffered:    n/a, mutex is held
 181	 *   â—¦ __ffs_epfile_read_data:        n/a, mutex is held
 182	 *   ◦ reading finishes and …
 183	 *     … all data read:               free buf, go to ptr == NULL
 184	 *     … otherwise:                   go to ptr == buf and reading
 185	 * • ptr == DROP and reading:
 186	 *   â—¦ __ffs_epfile_read_buffer_free: nop
 187	 *   â—¦ __ffs_epfile_read_buffered:    n/a, mutex is held
 188	 *   â—¦ __ffs_epfile_read_data:        n/a, mutex is held
 189	 *   â—¦ reading finishes:              free buf, go to ptr == DROP
 190	 */
 191	struct ffs_buffer		*read_buffer;
 192#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
 193
 194	char				name[5];
 195
 196	unsigned char			in;	/* P: ffs->eps_lock */
 197	unsigned char			isoc;	/* P: ffs->eps_lock */
 198
 199	unsigned char			_pad;
 200};
 201
 202struct ffs_buffer {
 203	size_t length;
 204	char *data;
 205	char storage[];
 206};
 207
 208/*  ffs_io_data structure ***************************************************/
 209
 210struct ffs_io_data {
 211	bool aio;
 212	bool read;
 213
 214	struct kiocb *kiocb;
 215	struct iov_iter data;
 216	const void *to_free;
 217	char *buf;
 218
 219	struct mm_struct *mm;
 220	struct work_struct work;
 221
 222	struct usb_ep *ep;
 223	struct usb_request *req;
 224
 225	struct ffs_data *ffs;
 226};
 227
 228struct ffs_desc_helper {
 229	struct ffs_data *ffs;
 230	unsigned interfaces_count;
 231	unsigned eps_count;
 232};
 233
 234static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
 235static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
 236
 237static struct dentry *
 238ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
 239		   const struct file_operations *fops);
 240
 241/* Devices management *******************************************************/
 242
 243DEFINE_MUTEX(ffs_lock);
 244EXPORT_SYMBOL_GPL(ffs_lock);
 245
 246static struct ffs_dev *_ffs_find_dev(const char *name);
 247static struct ffs_dev *_ffs_alloc_dev(void);
 248static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
 249static void _ffs_free_dev(struct ffs_dev *dev);
 250static void *ffs_acquire_dev(const char *dev_name);
 251static void ffs_release_dev(struct ffs_data *ffs_data);
 252static int ffs_ready(struct ffs_data *ffs);
 253static void ffs_closed(struct ffs_data *ffs);
 254
 255/* Misc helper functions ****************************************************/
 256
 257static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
 258	__attribute__((warn_unused_result, nonnull));
 259static char *ffs_prepare_buffer(const char __user *buf, size_t len)
 260	__attribute__((warn_unused_result, nonnull));
 261
 262
 263/* Control file aka ep0 *****************************************************/
 264
 265static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
 266{
 267	struct ffs_data *ffs = req->context;
 268
 269	complete(&ffs->ep0req_completion);
 270}
 271
 272static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
 273{
 274	struct usb_request *req = ffs->ep0req;
 275	int ret;
 276
 277	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
 278
 279	spin_unlock_irq(&ffs->ev.waitq.lock);
 280
 281	req->buf      = data;
 282	req->length   = len;
 283
 284	/*
 285	 * UDC layer requires to provide a buffer even for ZLP, but should
 286	 * not use it at all. Let's provide some poisoned pointer to catch
 287	 * possible bug in the driver.
 288	 */
 289	if (req->buf == NULL)
 290		req->buf = (void *)0xDEADBABE;
 291
 292	reinit_completion(&ffs->ep0req_completion);
 293
 294	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
 295	if (unlikely(ret < 0))
 296		return ret;
 297
 298	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
 299	if (unlikely(ret)) {
 300		usb_ep_dequeue(ffs->gadget->ep0, req);
 301		return -EINTR;
 302	}
 303
 304	ffs->setup_state = FFS_NO_SETUP;
 305	return req->status ? req->status : req->actual;
 306}
 307
 308static int __ffs_ep0_stall(struct ffs_data *ffs)
 309{
 310	if (ffs->ev.can_stall) {
 311		pr_vdebug("ep0 stall\n");
 312		usb_ep_set_halt(ffs->gadget->ep0);
 313		ffs->setup_state = FFS_NO_SETUP;
 314		return -EL2HLT;
 315	} else {
 316		pr_debug("bogus ep0 stall!\n");
 317		return -ESRCH;
 318	}
 319}
 320
 321static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
 322			     size_t len, loff_t *ptr)
 323{
 324	struct ffs_data *ffs = file->private_data;
 325	ssize_t ret;
 326	char *data;
 327
 328	ENTER();
 329
 330	/* Fast check if setup was canceled */
 331	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 332		return -EIDRM;
 333
 334	/* Acquire mutex */
 335	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 336	if (unlikely(ret < 0))
 337		return ret;
 338
 339	/* Check state */
 340	switch (ffs->state) {
 341	case FFS_READ_DESCRIPTORS:
 342	case FFS_READ_STRINGS:
 343		/* Copy data */
 344		if (unlikely(len < 16)) {
 345			ret = -EINVAL;
 346			break;
 347		}
 348
 349		data = ffs_prepare_buffer(buf, len);
 350		if (IS_ERR(data)) {
 351			ret = PTR_ERR(data);
 352			break;
 353		}
 354
 355		/* Handle data */
 356		if (ffs->state == FFS_READ_DESCRIPTORS) {
 357			pr_info("read descriptors\n");
 358			ret = __ffs_data_got_descs(ffs, data, len);
 359			if (unlikely(ret < 0))
 360				break;
 361
 362			ffs->state = FFS_READ_STRINGS;
 363			ret = len;
 364		} else {
 365			pr_info("read strings\n");
 366			ret = __ffs_data_got_strings(ffs, data, len);
 367			if (unlikely(ret < 0))
 368				break;
 369
 370			ret = ffs_epfiles_create(ffs);
 371			if (unlikely(ret)) {
 372				ffs->state = FFS_CLOSING;
 373				break;
 374			}
 375
 376			ffs->state = FFS_ACTIVE;
 377			mutex_unlock(&ffs->mutex);
 378
 379			ret = ffs_ready(ffs);
 380			if (unlikely(ret < 0)) {
 381				ffs->state = FFS_CLOSING;
 382				return ret;
 383			}
 384
 385			return len;
 386		}
 387		break;
 388
 389	case FFS_ACTIVE:
 390		data = NULL;
 391		/*
 392		 * We're called from user space, we can use _irq
 393		 * rather then _irqsave
 394		 */
 395		spin_lock_irq(&ffs->ev.waitq.lock);
 396		switch (ffs_setup_state_clear_cancelled(ffs)) {
 397		case FFS_SETUP_CANCELLED:
 398			ret = -EIDRM;
 399			goto done_spin;
 400
 401		case FFS_NO_SETUP:
 402			ret = -ESRCH;
 403			goto done_spin;
 404
 405		case FFS_SETUP_PENDING:
 406			break;
 407		}
 408
 409		/* FFS_SETUP_PENDING */
 410		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
 411			spin_unlock_irq(&ffs->ev.waitq.lock);
 412			ret = __ffs_ep0_stall(ffs);
 413			break;
 414		}
 415
 416		/* FFS_SETUP_PENDING and not stall */
 417		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 418
 419		spin_unlock_irq(&ffs->ev.waitq.lock);
 420
 421		data = ffs_prepare_buffer(buf, len);
 422		if (IS_ERR(data)) {
 423			ret = PTR_ERR(data);
 424			break;
 425		}
 426
 427		spin_lock_irq(&ffs->ev.waitq.lock);
 428
 429		/*
 430		 * We are guaranteed to be still in FFS_ACTIVE state
 431		 * but the state of setup could have changed from
 432		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
 433		 * to check for that.  If that happened we copied data
 434		 * from user space in vain but it's unlikely.
 435		 *
 436		 * For sure we are not in FFS_NO_SETUP since this is
 437		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
 438		 * transition can be performed and it's protected by
 439		 * mutex.
 440		 */
 441		if (ffs_setup_state_clear_cancelled(ffs) ==
 442		    FFS_SETUP_CANCELLED) {
 443			ret = -EIDRM;
 444done_spin:
 445			spin_unlock_irq(&ffs->ev.waitq.lock);
 446		} else {
 447			/* unlocks spinlock */
 448			ret = __ffs_ep0_queue_wait(ffs, data, len);
 449		}
 450		kfree(data);
 451		break;
 452
 453	default:
 454		ret = -EBADFD;
 455		break;
 456	}
 457
 458	mutex_unlock(&ffs->mutex);
 459	return ret;
 460}
 461
 462/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
 463static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
 464				     size_t n)
 465{
 466	/*
 467	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
 468	 * size of ffs->ev.types array (which is four) so that's how much space
 469	 * we reserve.
 470	 */
 471	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
 472	const size_t size = n * sizeof *events;
 473	unsigned i = 0;
 474
 475	memset(events, 0, size);
 476
 477	do {
 478		events[i].type = ffs->ev.types[i];
 479		if (events[i].type == FUNCTIONFS_SETUP) {
 480			events[i].u.setup = ffs->ev.setup;
 481			ffs->setup_state = FFS_SETUP_PENDING;
 482		}
 483	} while (++i < n);
 484
 485	ffs->ev.count -= n;
 486	if (ffs->ev.count)
 487		memmove(ffs->ev.types, ffs->ev.types + n,
 488			ffs->ev.count * sizeof *ffs->ev.types);
 489
 490	spin_unlock_irq(&ffs->ev.waitq.lock);
 491	mutex_unlock(&ffs->mutex);
 492
 493	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
 494}
 495
 496static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
 497			    size_t len, loff_t *ptr)
 498{
 499	struct ffs_data *ffs = file->private_data;
 500	char *data = NULL;
 501	size_t n;
 502	int ret;
 503
 504	ENTER();
 505
 506	/* Fast check if setup was canceled */
 507	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 508		return -EIDRM;
 509
 510	/* Acquire mutex */
 511	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 512	if (unlikely(ret < 0))
 513		return ret;
 514
 515	/* Check state */
 516	if (ffs->state != FFS_ACTIVE) {
 517		ret = -EBADFD;
 518		goto done_mutex;
 519	}
 520
 521	/*
 522	 * We're called from user space, we can use _irq rather then
 523	 * _irqsave
 524	 */
 525	spin_lock_irq(&ffs->ev.waitq.lock);
 526
 527	switch (ffs_setup_state_clear_cancelled(ffs)) {
 528	case FFS_SETUP_CANCELLED:
 529		ret = -EIDRM;
 530		break;
 531
 532	case FFS_NO_SETUP:
 533		n = len / sizeof(struct usb_functionfs_event);
 534		if (unlikely(!n)) {
 535			ret = -EINVAL;
 536			break;
 537		}
 538
 539		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
 540			ret = -EAGAIN;
 541			break;
 542		}
 543
 544		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
 545							ffs->ev.count)) {
 546			ret = -EINTR;
 547			break;
 548		}
 549
 550		return __ffs_ep0_read_events(ffs, buf,
 551					     min(n, (size_t)ffs->ev.count));
 552
 553	case FFS_SETUP_PENDING:
 554		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
 555			spin_unlock_irq(&ffs->ev.waitq.lock);
 556			ret = __ffs_ep0_stall(ffs);
 557			goto done_mutex;
 558		}
 559
 560		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 561
 562		spin_unlock_irq(&ffs->ev.waitq.lock);
 563
 564		if (likely(len)) {
 565			data = kmalloc(len, GFP_KERNEL);
 566			if (unlikely(!data)) {
 567				ret = -ENOMEM;
 568				goto done_mutex;
 569			}
 570		}
 571
 572		spin_lock_irq(&ffs->ev.waitq.lock);
 573
 574		/* See ffs_ep0_write() */
 575		if (ffs_setup_state_clear_cancelled(ffs) ==
 576		    FFS_SETUP_CANCELLED) {
 577			ret = -EIDRM;
 578			break;
 579		}
 580
 581		/* unlocks spinlock */
 582		ret = __ffs_ep0_queue_wait(ffs, data, len);
 583		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
 584			ret = -EFAULT;
 585		goto done_mutex;
 586
 587	default:
 588		ret = -EBADFD;
 589		break;
 590	}
 591
 592	spin_unlock_irq(&ffs->ev.waitq.lock);
 593done_mutex:
 594	mutex_unlock(&ffs->mutex);
 595	kfree(data);
 596	return ret;
 597}
 598
 599static int ffs_ep0_open(struct inode *inode, struct file *file)
 600{
 601	struct ffs_data *ffs = inode->i_private;
 602
 603	ENTER();
 604
 605	if (unlikely(ffs->state == FFS_CLOSING))
 606		return -EBUSY;
 607
 608	file->private_data = ffs;
 609	ffs_data_opened(ffs);
 610
 611	return 0;
 612}
 613
 614static int ffs_ep0_release(struct inode *inode, struct file *file)
 615{
 616	struct ffs_data *ffs = file->private_data;
 617
 618	ENTER();
 619
 620	ffs_data_closed(ffs);
 621
 622	return 0;
 623}
 624
 625static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
 626{
 627	struct ffs_data *ffs = file->private_data;
 628	struct usb_gadget *gadget = ffs->gadget;
 629	long ret;
 630
 631	ENTER();
 632
 633	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
 634		struct ffs_function *func = ffs->func;
 635		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
 636	} else if (gadget && gadget->ops->ioctl) {
 637		ret = gadget->ops->ioctl(gadget, code, value);
 638	} else {
 639		ret = -ENOTTY;
 640	}
 641
 642	return ret;
 643}
 644
 645static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
 646{
 647	struct ffs_data *ffs = file->private_data;
 648	unsigned int mask = POLLWRNORM;
 649	int ret;
 650
 651	poll_wait(file, &ffs->ev.waitq, wait);
 652
 653	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 654	if (unlikely(ret < 0))
 655		return mask;
 656
 657	switch (ffs->state) {
 658	case FFS_READ_DESCRIPTORS:
 659	case FFS_READ_STRINGS:
 660		mask |= POLLOUT;
 661		break;
 662
 663	case FFS_ACTIVE:
 664		switch (ffs->setup_state) {
 665		case FFS_NO_SETUP:
 666			if (ffs->ev.count)
 667				mask |= POLLIN;
 668			break;
 669
 670		case FFS_SETUP_PENDING:
 671		case FFS_SETUP_CANCELLED:
 672			mask |= (POLLIN | POLLOUT);
 673			break;
 674		}
 675	case FFS_CLOSING:
 676		break;
 677	case FFS_DEACTIVATED:
 678		break;
 679	}
 680
 681	mutex_unlock(&ffs->mutex);
 682
 683	return mask;
 684}
 685
 686static const struct file_operations ffs_ep0_operations = {
 687	.llseek =	no_llseek,
 688
 689	.open =		ffs_ep0_open,
 690	.write =	ffs_ep0_write,
 691	.read =		ffs_ep0_read,
 692	.release =	ffs_ep0_release,
 693	.unlocked_ioctl =	ffs_ep0_ioctl,
 694	.poll =		ffs_ep0_poll,
 695};
 696
 697
 698/* "Normal" endpoints operations ********************************************/
 699
 700static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
 701{
 702	ENTER();
 703	if (likely(req->context)) {
 704		struct ffs_ep *ep = _ep->driver_data;
 705		ep->status = req->status ? req->status : req->actual;
 706		complete(req->context);
 707	}
 708}
 709
 710static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
 711{
 712	ssize_t ret = copy_to_iter(data, data_len, iter);
 713	if (likely(ret == data_len))
 714		return ret;
 715
 716	if (unlikely(iov_iter_count(iter)))
 717		return -EFAULT;
 718
 719	/*
 720	 * Dear user space developer!
 721	 *
 722	 * TL;DR: To stop getting below error message in your kernel log, change
 723	 * user space code using functionfs to align read buffers to a max
 724	 * packet size.
 725	 *
 726	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
 727	 * packet size.  When unaligned buffer is passed to functionfs, it
 728	 * internally uses a larger, aligned buffer so that such UDCs are happy.
 729	 *
 730	 * Unfortunately, this means that host may send more data than was
 731	 * requested in read(2) system call.  f_fs doesn’t know what to do with
 732	 * that excess data so it simply drops it.
 733	 *
 734	 * Was the buffer aligned in the first place, no such problem would
 735	 * happen.
 736	 *
 737	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
 738	 * by splitting a request into multiple parts.  This splitting may still
 739	 * be a problem though so it’s likely best to align the buffer
 740	 * regardless of it being AIO or not..
 741	 *
 742	 * This only affects OUT endpoints, i.e. reading data with a read(2),
 743	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
 744	 * affected.
 745	 */
 746	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
 747	       "Align read buffer size to max packet size to avoid the problem.\n",
 748	       data_len, ret);
 749
 750	return ret;
 751}
 752
 753static void ffs_user_copy_worker(struct work_struct *work)
 754{
 755	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
 756						   work);
 757	int ret = io_data->req->status ? io_data->req->status :
 758					 io_data->req->actual;
 759	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
 760
 761	if (io_data->read && ret > 0) {
 762		use_mm(io_data->mm);
 763		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
 
 
 764		unuse_mm(io_data->mm);
 765	}
 766
 767	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
 768
 769	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
 770		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
 771
 772	usb_ep_free_request(io_data->ep, io_data->req);
 773
 774	if (io_data->read)
 775		kfree(io_data->to_free);
 776	kfree(io_data->buf);
 777	kfree(io_data);
 778}
 779
 780static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
 781					 struct usb_request *req)
 782{
 783	struct ffs_io_data *io_data = req->context;
 784
 785	ENTER();
 786
 787	INIT_WORK(&io_data->work, ffs_user_copy_worker);
 788	schedule_work(&io_data->work);
 789}
 790
 791static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
 792{
 793	/*
 794	 * See comment in struct ffs_epfile for full read_buffer pointer
 795	 * synchronisation story.
 796	 */
 797	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
 798	if (buf && buf != READ_BUFFER_DROP)
 799		kfree(buf);
 800}
 801
 802/* Assumes epfile->mutex is held. */
 803static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
 804					  struct iov_iter *iter)
 805{
 806	/*
 807	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
 808	 * the buffer while we are using it.  See comment in struct ffs_epfile
 809	 * for full read_buffer pointer synchronisation story.
 810	 */
 811	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
 812	ssize_t ret;
 813	if (!buf || buf == READ_BUFFER_DROP)
 814		return 0;
 815
 816	ret = copy_to_iter(buf->data, buf->length, iter);
 817	if (buf->length == ret) {
 818		kfree(buf);
 819		return ret;
 820	}
 821
 822	if (unlikely(iov_iter_count(iter))) {
 823		ret = -EFAULT;
 824	} else {
 825		buf->length -= ret;
 826		buf->data += ret;
 827	}
 828
 829	if (cmpxchg(&epfile->read_buffer, NULL, buf))
 830		kfree(buf);
 831
 832	return ret;
 833}
 834
 835/* Assumes epfile->mutex is held. */
 836static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
 837				      void *data, int data_len,
 838				      struct iov_iter *iter)
 839{
 840	struct ffs_buffer *buf;
 841
 842	ssize_t ret = copy_to_iter(data, data_len, iter);
 843	if (likely(data_len == ret))
 844		return ret;
 845
 846	if (unlikely(iov_iter_count(iter)))
 847		return -EFAULT;
 848
 849	/* See ffs_copy_to_iter for more context. */
 850	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
 851		data_len, ret);
 852
 853	data_len -= ret;
 854	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
 855	if (!buf)
 856		return -ENOMEM;
 857	buf->length = data_len;
 858	buf->data = buf->storage;
 859	memcpy(buf->storage, data + ret, data_len);
 860
 861	/*
 862	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
 863	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
 864	 * in struct ffs_epfile for full read_buffer pointer synchronisation
 865	 * story.
 866	 */
 867	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
 868		kfree(buf);
 869
 870	return ret;
 871}
 872
 873static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
 874{
 875	struct ffs_epfile *epfile = file->private_data;
 876	struct usb_request *req;
 877	struct ffs_ep *ep;
 878	char *data = NULL;
 879	ssize_t ret, data_len = -EINVAL;
 880	int halt;
 881
 882	/* Are we still active? */
 883	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 884		return -ENODEV;
 885
 886	/* Wait for endpoint to be enabled */
 887	ep = epfile->ep;
 888	if (!ep) {
 889		if (file->f_flags & O_NONBLOCK)
 890			return -EAGAIN;
 891
 892		ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
 893		if (ret)
 894			return -EINTR;
 895	}
 896
 897	/* Do we halt? */
 898	halt = (!io_data->read == !epfile->in);
 899	if (halt && epfile->isoc)
 900		return -EINVAL;
 901
 902	/* We will be using request and read_buffer */
 903	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
 904	if (unlikely(ret))
 905		goto error;
 906
 907	/* Allocate & copy */
 908	if (!halt) {
 909		struct usb_gadget *gadget;
 910
 911		/*
 912		 * Do we have buffered data from previous partial read?  Check
 913		 * that for synchronous case only because we do not have
 914		 * facility to ‘wake up’ a pending asynchronous read and push
 915		 * buffered data to it which we would need to make things behave
 916		 * consistently.
 917		 */
 918		if (!io_data->aio && io_data->read) {
 919			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
 920			if (ret)
 921				goto error_mutex;
 922		}
 923
 924		/*
 925		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
 926		 * before the waiting completes, so do not assign to 'gadget'
 927		 * earlier
 928		 */
 929		gadget = epfile->ffs->gadget;
 
 930
 931		spin_lock_irq(&epfile->ffs->eps_lock);
 932		/* In the meantime, endpoint got disabled or changed. */
 933		if (epfile->ep != ep) {
 934			ret = -ESHUTDOWN;
 935			goto error_lock;
 936		}
 937		data_len = iov_iter_count(&io_data->data);
 938		/*
 939		 * Controller may require buffer size to be aligned to
 940		 * maxpacketsize of an out endpoint.
 941		 */
 942		if (io_data->read)
 943			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
 944		spin_unlock_irq(&epfile->ffs->eps_lock);
 945
 946		data = kmalloc(data_len, GFP_KERNEL);
 947		if (unlikely(!data)) {
 948			ret = -ENOMEM;
 949			goto error_mutex;
 950		}
 951		if (!io_data->read &&
 952		    !copy_from_iter_full(data, data_len, &io_data->data)) {
 953			ret = -EFAULT;
 954			goto error_mutex;
 955		}
 956	}
 957
 
 
 
 
 
 958	spin_lock_irq(&epfile->ffs->eps_lock);
 959
 960	if (epfile->ep != ep) {
 961		/* In the meantime, endpoint got disabled or changed. */
 962		ret = -ESHUTDOWN;
 963	} else if (halt) {
 964		/* Halt */
 965		if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
 966			usb_ep_set_halt(ep->ep);
 967		ret = -EBADMSG;
 968	} else if (unlikely(data_len == -EINVAL)) {
 969		/*
 970		 * Sanity Check: even though data_len can't be used
 971		 * uninitialized at the time I write this comment, some
 972		 * compilers complain about this situation.
 973		 * In order to keep the code clean from warnings, data_len is
 974		 * being initialized to -EINVAL during its declaration, which
 975		 * means we can't rely on compiler anymore to warn no future
 976		 * changes won't result in data_len being used uninitialized.
 977		 * For such reason, we're adding this redundant sanity check
 978		 * here.
 979		 */
 980		WARN(1, "%s: data_len == -EINVAL\n", __func__);
 981		ret = -EINVAL;
 982	} else if (!io_data->aio) {
 983		DECLARE_COMPLETION_ONSTACK(done);
 984		bool interrupted = false;
 985
 986		req = ep->req;
 987		req->buf      = data;
 988		req->length   = data_len;
 989
 990		req->context  = &done;
 991		req->complete = ffs_epfile_io_complete;
 992
 993		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
 994		if (unlikely(ret < 0))
 995			goto error_lock;
 996
 997		spin_unlock_irq(&epfile->ffs->eps_lock);
 998
 999		if (unlikely(wait_for_completion_interruptible(&done))) {
1000			/*
1001			 * To avoid race condition with ffs_epfile_io_complete,
1002			 * dequeue the request first then check
1003			 * status. usb_ep_dequeue API should guarantee no race
1004			 * condition with req->complete callback.
1005			 */
1006			usb_ep_dequeue(ep->ep, req);
1007			interrupted = ep->status < 0;
1008		}
1009
1010		if (interrupted)
1011			ret = -EINTR;
1012		else if (io_data->read && ep->status > 0)
1013			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1014						     &io_data->data);
1015		else
1016			ret = ep->status;
 
 
 
 
 
1017		goto error_mutex;
1018	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
1019		ret = -ENOMEM;
1020	} else {
1021		req->buf      = data;
1022		req->length   = data_len;
1023
1024		io_data->buf = data;
1025		io_data->ep = ep->ep;
1026		io_data->req = req;
1027		io_data->ffs = epfile->ffs;
1028
1029		req->context  = io_data;
1030		req->complete = ffs_epfile_async_io_complete;
1031
1032		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1033		if (unlikely(ret)) {
1034			usb_ep_free_request(ep->ep, req);
1035			goto error_lock;
1036		}
1037
1038		ret = -EIOCBQUEUED;
1039		/*
1040		 * Do not kfree the buffer in this function.  It will be freed
1041		 * by ffs_user_copy_worker.
1042		 */
1043		data = NULL;
1044	}
1045
1046error_lock:
1047	spin_unlock_irq(&epfile->ffs->eps_lock);
1048error_mutex:
1049	mutex_unlock(&epfile->mutex);
1050error:
1051	kfree(data);
1052	return ret;
1053}
1054
1055static int
1056ffs_epfile_open(struct inode *inode, struct file *file)
1057{
1058	struct ffs_epfile *epfile = inode->i_private;
1059
1060	ENTER();
1061
1062	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1063		return -ENODEV;
1064
1065	file->private_data = epfile;
1066	ffs_data_opened(epfile->ffs);
1067
1068	return 0;
1069}
1070
1071static int ffs_aio_cancel(struct kiocb *kiocb)
1072{
1073	struct ffs_io_data *io_data = kiocb->private;
1074	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1075	int value;
1076
1077	ENTER();
1078
1079	spin_lock_irq(&epfile->ffs->eps_lock);
1080
1081	if (likely(io_data && io_data->ep && io_data->req))
1082		value = usb_ep_dequeue(io_data->ep, io_data->req);
1083	else
1084		value = -EINVAL;
1085
1086	spin_unlock_irq(&epfile->ffs->eps_lock);
1087
1088	return value;
1089}
1090
1091static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1092{
1093	struct ffs_io_data io_data, *p = &io_data;
1094	ssize_t res;
1095
1096	ENTER();
1097
1098	if (!is_sync_kiocb(kiocb)) {
1099		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1100		if (unlikely(!p))
1101			return -ENOMEM;
1102		p->aio = true;
1103	} else {
1104		p->aio = false;
1105	}
1106
1107	p->read = false;
1108	p->kiocb = kiocb;
1109	p->data = *from;
1110	p->mm = current->mm;
1111
1112	kiocb->private = p;
1113
1114	if (p->aio)
1115		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1116
1117	res = ffs_epfile_io(kiocb->ki_filp, p);
1118	if (res == -EIOCBQUEUED)
1119		return res;
1120	if (p->aio)
1121		kfree(p);
1122	else
1123		*from = p->data;
1124	return res;
1125}
1126
1127static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1128{
1129	struct ffs_io_data io_data, *p = &io_data;
1130	ssize_t res;
1131
1132	ENTER();
1133
1134	if (!is_sync_kiocb(kiocb)) {
1135		p = kmalloc(sizeof(io_data), GFP_KERNEL);
1136		if (unlikely(!p))
1137			return -ENOMEM;
1138		p->aio = true;
1139	} else {
1140		p->aio = false;
1141	}
1142
1143	p->read = true;
1144	p->kiocb = kiocb;
1145	if (p->aio) {
1146		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1147		if (!p->to_free) {
1148			kfree(p);
1149			return -ENOMEM;
1150		}
1151	} else {
1152		p->data = *to;
1153		p->to_free = NULL;
1154	}
1155	p->mm = current->mm;
1156
1157	kiocb->private = p;
1158
1159	if (p->aio)
1160		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1161
1162	res = ffs_epfile_io(kiocb->ki_filp, p);
1163	if (res == -EIOCBQUEUED)
1164		return res;
1165
1166	if (p->aio) {
1167		kfree(p->to_free);
1168		kfree(p);
1169	} else {
1170		*to = p->data;
1171	}
1172	return res;
1173}
1174
1175static int
1176ffs_epfile_release(struct inode *inode, struct file *file)
1177{
1178	struct ffs_epfile *epfile = inode->i_private;
1179
1180	ENTER();
1181
1182	__ffs_epfile_read_buffer_free(epfile);
1183	ffs_data_closed(epfile->ffs);
1184
1185	return 0;
1186}
1187
1188static long ffs_epfile_ioctl(struct file *file, unsigned code,
1189			     unsigned long value)
1190{
1191	struct ffs_epfile *epfile = file->private_data;
1192	int ret;
1193
1194	ENTER();
1195
1196	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1197		return -ENODEV;
1198
1199	spin_lock_irq(&epfile->ffs->eps_lock);
1200	if (likely(epfile->ep)) {
1201		switch (code) {
1202		case FUNCTIONFS_FIFO_STATUS:
1203			ret = usb_ep_fifo_status(epfile->ep->ep);
1204			break;
1205		case FUNCTIONFS_FIFO_FLUSH:
1206			usb_ep_fifo_flush(epfile->ep->ep);
1207			ret = 0;
1208			break;
1209		case FUNCTIONFS_CLEAR_HALT:
1210			ret = usb_ep_clear_halt(epfile->ep->ep);
1211			break;
1212		case FUNCTIONFS_ENDPOINT_REVMAP:
1213			ret = epfile->ep->num;
1214			break;
1215		case FUNCTIONFS_ENDPOINT_DESC:
1216		{
1217			int desc_idx;
1218			struct usb_endpoint_descriptor *desc;
1219
1220			switch (epfile->ffs->gadget->speed) {
1221			case USB_SPEED_SUPER:
1222				desc_idx = 2;
1223				break;
1224			case USB_SPEED_HIGH:
1225				desc_idx = 1;
1226				break;
1227			default:
1228				desc_idx = 0;
1229			}
1230			desc = epfile->ep->descs[desc_idx];
1231
1232			spin_unlock_irq(&epfile->ffs->eps_lock);
1233			ret = copy_to_user((void *)value, desc, sizeof(*desc));
1234			if (ret)
1235				ret = -EFAULT;
1236			return ret;
1237		}
1238		default:
1239			ret = -ENOTTY;
1240		}
1241	} else {
1242		ret = -ENODEV;
1243	}
1244	spin_unlock_irq(&epfile->ffs->eps_lock);
1245
1246	return ret;
1247}
1248
1249static const struct file_operations ffs_epfile_operations = {
1250	.llseek =	no_llseek,
1251
1252	.open =		ffs_epfile_open,
1253	.write_iter =	ffs_epfile_write_iter,
1254	.read_iter =	ffs_epfile_read_iter,
1255	.release =	ffs_epfile_release,
1256	.unlocked_ioctl =	ffs_epfile_ioctl,
1257};
1258
1259
1260/* File system and super block operations ***********************************/
1261
1262/*
1263 * Mounting the file system creates a controller file, used first for
1264 * function configuration then later for event monitoring.
1265 */
1266
1267static struct inode *__must_check
1268ffs_sb_make_inode(struct super_block *sb, void *data,
1269		  const struct file_operations *fops,
1270		  const struct inode_operations *iops,
1271		  struct ffs_file_perms *perms)
1272{
1273	struct inode *inode;
1274
1275	ENTER();
1276
1277	inode = new_inode(sb);
1278
1279	if (likely(inode)) {
1280		struct timespec ts = current_time(inode);
1281
1282		inode->i_ino	 = get_next_ino();
1283		inode->i_mode    = perms->mode;
1284		inode->i_uid     = perms->uid;
1285		inode->i_gid     = perms->gid;
1286		inode->i_atime   = ts;
1287		inode->i_mtime   = ts;
1288		inode->i_ctime   = ts;
1289		inode->i_private = data;
1290		if (fops)
1291			inode->i_fop = fops;
1292		if (iops)
1293			inode->i_op  = iops;
1294	}
1295
1296	return inode;
1297}
1298
1299/* Create "regular" file */
1300static struct dentry *ffs_sb_create_file(struct super_block *sb,
1301					const char *name, void *data,
1302					const struct file_operations *fops)
1303{
1304	struct ffs_data	*ffs = sb->s_fs_info;
1305	struct dentry	*dentry;
1306	struct inode	*inode;
1307
1308	ENTER();
1309
1310	dentry = d_alloc_name(sb->s_root, name);
1311	if (unlikely(!dentry))
1312		return NULL;
1313
1314	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1315	if (unlikely(!inode)) {
1316		dput(dentry);
1317		return NULL;
1318	}
1319
1320	d_add(dentry, inode);
1321	return dentry;
1322}
1323
1324/* Super block */
1325static const struct super_operations ffs_sb_operations = {
1326	.statfs =	simple_statfs,
1327	.drop_inode =	generic_delete_inode,
1328};
1329
1330struct ffs_sb_fill_data {
1331	struct ffs_file_perms perms;
1332	umode_t root_mode;
1333	const char *dev_name;
1334	bool no_disconnect;
1335	struct ffs_data *ffs_data;
1336};
1337
1338static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1339{
1340	struct ffs_sb_fill_data *data = _data;
1341	struct inode	*inode;
1342	struct ffs_data	*ffs = data->ffs_data;
1343
1344	ENTER();
1345
1346	ffs->sb              = sb;
1347	data->ffs_data       = NULL;
1348	sb->s_fs_info        = ffs;
1349	sb->s_blocksize      = PAGE_SIZE;
1350	sb->s_blocksize_bits = PAGE_SHIFT;
1351	sb->s_magic          = FUNCTIONFS_MAGIC;
1352	sb->s_op             = &ffs_sb_operations;
1353	sb->s_time_gran      = 1;
1354
1355	/* Root inode */
1356	data->perms.mode = data->root_mode;
1357	inode = ffs_sb_make_inode(sb, NULL,
1358				  &simple_dir_operations,
1359				  &simple_dir_inode_operations,
1360				  &data->perms);
1361	sb->s_root = d_make_root(inode);
1362	if (unlikely(!sb->s_root))
1363		return -ENOMEM;
1364
1365	/* EP0 file */
1366	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1367					 &ffs_ep0_operations)))
1368		return -ENOMEM;
1369
1370	return 0;
1371}
1372
1373static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1374{
1375	ENTER();
1376
1377	if (!opts || !*opts)
1378		return 0;
1379
1380	for (;;) {
1381		unsigned long value;
1382		char *eq, *comma;
1383
1384		/* Option limit */
1385		comma = strchr(opts, ',');
1386		if (comma)
1387			*comma = 0;
1388
1389		/* Value limit */
1390		eq = strchr(opts, '=');
1391		if (unlikely(!eq)) {
1392			pr_err("'=' missing in %s\n", opts);
1393			return -EINVAL;
1394		}
1395		*eq = 0;
1396
1397		/* Parse value */
1398		if (kstrtoul(eq + 1, 0, &value)) {
1399			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1400			return -EINVAL;
1401		}
1402
1403		/* Interpret option */
1404		switch (eq - opts) {
1405		case 13:
1406			if (!memcmp(opts, "no_disconnect", 13))
1407				data->no_disconnect = !!value;
1408			else
1409				goto invalid;
1410			break;
1411		case 5:
1412			if (!memcmp(opts, "rmode", 5))
1413				data->root_mode  = (value & 0555) | S_IFDIR;
1414			else if (!memcmp(opts, "fmode", 5))
1415				data->perms.mode = (value & 0666) | S_IFREG;
1416			else
1417				goto invalid;
1418			break;
1419
1420		case 4:
1421			if (!memcmp(opts, "mode", 4)) {
1422				data->root_mode  = (value & 0555) | S_IFDIR;
1423				data->perms.mode = (value & 0666) | S_IFREG;
1424			} else {
1425				goto invalid;
1426			}
1427			break;
1428
1429		case 3:
1430			if (!memcmp(opts, "uid", 3)) {
1431				data->perms.uid = make_kuid(current_user_ns(), value);
1432				if (!uid_valid(data->perms.uid)) {
1433					pr_err("%s: unmapped value: %lu\n", opts, value);
1434					return -EINVAL;
1435				}
1436			} else if (!memcmp(opts, "gid", 3)) {
1437				data->perms.gid = make_kgid(current_user_ns(), value);
1438				if (!gid_valid(data->perms.gid)) {
1439					pr_err("%s: unmapped value: %lu\n", opts, value);
1440					return -EINVAL;
1441				}
1442			} else {
1443				goto invalid;
1444			}
1445			break;
1446
1447		default:
1448invalid:
1449			pr_err("%s: invalid option\n", opts);
1450			return -EINVAL;
1451		}
1452
1453		/* Next iteration */
1454		if (!comma)
1455			break;
1456		opts = comma + 1;
1457	}
1458
1459	return 0;
1460}
1461
1462/* "mount -t functionfs dev_name /dev/function" ends up here */
1463
1464static struct dentry *
1465ffs_fs_mount(struct file_system_type *t, int flags,
1466	      const char *dev_name, void *opts)
1467{
1468	struct ffs_sb_fill_data data = {
1469		.perms = {
1470			.mode = S_IFREG | 0600,
1471			.uid = GLOBAL_ROOT_UID,
1472			.gid = GLOBAL_ROOT_GID,
1473		},
1474		.root_mode = S_IFDIR | 0500,
1475		.no_disconnect = false,
1476	};
1477	struct dentry *rv;
1478	int ret;
1479	void *ffs_dev;
1480	struct ffs_data	*ffs;
1481
1482	ENTER();
1483
1484	ret = ffs_fs_parse_opts(&data, opts);
1485	if (unlikely(ret < 0))
1486		return ERR_PTR(ret);
1487
1488	ffs = ffs_data_new();
1489	if (unlikely(!ffs))
1490		return ERR_PTR(-ENOMEM);
1491	ffs->file_perms = data.perms;
1492	ffs->no_disconnect = data.no_disconnect;
1493
1494	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1495	if (unlikely(!ffs->dev_name)) {
1496		ffs_data_put(ffs);
1497		return ERR_PTR(-ENOMEM);
1498	}
1499
1500	ffs_dev = ffs_acquire_dev(dev_name);
1501	if (IS_ERR(ffs_dev)) {
1502		ffs_data_put(ffs);
1503		return ERR_CAST(ffs_dev);
1504	}
1505	ffs->private_data = ffs_dev;
1506	data.ffs_data = ffs;
1507
1508	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1509	if (IS_ERR(rv) && data.ffs_data) {
1510		ffs_release_dev(data.ffs_data);
1511		ffs_data_put(data.ffs_data);
1512	}
1513	return rv;
1514}
1515
1516static void
1517ffs_fs_kill_sb(struct super_block *sb)
1518{
1519	ENTER();
1520
1521	kill_litter_super(sb);
1522	if (sb->s_fs_info) {
1523		ffs_release_dev(sb->s_fs_info);
1524		ffs_data_closed(sb->s_fs_info);
1525		ffs_data_put(sb->s_fs_info);
1526	}
1527}
1528
1529static struct file_system_type ffs_fs_type = {
1530	.owner		= THIS_MODULE,
1531	.name		= "functionfs",
1532	.mount		= ffs_fs_mount,
1533	.kill_sb	= ffs_fs_kill_sb,
1534};
1535MODULE_ALIAS_FS("functionfs");
1536
1537
1538/* Driver's main init/cleanup functions *************************************/
1539
1540static int functionfs_init(void)
1541{
1542	int ret;
1543
1544	ENTER();
1545
1546	ret = register_filesystem(&ffs_fs_type);
1547	if (likely(!ret))
1548		pr_info("file system registered\n");
1549	else
1550		pr_err("failed registering file system (%d)\n", ret);
1551
1552	return ret;
1553}
1554
1555static void functionfs_cleanup(void)
1556{
1557	ENTER();
1558
1559	pr_info("unloading\n");
1560	unregister_filesystem(&ffs_fs_type);
1561}
1562
1563
1564/* ffs_data and ffs_function construction and destruction code **************/
1565
1566static void ffs_data_clear(struct ffs_data *ffs);
1567static void ffs_data_reset(struct ffs_data *ffs);
1568
1569static void ffs_data_get(struct ffs_data *ffs)
1570{
1571	ENTER();
1572
1573	atomic_inc(&ffs->ref);
1574}
1575
1576static void ffs_data_opened(struct ffs_data *ffs)
1577{
1578	ENTER();
1579
1580	atomic_inc(&ffs->ref);
1581	if (atomic_add_return(1, &ffs->opened) == 1 &&
1582			ffs->state == FFS_DEACTIVATED) {
1583		ffs->state = FFS_CLOSING;
1584		ffs_data_reset(ffs);
1585	}
1586}
1587
1588static void ffs_data_put(struct ffs_data *ffs)
1589{
1590	ENTER();
1591
1592	if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1593		pr_info("%s(): freeing\n", __func__);
1594		ffs_data_clear(ffs);
1595		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1596		       waitqueue_active(&ffs->ep0req_completion.wait));
1597		kfree(ffs->dev_name);
1598		kfree(ffs);
1599	}
1600}
1601
1602static void ffs_data_closed(struct ffs_data *ffs)
1603{
1604	ENTER();
1605
1606	if (atomic_dec_and_test(&ffs->opened)) {
1607		if (ffs->no_disconnect) {
1608			ffs->state = FFS_DEACTIVATED;
1609			if (ffs->epfiles) {
1610				ffs_epfiles_destroy(ffs->epfiles,
1611						   ffs->eps_count);
1612				ffs->epfiles = NULL;
1613			}
1614			if (ffs->setup_state == FFS_SETUP_PENDING)
1615				__ffs_ep0_stall(ffs);
1616		} else {
1617			ffs->state = FFS_CLOSING;
1618			ffs_data_reset(ffs);
1619		}
1620	}
1621	if (atomic_read(&ffs->opened) < 0) {
1622		ffs->state = FFS_CLOSING;
1623		ffs_data_reset(ffs);
1624	}
1625
1626	ffs_data_put(ffs);
1627}
1628
1629static struct ffs_data *ffs_data_new(void)
1630{
1631	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1632	if (unlikely(!ffs))
1633		return NULL;
1634
1635	ENTER();
1636
1637	atomic_set(&ffs->ref, 1);
1638	atomic_set(&ffs->opened, 0);
1639	ffs->state = FFS_READ_DESCRIPTORS;
1640	mutex_init(&ffs->mutex);
1641	spin_lock_init(&ffs->eps_lock);
1642	init_waitqueue_head(&ffs->ev.waitq);
1643	init_completion(&ffs->ep0req_completion);
1644
1645	/* XXX REVISIT need to update it in some places, or do we? */
1646	ffs->ev.can_stall = 1;
1647
1648	return ffs;
1649}
1650
1651static void ffs_data_clear(struct ffs_data *ffs)
1652{
1653	ENTER();
1654
1655	ffs_closed(ffs);
1656
1657	BUG_ON(ffs->gadget);
1658
1659	if (ffs->epfiles)
1660		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1661
1662	if (ffs->ffs_eventfd)
1663		eventfd_ctx_put(ffs->ffs_eventfd);
1664
1665	kfree(ffs->raw_descs_data);
1666	kfree(ffs->raw_strings);
1667	kfree(ffs->stringtabs);
1668}
1669
1670static void ffs_data_reset(struct ffs_data *ffs)
1671{
1672	ENTER();
1673
1674	ffs_data_clear(ffs);
1675
1676	ffs->epfiles = NULL;
1677	ffs->raw_descs_data = NULL;
1678	ffs->raw_descs = NULL;
1679	ffs->raw_strings = NULL;
1680	ffs->stringtabs = NULL;
1681
1682	ffs->raw_descs_length = 0;
1683	ffs->fs_descs_count = 0;
1684	ffs->hs_descs_count = 0;
1685	ffs->ss_descs_count = 0;
1686
1687	ffs->strings_count = 0;
1688	ffs->interfaces_count = 0;
1689	ffs->eps_count = 0;
1690
1691	ffs->ev.count = 0;
1692
1693	ffs->state = FFS_READ_DESCRIPTORS;
1694	ffs->setup_state = FFS_NO_SETUP;
1695	ffs->flags = 0;
1696}
1697
1698
1699static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1700{
1701	struct usb_gadget_strings **lang;
1702	int first_id;
1703
1704	ENTER();
1705
1706	if (WARN_ON(ffs->state != FFS_ACTIVE
1707		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1708		return -EBADFD;
1709
1710	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1711	if (unlikely(first_id < 0))
1712		return first_id;
1713
1714	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1715	if (unlikely(!ffs->ep0req))
1716		return -ENOMEM;
1717	ffs->ep0req->complete = ffs_ep0_complete;
1718	ffs->ep0req->context = ffs;
1719
1720	lang = ffs->stringtabs;
1721	if (lang) {
1722		for (; *lang; ++lang) {
1723			struct usb_string *str = (*lang)->strings;
1724			int id = first_id;
1725			for (; str->s; ++id, ++str)
1726				str->id = id;
1727		}
1728	}
1729
1730	ffs->gadget = cdev->gadget;
1731	ffs_data_get(ffs);
1732	return 0;
1733}
1734
1735static void functionfs_unbind(struct ffs_data *ffs)
1736{
1737	ENTER();
1738
1739	if (!WARN_ON(!ffs->gadget)) {
1740		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1741		ffs->ep0req = NULL;
1742		ffs->gadget = NULL;
1743		clear_bit(FFS_FL_BOUND, &ffs->flags);
1744		ffs_data_put(ffs);
1745	}
1746}
1747
1748static int ffs_epfiles_create(struct ffs_data *ffs)
1749{
1750	struct ffs_epfile *epfile, *epfiles;
1751	unsigned i, count;
1752
1753	ENTER();
1754
1755	count = ffs->eps_count;
1756	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1757	if (!epfiles)
1758		return -ENOMEM;
1759
1760	epfile = epfiles;
1761	for (i = 1; i <= count; ++i, ++epfile) {
1762		epfile->ffs = ffs;
1763		mutex_init(&epfile->mutex);
1764		init_waitqueue_head(&epfile->wait);
1765		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1766			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1767		else
1768			sprintf(epfile->name, "ep%u", i);
1769		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1770						 epfile,
1771						 &ffs_epfile_operations);
1772		if (unlikely(!epfile->dentry)) {
1773			ffs_epfiles_destroy(epfiles, i - 1);
1774			return -ENOMEM;
1775		}
1776	}
1777
1778	ffs->epfiles = epfiles;
1779	return 0;
1780}
1781
1782static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1783{
1784	struct ffs_epfile *epfile = epfiles;
1785
1786	ENTER();
1787
1788	for (; count; --count, ++epfile) {
1789		BUG_ON(mutex_is_locked(&epfile->mutex) ||
1790		       waitqueue_active(&epfile->wait));
1791		if (epfile->dentry) {
1792			d_delete(epfile->dentry);
1793			dput(epfile->dentry);
1794			epfile->dentry = NULL;
1795		}
1796	}
1797
1798	kfree(epfiles);
1799}
1800
1801static void ffs_func_eps_disable(struct ffs_function *func)
1802{
1803	struct ffs_ep *ep         = func->eps;
1804	struct ffs_epfile *epfile = func->ffs->epfiles;
1805	unsigned count            = func->ffs->eps_count;
1806	unsigned long flags;
1807
1808	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1809	while (count--) {
1810		/* pending requests get nuked */
1811		if (likely(ep->ep))
1812			usb_ep_disable(ep->ep);
1813		++ep;
1814
1815		if (epfile) {
1816			epfile->ep = NULL;
1817			__ffs_epfile_read_buffer_free(epfile);
1818			++epfile;
1819		}
1820	}
1821	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1822}
1823
1824static int ffs_func_eps_enable(struct ffs_function *func)
1825{
1826	struct ffs_data *ffs      = func->ffs;
1827	struct ffs_ep *ep         = func->eps;
1828	struct ffs_epfile *epfile = ffs->epfiles;
1829	unsigned count            = ffs->eps_count;
1830	unsigned long flags;
1831	int ret = 0;
1832
1833	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1834	while(count--) {
1835		struct usb_endpoint_descriptor *ds;
1836		struct usb_ss_ep_comp_descriptor *comp_desc = NULL;
1837		int needs_comp_desc = false;
1838		int desc_idx;
1839
1840		if (ffs->gadget->speed == USB_SPEED_SUPER) {
1841			desc_idx = 2;
1842			needs_comp_desc = true;
1843		} else if (ffs->gadget->speed == USB_SPEED_HIGH)
1844			desc_idx = 1;
1845		else
1846			desc_idx = 0;
1847
1848		/* fall-back to lower speed if desc missing for current speed */
1849		do {
1850			ds = ep->descs[desc_idx];
1851		} while (!ds && --desc_idx >= 0);
1852
1853		if (!ds) {
1854			ret = -EINVAL;
1855			break;
1856		}
1857
1858		ep->ep->driver_data = ep;
1859		ep->ep->desc = ds;
1860
1861		comp_desc = (struct usb_ss_ep_comp_descriptor *)(ds +
1862				USB_DT_ENDPOINT_SIZE);
1863		ep->ep->maxburst = comp_desc->bMaxBurst + 1;
1864
1865		if (needs_comp_desc)
1866			ep->ep->comp_desc = comp_desc;
1867
1868		ret = usb_ep_enable(ep->ep);
1869		if (likely(!ret)) {
1870			epfile->ep = ep;
1871			epfile->in = usb_endpoint_dir_in(ds);
1872			epfile->isoc = usb_endpoint_xfer_isoc(ds);
1873		} else {
1874			break;
1875		}
1876
1877		wake_up(&epfile->wait);
1878
1879		++ep;
1880		++epfile;
1881	}
1882	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1883
1884	return ret;
1885}
1886
1887
1888/* Parsing and building descriptors and strings *****************************/
1889
1890/*
1891 * This validates if data pointed by data is a valid USB descriptor as
1892 * well as record how many interfaces, endpoints and strings are
1893 * required by given configuration.  Returns address after the
1894 * descriptor or NULL if data is invalid.
1895 */
1896
1897enum ffs_entity_type {
1898	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1899};
1900
1901enum ffs_os_desc_type {
1902	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1903};
1904
1905typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1906				   u8 *valuep,
1907				   struct usb_descriptor_header *desc,
1908				   void *priv);
1909
1910typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1911				    struct usb_os_desc_header *h, void *data,
1912				    unsigned len, void *priv);
1913
1914static int __must_check ffs_do_single_desc(char *data, unsigned len,
1915					   ffs_entity_callback entity,
1916					   void *priv)
1917{
1918	struct usb_descriptor_header *_ds = (void *)data;
1919	u8 length;
1920	int ret;
1921
1922	ENTER();
1923
1924	/* At least two bytes are required: length and type */
1925	if (len < 2) {
1926		pr_vdebug("descriptor too short\n");
1927		return -EINVAL;
1928	}
1929
1930	/* If we have at least as many bytes as the descriptor takes? */
1931	length = _ds->bLength;
1932	if (len < length) {
1933		pr_vdebug("descriptor longer then available data\n");
1934		return -EINVAL;
1935	}
1936
1937#define __entity_check_INTERFACE(val)  1
1938#define __entity_check_STRING(val)     (val)
1939#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1940#define __entity(type, val) do {					\
1941		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1942		if (unlikely(!__entity_check_ ##type(val))) {		\
1943			pr_vdebug("invalid entity's value\n");		\
1944			return -EINVAL;					\
1945		}							\
1946		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1947		if (unlikely(ret < 0)) {				\
1948			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1949				 (val), ret);				\
1950			return ret;					\
1951		}							\
1952	} while (0)
1953
1954	/* Parse descriptor depending on type. */
1955	switch (_ds->bDescriptorType) {
1956	case USB_DT_DEVICE:
1957	case USB_DT_CONFIG:
1958	case USB_DT_STRING:
1959	case USB_DT_DEVICE_QUALIFIER:
1960		/* function can't have any of those */
1961		pr_vdebug("descriptor reserved for gadget: %d\n",
1962		      _ds->bDescriptorType);
1963		return -EINVAL;
1964
1965	case USB_DT_INTERFACE: {
1966		struct usb_interface_descriptor *ds = (void *)_ds;
1967		pr_vdebug("interface descriptor\n");
1968		if (length != sizeof *ds)
1969			goto inv_length;
1970
1971		__entity(INTERFACE, ds->bInterfaceNumber);
1972		if (ds->iInterface)
1973			__entity(STRING, ds->iInterface);
1974	}
1975		break;
1976
1977	case USB_DT_ENDPOINT: {
1978		struct usb_endpoint_descriptor *ds = (void *)_ds;
1979		pr_vdebug("endpoint descriptor\n");
1980		if (length != USB_DT_ENDPOINT_SIZE &&
1981		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1982			goto inv_length;
1983		__entity(ENDPOINT, ds->bEndpointAddress);
1984	}
1985		break;
1986
1987	case HID_DT_HID:
1988		pr_vdebug("hid descriptor\n");
1989		if (length != sizeof(struct hid_descriptor))
1990			goto inv_length;
1991		break;
1992
1993	case USB_DT_OTG:
1994		if (length != sizeof(struct usb_otg_descriptor))
1995			goto inv_length;
1996		break;
1997
1998	case USB_DT_INTERFACE_ASSOCIATION: {
1999		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2000		pr_vdebug("interface association descriptor\n");
2001		if (length != sizeof *ds)
2002			goto inv_length;
2003		if (ds->iFunction)
2004			__entity(STRING, ds->iFunction);
2005	}
2006		break;
2007
2008	case USB_DT_SS_ENDPOINT_COMP:
2009		pr_vdebug("EP SS companion descriptor\n");
2010		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2011			goto inv_length;
2012		break;
2013
2014	case USB_DT_OTHER_SPEED_CONFIG:
2015	case USB_DT_INTERFACE_POWER:
2016	case USB_DT_DEBUG:
2017	case USB_DT_SECURITY:
2018	case USB_DT_CS_RADIO_CONTROL:
2019		/* TODO */
2020		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2021		return -EINVAL;
2022
2023	default:
2024		/* We should never be here */
2025		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2026		return -EINVAL;
2027
2028inv_length:
2029		pr_vdebug("invalid length: %d (descriptor %d)\n",
2030			  _ds->bLength, _ds->bDescriptorType);
2031		return -EINVAL;
2032	}
2033
2034#undef __entity
2035#undef __entity_check_DESCRIPTOR
2036#undef __entity_check_INTERFACE
2037#undef __entity_check_STRING
2038#undef __entity_check_ENDPOINT
2039
2040	return length;
2041}
2042
2043static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2044				     ffs_entity_callback entity, void *priv)
2045{
2046	const unsigned _len = len;
2047	unsigned long num = 0;
2048
2049	ENTER();
2050
2051	for (;;) {
2052		int ret;
2053
2054		if (num == count)
2055			data = NULL;
2056
2057		/* Record "descriptor" entity */
2058		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2059		if (unlikely(ret < 0)) {
2060			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2061				 num, ret);
2062			return ret;
2063		}
2064
2065		if (!data)
2066			return _len - len;
2067
2068		ret = ffs_do_single_desc(data, len, entity, priv);
2069		if (unlikely(ret < 0)) {
2070			pr_debug("%s returns %d\n", __func__, ret);
2071			return ret;
2072		}
2073
2074		len -= ret;
2075		data += ret;
2076		++num;
2077	}
2078}
2079
2080static int __ffs_data_do_entity(enum ffs_entity_type type,
2081				u8 *valuep, struct usb_descriptor_header *desc,
2082				void *priv)
2083{
2084	struct ffs_desc_helper *helper = priv;
2085	struct usb_endpoint_descriptor *d;
2086
2087	ENTER();
2088
2089	switch (type) {
2090	case FFS_DESCRIPTOR:
2091		break;
2092
2093	case FFS_INTERFACE:
2094		/*
2095		 * Interfaces are indexed from zero so if we
2096		 * encountered interface "n" then there are at least
2097		 * "n+1" interfaces.
2098		 */
2099		if (*valuep >= helper->interfaces_count)
2100			helper->interfaces_count = *valuep + 1;
2101		break;
2102
2103	case FFS_STRING:
2104		/*
2105		 * Strings are indexed from 1 (0 is reserved
2106		 * for languages list)
2107		 */
2108		if (*valuep > helper->ffs->strings_count)
2109			helper->ffs->strings_count = *valuep;
2110		break;
2111
2112	case FFS_ENDPOINT:
2113		d = (void *)desc;
2114		helper->eps_count++;
2115		if (helper->eps_count >= 15)
2116			return -EINVAL;
2117		/* Check if descriptors for any speed were already parsed */
2118		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2119			helper->ffs->eps_addrmap[helper->eps_count] =
2120				d->bEndpointAddress;
2121		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2122				d->bEndpointAddress)
2123			return -EINVAL;
2124		break;
2125	}
2126
2127	return 0;
2128}
2129
2130static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2131				   struct usb_os_desc_header *desc)
2132{
2133	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2134	u16 w_index = le16_to_cpu(desc->wIndex);
2135
2136	if (bcd_version != 1) {
2137		pr_vdebug("unsupported os descriptors version: %d",
2138			  bcd_version);
2139		return -EINVAL;
2140	}
2141	switch (w_index) {
2142	case 0x4:
2143		*next_type = FFS_OS_DESC_EXT_COMPAT;
2144		break;
2145	case 0x5:
2146		*next_type = FFS_OS_DESC_EXT_PROP;
2147		break;
2148	default:
2149		pr_vdebug("unsupported os descriptor type: %d", w_index);
2150		return -EINVAL;
2151	}
2152
2153	return sizeof(*desc);
2154}
2155
2156/*
2157 * Process all extended compatibility/extended property descriptors
2158 * of a feature descriptor
2159 */
2160static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2161					      enum ffs_os_desc_type type,
2162					      u16 feature_count,
2163					      ffs_os_desc_callback entity,
2164					      void *priv,
2165					      struct usb_os_desc_header *h)
2166{
2167	int ret;
2168	const unsigned _len = len;
2169
2170	ENTER();
2171
2172	/* loop over all ext compat/ext prop descriptors */
2173	while (feature_count--) {
2174		ret = entity(type, h, data, len, priv);
2175		if (unlikely(ret < 0)) {
2176			pr_debug("bad OS descriptor, type: %d\n", type);
2177			return ret;
2178		}
2179		data += ret;
2180		len -= ret;
2181	}
2182	return _len - len;
2183}
2184
2185/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2186static int __must_check ffs_do_os_descs(unsigned count,
2187					char *data, unsigned len,
2188					ffs_os_desc_callback entity, void *priv)
2189{
2190	const unsigned _len = len;
2191	unsigned long num = 0;
2192
2193	ENTER();
2194
2195	for (num = 0; num < count; ++num) {
2196		int ret;
2197		enum ffs_os_desc_type type;
2198		u16 feature_count;
2199		struct usb_os_desc_header *desc = (void *)data;
2200
2201		if (len < sizeof(*desc))
2202			return -EINVAL;
2203
2204		/*
2205		 * Record "descriptor" entity.
2206		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2207		 * Move the data pointer to the beginning of extended
2208		 * compatibilities proper or extended properties proper
2209		 * portions of the data
2210		 */
2211		if (le32_to_cpu(desc->dwLength) > len)
2212			return -EINVAL;
2213
2214		ret = __ffs_do_os_desc_header(&type, desc);
2215		if (unlikely(ret < 0)) {
2216			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2217				 num, ret);
2218			return ret;
2219		}
2220		/*
2221		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2222		 */
2223		feature_count = le16_to_cpu(desc->wCount);
2224		if (type == FFS_OS_DESC_EXT_COMPAT &&
2225		    (feature_count > 255 || desc->Reserved))
2226				return -EINVAL;
2227		len -= ret;
2228		data += ret;
2229
2230		/*
2231		 * Process all function/property descriptors
2232		 * of this Feature Descriptor
2233		 */
2234		ret = ffs_do_single_os_desc(data, len, type,
2235					    feature_count, entity, priv, desc);
2236		if (unlikely(ret < 0)) {
2237			pr_debug("%s returns %d\n", __func__, ret);
2238			return ret;
2239		}
2240
2241		len -= ret;
2242		data += ret;
2243	}
2244	return _len - len;
2245}
2246
2247/**
2248 * Validate contents of the buffer from userspace related to OS descriptors.
2249 */
2250static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2251				 struct usb_os_desc_header *h, void *data,
2252				 unsigned len, void *priv)
2253{
2254	struct ffs_data *ffs = priv;
2255	u8 length;
2256
2257	ENTER();
2258
2259	switch (type) {
2260	case FFS_OS_DESC_EXT_COMPAT: {
2261		struct usb_ext_compat_desc *d = data;
2262		int i;
2263
2264		if (len < sizeof(*d) ||
2265		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2266		    d->Reserved1)
2267			return -EINVAL;
2268		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2269			if (d->Reserved2[i])
2270				return -EINVAL;
2271
2272		length = sizeof(struct usb_ext_compat_desc);
2273	}
2274		break;
2275	case FFS_OS_DESC_EXT_PROP: {
2276		struct usb_ext_prop_desc *d = data;
2277		u32 type, pdl;
2278		u16 pnl;
2279
2280		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2281			return -EINVAL;
2282		length = le32_to_cpu(d->dwSize);
2283		if (len < length)
2284			return -EINVAL;
2285		type = le32_to_cpu(d->dwPropertyDataType);
2286		if (type < USB_EXT_PROP_UNICODE ||
2287		    type > USB_EXT_PROP_UNICODE_MULTI) {
2288			pr_vdebug("unsupported os descriptor property type: %d",
2289				  type);
2290			return -EINVAL;
2291		}
2292		pnl = le16_to_cpu(d->wPropertyNameLength);
2293		if (length < 14 + pnl) {
2294			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2295				  length, pnl, type);
2296			return -EINVAL;
2297		}
2298		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2299		if (length != 14 + pnl + pdl) {
2300			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2301				  length, pnl, pdl, type);
2302			return -EINVAL;
2303		}
2304		++ffs->ms_os_descs_ext_prop_count;
2305		/* property name reported to the host as "WCHAR"s */
2306		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2307		ffs->ms_os_descs_ext_prop_data_len += pdl;
2308	}
2309		break;
2310	default:
2311		pr_vdebug("unknown descriptor: %d\n", type);
2312		return -EINVAL;
2313	}
2314	return length;
2315}
2316
2317static int __ffs_data_got_descs(struct ffs_data *ffs,
2318				char *const _data, size_t len)
2319{
2320	char *data = _data, *raw_descs;
2321	unsigned os_descs_count = 0, counts[3], flags;
2322	int ret = -EINVAL, i;
2323	struct ffs_desc_helper helper;
2324
2325	ENTER();
2326
2327	if (get_unaligned_le32(data + 4) != len)
2328		goto error;
2329
2330	switch (get_unaligned_le32(data)) {
2331	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2332		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2333		data += 8;
2334		len  -= 8;
2335		break;
2336	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2337		flags = get_unaligned_le32(data + 8);
2338		ffs->user_flags = flags;
2339		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2340			      FUNCTIONFS_HAS_HS_DESC |
2341			      FUNCTIONFS_HAS_SS_DESC |
2342			      FUNCTIONFS_HAS_MS_OS_DESC |
2343			      FUNCTIONFS_VIRTUAL_ADDR |
2344			      FUNCTIONFS_EVENTFD |
2345			      FUNCTIONFS_ALL_CTRL_RECIP |
2346			      FUNCTIONFS_CONFIG0_SETUP)) {
2347			ret = -ENOSYS;
2348			goto error;
2349		}
2350		data += 12;
2351		len  -= 12;
2352		break;
2353	default:
2354		goto error;
2355	}
2356
2357	if (flags & FUNCTIONFS_EVENTFD) {
2358		if (len < 4)
2359			goto error;
2360		ffs->ffs_eventfd =
2361			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2362		if (IS_ERR(ffs->ffs_eventfd)) {
2363			ret = PTR_ERR(ffs->ffs_eventfd);
2364			ffs->ffs_eventfd = NULL;
2365			goto error;
2366		}
2367		data += 4;
2368		len  -= 4;
2369	}
2370
2371	/* Read fs_count, hs_count and ss_count (if present) */
2372	for (i = 0; i < 3; ++i) {
2373		if (!(flags & (1 << i))) {
2374			counts[i] = 0;
2375		} else if (len < 4) {
2376			goto error;
2377		} else {
2378			counts[i] = get_unaligned_le32(data);
2379			data += 4;
2380			len  -= 4;
2381		}
2382	}
2383	if (flags & (1 << i)) {
2384		if (len < 4) {
2385			goto error;
2386		}
2387		os_descs_count = get_unaligned_le32(data);
2388		data += 4;
2389		len -= 4;
2390	};
2391
2392	/* Read descriptors */
2393	raw_descs = data;
2394	helper.ffs = ffs;
2395	for (i = 0; i < 3; ++i) {
2396		if (!counts[i])
2397			continue;
2398		helper.interfaces_count = 0;
2399		helper.eps_count = 0;
2400		ret = ffs_do_descs(counts[i], data, len,
2401				   __ffs_data_do_entity, &helper);
2402		if (ret < 0)
2403			goto error;
2404		if (!ffs->eps_count && !ffs->interfaces_count) {
2405			ffs->eps_count = helper.eps_count;
2406			ffs->interfaces_count = helper.interfaces_count;
2407		} else {
2408			if (ffs->eps_count != helper.eps_count) {
2409				ret = -EINVAL;
2410				goto error;
2411			}
2412			if (ffs->interfaces_count != helper.interfaces_count) {
2413				ret = -EINVAL;
2414				goto error;
2415			}
2416		}
2417		data += ret;
2418		len  -= ret;
2419	}
2420	if (os_descs_count) {
2421		ret = ffs_do_os_descs(os_descs_count, data, len,
2422				      __ffs_data_do_os_desc, ffs);
2423		if (ret < 0)
2424			goto error;
2425		data += ret;
2426		len -= ret;
2427	}
2428
2429	if (raw_descs == data || len) {
2430		ret = -EINVAL;
2431		goto error;
2432	}
2433
2434	ffs->raw_descs_data	= _data;
2435	ffs->raw_descs		= raw_descs;
2436	ffs->raw_descs_length	= data - raw_descs;
2437	ffs->fs_descs_count	= counts[0];
2438	ffs->hs_descs_count	= counts[1];
2439	ffs->ss_descs_count	= counts[2];
2440	ffs->ms_os_descs_count	= os_descs_count;
2441
2442	return 0;
2443
2444error:
2445	kfree(_data);
2446	return ret;
2447}
2448
2449static int __ffs_data_got_strings(struct ffs_data *ffs,
2450				  char *const _data, size_t len)
2451{
2452	u32 str_count, needed_count, lang_count;
2453	struct usb_gadget_strings **stringtabs, *t;
 
2454	const char *data = _data;
2455	struct usb_string *s;
2456
2457	ENTER();
2458
2459	if (unlikely(len < 16 ||
2460		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2461		     get_unaligned_le32(data + 4) != len))
2462		goto error;
2463	str_count  = get_unaligned_le32(data + 8);
2464	lang_count = get_unaligned_le32(data + 12);
2465
2466	/* if one is zero the other must be zero */
2467	if (unlikely(!str_count != !lang_count))
2468		goto error;
2469
2470	/* Do we have at least as many strings as descriptors need? */
2471	needed_count = ffs->strings_count;
2472	if (unlikely(str_count < needed_count))
2473		goto error;
2474
2475	/*
2476	 * If we don't need any strings just return and free all
2477	 * memory.
2478	 */
2479	if (!needed_count) {
2480		kfree(_data);
2481		return 0;
2482	}
2483
2484	/* Allocate everything in one chunk so there's less maintenance. */
2485	{
2486		unsigned i = 0;
2487		vla_group(d);
2488		vla_item(d, struct usb_gadget_strings *, stringtabs,
2489			lang_count + 1);
2490		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2491		vla_item(d, struct usb_string, strings,
2492			lang_count*(needed_count+1));
2493
2494		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2495
2496		if (unlikely(!vlabuf)) {
2497			kfree(_data);
2498			return -ENOMEM;
2499		}
2500
2501		/* Initialize the VLA pointers */
2502		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2503		t = vla_ptr(vlabuf, d, stringtab);
2504		i = lang_count;
2505		do {
2506			*stringtabs++ = t++;
2507		} while (--i);
2508		*stringtabs = NULL;
2509
2510		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2511		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2512		t = vla_ptr(vlabuf, d, stringtab);
2513		s = vla_ptr(vlabuf, d, strings);
 
2514	}
2515
2516	/* For each language */
2517	data += 16;
2518	len -= 16;
2519
2520	do { /* lang_count > 0 so we can use do-while */
2521		unsigned needed = needed_count;
2522
2523		if (unlikely(len < 3))
2524			goto error_free;
2525		t->language = get_unaligned_le16(data);
2526		t->strings  = s;
2527		++t;
2528
2529		data += 2;
2530		len -= 2;
2531
2532		/* For each string */
2533		do { /* str_count > 0 so we can use do-while */
2534			size_t length = strnlen(data, len);
2535
2536			if (unlikely(length == len))
2537				goto error_free;
2538
2539			/*
2540			 * User may provide more strings then we need,
2541			 * if that's the case we simply ignore the
2542			 * rest
2543			 */
2544			if (likely(needed)) {
2545				/*
2546				 * s->id will be set while adding
2547				 * function to configuration so for
2548				 * now just leave garbage here.
2549				 */
2550				s->s = data;
2551				--needed;
2552				++s;
2553			}
2554
2555			data += length + 1;
2556			len -= length + 1;
2557		} while (--str_count);
2558
2559		s->id = 0;   /* terminator */
2560		s->s = NULL;
2561		++s;
2562
2563	} while (--lang_count);
2564
2565	/* Some garbage left? */
2566	if (unlikely(len))
2567		goto error_free;
2568
2569	/* Done! */
2570	ffs->stringtabs = stringtabs;
2571	ffs->raw_strings = _data;
2572
2573	return 0;
2574
2575error_free:
2576	kfree(stringtabs);
2577error:
2578	kfree(_data);
2579	return -EINVAL;
2580}
2581
2582
2583/* Events handling and management *******************************************/
2584
2585static void __ffs_event_add(struct ffs_data *ffs,
2586			    enum usb_functionfs_event_type type)
2587{
2588	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2589	int neg = 0;
2590
2591	/*
2592	 * Abort any unhandled setup
2593	 *
2594	 * We do not need to worry about some cmpxchg() changing value
2595	 * of ffs->setup_state without holding the lock because when
2596	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2597	 * the source does nothing.
2598	 */
2599	if (ffs->setup_state == FFS_SETUP_PENDING)
2600		ffs->setup_state = FFS_SETUP_CANCELLED;
2601
2602	/*
2603	 * Logic of this function guarantees that there are at most four pending
2604	 * evens on ffs->ev.types queue.  This is important because the queue
2605	 * has space for four elements only and __ffs_ep0_read_events function
2606	 * depends on that limit as well.  If more event types are added, those
2607	 * limits have to be revisited or guaranteed to still hold.
2608	 */
2609	switch (type) {
2610	case FUNCTIONFS_RESUME:
2611		rem_type2 = FUNCTIONFS_SUSPEND;
2612		/* FALL THROUGH */
2613	case FUNCTIONFS_SUSPEND:
2614	case FUNCTIONFS_SETUP:
2615		rem_type1 = type;
2616		/* Discard all similar events */
2617		break;
2618
2619	case FUNCTIONFS_BIND:
2620	case FUNCTIONFS_UNBIND:
2621	case FUNCTIONFS_DISABLE:
2622	case FUNCTIONFS_ENABLE:
2623		/* Discard everything other then power management. */
2624		rem_type1 = FUNCTIONFS_SUSPEND;
2625		rem_type2 = FUNCTIONFS_RESUME;
2626		neg = 1;
2627		break;
2628
2629	default:
2630		WARN(1, "%d: unknown event, this should not happen\n", type);
2631		return;
2632	}
2633
2634	{
2635		u8 *ev  = ffs->ev.types, *out = ev;
2636		unsigned n = ffs->ev.count;
2637		for (; n; --n, ++ev)
2638			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2639				*out++ = *ev;
2640			else
2641				pr_vdebug("purging event %d\n", *ev);
2642		ffs->ev.count = out - ffs->ev.types;
2643	}
2644
2645	pr_vdebug("adding event %d\n", type);
2646	ffs->ev.types[ffs->ev.count++] = type;
2647	wake_up_locked(&ffs->ev.waitq);
2648	if (ffs->ffs_eventfd)
2649		eventfd_signal(ffs->ffs_eventfd, 1);
2650}
2651
2652static void ffs_event_add(struct ffs_data *ffs,
2653			  enum usb_functionfs_event_type type)
2654{
2655	unsigned long flags;
2656	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2657	__ffs_event_add(ffs, type);
2658	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2659}
2660
2661/* Bind/unbind USB function hooks *******************************************/
2662
2663static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2664{
2665	int i;
2666
2667	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2668		if (ffs->eps_addrmap[i] == endpoint_address)
2669			return i;
2670	return -ENOENT;
2671}
2672
2673static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2674				    struct usb_descriptor_header *desc,
2675				    void *priv)
2676{
2677	struct usb_endpoint_descriptor *ds = (void *)desc;
2678	struct ffs_function *func = priv;
2679	struct ffs_ep *ffs_ep;
2680	unsigned ep_desc_id;
2681	int idx;
2682	static const char *speed_names[] = { "full", "high", "super" };
2683
2684	if (type != FFS_DESCRIPTOR)
2685		return 0;
2686
2687	/*
2688	 * If ss_descriptors is not NULL, we are reading super speed
2689	 * descriptors; if hs_descriptors is not NULL, we are reading high
2690	 * speed descriptors; otherwise, we are reading full speed
2691	 * descriptors.
2692	 */
2693	if (func->function.ss_descriptors) {
2694		ep_desc_id = 2;
2695		func->function.ss_descriptors[(long)valuep] = desc;
2696	} else if (func->function.hs_descriptors) {
2697		ep_desc_id = 1;
2698		func->function.hs_descriptors[(long)valuep] = desc;
2699	} else {
2700		ep_desc_id = 0;
2701		func->function.fs_descriptors[(long)valuep]    = desc;
2702	}
2703
2704	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2705		return 0;
2706
2707	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2708	if (idx < 0)
2709		return idx;
2710
2711	ffs_ep = func->eps + idx;
2712
2713	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2714		pr_err("two %sspeed descriptors for EP %d\n",
2715			  speed_names[ep_desc_id],
2716			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2717		return -EINVAL;
2718	}
2719	ffs_ep->descs[ep_desc_id] = ds;
2720
2721	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2722	if (ffs_ep->ep) {
2723		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2724		if (!ds->wMaxPacketSize)
2725			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2726	} else {
2727		struct usb_request *req;
2728		struct usb_ep *ep;
2729		u8 bEndpointAddress;
2730
2731		/*
2732		 * We back up bEndpointAddress because autoconfig overwrites
2733		 * it with physical endpoint address.
2734		 */
2735		bEndpointAddress = ds->bEndpointAddress;
2736		pr_vdebug("autoconfig\n");
2737		ep = usb_ep_autoconfig(func->gadget, ds);
2738		if (unlikely(!ep))
2739			return -ENOTSUPP;
2740		ep->driver_data = func->eps + idx;
2741
2742		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2743		if (unlikely(!req))
2744			return -ENOMEM;
2745
2746		ffs_ep->ep  = ep;
2747		ffs_ep->req = req;
2748		func->eps_revmap[ds->bEndpointAddress &
2749				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2750		/*
2751		 * If we use virtual address mapping, we restore
2752		 * original bEndpointAddress value.
2753		 */
2754		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2755			ds->bEndpointAddress = bEndpointAddress;
2756	}
2757	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2758
2759	return 0;
2760}
2761
2762static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2763				   struct usb_descriptor_header *desc,
2764				   void *priv)
2765{
2766	struct ffs_function *func = priv;
2767	unsigned idx;
2768	u8 newValue;
2769
2770	switch (type) {
2771	default:
2772	case FFS_DESCRIPTOR:
2773		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2774		return 0;
2775
2776	case FFS_INTERFACE:
2777		idx = *valuep;
2778		if (func->interfaces_nums[idx] < 0) {
2779			int id = usb_interface_id(func->conf, &func->function);
2780			if (unlikely(id < 0))
2781				return id;
2782			func->interfaces_nums[idx] = id;
2783		}
2784		newValue = func->interfaces_nums[idx];
2785		break;
2786
2787	case FFS_STRING:
2788		/* String' IDs are allocated when fsf_data is bound to cdev */
2789		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2790		break;
2791
2792	case FFS_ENDPOINT:
2793		/*
2794		 * USB_DT_ENDPOINT are handled in
2795		 * __ffs_func_bind_do_descs().
2796		 */
2797		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2798			return 0;
2799
2800		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2801		if (unlikely(!func->eps[idx].ep))
2802			return -EINVAL;
2803
2804		{
2805			struct usb_endpoint_descriptor **descs;
2806			descs = func->eps[idx].descs;
2807			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2808		}
2809		break;
2810	}
2811
2812	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2813	*valuep = newValue;
2814	return 0;
2815}
2816
2817static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2818				      struct usb_os_desc_header *h, void *data,
2819				      unsigned len, void *priv)
2820{
2821	struct ffs_function *func = priv;
2822	u8 length = 0;
2823
2824	switch (type) {
2825	case FFS_OS_DESC_EXT_COMPAT: {
2826		struct usb_ext_compat_desc *desc = data;
2827		struct usb_os_desc_table *t;
2828
2829		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2830		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2831		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2832		       ARRAY_SIZE(desc->CompatibleID) +
2833		       ARRAY_SIZE(desc->SubCompatibleID));
2834		length = sizeof(*desc);
2835	}
2836		break;
2837	case FFS_OS_DESC_EXT_PROP: {
2838		struct usb_ext_prop_desc *desc = data;
2839		struct usb_os_desc_table *t;
2840		struct usb_os_desc_ext_prop *ext_prop;
2841		char *ext_prop_name;
2842		char *ext_prop_data;
2843
2844		t = &func->function.os_desc_table[h->interface];
2845		t->if_id = func->interfaces_nums[h->interface];
2846
2847		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2848		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2849
2850		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2851		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2852		ext_prop->data_len = le32_to_cpu(*(u32 *)
2853			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2854		length = ext_prop->name_len + ext_prop->data_len + 14;
2855
2856		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2857		func->ffs->ms_os_descs_ext_prop_name_avail +=
2858			ext_prop->name_len;
2859
2860		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2861		func->ffs->ms_os_descs_ext_prop_data_avail +=
2862			ext_prop->data_len;
2863		memcpy(ext_prop_data,
2864		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2865		       ext_prop->data_len);
2866		/* unicode data reported to the host as "WCHAR"s */
2867		switch (ext_prop->type) {
2868		case USB_EXT_PROP_UNICODE:
2869		case USB_EXT_PROP_UNICODE_ENV:
2870		case USB_EXT_PROP_UNICODE_LINK:
2871		case USB_EXT_PROP_UNICODE_MULTI:
2872			ext_prop->data_len *= 2;
2873			break;
2874		}
2875		ext_prop->data = ext_prop_data;
2876
2877		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2878		       ext_prop->name_len);
2879		/* property name reported to the host as "WCHAR"s */
2880		ext_prop->name_len *= 2;
2881		ext_prop->name = ext_prop_name;
2882
2883		t->os_desc->ext_prop_len +=
2884			ext_prop->name_len + ext_prop->data_len + 14;
2885		++t->os_desc->ext_prop_count;
2886		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2887	}
2888		break;
2889	default:
2890		pr_vdebug("unknown descriptor: %d\n", type);
2891	}
2892
2893	return length;
2894}
2895
2896static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2897						struct usb_configuration *c)
2898{
2899	struct ffs_function *func = ffs_func_from_usb(f);
2900	struct f_fs_opts *ffs_opts =
2901		container_of(f->fi, struct f_fs_opts, func_inst);
2902	int ret;
2903
2904	ENTER();
2905
2906	/*
2907	 * Legacy gadget triggers binding in functionfs_ready_callback,
2908	 * which already uses locking; taking the same lock here would
2909	 * cause a deadlock.
2910	 *
2911	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2912	 */
2913	if (!ffs_opts->no_configfs)
2914		ffs_dev_lock();
2915	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2916	func->ffs = ffs_opts->dev->ffs_data;
2917	if (!ffs_opts->no_configfs)
2918		ffs_dev_unlock();
2919	if (ret)
2920		return ERR_PTR(ret);
2921
2922	func->conf = c;
2923	func->gadget = c->cdev->gadget;
2924
2925	/*
2926	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2927	 * configurations are bound in sequence with list_for_each_entry,
2928	 * in each configuration its functions are bound in sequence
2929	 * with list_for_each_entry, so we assume no race condition
2930	 * with regard to ffs_opts->bound access
2931	 */
2932	if (!ffs_opts->refcnt) {
2933		ret = functionfs_bind(func->ffs, c->cdev);
2934		if (ret)
2935			return ERR_PTR(ret);
2936	}
2937	ffs_opts->refcnt++;
2938	func->function.strings = func->ffs->stringtabs;
2939
2940	return ffs_opts;
2941}
2942
2943static int _ffs_func_bind(struct usb_configuration *c,
2944			  struct usb_function *f)
2945{
2946	struct ffs_function *func = ffs_func_from_usb(f);
2947	struct ffs_data *ffs = func->ffs;
2948
2949	const int full = !!func->ffs->fs_descs_count;
2950	const int high = gadget_is_dualspeed(func->gadget) &&
2951		func->ffs->hs_descs_count;
2952	const int super = gadget_is_superspeed(func->gadget) &&
2953		func->ffs->ss_descs_count;
2954
2955	int fs_len, hs_len, ss_len, ret, i;
2956	struct ffs_ep *eps_ptr;
2957
2958	/* Make it a single chunk, less management later on */
2959	vla_group(d);
2960	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2961	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2962		full ? ffs->fs_descs_count + 1 : 0);
2963	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2964		high ? ffs->hs_descs_count + 1 : 0);
2965	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2966		super ? ffs->ss_descs_count + 1 : 0);
2967	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2968	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2969			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2970	vla_item_with_sz(d, char[16], ext_compat,
2971			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2972	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2973			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2974	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2975			 ffs->ms_os_descs_ext_prop_count);
2976	vla_item_with_sz(d, char, ext_prop_name,
2977			 ffs->ms_os_descs_ext_prop_name_len);
2978	vla_item_with_sz(d, char, ext_prop_data,
2979			 ffs->ms_os_descs_ext_prop_data_len);
2980	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2981	char *vlabuf;
2982
2983	ENTER();
2984
2985	/* Has descriptors only for speeds gadget does not support */
2986	if (unlikely(!(full | high | super)))
2987		return -ENOTSUPP;
2988
2989	/* Allocate a single chunk, less management later on */
2990	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2991	if (unlikely(!vlabuf))
2992		return -ENOMEM;
2993
2994	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2995	ffs->ms_os_descs_ext_prop_name_avail =
2996		vla_ptr(vlabuf, d, ext_prop_name);
2997	ffs->ms_os_descs_ext_prop_data_avail =
2998		vla_ptr(vlabuf, d, ext_prop_data);
2999
3000	/* Copy descriptors  */
3001	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3002	       ffs->raw_descs_length);
3003
3004	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3005	eps_ptr = vla_ptr(vlabuf, d, eps);
3006	for (i = 0; i < ffs->eps_count; i++)
3007		eps_ptr[i].num = -1;
 
 
 
3008
3009	/* Save pointers
3010	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3011	*/
3012	func->eps             = vla_ptr(vlabuf, d, eps);
3013	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3014
3015	/*
3016	 * Go through all the endpoint descriptors and allocate
3017	 * endpoints first, so that later we can rewrite the endpoint
3018	 * numbers without worrying that it may be described later on.
3019	 */
3020	if (likely(full)) {
3021		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3022		fs_len = ffs_do_descs(ffs->fs_descs_count,
3023				      vla_ptr(vlabuf, d, raw_descs),
3024				      d_raw_descs__sz,
3025				      __ffs_func_bind_do_descs, func);
3026		if (unlikely(fs_len < 0)) {
3027			ret = fs_len;
3028			goto error;
3029		}
3030	} else {
3031		fs_len = 0;
3032	}
3033
3034	if (likely(high)) {
3035		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3036		hs_len = ffs_do_descs(ffs->hs_descs_count,
3037				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3038				      d_raw_descs__sz - fs_len,
3039				      __ffs_func_bind_do_descs, func);
3040		if (unlikely(hs_len < 0)) {
3041			ret = hs_len;
3042			goto error;
3043		}
3044	} else {
3045		hs_len = 0;
3046	}
3047
3048	if (likely(super)) {
3049		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3050		ss_len = ffs_do_descs(ffs->ss_descs_count,
3051				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3052				d_raw_descs__sz - fs_len - hs_len,
3053				__ffs_func_bind_do_descs, func);
3054		if (unlikely(ss_len < 0)) {
3055			ret = ss_len;
3056			goto error;
3057		}
3058	} else {
3059		ss_len = 0;
3060	}
3061
3062	/*
3063	 * Now handle interface numbers allocation and interface and
3064	 * endpoint numbers rewriting.  We can do that in one go
3065	 * now.
3066	 */
3067	ret = ffs_do_descs(ffs->fs_descs_count +
3068			   (high ? ffs->hs_descs_count : 0) +
3069			   (super ? ffs->ss_descs_count : 0),
3070			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3071			   __ffs_func_bind_do_nums, func);
3072	if (unlikely(ret < 0))
3073		goto error;
3074
3075	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3076	if (c->cdev->use_os_string) {
3077		for (i = 0; i < ffs->interfaces_count; ++i) {
3078			struct usb_os_desc *desc;
3079
3080			desc = func->function.os_desc_table[i].os_desc =
3081				vla_ptr(vlabuf, d, os_desc) +
3082				i * sizeof(struct usb_os_desc);
3083			desc->ext_compat_id =
3084				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3085			INIT_LIST_HEAD(&desc->ext_prop);
3086		}
3087		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3088				      vla_ptr(vlabuf, d, raw_descs) +
3089				      fs_len + hs_len + ss_len,
3090				      d_raw_descs__sz - fs_len - hs_len -
3091				      ss_len,
3092				      __ffs_func_bind_do_os_desc, func);
3093		if (unlikely(ret < 0))
3094			goto error;
3095	}
3096	func->function.os_desc_n =
3097		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3098
3099	/* And we're done */
3100	ffs_event_add(ffs, FUNCTIONFS_BIND);
3101	return 0;
3102
3103error:
3104	/* XXX Do we need to release all claimed endpoints here? */
3105	return ret;
3106}
3107
3108static int ffs_func_bind(struct usb_configuration *c,
3109			 struct usb_function *f)
3110{
3111	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3112	struct ffs_function *func = ffs_func_from_usb(f);
3113	int ret;
3114
3115	if (IS_ERR(ffs_opts))
3116		return PTR_ERR(ffs_opts);
3117
3118	ret = _ffs_func_bind(c, f);
3119	if (ret && !--ffs_opts->refcnt)
3120		functionfs_unbind(func->ffs);
3121
3122	return ret;
3123}
3124
3125
3126/* Other USB function hooks *************************************************/
3127
3128static void ffs_reset_work(struct work_struct *work)
3129{
3130	struct ffs_data *ffs = container_of(work,
3131		struct ffs_data, reset_work);
3132	ffs_data_reset(ffs);
3133}
3134
3135static int ffs_func_set_alt(struct usb_function *f,
3136			    unsigned interface, unsigned alt)
3137{
3138	struct ffs_function *func = ffs_func_from_usb(f);
3139	struct ffs_data *ffs = func->ffs;
3140	int ret = 0, intf;
3141
3142	if (alt != (unsigned)-1) {
3143		intf = ffs_func_revmap_intf(func, interface);
3144		if (unlikely(intf < 0))
3145			return intf;
3146	}
3147
3148	if (ffs->func)
3149		ffs_func_eps_disable(ffs->func);
3150
3151	if (ffs->state == FFS_DEACTIVATED) {
3152		ffs->state = FFS_CLOSING;
3153		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3154		schedule_work(&ffs->reset_work);
3155		return -ENODEV;
3156	}
3157
3158	if (ffs->state != FFS_ACTIVE)
3159		return -ENODEV;
3160
3161	if (alt == (unsigned)-1) {
3162		ffs->func = NULL;
3163		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3164		return 0;
3165	}
3166
3167	ffs->func = func;
3168	ret = ffs_func_eps_enable(func);
3169	if (likely(ret >= 0))
3170		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3171	return ret;
3172}
3173
3174static void ffs_func_disable(struct usb_function *f)
3175{
3176	ffs_func_set_alt(f, 0, (unsigned)-1);
3177}
3178
3179static int ffs_func_setup(struct usb_function *f,
3180			  const struct usb_ctrlrequest *creq)
3181{
3182	struct ffs_function *func = ffs_func_from_usb(f);
3183	struct ffs_data *ffs = func->ffs;
3184	unsigned long flags;
3185	int ret;
3186
3187	ENTER();
3188
3189	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3190	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3191	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3192	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3193	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3194
3195	/*
3196	 * Most requests directed to interface go through here
3197	 * (notable exceptions are set/get interface) so we need to
3198	 * handle them.  All other either handled by composite or
3199	 * passed to usb_configuration->setup() (if one is set).  No
3200	 * matter, we will handle requests directed to endpoint here
3201	 * as well (as it's straightforward).  Other request recipient
3202	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3203	 * is being used.
3204	 */
3205	if (ffs->state != FFS_ACTIVE)
3206		return -ENODEV;
3207
3208	switch (creq->bRequestType & USB_RECIP_MASK) {
3209	case USB_RECIP_INTERFACE:
3210		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3211		if (unlikely(ret < 0))
3212			return ret;
3213		break;
3214
3215	case USB_RECIP_ENDPOINT:
3216		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3217		if (unlikely(ret < 0))
3218			return ret;
3219		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3220			ret = func->ffs->eps_addrmap[ret];
3221		break;
3222
3223	default:
3224		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3225			ret = le16_to_cpu(creq->wIndex);
3226		else
3227			return -EOPNOTSUPP;
3228	}
3229
3230	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3231	ffs->ev.setup = *creq;
3232	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3233	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3234	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3235
3236	return 0;
3237}
3238
3239static bool ffs_func_req_match(struct usb_function *f,
3240			       const struct usb_ctrlrequest *creq,
3241			       bool config0)
3242{
3243	struct ffs_function *func = ffs_func_from_usb(f);
3244
3245	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3246		return false;
3247
3248	switch (creq->bRequestType & USB_RECIP_MASK) {
3249	case USB_RECIP_INTERFACE:
3250		return (ffs_func_revmap_intf(func,
3251					     le16_to_cpu(creq->wIndex)) >= 0);
3252	case USB_RECIP_ENDPOINT:
3253		return (ffs_func_revmap_ep(func,
3254					   le16_to_cpu(creq->wIndex)) >= 0);
3255	default:
3256		return (bool) (func->ffs->user_flags &
3257			       FUNCTIONFS_ALL_CTRL_RECIP);
3258	}
3259}
3260
3261static void ffs_func_suspend(struct usb_function *f)
3262{
3263	ENTER();
3264	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3265}
3266
3267static void ffs_func_resume(struct usb_function *f)
3268{
3269	ENTER();
3270	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3271}
3272
3273
3274/* Endpoint and interface numbers reverse mapping ***************************/
3275
3276static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3277{
3278	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3279	return num ? num : -EDOM;
3280}
3281
3282static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3283{
3284	short *nums = func->interfaces_nums;
3285	unsigned count = func->ffs->interfaces_count;
3286
3287	for (; count; --count, ++nums) {
3288		if (*nums >= 0 && *nums == intf)
3289			return nums - func->interfaces_nums;
3290	}
3291
3292	return -EDOM;
3293}
3294
3295
3296/* Devices management *******************************************************/
3297
3298static LIST_HEAD(ffs_devices);
3299
3300static struct ffs_dev *_ffs_do_find_dev(const char *name)
3301{
3302	struct ffs_dev *dev;
3303
3304	list_for_each_entry(dev, &ffs_devices, entry) {
3305		if (!dev->name || !name)
3306			continue;
3307		if (strcmp(dev->name, name) == 0)
3308			return dev;
3309	}
3310
3311	return NULL;
3312}
3313
3314/*
3315 * ffs_lock must be taken by the caller of this function
3316 */
3317static struct ffs_dev *_ffs_get_single_dev(void)
3318{
3319	struct ffs_dev *dev;
3320
3321	if (list_is_singular(&ffs_devices)) {
3322		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3323		if (dev->single)
3324			return dev;
3325	}
3326
3327	return NULL;
3328}
3329
3330/*
3331 * ffs_lock must be taken by the caller of this function
3332 */
3333static struct ffs_dev *_ffs_find_dev(const char *name)
3334{
3335	struct ffs_dev *dev;
3336
3337	dev = _ffs_get_single_dev();
3338	if (dev)
3339		return dev;
3340
3341	return _ffs_do_find_dev(name);
3342}
3343
3344/* Configfs support *********************************************************/
3345
3346static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3347{
3348	return container_of(to_config_group(item), struct f_fs_opts,
3349			    func_inst.group);
3350}
3351
3352static void ffs_attr_release(struct config_item *item)
3353{
3354	struct f_fs_opts *opts = to_ffs_opts(item);
3355
3356	usb_put_function_instance(&opts->func_inst);
3357}
3358
3359static struct configfs_item_operations ffs_item_ops = {
3360	.release	= ffs_attr_release,
3361};
3362
3363static struct config_item_type ffs_func_type = {
3364	.ct_item_ops	= &ffs_item_ops,
3365	.ct_owner	= THIS_MODULE,
3366};
3367
3368
3369/* Function registration interface ******************************************/
3370
3371static void ffs_free_inst(struct usb_function_instance *f)
3372{
3373	struct f_fs_opts *opts;
3374
3375	opts = to_f_fs_opts(f);
3376	ffs_dev_lock();
3377	_ffs_free_dev(opts->dev);
3378	ffs_dev_unlock();
3379	kfree(opts);
3380}
3381
3382#define MAX_INST_NAME_LEN	40
3383
3384static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3385{
3386	struct f_fs_opts *opts;
3387	char *ptr;
3388	const char *tmp;
3389	int name_len, ret;
3390
3391	name_len = strlen(name) + 1;
3392	if (name_len > MAX_INST_NAME_LEN)
3393		return -ENAMETOOLONG;
3394
3395	ptr = kstrndup(name, name_len, GFP_KERNEL);
3396	if (!ptr)
3397		return -ENOMEM;
3398
3399	opts = to_f_fs_opts(fi);
3400	tmp = NULL;
3401
3402	ffs_dev_lock();
3403
3404	tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3405	ret = _ffs_name_dev(opts->dev, ptr);
3406	if (ret) {
3407		kfree(ptr);
3408		ffs_dev_unlock();
3409		return ret;
3410	}
3411	opts->dev->name_allocated = true;
3412
3413	ffs_dev_unlock();
3414
3415	kfree(tmp);
3416
3417	return 0;
3418}
3419
3420static struct usb_function_instance *ffs_alloc_inst(void)
3421{
3422	struct f_fs_opts *opts;
3423	struct ffs_dev *dev;
3424
3425	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3426	if (!opts)
3427		return ERR_PTR(-ENOMEM);
3428
3429	opts->func_inst.set_inst_name = ffs_set_inst_name;
3430	opts->func_inst.free_func_inst = ffs_free_inst;
3431	ffs_dev_lock();
3432	dev = _ffs_alloc_dev();
3433	ffs_dev_unlock();
3434	if (IS_ERR(dev)) {
3435		kfree(opts);
3436		return ERR_CAST(dev);
3437	}
3438	opts->dev = dev;
3439	dev->opts = opts;
3440
3441	config_group_init_type_name(&opts->func_inst.group, "",
3442				    &ffs_func_type);
3443	return &opts->func_inst;
3444}
3445
3446static void ffs_free(struct usb_function *f)
3447{
3448	kfree(ffs_func_from_usb(f));
3449}
3450
3451static void ffs_func_unbind(struct usb_configuration *c,
3452			    struct usb_function *f)
3453{
3454	struct ffs_function *func = ffs_func_from_usb(f);
3455	struct ffs_data *ffs = func->ffs;
3456	struct f_fs_opts *opts =
3457		container_of(f->fi, struct f_fs_opts, func_inst);
3458	struct ffs_ep *ep = func->eps;
3459	unsigned count = ffs->eps_count;
3460	unsigned long flags;
3461
3462	ENTER();
3463	if (ffs->func == func) {
3464		ffs_func_eps_disable(func);
3465		ffs->func = NULL;
3466	}
3467
3468	if (!--opts->refcnt)
3469		functionfs_unbind(ffs);
3470
3471	/* cleanup after autoconfig */
3472	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3473	while (count--) {
3474		if (ep->ep && ep->req)
3475			usb_ep_free_request(ep->ep, ep->req);
3476		ep->req = NULL;
3477		++ep;
3478	}
3479	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3480	kfree(func->eps);
3481	func->eps = NULL;
3482	/*
3483	 * eps, descriptors and interfaces_nums are allocated in the
3484	 * same chunk so only one free is required.
3485	 */
3486	func->function.fs_descriptors = NULL;
3487	func->function.hs_descriptors = NULL;
3488	func->function.ss_descriptors = NULL;
3489	func->interfaces_nums = NULL;
3490
3491	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3492}
3493
3494static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3495{
3496	struct ffs_function *func;
3497
3498	ENTER();
3499
3500	func = kzalloc(sizeof(*func), GFP_KERNEL);
3501	if (unlikely(!func))
3502		return ERR_PTR(-ENOMEM);
3503
3504	func->function.name    = "Function FS Gadget";
3505
3506	func->function.bind    = ffs_func_bind;
3507	func->function.unbind  = ffs_func_unbind;
3508	func->function.set_alt = ffs_func_set_alt;
3509	func->function.disable = ffs_func_disable;
3510	func->function.setup   = ffs_func_setup;
3511	func->function.req_match = ffs_func_req_match;
3512	func->function.suspend = ffs_func_suspend;
3513	func->function.resume  = ffs_func_resume;
3514	func->function.free_func = ffs_free;
3515
3516	return &func->function;
3517}
3518
3519/*
3520 * ffs_lock must be taken by the caller of this function
3521 */
3522static struct ffs_dev *_ffs_alloc_dev(void)
3523{
3524	struct ffs_dev *dev;
3525	int ret;
3526
3527	if (_ffs_get_single_dev())
3528			return ERR_PTR(-EBUSY);
3529
3530	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3531	if (!dev)
3532		return ERR_PTR(-ENOMEM);
3533
3534	if (list_empty(&ffs_devices)) {
3535		ret = functionfs_init();
3536		if (ret) {
3537			kfree(dev);
3538			return ERR_PTR(ret);
3539		}
3540	}
3541
3542	list_add(&dev->entry, &ffs_devices);
3543
3544	return dev;
3545}
3546
3547/*
3548 * ffs_lock must be taken by the caller of this function
3549 * The caller is responsible for "name" being available whenever f_fs needs it
3550 */
3551static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3552{
3553	struct ffs_dev *existing;
3554
3555	existing = _ffs_do_find_dev(name);
3556	if (existing)
3557		return -EBUSY;
3558
3559	dev->name = name;
3560
3561	return 0;
3562}
3563
3564/*
3565 * The caller is responsible for "name" being available whenever f_fs needs it
3566 */
3567int ffs_name_dev(struct ffs_dev *dev, const char *name)
3568{
3569	int ret;
3570
3571	ffs_dev_lock();
3572	ret = _ffs_name_dev(dev, name);
3573	ffs_dev_unlock();
3574
3575	return ret;
3576}
3577EXPORT_SYMBOL_GPL(ffs_name_dev);
3578
3579int ffs_single_dev(struct ffs_dev *dev)
3580{
3581	int ret;
3582
3583	ret = 0;
3584	ffs_dev_lock();
3585
3586	if (!list_is_singular(&ffs_devices))
3587		ret = -EBUSY;
3588	else
3589		dev->single = true;
3590
3591	ffs_dev_unlock();
3592	return ret;
3593}
3594EXPORT_SYMBOL_GPL(ffs_single_dev);
3595
3596/*
3597 * ffs_lock must be taken by the caller of this function
3598 */
3599static void _ffs_free_dev(struct ffs_dev *dev)
3600{
3601	list_del(&dev->entry);
3602	if (dev->name_allocated)
3603		kfree(dev->name);
3604
3605	/* Clear the private_data pointer to stop incorrect dev access */
3606	if (dev->ffs_data)
3607		dev->ffs_data->private_data = NULL;
3608
3609	kfree(dev);
3610	if (list_empty(&ffs_devices))
3611		functionfs_cleanup();
3612}
3613
3614static void *ffs_acquire_dev(const char *dev_name)
3615{
3616	struct ffs_dev *ffs_dev;
3617
3618	ENTER();
3619	ffs_dev_lock();
3620
3621	ffs_dev = _ffs_find_dev(dev_name);
3622	if (!ffs_dev)
3623		ffs_dev = ERR_PTR(-ENOENT);
3624	else if (ffs_dev->mounted)
3625		ffs_dev = ERR_PTR(-EBUSY);
3626	else if (ffs_dev->ffs_acquire_dev_callback &&
3627	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3628		ffs_dev = ERR_PTR(-ENOENT);
3629	else
3630		ffs_dev->mounted = true;
3631
3632	ffs_dev_unlock();
3633	return ffs_dev;
3634}
3635
3636static void ffs_release_dev(struct ffs_data *ffs_data)
3637{
3638	struct ffs_dev *ffs_dev;
3639
3640	ENTER();
3641	ffs_dev_lock();
3642
3643	ffs_dev = ffs_data->private_data;
3644	if (ffs_dev) {
3645		ffs_dev->mounted = false;
3646
3647		if (ffs_dev->ffs_release_dev_callback)
3648			ffs_dev->ffs_release_dev_callback(ffs_dev);
3649	}
3650
3651	ffs_dev_unlock();
3652}
3653
3654static int ffs_ready(struct ffs_data *ffs)
3655{
3656	struct ffs_dev *ffs_obj;
3657	int ret = 0;
3658
3659	ENTER();
3660	ffs_dev_lock();
3661
3662	ffs_obj = ffs->private_data;
3663	if (!ffs_obj) {
3664		ret = -EINVAL;
3665		goto done;
3666	}
3667	if (WARN_ON(ffs_obj->desc_ready)) {
3668		ret = -EBUSY;
3669		goto done;
3670	}
3671
3672	ffs_obj->desc_ready = true;
3673	ffs_obj->ffs_data = ffs;
3674
3675	if (ffs_obj->ffs_ready_callback) {
3676		ret = ffs_obj->ffs_ready_callback(ffs);
3677		if (ret)
3678			goto done;
3679	}
3680
3681	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3682done:
3683	ffs_dev_unlock();
3684	return ret;
3685}
3686
3687static void ffs_closed(struct ffs_data *ffs)
3688{
3689	struct ffs_dev *ffs_obj;
3690	struct f_fs_opts *opts;
3691	struct config_item *ci;
3692
3693	ENTER();
3694	ffs_dev_lock();
3695
3696	ffs_obj = ffs->private_data;
3697	if (!ffs_obj)
3698		goto done;
3699
3700	ffs_obj->desc_ready = false;
3701
3702	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3703	    ffs_obj->ffs_closed_callback)
3704		ffs_obj->ffs_closed_callback(ffs);
3705
3706	if (ffs_obj->opts)
3707		opts = ffs_obj->opts;
3708	else
3709		goto done;
3710
3711	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3712	    || !atomic_read(&opts->func_inst.group.cg_item.ci_kref.refcount))
3713		goto done;
3714
3715	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3716	ffs_dev_unlock();
3717
3718	unregister_gadget_item(ci);
3719	return;
3720done:
3721	ffs_dev_unlock();
3722}
3723
3724/* Misc helper functions ****************************************************/
3725
3726static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3727{
3728	return nonblock
3729		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3730		: mutex_lock_interruptible(mutex);
3731}
3732
3733static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3734{
3735	char *data;
3736
3737	if (unlikely(!len))
3738		return NULL;
3739
3740	data = kmalloc(len, GFP_KERNEL);
3741	if (unlikely(!data))
3742		return ERR_PTR(-ENOMEM);
3743
3744	if (unlikely(copy_from_user(data, buf, len))) {
3745		kfree(data);
3746		return ERR_PTR(-EFAULT);
3747	}
3748
3749	pr_vdebug("Buffer from user space:\n");
3750	ffs_dump_mem("", data, len);
3751
3752	return data;
3753}
3754
3755DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3756MODULE_LICENSE("GPL");
3757MODULE_AUTHOR("Michal Nazarewicz");