Linux Audio

Check our new training course

Loading...
v4.6
  1#include <linux/delay.h>
  2#include <linux/pci.h>
  3#include <linux/module.h>
  4#include <linux/sched.h>
  5#include <linux/slab.h>
  6#include <linux/ioport.h>
  7#include <linux/wait.h>
  8
  9#include "pci.h"
 10
 11/*
 12 * This interrupt-safe spinlock protects all accesses to PCI
 13 * configuration space.
 14 */
 15
 16DEFINE_RAW_SPINLOCK(pci_lock);
 17
 18/*
 19 *  Wrappers for all PCI configuration access functions.  They just check
 20 *  alignment, do locking and call the low-level functions pointed to
 21 *  by pci_dev->ops.
 22 */
 23
 24#define PCI_byte_BAD 0
 25#define PCI_word_BAD (pos & 1)
 26#define PCI_dword_BAD (pos & 3)
 27
 28#define PCI_OP_READ(size, type, len) \
 29int pci_bus_read_config_##size \
 30	(struct pci_bus *bus, unsigned int devfn, int pos, type *value)	\
 31{									\
 32	int res;							\
 33	unsigned long flags;						\
 34	u32 data = 0;							\
 35	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
 36	raw_spin_lock_irqsave(&pci_lock, flags);			\
 37	res = bus->ops->read(bus, devfn, pos, len, &data);		\
 38	*value = (type)data;						\
 39	raw_spin_unlock_irqrestore(&pci_lock, flags);		\
 40	return res;							\
 41}
 42
 43#define PCI_OP_WRITE(size, type, len) \
 44int pci_bus_write_config_##size \
 45	(struct pci_bus *bus, unsigned int devfn, int pos, type value)	\
 46{									\
 47	int res;							\
 48	unsigned long flags;						\
 49	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
 50	raw_spin_lock_irqsave(&pci_lock, flags);			\
 51	res = bus->ops->write(bus, devfn, pos, len, value);		\
 52	raw_spin_unlock_irqrestore(&pci_lock, flags);		\
 53	return res;							\
 54}
 55
 56PCI_OP_READ(byte, u8, 1)
 57PCI_OP_READ(word, u16, 2)
 58PCI_OP_READ(dword, u32, 4)
 59PCI_OP_WRITE(byte, u8, 1)
 60PCI_OP_WRITE(word, u16, 2)
 61PCI_OP_WRITE(dword, u32, 4)
 62
 63EXPORT_SYMBOL(pci_bus_read_config_byte);
 64EXPORT_SYMBOL(pci_bus_read_config_word);
 65EXPORT_SYMBOL(pci_bus_read_config_dword);
 66EXPORT_SYMBOL(pci_bus_write_config_byte);
 67EXPORT_SYMBOL(pci_bus_write_config_word);
 68EXPORT_SYMBOL(pci_bus_write_config_dword);
 69
 70int pci_generic_config_read(struct pci_bus *bus, unsigned int devfn,
 71			    int where, int size, u32 *val)
 72{
 73	void __iomem *addr;
 74
 75	addr = bus->ops->map_bus(bus, devfn, where);
 76	if (!addr) {
 77		*val = ~0;
 78		return PCIBIOS_DEVICE_NOT_FOUND;
 79	}
 80
 81	if (size == 1)
 82		*val = readb(addr);
 83	else if (size == 2)
 84		*val = readw(addr);
 85	else
 86		*val = readl(addr);
 87
 88	return PCIBIOS_SUCCESSFUL;
 89}
 90EXPORT_SYMBOL_GPL(pci_generic_config_read);
 91
 92int pci_generic_config_write(struct pci_bus *bus, unsigned int devfn,
 93			     int where, int size, u32 val)
 94{
 95	void __iomem *addr;
 96
 97	addr = bus->ops->map_bus(bus, devfn, where);
 98	if (!addr)
 99		return PCIBIOS_DEVICE_NOT_FOUND;
100
101	if (size == 1)
102		writeb(val, addr);
103	else if (size == 2)
104		writew(val, addr);
105	else
106		writel(val, addr);
107
108	return PCIBIOS_SUCCESSFUL;
109}
110EXPORT_SYMBOL_GPL(pci_generic_config_write);
111
112int pci_generic_config_read32(struct pci_bus *bus, unsigned int devfn,
113			      int where, int size, u32 *val)
114{
115	void __iomem *addr;
116
117	addr = bus->ops->map_bus(bus, devfn, where & ~0x3);
118	if (!addr) {
119		*val = ~0;
120		return PCIBIOS_DEVICE_NOT_FOUND;
121	}
122
123	*val = readl(addr);
124
125	if (size <= 2)
126		*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
127
128	return PCIBIOS_SUCCESSFUL;
129}
130EXPORT_SYMBOL_GPL(pci_generic_config_read32);
131
132int pci_generic_config_write32(struct pci_bus *bus, unsigned int devfn,
133			       int where, int size, u32 val)
134{
135	void __iomem *addr;
136	u32 mask, tmp;
137
138	addr = bus->ops->map_bus(bus, devfn, where & ~0x3);
139	if (!addr)
140		return PCIBIOS_DEVICE_NOT_FOUND;
141
142	if (size == 4) {
143		writel(val, addr);
144		return PCIBIOS_SUCCESSFUL;
145	} else {
146		mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
147	}
148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149	tmp = readl(addr) & mask;
150	tmp |= val << ((where & 0x3) * 8);
151	writel(tmp, addr);
152
153	return PCIBIOS_SUCCESSFUL;
154}
155EXPORT_SYMBOL_GPL(pci_generic_config_write32);
156
157/**
158 * pci_bus_set_ops - Set raw operations of pci bus
159 * @bus:	pci bus struct
160 * @ops:	new raw operations
161 *
162 * Return previous raw operations
163 */
164struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops)
165{
166	struct pci_ops *old_ops;
167	unsigned long flags;
168
169	raw_spin_lock_irqsave(&pci_lock, flags);
170	old_ops = bus->ops;
171	bus->ops = ops;
172	raw_spin_unlock_irqrestore(&pci_lock, flags);
173	return old_ops;
174}
175EXPORT_SYMBOL(pci_bus_set_ops);
176
177/*
178 * The following routines are to prevent the user from accessing PCI config
179 * space when it's unsafe to do so.  Some devices require this during BIST and
180 * we're required to prevent it during D-state transitions.
181 *
182 * We have a bit per device to indicate it's blocked and a global wait queue
183 * for callers to sleep on until devices are unblocked.
184 */
185static DECLARE_WAIT_QUEUE_HEAD(pci_cfg_wait);
186
187static noinline void pci_wait_cfg(struct pci_dev *dev)
188{
189	DECLARE_WAITQUEUE(wait, current);
190
191	__add_wait_queue(&pci_cfg_wait, &wait);
192	do {
193		set_current_state(TASK_UNINTERRUPTIBLE);
194		raw_spin_unlock_irq(&pci_lock);
195		schedule();
196		raw_spin_lock_irq(&pci_lock);
197	} while (dev->block_cfg_access);
198	__remove_wait_queue(&pci_cfg_wait, &wait);
199}
200
201/* Returns 0 on success, negative values indicate error. */
202#define PCI_USER_READ_CONFIG(size, type)					\
203int pci_user_read_config_##size						\
204	(struct pci_dev *dev, int pos, type *val)			\
205{									\
206	int ret = PCIBIOS_SUCCESSFUL;					\
207	u32 data = -1;							\
208	if (PCI_##size##_BAD)						\
209		return -EINVAL;						\
210	raw_spin_lock_irq(&pci_lock);				\
211	if (unlikely(dev->block_cfg_access))				\
212		pci_wait_cfg(dev);					\
213	ret = dev->bus->ops->read(dev->bus, dev->devfn,			\
214					pos, sizeof(type), &data);	\
215	raw_spin_unlock_irq(&pci_lock);				\
216	*val = (type)data;						\
217	return pcibios_err_to_errno(ret);				\
218}									\
219EXPORT_SYMBOL_GPL(pci_user_read_config_##size);
220
221/* Returns 0 on success, negative values indicate error. */
222#define PCI_USER_WRITE_CONFIG(size, type)				\
223int pci_user_write_config_##size					\
224	(struct pci_dev *dev, int pos, type val)			\
225{									\
226	int ret = PCIBIOS_SUCCESSFUL;					\
227	if (PCI_##size##_BAD)						\
228		return -EINVAL;						\
229	raw_spin_lock_irq(&pci_lock);				\
230	if (unlikely(dev->block_cfg_access))				\
231		pci_wait_cfg(dev);					\
232	ret = dev->bus->ops->write(dev->bus, dev->devfn,		\
233					pos, sizeof(type), val);	\
234	raw_spin_unlock_irq(&pci_lock);				\
235	return pcibios_err_to_errno(ret);				\
236}									\
237EXPORT_SYMBOL_GPL(pci_user_write_config_##size);
238
239PCI_USER_READ_CONFIG(byte, u8)
240PCI_USER_READ_CONFIG(word, u16)
241PCI_USER_READ_CONFIG(dword, u32)
242PCI_USER_WRITE_CONFIG(byte, u8)
243PCI_USER_WRITE_CONFIG(word, u16)
244PCI_USER_WRITE_CONFIG(dword, u32)
245
246/* VPD access through PCI 2.2+ VPD capability */
247
248/**
249 * pci_read_vpd - Read one entry from Vital Product Data
250 * @dev:	pci device struct
251 * @pos:	offset in vpd space
252 * @count:	number of bytes to read
253 * @buf:	pointer to where to store result
254 */
255ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
256{
257	if (!dev->vpd || !dev->vpd->ops)
258		return -ENODEV;
259	return dev->vpd->ops->read(dev, pos, count, buf);
260}
261EXPORT_SYMBOL(pci_read_vpd);
262
263/**
264 * pci_write_vpd - Write entry to Vital Product Data
265 * @dev:	pci device struct
266 * @pos:	offset in vpd space
267 * @count:	number of bytes to write
268 * @buf:	buffer containing write data
269 */
270ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
271{
272	if (!dev->vpd || !dev->vpd->ops)
273		return -ENODEV;
274	return dev->vpd->ops->write(dev, pos, count, buf);
275}
276EXPORT_SYMBOL(pci_write_vpd);
277
278/**
279 * pci_set_vpd_size - Set size of Vital Product Data space
280 * @dev:	pci device struct
281 * @len:	size of vpd space
282 */
283int pci_set_vpd_size(struct pci_dev *dev, size_t len)
284{
285	if (!dev->vpd || !dev->vpd->ops)
286		return -ENODEV;
287	return dev->vpd->ops->set_size(dev, len);
288}
289EXPORT_SYMBOL(pci_set_vpd_size);
290
291#define PCI_VPD_MAX_SIZE (PCI_VPD_ADDR_MASK + 1)
292
293/**
294 * pci_vpd_size - determine actual size of Vital Product Data
295 * @dev:	pci device struct
296 * @old_size:	current assumed size, also maximum allowed size
297 */
298static size_t pci_vpd_size(struct pci_dev *dev, size_t old_size)
299{
300	size_t off = 0;
301	unsigned char header[1+2];	/* 1 byte tag, 2 bytes length */
302
303	while (off < old_size &&
304	       pci_read_vpd(dev, off, 1, header) == 1) {
305		unsigned char tag;
306
307		if (header[0] & PCI_VPD_LRDT) {
308			/* Large Resource Data Type Tag */
309			tag = pci_vpd_lrdt_tag(header);
310			/* Only read length from known tag items */
311			if ((tag == PCI_VPD_LTIN_ID_STRING) ||
312			    (tag == PCI_VPD_LTIN_RO_DATA) ||
313			    (tag == PCI_VPD_LTIN_RW_DATA)) {
314				if (pci_read_vpd(dev, off+1, 2,
315						 &header[1]) != 2) {
316					dev_warn(&dev->dev,
317						 "invalid large VPD tag %02x size at offset %zu",
318						 tag, off + 1);
319					return 0;
320				}
321				off += PCI_VPD_LRDT_TAG_SIZE +
322					pci_vpd_lrdt_size(header);
323			}
324		} else {
325			/* Short Resource Data Type Tag */
326			off += PCI_VPD_SRDT_TAG_SIZE +
327				pci_vpd_srdt_size(header);
328			tag = pci_vpd_srdt_tag(header);
329		}
330
331		if (tag == PCI_VPD_STIN_END)	/* End tag descriptor */
332			return off;
333
334		if ((tag != PCI_VPD_LTIN_ID_STRING) &&
335		    (tag != PCI_VPD_LTIN_RO_DATA) &&
336		    (tag != PCI_VPD_LTIN_RW_DATA)) {
337			dev_warn(&dev->dev,
338				 "invalid %s VPD tag %02x at offset %zu",
339				 (header[0] & PCI_VPD_LRDT) ? "large" : "short",
340				 tag, off);
341			return 0;
342		}
343	}
344	return 0;
345}
346
347/*
348 * Wait for last operation to complete.
349 * This code has to spin since there is no other notification from the PCI
350 * hardware. Since the VPD is often implemented by serial attachment to an
351 * EEPROM, it may take many milliseconds to complete.
352 *
353 * Returns 0 on success, negative values indicate error.
354 */
355static int pci_vpd_wait(struct pci_dev *dev)
356{
357	struct pci_vpd *vpd = dev->vpd;
358	unsigned long timeout = jiffies + msecs_to_jiffies(50);
359	unsigned long max_sleep = 16;
360	u16 status;
361	int ret;
362
363	if (!vpd->busy)
364		return 0;
365
366	while (time_before(jiffies, timeout)) {
367		ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR,
368						&status);
369		if (ret < 0)
370			return ret;
371
372		if ((status & PCI_VPD_ADDR_F) == vpd->flag) {
373			vpd->busy = 0;
374			return 0;
375		}
376
377		if (fatal_signal_pending(current))
378			return -EINTR;
379
380		usleep_range(10, max_sleep);
381		if (max_sleep < 1024)
382			max_sleep *= 2;
383	}
384
385	dev_warn(&dev->dev, "VPD access failed.  This is likely a firmware bug on this device.  Contact the card vendor for a firmware update\n");
386	return -ETIMEDOUT;
387}
388
389static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count,
390			    void *arg)
391{
392	struct pci_vpd *vpd = dev->vpd;
393	int ret;
394	loff_t end = pos + count;
395	u8 *buf = arg;
396
397	if (pos < 0)
398		return -EINVAL;
399
400	if (!vpd->valid) {
401		vpd->valid = 1;
402		vpd->len = pci_vpd_size(dev, vpd->len);
403	}
404
405	if (vpd->len == 0)
406		return -EIO;
407
408	if (pos > vpd->len)
409		return 0;
410
411	if (end > vpd->len) {
412		end = vpd->len;
413		count = end - pos;
414	}
415
416	if (mutex_lock_killable(&vpd->lock))
417		return -EINTR;
418
419	ret = pci_vpd_wait(dev);
420	if (ret < 0)
421		goto out;
422
423	while (pos < end) {
424		u32 val;
425		unsigned int i, skip;
426
427		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
428						 pos & ~3);
429		if (ret < 0)
430			break;
431		vpd->busy = 1;
432		vpd->flag = PCI_VPD_ADDR_F;
433		ret = pci_vpd_wait(dev);
434		if (ret < 0)
435			break;
436
437		ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val);
438		if (ret < 0)
439			break;
440
441		skip = pos & 3;
442		for (i = 0;  i < sizeof(u32); i++) {
443			if (i >= skip) {
444				*buf++ = val;
445				if (++pos == end)
446					break;
447			}
448			val >>= 8;
449		}
450	}
451out:
452	mutex_unlock(&vpd->lock);
453	return ret ? ret : count;
454}
455
456static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count,
457			     const void *arg)
458{
459	struct pci_vpd *vpd = dev->vpd;
460	const u8 *buf = arg;
461	loff_t end = pos + count;
462	int ret = 0;
463
464	if (pos < 0 || (pos & 3) || (count & 3))
465		return -EINVAL;
466
467	if (!vpd->valid) {
468		vpd->valid = 1;
469		vpd->len = pci_vpd_size(dev, vpd->len);
470	}
471
472	if (vpd->len == 0)
473		return -EIO;
474
475	if (end > vpd->len)
476		return -EINVAL;
477
478	if (mutex_lock_killable(&vpd->lock))
479		return -EINTR;
480
481	ret = pci_vpd_wait(dev);
482	if (ret < 0)
483		goto out;
484
485	while (pos < end) {
486		u32 val;
487
488		val = *buf++;
489		val |= *buf++ << 8;
490		val |= *buf++ << 16;
491		val |= *buf++ << 24;
492
493		ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val);
494		if (ret < 0)
495			break;
496		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
497						 pos | PCI_VPD_ADDR_F);
498		if (ret < 0)
499			break;
500
501		vpd->busy = 1;
502		vpd->flag = 0;
503		ret = pci_vpd_wait(dev);
504		if (ret < 0)
505			break;
506
507		pos += sizeof(u32);
508	}
509out:
510	mutex_unlock(&vpd->lock);
511	return ret ? ret : count;
512}
513
514static int pci_vpd_set_size(struct pci_dev *dev, size_t len)
515{
516	struct pci_vpd *vpd = dev->vpd;
517
518	if (len == 0 || len > PCI_VPD_MAX_SIZE)
519		return -EIO;
520
521	vpd->valid = 1;
522	vpd->len = len;
523
524	return 0;
525}
526
527static const struct pci_vpd_ops pci_vpd_ops = {
528	.read = pci_vpd_read,
529	.write = pci_vpd_write,
530	.set_size = pci_vpd_set_size,
531};
532
533static ssize_t pci_vpd_f0_read(struct pci_dev *dev, loff_t pos, size_t count,
534			       void *arg)
535{
536	struct pci_dev *tdev = pci_get_slot(dev->bus,
537					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
538	ssize_t ret;
539
540	if (!tdev)
541		return -ENODEV;
542
543	ret = pci_read_vpd(tdev, pos, count, arg);
544	pci_dev_put(tdev);
545	return ret;
546}
547
548static ssize_t pci_vpd_f0_write(struct pci_dev *dev, loff_t pos, size_t count,
549				const void *arg)
550{
551	struct pci_dev *tdev = pci_get_slot(dev->bus,
552					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
553	ssize_t ret;
554
555	if (!tdev)
556		return -ENODEV;
557
558	ret = pci_write_vpd(tdev, pos, count, arg);
559	pci_dev_put(tdev);
560	return ret;
561}
562
563static int pci_vpd_f0_set_size(struct pci_dev *dev, size_t len)
564{
565	struct pci_dev *tdev = pci_get_slot(dev->bus,
566					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
567	int ret;
568
569	if (!tdev)
570		return -ENODEV;
571
572	ret = pci_set_vpd_size(tdev, len);
573	pci_dev_put(tdev);
574	return ret;
575}
576
577static const struct pci_vpd_ops pci_vpd_f0_ops = {
578	.read = pci_vpd_f0_read,
579	.write = pci_vpd_f0_write,
580	.set_size = pci_vpd_f0_set_size,
581};
582
583int pci_vpd_init(struct pci_dev *dev)
584{
585	struct pci_vpd *vpd;
586	u8 cap;
587
588	cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
589	if (!cap)
590		return -ENODEV;
591
592	vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC);
593	if (!vpd)
594		return -ENOMEM;
595
596	vpd->len = PCI_VPD_MAX_SIZE;
597	if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0)
598		vpd->ops = &pci_vpd_f0_ops;
599	else
600		vpd->ops = &pci_vpd_ops;
601	mutex_init(&vpd->lock);
602	vpd->cap = cap;
603	vpd->busy = 0;
604	vpd->valid = 0;
605	dev->vpd = vpd;
606	return 0;
607}
608
609void pci_vpd_release(struct pci_dev *dev)
610{
611	kfree(dev->vpd);
612}
613
614/**
615 * pci_cfg_access_lock - Lock PCI config reads/writes
616 * @dev:	pci device struct
617 *
618 * When access is locked, any userspace reads or writes to config
619 * space and concurrent lock requests will sleep until access is
620 * allowed via pci_cfg_access_unlocked again.
621 */
622void pci_cfg_access_lock(struct pci_dev *dev)
623{
624	might_sleep();
625
626	raw_spin_lock_irq(&pci_lock);
627	if (dev->block_cfg_access)
628		pci_wait_cfg(dev);
629	dev->block_cfg_access = 1;
630	raw_spin_unlock_irq(&pci_lock);
631}
632EXPORT_SYMBOL_GPL(pci_cfg_access_lock);
633
634/**
635 * pci_cfg_access_trylock - try to lock PCI config reads/writes
636 * @dev:	pci device struct
637 *
638 * Same as pci_cfg_access_lock, but will return 0 if access is
639 * already locked, 1 otherwise. This function can be used from
640 * atomic contexts.
641 */
642bool pci_cfg_access_trylock(struct pci_dev *dev)
643{
644	unsigned long flags;
645	bool locked = true;
646
647	raw_spin_lock_irqsave(&pci_lock, flags);
648	if (dev->block_cfg_access)
649		locked = false;
650	else
651		dev->block_cfg_access = 1;
652	raw_spin_unlock_irqrestore(&pci_lock, flags);
653
654	return locked;
655}
656EXPORT_SYMBOL_GPL(pci_cfg_access_trylock);
657
658/**
659 * pci_cfg_access_unlock - Unlock PCI config reads/writes
660 * @dev:	pci device struct
661 *
662 * This function allows PCI config accesses to resume.
663 */
664void pci_cfg_access_unlock(struct pci_dev *dev)
665{
666	unsigned long flags;
667
668	raw_spin_lock_irqsave(&pci_lock, flags);
669
670	/* This indicates a problem in the caller, but we don't need
671	 * to kill them, unlike a double-block above. */
672	WARN_ON(!dev->block_cfg_access);
673
674	dev->block_cfg_access = 0;
675	wake_up_all(&pci_cfg_wait);
676	raw_spin_unlock_irqrestore(&pci_lock, flags);
677}
678EXPORT_SYMBOL_GPL(pci_cfg_access_unlock);
679
680static inline int pcie_cap_version(const struct pci_dev *dev)
681{
682	return pcie_caps_reg(dev) & PCI_EXP_FLAGS_VERS;
683}
684
685static bool pcie_downstream_port(const struct pci_dev *dev)
686{
687	int type = pci_pcie_type(dev);
688
689	return type == PCI_EXP_TYPE_ROOT_PORT ||
690	       type == PCI_EXP_TYPE_DOWNSTREAM;
691}
692
693bool pcie_cap_has_lnkctl(const struct pci_dev *dev)
694{
695	int type = pci_pcie_type(dev);
696
697	return type == PCI_EXP_TYPE_ENDPOINT ||
698	       type == PCI_EXP_TYPE_LEG_END ||
699	       type == PCI_EXP_TYPE_ROOT_PORT ||
700	       type == PCI_EXP_TYPE_UPSTREAM ||
701	       type == PCI_EXP_TYPE_DOWNSTREAM ||
702	       type == PCI_EXP_TYPE_PCI_BRIDGE ||
703	       type == PCI_EXP_TYPE_PCIE_BRIDGE;
704}
705
706static inline bool pcie_cap_has_sltctl(const struct pci_dev *dev)
707{
708	return pcie_downstream_port(dev) &&
709	       pcie_caps_reg(dev) & PCI_EXP_FLAGS_SLOT;
710}
711
712static inline bool pcie_cap_has_rtctl(const struct pci_dev *dev)
713{
714	int type = pci_pcie_type(dev);
715
716	return type == PCI_EXP_TYPE_ROOT_PORT ||
717	       type == PCI_EXP_TYPE_RC_EC;
718}
719
720static bool pcie_capability_reg_implemented(struct pci_dev *dev, int pos)
721{
722	if (!pci_is_pcie(dev))
723		return false;
724
725	switch (pos) {
726	case PCI_EXP_FLAGS:
727		return true;
728	case PCI_EXP_DEVCAP:
729	case PCI_EXP_DEVCTL:
730	case PCI_EXP_DEVSTA:
731		return true;
732	case PCI_EXP_LNKCAP:
733	case PCI_EXP_LNKCTL:
734	case PCI_EXP_LNKSTA:
735		return pcie_cap_has_lnkctl(dev);
736	case PCI_EXP_SLTCAP:
737	case PCI_EXP_SLTCTL:
738	case PCI_EXP_SLTSTA:
739		return pcie_cap_has_sltctl(dev);
740	case PCI_EXP_RTCTL:
741	case PCI_EXP_RTCAP:
742	case PCI_EXP_RTSTA:
743		return pcie_cap_has_rtctl(dev);
744	case PCI_EXP_DEVCAP2:
745	case PCI_EXP_DEVCTL2:
746	case PCI_EXP_LNKCAP2:
747	case PCI_EXP_LNKCTL2:
748	case PCI_EXP_LNKSTA2:
749		return pcie_cap_version(dev) > 1;
750	default:
751		return false;
752	}
753}
754
755/*
756 * Note that these accessor functions are only for the "PCI Express
757 * Capability" (see PCIe spec r3.0, sec 7.8).  They do not apply to the
758 * other "PCI Express Extended Capabilities" (AER, VC, ACS, MFVC, etc.)
759 */
760int pcie_capability_read_word(struct pci_dev *dev, int pos, u16 *val)
761{
762	int ret;
763
764	*val = 0;
765	if (pos & 1)
766		return -EINVAL;
767
768	if (pcie_capability_reg_implemented(dev, pos)) {
769		ret = pci_read_config_word(dev, pci_pcie_cap(dev) + pos, val);
770		/*
771		 * Reset *val to 0 if pci_read_config_word() fails, it may
772		 * have been written as 0xFFFF if hardware error happens
773		 * during pci_read_config_word().
774		 */
775		if (ret)
776			*val = 0;
777		return ret;
778	}
779
780	/*
781	 * For Functions that do not implement the Slot Capabilities,
782	 * Slot Status, and Slot Control registers, these spaces must
783	 * be hardwired to 0b, with the exception of the Presence Detect
784	 * State bit in the Slot Status register of Downstream Ports,
785	 * which must be hardwired to 1b.  (PCIe Base Spec 3.0, sec 7.8)
786	 */
787	if (pci_is_pcie(dev) && pcie_downstream_port(dev) &&
788	    pos == PCI_EXP_SLTSTA)
789		*val = PCI_EXP_SLTSTA_PDS;
790
791	return 0;
792}
793EXPORT_SYMBOL(pcie_capability_read_word);
794
795int pcie_capability_read_dword(struct pci_dev *dev, int pos, u32 *val)
796{
797	int ret;
798
799	*val = 0;
800	if (pos & 3)
801		return -EINVAL;
802
803	if (pcie_capability_reg_implemented(dev, pos)) {
804		ret = pci_read_config_dword(dev, pci_pcie_cap(dev) + pos, val);
805		/*
806		 * Reset *val to 0 if pci_read_config_dword() fails, it may
807		 * have been written as 0xFFFFFFFF if hardware error happens
808		 * during pci_read_config_dword().
809		 */
810		if (ret)
811			*val = 0;
812		return ret;
813	}
814
815	if (pci_is_pcie(dev) && pcie_downstream_port(dev) &&
816	    pos == PCI_EXP_SLTSTA)
817		*val = PCI_EXP_SLTSTA_PDS;
818
819	return 0;
820}
821EXPORT_SYMBOL(pcie_capability_read_dword);
822
823int pcie_capability_write_word(struct pci_dev *dev, int pos, u16 val)
824{
825	if (pos & 1)
826		return -EINVAL;
827
828	if (!pcie_capability_reg_implemented(dev, pos))
829		return 0;
830
831	return pci_write_config_word(dev, pci_pcie_cap(dev) + pos, val);
832}
833EXPORT_SYMBOL(pcie_capability_write_word);
834
835int pcie_capability_write_dword(struct pci_dev *dev, int pos, u32 val)
836{
837	if (pos & 3)
838		return -EINVAL;
839
840	if (!pcie_capability_reg_implemented(dev, pos))
841		return 0;
842
843	return pci_write_config_dword(dev, pci_pcie_cap(dev) + pos, val);
844}
845EXPORT_SYMBOL(pcie_capability_write_dword);
846
847int pcie_capability_clear_and_set_word(struct pci_dev *dev, int pos,
848				       u16 clear, u16 set)
849{
850	int ret;
851	u16 val;
852
853	ret = pcie_capability_read_word(dev, pos, &val);
854	if (!ret) {
855		val &= ~clear;
856		val |= set;
857		ret = pcie_capability_write_word(dev, pos, val);
858	}
859
860	return ret;
861}
862EXPORT_SYMBOL(pcie_capability_clear_and_set_word);
863
864int pcie_capability_clear_and_set_dword(struct pci_dev *dev, int pos,
865					u32 clear, u32 set)
866{
867	int ret;
868	u32 val;
869
870	ret = pcie_capability_read_dword(dev, pos, &val);
871	if (!ret) {
872		val &= ~clear;
873		val |= set;
874		ret = pcie_capability_write_dword(dev, pos, val);
875	}
876
877	return ret;
878}
879EXPORT_SYMBOL(pcie_capability_clear_and_set_dword);
v4.10.11
  1#include <linux/delay.h>
  2#include <linux/pci.h>
  3#include <linux/module.h>
  4#include <linux/sched.h>
  5#include <linux/slab.h>
  6#include <linux/ioport.h>
  7#include <linux/wait.h>
  8
  9#include "pci.h"
 10
 11/*
 12 * This interrupt-safe spinlock protects all accesses to PCI
 13 * configuration space.
 14 */
 15
 16DEFINE_RAW_SPINLOCK(pci_lock);
 17
 18/*
 19 *  Wrappers for all PCI configuration access functions.  They just check
 20 *  alignment, do locking and call the low-level functions pointed to
 21 *  by pci_dev->ops.
 22 */
 23
 24#define PCI_byte_BAD 0
 25#define PCI_word_BAD (pos & 1)
 26#define PCI_dword_BAD (pos & 3)
 27
 28#define PCI_OP_READ(size, type, len) \
 29int pci_bus_read_config_##size \
 30	(struct pci_bus *bus, unsigned int devfn, int pos, type *value)	\
 31{									\
 32	int res;							\
 33	unsigned long flags;						\
 34	u32 data = 0;							\
 35	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
 36	raw_spin_lock_irqsave(&pci_lock, flags);			\
 37	res = bus->ops->read(bus, devfn, pos, len, &data);		\
 38	*value = (type)data;						\
 39	raw_spin_unlock_irqrestore(&pci_lock, flags);		\
 40	return res;							\
 41}
 42
 43#define PCI_OP_WRITE(size, type, len) \
 44int pci_bus_write_config_##size \
 45	(struct pci_bus *bus, unsigned int devfn, int pos, type value)	\
 46{									\
 47	int res;							\
 48	unsigned long flags;						\
 49	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
 50	raw_spin_lock_irqsave(&pci_lock, flags);			\
 51	res = bus->ops->write(bus, devfn, pos, len, value);		\
 52	raw_spin_unlock_irqrestore(&pci_lock, flags);		\
 53	return res;							\
 54}
 55
 56PCI_OP_READ(byte, u8, 1)
 57PCI_OP_READ(word, u16, 2)
 58PCI_OP_READ(dword, u32, 4)
 59PCI_OP_WRITE(byte, u8, 1)
 60PCI_OP_WRITE(word, u16, 2)
 61PCI_OP_WRITE(dword, u32, 4)
 62
 63EXPORT_SYMBOL(pci_bus_read_config_byte);
 64EXPORT_SYMBOL(pci_bus_read_config_word);
 65EXPORT_SYMBOL(pci_bus_read_config_dword);
 66EXPORT_SYMBOL(pci_bus_write_config_byte);
 67EXPORT_SYMBOL(pci_bus_write_config_word);
 68EXPORT_SYMBOL(pci_bus_write_config_dword);
 69
 70int pci_generic_config_read(struct pci_bus *bus, unsigned int devfn,
 71			    int where, int size, u32 *val)
 72{
 73	void __iomem *addr;
 74
 75	addr = bus->ops->map_bus(bus, devfn, where);
 76	if (!addr) {
 77		*val = ~0;
 78		return PCIBIOS_DEVICE_NOT_FOUND;
 79	}
 80
 81	if (size == 1)
 82		*val = readb(addr);
 83	else if (size == 2)
 84		*val = readw(addr);
 85	else
 86		*val = readl(addr);
 87
 88	return PCIBIOS_SUCCESSFUL;
 89}
 90EXPORT_SYMBOL_GPL(pci_generic_config_read);
 91
 92int pci_generic_config_write(struct pci_bus *bus, unsigned int devfn,
 93			     int where, int size, u32 val)
 94{
 95	void __iomem *addr;
 96
 97	addr = bus->ops->map_bus(bus, devfn, where);
 98	if (!addr)
 99		return PCIBIOS_DEVICE_NOT_FOUND;
100
101	if (size == 1)
102		writeb(val, addr);
103	else if (size == 2)
104		writew(val, addr);
105	else
106		writel(val, addr);
107
108	return PCIBIOS_SUCCESSFUL;
109}
110EXPORT_SYMBOL_GPL(pci_generic_config_write);
111
112int pci_generic_config_read32(struct pci_bus *bus, unsigned int devfn,
113			      int where, int size, u32 *val)
114{
115	void __iomem *addr;
116
117	addr = bus->ops->map_bus(bus, devfn, where & ~0x3);
118	if (!addr) {
119		*val = ~0;
120		return PCIBIOS_DEVICE_NOT_FOUND;
121	}
122
123	*val = readl(addr);
124
125	if (size <= 2)
126		*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
127
128	return PCIBIOS_SUCCESSFUL;
129}
130EXPORT_SYMBOL_GPL(pci_generic_config_read32);
131
132int pci_generic_config_write32(struct pci_bus *bus, unsigned int devfn,
133			       int where, int size, u32 val)
134{
135	void __iomem *addr;
136	u32 mask, tmp;
137
138	addr = bus->ops->map_bus(bus, devfn, where & ~0x3);
139	if (!addr)
140		return PCIBIOS_DEVICE_NOT_FOUND;
141
142	if (size == 4) {
143		writel(val, addr);
144		return PCIBIOS_SUCCESSFUL;
 
 
145	}
146
147	/*
148	 * In general, hardware that supports only 32-bit writes on PCI is
149	 * not spec-compliant.  For example, software may perform a 16-bit
150	 * write.  If the hardware only supports 32-bit accesses, we must
151	 * do a 32-bit read, merge in the 16 bits we intend to write,
152	 * followed by a 32-bit write.  If the 16 bits we *don't* intend to
153	 * write happen to have any RW1C (write-one-to-clear) bits set, we
154	 * just inadvertently cleared something we shouldn't have.
155	 */
156	dev_warn_ratelimited(&bus->dev, "%d-byte config write to %04x:%02x:%02x.%d offset %#x may corrupt adjacent RW1C bits\n",
157			     size, pci_domain_nr(bus), bus->number,
158			     PCI_SLOT(devfn), PCI_FUNC(devfn), where);
159
160	mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
161	tmp = readl(addr) & mask;
162	tmp |= val << ((where & 0x3) * 8);
163	writel(tmp, addr);
164
165	return PCIBIOS_SUCCESSFUL;
166}
167EXPORT_SYMBOL_GPL(pci_generic_config_write32);
168
169/**
170 * pci_bus_set_ops - Set raw operations of pci bus
171 * @bus:	pci bus struct
172 * @ops:	new raw operations
173 *
174 * Return previous raw operations
175 */
176struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops)
177{
178	struct pci_ops *old_ops;
179	unsigned long flags;
180
181	raw_spin_lock_irqsave(&pci_lock, flags);
182	old_ops = bus->ops;
183	bus->ops = ops;
184	raw_spin_unlock_irqrestore(&pci_lock, flags);
185	return old_ops;
186}
187EXPORT_SYMBOL(pci_bus_set_ops);
188
189/*
190 * The following routines are to prevent the user from accessing PCI config
191 * space when it's unsafe to do so.  Some devices require this during BIST and
192 * we're required to prevent it during D-state transitions.
193 *
194 * We have a bit per device to indicate it's blocked and a global wait queue
195 * for callers to sleep on until devices are unblocked.
196 */
197static DECLARE_WAIT_QUEUE_HEAD(pci_cfg_wait);
198
199static noinline void pci_wait_cfg(struct pci_dev *dev)
200{
201	DECLARE_WAITQUEUE(wait, current);
202
203	__add_wait_queue(&pci_cfg_wait, &wait);
204	do {
205		set_current_state(TASK_UNINTERRUPTIBLE);
206		raw_spin_unlock_irq(&pci_lock);
207		schedule();
208		raw_spin_lock_irq(&pci_lock);
209	} while (dev->block_cfg_access);
210	__remove_wait_queue(&pci_cfg_wait, &wait);
211}
212
213/* Returns 0 on success, negative values indicate error. */
214#define PCI_USER_READ_CONFIG(size, type)					\
215int pci_user_read_config_##size						\
216	(struct pci_dev *dev, int pos, type *val)			\
217{									\
218	int ret = PCIBIOS_SUCCESSFUL;					\
219	u32 data = -1;							\
220	if (PCI_##size##_BAD)						\
221		return -EINVAL;						\
222	raw_spin_lock_irq(&pci_lock);				\
223	if (unlikely(dev->block_cfg_access))				\
224		pci_wait_cfg(dev);					\
225	ret = dev->bus->ops->read(dev->bus, dev->devfn,			\
226					pos, sizeof(type), &data);	\
227	raw_spin_unlock_irq(&pci_lock);				\
228	*val = (type)data;						\
229	return pcibios_err_to_errno(ret);				\
230}									\
231EXPORT_SYMBOL_GPL(pci_user_read_config_##size);
232
233/* Returns 0 on success, negative values indicate error. */
234#define PCI_USER_WRITE_CONFIG(size, type)				\
235int pci_user_write_config_##size					\
236	(struct pci_dev *dev, int pos, type val)			\
237{									\
238	int ret = PCIBIOS_SUCCESSFUL;					\
239	if (PCI_##size##_BAD)						\
240		return -EINVAL;						\
241	raw_spin_lock_irq(&pci_lock);				\
242	if (unlikely(dev->block_cfg_access))				\
243		pci_wait_cfg(dev);					\
244	ret = dev->bus->ops->write(dev->bus, dev->devfn,		\
245					pos, sizeof(type), val);	\
246	raw_spin_unlock_irq(&pci_lock);				\
247	return pcibios_err_to_errno(ret);				\
248}									\
249EXPORT_SYMBOL_GPL(pci_user_write_config_##size);
250
251PCI_USER_READ_CONFIG(byte, u8)
252PCI_USER_READ_CONFIG(word, u16)
253PCI_USER_READ_CONFIG(dword, u32)
254PCI_USER_WRITE_CONFIG(byte, u8)
255PCI_USER_WRITE_CONFIG(word, u16)
256PCI_USER_WRITE_CONFIG(dword, u32)
257
258/* VPD access through PCI 2.2+ VPD capability */
259
260/**
261 * pci_read_vpd - Read one entry from Vital Product Data
262 * @dev:	pci device struct
263 * @pos:	offset in vpd space
264 * @count:	number of bytes to read
265 * @buf:	pointer to where to store result
266 */
267ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
268{
269	if (!dev->vpd || !dev->vpd->ops)
270		return -ENODEV;
271	return dev->vpd->ops->read(dev, pos, count, buf);
272}
273EXPORT_SYMBOL(pci_read_vpd);
274
275/**
276 * pci_write_vpd - Write entry to Vital Product Data
277 * @dev:	pci device struct
278 * @pos:	offset in vpd space
279 * @count:	number of bytes to write
280 * @buf:	buffer containing write data
281 */
282ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
283{
284	if (!dev->vpd || !dev->vpd->ops)
285		return -ENODEV;
286	return dev->vpd->ops->write(dev, pos, count, buf);
287}
288EXPORT_SYMBOL(pci_write_vpd);
289
290/**
291 * pci_set_vpd_size - Set size of Vital Product Data space
292 * @dev:	pci device struct
293 * @len:	size of vpd space
294 */
295int pci_set_vpd_size(struct pci_dev *dev, size_t len)
296{
297	if (!dev->vpd || !dev->vpd->ops)
298		return -ENODEV;
299	return dev->vpd->ops->set_size(dev, len);
300}
301EXPORT_SYMBOL(pci_set_vpd_size);
302
303#define PCI_VPD_MAX_SIZE (PCI_VPD_ADDR_MASK + 1)
304
305/**
306 * pci_vpd_size - determine actual size of Vital Product Data
307 * @dev:	pci device struct
308 * @old_size:	current assumed size, also maximum allowed size
309 */
310static size_t pci_vpd_size(struct pci_dev *dev, size_t old_size)
311{
312	size_t off = 0;
313	unsigned char header[1+2];	/* 1 byte tag, 2 bytes length */
314
315	while (off < old_size &&
316	       pci_read_vpd(dev, off, 1, header) == 1) {
317		unsigned char tag;
318
319		if (header[0] & PCI_VPD_LRDT) {
320			/* Large Resource Data Type Tag */
321			tag = pci_vpd_lrdt_tag(header);
322			/* Only read length from known tag items */
323			if ((tag == PCI_VPD_LTIN_ID_STRING) ||
324			    (tag == PCI_VPD_LTIN_RO_DATA) ||
325			    (tag == PCI_VPD_LTIN_RW_DATA)) {
326				if (pci_read_vpd(dev, off+1, 2,
327						 &header[1]) != 2) {
328					dev_warn(&dev->dev,
329						 "invalid large VPD tag %02x size at offset %zu",
330						 tag, off + 1);
331					return 0;
332				}
333				off += PCI_VPD_LRDT_TAG_SIZE +
334					pci_vpd_lrdt_size(header);
335			}
336		} else {
337			/* Short Resource Data Type Tag */
338			off += PCI_VPD_SRDT_TAG_SIZE +
339				pci_vpd_srdt_size(header);
340			tag = pci_vpd_srdt_tag(header);
341		}
342
343		if (tag == PCI_VPD_STIN_END)	/* End tag descriptor */
344			return off;
345
346		if ((tag != PCI_VPD_LTIN_ID_STRING) &&
347		    (tag != PCI_VPD_LTIN_RO_DATA) &&
348		    (tag != PCI_VPD_LTIN_RW_DATA)) {
349			dev_warn(&dev->dev,
350				 "invalid %s VPD tag %02x at offset %zu",
351				 (header[0] & PCI_VPD_LRDT) ? "large" : "short",
352				 tag, off);
353			return 0;
354		}
355	}
356	return 0;
357}
358
359/*
360 * Wait for last operation to complete.
361 * This code has to spin since there is no other notification from the PCI
362 * hardware. Since the VPD is often implemented by serial attachment to an
363 * EEPROM, it may take many milliseconds to complete.
364 *
365 * Returns 0 on success, negative values indicate error.
366 */
367static int pci_vpd_wait(struct pci_dev *dev)
368{
369	struct pci_vpd *vpd = dev->vpd;
370	unsigned long timeout = jiffies + msecs_to_jiffies(50);
371	unsigned long max_sleep = 16;
372	u16 status;
373	int ret;
374
375	if (!vpd->busy)
376		return 0;
377
378	while (time_before(jiffies, timeout)) {
379		ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR,
380						&status);
381		if (ret < 0)
382			return ret;
383
384		if ((status & PCI_VPD_ADDR_F) == vpd->flag) {
385			vpd->busy = 0;
386			return 0;
387		}
388
389		if (fatal_signal_pending(current))
390			return -EINTR;
391
392		usleep_range(10, max_sleep);
393		if (max_sleep < 1024)
394			max_sleep *= 2;
395	}
396
397	dev_warn(&dev->dev, "VPD access failed.  This is likely a firmware bug on this device.  Contact the card vendor for a firmware update\n");
398	return -ETIMEDOUT;
399}
400
401static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count,
402			    void *arg)
403{
404	struct pci_vpd *vpd = dev->vpd;
405	int ret;
406	loff_t end = pos + count;
407	u8 *buf = arg;
408
409	if (pos < 0)
410		return -EINVAL;
411
412	if (!vpd->valid) {
413		vpd->valid = 1;
414		vpd->len = pci_vpd_size(dev, vpd->len);
415	}
416
417	if (vpd->len == 0)
418		return -EIO;
419
420	if (pos > vpd->len)
421		return 0;
422
423	if (end > vpd->len) {
424		end = vpd->len;
425		count = end - pos;
426	}
427
428	if (mutex_lock_killable(&vpd->lock))
429		return -EINTR;
430
431	ret = pci_vpd_wait(dev);
432	if (ret < 0)
433		goto out;
434
435	while (pos < end) {
436		u32 val;
437		unsigned int i, skip;
438
439		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
440						 pos & ~3);
441		if (ret < 0)
442			break;
443		vpd->busy = 1;
444		vpd->flag = PCI_VPD_ADDR_F;
445		ret = pci_vpd_wait(dev);
446		if (ret < 0)
447			break;
448
449		ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val);
450		if (ret < 0)
451			break;
452
453		skip = pos & 3;
454		for (i = 0;  i < sizeof(u32); i++) {
455			if (i >= skip) {
456				*buf++ = val;
457				if (++pos == end)
458					break;
459			}
460			val >>= 8;
461		}
462	}
463out:
464	mutex_unlock(&vpd->lock);
465	return ret ? ret : count;
466}
467
468static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count,
469			     const void *arg)
470{
471	struct pci_vpd *vpd = dev->vpd;
472	const u8 *buf = arg;
473	loff_t end = pos + count;
474	int ret = 0;
475
476	if (pos < 0 || (pos & 3) || (count & 3))
477		return -EINVAL;
478
479	if (!vpd->valid) {
480		vpd->valid = 1;
481		vpd->len = pci_vpd_size(dev, vpd->len);
482	}
483
484	if (vpd->len == 0)
485		return -EIO;
486
487	if (end > vpd->len)
488		return -EINVAL;
489
490	if (mutex_lock_killable(&vpd->lock))
491		return -EINTR;
492
493	ret = pci_vpd_wait(dev);
494	if (ret < 0)
495		goto out;
496
497	while (pos < end) {
498		u32 val;
499
500		val = *buf++;
501		val |= *buf++ << 8;
502		val |= *buf++ << 16;
503		val |= *buf++ << 24;
504
505		ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val);
506		if (ret < 0)
507			break;
508		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
509						 pos | PCI_VPD_ADDR_F);
510		if (ret < 0)
511			break;
512
513		vpd->busy = 1;
514		vpd->flag = 0;
515		ret = pci_vpd_wait(dev);
516		if (ret < 0)
517			break;
518
519		pos += sizeof(u32);
520	}
521out:
522	mutex_unlock(&vpd->lock);
523	return ret ? ret : count;
524}
525
526static int pci_vpd_set_size(struct pci_dev *dev, size_t len)
527{
528	struct pci_vpd *vpd = dev->vpd;
529
530	if (len == 0 || len > PCI_VPD_MAX_SIZE)
531		return -EIO;
532
533	vpd->valid = 1;
534	vpd->len = len;
535
536	return 0;
537}
538
539static const struct pci_vpd_ops pci_vpd_ops = {
540	.read = pci_vpd_read,
541	.write = pci_vpd_write,
542	.set_size = pci_vpd_set_size,
543};
544
545static ssize_t pci_vpd_f0_read(struct pci_dev *dev, loff_t pos, size_t count,
546			       void *arg)
547{
548	struct pci_dev *tdev = pci_get_slot(dev->bus,
549					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
550	ssize_t ret;
551
552	if (!tdev)
553		return -ENODEV;
554
555	ret = pci_read_vpd(tdev, pos, count, arg);
556	pci_dev_put(tdev);
557	return ret;
558}
559
560static ssize_t pci_vpd_f0_write(struct pci_dev *dev, loff_t pos, size_t count,
561				const void *arg)
562{
563	struct pci_dev *tdev = pci_get_slot(dev->bus,
564					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
565	ssize_t ret;
566
567	if (!tdev)
568		return -ENODEV;
569
570	ret = pci_write_vpd(tdev, pos, count, arg);
571	pci_dev_put(tdev);
572	return ret;
573}
574
575static int pci_vpd_f0_set_size(struct pci_dev *dev, size_t len)
576{
577	struct pci_dev *tdev = pci_get_slot(dev->bus,
578					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
579	int ret;
580
581	if (!tdev)
582		return -ENODEV;
583
584	ret = pci_set_vpd_size(tdev, len);
585	pci_dev_put(tdev);
586	return ret;
587}
588
589static const struct pci_vpd_ops pci_vpd_f0_ops = {
590	.read = pci_vpd_f0_read,
591	.write = pci_vpd_f0_write,
592	.set_size = pci_vpd_f0_set_size,
593};
594
595int pci_vpd_init(struct pci_dev *dev)
596{
597	struct pci_vpd *vpd;
598	u8 cap;
599
600	cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
601	if (!cap)
602		return -ENODEV;
603
604	vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC);
605	if (!vpd)
606		return -ENOMEM;
607
608	vpd->len = PCI_VPD_MAX_SIZE;
609	if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0)
610		vpd->ops = &pci_vpd_f0_ops;
611	else
612		vpd->ops = &pci_vpd_ops;
613	mutex_init(&vpd->lock);
614	vpd->cap = cap;
615	vpd->busy = 0;
616	vpd->valid = 0;
617	dev->vpd = vpd;
618	return 0;
619}
620
621void pci_vpd_release(struct pci_dev *dev)
622{
623	kfree(dev->vpd);
624}
625
626/**
627 * pci_cfg_access_lock - Lock PCI config reads/writes
628 * @dev:	pci device struct
629 *
630 * When access is locked, any userspace reads or writes to config
631 * space and concurrent lock requests will sleep until access is
632 * allowed via pci_cfg_access_unlocked again.
633 */
634void pci_cfg_access_lock(struct pci_dev *dev)
635{
636	might_sleep();
637
638	raw_spin_lock_irq(&pci_lock);
639	if (dev->block_cfg_access)
640		pci_wait_cfg(dev);
641	dev->block_cfg_access = 1;
642	raw_spin_unlock_irq(&pci_lock);
643}
644EXPORT_SYMBOL_GPL(pci_cfg_access_lock);
645
646/**
647 * pci_cfg_access_trylock - try to lock PCI config reads/writes
648 * @dev:	pci device struct
649 *
650 * Same as pci_cfg_access_lock, but will return 0 if access is
651 * already locked, 1 otherwise. This function can be used from
652 * atomic contexts.
653 */
654bool pci_cfg_access_trylock(struct pci_dev *dev)
655{
656	unsigned long flags;
657	bool locked = true;
658
659	raw_spin_lock_irqsave(&pci_lock, flags);
660	if (dev->block_cfg_access)
661		locked = false;
662	else
663		dev->block_cfg_access = 1;
664	raw_spin_unlock_irqrestore(&pci_lock, flags);
665
666	return locked;
667}
668EXPORT_SYMBOL_GPL(pci_cfg_access_trylock);
669
670/**
671 * pci_cfg_access_unlock - Unlock PCI config reads/writes
672 * @dev:	pci device struct
673 *
674 * This function allows PCI config accesses to resume.
675 */
676void pci_cfg_access_unlock(struct pci_dev *dev)
677{
678	unsigned long flags;
679
680	raw_spin_lock_irqsave(&pci_lock, flags);
681
682	/* This indicates a problem in the caller, but we don't need
683	 * to kill them, unlike a double-block above. */
684	WARN_ON(!dev->block_cfg_access);
685
686	dev->block_cfg_access = 0;
687	wake_up_all(&pci_cfg_wait);
688	raw_spin_unlock_irqrestore(&pci_lock, flags);
689}
690EXPORT_SYMBOL_GPL(pci_cfg_access_unlock);
691
692static inline int pcie_cap_version(const struct pci_dev *dev)
693{
694	return pcie_caps_reg(dev) & PCI_EXP_FLAGS_VERS;
695}
696
697static bool pcie_downstream_port(const struct pci_dev *dev)
698{
699	int type = pci_pcie_type(dev);
700
701	return type == PCI_EXP_TYPE_ROOT_PORT ||
702	       type == PCI_EXP_TYPE_DOWNSTREAM;
703}
704
705bool pcie_cap_has_lnkctl(const struct pci_dev *dev)
706{
707	int type = pci_pcie_type(dev);
708
709	return type == PCI_EXP_TYPE_ENDPOINT ||
710	       type == PCI_EXP_TYPE_LEG_END ||
711	       type == PCI_EXP_TYPE_ROOT_PORT ||
712	       type == PCI_EXP_TYPE_UPSTREAM ||
713	       type == PCI_EXP_TYPE_DOWNSTREAM ||
714	       type == PCI_EXP_TYPE_PCI_BRIDGE ||
715	       type == PCI_EXP_TYPE_PCIE_BRIDGE;
716}
717
718static inline bool pcie_cap_has_sltctl(const struct pci_dev *dev)
719{
720	return pcie_downstream_port(dev) &&
721	       pcie_caps_reg(dev) & PCI_EXP_FLAGS_SLOT;
722}
723
724static inline bool pcie_cap_has_rtctl(const struct pci_dev *dev)
725{
726	int type = pci_pcie_type(dev);
727
728	return type == PCI_EXP_TYPE_ROOT_PORT ||
729	       type == PCI_EXP_TYPE_RC_EC;
730}
731
732static bool pcie_capability_reg_implemented(struct pci_dev *dev, int pos)
733{
734	if (!pci_is_pcie(dev))
735		return false;
736
737	switch (pos) {
738	case PCI_EXP_FLAGS:
739		return true;
740	case PCI_EXP_DEVCAP:
741	case PCI_EXP_DEVCTL:
742	case PCI_EXP_DEVSTA:
743		return true;
744	case PCI_EXP_LNKCAP:
745	case PCI_EXP_LNKCTL:
746	case PCI_EXP_LNKSTA:
747		return pcie_cap_has_lnkctl(dev);
748	case PCI_EXP_SLTCAP:
749	case PCI_EXP_SLTCTL:
750	case PCI_EXP_SLTSTA:
751		return pcie_cap_has_sltctl(dev);
752	case PCI_EXP_RTCTL:
753	case PCI_EXP_RTCAP:
754	case PCI_EXP_RTSTA:
755		return pcie_cap_has_rtctl(dev);
756	case PCI_EXP_DEVCAP2:
757	case PCI_EXP_DEVCTL2:
758	case PCI_EXP_LNKCAP2:
759	case PCI_EXP_LNKCTL2:
760	case PCI_EXP_LNKSTA2:
761		return pcie_cap_version(dev) > 1;
762	default:
763		return false;
764	}
765}
766
767/*
768 * Note that these accessor functions are only for the "PCI Express
769 * Capability" (see PCIe spec r3.0, sec 7.8).  They do not apply to the
770 * other "PCI Express Extended Capabilities" (AER, VC, ACS, MFVC, etc.)
771 */
772int pcie_capability_read_word(struct pci_dev *dev, int pos, u16 *val)
773{
774	int ret;
775
776	*val = 0;
777	if (pos & 1)
778		return -EINVAL;
779
780	if (pcie_capability_reg_implemented(dev, pos)) {
781		ret = pci_read_config_word(dev, pci_pcie_cap(dev) + pos, val);
782		/*
783		 * Reset *val to 0 if pci_read_config_word() fails, it may
784		 * have been written as 0xFFFF if hardware error happens
785		 * during pci_read_config_word().
786		 */
787		if (ret)
788			*val = 0;
789		return ret;
790	}
791
792	/*
793	 * For Functions that do not implement the Slot Capabilities,
794	 * Slot Status, and Slot Control registers, these spaces must
795	 * be hardwired to 0b, with the exception of the Presence Detect
796	 * State bit in the Slot Status register of Downstream Ports,
797	 * which must be hardwired to 1b.  (PCIe Base Spec 3.0, sec 7.8)
798	 */
799	if (pci_is_pcie(dev) && pcie_downstream_port(dev) &&
800	    pos == PCI_EXP_SLTSTA)
801		*val = PCI_EXP_SLTSTA_PDS;
802
803	return 0;
804}
805EXPORT_SYMBOL(pcie_capability_read_word);
806
807int pcie_capability_read_dword(struct pci_dev *dev, int pos, u32 *val)
808{
809	int ret;
810
811	*val = 0;
812	if (pos & 3)
813		return -EINVAL;
814
815	if (pcie_capability_reg_implemented(dev, pos)) {
816		ret = pci_read_config_dword(dev, pci_pcie_cap(dev) + pos, val);
817		/*
818		 * Reset *val to 0 if pci_read_config_dword() fails, it may
819		 * have been written as 0xFFFFFFFF if hardware error happens
820		 * during pci_read_config_dword().
821		 */
822		if (ret)
823			*val = 0;
824		return ret;
825	}
826
827	if (pci_is_pcie(dev) && pcie_downstream_port(dev) &&
828	    pos == PCI_EXP_SLTSTA)
829		*val = PCI_EXP_SLTSTA_PDS;
830
831	return 0;
832}
833EXPORT_SYMBOL(pcie_capability_read_dword);
834
835int pcie_capability_write_word(struct pci_dev *dev, int pos, u16 val)
836{
837	if (pos & 1)
838		return -EINVAL;
839
840	if (!pcie_capability_reg_implemented(dev, pos))
841		return 0;
842
843	return pci_write_config_word(dev, pci_pcie_cap(dev) + pos, val);
844}
845EXPORT_SYMBOL(pcie_capability_write_word);
846
847int pcie_capability_write_dword(struct pci_dev *dev, int pos, u32 val)
848{
849	if (pos & 3)
850		return -EINVAL;
851
852	if (!pcie_capability_reg_implemented(dev, pos))
853		return 0;
854
855	return pci_write_config_dword(dev, pci_pcie_cap(dev) + pos, val);
856}
857EXPORT_SYMBOL(pcie_capability_write_dword);
858
859int pcie_capability_clear_and_set_word(struct pci_dev *dev, int pos,
860				       u16 clear, u16 set)
861{
862	int ret;
863	u16 val;
864
865	ret = pcie_capability_read_word(dev, pos, &val);
866	if (!ret) {
867		val &= ~clear;
868		val |= set;
869		ret = pcie_capability_write_word(dev, pos, val);
870	}
871
872	return ret;
873}
874EXPORT_SYMBOL(pcie_capability_clear_and_set_word);
875
876int pcie_capability_clear_and_set_dword(struct pci_dev *dev, int pos,
877					u32 clear, u32 set)
878{
879	int ret;
880	u32 val;
881
882	ret = pcie_capability_read_dword(dev, pos, &val);
883	if (!ret) {
884		val &= ~clear;
885		val |= set;
886		ret = pcie_capability_write_dword(dev, pos, val);
887	}
888
889	return ret;
890}
891EXPORT_SYMBOL(pcie_capability_clear_and_set_dword);