Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *	PCI Bus Services, see include/linux/pci.h for further explanation.
   3 *
   4 *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   5 *	David Mosberger-Tang
   6 *
   7 *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   8 */
   9
 
  10#include <linux/kernel.h>
  11#include <linux/delay.h>
 
  12#include <linux/init.h>
  13#include <linux/of.h>
  14#include <linux/of_pci.h>
  15#include <linux/pci.h>
  16#include <linux/pm.h>
  17#include <linux/slab.h>
  18#include <linux/module.h>
  19#include <linux/spinlock.h>
  20#include <linux/string.h>
  21#include <linux/log2.h>
  22#include <linux/pci-aspm.h>
  23#include <linux/pm_wakeup.h>
  24#include <linux/interrupt.h>
  25#include <linux/device.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/pci_hotplug.h>
 
  28#include <asm/setup.h>
 
  29#include <linux/aer.h>
  30#include "pci.h"
  31
  32const char *pci_power_names[] = {
  33	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  34};
  35EXPORT_SYMBOL_GPL(pci_power_names);
  36
  37int isa_dma_bridge_buggy;
  38EXPORT_SYMBOL(isa_dma_bridge_buggy);
  39
  40int pci_pci_problems;
  41EXPORT_SYMBOL(pci_pci_problems);
  42
  43unsigned int pci_pm_d3_delay;
  44
  45static void pci_pme_list_scan(struct work_struct *work);
  46
  47static LIST_HEAD(pci_pme_list);
  48static DEFINE_MUTEX(pci_pme_list_mutex);
  49static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  50
  51struct pci_pme_device {
  52	struct list_head list;
  53	struct pci_dev *dev;
  54};
  55
  56#define PME_TIMEOUT 1000 /* How long between PME checks */
  57
  58static void pci_dev_d3_sleep(struct pci_dev *dev)
  59{
  60	unsigned int delay = dev->d3_delay;
  61
  62	if (delay < pci_pm_d3_delay)
  63		delay = pci_pm_d3_delay;
  64
  65	msleep(delay);
  66}
  67
  68#ifdef CONFIG_PCI_DOMAINS
  69int pci_domains_supported = 1;
  70#endif
  71
  72#define DEFAULT_CARDBUS_IO_SIZE		(256)
  73#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  74/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  75unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  76unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  77
  78#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  79#define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
  80/* pci=hpmemsize=nnM,hpiosize=nn can override this */
  81unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  82unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
  83
 
 
 
  84enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
  85
  86/*
  87 * The default CLS is used if arch didn't set CLS explicitly and not
  88 * all pci devices agree on the same value.  Arch can override either
  89 * the dfl or actual value as it sees fit.  Don't forget this is
  90 * measured in 32-bit words, not bytes.
  91 */
  92u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
  93u8 pci_cache_line_size;
  94
  95/*
  96 * If we set up a device for bus mastering, we need to check the latency
  97 * timer as certain BIOSes forget to set it properly.
  98 */
  99unsigned int pcibios_max_latency = 255;
 100
 101/* If set, the PCIe ARI capability will not be used. */
 102static bool pcie_ari_disabled;
 103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104/**
 105 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 106 * @bus: pointer to PCI bus structure to search
 107 *
 108 * Given a PCI bus, returns the highest PCI bus number present in the set
 109 * including the given PCI bus and its list of child PCI buses.
 110 */
 111unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 112{
 113	struct pci_bus *tmp;
 114	unsigned char max, n;
 115
 116	max = bus->busn_res.end;
 117	list_for_each_entry(tmp, &bus->children, node) {
 118		n = pci_bus_max_busnr(tmp);
 119		if (n > max)
 120			max = n;
 121	}
 122	return max;
 123}
 124EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 125
 126#ifdef CONFIG_HAS_IOMEM
 127void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 128{
 129	struct resource *res = &pdev->resource[bar];
 130
 131	/*
 132	 * Make sure the BAR is actually a memory resource, not an IO resource
 133	 */
 134	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 135		dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
 136		return NULL;
 137	}
 138	return ioremap_nocache(res->start, resource_size(res));
 139}
 140EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 141
 142void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 143{
 144	/*
 145	 * Make sure the BAR is actually a memory resource, not an IO resource
 146	 */
 147	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 148		WARN_ON(1);
 149		return NULL;
 150	}
 151	return ioremap_wc(pci_resource_start(pdev, bar),
 152			  pci_resource_len(pdev, bar));
 153}
 154EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 155#endif
 156
 157
 158static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 159				   u8 pos, int cap, int *ttl)
 160{
 161	u8 id;
 162	u16 ent;
 163
 164	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 165
 166	while ((*ttl)--) {
 167		if (pos < 0x40)
 168			break;
 169		pos &= ~3;
 170		pci_bus_read_config_word(bus, devfn, pos, &ent);
 171
 172		id = ent & 0xff;
 173		if (id == 0xff)
 174			break;
 175		if (id == cap)
 176			return pos;
 177		pos = (ent >> 8);
 178	}
 179	return 0;
 180}
 181
 182static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 183			       u8 pos, int cap)
 184{
 185	int ttl = PCI_FIND_CAP_TTL;
 186
 187	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 188}
 189
 190int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 191{
 192	return __pci_find_next_cap(dev->bus, dev->devfn,
 193				   pos + PCI_CAP_LIST_NEXT, cap);
 194}
 195EXPORT_SYMBOL_GPL(pci_find_next_capability);
 196
 197static int __pci_bus_find_cap_start(struct pci_bus *bus,
 198				    unsigned int devfn, u8 hdr_type)
 199{
 200	u16 status;
 201
 202	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 203	if (!(status & PCI_STATUS_CAP_LIST))
 204		return 0;
 205
 206	switch (hdr_type) {
 207	case PCI_HEADER_TYPE_NORMAL:
 208	case PCI_HEADER_TYPE_BRIDGE:
 209		return PCI_CAPABILITY_LIST;
 210	case PCI_HEADER_TYPE_CARDBUS:
 211		return PCI_CB_CAPABILITY_LIST;
 212	}
 213
 214	return 0;
 215}
 216
 217/**
 218 * pci_find_capability - query for devices' capabilities
 219 * @dev: PCI device to query
 220 * @cap: capability code
 221 *
 222 * Tell if a device supports a given PCI capability.
 223 * Returns the address of the requested capability structure within the
 224 * device's PCI configuration space or 0 in case the device does not
 225 * support it.  Possible values for @cap:
 226 *
 227 *  %PCI_CAP_ID_PM           Power Management
 228 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 229 *  %PCI_CAP_ID_VPD          Vital Product Data
 230 *  %PCI_CAP_ID_SLOTID       Slot Identification
 231 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 232 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 233 *  %PCI_CAP_ID_PCIX         PCI-X
 234 *  %PCI_CAP_ID_EXP          PCI Express
 235 */
 236int pci_find_capability(struct pci_dev *dev, int cap)
 237{
 238	int pos;
 239
 240	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 241	if (pos)
 242		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 243
 244	return pos;
 245}
 246EXPORT_SYMBOL(pci_find_capability);
 247
 248/**
 249 * pci_bus_find_capability - query for devices' capabilities
 250 * @bus:   the PCI bus to query
 251 * @devfn: PCI device to query
 252 * @cap:   capability code
 253 *
 254 * Like pci_find_capability() but works for pci devices that do not have a
 255 * pci_dev structure set up yet.
 256 *
 257 * Returns the address of the requested capability structure within the
 258 * device's PCI configuration space or 0 in case the device does not
 259 * support it.
 260 */
 261int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 262{
 263	int pos;
 264	u8 hdr_type;
 265
 266	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 267
 268	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 269	if (pos)
 270		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 271
 272	return pos;
 273}
 274EXPORT_SYMBOL(pci_bus_find_capability);
 275
 276/**
 277 * pci_find_next_ext_capability - Find an extended capability
 278 * @dev: PCI device to query
 279 * @start: address at which to start looking (0 to start at beginning of list)
 280 * @cap: capability code
 281 *
 282 * Returns the address of the next matching extended capability structure
 283 * within the device's PCI configuration space or 0 if the device does
 284 * not support it.  Some capabilities can occur several times, e.g., the
 285 * vendor-specific capability, and this provides a way to find them all.
 286 */
 287int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 288{
 289	u32 header;
 290	int ttl;
 291	int pos = PCI_CFG_SPACE_SIZE;
 292
 293	/* minimum 8 bytes per capability */
 294	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 295
 296	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 297		return 0;
 298
 299	if (start)
 300		pos = start;
 301
 302	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 303		return 0;
 304
 305	/*
 306	 * If we have no capabilities, this is indicated by cap ID,
 307	 * cap version and next pointer all being 0.
 308	 */
 309	if (header == 0)
 310		return 0;
 311
 312	while (ttl-- > 0) {
 313		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 314			return pos;
 315
 316		pos = PCI_EXT_CAP_NEXT(header);
 317		if (pos < PCI_CFG_SPACE_SIZE)
 318			break;
 319
 320		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 321			break;
 322	}
 323
 324	return 0;
 325}
 326EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 327
 328/**
 329 * pci_find_ext_capability - Find an extended capability
 330 * @dev: PCI device to query
 331 * @cap: capability code
 332 *
 333 * Returns the address of the requested extended capability structure
 334 * within the device's PCI configuration space or 0 if the device does
 335 * not support it.  Possible values for @cap:
 336 *
 337 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 338 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 339 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 340 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 341 */
 342int pci_find_ext_capability(struct pci_dev *dev, int cap)
 343{
 344	return pci_find_next_ext_capability(dev, 0, cap);
 345}
 346EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 347
 348static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 349{
 350	int rc, ttl = PCI_FIND_CAP_TTL;
 351	u8 cap, mask;
 352
 353	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 354		mask = HT_3BIT_CAP_MASK;
 355	else
 356		mask = HT_5BIT_CAP_MASK;
 357
 358	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 359				      PCI_CAP_ID_HT, &ttl);
 360	while (pos) {
 361		rc = pci_read_config_byte(dev, pos + 3, &cap);
 362		if (rc != PCIBIOS_SUCCESSFUL)
 363			return 0;
 364
 365		if ((cap & mask) == ht_cap)
 366			return pos;
 367
 368		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 369					      pos + PCI_CAP_LIST_NEXT,
 370					      PCI_CAP_ID_HT, &ttl);
 371	}
 372
 373	return 0;
 374}
 375/**
 376 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 377 * @dev: PCI device to query
 378 * @pos: Position from which to continue searching
 379 * @ht_cap: Hypertransport capability code
 380 *
 381 * To be used in conjunction with pci_find_ht_capability() to search for
 382 * all capabilities matching @ht_cap. @pos should always be a value returned
 383 * from pci_find_ht_capability().
 384 *
 385 * NB. To be 100% safe against broken PCI devices, the caller should take
 386 * steps to avoid an infinite loop.
 387 */
 388int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 389{
 390	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 391}
 392EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 393
 394/**
 395 * pci_find_ht_capability - query a device's Hypertransport capabilities
 396 * @dev: PCI device to query
 397 * @ht_cap: Hypertransport capability code
 398 *
 399 * Tell if a device supports a given Hypertransport capability.
 400 * Returns an address within the device's PCI configuration space
 401 * or 0 in case the device does not support the request capability.
 402 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 403 * which has a Hypertransport capability matching @ht_cap.
 404 */
 405int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 406{
 407	int pos;
 408
 409	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 410	if (pos)
 411		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 412
 413	return pos;
 414}
 415EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 416
 417/**
 418 * pci_find_parent_resource - return resource region of parent bus of given region
 419 * @dev: PCI device structure contains resources to be searched
 420 * @res: child resource record for which parent is sought
 421 *
 422 *  For given resource region of given device, return the resource
 423 *  region of parent bus the given region is contained in.
 424 */
 425struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 426					  struct resource *res)
 427{
 428	const struct pci_bus *bus = dev->bus;
 429	struct resource *r;
 430	int i;
 431
 432	pci_bus_for_each_resource(bus, r, i) {
 433		if (!r)
 434			continue;
 435		if (res->start && resource_contains(r, res)) {
 436
 437			/*
 438			 * If the window is prefetchable but the BAR is
 439			 * not, the allocator made a mistake.
 440			 */
 441			if (r->flags & IORESOURCE_PREFETCH &&
 442			    !(res->flags & IORESOURCE_PREFETCH))
 443				return NULL;
 444
 445			/*
 446			 * If we're below a transparent bridge, there may
 447			 * be both a positively-decoded aperture and a
 448			 * subtractively-decoded region that contain the BAR.
 449			 * We want the positively-decoded one, so this depends
 450			 * on pci_bus_for_each_resource() giving us those
 451			 * first.
 452			 */
 453			return r;
 454		}
 455	}
 456	return NULL;
 457}
 458EXPORT_SYMBOL(pci_find_parent_resource);
 459
 460/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461 * pci_find_pcie_root_port - return PCIe Root Port
 462 * @dev: PCI device to query
 463 *
 464 * Traverse up the parent chain and return the PCIe Root Port PCI Device
 465 * for a given PCI Device.
 466 */
 467struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
 468{
 469	struct pci_dev *bridge, *highest_pcie_bridge = NULL;
 470
 471	bridge = pci_upstream_bridge(dev);
 472	while (bridge && pci_is_pcie(bridge)) {
 473		highest_pcie_bridge = bridge;
 474		bridge = pci_upstream_bridge(bridge);
 475	}
 476
 477	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
 478		return NULL;
 479
 480	return highest_pcie_bridge;
 481}
 482EXPORT_SYMBOL(pci_find_pcie_root_port);
 483
 484/**
 485 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 486 * @dev: the PCI device to operate on
 487 * @pos: config space offset of status word
 488 * @mask: mask of bit(s) to care about in status word
 489 *
 490 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 491 */
 492int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 493{
 494	int i;
 495
 496	/* Wait for Transaction Pending bit clean */
 497	for (i = 0; i < 4; i++) {
 498		u16 status;
 499		if (i)
 500			msleep((1 << (i - 1)) * 100);
 501
 502		pci_read_config_word(dev, pos, &status);
 503		if (!(status & mask))
 504			return 1;
 505	}
 506
 507	return 0;
 508}
 509
 510/**
 511 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 512 * @dev: PCI device to have its BARs restored
 513 *
 514 * Restore the BAR values for a given device, so as to make it
 515 * accessible by its driver.
 516 */
 517static void pci_restore_bars(struct pci_dev *dev)
 518{
 519	int i;
 520
 521	/* Per SR-IOV spec 3.4.1.11, VF BARs are RO zero */
 522	if (dev->is_virtfn)
 523		return;
 524
 525	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 526		pci_update_resource(dev, i);
 527}
 528
 529static const struct pci_platform_pm_ops *pci_platform_pm;
 530
 531int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 532{
 533	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
 534	    || !ops->sleep_wake)
 
 535		return -EINVAL;
 536	pci_platform_pm = ops;
 537	return 0;
 538}
 539
 540static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 541{
 542	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 543}
 544
 545static inline int platform_pci_set_power_state(struct pci_dev *dev,
 546					       pci_power_t t)
 547{
 548	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 549}
 550
 
 
 
 
 
 551static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 552{
 553	return pci_platform_pm ?
 554			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 555}
 556
 557static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
 558{
 559	return pci_platform_pm ?
 560			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
 561}
 562
 563static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
 564{
 565	return pci_platform_pm ?
 566			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
 567}
 568
 569static inline bool platform_pci_need_resume(struct pci_dev *dev)
 570{
 571	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
 572}
 573
 574/**
 575 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 576 *                           given PCI device
 577 * @dev: PCI device to handle.
 578 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 579 *
 580 * RETURN VALUE:
 581 * -EINVAL if the requested state is invalid.
 582 * -EIO if device does not support PCI PM or its PM capabilities register has a
 583 * wrong version, or device doesn't support the requested state.
 584 * 0 if device already is in the requested state.
 585 * 0 if device's power state has been successfully changed.
 586 */
 587static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 588{
 589	u16 pmcsr;
 590	bool need_restore = false;
 591
 592	/* Check if we're already there */
 593	if (dev->current_state == state)
 594		return 0;
 595
 596	if (!dev->pm_cap)
 597		return -EIO;
 598
 599	if (state < PCI_D0 || state > PCI_D3hot)
 600		return -EINVAL;
 601
 602	/* Validate current state:
 603	 * Can enter D0 from any state, but if we can only go deeper
 604	 * to sleep if we're already in a low power state
 605	 */
 606	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 607	    && dev->current_state > state) {
 608		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
 609			dev->current_state, state);
 610		return -EINVAL;
 611	}
 612
 613	/* check if this device supports the desired state */
 614	if ((state == PCI_D1 && !dev->d1_support)
 615	   || (state == PCI_D2 && !dev->d2_support))
 616		return -EIO;
 617
 618	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 619
 620	/* If we're (effectively) in D3, force entire word to 0.
 621	 * This doesn't affect PME_Status, disables PME_En, and
 622	 * sets PowerState to 0.
 623	 */
 624	switch (dev->current_state) {
 625	case PCI_D0:
 626	case PCI_D1:
 627	case PCI_D2:
 628		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 629		pmcsr |= state;
 630		break;
 631	case PCI_D3hot:
 632	case PCI_D3cold:
 633	case PCI_UNKNOWN: /* Boot-up */
 634		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 635		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 636			need_restore = true;
 637		/* Fall-through: force to D0 */
 638	default:
 639		pmcsr = 0;
 640		break;
 641	}
 642
 643	/* enter specified state */
 644	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 645
 646	/* Mandatory power management transition delays */
 647	/* see PCI PM 1.1 5.6.1 table 18 */
 648	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 649		pci_dev_d3_sleep(dev);
 650	else if (state == PCI_D2 || dev->current_state == PCI_D2)
 651		udelay(PCI_PM_D2_DELAY);
 652
 653	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 654	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 655	if (dev->current_state != state && printk_ratelimit())
 656		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
 657			 dev->current_state);
 658
 659	/*
 660	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 661	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 662	 * from D3hot to D0 _may_ perform an internal reset, thereby
 663	 * going to "D0 Uninitialized" rather than "D0 Initialized".
 664	 * For example, at least some versions of the 3c905B and the
 665	 * 3c556B exhibit this behaviour.
 666	 *
 667	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 668	 * devices in a D3hot state at boot.  Consequently, we need to
 669	 * restore at least the BARs so that the device will be
 670	 * accessible to its driver.
 671	 */
 672	if (need_restore)
 673		pci_restore_bars(dev);
 674
 675	if (dev->bus->self)
 676		pcie_aspm_pm_state_change(dev->bus->self);
 677
 678	return 0;
 679}
 680
 681/**
 682 * pci_update_current_state - Read PCI power state of given device from its
 683 *                            PCI PM registers and cache it
 684 * @dev: PCI device to handle.
 685 * @state: State to cache in case the device doesn't have the PM capability
 
 
 
 
 
 
 
 686 */
 687void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 688{
 689	if (dev->pm_cap) {
 
 
 
 690		u16 pmcsr;
 691
 692		/*
 693		 * Configuration space is not accessible for device in
 694		 * D3cold, so just keep or set D3cold for safety
 695		 */
 696		if (dev->current_state == PCI_D3cold)
 697			return;
 698		if (state == PCI_D3cold) {
 699			dev->current_state = PCI_D3cold;
 700			return;
 701		}
 702		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 703		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 704	} else {
 705		dev->current_state = state;
 706	}
 707}
 708
 709/**
 710 * pci_power_up - Put the given device into D0 forcibly
 711 * @dev: PCI device to power up
 712 */
 713void pci_power_up(struct pci_dev *dev)
 714{
 715	if (platform_pci_power_manageable(dev))
 716		platform_pci_set_power_state(dev, PCI_D0);
 717
 718	pci_raw_set_power_state(dev, PCI_D0);
 719	pci_update_current_state(dev, PCI_D0);
 720}
 721
 722/**
 723 * pci_platform_power_transition - Use platform to change device power state
 724 * @dev: PCI device to handle.
 725 * @state: State to put the device into.
 726 */
 727static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 728{
 729	int error;
 730
 731	if (platform_pci_power_manageable(dev)) {
 732		error = platform_pci_set_power_state(dev, state);
 733		if (!error)
 734			pci_update_current_state(dev, state);
 735	} else
 736		error = -ENODEV;
 737
 738	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 739		dev->current_state = PCI_D0;
 740
 741	return error;
 742}
 743
 744/**
 745 * pci_wakeup - Wake up a PCI device
 746 * @pci_dev: Device to handle.
 747 * @ign: ignored parameter
 748 */
 749static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
 750{
 751	pci_wakeup_event(pci_dev);
 752	pm_request_resume(&pci_dev->dev);
 753	return 0;
 754}
 755
 756/**
 757 * pci_wakeup_bus - Walk given bus and wake up devices on it
 758 * @bus: Top bus of the subtree to walk.
 759 */
 760static void pci_wakeup_bus(struct pci_bus *bus)
 761{
 762	if (bus)
 763		pci_walk_bus(bus, pci_wakeup, NULL);
 764}
 765
 766/**
 767 * __pci_start_power_transition - Start power transition of a PCI device
 768 * @dev: PCI device to handle.
 769 * @state: State to put the device into.
 770 */
 771static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 772{
 773	if (state == PCI_D0) {
 774		pci_platform_power_transition(dev, PCI_D0);
 775		/*
 776		 * Mandatory power management transition delays, see
 777		 * PCI Express Base Specification Revision 2.0 Section
 778		 * 6.6.1: Conventional Reset.  Do not delay for
 779		 * devices powered on/off by corresponding bridge,
 780		 * because have already delayed for the bridge.
 781		 */
 782		if (dev->runtime_d3cold) {
 783			msleep(dev->d3cold_delay);
 784			/*
 785			 * When powering on a bridge from D3cold, the
 786			 * whole hierarchy may be powered on into
 787			 * D0uninitialized state, resume them to give
 788			 * them a chance to suspend again
 789			 */
 790			pci_wakeup_bus(dev->subordinate);
 791		}
 792	}
 793}
 794
 795/**
 796 * __pci_dev_set_current_state - Set current state of a PCI device
 797 * @dev: Device to handle
 798 * @data: pointer to state to be set
 799 */
 800static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
 801{
 802	pci_power_t state = *(pci_power_t *)data;
 803
 804	dev->current_state = state;
 805	return 0;
 806}
 807
 808/**
 809 * __pci_bus_set_current_state - Walk given bus and set current state of devices
 810 * @bus: Top bus of the subtree to walk.
 811 * @state: state to be set
 812 */
 813static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
 814{
 815	if (bus)
 816		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
 817}
 818
 819/**
 820 * __pci_complete_power_transition - Complete power transition of a PCI device
 821 * @dev: PCI device to handle.
 822 * @state: State to put the device into.
 823 *
 824 * This function should not be called directly by device drivers.
 825 */
 826int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 827{
 828	int ret;
 829
 830	if (state <= PCI_D0)
 831		return -EINVAL;
 832	ret = pci_platform_power_transition(dev, state);
 833	/* Power off the bridge may power off the whole hierarchy */
 834	if (!ret && state == PCI_D3cold)
 835		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
 836	return ret;
 837}
 838EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 839
 840/**
 841 * pci_set_power_state - Set the power state of a PCI device
 842 * @dev: PCI device to handle.
 843 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 844 *
 845 * Transition a device to a new power state, using the platform firmware and/or
 846 * the device's PCI PM registers.
 847 *
 848 * RETURN VALUE:
 849 * -EINVAL if the requested state is invalid.
 850 * -EIO if device does not support PCI PM or its PM capabilities register has a
 851 * wrong version, or device doesn't support the requested state.
 852 * 0 if device already is in the requested state.
 853 * 0 if device's power state has been successfully changed.
 854 */
 855int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 856{
 857	int error;
 858
 859	/* bound the state we're entering */
 860	if (state > PCI_D3cold)
 861		state = PCI_D3cold;
 862	else if (state < PCI_D0)
 863		state = PCI_D0;
 864	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 865		/*
 866		 * If the device or the parent bridge do not support PCI PM,
 867		 * ignore the request if we're doing anything other than putting
 868		 * it into D0 (which would only happen on boot).
 869		 */
 870		return 0;
 871
 872	/* Check if we're already there */
 873	if (dev->current_state == state)
 874		return 0;
 875
 876	__pci_start_power_transition(dev, state);
 877
 878	/* This device is quirked not to be put into D3, so
 879	   don't put it in D3 */
 880	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 881		return 0;
 882
 883	/*
 884	 * To put device in D3cold, we put device into D3hot in native
 885	 * way, then put device into D3cold with platform ops
 886	 */
 887	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
 888					PCI_D3hot : state);
 889
 890	if (!__pci_complete_power_transition(dev, state))
 891		error = 0;
 892
 893	return error;
 894}
 895EXPORT_SYMBOL(pci_set_power_state);
 896
 897/**
 898 * pci_choose_state - Choose the power state of a PCI device
 899 * @dev: PCI device to be suspended
 900 * @state: target sleep state for the whole system. This is the value
 901 *	that is passed to suspend() function.
 902 *
 903 * Returns PCI power state suitable for given device and given system
 904 * message.
 905 */
 906
 907pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 908{
 909	pci_power_t ret;
 910
 911	if (!dev->pm_cap)
 912		return PCI_D0;
 913
 914	ret = platform_pci_choose_state(dev);
 915	if (ret != PCI_POWER_ERROR)
 916		return ret;
 917
 918	switch (state.event) {
 919	case PM_EVENT_ON:
 920		return PCI_D0;
 921	case PM_EVENT_FREEZE:
 922	case PM_EVENT_PRETHAW:
 923		/* REVISIT both freeze and pre-thaw "should" use D0 */
 924	case PM_EVENT_SUSPEND:
 925	case PM_EVENT_HIBERNATE:
 926		return PCI_D3hot;
 927	default:
 928		dev_info(&dev->dev, "unrecognized suspend event %d\n",
 929			 state.event);
 930		BUG();
 931	}
 932	return PCI_D0;
 933}
 934EXPORT_SYMBOL(pci_choose_state);
 935
 936#define PCI_EXP_SAVE_REGS	7
 937
 938static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
 939						       u16 cap, bool extended)
 940{
 941	struct pci_cap_saved_state *tmp;
 942
 943	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
 944		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
 945			return tmp;
 946	}
 947	return NULL;
 948}
 949
 950struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
 951{
 952	return _pci_find_saved_cap(dev, cap, false);
 953}
 954
 955struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
 956{
 957	return _pci_find_saved_cap(dev, cap, true);
 958}
 959
 960static int pci_save_pcie_state(struct pci_dev *dev)
 961{
 962	int i = 0;
 963	struct pci_cap_saved_state *save_state;
 964	u16 *cap;
 965
 966	if (!pci_is_pcie(dev))
 967		return 0;
 968
 969	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 970	if (!save_state) {
 971		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 972		return -ENOMEM;
 973	}
 974
 975	cap = (u16 *)&save_state->cap.data[0];
 976	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
 977	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
 978	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
 979	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
 980	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
 981	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
 982	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
 983
 984	return 0;
 985}
 986
 987static void pci_restore_pcie_state(struct pci_dev *dev)
 988{
 989	int i = 0;
 990	struct pci_cap_saved_state *save_state;
 991	u16 *cap;
 992
 993	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 994	if (!save_state)
 995		return;
 996
 997	cap = (u16 *)&save_state->cap.data[0];
 998	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
 999	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1000	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1001	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1002	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1003	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1004	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1005}
1006
1007
1008static int pci_save_pcix_state(struct pci_dev *dev)
1009{
1010	int pos;
1011	struct pci_cap_saved_state *save_state;
1012
1013	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1014	if (!pos)
1015		return 0;
1016
1017	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1018	if (!save_state) {
1019		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1020		return -ENOMEM;
1021	}
1022
1023	pci_read_config_word(dev, pos + PCI_X_CMD,
1024			     (u16 *)save_state->cap.data);
1025
1026	return 0;
1027}
1028
1029static void pci_restore_pcix_state(struct pci_dev *dev)
1030{
1031	int i = 0, pos;
1032	struct pci_cap_saved_state *save_state;
1033	u16 *cap;
1034
1035	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1036	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1037	if (!save_state || !pos)
1038		return;
1039	cap = (u16 *)&save_state->cap.data[0];
1040
1041	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1042}
1043
1044
1045/**
1046 * pci_save_state - save the PCI configuration space of a device before suspending
1047 * @dev: - PCI device that we're dealing with
1048 */
1049int pci_save_state(struct pci_dev *dev)
1050{
1051	int i;
1052	/* XXX: 100% dword access ok here? */
1053	for (i = 0; i < 16; i++)
1054		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1055	dev->state_saved = true;
1056
1057	i = pci_save_pcie_state(dev);
1058	if (i != 0)
1059		return i;
1060
1061	i = pci_save_pcix_state(dev);
1062	if (i != 0)
1063		return i;
1064
1065	return pci_save_vc_state(dev);
1066}
1067EXPORT_SYMBOL(pci_save_state);
1068
1069static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1070				     u32 saved_val, int retry)
1071{
1072	u32 val;
1073
1074	pci_read_config_dword(pdev, offset, &val);
1075	if (val == saved_val)
1076		return;
1077
1078	for (;;) {
1079		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1080			offset, val, saved_val);
1081		pci_write_config_dword(pdev, offset, saved_val);
1082		if (retry-- <= 0)
1083			return;
1084
1085		pci_read_config_dword(pdev, offset, &val);
1086		if (val == saved_val)
1087			return;
1088
1089		mdelay(1);
1090	}
1091}
1092
1093static void pci_restore_config_space_range(struct pci_dev *pdev,
1094					   int start, int end, int retry)
1095{
1096	int index;
1097
1098	for (index = end; index >= start; index--)
1099		pci_restore_config_dword(pdev, 4 * index,
1100					 pdev->saved_config_space[index],
1101					 retry);
1102}
1103
1104static void pci_restore_config_space(struct pci_dev *pdev)
1105{
1106	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1107		pci_restore_config_space_range(pdev, 10, 15, 0);
1108		/* Restore BARs before the command register. */
1109		pci_restore_config_space_range(pdev, 4, 9, 10);
1110		pci_restore_config_space_range(pdev, 0, 3, 0);
1111	} else {
1112		pci_restore_config_space_range(pdev, 0, 15, 0);
1113	}
1114}
1115
1116/**
1117 * pci_restore_state - Restore the saved state of a PCI device
1118 * @dev: - PCI device that we're dealing with
1119 */
1120void pci_restore_state(struct pci_dev *dev)
1121{
1122	if (!dev->state_saved)
1123		return;
1124
1125	/* PCI Express register must be restored first */
1126	pci_restore_pcie_state(dev);
1127	pci_restore_ats_state(dev);
1128	pci_restore_vc_state(dev);
1129
1130	pci_cleanup_aer_error_status_regs(dev);
1131
1132	pci_restore_config_space(dev);
1133
1134	pci_restore_pcix_state(dev);
1135	pci_restore_msi_state(dev);
1136
1137	/* Restore ACS and IOV configuration state */
1138	pci_enable_acs(dev);
1139	pci_restore_iov_state(dev);
1140
1141	dev->state_saved = false;
1142}
1143EXPORT_SYMBOL(pci_restore_state);
1144
1145struct pci_saved_state {
1146	u32 config_space[16];
1147	struct pci_cap_saved_data cap[0];
1148};
1149
1150/**
1151 * pci_store_saved_state - Allocate and return an opaque struct containing
1152 *			   the device saved state.
1153 * @dev: PCI device that we're dealing with
1154 *
1155 * Return NULL if no state or error.
1156 */
1157struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1158{
1159	struct pci_saved_state *state;
1160	struct pci_cap_saved_state *tmp;
1161	struct pci_cap_saved_data *cap;
1162	size_t size;
1163
1164	if (!dev->state_saved)
1165		return NULL;
1166
1167	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1168
1169	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1170		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1171
1172	state = kzalloc(size, GFP_KERNEL);
1173	if (!state)
1174		return NULL;
1175
1176	memcpy(state->config_space, dev->saved_config_space,
1177	       sizeof(state->config_space));
1178
1179	cap = state->cap;
1180	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1181		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1182		memcpy(cap, &tmp->cap, len);
1183		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1184	}
1185	/* Empty cap_save terminates list */
1186
1187	return state;
1188}
1189EXPORT_SYMBOL_GPL(pci_store_saved_state);
1190
1191/**
1192 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1193 * @dev: PCI device that we're dealing with
1194 * @state: Saved state returned from pci_store_saved_state()
1195 */
1196int pci_load_saved_state(struct pci_dev *dev,
1197			 struct pci_saved_state *state)
1198{
1199	struct pci_cap_saved_data *cap;
1200
1201	dev->state_saved = false;
1202
1203	if (!state)
1204		return 0;
1205
1206	memcpy(dev->saved_config_space, state->config_space,
1207	       sizeof(state->config_space));
1208
1209	cap = state->cap;
1210	while (cap->size) {
1211		struct pci_cap_saved_state *tmp;
1212
1213		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1214		if (!tmp || tmp->cap.size != cap->size)
1215			return -EINVAL;
1216
1217		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1218		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1219		       sizeof(struct pci_cap_saved_data) + cap->size);
1220	}
1221
1222	dev->state_saved = true;
1223	return 0;
1224}
1225EXPORT_SYMBOL_GPL(pci_load_saved_state);
1226
1227/**
1228 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1229 *				   and free the memory allocated for it.
1230 * @dev: PCI device that we're dealing with
1231 * @state: Pointer to saved state returned from pci_store_saved_state()
1232 */
1233int pci_load_and_free_saved_state(struct pci_dev *dev,
1234				  struct pci_saved_state **state)
1235{
1236	int ret = pci_load_saved_state(dev, *state);
1237	kfree(*state);
1238	*state = NULL;
1239	return ret;
1240}
1241EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1242
1243int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1244{
1245	return pci_enable_resources(dev, bars);
1246}
1247
1248static int do_pci_enable_device(struct pci_dev *dev, int bars)
1249{
1250	int err;
1251	struct pci_dev *bridge;
1252	u16 cmd;
1253	u8 pin;
1254
1255	err = pci_set_power_state(dev, PCI_D0);
1256	if (err < 0 && err != -EIO)
1257		return err;
1258
1259	bridge = pci_upstream_bridge(dev);
1260	if (bridge)
1261		pcie_aspm_powersave_config_link(bridge);
1262
1263	err = pcibios_enable_device(dev, bars);
1264	if (err < 0)
1265		return err;
1266	pci_fixup_device(pci_fixup_enable, dev);
1267
1268	if (dev->msi_enabled || dev->msix_enabled)
1269		return 0;
1270
1271	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1272	if (pin) {
1273		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1274		if (cmd & PCI_COMMAND_INTX_DISABLE)
1275			pci_write_config_word(dev, PCI_COMMAND,
1276					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1277	}
1278
1279	return 0;
1280}
1281
1282/**
1283 * pci_reenable_device - Resume abandoned device
1284 * @dev: PCI device to be resumed
1285 *
1286 *  Note this function is a backend of pci_default_resume and is not supposed
1287 *  to be called by normal code, write proper resume handler and use it instead.
1288 */
1289int pci_reenable_device(struct pci_dev *dev)
1290{
1291	if (pci_is_enabled(dev))
1292		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1293	return 0;
1294}
1295EXPORT_SYMBOL(pci_reenable_device);
1296
1297static void pci_enable_bridge(struct pci_dev *dev)
1298{
1299	struct pci_dev *bridge;
1300	int retval;
1301
1302	bridge = pci_upstream_bridge(dev);
1303	if (bridge)
1304		pci_enable_bridge(bridge);
1305
1306	if (pci_is_enabled(dev)) {
1307		if (!dev->is_busmaster)
1308			pci_set_master(dev);
1309		return;
1310	}
1311
1312	retval = pci_enable_device(dev);
1313	if (retval)
1314		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1315			retval);
1316	pci_set_master(dev);
1317}
1318
1319static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1320{
1321	struct pci_dev *bridge;
1322	int err;
1323	int i, bars = 0;
1324
1325	/*
1326	 * Power state could be unknown at this point, either due to a fresh
1327	 * boot or a device removal call.  So get the current power state
1328	 * so that things like MSI message writing will behave as expected
1329	 * (e.g. if the device really is in D0 at enable time).
1330	 */
1331	if (dev->pm_cap) {
1332		u16 pmcsr;
1333		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1334		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1335	}
1336
1337	if (atomic_inc_return(&dev->enable_cnt) > 1)
1338		return 0;		/* already enabled */
1339
1340	bridge = pci_upstream_bridge(dev);
1341	if (bridge)
1342		pci_enable_bridge(bridge);
1343
1344	/* only skip sriov related */
1345	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1346		if (dev->resource[i].flags & flags)
1347			bars |= (1 << i);
1348	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1349		if (dev->resource[i].flags & flags)
1350			bars |= (1 << i);
1351
1352	err = do_pci_enable_device(dev, bars);
1353	if (err < 0)
1354		atomic_dec(&dev->enable_cnt);
1355	return err;
1356}
1357
1358/**
1359 * pci_enable_device_io - Initialize a device for use with IO space
1360 * @dev: PCI device to be initialized
1361 *
1362 *  Initialize device before it's used by a driver. Ask low-level code
1363 *  to enable I/O resources. Wake up the device if it was suspended.
1364 *  Beware, this function can fail.
1365 */
1366int pci_enable_device_io(struct pci_dev *dev)
1367{
1368	return pci_enable_device_flags(dev, IORESOURCE_IO);
1369}
1370EXPORT_SYMBOL(pci_enable_device_io);
1371
1372/**
1373 * pci_enable_device_mem - Initialize a device for use with Memory space
1374 * @dev: PCI device to be initialized
1375 *
1376 *  Initialize device before it's used by a driver. Ask low-level code
1377 *  to enable Memory resources. Wake up the device if it was suspended.
1378 *  Beware, this function can fail.
1379 */
1380int pci_enable_device_mem(struct pci_dev *dev)
1381{
1382	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1383}
1384EXPORT_SYMBOL(pci_enable_device_mem);
1385
1386/**
1387 * pci_enable_device - Initialize device before it's used by a driver.
1388 * @dev: PCI device to be initialized
1389 *
1390 *  Initialize device before it's used by a driver. Ask low-level code
1391 *  to enable I/O and memory. Wake up the device if it was suspended.
1392 *  Beware, this function can fail.
1393 *
1394 *  Note we don't actually enable the device many times if we call
1395 *  this function repeatedly (we just increment the count).
1396 */
1397int pci_enable_device(struct pci_dev *dev)
1398{
1399	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1400}
1401EXPORT_SYMBOL(pci_enable_device);
1402
1403/*
1404 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1405 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1406 * there's no need to track it separately.  pci_devres is initialized
1407 * when a device is enabled using managed PCI device enable interface.
1408 */
1409struct pci_devres {
1410	unsigned int enabled:1;
1411	unsigned int pinned:1;
1412	unsigned int orig_intx:1;
1413	unsigned int restore_intx:1;
1414	u32 region_mask;
1415};
1416
1417static void pcim_release(struct device *gendev, void *res)
1418{
1419	struct pci_dev *dev = to_pci_dev(gendev);
1420	struct pci_devres *this = res;
1421	int i;
1422
1423	if (dev->msi_enabled)
1424		pci_disable_msi(dev);
1425	if (dev->msix_enabled)
1426		pci_disable_msix(dev);
1427
1428	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1429		if (this->region_mask & (1 << i))
1430			pci_release_region(dev, i);
1431
1432	if (this->restore_intx)
1433		pci_intx(dev, this->orig_intx);
1434
1435	if (this->enabled && !this->pinned)
1436		pci_disable_device(dev);
1437}
1438
1439static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1440{
1441	struct pci_devres *dr, *new_dr;
1442
1443	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1444	if (dr)
1445		return dr;
1446
1447	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1448	if (!new_dr)
1449		return NULL;
1450	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1451}
1452
1453static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1454{
1455	if (pci_is_managed(pdev))
1456		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1457	return NULL;
1458}
1459
1460/**
1461 * pcim_enable_device - Managed pci_enable_device()
1462 * @pdev: PCI device to be initialized
1463 *
1464 * Managed pci_enable_device().
1465 */
1466int pcim_enable_device(struct pci_dev *pdev)
1467{
1468	struct pci_devres *dr;
1469	int rc;
1470
1471	dr = get_pci_dr(pdev);
1472	if (unlikely(!dr))
1473		return -ENOMEM;
1474	if (dr->enabled)
1475		return 0;
1476
1477	rc = pci_enable_device(pdev);
1478	if (!rc) {
1479		pdev->is_managed = 1;
1480		dr->enabled = 1;
1481	}
1482	return rc;
1483}
1484EXPORT_SYMBOL(pcim_enable_device);
1485
1486/**
1487 * pcim_pin_device - Pin managed PCI device
1488 * @pdev: PCI device to pin
1489 *
1490 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1491 * driver detach.  @pdev must have been enabled with
1492 * pcim_enable_device().
1493 */
1494void pcim_pin_device(struct pci_dev *pdev)
1495{
1496	struct pci_devres *dr;
1497
1498	dr = find_pci_dr(pdev);
1499	WARN_ON(!dr || !dr->enabled);
1500	if (dr)
1501		dr->pinned = 1;
1502}
1503EXPORT_SYMBOL(pcim_pin_device);
1504
1505/*
1506 * pcibios_add_device - provide arch specific hooks when adding device dev
1507 * @dev: the PCI device being added
1508 *
1509 * Permits the platform to provide architecture specific functionality when
1510 * devices are added. This is the default implementation. Architecture
1511 * implementations can override this.
1512 */
1513int __weak pcibios_add_device(struct pci_dev *dev)
1514{
1515	return 0;
1516}
1517
1518/**
1519 * pcibios_release_device - provide arch specific hooks when releasing device dev
1520 * @dev: the PCI device being released
1521 *
1522 * Permits the platform to provide architecture specific functionality when
1523 * devices are released. This is the default implementation. Architecture
1524 * implementations can override this.
1525 */
1526void __weak pcibios_release_device(struct pci_dev *dev) {}
1527
1528/**
1529 * pcibios_disable_device - disable arch specific PCI resources for device dev
1530 * @dev: the PCI device to disable
1531 *
1532 * Disables architecture specific PCI resources for the device. This
1533 * is the default implementation. Architecture implementations can
1534 * override this.
1535 */
1536void __weak pcibios_disable_device(struct pci_dev *dev) {}
1537
1538/**
1539 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1540 * @irq: ISA IRQ to penalize
1541 * @active: IRQ active or not
1542 *
1543 * Permits the platform to provide architecture-specific functionality when
1544 * penalizing ISA IRQs. This is the default implementation. Architecture
1545 * implementations can override this.
1546 */
1547void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1548
1549static void do_pci_disable_device(struct pci_dev *dev)
1550{
1551	u16 pci_command;
1552
1553	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1554	if (pci_command & PCI_COMMAND_MASTER) {
1555		pci_command &= ~PCI_COMMAND_MASTER;
1556		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1557	}
1558
1559	pcibios_disable_device(dev);
1560}
1561
1562/**
1563 * pci_disable_enabled_device - Disable device without updating enable_cnt
1564 * @dev: PCI device to disable
1565 *
1566 * NOTE: This function is a backend of PCI power management routines and is
1567 * not supposed to be called drivers.
1568 */
1569void pci_disable_enabled_device(struct pci_dev *dev)
1570{
1571	if (pci_is_enabled(dev))
1572		do_pci_disable_device(dev);
1573}
1574
1575/**
1576 * pci_disable_device - Disable PCI device after use
1577 * @dev: PCI device to be disabled
1578 *
1579 * Signal to the system that the PCI device is not in use by the system
1580 * anymore.  This only involves disabling PCI bus-mastering, if active.
1581 *
1582 * Note we don't actually disable the device until all callers of
1583 * pci_enable_device() have called pci_disable_device().
1584 */
1585void pci_disable_device(struct pci_dev *dev)
1586{
1587	struct pci_devres *dr;
1588
1589	dr = find_pci_dr(dev);
1590	if (dr)
1591		dr->enabled = 0;
1592
1593	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1594		      "disabling already-disabled device");
1595
1596	if (atomic_dec_return(&dev->enable_cnt) != 0)
1597		return;
1598
1599	do_pci_disable_device(dev);
1600
1601	dev->is_busmaster = 0;
1602}
1603EXPORT_SYMBOL(pci_disable_device);
1604
1605/**
1606 * pcibios_set_pcie_reset_state - set reset state for device dev
1607 * @dev: the PCIe device reset
1608 * @state: Reset state to enter into
1609 *
1610 *
1611 * Sets the PCIe reset state for the device. This is the default
1612 * implementation. Architecture implementations can override this.
1613 */
1614int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1615					enum pcie_reset_state state)
1616{
1617	return -EINVAL;
1618}
1619
1620/**
1621 * pci_set_pcie_reset_state - set reset state for device dev
1622 * @dev: the PCIe device reset
1623 * @state: Reset state to enter into
1624 *
1625 *
1626 * Sets the PCI reset state for the device.
1627 */
1628int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1629{
1630	return pcibios_set_pcie_reset_state(dev, state);
1631}
1632EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1633
1634/**
1635 * pci_check_pme_status - Check if given device has generated PME.
1636 * @dev: Device to check.
1637 *
1638 * Check the PME status of the device and if set, clear it and clear PME enable
1639 * (if set).  Return 'true' if PME status and PME enable were both set or
1640 * 'false' otherwise.
1641 */
1642bool pci_check_pme_status(struct pci_dev *dev)
1643{
1644	int pmcsr_pos;
1645	u16 pmcsr;
1646	bool ret = false;
1647
1648	if (!dev->pm_cap)
1649		return false;
1650
1651	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1652	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1653	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1654		return false;
1655
1656	/* Clear PME status. */
1657	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1658	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1659		/* Disable PME to avoid interrupt flood. */
1660		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1661		ret = true;
1662	}
1663
1664	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1665
1666	return ret;
1667}
1668
1669/**
1670 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1671 * @dev: Device to handle.
1672 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1673 *
1674 * Check if @dev has generated PME and queue a resume request for it in that
1675 * case.
1676 */
1677static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1678{
1679	if (pme_poll_reset && dev->pme_poll)
1680		dev->pme_poll = false;
1681
1682	if (pci_check_pme_status(dev)) {
1683		pci_wakeup_event(dev);
1684		pm_request_resume(&dev->dev);
1685	}
1686	return 0;
1687}
1688
1689/**
1690 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1691 * @bus: Top bus of the subtree to walk.
1692 */
1693void pci_pme_wakeup_bus(struct pci_bus *bus)
1694{
1695	if (bus)
1696		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1697}
1698
1699
1700/**
1701 * pci_pme_capable - check the capability of PCI device to generate PME#
1702 * @dev: PCI device to handle.
1703 * @state: PCI state from which device will issue PME#.
1704 */
1705bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1706{
1707	if (!dev->pm_cap)
1708		return false;
1709
1710	return !!(dev->pme_support & (1 << state));
1711}
1712EXPORT_SYMBOL(pci_pme_capable);
1713
1714static void pci_pme_list_scan(struct work_struct *work)
1715{
1716	struct pci_pme_device *pme_dev, *n;
1717
1718	mutex_lock(&pci_pme_list_mutex);
1719	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1720		if (pme_dev->dev->pme_poll) {
1721			struct pci_dev *bridge;
1722
1723			bridge = pme_dev->dev->bus->self;
1724			/*
1725			 * If bridge is in low power state, the
1726			 * configuration space of subordinate devices
1727			 * may be not accessible
1728			 */
1729			if (bridge && bridge->current_state != PCI_D0)
1730				continue;
1731			pci_pme_wakeup(pme_dev->dev, NULL);
1732		} else {
1733			list_del(&pme_dev->list);
1734			kfree(pme_dev);
1735		}
1736	}
1737	if (!list_empty(&pci_pme_list))
1738		schedule_delayed_work(&pci_pme_work,
1739				      msecs_to_jiffies(PME_TIMEOUT));
1740	mutex_unlock(&pci_pme_list_mutex);
1741}
1742
1743static void __pci_pme_active(struct pci_dev *dev, bool enable)
1744{
1745	u16 pmcsr;
1746
1747	if (!dev->pme_support)
1748		return;
1749
1750	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1751	/* Clear PME_Status by writing 1 to it and enable PME# */
1752	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1753	if (!enable)
1754		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1755
1756	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1757}
1758
1759/**
1760 * pci_pme_active - enable or disable PCI device's PME# function
1761 * @dev: PCI device to handle.
1762 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1763 *
1764 * The caller must verify that the device is capable of generating PME# before
1765 * calling this function with @enable equal to 'true'.
1766 */
1767void pci_pme_active(struct pci_dev *dev, bool enable)
1768{
1769	__pci_pme_active(dev, enable);
1770
1771	/*
1772	 * PCI (as opposed to PCIe) PME requires that the device have
1773	 * its PME# line hooked up correctly. Not all hardware vendors
1774	 * do this, so the PME never gets delivered and the device
1775	 * remains asleep. The easiest way around this is to
1776	 * periodically walk the list of suspended devices and check
1777	 * whether any have their PME flag set. The assumption is that
1778	 * we'll wake up often enough anyway that this won't be a huge
1779	 * hit, and the power savings from the devices will still be a
1780	 * win.
1781	 *
1782	 * Although PCIe uses in-band PME message instead of PME# line
1783	 * to report PME, PME does not work for some PCIe devices in
1784	 * reality.  For example, there are devices that set their PME
1785	 * status bits, but don't really bother to send a PME message;
1786	 * there are PCI Express Root Ports that don't bother to
1787	 * trigger interrupts when they receive PME messages from the
1788	 * devices below.  So PME poll is used for PCIe devices too.
1789	 */
1790
1791	if (dev->pme_poll) {
1792		struct pci_pme_device *pme_dev;
1793		if (enable) {
1794			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1795					  GFP_KERNEL);
1796			if (!pme_dev) {
1797				dev_warn(&dev->dev, "can't enable PME#\n");
1798				return;
1799			}
1800			pme_dev->dev = dev;
1801			mutex_lock(&pci_pme_list_mutex);
1802			list_add(&pme_dev->list, &pci_pme_list);
1803			if (list_is_singular(&pci_pme_list))
1804				schedule_delayed_work(&pci_pme_work,
1805						      msecs_to_jiffies(PME_TIMEOUT));
1806			mutex_unlock(&pci_pme_list_mutex);
1807		} else {
1808			mutex_lock(&pci_pme_list_mutex);
1809			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1810				if (pme_dev->dev == dev) {
1811					list_del(&pme_dev->list);
1812					kfree(pme_dev);
1813					break;
1814				}
1815			}
1816			mutex_unlock(&pci_pme_list_mutex);
1817		}
1818	}
1819
1820	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1821}
1822EXPORT_SYMBOL(pci_pme_active);
1823
1824/**
1825 * __pci_enable_wake - enable PCI device as wakeup event source
1826 * @dev: PCI device affected
1827 * @state: PCI state from which device will issue wakeup events
1828 * @runtime: True if the events are to be generated at run time
1829 * @enable: True to enable event generation; false to disable
1830 *
1831 * This enables the device as a wakeup event source, or disables it.
1832 * When such events involves platform-specific hooks, those hooks are
1833 * called automatically by this routine.
1834 *
1835 * Devices with legacy power management (no standard PCI PM capabilities)
1836 * always require such platform hooks.
1837 *
1838 * RETURN VALUE:
1839 * 0 is returned on success
1840 * -EINVAL is returned if device is not supposed to wake up the system
1841 * Error code depending on the platform is returned if both the platform and
1842 * the native mechanism fail to enable the generation of wake-up events
1843 */
1844int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1845		      bool runtime, bool enable)
1846{
1847	int ret = 0;
1848
1849	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1850		return -EINVAL;
1851
1852	/* Don't do the same thing twice in a row for one device. */
1853	if (!!enable == !!dev->wakeup_prepared)
1854		return 0;
1855
1856	/*
1857	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1858	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1859	 * enable.  To disable wake-up we call the platform first, for symmetry.
1860	 */
1861
1862	if (enable) {
1863		int error;
1864
1865		if (pci_pme_capable(dev, state))
1866			pci_pme_active(dev, true);
1867		else
1868			ret = 1;
1869		error = runtime ? platform_pci_run_wake(dev, true) :
1870					platform_pci_sleep_wake(dev, true);
1871		if (ret)
1872			ret = error;
1873		if (!ret)
1874			dev->wakeup_prepared = true;
1875	} else {
1876		if (runtime)
1877			platform_pci_run_wake(dev, false);
1878		else
1879			platform_pci_sleep_wake(dev, false);
1880		pci_pme_active(dev, false);
1881		dev->wakeup_prepared = false;
1882	}
1883
1884	return ret;
1885}
1886EXPORT_SYMBOL(__pci_enable_wake);
1887
1888/**
1889 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1890 * @dev: PCI device to prepare
1891 * @enable: True to enable wake-up event generation; false to disable
1892 *
1893 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1894 * and this function allows them to set that up cleanly - pci_enable_wake()
1895 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1896 * ordering constraints.
1897 *
1898 * This function only returns error code if the device is not capable of
1899 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1900 * enable wake-up power for it.
1901 */
1902int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1903{
1904	return pci_pme_capable(dev, PCI_D3cold) ?
1905			pci_enable_wake(dev, PCI_D3cold, enable) :
1906			pci_enable_wake(dev, PCI_D3hot, enable);
1907}
1908EXPORT_SYMBOL(pci_wake_from_d3);
1909
1910/**
1911 * pci_target_state - find an appropriate low power state for a given PCI dev
1912 * @dev: PCI device
1913 *
1914 * Use underlying platform code to find a supported low power state for @dev.
1915 * If the platform can't manage @dev, return the deepest state from which it
1916 * can generate wake events, based on any available PME info.
1917 */
1918static pci_power_t pci_target_state(struct pci_dev *dev)
1919{
1920	pci_power_t target_state = PCI_D3hot;
1921
1922	if (platform_pci_power_manageable(dev)) {
1923		/*
1924		 * Call the platform to choose the target state of the device
1925		 * and enable wake-up from this state if supported.
1926		 */
1927		pci_power_t state = platform_pci_choose_state(dev);
1928
1929		switch (state) {
1930		case PCI_POWER_ERROR:
1931		case PCI_UNKNOWN:
1932			break;
1933		case PCI_D1:
1934		case PCI_D2:
1935			if (pci_no_d1d2(dev))
1936				break;
1937		default:
1938			target_state = state;
1939		}
1940	} else if (!dev->pm_cap) {
 
 
 
 
1941		target_state = PCI_D0;
1942	} else if (device_may_wakeup(&dev->dev)) {
 
 
 
 
 
 
 
 
 
1943		/*
1944		 * Find the deepest state from which the device can generate
1945		 * wake-up events, make it the target state and enable device
1946		 * to generate PME#.
1947		 */
1948		if (dev->pme_support) {
1949			while (target_state
1950			      && !(dev->pme_support & (1 << target_state)))
1951				target_state--;
1952		}
1953	}
1954
1955	return target_state;
1956}
1957
1958/**
1959 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1960 * @dev: Device to handle.
1961 *
1962 * Choose the power state appropriate for the device depending on whether
1963 * it can wake up the system and/or is power manageable by the platform
1964 * (PCI_D3hot is the default) and put the device into that state.
1965 */
1966int pci_prepare_to_sleep(struct pci_dev *dev)
1967{
1968	pci_power_t target_state = pci_target_state(dev);
1969	int error;
1970
1971	if (target_state == PCI_POWER_ERROR)
1972		return -EIO;
1973
1974	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1975
1976	error = pci_set_power_state(dev, target_state);
1977
1978	if (error)
1979		pci_enable_wake(dev, target_state, false);
1980
1981	return error;
1982}
1983EXPORT_SYMBOL(pci_prepare_to_sleep);
1984
1985/**
1986 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1987 * @dev: Device to handle.
1988 *
1989 * Disable device's system wake-up capability and put it into D0.
1990 */
1991int pci_back_from_sleep(struct pci_dev *dev)
1992{
1993	pci_enable_wake(dev, PCI_D0, false);
1994	return pci_set_power_state(dev, PCI_D0);
1995}
1996EXPORT_SYMBOL(pci_back_from_sleep);
1997
1998/**
1999 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2000 * @dev: PCI device being suspended.
2001 *
2002 * Prepare @dev to generate wake-up events at run time and put it into a low
2003 * power state.
2004 */
2005int pci_finish_runtime_suspend(struct pci_dev *dev)
2006{
2007	pci_power_t target_state = pci_target_state(dev);
2008	int error;
2009
2010	if (target_state == PCI_POWER_ERROR)
2011		return -EIO;
2012
2013	dev->runtime_d3cold = target_state == PCI_D3cold;
2014
2015	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2016
2017	error = pci_set_power_state(dev, target_state);
2018
2019	if (error) {
2020		__pci_enable_wake(dev, target_state, true, false);
2021		dev->runtime_d3cold = false;
2022	}
2023
2024	return error;
2025}
2026
2027/**
2028 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2029 * @dev: Device to check.
2030 *
2031 * Return true if the device itself is capable of generating wake-up events
2032 * (through the platform or using the native PCIe PME) or if the device supports
2033 * PME and one of its upstream bridges can generate wake-up events.
2034 */
2035bool pci_dev_run_wake(struct pci_dev *dev)
2036{
2037	struct pci_bus *bus = dev->bus;
2038
2039	if (device_run_wake(&dev->dev))
2040		return true;
2041
2042	if (!dev->pme_support)
2043		return false;
2044
 
 
 
 
2045	while (bus->parent) {
2046		struct pci_dev *bridge = bus->self;
2047
2048		if (device_run_wake(&bridge->dev))
2049			return true;
2050
2051		bus = bus->parent;
2052	}
2053
2054	/* We have reached the root bus. */
2055	if (bus->bridge)
2056		return device_run_wake(bus->bridge);
2057
2058	return false;
2059}
2060EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2061
2062/**
2063 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2064 * @pci_dev: Device to check.
2065 *
2066 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2067 * reconfigured due to wakeup settings difference between system and runtime
2068 * suspend and the current power state of it is suitable for the upcoming
2069 * (system) transition.
2070 *
2071 * If the device is not configured for system wakeup, disable PME for it before
2072 * returning 'true' to prevent it from waking up the system unnecessarily.
2073 */
2074bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2075{
2076	struct device *dev = &pci_dev->dev;
2077
2078	if (!pm_runtime_suspended(dev)
2079	    || pci_target_state(pci_dev) != pci_dev->current_state
2080	    || platform_pci_need_resume(pci_dev))
2081		return false;
2082
2083	/*
2084	 * At this point the device is good to go unless it's been configured
2085	 * to generate PME at the runtime suspend time, but it is not supposed
2086	 * to wake up the system.  In that case, simply disable PME for it
2087	 * (it will have to be re-enabled on exit from system resume).
2088	 *
2089	 * If the device's power state is D3cold and the platform check above
2090	 * hasn't triggered, the device's configuration is suitable and we don't
2091	 * need to manipulate it at all.
2092	 */
2093	spin_lock_irq(&dev->power.lock);
2094
2095	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2096	    !device_may_wakeup(dev))
2097		__pci_pme_active(pci_dev, false);
2098
2099	spin_unlock_irq(&dev->power.lock);
2100	return true;
2101}
2102
2103/**
2104 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2105 * @pci_dev: Device to handle.
2106 *
2107 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2108 * it might have been disabled during the prepare phase of system suspend if
2109 * the device was not configured for system wakeup.
2110 */
2111void pci_dev_complete_resume(struct pci_dev *pci_dev)
2112{
2113	struct device *dev = &pci_dev->dev;
2114
2115	if (!pci_dev_run_wake(pci_dev))
2116		return;
2117
2118	spin_lock_irq(&dev->power.lock);
2119
2120	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2121		__pci_pme_active(pci_dev, true);
2122
2123	spin_unlock_irq(&dev->power.lock);
2124}
2125
2126void pci_config_pm_runtime_get(struct pci_dev *pdev)
2127{
2128	struct device *dev = &pdev->dev;
2129	struct device *parent = dev->parent;
2130
2131	if (parent)
2132		pm_runtime_get_sync(parent);
2133	pm_runtime_get_noresume(dev);
2134	/*
2135	 * pdev->current_state is set to PCI_D3cold during suspending,
2136	 * so wait until suspending completes
2137	 */
2138	pm_runtime_barrier(dev);
2139	/*
2140	 * Only need to resume devices in D3cold, because config
2141	 * registers are still accessible for devices suspended but
2142	 * not in D3cold.
2143	 */
2144	if (pdev->current_state == PCI_D3cold)
2145		pm_runtime_resume(dev);
2146}
2147
2148void pci_config_pm_runtime_put(struct pci_dev *pdev)
2149{
2150	struct device *dev = &pdev->dev;
2151	struct device *parent = dev->parent;
2152
2153	pm_runtime_put(dev);
2154	if (parent)
2155		pm_runtime_put_sync(parent);
2156}
2157
2158/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2159 * pci_pm_init - Initialize PM functions of given PCI device
2160 * @dev: PCI device to handle.
2161 */
2162void pci_pm_init(struct pci_dev *dev)
2163{
2164	int pm;
2165	u16 pmc;
2166
2167	pm_runtime_forbid(&dev->dev);
2168	pm_runtime_set_active(&dev->dev);
2169	pm_runtime_enable(&dev->dev);
2170	device_enable_async_suspend(&dev->dev);
2171	dev->wakeup_prepared = false;
2172
2173	dev->pm_cap = 0;
2174	dev->pme_support = 0;
2175
2176	/* find PCI PM capability in list */
2177	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2178	if (!pm)
2179		return;
2180	/* Check device's ability to generate PME# */
2181	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2182
2183	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2184		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2185			pmc & PCI_PM_CAP_VER_MASK);
2186		return;
2187	}
2188
2189	dev->pm_cap = pm;
2190	dev->d3_delay = PCI_PM_D3_WAIT;
2191	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
 
2192	dev->d3cold_allowed = true;
2193
2194	dev->d1_support = false;
2195	dev->d2_support = false;
2196	if (!pci_no_d1d2(dev)) {
2197		if (pmc & PCI_PM_CAP_D1)
2198			dev->d1_support = true;
2199		if (pmc & PCI_PM_CAP_D2)
2200			dev->d2_support = true;
2201
2202		if (dev->d1_support || dev->d2_support)
2203			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2204				   dev->d1_support ? " D1" : "",
2205				   dev->d2_support ? " D2" : "");
2206	}
2207
2208	pmc &= PCI_PM_CAP_PME_MASK;
2209	if (pmc) {
2210		dev_printk(KERN_DEBUG, &dev->dev,
2211			 "PME# supported from%s%s%s%s%s\n",
2212			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2213			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2214			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2215			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2216			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2217		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2218		dev->pme_poll = true;
2219		/*
2220		 * Make device's PM flags reflect the wake-up capability, but
2221		 * let the user space enable it to wake up the system as needed.
2222		 */
2223		device_set_wakeup_capable(&dev->dev, true);
2224		/* Disable the PME# generation functionality */
2225		pci_pme_active(dev, false);
2226	}
2227}
2228
2229static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2230{
2231	unsigned long flags = IORESOURCE_PCI_FIXED;
2232
2233	switch (prop) {
2234	case PCI_EA_P_MEM:
2235	case PCI_EA_P_VF_MEM:
2236		flags |= IORESOURCE_MEM;
2237		break;
2238	case PCI_EA_P_MEM_PREFETCH:
2239	case PCI_EA_P_VF_MEM_PREFETCH:
2240		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2241		break;
2242	case PCI_EA_P_IO:
2243		flags |= IORESOURCE_IO;
2244		break;
2245	default:
2246		return 0;
2247	}
2248
2249	return flags;
2250}
2251
2252static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2253					    u8 prop)
2254{
2255	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2256		return &dev->resource[bei];
2257#ifdef CONFIG_PCI_IOV
2258	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2259		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2260		return &dev->resource[PCI_IOV_RESOURCES +
2261				      bei - PCI_EA_BEI_VF_BAR0];
2262#endif
2263	else if (bei == PCI_EA_BEI_ROM)
2264		return &dev->resource[PCI_ROM_RESOURCE];
2265	else
2266		return NULL;
2267}
2268
2269/* Read an Enhanced Allocation (EA) entry */
2270static int pci_ea_read(struct pci_dev *dev, int offset)
2271{
2272	struct resource *res;
2273	int ent_size, ent_offset = offset;
2274	resource_size_t start, end;
2275	unsigned long flags;
2276	u32 dw0, bei, base, max_offset;
2277	u8 prop;
2278	bool support_64 = (sizeof(resource_size_t) >= 8);
2279
2280	pci_read_config_dword(dev, ent_offset, &dw0);
2281	ent_offset += 4;
2282
2283	/* Entry size field indicates DWORDs after 1st */
2284	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2285
2286	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2287		goto out;
2288
2289	bei = (dw0 & PCI_EA_BEI) >> 4;
2290	prop = (dw0 & PCI_EA_PP) >> 8;
2291
2292	/*
2293	 * If the Property is in the reserved range, try the Secondary
2294	 * Property instead.
2295	 */
2296	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2297		prop = (dw0 & PCI_EA_SP) >> 16;
2298	if (prop > PCI_EA_P_BRIDGE_IO)
2299		goto out;
2300
2301	res = pci_ea_get_resource(dev, bei, prop);
2302	if (!res) {
2303		dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2304		goto out;
2305	}
2306
2307	flags = pci_ea_flags(dev, prop);
2308	if (!flags) {
2309		dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2310		goto out;
2311	}
2312
2313	/* Read Base */
2314	pci_read_config_dword(dev, ent_offset, &base);
2315	start = (base & PCI_EA_FIELD_MASK);
2316	ent_offset += 4;
2317
2318	/* Read MaxOffset */
2319	pci_read_config_dword(dev, ent_offset, &max_offset);
2320	ent_offset += 4;
2321
2322	/* Read Base MSBs (if 64-bit entry) */
2323	if (base & PCI_EA_IS_64) {
2324		u32 base_upper;
2325
2326		pci_read_config_dword(dev, ent_offset, &base_upper);
2327		ent_offset += 4;
2328
2329		flags |= IORESOURCE_MEM_64;
2330
2331		/* entry starts above 32-bit boundary, can't use */
2332		if (!support_64 && base_upper)
2333			goto out;
2334
2335		if (support_64)
2336			start |= ((u64)base_upper << 32);
2337	}
2338
2339	end = start + (max_offset | 0x03);
2340
2341	/* Read MaxOffset MSBs (if 64-bit entry) */
2342	if (max_offset & PCI_EA_IS_64) {
2343		u32 max_offset_upper;
2344
2345		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2346		ent_offset += 4;
2347
2348		flags |= IORESOURCE_MEM_64;
2349
2350		/* entry too big, can't use */
2351		if (!support_64 && max_offset_upper)
2352			goto out;
2353
2354		if (support_64)
2355			end += ((u64)max_offset_upper << 32);
2356	}
2357
2358	if (end < start) {
2359		dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2360		goto out;
2361	}
2362
2363	if (ent_size != ent_offset - offset) {
2364		dev_err(&dev->dev,
2365			"EA Entry Size (%d) does not match length read (%d)\n",
2366			ent_size, ent_offset - offset);
2367		goto out;
2368	}
2369
2370	res->name = pci_name(dev);
2371	res->start = start;
2372	res->end = end;
2373	res->flags = flags;
2374
2375	if (bei <= PCI_EA_BEI_BAR5)
2376		dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2377			   bei, res, prop);
2378	else if (bei == PCI_EA_BEI_ROM)
2379		dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2380			   res, prop);
2381	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2382		dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2383			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2384	else
2385		dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2386			   bei, res, prop);
2387
2388out:
2389	return offset + ent_size;
2390}
2391
2392/* Enhanced Allocation Initalization */
2393void pci_ea_init(struct pci_dev *dev)
2394{
2395	int ea;
2396	u8 num_ent;
2397	int offset;
2398	int i;
2399
2400	/* find PCI EA capability in list */
2401	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2402	if (!ea)
2403		return;
2404
2405	/* determine the number of entries */
2406	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2407					&num_ent);
2408	num_ent &= PCI_EA_NUM_ENT_MASK;
2409
2410	offset = ea + PCI_EA_FIRST_ENT;
2411
2412	/* Skip DWORD 2 for type 1 functions */
2413	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2414		offset += 4;
2415
2416	/* parse each EA entry */
2417	for (i = 0; i < num_ent; ++i)
2418		offset = pci_ea_read(dev, offset);
2419}
2420
2421static void pci_add_saved_cap(struct pci_dev *pci_dev,
2422	struct pci_cap_saved_state *new_cap)
2423{
2424	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2425}
2426
2427/**
2428 * _pci_add_cap_save_buffer - allocate buffer for saving given
2429 *                            capability registers
2430 * @dev: the PCI device
2431 * @cap: the capability to allocate the buffer for
2432 * @extended: Standard or Extended capability ID
2433 * @size: requested size of the buffer
2434 */
2435static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2436				    bool extended, unsigned int size)
2437{
2438	int pos;
2439	struct pci_cap_saved_state *save_state;
2440
2441	if (extended)
2442		pos = pci_find_ext_capability(dev, cap);
2443	else
2444		pos = pci_find_capability(dev, cap);
2445
2446	if (!pos)
2447		return 0;
2448
2449	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2450	if (!save_state)
2451		return -ENOMEM;
2452
2453	save_state->cap.cap_nr = cap;
2454	save_state->cap.cap_extended = extended;
2455	save_state->cap.size = size;
2456	pci_add_saved_cap(dev, save_state);
2457
2458	return 0;
2459}
2460
2461int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2462{
2463	return _pci_add_cap_save_buffer(dev, cap, false, size);
2464}
2465
2466int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2467{
2468	return _pci_add_cap_save_buffer(dev, cap, true, size);
2469}
2470
2471/**
2472 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2473 * @dev: the PCI device
2474 */
2475void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2476{
2477	int error;
2478
2479	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2480					PCI_EXP_SAVE_REGS * sizeof(u16));
2481	if (error)
2482		dev_err(&dev->dev,
2483			"unable to preallocate PCI Express save buffer\n");
2484
2485	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2486	if (error)
2487		dev_err(&dev->dev,
2488			"unable to preallocate PCI-X save buffer\n");
2489
2490	pci_allocate_vc_save_buffers(dev);
2491}
2492
2493void pci_free_cap_save_buffers(struct pci_dev *dev)
2494{
2495	struct pci_cap_saved_state *tmp;
2496	struct hlist_node *n;
2497
2498	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2499		kfree(tmp);
2500}
2501
2502/**
2503 * pci_configure_ari - enable or disable ARI forwarding
2504 * @dev: the PCI device
2505 *
2506 * If @dev and its upstream bridge both support ARI, enable ARI in the
2507 * bridge.  Otherwise, disable ARI in the bridge.
2508 */
2509void pci_configure_ari(struct pci_dev *dev)
2510{
2511	u32 cap;
2512	struct pci_dev *bridge;
2513
2514	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2515		return;
2516
2517	bridge = dev->bus->self;
2518	if (!bridge)
2519		return;
2520
2521	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2522	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2523		return;
2524
2525	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2526		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2527					 PCI_EXP_DEVCTL2_ARI);
2528		bridge->ari_enabled = 1;
2529	} else {
2530		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2531					   PCI_EXP_DEVCTL2_ARI);
2532		bridge->ari_enabled = 0;
2533	}
2534}
2535
2536static int pci_acs_enable;
2537
2538/**
2539 * pci_request_acs - ask for ACS to be enabled if supported
2540 */
2541void pci_request_acs(void)
2542{
2543	pci_acs_enable = 1;
2544}
2545
2546/**
2547 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2548 * @dev: the PCI device
2549 */
2550static int pci_std_enable_acs(struct pci_dev *dev)
2551{
2552	int pos;
2553	u16 cap;
2554	u16 ctrl;
2555
2556	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2557	if (!pos)
2558		return -ENODEV;
2559
2560	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2561	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2562
2563	/* Source Validation */
2564	ctrl |= (cap & PCI_ACS_SV);
2565
2566	/* P2P Request Redirect */
2567	ctrl |= (cap & PCI_ACS_RR);
2568
2569	/* P2P Completion Redirect */
2570	ctrl |= (cap & PCI_ACS_CR);
2571
2572	/* Upstream Forwarding */
2573	ctrl |= (cap & PCI_ACS_UF);
2574
2575	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2576
2577	return 0;
2578}
2579
2580/**
2581 * pci_enable_acs - enable ACS if hardware support it
2582 * @dev: the PCI device
2583 */
2584void pci_enable_acs(struct pci_dev *dev)
2585{
2586	if (!pci_acs_enable)
2587		return;
2588
2589	if (!pci_std_enable_acs(dev))
2590		return;
2591
2592	pci_dev_specific_enable_acs(dev);
2593}
2594
2595static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2596{
2597	int pos;
2598	u16 cap, ctrl;
2599
2600	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2601	if (!pos)
2602		return false;
2603
2604	/*
2605	 * Except for egress control, capabilities are either required
2606	 * or only required if controllable.  Features missing from the
2607	 * capability field can therefore be assumed as hard-wired enabled.
2608	 */
2609	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2610	acs_flags &= (cap | PCI_ACS_EC);
2611
2612	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2613	return (ctrl & acs_flags) == acs_flags;
2614}
2615
2616/**
2617 * pci_acs_enabled - test ACS against required flags for a given device
2618 * @pdev: device to test
2619 * @acs_flags: required PCI ACS flags
2620 *
2621 * Return true if the device supports the provided flags.  Automatically
2622 * filters out flags that are not implemented on multifunction devices.
2623 *
2624 * Note that this interface checks the effective ACS capabilities of the
2625 * device rather than the actual capabilities.  For instance, most single
2626 * function endpoints are not required to support ACS because they have no
2627 * opportunity for peer-to-peer access.  We therefore return 'true'
2628 * regardless of whether the device exposes an ACS capability.  This makes
2629 * it much easier for callers of this function to ignore the actual type
2630 * or topology of the device when testing ACS support.
2631 */
2632bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2633{
2634	int ret;
2635
2636	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2637	if (ret >= 0)
2638		return ret > 0;
2639
2640	/*
2641	 * Conventional PCI and PCI-X devices never support ACS, either
2642	 * effectively or actually.  The shared bus topology implies that
2643	 * any device on the bus can receive or snoop DMA.
2644	 */
2645	if (!pci_is_pcie(pdev))
2646		return false;
2647
2648	switch (pci_pcie_type(pdev)) {
2649	/*
2650	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2651	 * but since their primary interface is PCI/X, we conservatively
2652	 * handle them as we would a non-PCIe device.
2653	 */
2654	case PCI_EXP_TYPE_PCIE_BRIDGE:
2655	/*
2656	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2657	 * applicable... must never implement an ACS Extended Capability...".
2658	 * This seems arbitrary, but we take a conservative interpretation
2659	 * of this statement.
2660	 */
2661	case PCI_EXP_TYPE_PCI_BRIDGE:
2662	case PCI_EXP_TYPE_RC_EC:
2663		return false;
2664	/*
2665	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2666	 * implement ACS in order to indicate their peer-to-peer capabilities,
2667	 * regardless of whether they are single- or multi-function devices.
2668	 */
2669	case PCI_EXP_TYPE_DOWNSTREAM:
2670	case PCI_EXP_TYPE_ROOT_PORT:
2671		return pci_acs_flags_enabled(pdev, acs_flags);
2672	/*
2673	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2674	 * implemented by the remaining PCIe types to indicate peer-to-peer
2675	 * capabilities, but only when they are part of a multifunction
2676	 * device.  The footnote for section 6.12 indicates the specific
2677	 * PCIe types included here.
2678	 */
2679	case PCI_EXP_TYPE_ENDPOINT:
2680	case PCI_EXP_TYPE_UPSTREAM:
2681	case PCI_EXP_TYPE_LEG_END:
2682	case PCI_EXP_TYPE_RC_END:
2683		if (!pdev->multifunction)
2684			break;
2685
2686		return pci_acs_flags_enabled(pdev, acs_flags);
2687	}
2688
2689	/*
2690	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2691	 * to single function devices with the exception of downstream ports.
2692	 */
2693	return true;
2694}
2695
2696/**
2697 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2698 * @start: starting downstream device
2699 * @end: ending upstream device or NULL to search to the root bus
2700 * @acs_flags: required flags
2701 *
2702 * Walk up a device tree from start to end testing PCI ACS support.  If
2703 * any step along the way does not support the required flags, return false.
2704 */
2705bool pci_acs_path_enabled(struct pci_dev *start,
2706			  struct pci_dev *end, u16 acs_flags)
2707{
2708	struct pci_dev *pdev, *parent = start;
2709
2710	do {
2711		pdev = parent;
2712
2713		if (!pci_acs_enabled(pdev, acs_flags))
2714			return false;
2715
2716		if (pci_is_root_bus(pdev->bus))
2717			return (end == NULL);
2718
2719		parent = pdev->bus->self;
2720	} while (pdev != end);
2721
2722	return true;
2723}
2724
2725/**
2726 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2727 * @dev: the PCI device
2728 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2729 *
2730 * Perform INTx swizzling for a device behind one level of bridge.  This is
2731 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2732 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2733 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2734 * the PCI Express Base Specification, Revision 2.1)
2735 */
2736u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2737{
2738	int slot;
2739
2740	if (pci_ari_enabled(dev->bus))
2741		slot = 0;
2742	else
2743		slot = PCI_SLOT(dev->devfn);
2744
2745	return (((pin - 1) + slot) % 4) + 1;
2746}
2747
2748int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2749{
2750	u8 pin;
2751
2752	pin = dev->pin;
2753	if (!pin)
2754		return -1;
2755
2756	while (!pci_is_root_bus(dev->bus)) {
2757		pin = pci_swizzle_interrupt_pin(dev, pin);
2758		dev = dev->bus->self;
2759	}
2760	*bridge = dev;
2761	return pin;
2762}
2763
2764/**
2765 * pci_common_swizzle - swizzle INTx all the way to root bridge
2766 * @dev: the PCI device
2767 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2768 *
2769 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2770 * bridges all the way up to a PCI root bus.
2771 */
2772u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2773{
2774	u8 pin = *pinp;
2775
2776	while (!pci_is_root_bus(dev->bus)) {
2777		pin = pci_swizzle_interrupt_pin(dev, pin);
2778		dev = dev->bus->self;
2779	}
2780	*pinp = pin;
2781	return PCI_SLOT(dev->devfn);
2782}
2783EXPORT_SYMBOL_GPL(pci_common_swizzle);
2784
2785/**
2786 *	pci_release_region - Release a PCI bar
2787 *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2788 *	@bar: BAR to release
2789 *
2790 *	Releases the PCI I/O and memory resources previously reserved by a
2791 *	successful call to pci_request_region.  Call this function only
2792 *	after all use of the PCI regions has ceased.
2793 */
2794void pci_release_region(struct pci_dev *pdev, int bar)
2795{
2796	struct pci_devres *dr;
2797
2798	if (pci_resource_len(pdev, bar) == 0)
2799		return;
2800	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2801		release_region(pci_resource_start(pdev, bar),
2802				pci_resource_len(pdev, bar));
2803	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2804		release_mem_region(pci_resource_start(pdev, bar),
2805				pci_resource_len(pdev, bar));
2806
2807	dr = find_pci_dr(pdev);
2808	if (dr)
2809		dr->region_mask &= ~(1 << bar);
2810}
2811EXPORT_SYMBOL(pci_release_region);
2812
2813/**
2814 *	__pci_request_region - Reserved PCI I/O and memory resource
2815 *	@pdev: PCI device whose resources are to be reserved
2816 *	@bar: BAR to be reserved
2817 *	@res_name: Name to be associated with resource.
2818 *	@exclusive: whether the region access is exclusive or not
2819 *
2820 *	Mark the PCI region associated with PCI device @pdev BR @bar as
2821 *	being reserved by owner @res_name.  Do not access any
2822 *	address inside the PCI regions unless this call returns
2823 *	successfully.
2824 *
2825 *	If @exclusive is set, then the region is marked so that userspace
2826 *	is explicitly not allowed to map the resource via /dev/mem or
2827 *	sysfs MMIO access.
2828 *
2829 *	Returns 0 on success, or %EBUSY on error.  A warning
2830 *	message is also printed on failure.
2831 */
2832static int __pci_request_region(struct pci_dev *pdev, int bar,
2833				const char *res_name, int exclusive)
2834{
2835	struct pci_devres *dr;
2836
2837	if (pci_resource_len(pdev, bar) == 0)
2838		return 0;
2839
2840	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2841		if (!request_region(pci_resource_start(pdev, bar),
2842			    pci_resource_len(pdev, bar), res_name))
2843			goto err_out;
2844	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2845		if (!__request_mem_region(pci_resource_start(pdev, bar),
2846					pci_resource_len(pdev, bar), res_name,
2847					exclusive))
2848			goto err_out;
2849	}
2850
2851	dr = find_pci_dr(pdev);
2852	if (dr)
2853		dr->region_mask |= 1 << bar;
2854
2855	return 0;
2856
2857err_out:
2858	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2859		 &pdev->resource[bar]);
2860	return -EBUSY;
2861}
2862
2863/**
2864 *	pci_request_region - Reserve PCI I/O and memory resource
2865 *	@pdev: PCI device whose resources are to be reserved
2866 *	@bar: BAR to be reserved
2867 *	@res_name: Name to be associated with resource
2868 *
2869 *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2870 *	being reserved by owner @res_name.  Do not access any
2871 *	address inside the PCI regions unless this call returns
2872 *	successfully.
2873 *
2874 *	Returns 0 on success, or %EBUSY on error.  A warning
2875 *	message is also printed on failure.
2876 */
2877int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2878{
2879	return __pci_request_region(pdev, bar, res_name, 0);
2880}
2881EXPORT_SYMBOL(pci_request_region);
2882
2883/**
2884 *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2885 *	@pdev: PCI device whose resources are to be reserved
2886 *	@bar: BAR to be reserved
2887 *	@res_name: Name to be associated with resource.
2888 *
2889 *	Mark the PCI region associated with PCI device @pdev BR @bar as
2890 *	being reserved by owner @res_name.  Do not access any
2891 *	address inside the PCI regions unless this call returns
2892 *	successfully.
2893 *
2894 *	Returns 0 on success, or %EBUSY on error.  A warning
2895 *	message is also printed on failure.
2896 *
2897 *	The key difference that _exclusive makes it that userspace is
2898 *	explicitly not allowed to map the resource via /dev/mem or
2899 *	sysfs.
2900 */
2901int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2902				 const char *res_name)
2903{
2904	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2905}
2906EXPORT_SYMBOL(pci_request_region_exclusive);
2907
2908/**
2909 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2910 * @pdev: PCI device whose resources were previously reserved
2911 * @bars: Bitmask of BARs to be released
2912 *
2913 * Release selected PCI I/O and memory resources previously reserved.
2914 * Call this function only after all use of the PCI regions has ceased.
2915 */
2916void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2917{
2918	int i;
2919
2920	for (i = 0; i < 6; i++)
2921		if (bars & (1 << i))
2922			pci_release_region(pdev, i);
2923}
2924EXPORT_SYMBOL(pci_release_selected_regions);
2925
2926static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2927					  const char *res_name, int excl)
2928{
2929	int i;
2930
2931	for (i = 0; i < 6; i++)
2932		if (bars & (1 << i))
2933			if (__pci_request_region(pdev, i, res_name, excl))
2934				goto err_out;
2935	return 0;
2936
2937err_out:
2938	while (--i >= 0)
2939		if (bars & (1 << i))
2940			pci_release_region(pdev, i);
2941
2942	return -EBUSY;
2943}
2944
2945
2946/**
2947 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2948 * @pdev: PCI device whose resources are to be reserved
2949 * @bars: Bitmask of BARs to be requested
2950 * @res_name: Name to be associated with resource
2951 */
2952int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2953				 const char *res_name)
2954{
2955	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2956}
2957EXPORT_SYMBOL(pci_request_selected_regions);
2958
2959int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2960					   const char *res_name)
2961{
2962	return __pci_request_selected_regions(pdev, bars, res_name,
2963			IORESOURCE_EXCLUSIVE);
2964}
2965EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2966
2967/**
2968 *	pci_release_regions - Release reserved PCI I/O and memory resources
2969 *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2970 *
2971 *	Releases all PCI I/O and memory resources previously reserved by a
2972 *	successful call to pci_request_regions.  Call this function only
2973 *	after all use of the PCI regions has ceased.
2974 */
2975
2976void pci_release_regions(struct pci_dev *pdev)
2977{
2978	pci_release_selected_regions(pdev, (1 << 6) - 1);
2979}
2980EXPORT_SYMBOL(pci_release_regions);
2981
2982/**
2983 *	pci_request_regions - Reserved PCI I/O and memory resources
2984 *	@pdev: PCI device whose resources are to be reserved
2985 *	@res_name: Name to be associated with resource.
2986 *
2987 *	Mark all PCI regions associated with PCI device @pdev as
2988 *	being reserved by owner @res_name.  Do not access any
2989 *	address inside the PCI regions unless this call returns
2990 *	successfully.
2991 *
2992 *	Returns 0 on success, or %EBUSY on error.  A warning
2993 *	message is also printed on failure.
2994 */
2995int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2996{
2997	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2998}
2999EXPORT_SYMBOL(pci_request_regions);
3000
3001/**
3002 *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3003 *	@pdev: PCI device whose resources are to be reserved
3004 *	@res_name: Name to be associated with resource.
3005 *
3006 *	Mark all PCI regions associated with PCI device @pdev as
3007 *	being reserved by owner @res_name.  Do not access any
3008 *	address inside the PCI regions unless this call returns
3009 *	successfully.
3010 *
3011 *	pci_request_regions_exclusive() will mark the region so that
3012 *	/dev/mem and the sysfs MMIO access will not be allowed.
3013 *
3014 *	Returns 0 on success, or %EBUSY on error.  A warning
3015 *	message is also printed on failure.
3016 */
3017int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3018{
3019	return pci_request_selected_regions_exclusive(pdev,
3020					((1 << 6) - 1), res_name);
3021}
3022EXPORT_SYMBOL(pci_request_regions_exclusive);
3023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3024/**
3025 *	pci_remap_iospace - Remap the memory mapped I/O space
3026 *	@res: Resource describing the I/O space
3027 *	@phys_addr: physical address of range to be mapped
3028 *
3029 *	Remap the memory mapped I/O space described by the @res
3030 *	and the CPU physical address @phys_addr into virtual address space.
3031 *	Only architectures that have memory mapped IO functions defined
3032 *	(and the PCI_IOBASE value defined) should call this function.
3033 */
3034int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3035{
3036#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3037	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3038
3039	if (!(res->flags & IORESOURCE_IO))
3040		return -EINVAL;
3041
3042	if (res->end > IO_SPACE_LIMIT)
3043		return -EINVAL;
3044
3045	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3046				  pgprot_device(PAGE_KERNEL));
3047#else
3048	/* this architecture does not have memory mapped I/O space,
3049	   so this function should never be called */
3050	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3051	return -ENODEV;
3052#endif
3053}
3054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3055static void __pci_set_master(struct pci_dev *dev, bool enable)
3056{
3057	u16 old_cmd, cmd;
3058
3059	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3060	if (enable)
3061		cmd = old_cmd | PCI_COMMAND_MASTER;
3062	else
3063		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3064	if (cmd != old_cmd) {
3065		dev_dbg(&dev->dev, "%s bus mastering\n",
3066			enable ? "enabling" : "disabling");
3067		pci_write_config_word(dev, PCI_COMMAND, cmd);
3068	}
3069	dev->is_busmaster = enable;
3070}
3071
3072/**
3073 * pcibios_setup - process "pci=" kernel boot arguments
3074 * @str: string used to pass in "pci=" kernel boot arguments
3075 *
3076 * Process kernel boot arguments.  This is the default implementation.
3077 * Architecture specific implementations can override this as necessary.
3078 */
3079char * __weak __init pcibios_setup(char *str)
3080{
3081	return str;
3082}
3083
3084/**
3085 * pcibios_set_master - enable PCI bus-mastering for device dev
3086 * @dev: the PCI device to enable
3087 *
3088 * Enables PCI bus-mastering for the device.  This is the default
3089 * implementation.  Architecture specific implementations can override
3090 * this if necessary.
3091 */
3092void __weak pcibios_set_master(struct pci_dev *dev)
3093{
3094	u8 lat;
3095
3096	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3097	if (pci_is_pcie(dev))
3098		return;
3099
3100	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3101	if (lat < 16)
3102		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3103	else if (lat > pcibios_max_latency)
3104		lat = pcibios_max_latency;
3105	else
3106		return;
3107
3108	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3109}
3110
3111/**
3112 * pci_set_master - enables bus-mastering for device dev
3113 * @dev: the PCI device to enable
3114 *
3115 * Enables bus-mastering on the device and calls pcibios_set_master()
3116 * to do the needed arch specific settings.
3117 */
3118void pci_set_master(struct pci_dev *dev)
3119{
3120	__pci_set_master(dev, true);
3121	pcibios_set_master(dev);
3122}
3123EXPORT_SYMBOL(pci_set_master);
3124
3125/**
3126 * pci_clear_master - disables bus-mastering for device dev
3127 * @dev: the PCI device to disable
3128 */
3129void pci_clear_master(struct pci_dev *dev)
3130{
3131	__pci_set_master(dev, false);
3132}
3133EXPORT_SYMBOL(pci_clear_master);
3134
3135/**
3136 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3137 * @dev: the PCI device for which MWI is to be enabled
3138 *
3139 * Helper function for pci_set_mwi.
3140 * Originally copied from drivers/net/acenic.c.
3141 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3142 *
3143 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3144 */
3145int pci_set_cacheline_size(struct pci_dev *dev)
3146{
3147	u8 cacheline_size;
3148
3149	if (!pci_cache_line_size)
3150		return -EINVAL;
3151
3152	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3153	   equal to or multiple of the right value. */
3154	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3155	if (cacheline_size >= pci_cache_line_size &&
3156	    (cacheline_size % pci_cache_line_size) == 0)
3157		return 0;
3158
3159	/* Write the correct value. */
3160	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3161	/* Read it back. */
3162	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3163	if (cacheline_size == pci_cache_line_size)
3164		return 0;
3165
3166	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3167		   pci_cache_line_size << 2);
3168
3169	return -EINVAL;
3170}
3171EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3172
3173/**
3174 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3175 * @dev: the PCI device for which MWI is enabled
3176 *
3177 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3178 *
3179 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3180 */
3181int pci_set_mwi(struct pci_dev *dev)
3182{
3183#ifdef PCI_DISABLE_MWI
3184	return 0;
3185#else
3186	int rc;
3187	u16 cmd;
3188
3189	rc = pci_set_cacheline_size(dev);
3190	if (rc)
3191		return rc;
3192
3193	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3194	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3195		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3196		cmd |= PCI_COMMAND_INVALIDATE;
3197		pci_write_config_word(dev, PCI_COMMAND, cmd);
3198	}
3199	return 0;
3200#endif
3201}
3202EXPORT_SYMBOL(pci_set_mwi);
3203
3204/**
3205 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3206 * @dev: the PCI device for which MWI is enabled
3207 *
3208 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3209 * Callers are not required to check the return value.
3210 *
3211 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3212 */
3213int pci_try_set_mwi(struct pci_dev *dev)
3214{
3215#ifdef PCI_DISABLE_MWI
3216	return 0;
3217#else
3218	return pci_set_mwi(dev);
3219#endif
3220}
3221EXPORT_SYMBOL(pci_try_set_mwi);
3222
3223/**
3224 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3225 * @dev: the PCI device to disable
3226 *
3227 * Disables PCI Memory-Write-Invalidate transaction on the device
3228 */
3229void pci_clear_mwi(struct pci_dev *dev)
3230{
3231#ifndef PCI_DISABLE_MWI
3232	u16 cmd;
3233
3234	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3235	if (cmd & PCI_COMMAND_INVALIDATE) {
3236		cmd &= ~PCI_COMMAND_INVALIDATE;
3237		pci_write_config_word(dev, PCI_COMMAND, cmd);
3238	}
3239#endif
3240}
3241EXPORT_SYMBOL(pci_clear_mwi);
3242
3243/**
3244 * pci_intx - enables/disables PCI INTx for device dev
3245 * @pdev: the PCI device to operate on
3246 * @enable: boolean: whether to enable or disable PCI INTx
3247 *
3248 * Enables/disables PCI INTx for device dev
3249 */
3250void pci_intx(struct pci_dev *pdev, int enable)
3251{
3252	u16 pci_command, new;
3253
3254	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3255
3256	if (enable)
3257		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3258	else
3259		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3260
3261	if (new != pci_command) {
3262		struct pci_devres *dr;
3263
3264		pci_write_config_word(pdev, PCI_COMMAND, new);
3265
3266		dr = find_pci_dr(pdev);
3267		if (dr && !dr->restore_intx) {
3268			dr->restore_intx = 1;
3269			dr->orig_intx = !enable;
3270		}
3271	}
3272}
3273EXPORT_SYMBOL_GPL(pci_intx);
3274
3275/**
3276 * pci_intx_mask_supported - probe for INTx masking support
3277 * @dev: the PCI device to operate on
3278 *
3279 * Check if the device dev support INTx masking via the config space
3280 * command word.
3281 */
3282bool pci_intx_mask_supported(struct pci_dev *dev)
3283{
3284	bool mask_supported = false;
3285	u16 orig, new;
3286
3287	if (dev->broken_intx_masking)
3288		return false;
3289
3290	pci_cfg_access_lock(dev);
3291
3292	pci_read_config_word(dev, PCI_COMMAND, &orig);
3293	pci_write_config_word(dev, PCI_COMMAND,
3294			      orig ^ PCI_COMMAND_INTX_DISABLE);
3295	pci_read_config_word(dev, PCI_COMMAND, &new);
3296
3297	/*
3298	 * There's no way to protect against hardware bugs or detect them
3299	 * reliably, but as long as we know what the value should be, let's
3300	 * go ahead and check it.
3301	 */
3302	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3303		dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3304			orig, new);
3305	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3306		mask_supported = true;
3307		pci_write_config_word(dev, PCI_COMMAND, orig);
3308	}
3309
3310	pci_cfg_access_unlock(dev);
3311	return mask_supported;
3312}
3313EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3314
3315static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3316{
3317	struct pci_bus *bus = dev->bus;
3318	bool mask_updated = true;
3319	u32 cmd_status_dword;
3320	u16 origcmd, newcmd;
3321	unsigned long flags;
3322	bool irq_pending;
3323
3324	/*
3325	 * We do a single dword read to retrieve both command and status.
3326	 * Document assumptions that make this possible.
3327	 */
3328	BUILD_BUG_ON(PCI_COMMAND % 4);
3329	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3330
3331	raw_spin_lock_irqsave(&pci_lock, flags);
3332
3333	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3334
3335	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3336
3337	/*
3338	 * Check interrupt status register to see whether our device
3339	 * triggered the interrupt (when masking) or the next IRQ is
3340	 * already pending (when unmasking).
3341	 */
3342	if (mask != irq_pending) {
3343		mask_updated = false;
3344		goto done;
3345	}
3346
3347	origcmd = cmd_status_dword;
3348	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3349	if (mask)
3350		newcmd |= PCI_COMMAND_INTX_DISABLE;
3351	if (newcmd != origcmd)
3352		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3353
3354done:
3355	raw_spin_unlock_irqrestore(&pci_lock, flags);
3356
3357	return mask_updated;
3358}
3359
3360/**
3361 * pci_check_and_mask_intx - mask INTx on pending interrupt
3362 * @dev: the PCI device to operate on
3363 *
3364 * Check if the device dev has its INTx line asserted, mask it and
3365 * return true in that case. False is returned if not interrupt was
3366 * pending.
3367 */
3368bool pci_check_and_mask_intx(struct pci_dev *dev)
3369{
3370	return pci_check_and_set_intx_mask(dev, true);
3371}
3372EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3373
3374/**
3375 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3376 * @dev: the PCI device to operate on
3377 *
3378 * Check if the device dev has its INTx line asserted, unmask it if not
3379 * and return true. False is returned and the mask remains active if
3380 * there was still an interrupt pending.
3381 */
3382bool pci_check_and_unmask_intx(struct pci_dev *dev)
3383{
3384	return pci_check_and_set_intx_mask(dev, false);
3385}
3386EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3387
3388/**
3389 * pci_wait_for_pending_transaction - waits for pending transaction
3390 * @dev: the PCI device to operate on
3391 *
3392 * Return 0 if transaction is pending 1 otherwise.
3393 */
3394int pci_wait_for_pending_transaction(struct pci_dev *dev)
3395{
3396	if (!pci_is_pcie(dev))
3397		return 1;
3398
3399	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3400				    PCI_EXP_DEVSTA_TRPND);
3401}
3402EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3403
3404/*
3405 * We should only need to wait 100ms after FLR, but some devices take longer.
3406 * Wait for up to 1000ms for config space to return something other than -1.
3407 * Intel IGD requires this when an LCD panel is attached.  We read the 2nd
3408 * dword because VFs don't implement the 1st dword.
3409 */
3410static void pci_flr_wait(struct pci_dev *dev)
3411{
3412	int i = 0;
3413	u32 id;
3414
3415	do {
3416		msleep(100);
3417		pci_read_config_dword(dev, PCI_COMMAND, &id);
3418	} while (i++ < 10 && id == ~0);
3419
3420	if (id == ~0)
3421		dev_warn(&dev->dev, "Failed to return from FLR\n");
3422	else if (i > 1)
3423		dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3424			 (i - 1) * 100);
3425}
3426
3427static int pcie_flr(struct pci_dev *dev, int probe)
3428{
3429	u32 cap;
3430
3431	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3432	if (!(cap & PCI_EXP_DEVCAP_FLR))
3433		return -ENOTTY;
3434
3435	if (probe)
3436		return 0;
3437
3438	if (!pci_wait_for_pending_transaction(dev))
3439		dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3440
3441	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3442	pci_flr_wait(dev);
3443	return 0;
3444}
3445
3446static int pci_af_flr(struct pci_dev *dev, int probe)
3447{
3448	int pos;
3449	u8 cap;
3450
3451	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3452	if (!pos)
3453		return -ENOTTY;
3454
3455	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3456	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3457		return -ENOTTY;
3458
3459	if (probe)
3460		return 0;
3461
3462	/*
3463	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3464	 * is used, so we use the conrol offset rather than status and shift
3465	 * the test bit to match.
3466	 */
3467	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3468				 PCI_AF_STATUS_TP << 8))
3469		dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3470
3471	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3472	pci_flr_wait(dev);
3473	return 0;
3474}
3475
3476/**
3477 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3478 * @dev: Device to reset.
3479 * @probe: If set, only check if the device can be reset this way.
3480 *
3481 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3482 * unset, it will be reinitialized internally when going from PCI_D3hot to
3483 * PCI_D0.  If that's the case and the device is not in a low-power state
3484 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3485 *
3486 * NOTE: This causes the caller to sleep for twice the device power transition
3487 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3488 * by default (i.e. unless the @dev's d3_delay field has a different value).
3489 * Moreover, only devices in D0 can be reset by this function.
3490 */
3491static int pci_pm_reset(struct pci_dev *dev, int probe)
3492{
3493	u16 csr;
3494
3495	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3496		return -ENOTTY;
3497
3498	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3499	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3500		return -ENOTTY;
3501
3502	if (probe)
3503		return 0;
3504
3505	if (dev->current_state != PCI_D0)
3506		return -EINVAL;
3507
3508	csr &= ~PCI_PM_CTRL_STATE_MASK;
3509	csr |= PCI_D3hot;
3510	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3511	pci_dev_d3_sleep(dev);
3512
3513	csr &= ~PCI_PM_CTRL_STATE_MASK;
3514	csr |= PCI_D0;
3515	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3516	pci_dev_d3_sleep(dev);
3517
3518	return 0;
3519}
3520
3521void pci_reset_secondary_bus(struct pci_dev *dev)
3522{
3523	u16 ctrl;
3524
3525	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3526	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3527	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3528	/*
3529	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3530	 * this to 2ms to ensure that we meet the minimum requirement.
3531	 */
3532	msleep(2);
3533
3534	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3535	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3536
3537	/*
3538	 * Trhfa for conventional PCI is 2^25 clock cycles.
3539	 * Assuming a minimum 33MHz clock this results in a 1s
3540	 * delay before we can consider subordinate devices to
3541	 * be re-initialized.  PCIe has some ways to shorten this,
3542	 * but we don't make use of them yet.
3543	 */
3544	ssleep(1);
3545}
3546
3547void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3548{
3549	pci_reset_secondary_bus(dev);
3550}
3551
3552/**
3553 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3554 * @dev: Bridge device
3555 *
3556 * Use the bridge control register to assert reset on the secondary bus.
3557 * Devices on the secondary bus are left in power-on state.
3558 */
3559void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3560{
3561	pcibios_reset_secondary_bus(dev);
3562}
3563EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3564
3565static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3566{
3567	struct pci_dev *pdev;
3568
3569	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3570	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3571		return -ENOTTY;
3572
3573	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3574		if (pdev != dev)
3575			return -ENOTTY;
3576
3577	if (probe)
3578		return 0;
3579
3580	pci_reset_bridge_secondary_bus(dev->bus->self);
3581
3582	return 0;
3583}
3584
3585static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3586{
3587	int rc = -ENOTTY;
3588
3589	if (!hotplug || !try_module_get(hotplug->ops->owner))
3590		return rc;
3591
3592	if (hotplug->ops->reset_slot)
3593		rc = hotplug->ops->reset_slot(hotplug, probe);
3594
3595	module_put(hotplug->ops->owner);
3596
3597	return rc;
3598}
3599
3600static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3601{
3602	struct pci_dev *pdev;
3603
3604	if (dev->subordinate || !dev->slot ||
3605	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3606		return -ENOTTY;
3607
3608	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3609		if (pdev != dev && pdev->slot == dev->slot)
3610			return -ENOTTY;
3611
3612	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3613}
3614
3615static int __pci_dev_reset(struct pci_dev *dev, int probe)
3616{
3617	int rc;
3618
3619	might_sleep();
3620
3621	rc = pci_dev_specific_reset(dev, probe);
3622	if (rc != -ENOTTY)
3623		goto done;
3624
3625	rc = pcie_flr(dev, probe);
3626	if (rc != -ENOTTY)
3627		goto done;
3628
3629	rc = pci_af_flr(dev, probe);
3630	if (rc != -ENOTTY)
3631		goto done;
3632
3633	rc = pci_pm_reset(dev, probe);
3634	if (rc != -ENOTTY)
3635		goto done;
3636
3637	rc = pci_dev_reset_slot_function(dev, probe);
3638	if (rc != -ENOTTY)
3639		goto done;
3640
3641	rc = pci_parent_bus_reset(dev, probe);
3642done:
3643	return rc;
3644}
3645
3646static void pci_dev_lock(struct pci_dev *dev)
3647{
3648	pci_cfg_access_lock(dev);
3649	/* block PM suspend, driver probe, etc. */
3650	device_lock(&dev->dev);
3651}
3652
3653/* Return 1 on successful lock, 0 on contention */
3654static int pci_dev_trylock(struct pci_dev *dev)
3655{
3656	if (pci_cfg_access_trylock(dev)) {
3657		if (device_trylock(&dev->dev))
3658			return 1;
3659		pci_cfg_access_unlock(dev);
3660	}
3661
3662	return 0;
3663}
3664
3665static void pci_dev_unlock(struct pci_dev *dev)
3666{
3667	device_unlock(&dev->dev);
3668	pci_cfg_access_unlock(dev);
3669}
3670
3671/**
3672 * pci_reset_notify - notify device driver of reset
3673 * @dev: device to be notified of reset
3674 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3675 *           completed
3676 *
3677 * Must be called prior to device access being disabled and after device
3678 * access is restored.
3679 */
3680static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3681{
3682	const struct pci_error_handlers *err_handler =
3683			dev->driver ? dev->driver->err_handler : NULL;
3684	if (err_handler && err_handler->reset_notify)
3685		err_handler->reset_notify(dev, prepare);
3686}
3687
3688static void pci_dev_save_and_disable(struct pci_dev *dev)
3689{
3690	pci_reset_notify(dev, true);
3691
3692	/*
3693	 * Wake-up device prior to save.  PM registers default to D0 after
3694	 * reset and a simple register restore doesn't reliably return
3695	 * to a non-D0 state anyway.
3696	 */
3697	pci_set_power_state(dev, PCI_D0);
3698
3699	pci_save_state(dev);
3700	/*
3701	 * Disable the device by clearing the Command register, except for
3702	 * INTx-disable which is set.  This not only disables MMIO and I/O port
3703	 * BARs, but also prevents the device from being Bus Master, preventing
3704	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3705	 * compliant devices, INTx-disable prevents legacy interrupts.
3706	 */
3707	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3708}
3709
3710static void pci_dev_restore(struct pci_dev *dev)
3711{
3712	pci_restore_state(dev);
3713	pci_reset_notify(dev, false);
3714}
3715
3716static int pci_dev_reset(struct pci_dev *dev, int probe)
3717{
3718	int rc;
3719
3720	if (!probe)
3721		pci_dev_lock(dev);
3722
3723	rc = __pci_dev_reset(dev, probe);
3724
3725	if (!probe)
3726		pci_dev_unlock(dev);
3727
3728	return rc;
3729}
3730
3731/**
3732 * __pci_reset_function - reset a PCI device function
3733 * @dev: PCI device to reset
3734 *
3735 * Some devices allow an individual function to be reset without affecting
3736 * other functions in the same device.  The PCI device must be responsive
3737 * to PCI config space in order to use this function.
3738 *
3739 * The device function is presumed to be unused when this function is called.
3740 * Resetting the device will make the contents of PCI configuration space
3741 * random, so any caller of this must be prepared to reinitialise the
3742 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3743 * etc.
3744 *
3745 * Returns 0 if the device function was successfully reset or negative if the
3746 * device doesn't support resetting a single function.
3747 */
3748int __pci_reset_function(struct pci_dev *dev)
3749{
3750	return pci_dev_reset(dev, 0);
3751}
3752EXPORT_SYMBOL_GPL(__pci_reset_function);
3753
3754/**
3755 * __pci_reset_function_locked - reset a PCI device function while holding
3756 * the @dev mutex lock.
3757 * @dev: PCI device to reset
3758 *
3759 * Some devices allow an individual function to be reset without affecting
3760 * other functions in the same device.  The PCI device must be responsive
3761 * to PCI config space in order to use this function.
3762 *
3763 * The device function is presumed to be unused and the caller is holding
3764 * the device mutex lock when this function is called.
3765 * Resetting the device will make the contents of PCI configuration space
3766 * random, so any caller of this must be prepared to reinitialise the
3767 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3768 * etc.
3769 *
3770 * Returns 0 if the device function was successfully reset or negative if the
3771 * device doesn't support resetting a single function.
3772 */
3773int __pci_reset_function_locked(struct pci_dev *dev)
3774{
3775	return __pci_dev_reset(dev, 0);
3776}
3777EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3778
3779/**
3780 * pci_probe_reset_function - check whether the device can be safely reset
3781 * @dev: PCI device to reset
3782 *
3783 * Some devices allow an individual function to be reset without affecting
3784 * other functions in the same device.  The PCI device must be responsive
3785 * to PCI config space in order to use this function.
3786 *
3787 * Returns 0 if the device function can be reset or negative if the
3788 * device doesn't support resetting a single function.
3789 */
3790int pci_probe_reset_function(struct pci_dev *dev)
3791{
3792	return pci_dev_reset(dev, 1);
3793}
3794
3795/**
3796 * pci_reset_function - quiesce and reset a PCI device function
3797 * @dev: PCI device to reset
3798 *
3799 * Some devices allow an individual function to be reset without affecting
3800 * other functions in the same device.  The PCI device must be responsive
3801 * to PCI config space in order to use this function.
3802 *
3803 * This function does not just reset the PCI portion of a device, but
3804 * clears all the state associated with the device.  This function differs
3805 * from __pci_reset_function in that it saves and restores device state
3806 * over the reset.
3807 *
3808 * Returns 0 if the device function was successfully reset or negative if the
3809 * device doesn't support resetting a single function.
3810 */
3811int pci_reset_function(struct pci_dev *dev)
3812{
3813	int rc;
3814
3815	rc = pci_dev_reset(dev, 1);
3816	if (rc)
3817		return rc;
3818
3819	pci_dev_save_and_disable(dev);
3820
3821	rc = pci_dev_reset(dev, 0);
3822
3823	pci_dev_restore(dev);
3824
3825	return rc;
3826}
3827EXPORT_SYMBOL_GPL(pci_reset_function);
3828
3829/**
3830 * pci_try_reset_function - quiesce and reset a PCI device function
3831 * @dev: PCI device to reset
3832 *
3833 * Same as above, except return -EAGAIN if unable to lock device.
3834 */
3835int pci_try_reset_function(struct pci_dev *dev)
3836{
3837	int rc;
3838
3839	rc = pci_dev_reset(dev, 1);
3840	if (rc)
3841		return rc;
3842
3843	pci_dev_save_and_disable(dev);
3844
3845	if (pci_dev_trylock(dev)) {
3846		rc = __pci_dev_reset(dev, 0);
3847		pci_dev_unlock(dev);
3848	} else
3849		rc = -EAGAIN;
3850
3851	pci_dev_restore(dev);
3852
3853	return rc;
3854}
3855EXPORT_SYMBOL_GPL(pci_try_reset_function);
3856
3857/* Do any devices on or below this bus prevent a bus reset? */
3858static bool pci_bus_resetable(struct pci_bus *bus)
3859{
3860	struct pci_dev *dev;
3861
3862	list_for_each_entry(dev, &bus->devices, bus_list) {
3863		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3864		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3865			return false;
3866	}
3867
3868	return true;
3869}
3870
3871/* Lock devices from the top of the tree down */
3872static void pci_bus_lock(struct pci_bus *bus)
3873{
3874	struct pci_dev *dev;
3875
3876	list_for_each_entry(dev, &bus->devices, bus_list) {
3877		pci_dev_lock(dev);
3878		if (dev->subordinate)
3879			pci_bus_lock(dev->subordinate);
3880	}
3881}
3882
3883/* Unlock devices from the bottom of the tree up */
3884static void pci_bus_unlock(struct pci_bus *bus)
3885{
3886	struct pci_dev *dev;
3887
3888	list_for_each_entry(dev, &bus->devices, bus_list) {
3889		if (dev->subordinate)
3890			pci_bus_unlock(dev->subordinate);
3891		pci_dev_unlock(dev);
3892	}
3893}
3894
3895/* Return 1 on successful lock, 0 on contention */
3896static int pci_bus_trylock(struct pci_bus *bus)
3897{
3898	struct pci_dev *dev;
3899
3900	list_for_each_entry(dev, &bus->devices, bus_list) {
3901		if (!pci_dev_trylock(dev))
3902			goto unlock;
3903		if (dev->subordinate) {
3904			if (!pci_bus_trylock(dev->subordinate)) {
3905				pci_dev_unlock(dev);
3906				goto unlock;
3907			}
3908		}
3909	}
3910	return 1;
3911
3912unlock:
3913	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3914		if (dev->subordinate)
3915			pci_bus_unlock(dev->subordinate);
3916		pci_dev_unlock(dev);
3917	}
3918	return 0;
3919}
3920
3921/* Do any devices on or below this slot prevent a bus reset? */
3922static bool pci_slot_resetable(struct pci_slot *slot)
3923{
3924	struct pci_dev *dev;
3925
3926	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3927		if (!dev->slot || dev->slot != slot)
3928			continue;
3929		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3930		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3931			return false;
3932	}
3933
3934	return true;
3935}
3936
3937/* Lock devices from the top of the tree down */
3938static void pci_slot_lock(struct pci_slot *slot)
3939{
3940	struct pci_dev *dev;
3941
3942	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3943		if (!dev->slot || dev->slot != slot)
3944			continue;
3945		pci_dev_lock(dev);
3946		if (dev->subordinate)
3947			pci_bus_lock(dev->subordinate);
3948	}
3949}
3950
3951/* Unlock devices from the bottom of the tree up */
3952static void pci_slot_unlock(struct pci_slot *slot)
3953{
3954	struct pci_dev *dev;
3955
3956	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3957		if (!dev->slot || dev->slot != slot)
3958			continue;
3959		if (dev->subordinate)
3960			pci_bus_unlock(dev->subordinate);
3961		pci_dev_unlock(dev);
3962	}
3963}
3964
3965/* Return 1 on successful lock, 0 on contention */
3966static int pci_slot_trylock(struct pci_slot *slot)
3967{
3968	struct pci_dev *dev;
3969
3970	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3971		if (!dev->slot || dev->slot != slot)
3972			continue;
3973		if (!pci_dev_trylock(dev))
3974			goto unlock;
3975		if (dev->subordinate) {
3976			if (!pci_bus_trylock(dev->subordinate)) {
3977				pci_dev_unlock(dev);
3978				goto unlock;
3979			}
3980		}
3981	}
3982	return 1;
3983
3984unlock:
3985	list_for_each_entry_continue_reverse(dev,
3986					     &slot->bus->devices, bus_list) {
3987		if (!dev->slot || dev->slot != slot)
3988			continue;
3989		if (dev->subordinate)
3990			pci_bus_unlock(dev->subordinate);
3991		pci_dev_unlock(dev);
3992	}
3993	return 0;
3994}
3995
3996/* Save and disable devices from the top of the tree down */
3997static void pci_bus_save_and_disable(struct pci_bus *bus)
3998{
3999	struct pci_dev *dev;
4000
4001	list_for_each_entry(dev, &bus->devices, bus_list) {
4002		pci_dev_save_and_disable(dev);
4003		if (dev->subordinate)
4004			pci_bus_save_and_disable(dev->subordinate);
4005	}
4006}
4007
4008/*
4009 * Restore devices from top of the tree down - parent bridges need to be
4010 * restored before we can get to subordinate devices.
4011 */
4012static void pci_bus_restore(struct pci_bus *bus)
4013{
4014	struct pci_dev *dev;
4015
4016	list_for_each_entry(dev, &bus->devices, bus_list) {
4017		pci_dev_restore(dev);
4018		if (dev->subordinate)
4019			pci_bus_restore(dev->subordinate);
4020	}
4021}
4022
4023/* Save and disable devices from the top of the tree down */
4024static void pci_slot_save_and_disable(struct pci_slot *slot)
4025{
4026	struct pci_dev *dev;
4027
4028	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4029		if (!dev->slot || dev->slot != slot)
4030			continue;
4031		pci_dev_save_and_disable(dev);
4032		if (dev->subordinate)
4033			pci_bus_save_and_disable(dev->subordinate);
4034	}
4035}
4036
4037/*
4038 * Restore devices from top of the tree down - parent bridges need to be
4039 * restored before we can get to subordinate devices.
4040 */
4041static void pci_slot_restore(struct pci_slot *slot)
4042{
4043	struct pci_dev *dev;
4044
4045	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4046		if (!dev->slot || dev->slot != slot)
4047			continue;
4048		pci_dev_restore(dev);
4049		if (dev->subordinate)
4050			pci_bus_restore(dev->subordinate);
4051	}
4052}
4053
4054static int pci_slot_reset(struct pci_slot *slot, int probe)
4055{
4056	int rc;
4057
4058	if (!slot || !pci_slot_resetable(slot))
4059		return -ENOTTY;
4060
4061	if (!probe)
4062		pci_slot_lock(slot);
4063
4064	might_sleep();
4065
4066	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4067
4068	if (!probe)
4069		pci_slot_unlock(slot);
4070
4071	return rc;
4072}
4073
4074/**
4075 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4076 * @slot: PCI slot to probe
4077 *
4078 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4079 */
4080int pci_probe_reset_slot(struct pci_slot *slot)
4081{
4082	return pci_slot_reset(slot, 1);
4083}
4084EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4085
4086/**
4087 * pci_reset_slot - reset a PCI slot
4088 * @slot: PCI slot to reset
4089 *
4090 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4091 * independent of other slots.  For instance, some slots may support slot power
4092 * control.  In the case of a 1:1 bus to slot architecture, this function may
4093 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4094 * Generally a slot reset should be attempted before a bus reset.  All of the
4095 * function of the slot and any subordinate buses behind the slot are reset
4096 * through this function.  PCI config space of all devices in the slot and
4097 * behind the slot is saved before and restored after reset.
4098 *
4099 * Return 0 on success, non-zero on error.
4100 */
4101int pci_reset_slot(struct pci_slot *slot)
4102{
4103	int rc;
4104
4105	rc = pci_slot_reset(slot, 1);
4106	if (rc)
4107		return rc;
4108
4109	pci_slot_save_and_disable(slot);
4110
4111	rc = pci_slot_reset(slot, 0);
4112
4113	pci_slot_restore(slot);
4114
4115	return rc;
4116}
4117EXPORT_SYMBOL_GPL(pci_reset_slot);
4118
4119/**
4120 * pci_try_reset_slot - Try to reset a PCI slot
4121 * @slot: PCI slot to reset
4122 *
4123 * Same as above except return -EAGAIN if the slot cannot be locked
4124 */
4125int pci_try_reset_slot(struct pci_slot *slot)
4126{
4127	int rc;
4128
4129	rc = pci_slot_reset(slot, 1);
4130	if (rc)
4131		return rc;
4132
4133	pci_slot_save_and_disable(slot);
4134
4135	if (pci_slot_trylock(slot)) {
4136		might_sleep();
4137		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4138		pci_slot_unlock(slot);
4139	} else
4140		rc = -EAGAIN;
4141
4142	pci_slot_restore(slot);
4143
4144	return rc;
4145}
4146EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4147
4148static int pci_bus_reset(struct pci_bus *bus, int probe)
4149{
4150	if (!bus->self || !pci_bus_resetable(bus))
4151		return -ENOTTY;
4152
4153	if (probe)
4154		return 0;
4155
4156	pci_bus_lock(bus);
4157
4158	might_sleep();
4159
4160	pci_reset_bridge_secondary_bus(bus->self);
4161
4162	pci_bus_unlock(bus);
4163
4164	return 0;
4165}
4166
4167/**
4168 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4169 * @bus: PCI bus to probe
4170 *
4171 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4172 */
4173int pci_probe_reset_bus(struct pci_bus *bus)
4174{
4175	return pci_bus_reset(bus, 1);
4176}
4177EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4178
4179/**
4180 * pci_reset_bus - reset a PCI bus
4181 * @bus: top level PCI bus to reset
4182 *
4183 * Do a bus reset on the given bus and any subordinate buses, saving
4184 * and restoring state of all devices.
4185 *
4186 * Return 0 on success, non-zero on error.
4187 */
4188int pci_reset_bus(struct pci_bus *bus)
4189{
4190	int rc;
4191
4192	rc = pci_bus_reset(bus, 1);
4193	if (rc)
4194		return rc;
4195
4196	pci_bus_save_and_disable(bus);
4197
4198	rc = pci_bus_reset(bus, 0);
4199
4200	pci_bus_restore(bus);
4201
4202	return rc;
4203}
4204EXPORT_SYMBOL_GPL(pci_reset_bus);
4205
4206/**
4207 * pci_try_reset_bus - Try to reset a PCI bus
4208 * @bus: top level PCI bus to reset
4209 *
4210 * Same as above except return -EAGAIN if the bus cannot be locked
4211 */
4212int pci_try_reset_bus(struct pci_bus *bus)
4213{
4214	int rc;
4215
4216	rc = pci_bus_reset(bus, 1);
4217	if (rc)
4218		return rc;
4219
4220	pci_bus_save_and_disable(bus);
4221
4222	if (pci_bus_trylock(bus)) {
4223		might_sleep();
4224		pci_reset_bridge_secondary_bus(bus->self);
4225		pci_bus_unlock(bus);
4226	} else
4227		rc = -EAGAIN;
4228
4229	pci_bus_restore(bus);
4230
4231	return rc;
4232}
4233EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4234
4235/**
4236 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4237 * @dev: PCI device to query
4238 *
4239 * Returns mmrbc: maximum designed memory read count in bytes
4240 *    or appropriate error value.
4241 */
4242int pcix_get_max_mmrbc(struct pci_dev *dev)
4243{
4244	int cap;
4245	u32 stat;
4246
4247	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4248	if (!cap)
4249		return -EINVAL;
4250
4251	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4252		return -EINVAL;
4253
4254	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4255}
4256EXPORT_SYMBOL(pcix_get_max_mmrbc);
4257
4258/**
4259 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4260 * @dev: PCI device to query
4261 *
4262 * Returns mmrbc: maximum memory read count in bytes
4263 *    or appropriate error value.
4264 */
4265int pcix_get_mmrbc(struct pci_dev *dev)
4266{
4267	int cap;
4268	u16 cmd;
4269
4270	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4271	if (!cap)
4272		return -EINVAL;
4273
4274	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4275		return -EINVAL;
4276
4277	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4278}
4279EXPORT_SYMBOL(pcix_get_mmrbc);
4280
4281/**
4282 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4283 * @dev: PCI device to query
4284 * @mmrbc: maximum memory read count in bytes
4285 *    valid values are 512, 1024, 2048, 4096
4286 *
4287 * If possible sets maximum memory read byte count, some bridges have erratas
4288 * that prevent this.
4289 */
4290int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4291{
4292	int cap;
4293	u32 stat, v, o;
4294	u16 cmd;
4295
4296	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4297		return -EINVAL;
4298
4299	v = ffs(mmrbc) - 10;
4300
4301	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4302	if (!cap)
4303		return -EINVAL;
4304
4305	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4306		return -EINVAL;
4307
4308	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4309		return -E2BIG;
4310
4311	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4312		return -EINVAL;
4313
4314	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4315	if (o != v) {
4316		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4317			return -EIO;
4318
4319		cmd &= ~PCI_X_CMD_MAX_READ;
4320		cmd |= v << 2;
4321		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4322			return -EIO;
4323	}
4324	return 0;
4325}
4326EXPORT_SYMBOL(pcix_set_mmrbc);
4327
4328/**
4329 * pcie_get_readrq - get PCI Express read request size
4330 * @dev: PCI device to query
4331 *
4332 * Returns maximum memory read request in bytes
4333 *    or appropriate error value.
4334 */
4335int pcie_get_readrq(struct pci_dev *dev)
4336{
4337	u16 ctl;
4338
4339	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4340
4341	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4342}
4343EXPORT_SYMBOL(pcie_get_readrq);
4344
4345/**
4346 * pcie_set_readrq - set PCI Express maximum memory read request
4347 * @dev: PCI device to query
4348 * @rq: maximum memory read count in bytes
4349 *    valid values are 128, 256, 512, 1024, 2048, 4096
4350 *
4351 * If possible sets maximum memory read request in bytes
4352 */
4353int pcie_set_readrq(struct pci_dev *dev, int rq)
4354{
4355	u16 v;
4356
4357	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4358		return -EINVAL;
4359
4360	/*
4361	 * If using the "performance" PCIe config, we clamp the
4362	 * read rq size to the max packet size to prevent the
4363	 * host bridge generating requests larger than we can
4364	 * cope with
4365	 */
4366	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4367		int mps = pcie_get_mps(dev);
4368
4369		if (mps < rq)
4370			rq = mps;
4371	}
4372
4373	v = (ffs(rq) - 8) << 12;
4374
4375	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4376						  PCI_EXP_DEVCTL_READRQ, v);
4377}
4378EXPORT_SYMBOL(pcie_set_readrq);
4379
4380/**
4381 * pcie_get_mps - get PCI Express maximum payload size
4382 * @dev: PCI device to query
4383 *
4384 * Returns maximum payload size in bytes
4385 */
4386int pcie_get_mps(struct pci_dev *dev)
4387{
4388	u16 ctl;
4389
4390	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4391
4392	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4393}
4394EXPORT_SYMBOL(pcie_get_mps);
4395
4396/**
4397 * pcie_set_mps - set PCI Express maximum payload size
4398 * @dev: PCI device to query
4399 * @mps: maximum payload size in bytes
4400 *    valid values are 128, 256, 512, 1024, 2048, 4096
4401 *
4402 * If possible sets maximum payload size
4403 */
4404int pcie_set_mps(struct pci_dev *dev, int mps)
4405{
4406	u16 v;
4407
4408	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4409		return -EINVAL;
4410
4411	v = ffs(mps) - 8;
4412	if (v > dev->pcie_mpss)
4413		return -EINVAL;
4414	v <<= 5;
4415
4416	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4417						  PCI_EXP_DEVCTL_PAYLOAD, v);
4418}
4419EXPORT_SYMBOL(pcie_set_mps);
4420
4421/**
4422 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4423 * @dev: PCI device to query
4424 * @speed: storage for minimum speed
4425 * @width: storage for minimum width
4426 *
4427 * This function will walk up the PCI device chain and determine the minimum
4428 * link width and speed of the device.
4429 */
4430int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4431			  enum pcie_link_width *width)
4432{
4433	int ret;
4434
4435	*speed = PCI_SPEED_UNKNOWN;
4436	*width = PCIE_LNK_WIDTH_UNKNOWN;
4437
4438	while (dev) {
4439		u16 lnksta;
4440		enum pci_bus_speed next_speed;
4441		enum pcie_link_width next_width;
4442
4443		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4444		if (ret)
4445			return ret;
4446
4447		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4448		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4449			PCI_EXP_LNKSTA_NLW_SHIFT;
4450
4451		if (next_speed < *speed)
4452			*speed = next_speed;
4453
4454		if (next_width < *width)
4455			*width = next_width;
4456
4457		dev = dev->bus->self;
4458	}
4459
4460	return 0;
4461}
4462EXPORT_SYMBOL(pcie_get_minimum_link);
4463
4464/**
4465 * pci_select_bars - Make BAR mask from the type of resource
4466 * @dev: the PCI device for which BAR mask is made
4467 * @flags: resource type mask to be selected
4468 *
4469 * This helper routine makes bar mask from the type of resource.
4470 */
4471int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4472{
4473	int i, bars = 0;
4474	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4475		if (pci_resource_flags(dev, i) & flags)
4476			bars |= (1 << i);
4477	return bars;
4478}
4479EXPORT_SYMBOL(pci_select_bars);
4480
4481/**
4482 * pci_resource_bar - get position of the BAR associated with a resource
4483 * @dev: the PCI device
4484 * @resno: the resource number
4485 * @type: the BAR type to be filled in
4486 *
4487 * Returns BAR position in config space, or 0 if the BAR is invalid.
4488 */
4489int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4490{
4491	int reg;
4492
4493	if (resno < PCI_ROM_RESOURCE) {
4494		*type = pci_bar_unknown;
4495		return PCI_BASE_ADDRESS_0 + 4 * resno;
4496	} else if (resno == PCI_ROM_RESOURCE) {
4497		*type = pci_bar_mem32;
4498		return dev->rom_base_reg;
4499	} else if (resno < PCI_BRIDGE_RESOURCES) {
4500		/* device specific resource */
4501		*type = pci_bar_unknown;
4502		reg = pci_iov_resource_bar(dev, resno);
4503		if (reg)
4504			return reg;
4505	}
4506
4507	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4508	return 0;
4509}
4510
4511/* Some architectures require additional programming to enable VGA */
4512static arch_set_vga_state_t arch_set_vga_state;
4513
4514void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4515{
4516	arch_set_vga_state = func;	/* NULL disables */
4517}
4518
4519static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4520				  unsigned int command_bits, u32 flags)
4521{
4522	if (arch_set_vga_state)
4523		return arch_set_vga_state(dev, decode, command_bits,
4524						flags);
4525	return 0;
4526}
4527
4528/**
4529 * pci_set_vga_state - set VGA decode state on device and parents if requested
4530 * @dev: the PCI device
4531 * @decode: true = enable decoding, false = disable decoding
4532 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4533 * @flags: traverse ancestors and change bridges
4534 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4535 */
4536int pci_set_vga_state(struct pci_dev *dev, bool decode,
4537		      unsigned int command_bits, u32 flags)
4538{
4539	struct pci_bus *bus;
4540	struct pci_dev *bridge;
4541	u16 cmd;
4542	int rc;
4543
4544	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4545
4546	/* ARCH specific VGA enables */
4547	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4548	if (rc)
4549		return rc;
4550
4551	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4552		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4553		if (decode == true)
4554			cmd |= command_bits;
4555		else
4556			cmd &= ~command_bits;
4557		pci_write_config_word(dev, PCI_COMMAND, cmd);
4558	}
4559
4560	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4561		return 0;
4562
4563	bus = dev->bus;
4564	while (bus) {
4565		bridge = bus->self;
4566		if (bridge) {
4567			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4568					     &cmd);
4569			if (decode == true)
4570				cmd |= PCI_BRIDGE_CTL_VGA;
4571			else
4572				cmd &= ~PCI_BRIDGE_CTL_VGA;
4573			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4574					      cmd);
4575		}
4576		bus = bus->parent;
4577	}
4578	return 0;
4579}
4580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4581bool pci_device_is_present(struct pci_dev *pdev)
4582{
4583	u32 v;
4584
4585	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4586}
4587EXPORT_SYMBOL_GPL(pci_device_is_present);
4588
4589void pci_ignore_hotplug(struct pci_dev *dev)
4590{
4591	struct pci_dev *bridge = dev->bus->self;
4592
4593	dev->ignore_hotplug = 1;
4594	/* Propagate the "ignore hotplug" setting to the parent bridge. */
4595	if (bridge)
4596		bridge->ignore_hotplug = 1;
4597}
4598EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4599
4600#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4601static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4602static DEFINE_SPINLOCK(resource_alignment_lock);
4603
4604/**
4605 * pci_specified_resource_alignment - get resource alignment specified by user.
4606 * @dev: the PCI device to get
4607 *
4608 * RETURNS: Resource alignment if it is specified.
4609 *          Zero if it is not specified.
4610 */
4611static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4612{
4613	int seg, bus, slot, func, align_order, count;
 
4614	resource_size_t align = 0;
4615	char *p;
4616
4617	spin_lock(&resource_alignment_lock);
4618	p = resource_alignment_param;
 
 
 
 
 
 
 
4619	while (*p) {
4620		count = 0;
4621		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4622							p[count] == '@') {
4623			p += count + 1;
4624		} else {
4625			align_order = -1;
4626		}
4627		if (sscanf(p, "%x:%x:%x.%x%n",
4628			&seg, &bus, &slot, &func, &count) != 4) {
4629			seg = 0;
4630			if (sscanf(p, "%x:%x.%x%n",
4631					&bus, &slot, &func, &count) != 3) {
4632				/* Invalid format */
4633				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4634					p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4635				break;
4636			}
4637		}
4638		p += count;
4639		if (seg == pci_domain_nr(dev->bus) &&
4640			bus == dev->bus->number &&
4641			slot == PCI_SLOT(dev->devfn) &&
4642			func == PCI_FUNC(dev->devfn)) {
4643			if (align_order == -1)
4644				align = PAGE_SIZE;
4645			else
4646				align = 1 << align_order;
4647			/* Found */
4648			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
4649		}
4650		if (*p != ';' && *p != ',') {
4651			/* End of param or invalid format */
4652			break;
4653		}
4654		p++;
4655	}
 
4656	spin_unlock(&resource_alignment_lock);
4657	return align;
4658}
4659
4660/*
4661 * This function disables memory decoding and releases memory resources
4662 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4663 * It also rounds up size to specified alignment.
4664 * Later on, the kernel will assign page-aligned memory resource back
4665 * to the device.
4666 */
4667void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4668{
4669	int i;
4670	struct resource *r;
4671	resource_size_t align, size;
4672	u16 command;
4673
 
 
 
 
 
 
 
 
 
4674	/* check if specified PCI is target device to reassign */
4675	align = pci_specified_resource_alignment(dev);
4676	if (!align)
4677		return;
4678
4679	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4680	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4681		dev_warn(&dev->dev,
4682			"Can't reassign resources to host bridge.\n");
4683		return;
4684	}
4685
4686	dev_info(&dev->dev,
4687		"Disabling memory decoding and releasing memory resources.\n");
4688	pci_read_config_word(dev, PCI_COMMAND, &command);
4689	command &= ~PCI_COMMAND_MEMORY;
4690	pci_write_config_word(dev, PCI_COMMAND, command);
4691
4692	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4693		r = &dev->resource[i];
4694		if (!(r->flags & IORESOURCE_MEM))
4695			continue;
 
 
 
 
 
 
4696		size = resource_size(r);
4697		if (size < align) {
4698			size = align;
4699			dev_info(&dev->dev,
4700				"Rounding up size of resource #%d to %#llx.\n",
4701				i, (unsigned long long)size);
4702		}
4703		r->flags |= IORESOURCE_UNSET;
4704		r->end = size - 1;
4705		r->start = 0;
4706	}
4707	/* Need to disable bridge's resource window,
4708	 * to enable the kernel to reassign new resource
4709	 * window later on.
4710	 */
4711	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4712	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4713		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4714			r = &dev->resource[i];
4715			if (!(r->flags & IORESOURCE_MEM))
4716				continue;
4717			r->flags |= IORESOURCE_UNSET;
4718			r->end = resource_size(r) - 1;
4719			r->start = 0;
4720		}
4721		pci_disable_bridge_window(dev);
4722	}
4723}
4724
4725static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4726{
4727	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4728		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4729	spin_lock(&resource_alignment_lock);
4730	strncpy(resource_alignment_param, buf, count);
4731	resource_alignment_param[count] = '\0';
4732	spin_unlock(&resource_alignment_lock);
4733	return count;
4734}
4735
4736static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4737{
4738	size_t count;
4739	spin_lock(&resource_alignment_lock);
4740	count = snprintf(buf, size, "%s", resource_alignment_param);
4741	spin_unlock(&resource_alignment_lock);
4742	return count;
4743}
4744
4745static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4746{
4747	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4748}
4749
4750static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4751					const char *buf, size_t count)
4752{
4753	return pci_set_resource_alignment_param(buf, count);
4754}
4755
4756BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4757					pci_resource_alignment_store);
4758
4759static int __init pci_resource_alignment_sysfs_init(void)
4760{
4761	return bus_create_file(&pci_bus_type,
4762					&bus_attr_resource_alignment);
4763}
4764late_initcall(pci_resource_alignment_sysfs_init);
4765
4766static void pci_no_domains(void)
4767{
4768#ifdef CONFIG_PCI_DOMAINS
4769	pci_domains_supported = 0;
4770#endif
4771}
4772
4773#ifdef CONFIG_PCI_DOMAINS
4774static atomic_t __domain_nr = ATOMIC_INIT(-1);
4775
4776int pci_get_new_domain_nr(void)
4777{
4778	return atomic_inc_return(&__domain_nr);
4779}
4780
4781#ifdef CONFIG_PCI_DOMAINS_GENERIC
4782void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent)
4783{
4784	static int use_dt_domains = -1;
4785	int domain = -1;
4786
4787	if (parent)
4788		domain = of_get_pci_domain_nr(parent->of_node);
4789	/*
4790	 * Check DT domain and use_dt_domains values.
4791	 *
4792	 * If DT domain property is valid (domain >= 0) and
4793	 * use_dt_domains != 0, the DT assignment is valid since this means
4794	 * we have not previously allocated a domain number by using
4795	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4796	 * 1, to indicate that we have just assigned a domain number from
4797	 * DT.
4798	 *
4799	 * If DT domain property value is not valid (ie domain < 0), and we
4800	 * have not previously assigned a domain number from DT
4801	 * (use_dt_domains != 1) we should assign a domain number by
4802	 * using the:
4803	 *
4804	 * pci_get_new_domain_nr()
4805	 *
4806	 * API and update the use_dt_domains value to keep track of method we
4807	 * are using to assign domain numbers (use_dt_domains = 0).
4808	 *
4809	 * All other combinations imply we have a platform that is trying
4810	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4811	 * which is a recipe for domain mishandling and it is prevented by
4812	 * invalidating the domain value (domain = -1) and printing a
4813	 * corresponding error.
4814	 */
4815	if (domain >= 0 && use_dt_domains) {
4816		use_dt_domains = 1;
4817	} else if (domain < 0 && use_dt_domains != 1) {
4818		use_dt_domains = 0;
4819		domain = pci_get_new_domain_nr();
4820	} else {
4821		dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4822			parent->of_node->full_name);
4823		domain = -1;
4824	}
4825
4826	bus->domain_nr = domain;
 
 
 
 
 
 
4827}
4828#endif
4829#endif
4830
4831/**
4832 * pci_ext_cfg_avail - can we access extended PCI config space?
4833 *
4834 * Returns 1 if we can access PCI extended config space (offsets
4835 * greater than 0xff). This is the default implementation. Architecture
4836 * implementations can override this.
4837 */
4838int __weak pci_ext_cfg_avail(void)
4839{
4840	return 1;
4841}
4842
4843void __weak pci_fixup_cardbus(struct pci_bus *bus)
4844{
4845}
4846EXPORT_SYMBOL(pci_fixup_cardbus);
4847
4848static int __init pci_setup(char *str)
4849{
4850	while (str) {
4851		char *k = strchr(str, ',');
4852		if (k)
4853			*k++ = 0;
4854		if (*str && (str = pcibios_setup(str)) && *str) {
4855			if (!strcmp(str, "nomsi")) {
4856				pci_no_msi();
4857			} else if (!strcmp(str, "noaer")) {
4858				pci_no_aer();
4859			} else if (!strncmp(str, "realloc=", 8)) {
4860				pci_realloc_get_opt(str + 8);
4861			} else if (!strncmp(str, "realloc", 7)) {
4862				pci_realloc_get_opt("on");
4863			} else if (!strcmp(str, "nodomains")) {
4864				pci_no_domains();
4865			} else if (!strncmp(str, "noari", 5)) {
4866				pcie_ari_disabled = true;
4867			} else if (!strncmp(str, "cbiosize=", 9)) {
4868				pci_cardbus_io_size = memparse(str + 9, &str);
4869			} else if (!strncmp(str, "cbmemsize=", 10)) {
4870				pci_cardbus_mem_size = memparse(str + 10, &str);
4871			} else if (!strncmp(str, "resource_alignment=", 19)) {
4872				pci_set_resource_alignment_param(str + 19,
4873							strlen(str + 19));
4874			} else if (!strncmp(str, "ecrc=", 5)) {
4875				pcie_ecrc_get_policy(str + 5);
4876			} else if (!strncmp(str, "hpiosize=", 9)) {
4877				pci_hotplug_io_size = memparse(str + 9, &str);
4878			} else if (!strncmp(str, "hpmemsize=", 10)) {
4879				pci_hotplug_mem_size = memparse(str + 10, &str);
 
 
 
 
 
4880			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4881				pcie_bus_config = PCIE_BUS_TUNE_OFF;
4882			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
4883				pcie_bus_config = PCIE_BUS_SAFE;
4884			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
4885				pcie_bus_config = PCIE_BUS_PERFORMANCE;
4886			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4887				pcie_bus_config = PCIE_BUS_PEER2PEER;
4888			} else if (!strncmp(str, "pcie_scan_all", 13)) {
4889				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4890			} else {
4891				printk(KERN_ERR "PCI: Unknown option `%s'\n",
4892						str);
4893			}
4894		}
4895		str = k;
4896	}
4897	return 0;
4898}
4899early_param("pci", pci_setup);
v4.10.11
   1/*
   2 *	PCI Bus Services, see include/linux/pci.h for further explanation.
   3 *
   4 *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   5 *	David Mosberger-Tang
   6 *
   7 *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   8 */
   9
  10#include <linux/acpi.h>
  11#include <linux/kernel.h>
  12#include <linux/delay.h>
  13#include <linux/dmi.h>
  14#include <linux/init.h>
  15#include <linux/of.h>
  16#include <linux/of_pci.h>
  17#include <linux/pci.h>
  18#include <linux/pm.h>
  19#include <linux/slab.h>
  20#include <linux/module.h>
  21#include <linux/spinlock.h>
  22#include <linux/string.h>
  23#include <linux/log2.h>
  24#include <linux/pci-aspm.h>
  25#include <linux/pm_wakeup.h>
  26#include <linux/interrupt.h>
  27#include <linux/device.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/pci_hotplug.h>
  30#include <linux/vmalloc.h>
  31#include <asm/setup.h>
  32#include <asm/dma.h>
  33#include <linux/aer.h>
  34#include "pci.h"
  35
  36const char *pci_power_names[] = {
  37	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  38};
  39EXPORT_SYMBOL_GPL(pci_power_names);
  40
  41int isa_dma_bridge_buggy;
  42EXPORT_SYMBOL(isa_dma_bridge_buggy);
  43
  44int pci_pci_problems;
  45EXPORT_SYMBOL(pci_pci_problems);
  46
  47unsigned int pci_pm_d3_delay;
  48
  49static void pci_pme_list_scan(struct work_struct *work);
  50
  51static LIST_HEAD(pci_pme_list);
  52static DEFINE_MUTEX(pci_pme_list_mutex);
  53static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  54
  55struct pci_pme_device {
  56	struct list_head list;
  57	struct pci_dev *dev;
  58};
  59
  60#define PME_TIMEOUT 1000 /* How long between PME checks */
  61
  62static void pci_dev_d3_sleep(struct pci_dev *dev)
  63{
  64	unsigned int delay = dev->d3_delay;
  65
  66	if (delay < pci_pm_d3_delay)
  67		delay = pci_pm_d3_delay;
  68
  69	msleep(delay);
  70}
  71
  72#ifdef CONFIG_PCI_DOMAINS
  73int pci_domains_supported = 1;
  74#endif
  75
  76#define DEFAULT_CARDBUS_IO_SIZE		(256)
  77#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  78/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  79unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  80unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  81
  82#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  83#define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
  84/* pci=hpmemsize=nnM,hpiosize=nn can override this */
  85unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  86unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
  87
  88#define DEFAULT_HOTPLUG_BUS_SIZE	1
  89unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
  90
  91enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
  92
  93/*
  94 * The default CLS is used if arch didn't set CLS explicitly and not
  95 * all pci devices agree on the same value.  Arch can override either
  96 * the dfl or actual value as it sees fit.  Don't forget this is
  97 * measured in 32-bit words, not bytes.
  98 */
  99u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 100u8 pci_cache_line_size;
 101
 102/*
 103 * If we set up a device for bus mastering, we need to check the latency
 104 * timer as certain BIOSes forget to set it properly.
 105 */
 106unsigned int pcibios_max_latency = 255;
 107
 108/* If set, the PCIe ARI capability will not be used. */
 109static bool pcie_ari_disabled;
 110
 111/* Disable bridge_d3 for all PCIe ports */
 112static bool pci_bridge_d3_disable;
 113/* Force bridge_d3 for all PCIe ports */
 114static bool pci_bridge_d3_force;
 115
 116static int __init pcie_port_pm_setup(char *str)
 117{
 118	if (!strcmp(str, "off"))
 119		pci_bridge_d3_disable = true;
 120	else if (!strcmp(str, "force"))
 121		pci_bridge_d3_force = true;
 122	return 1;
 123}
 124__setup("pcie_port_pm=", pcie_port_pm_setup);
 125
 126/**
 127 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 128 * @bus: pointer to PCI bus structure to search
 129 *
 130 * Given a PCI bus, returns the highest PCI bus number present in the set
 131 * including the given PCI bus and its list of child PCI buses.
 132 */
 133unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 134{
 135	struct pci_bus *tmp;
 136	unsigned char max, n;
 137
 138	max = bus->busn_res.end;
 139	list_for_each_entry(tmp, &bus->children, node) {
 140		n = pci_bus_max_busnr(tmp);
 141		if (n > max)
 142			max = n;
 143	}
 144	return max;
 145}
 146EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 147
 148#ifdef CONFIG_HAS_IOMEM
 149void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 150{
 151	struct resource *res = &pdev->resource[bar];
 152
 153	/*
 154	 * Make sure the BAR is actually a memory resource, not an IO resource
 155	 */
 156	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 157		dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
 158		return NULL;
 159	}
 160	return ioremap_nocache(res->start, resource_size(res));
 161}
 162EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 163
 164void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 165{
 166	/*
 167	 * Make sure the BAR is actually a memory resource, not an IO resource
 168	 */
 169	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 170		WARN_ON(1);
 171		return NULL;
 172	}
 173	return ioremap_wc(pci_resource_start(pdev, bar),
 174			  pci_resource_len(pdev, bar));
 175}
 176EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 177#endif
 178
 179
 180static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 181				   u8 pos, int cap, int *ttl)
 182{
 183	u8 id;
 184	u16 ent;
 185
 186	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 187
 188	while ((*ttl)--) {
 189		if (pos < 0x40)
 190			break;
 191		pos &= ~3;
 192		pci_bus_read_config_word(bus, devfn, pos, &ent);
 193
 194		id = ent & 0xff;
 195		if (id == 0xff)
 196			break;
 197		if (id == cap)
 198			return pos;
 199		pos = (ent >> 8);
 200	}
 201	return 0;
 202}
 203
 204static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 205			       u8 pos, int cap)
 206{
 207	int ttl = PCI_FIND_CAP_TTL;
 208
 209	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 210}
 211
 212int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 213{
 214	return __pci_find_next_cap(dev->bus, dev->devfn,
 215				   pos + PCI_CAP_LIST_NEXT, cap);
 216}
 217EXPORT_SYMBOL_GPL(pci_find_next_capability);
 218
 219static int __pci_bus_find_cap_start(struct pci_bus *bus,
 220				    unsigned int devfn, u8 hdr_type)
 221{
 222	u16 status;
 223
 224	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 225	if (!(status & PCI_STATUS_CAP_LIST))
 226		return 0;
 227
 228	switch (hdr_type) {
 229	case PCI_HEADER_TYPE_NORMAL:
 230	case PCI_HEADER_TYPE_BRIDGE:
 231		return PCI_CAPABILITY_LIST;
 232	case PCI_HEADER_TYPE_CARDBUS:
 233		return PCI_CB_CAPABILITY_LIST;
 234	}
 235
 236	return 0;
 237}
 238
 239/**
 240 * pci_find_capability - query for devices' capabilities
 241 * @dev: PCI device to query
 242 * @cap: capability code
 243 *
 244 * Tell if a device supports a given PCI capability.
 245 * Returns the address of the requested capability structure within the
 246 * device's PCI configuration space or 0 in case the device does not
 247 * support it.  Possible values for @cap:
 248 *
 249 *  %PCI_CAP_ID_PM           Power Management
 250 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 251 *  %PCI_CAP_ID_VPD          Vital Product Data
 252 *  %PCI_CAP_ID_SLOTID       Slot Identification
 253 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 254 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 255 *  %PCI_CAP_ID_PCIX         PCI-X
 256 *  %PCI_CAP_ID_EXP          PCI Express
 257 */
 258int pci_find_capability(struct pci_dev *dev, int cap)
 259{
 260	int pos;
 261
 262	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 263	if (pos)
 264		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 265
 266	return pos;
 267}
 268EXPORT_SYMBOL(pci_find_capability);
 269
 270/**
 271 * pci_bus_find_capability - query for devices' capabilities
 272 * @bus:   the PCI bus to query
 273 * @devfn: PCI device to query
 274 * @cap:   capability code
 275 *
 276 * Like pci_find_capability() but works for pci devices that do not have a
 277 * pci_dev structure set up yet.
 278 *
 279 * Returns the address of the requested capability structure within the
 280 * device's PCI configuration space or 0 in case the device does not
 281 * support it.
 282 */
 283int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 284{
 285	int pos;
 286	u8 hdr_type;
 287
 288	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 289
 290	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 291	if (pos)
 292		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 293
 294	return pos;
 295}
 296EXPORT_SYMBOL(pci_bus_find_capability);
 297
 298/**
 299 * pci_find_next_ext_capability - Find an extended capability
 300 * @dev: PCI device to query
 301 * @start: address at which to start looking (0 to start at beginning of list)
 302 * @cap: capability code
 303 *
 304 * Returns the address of the next matching extended capability structure
 305 * within the device's PCI configuration space or 0 if the device does
 306 * not support it.  Some capabilities can occur several times, e.g., the
 307 * vendor-specific capability, and this provides a way to find them all.
 308 */
 309int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 310{
 311	u32 header;
 312	int ttl;
 313	int pos = PCI_CFG_SPACE_SIZE;
 314
 315	/* minimum 8 bytes per capability */
 316	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 317
 318	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 319		return 0;
 320
 321	if (start)
 322		pos = start;
 323
 324	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 325		return 0;
 326
 327	/*
 328	 * If we have no capabilities, this is indicated by cap ID,
 329	 * cap version and next pointer all being 0.
 330	 */
 331	if (header == 0)
 332		return 0;
 333
 334	while (ttl-- > 0) {
 335		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 336			return pos;
 337
 338		pos = PCI_EXT_CAP_NEXT(header);
 339		if (pos < PCI_CFG_SPACE_SIZE)
 340			break;
 341
 342		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 343			break;
 344	}
 345
 346	return 0;
 347}
 348EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 349
 350/**
 351 * pci_find_ext_capability - Find an extended capability
 352 * @dev: PCI device to query
 353 * @cap: capability code
 354 *
 355 * Returns the address of the requested extended capability structure
 356 * within the device's PCI configuration space or 0 if the device does
 357 * not support it.  Possible values for @cap:
 358 *
 359 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 360 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 361 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 362 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 363 */
 364int pci_find_ext_capability(struct pci_dev *dev, int cap)
 365{
 366	return pci_find_next_ext_capability(dev, 0, cap);
 367}
 368EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 369
 370static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 371{
 372	int rc, ttl = PCI_FIND_CAP_TTL;
 373	u8 cap, mask;
 374
 375	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 376		mask = HT_3BIT_CAP_MASK;
 377	else
 378		mask = HT_5BIT_CAP_MASK;
 379
 380	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 381				      PCI_CAP_ID_HT, &ttl);
 382	while (pos) {
 383		rc = pci_read_config_byte(dev, pos + 3, &cap);
 384		if (rc != PCIBIOS_SUCCESSFUL)
 385			return 0;
 386
 387		if ((cap & mask) == ht_cap)
 388			return pos;
 389
 390		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 391					      pos + PCI_CAP_LIST_NEXT,
 392					      PCI_CAP_ID_HT, &ttl);
 393	}
 394
 395	return 0;
 396}
 397/**
 398 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 399 * @dev: PCI device to query
 400 * @pos: Position from which to continue searching
 401 * @ht_cap: Hypertransport capability code
 402 *
 403 * To be used in conjunction with pci_find_ht_capability() to search for
 404 * all capabilities matching @ht_cap. @pos should always be a value returned
 405 * from pci_find_ht_capability().
 406 *
 407 * NB. To be 100% safe against broken PCI devices, the caller should take
 408 * steps to avoid an infinite loop.
 409 */
 410int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 411{
 412	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 413}
 414EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 415
 416/**
 417 * pci_find_ht_capability - query a device's Hypertransport capabilities
 418 * @dev: PCI device to query
 419 * @ht_cap: Hypertransport capability code
 420 *
 421 * Tell if a device supports a given Hypertransport capability.
 422 * Returns an address within the device's PCI configuration space
 423 * or 0 in case the device does not support the request capability.
 424 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 425 * which has a Hypertransport capability matching @ht_cap.
 426 */
 427int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 428{
 429	int pos;
 430
 431	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 432	if (pos)
 433		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 434
 435	return pos;
 436}
 437EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 438
 439/**
 440 * pci_find_parent_resource - return resource region of parent bus of given region
 441 * @dev: PCI device structure contains resources to be searched
 442 * @res: child resource record for which parent is sought
 443 *
 444 *  For given resource region of given device, return the resource
 445 *  region of parent bus the given region is contained in.
 446 */
 447struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 448					  struct resource *res)
 449{
 450	const struct pci_bus *bus = dev->bus;
 451	struct resource *r;
 452	int i;
 453
 454	pci_bus_for_each_resource(bus, r, i) {
 455		if (!r)
 456			continue;
 457		if (res->start && resource_contains(r, res)) {
 458
 459			/*
 460			 * If the window is prefetchable but the BAR is
 461			 * not, the allocator made a mistake.
 462			 */
 463			if (r->flags & IORESOURCE_PREFETCH &&
 464			    !(res->flags & IORESOURCE_PREFETCH))
 465				return NULL;
 466
 467			/*
 468			 * If we're below a transparent bridge, there may
 469			 * be both a positively-decoded aperture and a
 470			 * subtractively-decoded region that contain the BAR.
 471			 * We want the positively-decoded one, so this depends
 472			 * on pci_bus_for_each_resource() giving us those
 473			 * first.
 474			 */
 475			return r;
 476		}
 477	}
 478	return NULL;
 479}
 480EXPORT_SYMBOL(pci_find_parent_resource);
 481
 482/**
 483 * pci_find_resource - Return matching PCI device resource
 484 * @dev: PCI device to query
 485 * @res: Resource to look for
 486 *
 487 * Goes over standard PCI resources (BARs) and checks if the given resource
 488 * is partially or fully contained in any of them. In that case the
 489 * matching resource is returned, %NULL otherwise.
 490 */
 491struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 492{
 493	int i;
 494
 495	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
 496		struct resource *r = &dev->resource[i];
 497
 498		if (r->start && resource_contains(r, res))
 499			return r;
 500	}
 501
 502	return NULL;
 503}
 504EXPORT_SYMBOL(pci_find_resource);
 505
 506/**
 507 * pci_find_pcie_root_port - return PCIe Root Port
 508 * @dev: PCI device to query
 509 *
 510 * Traverse up the parent chain and return the PCIe Root Port PCI Device
 511 * for a given PCI Device.
 512 */
 513struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
 514{
 515	struct pci_dev *bridge, *highest_pcie_bridge = NULL;
 516
 517	bridge = pci_upstream_bridge(dev);
 518	while (bridge && pci_is_pcie(bridge)) {
 519		highest_pcie_bridge = bridge;
 520		bridge = pci_upstream_bridge(bridge);
 521	}
 522
 523	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
 524		return NULL;
 525
 526	return highest_pcie_bridge;
 527}
 528EXPORT_SYMBOL(pci_find_pcie_root_port);
 529
 530/**
 531 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 532 * @dev: the PCI device to operate on
 533 * @pos: config space offset of status word
 534 * @mask: mask of bit(s) to care about in status word
 535 *
 536 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 537 */
 538int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 539{
 540	int i;
 541
 542	/* Wait for Transaction Pending bit clean */
 543	for (i = 0; i < 4; i++) {
 544		u16 status;
 545		if (i)
 546			msleep((1 << (i - 1)) * 100);
 547
 548		pci_read_config_word(dev, pos, &status);
 549		if (!(status & mask))
 550			return 1;
 551	}
 552
 553	return 0;
 554}
 555
 556/**
 557 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 558 * @dev: PCI device to have its BARs restored
 559 *
 560 * Restore the BAR values for a given device, so as to make it
 561 * accessible by its driver.
 562 */
 563static void pci_restore_bars(struct pci_dev *dev)
 564{
 565	int i;
 566
 
 
 
 
 567	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 568		pci_update_resource(dev, i);
 569}
 570
 571static const struct pci_platform_pm_ops *pci_platform_pm;
 572
 573int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 574{
 575	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
 576	    !ops->choose_state  || !ops->sleep_wake || !ops->run_wake  ||
 577	    !ops->need_resume)
 578		return -EINVAL;
 579	pci_platform_pm = ops;
 580	return 0;
 581}
 582
 583static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 584{
 585	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 586}
 587
 588static inline int platform_pci_set_power_state(struct pci_dev *dev,
 589					       pci_power_t t)
 590{
 591	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 592}
 593
 594static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
 595{
 596	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
 597}
 598
 599static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 600{
 601	return pci_platform_pm ?
 602			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 603}
 604
 605static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
 606{
 607	return pci_platform_pm ?
 608			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
 609}
 610
 611static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
 612{
 613	return pci_platform_pm ?
 614			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
 615}
 616
 617static inline bool platform_pci_need_resume(struct pci_dev *dev)
 618{
 619	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
 620}
 621
 622/**
 623 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 624 *                           given PCI device
 625 * @dev: PCI device to handle.
 626 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 627 *
 628 * RETURN VALUE:
 629 * -EINVAL if the requested state is invalid.
 630 * -EIO if device does not support PCI PM or its PM capabilities register has a
 631 * wrong version, or device doesn't support the requested state.
 632 * 0 if device already is in the requested state.
 633 * 0 if device's power state has been successfully changed.
 634 */
 635static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 636{
 637	u16 pmcsr;
 638	bool need_restore = false;
 639
 640	/* Check if we're already there */
 641	if (dev->current_state == state)
 642		return 0;
 643
 644	if (!dev->pm_cap)
 645		return -EIO;
 646
 647	if (state < PCI_D0 || state > PCI_D3hot)
 648		return -EINVAL;
 649
 650	/* Validate current state:
 651	 * Can enter D0 from any state, but if we can only go deeper
 652	 * to sleep if we're already in a low power state
 653	 */
 654	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 655	    && dev->current_state > state) {
 656		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
 657			dev->current_state, state);
 658		return -EINVAL;
 659	}
 660
 661	/* check if this device supports the desired state */
 662	if ((state == PCI_D1 && !dev->d1_support)
 663	   || (state == PCI_D2 && !dev->d2_support))
 664		return -EIO;
 665
 666	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 667
 668	/* If we're (effectively) in D3, force entire word to 0.
 669	 * This doesn't affect PME_Status, disables PME_En, and
 670	 * sets PowerState to 0.
 671	 */
 672	switch (dev->current_state) {
 673	case PCI_D0:
 674	case PCI_D1:
 675	case PCI_D2:
 676		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 677		pmcsr |= state;
 678		break;
 679	case PCI_D3hot:
 680	case PCI_D3cold:
 681	case PCI_UNKNOWN: /* Boot-up */
 682		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 683		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 684			need_restore = true;
 685		/* Fall-through: force to D0 */
 686	default:
 687		pmcsr = 0;
 688		break;
 689	}
 690
 691	/* enter specified state */
 692	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 693
 694	/* Mandatory power management transition delays */
 695	/* see PCI PM 1.1 5.6.1 table 18 */
 696	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 697		pci_dev_d3_sleep(dev);
 698	else if (state == PCI_D2 || dev->current_state == PCI_D2)
 699		udelay(PCI_PM_D2_DELAY);
 700
 701	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 702	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 703	if (dev->current_state != state && printk_ratelimit())
 704		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
 705			 dev->current_state);
 706
 707	/*
 708	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 709	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 710	 * from D3hot to D0 _may_ perform an internal reset, thereby
 711	 * going to "D0 Uninitialized" rather than "D0 Initialized".
 712	 * For example, at least some versions of the 3c905B and the
 713	 * 3c556B exhibit this behaviour.
 714	 *
 715	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 716	 * devices in a D3hot state at boot.  Consequently, we need to
 717	 * restore at least the BARs so that the device will be
 718	 * accessible to its driver.
 719	 */
 720	if (need_restore)
 721		pci_restore_bars(dev);
 722
 723	if (dev->bus->self)
 724		pcie_aspm_pm_state_change(dev->bus->self);
 725
 726	return 0;
 727}
 728
 729/**
 730 * pci_update_current_state - Read power state of given device and cache it
 
 731 * @dev: PCI device to handle.
 732 * @state: State to cache in case the device doesn't have the PM capability
 733 *
 734 * The power state is read from the PMCSR register, which however is
 735 * inaccessible in D3cold.  The platform firmware is therefore queried first
 736 * to detect accessibility of the register.  In case the platform firmware
 737 * reports an incorrect state or the device isn't power manageable by the
 738 * platform at all, we try to detect D3cold by testing accessibility of the
 739 * vendor ID in config space.
 740 */
 741void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 742{
 743	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
 744	    !pci_device_is_present(dev)) {
 745		dev->current_state = PCI_D3cold;
 746	} else if (dev->pm_cap) {
 747		u16 pmcsr;
 748
 
 
 
 
 
 
 
 
 
 
 749		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 750		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 751	} else {
 752		dev->current_state = state;
 753	}
 754}
 755
 756/**
 757 * pci_power_up - Put the given device into D0 forcibly
 758 * @dev: PCI device to power up
 759 */
 760void pci_power_up(struct pci_dev *dev)
 761{
 762	if (platform_pci_power_manageable(dev))
 763		platform_pci_set_power_state(dev, PCI_D0);
 764
 765	pci_raw_set_power_state(dev, PCI_D0);
 766	pci_update_current_state(dev, PCI_D0);
 767}
 768
 769/**
 770 * pci_platform_power_transition - Use platform to change device power state
 771 * @dev: PCI device to handle.
 772 * @state: State to put the device into.
 773 */
 774static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 775{
 776	int error;
 777
 778	if (platform_pci_power_manageable(dev)) {
 779		error = platform_pci_set_power_state(dev, state);
 780		if (!error)
 781			pci_update_current_state(dev, state);
 782	} else
 783		error = -ENODEV;
 784
 785	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 786		dev->current_state = PCI_D0;
 787
 788	return error;
 789}
 790
 791/**
 792 * pci_wakeup - Wake up a PCI device
 793 * @pci_dev: Device to handle.
 794 * @ign: ignored parameter
 795 */
 796static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
 797{
 798	pci_wakeup_event(pci_dev);
 799	pm_request_resume(&pci_dev->dev);
 800	return 0;
 801}
 802
 803/**
 804 * pci_wakeup_bus - Walk given bus and wake up devices on it
 805 * @bus: Top bus of the subtree to walk.
 806 */
 807static void pci_wakeup_bus(struct pci_bus *bus)
 808{
 809	if (bus)
 810		pci_walk_bus(bus, pci_wakeup, NULL);
 811}
 812
 813/**
 814 * __pci_start_power_transition - Start power transition of a PCI device
 815 * @dev: PCI device to handle.
 816 * @state: State to put the device into.
 817 */
 818static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 819{
 820	if (state == PCI_D0) {
 821		pci_platform_power_transition(dev, PCI_D0);
 822		/*
 823		 * Mandatory power management transition delays, see
 824		 * PCI Express Base Specification Revision 2.0 Section
 825		 * 6.6.1: Conventional Reset.  Do not delay for
 826		 * devices powered on/off by corresponding bridge,
 827		 * because have already delayed for the bridge.
 828		 */
 829		if (dev->runtime_d3cold) {
 830			msleep(dev->d3cold_delay);
 831			/*
 832			 * When powering on a bridge from D3cold, the
 833			 * whole hierarchy may be powered on into
 834			 * D0uninitialized state, resume them to give
 835			 * them a chance to suspend again
 836			 */
 837			pci_wakeup_bus(dev->subordinate);
 838		}
 839	}
 840}
 841
 842/**
 843 * __pci_dev_set_current_state - Set current state of a PCI device
 844 * @dev: Device to handle
 845 * @data: pointer to state to be set
 846 */
 847static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
 848{
 849	pci_power_t state = *(pci_power_t *)data;
 850
 851	dev->current_state = state;
 852	return 0;
 853}
 854
 855/**
 856 * __pci_bus_set_current_state - Walk given bus and set current state of devices
 857 * @bus: Top bus of the subtree to walk.
 858 * @state: state to be set
 859 */
 860static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
 861{
 862	if (bus)
 863		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
 864}
 865
 866/**
 867 * __pci_complete_power_transition - Complete power transition of a PCI device
 868 * @dev: PCI device to handle.
 869 * @state: State to put the device into.
 870 *
 871 * This function should not be called directly by device drivers.
 872 */
 873int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 874{
 875	int ret;
 876
 877	if (state <= PCI_D0)
 878		return -EINVAL;
 879	ret = pci_platform_power_transition(dev, state);
 880	/* Power off the bridge may power off the whole hierarchy */
 881	if (!ret && state == PCI_D3cold)
 882		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
 883	return ret;
 884}
 885EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 886
 887/**
 888 * pci_set_power_state - Set the power state of a PCI device
 889 * @dev: PCI device to handle.
 890 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 891 *
 892 * Transition a device to a new power state, using the platform firmware and/or
 893 * the device's PCI PM registers.
 894 *
 895 * RETURN VALUE:
 896 * -EINVAL if the requested state is invalid.
 897 * -EIO if device does not support PCI PM or its PM capabilities register has a
 898 * wrong version, or device doesn't support the requested state.
 899 * 0 if device already is in the requested state.
 900 * 0 if device's power state has been successfully changed.
 901 */
 902int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 903{
 904	int error;
 905
 906	/* bound the state we're entering */
 907	if (state > PCI_D3cold)
 908		state = PCI_D3cold;
 909	else if (state < PCI_D0)
 910		state = PCI_D0;
 911	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 912		/*
 913		 * If the device or the parent bridge do not support PCI PM,
 914		 * ignore the request if we're doing anything other than putting
 915		 * it into D0 (which would only happen on boot).
 916		 */
 917		return 0;
 918
 919	/* Check if we're already there */
 920	if (dev->current_state == state)
 921		return 0;
 922
 923	__pci_start_power_transition(dev, state);
 924
 925	/* This device is quirked not to be put into D3, so
 926	   don't put it in D3 */
 927	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 928		return 0;
 929
 930	/*
 931	 * To put device in D3cold, we put device into D3hot in native
 932	 * way, then put device into D3cold with platform ops
 933	 */
 934	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
 935					PCI_D3hot : state);
 936
 937	if (!__pci_complete_power_transition(dev, state))
 938		error = 0;
 939
 940	return error;
 941}
 942EXPORT_SYMBOL(pci_set_power_state);
 943
 944/**
 945 * pci_choose_state - Choose the power state of a PCI device
 946 * @dev: PCI device to be suspended
 947 * @state: target sleep state for the whole system. This is the value
 948 *	that is passed to suspend() function.
 949 *
 950 * Returns PCI power state suitable for given device and given system
 951 * message.
 952 */
 953
 954pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 955{
 956	pci_power_t ret;
 957
 958	if (!dev->pm_cap)
 959		return PCI_D0;
 960
 961	ret = platform_pci_choose_state(dev);
 962	if (ret != PCI_POWER_ERROR)
 963		return ret;
 964
 965	switch (state.event) {
 966	case PM_EVENT_ON:
 967		return PCI_D0;
 968	case PM_EVENT_FREEZE:
 969	case PM_EVENT_PRETHAW:
 970		/* REVISIT both freeze and pre-thaw "should" use D0 */
 971	case PM_EVENT_SUSPEND:
 972	case PM_EVENT_HIBERNATE:
 973		return PCI_D3hot;
 974	default:
 975		dev_info(&dev->dev, "unrecognized suspend event %d\n",
 976			 state.event);
 977		BUG();
 978	}
 979	return PCI_D0;
 980}
 981EXPORT_SYMBOL(pci_choose_state);
 982
 983#define PCI_EXP_SAVE_REGS	7
 984
 985static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
 986						       u16 cap, bool extended)
 987{
 988	struct pci_cap_saved_state *tmp;
 989
 990	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
 991		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
 992			return tmp;
 993	}
 994	return NULL;
 995}
 996
 997struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
 998{
 999	return _pci_find_saved_cap(dev, cap, false);
1000}
1001
1002struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1003{
1004	return _pci_find_saved_cap(dev, cap, true);
1005}
1006
1007static int pci_save_pcie_state(struct pci_dev *dev)
1008{
1009	int i = 0;
1010	struct pci_cap_saved_state *save_state;
1011	u16 *cap;
1012
1013	if (!pci_is_pcie(dev))
1014		return 0;
1015
1016	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1017	if (!save_state) {
1018		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1019		return -ENOMEM;
1020	}
1021
1022	cap = (u16 *)&save_state->cap.data[0];
1023	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1024	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1025	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1026	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1027	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1028	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1029	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1030
1031	return 0;
1032}
1033
1034static void pci_restore_pcie_state(struct pci_dev *dev)
1035{
1036	int i = 0;
1037	struct pci_cap_saved_state *save_state;
1038	u16 *cap;
1039
1040	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1041	if (!save_state)
1042		return;
1043
1044	cap = (u16 *)&save_state->cap.data[0];
1045	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1046	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1047	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1048	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1049	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1050	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1051	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1052}
1053
1054
1055static int pci_save_pcix_state(struct pci_dev *dev)
1056{
1057	int pos;
1058	struct pci_cap_saved_state *save_state;
1059
1060	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1061	if (!pos)
1062		return 0;
1063
1064	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1065	if (!save_state) {
1066		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1067		return -ENOMEM;
1068	}
1069
1070	pci_read_config_word(dev, pos + PCI_X_CMD,
1071			     (u16 *)save_state->cap.data);
1072
1073	return 0;
1074}
1075
1076static void pci_restore_pcix_state(struct pci_dev *dev)
1077{
1078	int i = 0, pos;
1079	struct pci_cap_saved_state *save_state;
1080	u16 *cap;
1081
1082	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1083	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1084	if (!save_state || !pos)
1085		return;
1086	cap = (u16 *)&save_state->cap.data[0];
1087
1088	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1089}
1090
1091
1092/**
1093 * pci_save_state - save the PCI configuration space of a device before suspending
1094 * @dev: - PCI device that we're dealing with
1095 */
1096int pci_save_state(struct pci_dev *dev)
1097{
1098	int i;
1099	/* XXX: 100% dword access ok here? */
1100	for (i = 0; i < 16; i++)
1101		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1102	dev->state_saved = true;
1103
1104	i = pci_save_pcie_state(dev);
1105	if (i != 0)
1106		return i;
1107
1108	i = pci_save_pcix_state(dev);
1109	if (i != 0)
1110		return i;
1111
1112	return pci_save_vc_state(dev);
1113}
1114EXPORT_SYMBOL(pci_save_state);
1115
1116static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1117				     u32 saved_val, int retry)
1118{
1119	u32 val;
1120
1121	pci_read_config_dword(pdev, offset, &val);
1122	if (val == saved_val)
1123		return;
1124
1125	for (;;) {
1126		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1127			offset, val, saved_val);
1128		pci_write_config_dword(pdev, offset, saved_val);
1129		if (retry-- <= 0)
1130			return;
1131
1132		pci_read_config_dword(pdev, offset, &val);
1133		if (val == saved_val)
1134			return;
1135
1136		mdelay(1);
1137	}
1138}
1139
1140static void pci_restore_config_space_range(struct pci_dev *pdev,
1141					   int start, int end, int retry)
1142{
1143	int index;
1144
1145	for (index = end; index >= start; index--)
1146		pci_restore_config_dword(pdev, 4 * index,
1147					 pdev->saved_config_space[index],
1148					 retry);
1149}
1150
1151static void pci_restore_config_space(struct pci_dev *pdev)
1152{
1153	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1154		pci_restore_config_space_range(pdev, 10, 15, 0);
1155		/* Restore BARs before the command register. */
1156		pci_restore_config_space_range(pdev, 4, 9, 10);
1157		pci_restore_config_space_range(pdev, 0, 3, 0);
1158	} else {
1159		pci_restore_config_space_range(pdev, 0, 15, 0);
1160	}
1161}
1162
1163/**
1164 * pci_restore_state - Restore the saved state of a PCI device
1165 * @dev: - PCI device that we're dealing with
1166 */
1167void pci_restore_state(struct pci_dev *dev)
1168{
1169	if (!dev->state_saved)
1170		return;
1171
1172	/* PCI Express register must be restored first */
1173	pci_restore_pcie_state(dev);
1174	pci_restore_ats_state(dev);
1175	pci_restore_vc_state(dev);
1176
1177	pci_cleanup_aer_error_status_regs(dev);
1178
1179	pci_restore_config_space(dev);
1180
1181	pci_restore_pcix_state(dev);
1182	pci_restore_msi_state(dev);
1183
1184	/* Restore ACS and IOV configuration state */
1185	pci_enable_acs(dev);
1186	pci_restore_iov_state(dev);
1187
1188	dev->state_saved = false;
1189}
1190EXPORT_SYMBOL(pci_restore_state);
1191
1192struct pci_saved_state {
1193	u32 config_space[16];
1194	struct pci_cap_saved_data cap[0];
1195};
1196
1197/**
1198 * pci_store_saved_state - Allocate and return an opaque struct containing
1199 *			   the device saved state.
1200 * @dev: PCI device that we're dealing with
1201 *
1202 * Return NULL if no state or error.
1203 */
1204struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1205{
1206	struct pci_saved_state *state;
1207	struct pci_cap_saved_state *tmp;
1208	struct pci_cap_saved_data *cap;
1209	size_t size;
1210
1211	if (!dev->state_saved)
1212		return NULL;
1213
1214	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1215
1216	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1217		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1218
1219	state = kzalloc(size, GFP_KERNEL);
1220	if (!state)
1221		return NULL;
1222
1223	memcpy(state->config_space, dev->saved_config_space,
1224	       sizeof(state->config_space));
1225
1226	cap = state->cap;
1227	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1228		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1229		memcpy(cap, &tmp->cap, len);
1230		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1231	}
1232	/* Empty cap_save terminates list */
1233
1234	return state;
1235}
1236EXPORT_SYMBOL_GPL(pci_store_saved_state);
1237
1238/**
1239 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1240 * @dev: PCI device that we're dealing with
1241 * @state: Saved state returned from pci_store_saved_state()
1242 */
1243int pci_load_saved_state(struct pci_dev *dev,
1244			 struct pci_saved_state *state)
1245{
1246	struct pci_cap_saved_data *cap;
1247
1248	dev->state_saved = false;
1249
1250	if (!state)
1251		return 0;
1252
1253	memcpy(dev->saved_config_space, state->config_space,
1254	       sizeof(state->config_space));
1255
1256	cap = state->cap;
1257	while (cap->size) {
1258		struct pci_cap_saved_state *tmp;
1259
1260		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1261		if (!tmp || tmp->cap.size != cap->size)
1262			return -EINVAL;
1263
1264		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1265		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1266		       sizeof(struct pci_cap_saved_data) + cap->size);
1267	}
1268
1269	dev->state_saved = true;
1270	return 0;
1271}
1272EXPORT_SYMBOL_GPL(pci_load_saved_state);
1273
1274/**
1275 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1276 *				   and free the memory allocated for it.
1277 * @dev: PCI device that we're dealing with
1278 * @state: Pointer to saved state returned from pci_store_saved_state()
1279 */
1280int pci_load_and_free_saved_state(struct pci_dev *dev,
1281				  struct pci_saved_state **state)
1282{
1283	int ret = pci_load_saved_state(dev, *state);
1284	kfree(*state);
1285	*state = NULL;
1286	return ret;
1287}
1288EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1289
1290int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1291{
1292	return pci_enable_resources(dev, bars);
1293}
1294
1295static int do_pci_enable_device(struct pci_dev *dev, int bars)
1296{
1297	int err;
1298	struct pci_dev *bridge;
1299	u16 cmd;
1300	u8 pin;
1301
1302	err = pci_set_power_state(dev, PCI_D0);
1303	if (err < 0 && err != -EIO)
1304		return err;
1305
1306	bridge = pci_upstream_bridge(dev);
1307	if (bridge)
1308		pcie_aspm_powersave_config_link(bridge);
1309
1310	err = pcibios_enable_device(dev, bars);
1311	if (err < 0)
1312		return err;
1313	pci_fixup_device(pci_fixup_enable, dev);
1314
1315	if (dev->msi_enabled || dev->msix_enabled)
1316		return 0;
1317
1318	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1319	if (pin) {
1320		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1321		if (cmd & PCI_COMMAND_INTX_DISABLE)
1322			pci_write_config_word(dev, PCI_COMMAND,
1323					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1324	}
1325
1326	return 0;
1327}
1328
1329/**
1330 * pci_reenable_device - Resume abandoned device
1331 * @dev: PCI device to be resumed
1332 *
1333 *  Note this function is a backend of pci_default_resume and is not supposed
1334 *  to be called by normal code, write proper resume handler and use it instead.
1335 */
1336int pci_reenable_device(struct pci_dev *dev)
1337{
1338	if (pci_is_enabled(dev))
1339		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1340	return 0;
1341}
1342EXPORT_SYMBOL(pci_reenable_device);
1343
1344static void pci_enable_bridge(struct pci_dev *dev)
1345{
1346	struct pci_dev *bridge;
1347	int retval;
1348
1349	bridge = pci_upstream_bridge(dev);
1350	if (bridge)
1351		pci_enable_bridge(bridge);
1352
1353	if (pci_is_enabled(dev)) {
1354		if (!dev->is_busmaster)
1355			pci_set_master(dev);
1356		return;
1357	}
1358
1359	retval = pci_enable_device(dev);
1360	if (retval)
1361		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1362			retval);
1363	pci_set_master(dev);
1364}
1365
1366static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1367{
1368	struct pci_dev *bridge;
1369	int err;
1370	int i, bars = 0;
1371
1372	/*
1373	 * Power state could be unknown at this point, either due to a fresh
1374	 * boot or a device removal call.  So get the current power state
1375	 * so that things like MSI message writing will behave as expected
1376	 * (e.g. if the device really is in D0 at enable time).
1377	 */
1378	if (dev->pm_cap) {
1379		u16 pmcsr;
1380		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1381		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1382	}
1383
1384	if (atomic_inc_return(&dev->enable_cnt) > 1)
1385		return 0;		/* already enabled */
1386
1387	bridge = pci_upstream_bridge(dev);
1388	if (bridge)
1389		pci_enable_bridge(bridge);
1390
1391	/* only skip sriov related */
1392	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1393		if (dev->resource[i].flags & flags)
1394			bars |= (1 << i);
1395	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1396		if (dev->resource[i].flags & flags)
1397			bars |= (1 << i);
1398
1399	err = do_pci_enable_device(dev, bars);
1400	if (err < 0)
1401		atomic_dec(&dev->enable_cnt);
1402	return err;
1403}
1404
1405/**
1406 * pci_enable_device_io - Initialize a device for use with IO space
1407 * @dev: PCI device to be initialized
1408 *
1409 *  Initialize device before it's used by a driver. Ask low-level code
1410 *  to enable I/O resources. Wake up the device if it was suspended.
1411 *  Beware, this function can fail.
1412 */
1413int pci_enable_device_io(struct pci_dev *dev)
1414{
1415	return pci_enable_device_flags(dev, IORESOURCE_IO);
1416}
1417EXPORT_SYMBOL(pci_enable_device_io);
1418
1419/**
1420 * pci_enable_device_mem - Initialize a device for use with Memory space
1421 * @dev: PCI device to be initialized
1422 *
1423 *  Initialize device before it's used by a driver. Ask low-level code
1424 *  to enable Memory resources. Wake up the device if it was suspended.
1425 *  Beware, this function can fail.
1426 */
1427int pci_enable_device_mem(struct pci_dev *dev)
1428{
1429	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1430}
1431EXPORT_SYMBOL(pci_enable_device_mem);
1432
1433/**
1434 * pci_enable_device - Initialize device before it's used by a driver.
1435 * @dev: PCI device to be initialized
1436 *
1437 *  Initialize device before it's used by a driver. Ask low-level code
1438 *  to enable I/O and memory. Wake up the device if it was suspended.
1439 *  Beware, this function can fail.
1440 *
1441 *  Note we don't actually enable the device many times if we call
1442 *  this function repeatedly (we just increment the count).
1443 */
1444int pci_enable_device(struct pci_dev *dev)
1445{
1446	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1447}
1448EXPORT_SYMBOL(pci_enable_device);
1449
1450/*
1451 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1452 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1453 * there's no need to track it separately.  pci_devres is initialized
1454 * when a device is enabled using managed PCI device enable interface.
1455 */
1456struct pci_devres {
1457	unsigned int enabled:1;
1458	unsigned int pinned:1;
1459	unsigned int orig_intx:1;
1460	unsigned int restore_intx:1;
1461	u32 region_mask;
1462};
1463
1464static void pcim_release(struct device *gendev, void *res)
1465{
1466	struct pci_dev *dev = to_pci_dev(gendev);
1467	struct pci_devres *this = res;
1468	int i;
1469
1470	if (dev->msi_enabled)
1471		pci_disable_msi(dev);
1472	if (dev->msix_enabled)
1473		pci_disable_msix(dev);
1474
1475	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1476		if (this->region_mask & (1 << i))
1477			pci_release_region(dev, i);
1478
1479	if (this->restore_intx)
1480		pci_intx(dev, this->orig_intx);
1481
1482	if (this->enabled && !this->pinned)
1483		pci_disable_device(dev);
1484}
1485
1486static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1487{
1488	struct pci_devres *dr, *new_dr;
1489
1490	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1491	if (dr)
1492		return dr;
1493
1494	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1495	if (!new_dr)
1496		return NULL;
1497	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1498}
1499
1500static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1501{
1502	if (pci_is_managed(pdev))
1503		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1504	return NULL;
1505}
1506
1507/**
1508 * pcim_enable_device - Managed pci_enable_device()
1509 * @pdev: PCI device to be initialized
1510 *
1511 * Managed pci_enable_device().
1512 */
1513int pcim_enable_device(struct pci_dev *pdev)
1514{
1515	struct pci_devres *dr;
1516	int rc;
1517
1518	dr = get_pci_dr(pdev);
1519	if (unlikely(!dr))
1520		return -ENOMEM;
1521	if (dr->enabled)
1522		return 0;
1523
1524	rc = pci_enable_device(pdev);
1525	if (!rc) {
1526		pdev->is_managed = 1;
1527		dr->enabled = 1;
1528	}
1529	return rc;
1530}
1531EXPORT_SYMBOL(pcim_enable_device);
1532
1533/**
1534 * pcim_pin_device - Pin managed PCI device
1535 * @pdev: PCI device to pin
1536 *
1537 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1538 * driver detach.  @pdev must have been enabled with
1539 * pcim_enable_device().
1540 */
1541void pcim_pin_device(struct pci_dev *pdev)
1542{
1543	struct pci_devres *dr;
1544
1545	dr = find_pci_dr(pdev);
1546	WARN_ON(!dr || !dr->enabled);
1547	if (dr)
1548		dr->pinned = 1;
1549}
1550EXPORT_SYMBOL(pcim_pin_device);
1551
1552/*
1553 * pcibios_add_device - provide arch specific hooks when adding device dev
1554 * @dev: the PCI device being added
1555 *
1556 * Permits the platform to provide architecture specific functionality when
1557 * devices are added. This is the default implementation. Architecture
1558 * implementations can override this.
1559 */
1560int __weak pcibios_add_device(struct pci_dev *dev)
1561{
1562	return 0;
1563}
1564
1565/**
1566 * pcibios_release_device - provide arch specific hooks when releasing device dev
1567 * @dev: the PCI device being released
1568 *
1569 * Permits the platform to provide architecture specific functionality when
1570 * devices are released. This is the default implementation. Architecture
1571 * implementations can override this.
1572 */
1573void __weak pcibios_release_device(struct pci_dev *dev) {}
1574
1575/**
1576 * pcibios_disable_device - disable arch specific PCI resources for device dev
1577 * @dev: the PCI device to disable
1578 *
1579 * Disables architecture specific PCI resources for the device. This
1580 * is the default implementation. Architecture implementations can
1581 * override this.
1582 */
1583void __weak pcibios_disable_device(struct pci_dev *dev) {}
1584
1585/**
1586 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1587 * @irq: ISA IRQ to penalize
1588 * @active: IRQ active or not
1589 *
1590 * Permits the platform to provide architecture-specific functionality when
1591 * penalizing ISA IRQs. This is the default implementation. Architecture
1592 * implementations can override this.
1593 */
1594void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1595
1596static void do_pci_disable_device(struct pci_dev *dev)
1597{
1598	u16 pci_command;
1599
1600	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1601	if (pci_command & PCI_COMMAND_MASTER) {
1602		pci_command &= ~PCI_COMMAND_MASTER;
1603		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1604	}
1605
1606	pcibios_disable_device(dev);
1607}
1608
1609/**
1610 * pci_disable_enabled_device - Disable device without updating enable_cnt
1611 * @dev: PCI device to disable
1612 *
1613 * NOTE: This function is a backend of PCI power management routines and is
1614 * not supposed to be called drivers.
1615 */
1616void pci_disable_enabled_device(struct pci_dev *dev)
1617{
1618	if (pci_is_enabled(dev))
1619		do_pci_disable_device(dev);
1620}
1621
1622/**
1623 * pci_disable_device - Disable PCI device after use
1624 * @dev: PCI device to be disabled
1625 *
1626 * Signal to the system that the PCI device is not in use by the system
1627 * anymore.  This only involves disabling PCI bus-mastering, if active.
1628 *
1629 * Note we don't actually disable the device until all callers of
1630 * pci_enable_device() have called pci_disable_device().
1631 */
1632void pci_disable_device(struct pci_dev *dev)
1633{
1634	struct pci_devres *dr;
1635
1636	dr = find_pci_dr(dev);
1637	if (dr)
1638		dr->enabled = 0;
1639
1640	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1641		      "disabling already-disabled device");
1642
1643	if (atomic_dec_return(&dev->enable_cnt) != 0)
1644		return;
1645
1646	do_pci_disable_device(dev);
1647
1648	dev->is_busmaster = 0;
1649}
1650EXPORT_SYMBOL(pci_disable_device);
1651
1652/**
1653 * pcibios_set_pcie_reset_state - set reset state for device dev
1654 * @dev: the PCIe device reset
1655 * @state: Reset state to enter into
1656 *
1657 *
1658 * Sets the PCIe reset state for the device. This is the default
1659 * implementation. Architecture implementations can override this.
1660 */
1661int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1662					enum pcie_reset_state state)
1663{
1664	return -EINVAL;
1665}
1666
1667/**
1668 * pci_set_pcie_reset_state - set reset state for device dev
1669 * @dev: the PCIe device reset
1670 * @state: Reset state to enter into
1671 *
1672 *
1673 * Sets the PCI reset state for the device.
1674 */
1675int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1676{
1677	return pcibios_set_pcie_reset_state(dev, state);
1678}
1679EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1680
1681/**
1682 * pci_check_pme_status - Check if given device has generated PME.
1683 * @dev: Device to check.
1684 *
1685 * Check the PME status of the device and if set, clear it and clear PME enable
1686 * (if set).  Return 'true' if PME status and PME enable were both set or
1687 * 'false' otherwise.
1688 */
1689bool pci_check_pme_status(struct pci_dev *dev)
1690{
1691	int pmcsr_pos;
1692	u16 pmcsr;
1693	bool ret = false;
1694
1695	if (!dev->pm_cap)
1696		return false;
1697
1698	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1699	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1700	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1701		return false;
1702
1703	/* Clear PME status. */
1704	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1705	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1706		/* Disable PME to avoid interrupt flood. */
1707		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1708		ret = true;
1709	}
1710
1711	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1712
1713	return ret;
1714}
1715
1716/**
1717 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1718 * @dev: Device to handle.
1719 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1720 *
1721 * Check if @dev has generated PME and queue a resume request for it in that
1722 * case.
1723 */
1724static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1725{
1726	if (pme_poll_reset && dev->pme_poll)
1727		dev->pme_poll = false;
1728
1729	if (pci_check_pme_status(dev)) {
1730		pci_wakeup_event(dev);
1731		pm_request_resume(&dev->dev);
1732	}
1733	return 0;
1734}
1735
1736/**
1737 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1738 * @bus: Top bus of the subtree to walk.
1739 */
1740void pci_pme_wakeup_bus(struct pci_bus *bus)
1741{
1742	if (bus)
1743		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1744}
1745
1746
1747/**
1748 * pci_pme_capable - check the capability of PCI device to generate PME#
1749 * @dev: PCI device to handle.
1750 * @state: PCI state from which device will issue PME#.
1751 */
1752bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1753{
1754	if (!dev->pm_cap)
1755		return false;
1756
1757	return !!(dev->pme_support & (1 << state));
1758}
1759EXPORT_SYMBOL(pci_pme_capable);
1760
1761static void pci_pme_list_scan(struct work_struct *work)
1762{
1763	struct pci_pme_device *pme_dev, *n;
1764
1765	mutex_lock(&pci_pme_list_mutex);
1766	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1767		if (pme_dev->dev->pme_poll) {
1768			struct pci_dev *bridge;
1769
1770			bridge = pme_dev->dev->bus->self;
1771			/*
1772			 * If bridge is in low power state, the
1773			 * configuration space of subordinate devices
1774			 * may be not accessible
1775			 */
1776			if (bridge && bridge->current_state != PCI_D0)
1777				continue;
1778			pci_pme_wakeup(pme_dev->dev, NULL);
1779		} else {
1780			list_del(&pme_dev->list);
1781			kfree(pme_dev);
1782		}
1783	}
1784	if (!list_empty(&pci_pme_list))
1785		schedule_delayed_work(&pci_pme_work,
1786				      msecs_to_jiffies(PME_TIMEOUT));
1787	mutex_unlock(&pci_pme_list_mutex);
1788}
1789
1790static void __pci_pme_active(struct pci_dev *dev, bool enable)
1791{
1792	u16 pmcsr;
1793
1794	if (!dev->pme_support)
1795		return;
1796
1797	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1798	/* Clear PME_Status by writing 1 to it and enable PME# */
1799	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1800	if (!enable)
1801		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1802
1803	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1804}
1805
1806/**
1807 * pci_pme_active - enable or disable PCI device's PME# function
1808 * @dev: PCI device to handle.
1809 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1810 *
1811 * The caller must verify that the device is capable of generating PME# before
1812 * calling this function with @enable equal to 'true'.
1813 */
1814void pci_pme_active(struct pci_dev *dev, bool enable)
1815{
1816	__pci_pme_active(dev, enable);
1817
1818	/*
1819	 * PCI (as opposed to PCIe) PME requires that the device have
1820	 * its PME# line hooked up correctly. Not all hardware vendors
1821	 * do this, so the PME never gets delivered and the device
1822	 * remains asleep. The easiest way around this is to
1823	 * periodically walk the list of suspended devices and check
1824	 * whether any have their PME flag set. The assumption is that
1825	 * we'll wake up often enough anyway that this won't be a huge
1826	 * hit, and the power savings from the devices will still be a
1827	 * win.
1828	 *
1829	 * Although PCIe uses in-band PME message instead of PME# line
1830	 * to report PME, PME does not work for some PCIe devices in
1831	 * reality.  For example, there are devices that set their PME
1832	 * status bits, but don't really bother to send a PME message;
1833	 * there are PCI Express Root Ports that don't bother to
1834	 * trigger interrupts when they receive PME messages from the
1835	 * devices below.  So PME poll is used for PCIe devices too.
1836	 */
1837
1838	if (dev->pme_poll) {
1839		struct pci_pme_device *pme_dev;
1840		if (enable) {
1841			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1842					  GFP_KERNEL);
1843			if (!pme_dev) {
1844				dev_warn(&dev->dev, "can't enable PME#\n");
1845				return;
1846			}
1847			pme_dev->dev = dev;
1848			mutex_lock(&pci_pme_list_mutex);
1849			list_add(&pme_dev->list, &pci_pme_list);
1850			if (list_is_singular(&pci_pme_list))
1851				schedule_delayed_work(&pci_pme_work,
1852						      msecs_to_jiffies(PME_TIMEOUT));
1853			mutex_unlock(&pci_pme_list_mutex);
1854		} else {
1855			mutex_lock(&pci_pme_list_mutex);
1856			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1857				if (pme_dev->dev == dev) {
1858					list_del(&pme_dev->list);
1859					kfree(pme_dev);
1860					break;
1861				}
1862			}
1863			mutex_unlock(&pci_pme_list_mutex);
1864		}
1865	}
1866
1867	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1868}
1869EXPORT_SYMBOL(pci_pme_active);
1870
1871/**
1872 * __pci_enable_wake - enable PCI device as wakeup event source
1873 * @dev: PCI device affected
1874 * @state: PCI state from which device will issue wakeup events
1875 * @runtime: True if the events are to be generated at run time
1876 * @enable: True to enable event generation; false to disable
1877 *
1878 * This enables the device as a wakeup event source, or disables it.
1879 * When such events involves platform-specific hooks, those hooks are
1880 * called automatically by this routine.
1881 *
1882 * Devices with legacy power management (no standard PCI PM capabilities)
1883 * always require such platform hooks.
1884 *
1885 * RETURN VALUE:
1886 * 0 is returned on success
1887 * -EINVAL is returned if device is not supposed to wake up the system
1888 * Error code depending on the platform is returned if both the platform and
1889 * the native mechanism fail to enable the generation of wake-up events
1890 */
1891int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1892		      bool runtime, bool enable)
1893{
1894	int ret = 0;
1895
1896	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1897		return -EINVAL;
1898
1899	/* Don't do the same thing twice in a row for one device. */
1900	if (!!enable == !!dev->wakeup_prepared)
1901		return 0;
1902
1903	/*
1904	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1905	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1906	 * enable.  To disable wake-up we call the platform first, for symmetry.
1907	 */
1908
1909	if (enable) {
1910		int error;
1911
1912		if (pci_pme_capable(dev, state))
1913			pci_pme_active(dev, true);
1914		else
1915			ret = 1;
1916		error = runtime ? platform_pci_run_wake(dev, true) :
1917					platform_pci_sleep_wake(dev, true);
1918		if (ret)
1919			ret = error;
1920		if (!ret)
1921			dev->wakeup_prepared = true;
1922	} else {
1923		if (runtime)
1924			platform_pci_run_wake(dev, false);
1925		else
1926			platform_pci_sleep_wake(dev, false);
1927		pci_pme_active(dev, false);
1928		dev->wakeup_prepared = false;
1929	}
1930
1931	return ret;
1932}
1933EXPORT_SYMBOL(__pci_enable_wake);
1934
1935/**
1936 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1937 * @dev: PCI device to prepare
1938 * @enable: True to enable wake-up event generation; false to disable
1939 *
1940 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1941 * and this function allows them to set that up cleanly - pci_enable_wake()
1942 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1943 * ordering constraints.
1944 *
1945 * This function only returns error code if the device is not capable of
1946 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1947 * enable wake-up power for it.
1948 */
1949int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1950{
1951	return pci_pme_capable(dev, PCI_D3cold) ?
1952			pci_enable_wake(dev, PCI_D3cold, enable) :
1953			pci_enable_wake(dev, PCI_D3hot, enable);
1954}
1955EXPORT_SYMBOL(pci_wake_from_d3);
1956
1957/**
1958 * pci_target_state - find an appropriate low power state for a given PCI dev
1959 * @dev: PCI device
1960 *
1961 * Use underlying platform code to find a supported low power state for @dev.
1962 * If the platform can't manage @dev, return the deepest state from which it
1963 * can generate wake events, based on any available PME info.
1964 */
1965static pci_power_t pci_target_state(struct pci_dev *dev)
1966{
1967	pci_power_t target_state = PCI_D3hot;
1968
1969	if (platform_pci_power_manageable(dev)) {
1970		/*
1971		 * Call the platform to choose the target state of the device
1972		 * and enable wake-up from this state if supported.
1973		 */
1974		pci_power_t state = platform_pci_choose_state(dev);
1975
1976		switch (state) {
1977		case PCI_POWER_ERROR:
1978		case PCI_UNKNOWN:
1979			break;
1980		case PCI_D1:
1981		case PCI_D2:
1982			if (pci_no_d1d2(dev))
1983				break;
1984		default:
1985			target_state = state;
1986		}
1987
1988		return target_state;
1989	}
1990
1991	if (!dev->pm_cap)
1992		target_state = PCI_D0;
1993
1994	/*
1995	 * If the device is in D3cold even though it's not power-manageable by
1996	 * the platform, it may have been powered down by non-standard means.
1997	 * Best to let it slumber.
1998	 */
1999	if (dev->current_state == PCI_D3cold)
2000		target_state = PCI_D3cold;
2001
2002	if (device_may_wakeup(&dev->dev)) {
2003		/*
2004		 * Find the deepest state from which the device can generate
2005		 * wake-up events, make it the target state and enable device
2006		 * to generate PME#.
2007		 */
2008		if (dev->pme_support) {
2009			while (target_state
2010			      && !(dev->pme_support & (1 << target_state)))
2011				target_state--;
2012		}
2013	}
2014
2015	return target_state;
2016}
2017
2018/**
2019 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2020 * @dev: Device to handle.
2021 *
2022 * Choose the power state appropriate for the device depending on whether
2023 * it can wake up the system and/or is power manageable by the platform
2024 * (PCI_D3hot is the default) and put the device into that state.
2025 */
2026int pci_prepare_to_sleep(struct pci_dev *dev)
2027{
2028	pci_power_t target_state = pci_target_state(dev);
2029	int error;
2030
2031	if (target_state == PCI_POWER_ERROR)
2032		return -EIO;
2033
2034	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
2035
2036	error = pci_set_power_state(dev, target_state);
2037
2038	if (error)
2039		pci_enable_wake(dev, target_state, false);
2040
2041	return error;
2042}
2043EXPORT_SYMBOL(pci_prepare_to_sleep);
2044
2045/**
2046 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2047 * @dev: Device to handle.
2048 *
2049 * Disable device's system wake-up capability and put it into D0.
2050 */
2051int pci_back_from_sleep(struct pci_dev *dev)
2052{
2053	pci_enable_wake(dev, PCI_D0, false);
2054	return pci_set_power_state(dev, PCI_D0);
2055}
2056EXPORT_SYMBOL(pci_back_from_sleep);
2057
2058/**
2059 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2060 * @dev: PCI device being suspended.
2061 *
2062 * Prepare @dev to generate wake-up events at run time and put it into a low
2063 * power state.
2064 */
2065int pci_finish_runtime_suspend(struct pci_dev *dev)
2066{
2067	pci_power_t target_state = pci_target_state(dev);
2068	int error;
2069
2070	if (target_state == PCI_POWER_ERROR)
2071		return -EIO;
2072
2073	dev->runtime_d3cold = target_state == PCI_D3cold;
2074
2075	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2076
2077	error = pci_set_power_state(dev, target_state);
2078
2079	if (error) {
2080		__pci_enable_wake(dev, target_state, true, false);
2081		dev->runtime_d3cold = false;
2082	}
2083
2084	return error;
2085}
2086
2087/**
2088 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2089 * @dev: Device to check.
2090 *
2091 * Return true if the device itself is capable of generating wake-up events
2092 * (through the platform or using the native PCIe PME) or if the device supports
2093 * PME and one of its upstream bridges can generate wake-up events.
2094 */
2095bool pci_dev_run_wake(struct pci_dev *dev)
2096{
2097	struct pci_bus *bus = dev->bus;
2098
2099	if (device_run_wake(&dev->dev))
2100		return true;
2101
2102	if (!dev->pme_support)
2103		return false;
2104
2105	/* PME-capable in principle, but not from the intended sleep state */
2106	if (!pci_pme_capable(dev, pci_target_state(dev)))
2107		return false;
2108
2109	while (bus->parent) {
2110		struct pci_dev *bridge = bus->self;
2111
2112		if (device_run_wake(&bridge->dev))
2113			return true;
2114
2115		bus = bus->parent;
2116	}
2117
2118	/* We have reached the root bus. */
2119	if (bus->bridge)
2120		return device_run_wake(bus->bridge);
2121
2122	return false;
2123}
2124EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2125
2126/**
2127 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2128 * @pci_dev: Device to check.
2129 *
2130 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2131 * reconfigured due to wakeup settings difference between system and runtime
2132 * suspend and the current power state of it is suitable for the upcoming
2133 * (system) transition.
2134 *
2135 * If the device is not configured for system wakeup, disable PME for it before
2136 * returning 'true' to prevent it from waking up the system unnecessarily.
2137 */
2138bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2139{
2140	struct device *dev = &pci_dev->dev;
2141
2142	if (!pm_runtime_suspended(dev)
2143	    || pci_target_state(pci_dev) != pci_dev->current_state
2144	    || platform_pci_need_resume(pci_dev))
2145		return false;
2146
2147	/*
2148	 * At this point the device is good to go unless it's been configured
2149	 * to generate PME at the runtime suspend time, but it is not supposed
2150	 * to wake up the system.  In that case, simply disable PME for it
2151	 * (it will have to be re-enabled on exit from system resume).
2152	 *
2153	 * If the device's power state is D3cold and the platform check above
2154	 * hasn't triggered, the device's configuration is suitable and we don't
2155	 * need to manipulate it at all.
2156	 */
2157	spin_lock_irq(&dev->power.lock);
2158
2159	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2160	    !device_may_wakeup(dev))
2161		__pci_pme_active(pci_dev, false);
2162
2163	spin_unlock_irq(&dev->power.lock);
2164	return true;
2165}
2166
2167/**
2168 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2169 * @pci_dev: Device to handle.
2170 *
2171 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2172 * it might have been disabled during the prepare phase of system suspend if
2173 * the device was not configured for system wakeup.
2174 */
2175void pci_dev_complete_resume(struct pci_dev *pci_dev)
2176{
2177	struct device *dev = &pci_dev->dev;
2178
2179	if (!pci_dev_run_wake(pci_dev))
2180		return;
2181
2182	spin_lock_irq(&dev->power.lock);
2183
2184	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2185		__pci_pme_active(pci_dev, true);
2186
2187	spin_unlock_irq(&dev->power.lock);
2188}
2189
2190void pci_config_pm_runtime_get(struct pci_dev *pdev)
2191{
2192	struct device *dev = &pdev->dev;
2193	struct device *parent = dev->parent;
2194
2195	if (parent)
2196		pm_runtime_get_sync(parent);
2197	pm_runtime_get_noresume(dev);
2198	/*
2199	 * pdev->current_state is set to PCI_D3cold during suspending,
2200	 * so wait until suspending completes
2201	 */
2202	pm_runtime_barrier(dev);
2203	/*
2204	 * Only need to resume devices in D3cold, because config
2205	 * registers are still accessible for devices suspended but
2206	 * not in D3cold.
2207	 */
2208	if (pdev->current_state == PCI_D3cold)
2209		pm_runtime_resume(dev);
2210}
2211
2212void pci_config_pm_runtime_put(struct pci_dev *pdev)
2213{
2214	struct device *dev = &pdev->dev;
2215	struct device *parent = dev->parent;
2216
2217	pm_runtime_put(dev);
2218	if (parent)
2219		pm_runtime_put_sync(parent);
2220}
2221
2222/**
2223 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2224 * @bridge: Bridge to check
2225 *
2226 * This function checks if it is possible to move the bridge to D3.
2227 * Currently we only allow D3 for recent enough PCIe ports.
2228 */
2229bool pci_bridge_d3_possible(struct pci_dev *bridge)
2230{
2231	unsigned int year;
2232
2233	if (!pci_is_pcie(bridge))
2234		return false;
2235
2236	switch (pci_pcie_type(bridge)) {
2237	case PCI_EXP_TYPE_ROOT_PORT:
2238	case PCI_EXP_TYPE_UPSTREAM:
2239	case PCI_EXP_TYPE_DOWNSTREAM:
2240		if (pci_bridge_d3_disable)
2241			return false;
2242
2243		/*
2244		 * Hotplug interrupts cannot be delivered if the link is down,
2245		 * so parents of a hotplug port must stay awake. In addition,
2246		 * hotplug ports handled by firmware in System Management Mode
2247		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2248		 * For simplicity, disallow in general for now.
2249		 */
2250		if (bridge->is_hotplug_bridge)
2251			return false;
2252
2253		if (pci_bridge_d3_force)
2254			return true;
2255
2256		/*
2257		 * It should be safe to put PCIe ports from 2015 or newer
2258		 * to D3.
2259		 */
2260		if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2261		    year >= 2015) {
2262			return true;
2263		}
2264		break;
2265	}
2266
2267	return false;
2268}
2269
2270static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2271{
2272	bool *d3cold_ok = data;
2273
2274	if (/* The device needs to be allowed to go D3cold ... */
2275	    dev->no_d3cold || !dev->d3cold_allowed ||
2276
2277	    /* ... and if it is wakeup capable to do so from D3cold. */
2278	    (device_may_wakeup(&dev->dev) &&
2279	     !pci_pme_capable(dev, PCI_D3cold)) ||
2280
2281	    /* If it is a bridge it must be allowed to go to D3. */
2282	    !pci_power_manageable(dev))
2283
2284		*d3cold_ok = false;
2285
2286	return !*d3cold_ok;
2287}
2288
2289/*
2290 * pci_bridge_d3_update - Update bridge D3 capabilities
2291 * @dev: PCI device which is changed
2292 *
2293 * Update upstream bridge PM capabilities accordingly depending on if the
2294 * device PM configuration was changed or the device is being removed.  The
2295 * change is also propagated upstream.
2296 */
2297void pci_bridge_d3_update(struct pci_dev *dev)
2298{
2299	bool remove = !device_is_registered(&dev->dev);
2300	struct pci_dev *bridge;
2301	bool d3cold_ok = true;
2302
2303	bridge = pci_upstream_bridge(dev);
2304	if (!bridge || !pci_bridge_d3_possible(bridge))
2305		return;
2306
2307	/*
2308	 * If D3 is currently allowed for the bridge, removing one of its
2309	 * children won't change that.
2310	 */
2311	if (remove && bridge->bridge_d3)
2312		return;
2313
2314	/*
2315	 * If D3 is currently allowed for the bridge and a child is added or
2316	 * changed, disallowance of D3 can only be caused by that child, so
2317	 * we only need to check that single device, not any of its siblings.
2318	 *
2319	 * If D3 is currently not allowed for the bridge, checking the device
2320	 * first may allow us to skip checking its siblings.
2321	 */
2322	if (!remove)
2323		pci_dev_check_d3cold(dev, &d3cold_ok);
2324
2325	/*
2326	 * If D3 is currently not allowed for the bridge, this may be caused
2327	 * either by the device being changed/removed or any of its siblings,
2328	 * so we need to go through all children to find out if one of them
2329	 * continues to block D3.
2330	 */
2331	if (d3cold_ok && !bridge->bridge_d3)
2332		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2333			     &d3cold_ok);
2334
2335	if (bridge->bridge_d3 != d3cold_ok) {
2336		bridge->bridge_d3 = d3cold_ok;
2337		/* Propagate change to upstream bridges */
2338		pci_bridge_d3_update(bridge);
2339	}
2340}
2341
2342/**
2343 * pci_d3cold_enable - Enable D3cold for device
2344 * @dev: PCI device to handle
2345 *
2346 * This function can be used in drivers to enable D3cold from the device
2347 * they handle.  It also updates upstream PCI bridge PM capabilities
2348 * accordingly.
2349 */
2350void pci_d3cold_enable(struct pci_dev *dev)
2351{
2352	if (dev->no_d3cold) {
2353		dev->no_d3cold = false;
2354		pci_bridge_d3_update(dev);
2355	}
2356}
2357EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2358
2359/**
2360 * pci_d3cold_disable - Disable D3cold for device
2361 * @dev: PCI device to handle
2362 *
2363 * This function can be used in drivers to disable D3cold from the device
2364 * they handle.  It also updates upstream PCI bridge PM capabilities
2365 * accordingly.
2366 */
2367void pci_d3cold_disable(struct pci_dev *dev)
2368{
2369	if (!dev->no_d3cold) {
2370		dev->no_d3cold = true;
2371		pci_bridge_d3_update(dev);
2372	}
2373}
2374EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2375
2376/**
2377 * pci_pm_init - Initialize PM functions of given PCI device
2378 * @dev: PCI device to handle.
2379 */
2380void pci_pm_init(struct pci_dev *dev)
2381{
2382	int pm;
2383	u16 pmc;
2384
2385	pm_runtime_forbid(&dev->dev);
2386	pm_runtime_set_active(&dev->dev);
2387	pm_runtime_enable(&dev->dev);
2388	device_enable_async_suspend(&dev->dev);
2389	dev->wakeup_prepared = false;
2390
2391	dev->pm_cap = 0;
2392	dev->pme_support = 0;
2393
2394	/* find PCI PM capability in list */
2395	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2396	if (!pm)
2397		return;
2398	/* Check device's ability to generate PME# */
2399	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2400
2401	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2402		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2403			pmc & PCI_PM_CAP_VER_MASK);
2404		return;
2405	}
2406
2407	dev->pm_cap = pm;
2408	dev->d3_delay = PCI_PM_D3_WAIT;
2409	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2410	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2411	dev->d3cold_allowed = true;
2412
2413	dev->d1_support = false;
2414	dev->d2_support = false;
2415	if (!pci_no_d1d2(dev)) {
2416		if (pmc & PCI_PM_CAP_D1)
2417			dev->d1_support = true;
2418		if (pmc & PCI_PM_CAP_D2)
2419			dev->d2_support = true;
2420
2421		if (dev->d1_support || dev->d2_support)
2422			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2423				   dev->d1_support ? " D1" : "",
2424				   dev->d2_support ? " D2" : "");
2425	}
2426
2427	pmc &= PCI_PM_CAP_PME_MASK;
2428	if (pmc) {
2429		dev_printk(KERN_DEBUG, &dev->dev,
2430			 "PME# supported from%s%s%s%s%s\n",
2431			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2432			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2433			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2434			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2435			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2436		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2437		dev->pme_poll = true;
2438		/*
2439		 * Make device's PM flags reflect the wake-up capability, but
2440		 * let the user space enable it to wake up the system as needed.
2441		 */
2442		device_set_wakeup_capable(&dev->dev, true);
2443		/* Disable the PME# generation functionality */
2444		pci_pme_active(dev, false);
2445	}
2446}
2447
2448static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2449{
2450	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2451
2452	switch (prop) {
2453	case PCI_EA_P_MEM:
2454	case PCI_EA_P_VF_MEM:
2455		flags |= IORESOURCE_MEM;
2456		break;
2457	case PCI_EA_P_MEM_PREFETCH:
2458	case PCI_EA_P_VF_MEM_PREFETCH:
2459		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2460		break;
2461	case PCI_EA_P_IO:
2462		flags |= IORESOURCE_IO;
2463		break;
2464	default:
2465		return 0;
2466	}
2467
2468	return flags;
2469}
2470
2471static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2472					    u8 prop)
2473{
2474	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2475		return &dev->resource[bei];
2476#ifdef CONFIG_PCI_IOV
2477	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2478		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2479		return &dev->resource[PCI_IOV_RESOURCES +
2480				      bei - PCI_EA_BEI_VF_BAR0];
2481#endif
2482	else if (bei == PCI_EA_BEI_ROM)
2483		return &dev->resource[PCI_ROM_RESOURCE];
2484	else
2485		return NULL;
2486}
2487
2488/* Read an Enhanced Allocation (EA) entry */
2489static int pci_ea_read(struct pci_dev *dev, int offset)
2490{
2491	struct resource *res;
2492	int ent_size, ent_offset = offset;
2493	resource_size_t start, end;
2494	unsigned long flags;
2495	u32 dw0, bei, base, max_offset;
2496	u8 prop;
2497	bool support_64 = (sizeof(resource_size_t) >= 8);
2498
2499	pci_read_config_dword(dev, ent_offset, &dw0);
2500	ent_offset += 4;
2501
2502	/* Entry size field indicates DWORDs after 1st */
2503	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2504
2505	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2506		goto out;
2507
2508	bei = (dw0 & PCI_EA_BEI) >> 4;
2509	prop = (dw0 & PCI_EA_PP) >> 8;
2510
2511	/*
2512	 * If the Property is in the reserved range, try the Secondary
2513	 * Property instead.
2514	 */
2515	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2516		prop = (dw0 & PCI_EA_SP) >> 16;
2517	if (prop > PCI_EA_P_BRIDGE_IO)
2518		goto out;
2519
2520	res = pci_ea_get_resource(dev, bei, prop);
2521	if (!res) {
2522		dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2523		goto out;
2524	}
2525
2526	flags = pci_ea_flags(dev, prop);
2527	if (!flags) {
2528		dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2529		goto out;
2530	}
2531
2532	/* Read Base */
2533	pci_read_config_dword(dev, ent_offset, &base);
2534	start = (base & PCI_EA_FIELD_MASK);
2535	ent_offset += 4;
2536
2537	/* Read MaxOffset */
2538	pci_read_config_dword(dev, ent_offset, &max_offset);
2539	ent_offset += 4;
2540
2541	/* Read Base MSBs (if 64-bit entry) */
2542	if (base & PCI_EA_IS_64) {
2543		u32 base_upper;
2544
2545		pci_read_config_dword(dev, ent_offset, &base_upper);
2546		ent_offset += 4;
2547
2548		flags |= IORESOURCE_MEM_64;
2549
2550		/* entry starts above 32-bit boundary, can't use */
2551		if (!support_64 && base_upper)
2552			goto out;
2553
2554		if (support_64)
2555			start |= ((u64)base_upper << 32);
2556	}
2557
2558	end = start + (max_offset | 0x03);
2559
2560	/* Read MaxOffset MSBs (if 64-bit entry) */
2561	if (max_offset & PCI_EA_IS_64) {
2562		u32 max_offset_upper;
2563
2564		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2565		ent_offset += 4;
2566
2567		flags |= IORESOURCE_MEM_64;
2568
2569		/* entry too big, can't use */
2570		if (!support_64 && max_offset_upper)
2571			goto out;
2572
2573		if (support_64)
2574			end += ((u64)max_offset_upper << 32);
2575	}
2576
2577	if (end < start) {
2578		dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2579		goto out;
2580	}
2581
2582	if (ent_size != ent_offset - offset) {
2583		dev_err(&dev->dev,
2584			"EA Entry Size (%d) does not match length read (%d)\n",
2585			ent_size, ent_offset - offset);
2586		goto out;
2587	}
2588
2589	res->name = pci_name(dev);
2590	res->start = start;
2591	res->end = end;
2592	res->flags = flags;
2593
2594	if (bei <= PCI_EA_BEI_BAR5)
2595		dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2596			   bei, res, prop);
2597	else if (bei == PCI_EA_BEI_ROM)
2598		dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2599			   res, prop);
2600	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2601		dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2602			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2603	else
2604		dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2605			   bei, res, prop);
2606
2607out:
2608	return offset + ent_size;
2609}
2610
2611/* Enhanced Allocation Initialization */
2612void pci_ea_init(struct pci_dev *dev)
2613{
2614	int ea;
2615	u8 num_ent;
2616	int offset;
2617	int i;
2618
2619	/* find PCI EA capability in list */
2620	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2621	if (!ea)
2622		return;
2623
2624	/* determine the number of entries */
2625	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2626					&num_ent);
2627	num_ent &= PCI_EA_NUM_ENT_MASK;
2628
2629	offset = ea + PCI_EA_FIRST_ENT;
2630
2631	/* Skip DWORD 2 for type 1 functions */
2632	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2633		offset += 4;
2634
2635	/* parse each EA entry */
2636	for (i = 0; i < num_ent; ++i)
2637		offset = pci_ea_read(dev, offset);
2638}
2639
2640static void pci_add_saved_cap(struct pci_dev *pci_dev,
2641	struct pci_cap_saved_state *new_cap)
2642{
2643	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2644}
2645
2646/**
2647 * _pci_add_cap_save_buffer - allocate buffer for saving given
2648 *                            capability registers
2649 * @dev: the PCI device
2650 * @cap: the capability to allocate the buffer for
2651 * @extended: Standard or Extended capability ID
2652 * @size: requested size of the buffer
2653 */
2654static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2655				    bool extended, unsigned int size)
2656{
2657	int pos;
2658	struct pci_cap_saved_state *save_state;
2659
2660	if (extended)
2661		pos = pci_find_ext_capability(dev, cap);
2662	else
2663		pos = pci_find_capability(dev, cap);
2664
2665	if (!pos)
2666		return 0;
2667
2668	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2669	if (!save_state)
2670		return -ENOMEM;
2671
2672	save_state->cap.cap_nr = cap;
2673	save_state->cap.cap_extended = extended;
2674	save_state->cap.size = size;
2675	pci_add_saved_cap(dev, save_state);
2676
2677	return 0;
2678}
2679
2680int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2681{
2682	return _pci_add_cap_save_buffer(dev, cap, false, size);
2683}
2684
2685int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2686{
2687	return _pci_add_cap_save_buffer(dev, cap, true, size);
2688}
2689
2690/**
2691 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2692 * @dev: the PCI device
2693 */
2694void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2695{
2696	int error;
2697
2698	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2699					PCI_EXP_SAVE_REGS * sizeof(u16));
2700	if (error)
2701		dev_err(&dev->dev,
2702			"unable to preallocate PCI Express save buffer\n");
2703
2704	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2705	if (error)
2706		dev_err(&dev->dev,
2707			"unable to preallocate PCI-X save buffer\n");
2708
2709	pci_allocate_vc_save_buffers(dev);
2710}
2711
2712void pci_free_cap_save_buffers(struct pci_dev *dev)
2713{
2714	struct pci_cap_saved_state *tmp;
2715	struct hlist_node *n;
2716
2717	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2718		kfree(tmp);
2719}
2720
2721/**
2722 * pci_configure_ari - enable or disable ARI forwarding
2723 * @dev: the PCI device
2724 *
2725 * If @dev and its upstream bridge both support ARI, enable ARI in the
2726 * bridge.  Otherwise, disable ARI in the bridge.
2727 */
2728void pci_configure_ari(struct pci_dev *dev)
2729{
2730	u32 cap;
2731	struct pci_dev *bridge;
2732
2733	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2734		return;
2735
2736	bridge = dev->bus->self;
2737	if (!bridge)
2738		return;
2739
2740	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2741	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2742		return;
2743
2744	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2745		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2746					 PCI_EXP_DEVCTL2_ARI);
2747		bridge->ari_enabled = 1;
2748	} else {
2749		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2750					   PCI_EXP_DEVCTL2_ARI);
2751		bridge->ari_enabled = 0;
2752	}
2753}
2754
2755static int pci_acs_enable;
2756
2757/**
2758 * pci_request_acs - ask for ACS to be enabled if supported
2759 */
2760void pci_request_acs(void)
2761{
2762	pci_acs_enable = 1;
2763}
2764
2765/**
2766 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2767 * @dev: the PCI device
2768 */
2769static void pci_std_enable_acs(struct pci_dev *dev)
2770{
2771	int pos;
2772	u16 cap;
2773	u16 ctrl;
2774
2775	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2776	if (!pos)
2777		return;
2778
2779	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2780	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2781
2782	/* Source Validation */
2783	ctrl |= (cap & PCI_ACS_SV);
2784
2785	/* P2P Request Redirect */
2786	ctrl |= (cap & PCI_ACS_RR);
2787
2788	/* P2P Completion Redirect */
2789	ctrl |= (cap & PCI_ACS_CR);
2790
2791	/* Upstream Forwarding */
2792	ctrl |= (cap & PCI_ACS_UF);
2793
2794	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 
 
2795}
2796
2797/**
2798 * pci_enable_acs - enable ACS if hardware support it
2799 * @dev: the PCI device
2800 */
2801void pci_enable_acs(struct pci_dev *dev)
2802{
2803	if (!pci_acs_enable)
2804		return;
2805
2806	if (!pci_dev_specific_enable_acs(dev))
2807		return;
2808
2809	pci_std_enable_acs(dev);
2810}
2811
2812static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2813{
2814	int pos;
2815	u16 cap, ctrl;
2816
2817	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2818	if (!pos)
2819		return false;
2820
2821	/*
2822	 * Except for egress control, capabilities are either required
2823	 * or only required if controllable.  Features missing from the
2824	 * capability field can therefore be assumed as hard-wired enabled.
2825	 */
2826	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2827	acs_flags &= (cap | PCI_ACS_EC);
2828
2829	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2830	return (ctrl & acs_flags) == acs_flags;
2831}
2832
2833/**
2834 * pci_acs_enabled - test ACS against required flags for a given device
2835 * @pdev: device to test
2836 * @acs_flags: required PCI ACS flags
2837 *
2838 * Return true if the device supports the provided flags.  Automatically
2839 * filters out flags that are not implemented on multifunction devices.
2840 *
2841 * Note that this interface checks the effective ACS capabilities of the
2842 * device rather than the actual capabilities.  For instance, most single
2843 * function endpoints are not required to support ACS because they have no
2844 * opportunity for peer-to-peer access.  We therefore return 'true'
2845 * regardless of whether the device exposes an ACS capability.  This makes
2846 * it much easier for callers of this function to ignore the actual type
2847 * or topology of the device when testing ACS support.
2848 */
2849bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2850{
2851	int ret;
2852
2853	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2854	if (ret >= 0)
2855		return ret > 0;
2856
2857	/*
2858	 * Conventional PCI and PCI-X devices never support ACS, either
2859	 * effectively or actually.  The shared bus topology implies that
2860	 * any device on the bus can receive or snoop DMA.
2861	 */
2862	if (!pci_is_pcie(pdev))
2863		return false;
2864
2865	switch (pci_pcie_type(pdev)) {
2866	/*
2867	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2868	 * but since their primary interface is PCI/X, we conservatively
2869	 * handle them as we would a non-PCIe device.
2870	 */
2871	case PCI_EXP_TYPE_PCIE_BRIDGE:
2872	/*
2873	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2874	 * applicable... must never implement an ACS Extended Capability...".
2875	 * This seems arbitrary, but we take a conservative interpretation
2876	 * of this statement.
2877	 */
2878	case PCI_EXP_TYPE_PCI_BRIDGE:
2879	case PCI_EXP_TYPE_RC_EC:
2880		return false;
2881	/*
2882	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2883	 * implement ACS in order to indicate their peer-to-peer capabilities,
2884	 * regardless of whether they are single- or multi-function devices.
2885	 */
2886	case PCI_EXP_TYPE_DOWNSTREAM:
2887	case PCI_EXP_TYPE_ROOT_PORT:
2888		return pci_acs_flags_enabled(pdev, acs_flags);
2889	/*
2890	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2891	 * implemented by the remaining PCIe types to indicate peer-to-peer
2892	 * capabilities, but only when they are part of a multifunction
2893	 * device.  The footnote for section 6.12 indicates the specific
2894	 * PCIe types included here.
2895	 */
2896	case PCI_EXP_TYPE_ENDPOINT:
2897	case PCI_EXP_TYPE_UPSTREAM:
2898	case PCI_EXP_TYPE_LEG_END:
2899	case PCI_EXP_TYPE_RC_END:
2900		if (!pdev->multifunction)
2901			break;
2902
2903		return pci_acs_flags_enabled(pdev, acs_flags);
2904	}
2905
2906	/*
2907	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2908	 * to single function devices with the exception of downstream ports.
2909	 */
2910	return true;
2911}
2912
2913/**
2914 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2915 * @start: starting downstream device
2916 * @end: ending upstream device or NULL to search to the root bus
2917 * @acs_flags: required flags
2918 *
2919 * Walk up a device tree from start to end testing PCI ACS support.  If
2920 * any step along the way does not support the required flags, return false.
2921 */
2922bool pci_acs_path_enabled(struct pci_dev *start,
2923			  struct pci_dev *end, u16 acs_flags)
2924{
2925	struct pci_dev *pdev, *parent = start;
2926
2927	do {
2928		pdev = parent;
2929
2930		if (!pci_acs_enabled(pdev, acs_flags))
2931			return false;
2932
2933		if (pci_is_root_bus(pdev->bus))
2934			return (end == NULL);
2935
2936		parent = pdev->bus->self;
2937	} while (pdev != end);
2938
2939	return true;
2940}
2941
2942/**
2943 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2944 * @dev: the PCI device
2945 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2946 *
2947 * Perform INTx swizzling for a device behind one level of bridge.  This is
2948 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2949 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2950 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2951 * the PCI Express Base Specification, Revision 2.1)
2952 */
2953u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2954{
2955	int slot;
2956
2957	if (pci_ari_enabled(dev->bus))
2958		slot = 0;
2959	else
2960		slot = PCI_SLOT(dev->devfn);
2961
2962	return (((pin - 1) + slot) % 4) + 1;
2963}
2964
2965int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2966{
2967	u8 pin;
2968
2969	pin = dev->pin;
2970	if (!pin)
2971		return -1;
2972
2973	while (!pci_is_root_bus(dev->bus)) {
2974		pin = pci_swizzle_interrupt_pin(dev, pin);
2975		dev = dev->bus->self;
2976	}
2977	*bridge = dev;
2978	return pin;
2979}
2980
2981/**
2982 * pci_common_swizzle - swizzle INTx all the way to root bridge
2983 * @dev: the PCI device
2984 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2985 *
2986 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2987 * bridges all the way up to a PCI root bus.
2988 */
2989u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2990{
2991	u8 pin = *pinp;
2992
2993	while (!pci_is_root_bus(dev->bus)) {
2994		pin = pci_swizzle_interrupt_pin(dev, pin);
2995		dev = dev->bus->self;
2996	}
2997	*pinp = pin;
2998	return PCI_SLOT(dev->devfn);
2999}
3000EXPORT_SYMBOL_GPL(pci_common_swizzle);
3001
3002/**
3003 *	pci_release_region - Release a PCI bar
3004 *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3005 *	@bar: BAR to release
3006 *
3007 *	Releases the PCI I/O and memory resources previously reserved by a
3008 *	successful call to pci_request_region.  Call this function only
3009 *	after all use of the PCI regions has ceased.
3010 */
3011void pci_release_region(struct pci_dev *pdev, int bar)
3012{
3013	struct pci_devres *dr;
3014
3015	if (pci_resource_len(pdev, bar) == 0)
3016		return;
3017	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3018		release_region(pci_resource_start(pdev, bar),
3019				pci_resource_len(pdev, bar));
3020	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3021		release_mem_region(pci_resource_start(pdev, bar),
3022				pci_resource_len(pdev, bar));
3023
3024	dr = find_pci_dr(pdev);
3025	if (dr)
3026		dr->region_mask &= ~(1 << bar);
3027}
3028EXPORT_SYMBOL(pci_release_region);
3029
3030/**
3031 *	__pci_request_region - Reserved PCI I/O and memory resource
3032 *	@pdev: PCI device whose resources are to be reserved
3033 *	@bar: BAR to be reserved
3034 *	@res_name: Name to be associated with resource.
3035 *	@exclusive: whether the region access is exclusive or not
3036 *
3037 *	Mark the PCI region associated with PCI device @pdev BR @bar as
3038 *	being reserved by owner @res_name.  Do not access any
3039 *	address inside the PCI regions unless this call returns
3040 *	successfully.
3041 *
3042 *	If @exclusive is set, then the region is marked so that userspace
3043 *	is explicitly not allowed to map the resource via /dev/mem or
3044 *	sysfs MMIO access.
3045 *
3046 *	Returns 0 on success, or %EBUSY on error.  A warning
3047 *	message is also printed on failure.
3048 */
3049static int __pci_request_region(struct pci_dev *pdev, int bar,
3050				const char *res_name, int exclusive)
3051{
3052	struct pci_devres *dr;
3053
3054	if (pci_resource_len(pdev, bar) == 0)
3055		return 0;
3056
3057	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3058		if (!request_region(pci_resource_start(pdev, bar),
3059			    pci_resource_len(pdev, bar), res_name))
3060			goto err_out;
3061	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3062		if (!__request_mem_region(pci_resource_start(pdev, bar),
3063					pci_resource_len(pdev, bar), res_name,
3064					exclusive))
3065			goto err_out;
3066	}
3067
3068	dr = find_pci_dr(pdev);
3069	if (dr)
3070		dr->region_mask |= 1 << bar;
3071
3072	return 0;
3073
3074err_out:
3075	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3076		 &pdev->resource[bar]);
3077	return -EBUSY;
3078}
3079
3080/**
3081 *	pci_request_region - Reserve PCI I/O and memory resource
3082 *	@pdev: PCI device whose resources are to be reserved
3083 *	@bar: BAR to be reserved
3084 *	@res_name: Name to be associated with resource
3085 *
3086 *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3087 *	being reserved by owner @res_name.  Do not access any
3088 *	address inside the PCI regions unless this call returns
3089 *	successfully.
3090 *
3091 *	Returns 0 on success, or %EBUSY on error.  A warning
3092 *	message is also printed on failure.
3093 */
3094int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3095{
3096	return __pci_request_region(pdev, bar, res_name, 0);
3097}
3098EXPORT_SYMBOL(pci_request_region);
3099
3100/**
3101 *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3102 *	@pdev: PCI device whose resources are to be reserved
3103 *	@bar: BAR to be reserved
3104 *	@res_name: Name to be associated with resource.
3105 *
3106 *	Mark the PCI region associated with PCI device @pdev BR @bar as
3107 *	being reserved by owner @res_name.  Do not access any
3108 *	address inside the PCI regions unless this call returns
3109 *	successfully.
3110 *
3111 *	Returns 0 on success, or %EBUSY on error.  A warning
3112 *	message is also printed on failure.
3113 *
3114 *	The key difference that _exclusive makes it that userspace is
3115 *	explicitly not allowed to map the resource via /dev/mem or
3116 *	sysfs.
3117 */
3118int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3119				 const char *res_name)
3120{
3121	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3122}
3123EXPORT_SYMBOL(pci_request_region_exclusive);
3124
3125/**
3126 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3127 * @pdev: PCI device whose resources were previously reserved
3128 * @bars: Bitmask of BARs to be released
3129 *
3130 * Release selected PCI I/O and memory resources previously reserved.
3131 * Call this function only after all use of the PCI regions has ceased.
3132 */
3133void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3134{
3135	int i;
3136
3137	for (i = 0; i < 6; i++)
3138		if (bars & (1 << i))
3139			pci_release_region(pdev, i);
3140}
3141EXPORT_SYMBOL(pci_release_selected_regions);
3142
3143static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3144					  const char *res_name, int excl)
3145{
3146	int i;
3147
3148	for (i = 0; i < 6; i++)
3149		if (bars & (1 << i))
3150			if (__pci_request_region(pdev, i, res_name, excl))
3151				goto err_out;
3152	return 0;
3153
3154err_out:
3155	while (--i >= 0)
3156		if (bars & (1 << i))
3157			pci_release_region(pdev, i);
3158
3159	return -EBUSY;
3160}
3161
3162
3163/**
3164 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3165 * @pdev: PCI device whose resources are to be reserved
3166 * @bars: Bitmask of BARs to be requested
3167 * @res_name: Name to be associated with resource
3168 */
3169int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3170				 const char *res_name)
3171{
3172	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3173}
3174EXPORT_SYMBOL(pci_request_selected_regions);
3175
3176int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3177					   const char *res_name)
3178{
3179	return __pci_request_selected_regions(pdev, bars, res_name,
3180			IORESOURCE_EXCLUSIVE);
3181}
3182EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3183
3184/**
3185 *	pci_release_regions - Release reserved PCI I/O and memory resources
3186 *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3187 *
3188 *	Releases all PCI I/O and memory resources previously reserved by a
3189 *	successful call to pci_request_regions.  Call this function only
3190 *	after all use of the PCI regions has ceased.
3191 */
3192
3193void pci_release_regions(struct pci_dev *pdev)
3194{
3195	pci_release_selected_regions(pdev, (1 << 6) - 1);
3196}
3197EXPORT_SYMBOL(pci_release_regions);
3198
3199/**
3200 *	pci_request_regions - Reserved PCI I/O and memory resources
3201 *	@pdev: PCI device whose resources are to be reserved
3202 *	@res_name: Name to be associated with resource.
3203 *
3204 *	Mark all PCI regions associated with PCI device @pdev as
3205 *	being reserved by owner @res_name.  Do not access any
3206 *	address inside the PCI regions unless this call returns
3207 *	successfully.
3208 *
3209 *	Returns 0 on success, or %EBUSY on error.  A warning
3210 *	message is also printed on failure.
3211 */
3212int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3213{
3214	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3215}
3216EXPORT_SYMBOL(pci_request_regions);
3217
3218/**
3219 *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3220 *	@pdev: PCI device whose resources are to be reserved
3221 *	@res_name: Name to be associated with resource.
3222 *
3223 *	Mark all PCI regions associated with PCI device @pdev as
3224 *	being reserved by owner @res_name.  Do not access any
3225 *	address inside the PCI regions unless this call returns
3226 *	successfully.
3227 *
3228 *	pci_request_regions_exclusive() will mark the region so that
3229 *	/dev/mem and the sysfs MMIO access will not be allowed.
3230 *
3231 *	Returns 0 on success, or %EBUSY on error.  A warning
3232 *	message is also printed on failure.
3233 */
3234int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3235{
3236	return pci_request_selected_regions_exclusive(pdev,
3237					((1 << 6) - 1), res_name);
3238}
3239EXPORT_SYMBOL(pci_request_regions_exclusive);
3240
3241#ifdef PCI_IOBASE
3242struct io_range {
3243	struct list_head list;
3244	phys_addr_t start;
3245	resource_size_t size;
3246};
3247
3248static LIST_HEAD(io_range_list);
3249static DEFINE_SPINLOCK(io_range_lock);
3250#endif
3251
3252/*
3253 * Record the PCI IO range (expressed as CPU physical address + size).
3254 * Return a negative value if an error has occured, zero otherwise
3255 */
3256int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3257{
3258	int err = 0;
3259
3260#ifdef PCI_IOBASE
3261	struct io_range *range;
3262	resource_size_t allocated_size = 0;
3263
3264	/* check if the range hasn't been previously recorded */
3265	spin_lock(&io_range_lock);
3266	list_for_each_entry(range, &io_range_list, list) {
3267		if (addr >= range->start && addr + size <= range->start + size) {
3268			/* range already registered, bail out */
3269			goto end_register;
3270		}
3271		allocated_size += range->size;
3272	}
3273
3274	/* range not registed yet, check for available space */
3275	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3276		/* if it's too big check if 64K space can be reserved */
3277		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3278			err = -E2BIG;
3279			goto end_register;
3280		}
3281
3282		size = SZ_64K;
3283		pr_warn("Requested IO range too big, new size set to 64K\n");
3284	}
3285
3286	/* add the range to the list */
3287	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3288	if (!range) {
3289		err = -ENOMEM;
3290		goto end_register;
3291	}
3292
3293	range->start = addr;
3294	range->size = size;
3295
3296	list_add_tail(&range->list, &io_range_list);
3297
3298end_register:
3299	spin_unlock(&io_range_lock);
3300#endif
3301
3302	return err;
3303}
3304
3305phys_addr_t pci_pio_to_address(unsigned long pio)
3306{
3307	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3308
3309#ifdef PCI_IOBASE
3310	struct io_range *range;
3311	resource_size_t allocated_size = 0;
3312
3313	if (pio > IO_SPACE_LIMIT)
3314		return address;
3315
3316	spin_lock(&io_range_lock);
3317	list_for_each_entry(range, &io_range_list, list) {
3318		if (pio >= allocated_size && pio < allocated_size + range->size) {
3319			address = range->start + pio - allocated_size;
3320			break;
3321		}
3322		allocated_size += range->size;
3323	}
3324	spin_unlock(&io_range_lock);
3325#endif
3326
3327	return address;
3328}
3329
3330unsigned long __weak pci_address_to_pio(phys_addr_t address)
3331{
3332#ifdef PCI_IOBASE
3333	struct io_range *res;
3334	resource_size_t offset = 0;
3335	unsigned long addr = -1;
3336
3337	spin_lock(&io_range_lock);
3338	list_for_each_entry(res, &io_range_list, list) {
3339		if (address >= res->start && address < res->start + res->size) {
3340			addr = address - res->start + offset;
3341			break;
3342		}
3343		offset += res->size;
3344	}
3345	spin_unlock(&io_range_lock);
3346
3347	return addr;
3348#else
3349	if (address > IO_SPACE_LIMIT)
3350		return (unsigned long)-1;
3351
3352	return (unsigned long) address;
3353#endif
3354}
3355
3356/**
3357 *	pci_remap_iospace - Remap the memory mapped I/O space
3358 *	@res: Resource describing the I/O space
3359 *	@phys_addr: physical address of range to be mapped
3360 *
3361 *	Remap the memory mapped I/O space described by the @res
3362 *	and the CPU physical address @phys_addr into virtual address space.
3363 *	Only architectures that have memory mapped IO functions defined
3364 *	(and the PCI_IOBASE value defined) should call this function.
3365 */
3366int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3367{
3368#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3369	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3370
3371	if (!(res->flags & IORESOURCE_IO))
3372		return -EINVAL;
3373
3374	if (res->end > IO_SPACE_LIMIT)
3375		return -EINVAL;
3376
3377	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3378				  pgprot_device(PAGE_KERNEL));
3379#else
3380	/* this architecture does not have memory mapped I/O space,
3381	   so this function should never be called */
3382	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3383	return -ENODEV;
3384#endif
3385}
3386
3387/**
3388 *	pci_unmap_iospace - Unmap the memory mapped I/O space
3389 *	@res: resource to be unmapped
3390 *
3391 *	Unmap the CPU virtual address @res from virtual address space.
3392 *	Only architectures that have memory mapped IO functions defined
3393 *	(and the PCI_IOBASE value defined) should call this function.
3394 */
3395void pci_unmap_iospace(struct resource *res)
3396{
3397#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3398	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3399
3400	unmap_kernel_range(vaddr, resource_size(res));
3401#endif
3402}
3403
3404static void __pci_set_master(struct pci_dev *dev, bool enable)
3405{
3406	u16 old_cmd, cmd;
3407
3408	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3409	if (enable)
3410		cmd = old_cmd | PCI_COMMAND_MASTER;
3411	else
3412		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3413	if (cmd != old_cmd) {
3414		dev_dbg(&dev->dev, "%s bus mastering\n",
3415			enable ? "enabling" : "disabling");
3416		pci_write_config_word(dev, PCI_COMMAND, cmd);
3417	}
3418	dev->is_busmaster = enable;
3419}
3420
3421/**
3422 * pcibios_setup - process "pci=" kernel boot arguments
3423 * @str: string used to pass in "pci=" kernel boot arguments
3424 *
3425 * Process kernel boot arguments.  This is the default implementation.
3426 * Architecture specific implementations can override this as necessary.
3427 */
3428char * __weak __init pcibios_setup(char *str)
3429{
3430	return str;
3431}
3432
3433/**
3434 * pcibios_set_master - enable PCI bus-mastering for device dev
3435 * @dev: the PCI device to enable
3436 *
3437 * Enables PCI bus-mastering for the device.  This is the default
3438 * implementation.  Architecture specific implementations can override
3439 * this if necessary.
3440 */
3441void __weak pcibios_set_master(struct pci_dev *dev)
3442{
3443	u8 lat;
3444
3445	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3446	if (pci_is_pcie(dev))
3447		return;
3448
3449	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3450	if (lat < 16)
3451		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3452	else if (lat > pcibios_max_latency)
3453		lat = pcibios_max_latency;
3454	else
3455		return;
3456
3457	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3458}
3459
3460/**
3461 * pci_set_master - enables bus-mastering for device dev
3462 * @dev: the PCI device to enable
3463 *
3464 * Enables bus-mastering on the device and calls pcibios_set_master()
3465 * to do the needed arch specific settings.
3466 */
3467void pci_set_master(struct pci_dev *dev)
3468{
3469	__pci_set_master(dev, true);
3470	pcibios_set_master(dev);
3471}
3472EXPORT_SYMBOL(pci_set_master);
3473
3474/**
3475 * pci_clear_master - disables bus-mastering for device dev
3476 * @dev: the PCI device to disable
3477 */
3478void pci_clear_master(struct pci_dev *dev)
3479{
3480	__pci_set_master(dev, false);
3481}
3482EXPORT_SYMBOL(pci_clear_master);
3483
3484/**
3485 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3486 * @dev: the PCI device for which MWI is to be enabled
3487 *
3488 * Helper function for pci_set_mwi.
3489 * Originally copied from drivers/net/acenic.c.
3490 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3491 *
3492 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3493 */
3494int pci_set_cacheline_size(struct pci_dev *dev)
3495{
3496	u8 cacheline_size;
3497
3498	if (!pci_cache_line_size)
3499		return -EINVAL;
3500
3501	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3502	   equal to or multiple of the right value. */
3503	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3504	if (cacheline_size >= pci_cache_line_size &&
3505	    (cacheline_size % pci_cache_line_size) == 0)
3506		return 0;
3507
3508	/* Write the correct value. */
3509	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3510	/* Read it back. */
3511	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3512	if (cacheline_size == pci_cache_line_size)
3513		return 0;
3514
3515	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3516		   pci_cache_line_size << 2);
3517
3518	return -EINVAL;
3519}
3520EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3521
3522/**
3523 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3524 * @dev: the PCI device for which MWI is enabled
3525 *
3526 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3527 *
3528 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3529 */
3530int pci_set_mwi(struct pci_dev *dev)
3531{
3532#ifdef PCI_DISABLE_MWI
3533	return 0;
3534#else
3535	int rc;
3536	u16 cmd;
3537
3538	rc = pci_set_cacheline_size(dev);
3539	if (rc)
3540		return rc;
3541
3542	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3543	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3544		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3545		cmd |= PCI_COMMAND_INVALIDATE;
3546		pci_write_config_word(dev, PCI_COMMAND, cmd);
3547	}
3548	return 0;
3549#endif
3550}
3551EXPORT_SYMBOL(pci_set_mwi);
3552
3553/**
3554 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3555 * @dev: the PCI device for which MWI is enabled
3556 *
3557 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3558 * Callers are not required to check the return value.
3559 *
3560 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3561 */
3562int pci_try_set_mwi(struct pci_dev *dev)
3563{
3564#ifdef PCI_DISABLE_MWI
3565	return 0;
3566#else
3567	return pci_set_mwi(dev);
3568#endif
3569}
3570EXPORT_SYMBOL(pci_try_set_mwi);
3571
3572/**
3573 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3574 * @dev: the PCI device to disable
3575 *
3576 * Disables PCI Memory-Write-Invalidate transaction on the device
3577 */
3578void pci_clear_mwi(struct pci_dev *dev)
3579{
3580#ifndef PCI_DISABLE_MWI
3581	u16 cmd;
3582
3583	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3584	if (cmd & PCI_COMMAND_INVALIDATE) {
3585		cmd &= ~PCI_COMMAND_INVALIDATE;
3586		pci_write_config_word(dev, PCI_COMMAND, cmd);
3587	}
3588#endif
3589}
3590EXPORT_SYMBOL(pci_clear_mwi);
3591
3592/**
3593 * pci_intx - enables/disables PCI INTx for device dev
3594 * @pdev: the PCI device to operate on
3595 * @enable: boolean: whether to enable or disable PCI INTx
3596 *
3597 * Enables/disables PCI INTx for device dev
3598 */
3599void pci_intx(struct pci_dev *pdev, int enable)
3600{
3601	u16 pci_command, new;
3602
3603	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3604
3605	if (enable)
3606		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3607	else
3608		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3609
3610	if (new != pci_command) {
3611		struct pci_devres *dr;
3612
3613		pci_write_config_word(pdev, PCI_COMMAND, new);
3614
3615		dr = find_pci_dr(pdev);
3616		if (dr && !dr->restore_intx) {
3617			dr->restore_intx = 1;
3618			dr->orig_intx = !enable;
3619		}
3620	}
3621}
3622EXPORT_SYMBOL_GPL(pci_intx);
3623
3624/**
3625 * pci_intx_mask_supported - probe for INTx masking support
3626 * @dev: the PCI device to operate on
3627 *
3628 * Check if the device dev support INTx masking via the config space
3629 * command word.
3630 */
3631bool pci_intx_mask_supported(struct pci_dev *dev)
3632{
3633	bool mask_supported = false;
3634	u16 orig, new;
3635
3636	if (dev->broken_intx_masking)
3637		return false;
3638
3639	pci_cfg_access_lock(dev);
3640
3641	pci_read_config_word(dev, PCI_COMMAND, &orig);
3642	pci_write_config_word(dev, PCI_COMMAND,
3643			      orig ^ PCI_COMMAND_INTX_DISABLE);
3644	pci_read_config_word(dev, PCI_COMMAND, &new);
3645
3646	/*
3647	 * There's no way to protect against hardware bugs or detect them
3648	 * reliably, but as long as we know what the value should be, let's
3649	 * go ahead and check it.
3650	 */
3651	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3652		dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3653			orig, new);
3654	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3655		mask_supported = true;
3656		pci_write_config_word(dev, PCI_COMMAND, orig);
3657	}
3658
3659	pci_cfg_access_unlock(dev);
3660	return mask_supported;
3661}
3662EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3663
3664static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3665{
3666	struct pci_bus *bus = dev->bus;
3667	bool mask_updated = true;
3668	u32 cmd_status_dword;
3669	u16 origcmd, newcmd;
3670	unsigned long flags;
3671	bool irq_pending;
3672
3673	/*
3674	 * We do a single dword read to retrieve both command and status.
3675	 * Document assumptions that make this possible.
3676	 */
3677	BUILD_BUG_ON(PCI_COMMAND % 4);
3678	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3679
3680	raw_spin_lock_irqsave(&pci_lock, flags);
3681
3682	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3683
3684	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3685
3686	/*
3687	 * Check interrupt status register to see whether our device
3688	 * triggered the interrupt (when masking) or the next IRQ is
3689	 * already pending (when unmasking).
3690	 */
3691	if (mask != irq_pending) {
3692		mask_updated = false;
3693		goto done;
3694	}
3695
3696	origcmd = cmd_status_dword;
3697	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3698	if (mask)
3699		newcmd |= PCI_COMMAND_INTX_DISABLE;
3700	if (newcmd != origcmd)
3701		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3702
3703done:
3704	raw_spin_unlock_irqrestore(&pci_lock, flags);
3705
3706	return mask_updated;
3707}
3708
3709/**
3710 * pci_check_and_mask_intx - mask INTx on pending interrupt
3711 * @dev: the PCI device to operate on
3712 *
3713 * Check if the device dev has its INTx line asserted, mask it and
3714 * return true in that case. False is returned if not interrupt was
3715 * pending.
3716 */
3717bool pci_check_and_mask_intx(struct pci_dev *dev)
3718{
3719	return pci_check_and_set_intx_mask(dev, true);
3720}
3721EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3722
3723/**
3724 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3725 * @dev: the PCI device to operate on
3726 *
3727 * Check if the device dev has its INTx line asserted, unmask it if not
3728 * and return true. False is returned and the mask remains active if
3729 * there was still an interrupt pending.
3730 */
3731bool pci_check_and_unmask_intx(struct pci_dev *dev)
3732{
3733	return pci_check_and_set_intx_mask(dev, false);
3734}
3735EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3736
3737/**
3738 * pci_wait_for_pending_transaction - waits for pending transaction
3739 * @dev: the PCI device to operate on
3740 *
3741 * Return 0 if transaction is pending 1 otherwise.
3742 */
3743int pci_wait_for_pending_transaction(struct pci_dev *dev)
3744{
3745	if (!pci_is_pcie(dev))
3746		return 1;
3747
3748	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3749				    PCI_EXP_DEVSTA_TRPND);
3750}
3751EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3752
3753/*
3754 * We should only need to wait 100ms after FLR, but some devices take longer.
3755 * Wait for up to 1000ms for config space to return something other than -1.
3756 * Intel IGD requires this when an LCD panel is attached.  We read the 2nd
3757 * dword because VFs don't implement the 1st dword.
3758 */
3759static void pci_flr_wait(struct pci_dev *dev)
3760{
3761	int i = 0;
3762	u32 id;
3763
3764	do {
3765		msleep(100);
3766		pci_read_config_dword(dev, PCI_COMMAND, &id);
3767	} while (i++ < 10 && id == ~0);
3768
3769	if (id == ~0)
3770		dev_warn(&dev->dev, "Failed to return from FLR\n");
3771	else if (i > 1)
3772		dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3773			 (i - 1) * 100);
3774}
3775
3776static int pcie_flr(struct pci_dev *dev, int probe)
3777{
3778	u32 cap;
3779
3780	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3781	if (!(cap & PCI_EXP_DEVCAP_FLR))
3782		return -ENOTTY;
3783
3784	if (probe)
3785		return 0;
3786
3787	if (!pci_wait_for_pending_transaction(dev))
3788		dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3789
3790	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3791	pci_flr_wait(dev);
3792	return 0;
3793}
3794
3795static int pci_af_flr(struct pci_dev *dev, int probe)
3796{
3797	int pos;
3798	u8 cap;
3799
3800	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3801	if (!pos)
3802		return -ENOTTY;
3803
3804	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3805	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3806		return -ENOTTY;
3807
3808	if (probe)
3809		return 0;
3810
3811	/*
3812	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3813	 * is used, so we use the conrol offset rather than status and shift
3814	 * the test bit to match.
3815	 */
3816	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3817				 PCI_AF_STATUS_TP << 8))
3818		dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3819
3820	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3821	pci_flr_wait(dev);
3822	return 0;
3823}
3824
3825/**
3826 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3827 * @dev: Device to reset.
3828 * @probe: If set, only check if the device can be reset this way.
3829 *
3830 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3831 * unset, it will be reinitialized internally when going from PCI_D3hot to
3832 * PCI_D0.  If that's the case and the device is not in a low-power state
3833 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3834 *
3835 * NOTE: This causes the caller to sleep for twice the device power transition
3836 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3837 * by default (i.e. unless the @dev's d3_delay field has a different value).
3838 * Moreover, only devices in D0 can be reset by this function.
3839 */
3840static int pci_pm_reset(struct pci_dev *dev, int probe)
3841{
3842	u16 csr;
3843
3844	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3845		return -ENOTTY;
3846
3847	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3848	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3849		return -ENOTTY;
3850
3851	if (probe)
3852		return 0;
3853
3854	if (dev->current_state != PCI_D0)
3855		return -EINVAL;
3856
3857	csr &= ~PCI_PM_CTRL_STATE_MASK;
3858	csr |= PCI_D3hot;
3859	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3860	pci_dev_d3_sleep(dev);
3861
3862	csr &= ~PCI_PM_CTRL_STATE_MASK;
3863	csr |= PCI_D0;
3864	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3865	pci_dev_d3_sleep(dev);
3866
3867	return 0;
3868}
3869
3870void pci_reset_secondary_bus(struct pci_dev *dev)
3871{
3872	u16 ctrl;
3873
3874	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3875	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3876	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3877	/*
3878	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3879	 * this to 2ms to ensure that we meet the minimum requirement.
3880	 */
3881	msleep(2);
3882
3883	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3884	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3885
3886	/*
3887	 * Trhfa for conventional PCI is 2^25 clock cycles.
3888	 * Assuming a minimum 33MHz clock this results in a 1s
3889	 * delay before we can consider subordinate devices to
3890	 * be re-initialized.  PCIe has some ways to shorten this,
3891	 * but we don't make use of them yet.
3892	 */
3893	ssleep(1);
3894}
3895
3896void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3897{
3898	pci_reset_secondary_bus(dev);
3899}
3900
3901/**
3902 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3903 * @dev: Bridge device
3904 *
3905 * Use the bridge control register to assert reset on the secondary bus.
3906 * Devices on the secondary bus are left in power-on state.
3907 */
3908void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3909{
3910	pcibios_reset_secondary_bus(dev);
3911}
3912EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3913
3914static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3915{
3916	struct pci_dev *pdev;
3917
3918	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3919	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3920		return -ENOTTY;
3921
3922	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3923		if (pdev != dev)
3924			return -ENOTTY;
3925
3926	if (probe)
3927		return 0;
3928
3929	pci_reset_bridge_secondary_bus(dev->bus->self);
3930
3931	return 0;
3932}
3933
3934static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3935{
3936	int rc = -ENOTTY;
3937
3938	if (!hotplug || !try_module_get(hotplug->ops->owner))
3939		return rc;
3940
3941	if (hotplug->ops->reset_slot)
3942		rc = hotplug->ops->reset_slot(hotplug, probe);
3943
3944	module_put(hotplug->ops->owner);
3945
3946	return rc;
3947}
3948
3949static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3950{
3951	struct pci_dev *pdev;
3952
3953	if (dev->subordinate || !dev->slot ||
3954	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3955		return -ENOTTY;
3956
3957	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3958		if (pdev != dev && pdev->slot == dev->slot)
3959			return -ENOTTY;
3960
3961	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3962}
3963
3964static int __pci_dev_reset(struct pci_dev *dev, int probe)
3965{
3966	int rc;
3967
3968	might_sleep();
3969
3970	rc = pci_dev_specific_reset(dev, probe);
3971	if (rc != -ENOTTY)
3972		goto done;
3973
3974	rc = pcie_flr(dev, probe);
3975	if (rc != -ENOTTY)
3976		goto done;
3977
3978	rc = pci_af_flr(dev, probe);
3979	if (rc != -ENOTTY)
3980		goto done;
3981
3982	rc = pci_pm_reset(dev, probe);
3983	if (rc != -ENOTTY)
3984		goto done;
3985
3986	rc = pci_dev_reset_slot_function(dev, probe);
3987	if (rc != -ENOTTY)
3988		goto done;
3989
3990	rc = pci_parent_bus_reset(dev, probe);
3991done:
3992	return rc;
3993}
3994
3995static void pci_dev_lock(struct pci_dev *dev)
3996{
3997	pci_cfg_access_lock(dev);
3998	/* block PM suspend, driver probe, etc. */
3999	device_lock(&dev->dev);
4000}
4001
4002/* Return 1 on successful lock, 0 on contention */
4003static int pci_dev_trylock(struct pci_dev *dev)
4004{
4005	if (pci_cfg_access_trylock(dev)) {
4006		if (device_trylock(&dev->dev))
4007			return 1;
4008		pci_cfg_access_unlock(dev);
4009	}
4010
4011	return 0;
4012}
4013
4014static void pci_dev_unlock(struct pci_dev *dev)
4015{
4016	device_unlock(&dev->dev);
4017	pci_cfg_access_unlock(dev);
4018}
4019
4020/**
4021 * pci_reset_notify - notify device driver of reset
4022 * @dev: device to be notified of reset
4023 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
4024 *           completed
4025 *
4026 * Must be called prior to device access being disabled and after device
4027 * access is restored.
4028 */
4029static void pci_reset_notify(struct pci_dev *dev, bool prepare)
4030{
4031	const struct pci_error_handlers *err_handler =
4032			dev->driver ? dev->driver->err_handler : NULL;
4033	if (err_handler && err_handler->reset_notify)
4034		err_handler->reset_notify(dev, prepare);
4035}
4036
4037static void pci_dev_save_and_disable(struct pci_dev *dev)
4038{
4039	pci_reset_notify(dev, true);
4040
4041	/*
4042	 * Wake-up device prior to save.  PM registers default to D0 after
4043	 * reset and a simple register restore doesn't reliably return
4044	 * to a non-D0 state anyway.
4045	 */
4046	pci_set_power_state(dev, PCI_D0);
4047
4048	pci_save_state(dev);
4049	/*
4050	 * Disable the device by clearing the Command register, except for
4051	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4052	 * BARs, but also prevents the device from being Bus Master, preventing
4053	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4054	 * compliant devices, INTx-disable prevents legacy interrupts.
4055	 */
4056	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4057}
4058
4059static void pci_dev_restore(struct pci_dev *dev)
4060{
4061	pci_restore_state(dev);
4062	pci_reset_notify(dev, false);
4063}
4064
4065static int pci_dev_reset(struct pci_dev *dev, int probe)
4066{
4067	int rc;
4068
4069	if (!probe)
4070		pci_dev_lock(dev);
4071
4072	rc = __pci_dev_reset(dev, probe);
4073
4074	if (!probe)
4075		pci_dev_unlock(dev);
4076
4077	return rc;
4078}
4079
4080/**
4081 * __pci_reset_function - reset a PCI device function
4082 * @dev: PCI device to reset
4083 *
4084 * Some devices allow an individual function to be reset without affecting
4085 * other functions in the same device.  The PCI device must be responsive
4086 * to PCI config space in order to use this function.
4087 *
4088 * The device function is presumed to be unused when this function is called.
4089 * Resetting the device will make the contents of PCI configuration space
4090 * random, so any caller of this must be prepared to reinitialise the
4091 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4092 * etc.
4093 *
4094 * Returns 0 if the device function was successfully reset or negative if the
4095 * device doesn't support resetting a single function.
4096 */
4097int __pci_reset_function(struct pci_dev *dev)
4098{
4099	return pci_dev_reset(dev, 0);
4100}
4101EXPORT_SYMBOL_GPL(__pci_reset_function);
4102
4103/**
4104 * __pci_reset_function_locked - reset a PCI device function while holding
4105 * the @dev mutex lock.
4106 * @dev: PCI device to reset
4107 *
4108 * Some devices allow an individual function to be reset without affecting
4109 * other functions in the same device.  The PCI device must be responsive
4110 * to PCI config space in order to use this function.
4111 *
4112 * The device function is presumed to be unused and the caller is holding
4113 * the device mutex lock when this function is called.
4114 * Resetting the device will make the contents of PCI configuration space
4115 * random, so any caller of this must be prepared to reinitialise the
4116 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4117 * etc.
4118 *
4119 * Returns 0 if the device function was successfully reset or negative if the
4120 * device doesn't support resetting a single function.
4121 */
4122int __pci_reset_function_locked(struct pci_dev *dev)
4123{
4124	return __pci_dev_reset(dev, 0);
4125}
4126EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4127
4128/**
4129 * pci_probe_reset_function - check whether the device can be safely reset
4130 * @dev: PCI device to reset
4131 *
4132 * Some devices allow an individual function to be reset without affecting
4133 * other functions in the same device.  The PCI device must be responsive
4134 * to PCI config space in order to use this function.
4135 *
4136 * Returns 0 if the device function can be reset or negative if the
4137 * device doesn't support resetting a single function.
4138 */
4139int pci_probe_reset_function(struct pci_dev *dev)
4140{
4141	return pci_dev_reset(dev, 1);
4142}
4143
4144/**
4145 * pci_reset_function - quiesce and reset a PCI device function
4146 * @dev: PCI device to reset
4147 *
4148 * Some devices allow an individual function to be reset without affecting
4149 * other functions in the same device.  The PCI device must be responsive
4150 * to PCI config space in order to use this function.
4151 *
4152 * This function does not just reset the PCI portion of a device, but
4153 * clears all the state associated with the device.  This function differs
4154 * from __pci_reset_function in that it saves and restores device state
4155 * over the reset.
4156 *
4157 * Returns 0 if the device function was successfully reset or negative if the
4158 * device doesn't support resetting a single function.
4159 */
4160int pci_reset_function(struct pci_dev *dev)
4161{
4162	int rc;
4163
4164	rc = pci_dev_reset(dev, 1);
4165	if (rc)
4166		return rc;
4167
4168	pci_dev_save_and_disable(dev);
4169
4170	rc = pci_dev_reset(dev, 0);
4171
4172	pci_dev_restore(dev);
4173
4174	return rc;
4175}
4176EXPORT_SYMBOL_GPL(pci_reset_function);
4177
4178/**
4179 * pci_try_reset_function - quiesce and reset a PCI device function
4180 * @dev: PCI device to reset
4181 *
4182 * Same as above, except return -EAGAIN if unable to lock device.
4183 */
4184int pci_try_reset_function(struct pci_dev *dev)
4185{
4186	int rc;
4187
4188	rc = pci_dev_reset(dev, 1);
4189	if (rc)
4190		return rc;
4191
4192	pci_dev_save_and_disable(dev);
4193
4194	if (pci_dev_trylock(dev)) {
4195		rc = __pci_dev_reset(dev, 0);
4196		pci_dev_unlock(dev);
4197	} else
4198		rc = -EAGAIN;
4199
4200	pci_dev_restore(dev);
4201
4202	return rc;
4203}
4204EXPORT_SYMBOL_GPL(pci_try_reset_function);
4205
4206/* Do any devices on or below this bus prevent a bus reset? */
4207static bool pci_bus_resetable(struct pci_bus *bus)
4208{
4209	struct pci_dev *dev;
4210
4211	list_for_each_entry(dev, &bus->devices, bus_list) {
4212		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4213		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4214			return false;
4215	}
4216
4217	return true;
4218}
4219
4220/* Lock devices from the top of the tree down */
4221static void pci_bus_lock(struct pci_bus *bus)
4222{
4223	struct pci_dev *dev;
4224
4225	list_for_each_entry(dev, &bus->devices, bus_list) {
4226		pci_dev_lock(dev);
4227		if (dev->subordinate)
4228			pci_bus_lock(dev->subordinate);
4229	}
4230}
4231
4232/* Unlock devices from the bottom of the tree up */
4233static void pci_bus_unlock(struct pci_bus *bus)
4234{
4235	struct pci_dev *dev;
4236
4237	list_for_each_entry(dev, &bus->devices, bus_list) {
4238		if (dev->subordinate)
4239			pci_bus_unlock(dev->subordinate);
4240		pci_dev_unlock(dev);
4241	}
4242}
4243
4244/* Return 1 on successful lock, 0 on contention */
4245static int pci_bus_trylock(struct pci_bus *bus)
4246{
4247	struct pci_dev *dev;
4248
4249	list_for_each_entry(dev, &bus->devices, bus_list) {
4250		if (!pci_dev_trylock(dev))
4251			goto unlock;
4252		if (dev->subordinate) {
4253			if (!pci_bus_trylock(dev->subordinate)) {
4254				pci_dev_unlock(dev);
4255				goto unlock;
4256			}
4257		}
4258	}
4259	return 1;
4260
4261unlock:
4262	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4263		if (dev->subordinate)
4264			pci_bus_unlock(dev->subordinate);
4265		pci_dev_unlock(dev);
4266	}
4267	return 0;
4268}
4269
4270/* Do any devices on or below this slot prevent a bus reset? */
4271static bool pci_slot_resetable(struct pci_slot *slot)
4272{
4273	struct pci_dev *dev;
4274
4275	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4276		if (!dev->slot || dev->slot != slot)
4277			continue;
4278		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4279		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4280			return false;
4281	}
4282
4283	return true;
4284}
4285
4286/* Lock devices from the top of the tree down */
4287static void pci_slot_lock(struct pci_slot *slot)
4288{
4289	struct pci_dev *dev;
4290
4291	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4292		if (!dev->slot || dev->slot != slot)
4293			continue;
4294		pci_dev_lock(dev);
4295		if (dev->subordinate)
4296			pci_bus_lock(dev->subordinate);
4297	}
4298}
4299
4300/* Unlock devices from the bottom of the tree up */
4301static void pci_slot_unlock(struct pci_slot *slot)
4302{
4303	struct pci_dev *dev;
4304
4305	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4306		if (!dev->slot || dev->slot != slot)
4307			continue;
4308		if (dev->subordinate)
4309			pci_bus_unlock(dev->subordinate);
4310		pci_dev_unlock(dev);
4311	}
4312}
4313
4314/* Return 1 on successful lock, 0 on contention */
4315static int pci_slot_trylock(struct pci_slot *slot)
4316{
4317	struct pci_dev *dev;
4318
4319	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4320		if (!dev->slot || dev->slot != slot)
4321			continue;
4322		if (!pci_dev_trylock(dev))
4323			goto unlock;
4324		if (dev->subordinate) {
4325			if (!pci_bus_trylock(dev->subordinate)) {
4326				pci_dev_unlock(dev);
4327				goto unlock;
4328			}
4329		}
4330	}
4331	return 1;
4332
4333unlock:
4334	list_for_each_entry_continue_reverse(dev,
4335					     &slot->bus->devices, bus_list) {
4336		if (!dev->slot || dev->slot != slot)
4337			continue;
4338		if (dev->subordinate)
4339			pci_bus_unlock(dev->subordinate);
4340		pci_dev_unlock(dev);
4341	}
4342	return 0;
4343}
4344
4345/* Save and disable devices from the top of the tree down */
4346static void pci_bus_save_and_disable(struct pci_bus *bus)
4347{
4348	struct pci_dev *dev;
4349
4350	list_for_each_entry(dev, &bus->devices, bus_list) {
4351		pci_dev_save_and_disable(dev);
4352		if (dev->subordinate)
4353			pci_bus_save_and_disable(dev->subordinate);
4354	}
4355}
4356
4357/*
4358 * Restore devices from top of the tree down - parent bridges need to be
4359 * restored before we can get to subordinate devices.
4360 */
4361static void pci_bus_restore(struct pci_bus *bus)
4362{
4363	struct pci_dev *dev;
4364
4365	list_for_each_entry(dev, &bus->devices, bus_list) {
4366		pci_dev_restore(dev);
4367		if (dev->subordinate)
4368			pci_bus_restore(dev->subordinate);
4369	}
4370}
4371
4372/* Save and disable devices from the top of the tree down */
4373static void pci_slot_save_and_disable(struct pci_slot *slot)
4374{
4375	struct pci_dev *dev;
4376
4377	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4378		if (!dev->slot || dev->slot != slot)
4379			continue;
4380		pci_dev_save_and_disable(dev);
4381		if (dev->subordinate)
4382			pci_bus_save_and_disable(dev->subordinate);
4383	}
4384}
4385
4386/*
4387 * Restore devices from top of the tree down - parent bridges need to be
4388 * restored before we can get to subordinate devices.
4389 */
4390static void pci_slot_restore(struct pci_slot *slot)
4391{
4392	struct pci_dev *dev;
4393
4394	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4395		if (!dev->slot || dev->slot != slot)
4396			continue;
4397		pci_dev_restore(dev);
4398		if (dev->subordinate)
4399			pci_bus_restore(dev->subordinate);
4400	}
4401}
4402
4403static int pci_slot_reset(struct pci_slot *slot, int probe)
4404{
4405	int rc;
4406
4407	if (!slot || !pci_slot_resetable(slot))
4408		return -ENOTTY;
4409
4410	if (!probe)
4411		pci_slot_lock(slot);
4412
4413	might_sleep();
4414
4415	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4416
4417	if (!probe)
4418		pci_slot_unlock(slot);
4419
4420	return rc;
4421}
4422
4423/**
4424 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4425 * @slot: PCI slot to probe
4426 *
4427 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4428 */
4429int pci_probe_reset_slot(struct pci_slot *slot)
4430{
4431	return pci_slot_reset(slot, 1);
4432}
4433EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4434
4435/**
4436 * pci_reset_slot - reset a PCI slot
4437 * @slot: PCI slot to reset
4438 *
4439 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4440 * independent of other slots.  For instance, some slots may support slot power
4441 * control.  In the case of a 1:1 bus to slot architecture, this function may
4442 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4443 * Generally a slot reset should be attempted before a bus reset.  All of the
4444 * function of the slot and any subordinate buses behind the slot are reset
4445 * through this function.  PCI config space of all devices in the slot and
4446 * behind the slot is saved before and restored after reset.
4447 *
4448 * Return 0 on success, non-zero on error.
4449 */
4450int pci_reset_slot(struct pci_slot *slot)
4451{
4452	int rc;
4453
4454	rc = pci_slot_reset(slot, 1);
4455	if (rc)
4456		return rc;
4457
4458	pci_slot_save_and_disable(slot);
4459
4460	rc = pci_slot_reset(slot, 0);
4461
4462	pci_slot_restore(slot);
4463
4464	return rc;
4465}
4466EXPORT_SYMBOL_GPL(pci_reset_slot);
4467
4468/**
4469 * pci_try_reset_slot - Try to reset a PCI slot
4470 * @slot: PCI slot to reset
4471 *
4472 * Same as above except return -EAGAIN if the slot cannot be locked
4473 */
4474int pci_try_reset_slot(struct pci_slot *slot)
4475{
4476	int rc;
4477
4478	rc = pci_slot_reset(slot, 1);
4479	if (rc)
4480		return rc;
4481
4482	pci_slot_save_and_disable(slot);
4483
4484	if (pci_slot_trylock(slot)) {
4485		might_sleep();
4486		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4487		pci_slot_unlock(slot);
4488	} else
4489		rc = -EAGAIN;
4490
4491	pci_slot_restore(slot);
4492
4493	return rc;
4494}
4495EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4496
4497static int pci_bus_reset(struct pci_bus *bus, int probe)
4498{
4499	if (!bus->self || !pci_bus_resetable(bus))
4500		return -ENOTTY;
4501
4502	if (probe)
4503		return 0;
4504
4505	pci_bus_lock(bus);
4506
4507	might_sleep();
4508
4509	pci_reset_bridge_secondary_bus(bus->self);
4510
4511	pci_bus_unlock(bus);
4512
4513	return 0;
4514}
4515
4516/**
4517 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4518 * @bus: PCI bus to probe
4519 *
4520 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4521 */
4522int pci_probe_reset_bus(struct pci_bus *bus)
4523{
4524	return pci_bus_reset(bus, 1);
4525}
4526EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4527
4528/**
4529 * pci_reset_bus - reset a PCI bus
4530 * @bus: top level PCI bus to reset
4531 *
4532 * Do a bus reset on the given bus and any subordinate buses, saving
4533 * and restoring state of all devices.
4534 *
4535 * Return 0 on success, non-zero on error.
4536 */
4537int pci_reset_bus(struct pci_bus *bus)
4538{
4539	int rc;
4540
4541	rc = pci_bus_reset(bus, 1);
4542	if (rc)
4543		return rc;
4544
4545	pci_bus_save_and_disable(bus);
4546
4547	rc = pci_bus_reset(bus, 0);
4548
4549	pci_bus_restore(bus);
4550
4551	return rc;
4552}
4553EXPORT_SYMBOL_GPL(pci_reset_bus);
4554
4555/**
4556 * pci_try_reset_bus - Try to reset a PCI bus
4557 * @bus: top level PCI bus to reset
4558 *
4559 * Same as above except return -EAGAIN if the bus cannot be locked
4560 */
4561int pci_try_reset_bus(struct pci_bus *bus)
4562{
4563	int rc;
4564
4565	rc = pci_bus_reset(bus, 1);
4566	if (rc)
4567		return rc;
4568
4569	pci_bus_save_and_disable(bus);
4570
4571	if (pci_bus_trylock(bus)) {
4572		might_sleep();
4573		pci_reset_bridge_secondary_bus(bus->self);
4574		pci_bus_unlock(bus);
4575	} else
4576		rc = -EAGAIN;
4577
4578	pci_bus_restore(bus);
4579
4580	return rc;
4581}
4582EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4583
4584/**
4585 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4586 * @dev: PCI device to query
4587 *
4588 * Returns mmrbc: maximum designed memory read count in bytes
4589 *    or appropriate error value.
4590 */
4591int pcix_get_max_mmrbc(struct pci_dev *dev)
4592{
4593	int cap;
4594	u32 stat;
4595
4596	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4597	if (!cap)
4598		return -EINVAL;
4599
4600	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4601		return -EINVAL;
4602
4603	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4604}
4605EXPORT_SYMBOL(pcix_get_max_mmrbc);
4606
4607/**
4608 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4609 * @dev: PCI device to query
4610 *
4611 * Returns mmrbc: maximum memory read count in bytes
4612 *    or appropriate error value.
4613 */
4614int pcix_get_mmrbc(struct pci_dev *dev)
4615{
4616	int cap;
4617	u16 cmd;
4618
4619	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4620	if (!cap)
4621		return -EINVAL;
4622
4623	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4624		return -EINVAL;
4625
4626	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4627}
4628EXPORT_SYMBOL(pcix_get_mmrbc);
4629
4630/**
4631 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4632 * @dev: PCI device to query
4633 * @mmrbc: maximum memory read count in bytes
4634 *    valid values are 512, 1024, 2048, 4096
4635 *
4636 * If possible sets maximum memory read byte count, some bridges have erratas
4637 * that prevent this.
4638 */
4639int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4640{
4641	int cap;
4642	u32 stat, v, o;
4643	u16 cmd;
4644
4645	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4646		return -EINVAL;
4647
4648	v = ffs(mmrbc) - 10;
4649
4650	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4651	if (!cap)
4652		return -EINVAL;
4653
4654	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4655		return -EINVAL;
4656
4657	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4658		return -E2BIG;
4659
4660	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4661		return -EINVAL;
4662
4663	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4664	if (o != v) {
4665		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4666			return -EIO;
4667
4668		cmd &= ~PCI_X_CMD_MAX_READ;
4669		cmd |= v << 2;
4670		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4671			return -EIO;
4672	}
4673	return 0;
4674}
4675EXPORT_SYMBOL(pcix_set_mmrbc);
4676
4677/**
4678 * pcie_get_readrq - get PCI Express read request size
4679 * @dev: PCI device to query
4680 *
4681 * Returns maximum memory read request in bytes
4682 *    or appropriate error value.
4683 */
4684int pcie_get_readrq(struct pci_dev *dev)
4685{
4686	u16 ctl;
4687
4688	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4689
4690	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4691}
4692EXPORT_SYMBOL(pcie_get_readrq);
4693
4694/**
4695 * pcie_set_readrq - set PCI Express maximum memory read request
4696 * @dev: PCI device to query
4697 * @rq: maximum memory read count in bytes
4698 *    valid values are 128, 256, 512, 1024, 2048, 4096
4699 *
4700 * If possible sets maximum memory read request in bytes
4701 */
4702int pcie_set_readrq(struct pci_dev *dev, int rq)
4703{
4704	u16 v;
4705
4706	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4707		return -EINVAL;
4708
4709	/*
4710	 * If using the "performance" PCIe config, we clamp the
4711	 * read rq size to the max packet size to prevent the
4712	 * host bridge generating requests larger than we can
4713	 * cope with
4714	 */
4715	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4716		int mps = pcie_get_mps(dev);
4717
4718		if (mps < rq)
4719			rq = mps;
4720	}
4721
4722	v = (ffs(rq) - 8) << 12;
4723
4724	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4725						  PCI_EXP_DEVCTL_READRQ, v);
4726}
4727EXPORT_SYMBOL(pcie_set_readrq);
4728
4729/**
4730 * pcie_get_mps - get PCI Express maximum payload size
4731 * @dev: PCI device to query
4732 *
4733 * Returns maximum payload size in bytes
4734 */
4735int pcie_get_mps(struct pci_dev *dev)
4736{
4737	u16 ctl;
4738
4739	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4740
4741	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4742}
4743EXPORT_SYMBOL(pcie_get_mps);
4744
4745/**
4746 * pcie_set_mps - set PCI Express maximum payload size
4747 * @dev: PCI device to query
4748 * @mps: maximum payload size in bytes
4749 *    valid values are 128, 256, 512, 1024, 2048, 4096
4750 *
4751 * If possible sets maximum payload size
4752 */
4753int pcie_set_mps(struct pci_dev *dev, int mps)
4754{
4755	u16 v;
4756
4757	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4758		return -EINVAL;
4759
4760	v = ffs(mps) - 8;
4761	if (v > dev->pcie_mpss)
4762		return -EINVAL;
4763	v <<= 5;
4764
4765	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4766						  PCI_EXP_DEVCTL_PAYLOAD, v);
4767}
4768EXPORT_SYMBOL(pcie_set_mps);
4769
4770/**
4771 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4772 * @dev: PCI device to query
4773 * @speed: storage for minimum speed
4774 * @width: storage for minimum width
4775 *
4776 * This function will walk up the PCI device chain and determine the minimum
4777 * link width and speed of the device.
4778 */
4779int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4780			  enum pcie_link_width *width)
4781{
4782	int ret;
4783
4784	*speed = PCI_SPEED_UNKNOWN;
4785	*width = PCIE_LNK_WIDTH_UNKNOWN;
4786
4787	while (dev) {
4788		u16 lnksta;
4789		enum pci_bus_speed next_speed;
4790		enum pcie_link_width next_width;
4791
4792		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4793		if (ret)
4794			return ret;
4795
4796		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4797		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4798			PCI_EXP_LNKSTA_NLW_SHIFT;
4799
4800		if (next_speed < *speed)
4801			*speed = next_speed;
4802
4803		if (next_width < *width)
4804			*width = next_width;
4805
4806		dev = dev->bus->self;
4807	}
4808
4809	return 0;
4810}
4811EXPORT_SYMBOL(pcie_get_minimum_link);
4812
4813/**
4814 * pci_select_bars - Make BAR mask from the type of resource
4815 * @dev: the PCI device for which BAR mask is made
4816 * @flags: resource type mask to be selected
4817 *
4818 * This helper routine makes bar mask from the type of resource.
4819 */
4820int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4821{
4822	int i, bars = 0;
4823	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4824		if (pci_resource_flags(dev, i) & flags)
4825			bars |= (1 << i);
4826	return bars;
4827}
4828EXPORT_SYMBOL(pci_select_bars);
4829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4830/* Some architectures require additional programming to enable VGA */
4831static arch_set_vga_state_t arch_set_vga_state;
4832
4833void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4834{
4835	arch_set_vga_state = func;	/* NULL disables */
4836}
4837
4838static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4839				  unsigned int command_bits, u32 flags)
4840{
4841	if (arch_set_vga_state)
4842		return arch_set_vga_state(dev, decode, command_bits,
4843						flags);
4844	return 0;
4845}
4846
4847/**
4848 * pci_set_vga_state - set VGA decode state on device and parents if requested
4849 * @dev: the PCI device
4850 * @decode: true = enable decoding, false = disable decoding
4851 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4852 * @flags: traverse ancestors and change bridges
4853 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4854 */
4855int pci_set_vga_state(struct pci_dev *dev, bool decode,
4856		      unsigned int command_bits, u32 flags)
4857{
4858	struct pci_bus *bus;
4859	struct pci_dev *bridge;
4860	u16 cmd;
4861	int rc;
4862
4863	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4864
4865	/* ARCH specific VGA enables */
4866	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4867	if (rc)
4868		return rc;
4869
4870	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4871		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4872		if (decode == true)
4873			cmd |= command_bits;
4874		else
4875			cmd &= ~command_bits;
4876		pci_write_config_word(dev, PCI_COMMAND, cmd);
4877	}
4878
4879	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4880		return 0;
4881
4882	bus = dev->bus;
4883	while (bus) {
4884		bridge = bus->self;
4885		if (bridge) {
4886			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4887					     &cmd);
4888			if (decode == true)
4889				cmd |= PCI_BRIDGE_CTL_VGA;
4890			else
4891				cmd &= ~PCI_BRIDGE_CTL_VGA;
4892			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4893					      cmd);
4894		}
4895		bus = bus->parent;
4896	}
4897	return 0;
4898}
4899
4900/**
4901 * pci_add_dma_alias - Add a DMA devfn alias for a device
4902 * @dev: the PCI device for which alias is added
4903 * @devfn: alias slot and function
4904 *
4905 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
4906 * It should be called early, preferably as PCI fixup header quirk.
4907 */
4908void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
4909{
4910	if (!dev->dma_alias_mask)
4911		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
4912					      sizeof(long), GFP_KERNEL);
4913	if (!dev->dma_alias_mask) {
4914		dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
4915		return;
4916	}
4917
4918	set_bit(devfn, dev->dma_alias_mask);
4919	dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
4920		 PCI_SLOT(devfn), PCI_FUNC(devfn));
4921}
4922
4923bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
4924{
4925	return (dev1->dma_alias_mask &&
4926		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
4927	       (dev2->dma_alias_mask &&
4928		test_bit(dev1->devfn, dev2->dma_alias_mask));
4929}
4930
4931bool pci_device_is_present(struct pci_dev *pdev)
4932{
4933	u32 v;
4934
4935	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4936}
4937EXPORT_SYMBOL_GPL(pci_device_is_present);
4938
4939void pci_ignore_hotplug(struct pci_dev *dev)
4940{
4941	struct pci_dev *bridge = dev->bus->self;
4942
4943	dev->ignore_hotplug = 1;
4944	/* Propagate the "ignore hotplug" setting to the parent bridge. */
4945	if (bridge)
4946		bridge->ignore_hotplug = 1;
4947}
4948EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4949
4950#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4951static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4952static DEFINE_SPINLOCK(resource_alignment_lock);
4953
4954/**
4955 * pci_specified_resource_alignment - get resource alignment specified by user.
4956 * @dev: the PCI device to get
4957 *
4958 * RETURNS: Resource alignment if it is specified.
4959 *          Zero if it is not specified.
4960 */
4961static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4962{
4963	int seg, bus, slot, func, align_order, count;
4964	unsigned short vendor, device, subsystem_vendor, subsystem_device;
4965	resource_size_t align = 0;
4966	char *p;
4967
4968	spin_lock(&resource_alignment_lock);
4969	p = resource_alignment_param;
4970	if (!*p)
4971		goto out;
4972	if (pci_has_flag(PCI_PROBE_ONLY)) {
4973		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
4974		goto out;
4975	}
4976
4977	while (*p) {
4978		count = 0;
4979		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4980							p[count] == '@') {
4981			p += count + 1;
4982		} else {
4983			align_order = -1;
4984		}
4985		if (strncmp(p, "pci:", 4) == 0) {
4986			/* PCI vendor/device (subvendor/subdevice) ids are specified */
4987			p += 4;
4988			if (sscanf(p, "%hx:%hx:%hx:%hx%n",
4989				&vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
4990				if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
4991					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
4992						p);
4993					break;
4994				}
4995				subsystem_vendor = subsystem_device = 0;
4996			}
4997			p += count;
4998			if ((!vendor || (vendor == dev->vendor)) &&
4999				(!device || (device == dev->device)) &&
5000				(!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5001				(!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5002				if (align_order == -1)
5003					align = PAGE_SIZE;
5004				else
5005					align = 1 << align_order;
5006				/* Found */
5007				break;
5008			}
5009		}
5010		else {
5011			if (sscanf(p, "%x:%x:%x.%x%n",
5012				&seg, &bus, &slot, &func, &count) != 4) {
5013				seg = 0;
5014				if (sscanf(p, "%x:%x.%x%n",
5015						&bus, &slot, &func, &count) != 3) {
5016					/* Invalid format */
5017					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5018						p);
5019					break;
5020				}
5021			}
5022			p += count;
5023			if (seg == pci_domain_nr(dev->bus) &&
5024				bus == dev->bus->number &&
5025				slot == PCI_SLOT(dev->devfn) &&
5026				func == PCI_FUNC(dev->devfn)) {
5027				if (align_order == -1)
5028					align = PAGE_SIZE;
5029				else
5030					align = 1 << align_order;
5031				/* Found */
5032				break;
5033			}
5034		}
5035		if (*p != ';' && *p != ',') {
5036			/* End of param or invalid format */
5037			break;
5038		}
5039		p++;
5040	}
5041out:
5042	spin_unlock(&resource_alignment_lock);
5043	return align;
5044}
5045
5046/*
5047 * This function disables memory decoding and releases memory resources
5048 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5049 * It also rounds up size to specified alignment.
5050 * Later on, the kernel will assign page-aligned memory resource back
5051 * to the device.
5052 */
5053void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5054{
5055	int i;
5056	struct resource *r;
5057	resource_size_t align, size;
5058	u16 command;
5059
5060	/*
5061	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5062	 * 3.4.1.11.  Their resources are allocated from the space
5063	 * described by the VF BARx register in the PF's SR-IOV capability.
5064	 * We can't influence their alignment here.
5065	 */
5066	if (dev->is_virtfn)
5067		return;
5068
5069	/* check if specified PCI is target device to reassign */
5070	align = pci_specified_resource_alignment(dev);
5071	if (!align)
5072		return;
5073
5074	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5075	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5076		dev_warn(&dev->dev,
5077			"Can't reassign resources to host bridge.\n");
5078		return;
5079	}
5080
5081	dev_info(&dev->dev,
5082		"Disabling memory decoding and releasing memory resources.\n");
5083	pci_read_config_word(dev, PCI_COMMAND, &command);
5084	command &= ~PCI_COMMAND_MEMORY;
5085	pci_write_config_word(dev, PCI_COMMAND, command);
5086
5087	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
5088		r = &dev->resource[i];
5089		if (!(r->flags & IORESOURCE_MEM))
5090			continue;
5091		if (r->flags & IORESOURCE_PCI_FIXED) {
5092			dev_info(&dev->dev, "Ignoring requested alignment for BAR%d: %pR\n",
5093				i, r);
5094			continue;
5095		}
5096
5097		size = resource_size(r);
5098		if (size < align) {
5099			size = align;
5100			dev_info(&dev->dev,
5101				"Rounding up size of resource #%d to %#llx.\n",
5102				i, (unsigned long long)size);
5103		}
5104		r->flags |= IORESOURCE_UNSET;
5105		r->end = size - 1;
5106		r->start = 0;
5107	}
5108	/* Need to disable bridge's resource window,
5109	 * to enable the kernel to reassign new resource
5110	 * window later on.
5111	 */
5112	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5113	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5114		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5115			r = &dev->resource[i];
5116			if (!(r->flags & IORESOURCE_MEM))
5117				continue;
5118			r->flags |= IORESOURCE_UNSET;
5119			r->end = resource_size(r) - 1;
5120			r->start = 0;
5121		}
5122		pci_disable_bridge_window(dev);
5123	}
5124}
5125
5126static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5127{
5128	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5129		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5130	spin_lock(&resource_alignment_lock);
5131	strncpy(resource_alignment_param, buf, count);
5132	resource_alignment_param[count] = '\0';
5133	spin_unlock(&resource_alignment_lock);
5134	return count;
5135}
5136
5137static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5138{
5139	size_t count;
5140	spin_lock(&resource_alignment_lock);
5141	count = snprintf(buf, size, "%s", resource_alignment_param);
5142	spin_unlock(&resource_alignment_lock);
5143	return count;
5144}
5145
5146static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5147{
5148	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5149}
5150
5151static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5152					const char *buf, size_t count)
5153{
5154	return pci_set_resource_alignment_param(buf, count);
5155}
5156
5157static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5158					pci_resource_alignment_store);
5159
5160static int __init pci_resource_alignment_sysfs_init(void)
5161{
5162	return bus_create_file(&pci_bus_type,
5163					&bus_attr_resource_alignment);
5164}
5165late_initcall(pci_resource_alignment_sysfs_init);
5166
5167static void pci_no_domains(void)
5168{
5169#ifdef CONFIG_PCI_DOMAINS
5170	pci_domains_supported = 0;
5171#endif
5172}
5173
5174#ifdef CONFIG_PCI_DOMAINS
5175static atomic_t __domain_nr = ATOMIC_INIT(-1);
5176
5177int pci_get_new_domain_nr(void)
5178{
5179	return atomic_inc_return(&__domain_nr);
5180}
5181
5182#ifdef CONFIG_PCI_DOMAINS_GENERIC
5183static int of_pci_bus_find_domain_nr(struct device *parent)
5184{
5185	static int use_dt_domains = -1;
5186	int domain = -1;
5187
5188	if (parent)
5189		domain = of_get_pci_domain_nr(parent->of_node);
5190	/*
5191	 * Check DT domain and use_dt_domains values.
5192	 *
5193	 * If DT domain property is valid (domain >= 0) and
5194	 * use_dt_domains != 0, the DT assignment is valid since this means
5195	 * we have not previously allocated a domain number by using
5196	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5197	 * 1, to indicate that we have just assigned a domain number from
5198	 * DT.
5199	 *
5200	 * If DT domain property value is not valid (ie domain < 0), and we
5201	 * have not previously assigned a domain number from DT
5202	 * (use_dt_domains != 1) we should assign a domain number by
5203	 * using the:
5204	 *
5205	 * pci_get_new_domain_nr()
5206	 *
5207	 * API and update the use_dt_domains value to keep track of method we
5208	 * are using to assign domain numbers (use_dt_domains = 0).
5209	 *
5210	 * All other combinations imply we have a platform that is trying
5211	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5212	 * which is a recipe for domain mishandling and it is prevented by
5213	 * invalidating the domain value (domain = -1) and printing a
5214	 * corresponding error.
5215	 */
5216	if (domain >= 0 && use_dt_domains) {
5217		use_dt_domains = 1;
5218	} else if (domain < 0 && use_dt_domains != 1) {
5219		use_dt_domains = 0;
5220		domain = pci_get_new_domain_nr();
5221	} else {
5222		dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5223			parent->of_node->full_name);
5224		domain = -1;
5225	}
5226
5227	return domain;
5228}
5229
5230int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5231{
5232	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5233			       acpi_pci_bus_find_domain_nr(bus);
5234}
5235#endif
5236#endif
5237
5238/**
5239 * pci_ext_cfg_avail - can we access extended PCI config space?
5240 *
5241 * Returns 1 if we can access PCI extended config space (offsets
5242 * greater than 0xff). This is the default implementation. Architecture
5243 * implementations can override this.
5244 */
5245int __weak pci_ext_cfg_avail(void)
5246{
5247	return 1;
5248}
5249
5250void __weak pci_fixup_cardbus(struct pci_bus *bus)
5251{
5252}
5253EXPORT_SYMBOL(pci_fixup_cardbus);
5254
5255static int __init pci_setup(char *str)
5256{
5257	while (str) {
5258		char *k = strchr(str, ',');
5259		if (k)
5260			*k++ = 0;
5261		if (*str && (str = pcibios_setup(str)) && *str) {
5262			if (!strcmp(str, "nomsi")) {
5263				pci_no_msi();
5264			} else if (!strcmp(str, "noaer")) {
5265				pci_no_aer();
5266			} else if (!strncmp(str, "realloc=", 8)) {
5267				pci_realloc_get_opt(str + 8);
5268			} else if (!strncmp(str, "realloc", 7)) {
5269				pci_realloc_get_opt("on");
5270			} else if (!strcmp(str, "nodomains")) {
5271				pci_no_domains();
5272			} else if (!strncmp(str, "noari", 5)) {
5273				pcie_ari_disabled = true;
5274			} else if (!strncmp(str, "cbiosize=", 9)) {
5275				pci_cardbus_io_size = memparse(str + 9, &str);
5276			} else if (!strncmp(str, "cbmemsize=", 10)) {
5277				pci_cardbus_mem_size = memparse(str + 10, &str);
5278			} else if (!strncmp(str, "resource_alignment=", 19)) {
5279				pci_set_resource_alignment_param(str + 19,
5280							strlen(str + 19));
5281			} else if (!strncmp(str, "ecrc=", 5)) {
5282				pcie_ecrc_get_policy(str + 5);
5283			} else if (!strncmp(str, "hpiosize=", 9)) {
5284				pci_hotplug_io_size = memparse(str + 9, &str);
5285			} else if (!strncmp(str, "hpmemsize=", 10)) {
5286				pci_hotplug_mem_size = memparse(str + 10, &str);
5287			} else if (!strncmp(str, "hpbussize=", 10)) {
5288				pci_hotplug_bus_size =
5289					simple_strtoul(str + 10, &str, 0);
5290				if (pci_hotplug_bus_size > 0xff)
5291					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5292			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5293				pcie_bus_config = PCIE_BUS_TUNE_OFF;
5294			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
5295				pcie_bus_config = PCIE_BUS_SAFE;
5296			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
5297				pcie_bus_config = PCIE_BUS_PERFORMANCE;
5298			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5299				pcie_bus_config = PCIE_BUS_PEER2PEER;
5300			} else if (!strncmp(str, "pcie_scan_all", 13)) {
5301				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5302			} else {
5303				printk(KERN_ERR "PCI: Unknown option `%s'\n",
5304						str);
5305			}
5306		}
5307		str = k;
5308	}
5309	return 0;
5310}
5311early_param("pci", pci_setup);