Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1/*
   2 * Block driver for media (i.e., flash cards)
   3 *
   4 * Copyright 2002 Hewlett-Packard Company
   5 * Copyright 2005-2008 Pierre Ossman
   6 *
   7 * Use consistent with the GNU GPL is permitted,
   8 * provided that this copyright notice is
   9 * preserved in its entirety in all copies and derived works.
  10 *
  11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
  12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
  13 * FITNESS FOR ANY PARTICULAR PURPOSE.
  14 *
  15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
  16 *
  17 * Author:  Andrew Christian
  18 *          28 May 2002
  19 */
  20#include <linux/moduleparam.h>
  21#include <linux/module.h>
  22#include <linux/init.h>
  23
  24#include <linux/kernel.h>
  25#include <linux/fs.h>
  26#include <linux/slab.h>
  27#include <linux/errno.h>
  28#include <linux/hdreg.h>
  29#include <linux/kdev_t.h>
  30#include <linux/blkdev.h>
  31#include <linux/mutex.h>
  32#include <linux/scatterlist.h>
  33#include <linux/string_helpers.h>
  34#include <linux/delay.h>
  35#include <linux/capability.h>
  36#include <linux/compat.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/idr.h>
  39
  40#include <linux/mmc/ioctl.h>
  41#include <linux/mmc/card.h>
  42#include <linux/mmc/host.h>
  43#include <linux/mmc/mmc.h>
  44#include <linux/mmc/sd.h>
  45
  46#include <linux/uaccess.h>
  47
  48#include "queue.h"
  49#include "block.h"
  50
  51MODULE_ALIAS("mmc:block");
  52#ifdef MODULE_PARAM_PREFIX
  53#undef MODULE_PARAM_PREFIX
  54#endif
  55#define MODULE_PARAM_PREFIX "mmcblk."
  56
  57#define INAND_CMD38_ARG_EXT_CSD  113
  58#define INAND_CMD38_ARG_ERASE    0x00
  59#define INAND_CMD38_ARG_TRIM     0x01
  60#define INAND_CMD38_ARG_SECERASE 0x80
  61#define INAND_CMD38_ARG_SECTRIM1 0x81
  62#define INAND_CMD38_ARG_SECTRIM2 0x88
  63#define MMC_BLK_TIMEOUT_MS  (10 * 60 * 1000)        /* 10 minute timeout */
  64#define MMC_SANITIZE_REQ_TIMEOUT 240000
  65#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
  66
  67#define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
  68				  (rq_data_dir(req) == WRITE))
  69static DEFINE_MUTEX(block_mutex);
  70
  71/*
  72 * The defaults come from config options but can be overriden by module
  73 * or bootarg options.
  74 */
  75static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
  76
  77/*
  78 * We've only got one major, so number of mmcblk devices is
  79 * limited to (1 << 20) / number of minors per device.  It is also
  80 * limited by the MAX_DEVICES below.
  81 */
  82static int max_devices;
  83
  84#define MAX_DEVICES 256
  85
  86static DEFINE_IDA(mmc_blk_ida);
  87static DEFINE_SPINLOCK(mmc_blk_lock);
  88
  89/*
  90 * There is one mmc_blk_data per slot.
  91 */
  92struct mmc_blk_data {
  93	spinlock_t	lock;
  94	struct device	*parent;
  95	struct gendisk	*disk;
  96	struct mmc_queue queue;
  97	struct list_head part;
  98
  99	unsigned int	flags;
 100#define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
 101#define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
 102
 103	unsigned int	usage;
 104	unsigned int	read_only;
 105	unsigned int	part_type;
 106	unsigned int	reset_done;
 107#define MMC_BLK_READ		BIT(0)
 108#define MMC_BLK_WRITE		BIT(1)
 109#define MMC_BLK_DISCARD		BIT(2)
 110#define MMC_BLK_SECDISCARD	BIT(3)
 111
 112	/*
 113	 * Only set in main mmc_blk_data associated
 114	 * with mmc_card with dev_set_drvdata, and keeps
 115	 * track of the current selected device partition.
 116	 */
 117	unsigned int	part_curr;
 118	struct device_attribute force_ro;
 119	struct device_attribute power_ro_lock;
 120	int	area_type;
 121};
 122
 123static DEFINE_MUTEX(open_lock);
 124
 125module_param(perdev_minors, int, 0444);
 126MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
 127
 128static inline int mmc_blk_part_switch(struct mmc_card *card,
 129				      struct mmc_blk_data *md);
 130static int get_card_status(struct mmc_card *card, u32 *status, int retries);
 131
 132static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
 133{
 134	struct mmc_blk_data *md;
 135
 136	mutex_lock(&open_lock);
 137	md = disk->private_data;
 138	if (md && md->usage == 0)
 139		md = NULL;
 140	if (md)
 141		md->usage++;
 142	mutex_unlock(&open_lock);
 143
 144	return md;
 145}
 146
 147static inline int mmc_get_devidx(struct gendisk *disk)
 148{
 149	int devidx = disk->first_minor / perdev_minors;
 150	return devidx;
 151}
 152
 153static void mmc_blk_put(struct mmc_blk_data *md)
 154{
 155	mutex_lock(&open_lock);
 156	md->usage--;
 157	if (md->usage == 0) {
 158		int devidx = mmc_get_devidx(md->disk);
 159		blk_cleanup_queue(md->queue.queue);
 160
 161		spin_lock(&mmc_blk_lock);
 162		ida_remove(&mmc_blk_ida, devidx);
 163		spin_unlock(&mmc_blk_lock);
 164
 165		put_disk(md->disk);
 166		kfree(md);
 167	}
 168	mutex_unlock(&open_lock);
 169}
 170
 171static ssize_t power_ro_lock_show(struct device *dev,
 172		struct device_attribute *attr, char *buf)
 173{
 174	int ret;
 175	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 176	struct mmc_card *card = md->queue.card;
 177	int locked = 0;
 178
 179	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
 180		locked = 2;
 181	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
 182		locked = 1;
 183
 184	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
 185
 186	mmc_blk_put(md);
 187
 188	return ret;
 189}
 190
 191static ssize_t power_ro_lock_store(struct device *dev,
 192		struct device_attribute *attr, const char *buf, size_t count)
 193{
 194	int ret;
 195	struct mmc_blk_data *md, *part_md;
 196	struct mmc_card *card;
 197	unsigned long set;
 198
 199	if (kstrtoul(buf, 0, &set))
 200		return -EINVAL;
 201
 202	if (set != 1)
 203		return count;
 204
 205	md = mmc_blk_get(dev_to_disk(dev));
 206	card = md->queue.card;
 207
 208	mmc_get_card(card);
 209
 210	ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
 211				card->ext_csd.boot_ro_lock |
 212				EXT_CSD_BOOT_WP_B_PWR_WP_EN,
 213				card->ext_csd.part_time);
 214	if (ret)
 215		pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
 216	else
 217		card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
 218
 219	mmc_put_card(card);
 220
 221	if (!ret) {
 222		pr_info("%s: Locking boot partition ro until next power on\n",
 223			md->disk->disk_name);
 224		set_disk_ro(md->disk, 1);
 225
 226		list_for_each_entry(part_md, &md->part, part)
 227			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
 228				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
 229				set_disk_ro(part_md->disk, 1);
 230			}
 231	}
 232
 233	mmc_blk_put(md);
 234	return count;
 235}
 236
 237static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
 238			     char *buf)
 239{
 240	int ret;
 241	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 242
 243	ret = snprintf(buf, PAGE_SIZE, "%d\n",
 244		       get_disk_ro(dev_to_disk(dev)) ^
 245		       md->read_only);
 246	mmc_blk_put(md);
 247	return ret;
 248}
 249
 250static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
 251			      const char *buf, size_t count)
 252{
 253	int ret;
 254	char *end;
 255	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 256	unsigned long set = simple_strtoul(buf, &end, 0);
 257	if (end == buf) {
 258		ret = -EINVAL;
 259		goto out;
 260	}
 261
 262	set_disk_ro(dev_to_disk(dev), set || md->read_only);
 263	ret = count;
 264out:
 265	mmc_blk_put(md);
 266	return ret;
 267}
 268
 269static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
 270{
 271	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
 272	int ret = -ENXIO;
 273
 274	mutex_lock(&block_mutex);
 275	if (md) {
 276		if (md->usage == 2)
 277			check_disk_change(bdev);
 278		ret = 0;
 279
 280		if ((mode & FMODE_WRITE) && md->read_only) {
 281			mmc_blk_put(md);
 282			ret = -EROFS;
 283		}
 284	}
 285	mutex_unlock(&block_mutex);
 286
 287	return ret;
 288}
 289
 290static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
 291{
 292	struct mmc_blk_data *md = disk->private_data;
 293
 294	mutex_lock(&block_mutex);
 295	mmc_blk_put(md);
 296	mutex_unlock(&block_mutex);
 297}
 298
 299static int
 300mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 301{
 302	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
 303	geo->heads = 4;
 304	geo->sectors = 16;
 305	return 0;
 306}
 307
 308struct mmc_blk_ioc_data {
 309	struct mmc_ioc_cmd ic;
 310	unsigned char *buf;
 311	u64 buf_bytes;
 312};
 313
 314static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
 315	struct mmc_ioc_cmd __user *user)
 316{
 317	struct mmc_blk_ioc_data *idata;
 318	int err;
 319
 320	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
 321	if (!idata) {
 322		err = -ENOMEM;
 323		goto out;
 324	}
 325
 326	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
 327		err = -EFAULT;
 328		goto idata_err;
 329	}
 330
 331	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
 332	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
 333		err = -EOVERFLOW;
 334		goto idata_err;
 335	}
 336
 337	if (!idata->buf_bytes) {
 338		idata->buf = NULL;
 339		return idata;
 340	}
 341
 342	idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
 343	if (!idata->buf) {
 344		err = -ENOMEM;
 345		goto idata_err;
 346	}
 347
 348	if (copy_from_user(idata->buf, (void __user *)(unsigned long)
 349					idata->ic.data_ptr, idata->buf_bytes)) {
 350		err = -EFAULT;
 351		goto copy_err;
 352	}
 353
 354	return idata;
 355
 356copy_err:
 357	kfree(idata->buf);
 358idata_err:
 359	kfree(idata);
 360out:
 361	return ERR_PTR(err);
 362}
 363
 364static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
 365				      struct mmc_blk_ioc_data *idata)
 366{
 367	struct mmc_ioc_cmd *ic = &idata->ic;
 368
 369	if (copy_to_user(&(ic_ptr->response), ic->response,
 370			 sizeof(ic->response)))
 371		return -EFAULT;
 372
 373	if (!idata->ic.write_flag) {
 374		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
 375				 idata->buf, idata->buf_bytes))
 376			return -EFAULT;
 377	}
 378
 379	return 0;
 380}
 381
 382static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
 383				       u32 retries_max)
 384{
 385	int err;
 386	u32 retry_count = 0;
 387
 388	if (!status || !retries_max)
 389		return -EINVAL;
 390
 391	do {
 392		err = get_card_status(card, status, 5);
 393		if (err)
 394			break;
 395
 396		if (!R1_STATUS(*status) &&
 397				(R1_CURRENT_STATE(*status) != R1_STATE_PRG))
 398			break; /* RPMB programming operation complete */
 399
 400		/*
 401		 * Rechedule to give the MMC device a chance to continue
 402		 * processing the previous command without being polled too
 403		 * frequently.
 404		 */
 405		usleep_range(1000, 5000);
 406	} while (++retry_count < retries_max);
 407
 408	if (retry_count == retries_max)
 409		err = -EPERM;
 410
 411	return err;
 412}
 413
 414static int ioctl_do_sanitize(struct mmc_card *card)
 415{
 416	int err;
 417
 418	if (!mmc_can_sanitize(card)) {
 419			pr_warn("%s: %s - SANITIZE is not supported\n",
 420				mmc_hostname(card->host), __func__);
 421			err = -EOPNOTSUPP;
 422			goto out;
 423	}
 424
 425	pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
 426		mmc_hostname(card->host), __func__);
 427
 428	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 429					EXT_CSD_SANITIZE_START, 1,
 430					MMC_SANITIZE_REQ_TIMEOUT);
 431
 432	if (err)
 433		pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
 434		       mmc_hostname(card->host), __func__, err);
 435
 436	pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
 437					     __func__);
 438out:
 439	return err;
 440}
 441
 442static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
 443			       struct mmc_blk_ioc_data *idata)
 444{
 445	struct mmc_command cmd = {0};
 446	struct mmc_data data = {0};
 447	struct mmc_request mrq = {NULL};
 448	struct scatterlist sg;
 449	int err;
 450	int is_rpmb = false;
 451	u32 status = 0;
 452
 453	if (!card || !md || !idata)
 454		return -EINVAL;
 455
 456	if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
 457		is_rpmb = true;
 458
 459	cmd.opcode = idata->ic.opcode;
 460	cmd.arg = idata->ic.arg;
 461	cmd.flags = idata->ic.flags;
 462
 463	if (idata->buf_bytes) {
 464		data.sg = &sg;
 465		data.sg_len = 1;
 466		data.blksz = idata->ic.blksz;
 467		data.blocks = idata->ic.blocks;
 468
 469		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
 470
 471		if (idata->ic.write_flag)
 472			data.flags = MMC_DATA_WRITE;
 473		else
 474			data.flags = MMC_DATA_READ;
 475
 476		/* data.flags must already be set before doing this. */
 477		mmc_set_data_timeout(&data, card);
 478
 479		/* Allow overriding the timeout_ns for empirical tuning. */
 480		if (idata->ic.data_timeout_ns)
 481			data.timeout_ns = idata->ic.data_timeout_ns;
 482
 483		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
 484			/*
 485			 * Pretend this is a data transfer and rely on the
 486			 * host driver to compute timeout.  When all host
 487			 * drivers support cmd.cmd_timeout for R1B, this
 488			 * can be changed to:
 489			 *
 490			 *     mrq.data = NULL;
 491			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
 492			 */
 493			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
 494		}
 495
 496		mrq.data = &data;
 497	}
 498
 499	mrq.cmd = &cmd;
 500
 501	err = mmc_blk_part_switch(card, md);
 502	if (err)
 503		return err;
 504
 505	if (idata->ic.is_acmd) {
 506		err = mmc_app_cmd(card->host, card);
 507		if (err)
 508			return err;
 509	}
 510
 511	if (is_rpmb) {
 512		err = mmc_set_blockcount(card, data.blocks,
 513			idata->ic.write_flag & (1 << 31));
 514		if (err)
 515			return err;
 516	}
 517
 518	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
 519	    (cmd.opcode == MMC_SWITCH)) {
 520		err = ioctl_do_sanitize(card);
 521
 522		if (err)
 523			pr_err("%s: ioctl_do_sanitize() failed. err = %d",
 524			       __func__, err);
 525
 526		return err;
 527	}
 528
 529	mmc_wait_for_req(card->host, &mrq);
 530
 531	if (cmd.error) {
 532		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
 533						__func__, cmd.error);
 534		return cmd.error;
 535	}
 536	if (data.error) {
 537		dev_err(mmc_dev(card->host), "%s: data error %d\n",
 538						__func__, data.error);
 539		return data.error;
 540	}
 541
 542	/*
 543	 * According to the SD specs, some commands require a delay after
 544	 * issuing the command.
 545	 */
 546	if (idata->ic.postsleep_min_us)
 547		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
 548
 549	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
 550
 551	if (is_rpmb) {
 552		/*
 553		 * Ensure RPMB command has completed by polling CMD13
 554		 * "Send Status".
 555		 */
 556		err = ioctl_rpmb_card_status_poll(card, &status, 5);
 557		if (err)
 558			dev_err(mmc_dev(card->host),
 559					"%s: Card Status=0x%08X, error %d\n",
 560					__func__, status, err);
 561	}
 562
 563	return err;
 564}
 565
 566static int mmc_blk_ioctl_cmd(struct block_device *bdev,
 567			     struct mmc_ioc_cmd __user *ic_ptr)
 568{
 569	struct mmc_blk_ioc_data *idata;
 570	struct mmc_blk_data *md;
 571	struct mmc_card *card;
 572	int err = 0, ioc_err = 0;
 573
 574	/*
 575	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
 576	 * whole block device, not on a partition.  This prevents overspray
 577	 * between sibling partitions.
 578	 */
 579	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
 580		return -EPERM;
 581
 582	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
 583	if (IS_ERR(idata))
 584		return PTR_ERR(idata);
 585
 586	md = mmc_blk_get(bdev->bd_disk);
 587	if (!md) {
 588		err = -EINVAL;
 589		goto cmd_err;
 590	}
 591
 592	card = md->queue.card;
 593	if (IS_ERR(card)) {
 594		err = PTR_ERR(card);
 595		goto cmd_done;
 596	}
 597
 598	mmc_get_card(card);
 599
 600	ioc_err = __mmc_blk_ioctl_cmd(card, md, idata);
 601
 602	/* Always switch back to main area after RPMB access */
 603	if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
 604		mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
 605
 606	mmc_put_card(card);
 607
 608	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
 609
 610cmd_done:
 611	mmc_blk_put(md);
 612cmd_err:
 613	kfree(idata->buf);
 614	kfree(idata);
 615	return ioc_err ? ioc_err : err;
 616}
 617
 618static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
 619				   struct mmc_ioc_multi_cmd __user *user)
 620{
 621	struct mmc_blk_ioc_data **idata = NULL;
 622	struct mmc_ioc_cmd __user *cmds = user->cmds;
 623	struct mmc_card *card;
 624	struct mmc_blk_data *md;
 625	int i, err = 0, ioc_err = 0;
 626	__u64 num_of_cmds;
 627
 628	/*
 629	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
 630	 * whole block device, not on a partition.  This prevents overspray
 631	 * between sibling partitions.
 632	 */
 633	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
 634		return -EPERM;
 635
 636	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
 637			   sizeof(num_of_cmds)))
 638		return -EFAULT;
 639
 640	if (num_of_cmds > MMC_IOC_MAX_CMDS)
 641		return -EINVAL;
 642
 643	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
 644	if (!idata)
 645		return -ENOMEM;
 646
 647	for (i = 0; i < num_of_cmds; i++) {
 648		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
 649		if (IS_ERR(idata[i])) {
 650			err = PTR_ERR(idata[i]);
 651			num_of_cmds = i;
 652			goto cmd_err;
 653		}
 654	}
 655
 656	md = mmc_blk_get(bdev->bd_disk);
 657	if (!md) {
 658		err = -EINVAL;
 659		goto cmd_err;
 660	}
 661
 662	card = md->queue.card;
 663	if (IS_ERR(card)) {
 664		err = PTR_ERR(card);
 665		goto cmd_done;
 666	}
 667
 668	mmc_get_card(card);
 669
 670	for (i = 0; i < num_of_cmds && !ioc_err; i++)
 671		ioc_err = __mmc_blk_ioctl_cmd(card, md, idata[i]);
 672
 673	/* Always switch back to main area after RPMB access */
 674	if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
 675		mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
 676
 677	mmc_put_card(card);
 678
 679	/* copy to user if data and response */
 680	for (i = 0; i < num_of_cmds && !err; i++)
 681		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
 682
 683cmd_done:
 684	mmc_blk_put(md);
 685cmd_err:
 686	for (i = 0; i < num_of_cmds; i++) {
 687		kfree(idata[i]->buf);
 688		kfree(idata[i]);
 689	}
 690	kfree(idata);
 691	return ioc_err ? ioc_err : err;
 692}
 693
 694static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
 695	unsigned int cmd, unsigned long arg)
 696{
 697	switch (cmd) {
 698	case MMC_IOC_CMD:
 699		return mmc_blk_ioctl_cmd(bdev,
 700				(struct mmc_ioc_cmd __user *)arg);
 701	case MMC_IOC_MULTI_CMD:
 702		return mmc_blk_ioctl_multi_cmd(bdev,
 703				(struct mmc_ioc_multi_cmd __user *)arg);
 704	default:
 705		return -EINVAL;
 706	}
 707}
 708
 709#ifdef CONFIG_COMPAT
 710static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
 711	unsigned int cmd, unsigned long arg)
 712{
 713	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
 714}
 715#endif
 716
 717static const struct block_device_operations mmc_bdops = {
 718	.open			= mmc_blk_open,
 719	.release		= mmc_blk_release,
 720	.getgeo			= mmc_blk_getgeo,
 721	.owner			= THIS_MODULE,
 722	.ioctl			= mmc_blk_ioctl,
 723#ifdef CONFIG_COMPAT
 724	.compat_ioctl		= mmc_blk_compat_ioctl,
 725#endif
 726};
 727
 728static inline int mmc_blk_part_switch(struct mmc_card *card,
 729				      struct mmc_blk_data *md)
 730{
 731	int ret;
 732	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 733
 734	if (main_md->part_curr == md->part_type)
 735		return 0;
 736
 737	if (mmc_card_mmc(card)) {
 738		u8 part_config = card->ext_csd.part_config;
 739
 740		if (md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
 741			mmc_retune_pause(card->host);
 742
 743		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
 744		part_config |= md->part_type;
 745
 746		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 747				 EXT_CSD_PART_CONFIG, part_config,
 748				 card->ext_csd.part_time);
 749		if (ret) {
 750			if (md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
 751				mmc_retune_unpause(card->host);
 752			return ret;
 753		}
 754
 755		card->ext_csd.part_config = part_config;
 756
 757		if (main_md->part_curr == EXT_CSD_PART_CONFIG_ACC_RPMB)
 758			mmc_retune_unpause(card->host);
 759	}
 760
 761	main_md->part_curr = md->part_type;
 762	return 0;
 763}
 764
 765static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
 766{
 767	int err;
 768	u32 result;
 769	__be32 *blocks;
 770
 771	struct mmc_request mrq = {NULL};
 772	struct mmc_command cmd = {0};
 773	struct mmc_data data = {0};
 774
 775	struct scatterlist sg;
 776
 777	cmd.opcode = MMC_APP_CMD;
 778	cmd.arg = card->rca << 16;
 779	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 780
 781	err = mmc_wait_for_cmd(card->host, &cmd, 0);
 782	if (err)
 783		return (u32)-1;
 784	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
 785		return (u32)-1;
 786
 787	memset(&cmd, 0, sizeof(struct mmc_command));
 788
 789	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
 790	cmd.arg = 0;
 791	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 792
 793	data.blksz = 4;
 794	data.blocks = 1;
 795	data.flags = MMC_DATA_READ;
 796	data.sg = &sg;
 797	data.sg_len = 1;
 798	mmc_set_data_timeout(&data, card);
 799
 800	mrq.cmd = &cmd;
 801	mrq.data = &data;
 802
 803	blocks = kmalloc(4, GFP_KERNEL);
 804	if (!blocks)
 805		return (u32)-1;
 806
 807	sg_init_one(&sg, blocks, 4);
 808
 809	mmc_wait_for_req(card->host, &mrq);
 810
 811	result = ntohl(*blocks);
 812	kfree(blocks);
 813
 814	if (cmd.error || data.error)
 815		result = (u32)-1;
 816
 817	return result;
 818}
 819
 820static int get_card_status(struct mmc_card *card, u32 *status, int retries)
 821{
 822	struct mmc_command cmd = {0};
 823	int err;
 824
 825	cmd.opcode = MMC_SEND_STATUS;
 826	if (!mmc_host_is_spi(card->host))
 827		cmd.arg = card->rca << 16;
 828	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
 829	err = mmc_wait_for_cmd(card->host, &cmd, retries);
 830	if (err == 0)
 831		*status = cmd.resp[0];
 832	return err;
 833}
 834
 835static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
 836		bool hw_busy_detect, struct request *req, bool *gen_err)
 837{
 838	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
 839	int err = 0;
 840	u32 status;
 841
 842	do {
 843		err = get_card_status(card, &status, 5);
 844		if (err) {
 845			pr_err("%s: error %d requesting status\n",
 846			       req->rq_disk->disk_name, err);
 847			return err;
 848		}
 849
 850		if (status & R1_ERROR) {
 851			pr_err("%s: %s: error sending status cmd, status %#x\n",
 852				req->rq_disk->disk_name, __func__, status);
 853			*gen_err = true;
 854		}
 855
 856		/* We may rely on the host hw to handle busy detection.*/
 857		if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
 858			hw_busy_detect)
 859			break;
 860
 861		/*
 862		 * Timeout if the device never becomes ready for data and never
 863		 * leaves the program state.
 864		 */
 865		if (time_after(jiffies, timeout)) {
 866			pr_err("%s: Card stuck in programming state! %s %s\n",
 867				mmc_hostname(card->host),
 868				req->rq_disk->disk_name, __func__);
 869			return -ETIMEDOUT;
 870		}
 871
 872		/*
 873		 * Some cards mishandle the status bits,
 874		 * so make sure to check both the busy
 875		 * indication and the card state.
 876		 */
 877	} while (!(status & R1_READY_FOR_DATA) ||
 878		 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
 879
 880	return err;
 881}
 882
 883static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
 884		struct request *req, bool *gen_err, u32 *stop_status)
 885{
 886	struct mmc_host *host = card->host;
 887	struct mmc_command cmd = {0};
 888	int err;
 889	bool use_r1b_resp = rq_data_dir(req) == WRITE;
 890
 891	/*
 892	 * Normally we use R1B responses for WRITE, but in cases where the host
 893	 * has specified a max_busy_timeout we need to validate it. A failure
 894	 * means we need to prevent the host from doing hw busy detection, which
 895	 * is done by converting to a R1 response instead.
 896	 */
 897	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
 898		use_r1b_resp = false;
 899
 900	cmd.opcode = MMC_STOP_TRANSMISSION;
 901	if (use_r1b_resp) {
 902		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
 903		cmd.busy_timeout = timeout_ms;
 904	} else {
 905		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 906	}
 907
 908	err = mmc_wait_for_cmd(host, &cmd, 5);
 909	if (err)
 910		return err;
 911
 912	*stop_status = cmd.resp[0];
 913
 914	/* No need to check card status in case of READ. */
 915	if (rq_data_dir(req) == READ)
 916		return 0;
 917
 918	if (!mmc_host_is_spi(host) &&
 919		(*stop_status & R1_ERROR)) {
 920		pr_err("%s: %s: general error sending stop command, resp %#x\n",
 921			req->rq_disk->disk_name, __func__, *stop_status);
 922		*gen_err = true;
 923	}
 924
 925	return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
 926}
 927
 928#define ERR_NOMEDIUM	3
 929#define ERR_RETRY	2
 930#define ERR_ABORT	1
 931#define ERR_CONTINUE	0
 932
 933static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
 934	bool status_valid, u32 status)
 935{
 936	switch (error) {
 937	case -EILSEQ:
 938		/* response crc error, retry the r/w cmd */
 939		pr_err("%s: %s sending %s command, card status %#x\n",
 940			req->rq_disk->disk_name, "response CRC error",
 941			name, status);
 942		return ERR_RETRY;
 943
 944	case -ETIMEDOUT:
 945		pr_err("%s: %s sending %s command, card status %#x\n",
 946			req->rq_disk->disk_name, "timed out", name, status);
 947
 948		/* If the status cmd initially failed, retry the r/w cmd */
 949		if (!status_valid) {
 950			pr_err("%s: status not valid, retrying timeout\n",
 951				req->rq_disk->disk_name);
 952			return ERR_RETRY;
 953		}
 954
 955		/*
 956		 * If it was a r/w cmd crc error, or illegal command
 957		 * (eg, issued in wrong state) then retry - we should
 958		 * have corrected the state problem above.
 959		 */
 960		if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
 961			pr_err("%s: command error, retrying timeout\n",
 962				req->rq_disk->disk_name);
 963			return ERR_RETRY;
 964		}
 965
 966		/* Otherwise abort the command */
 967		return ERR_ABORT;
 968
 969	default:
 970		/* We don't understand the error code the driver gave us */
 971		pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
 972		       req->rq_disk->disk_name, error, status);
 973		return ERR_ABORT;
 974	}
 975}
 976
 977/*
 978 * Initial r/w and stop cmd error recovery.
 979 * We don't know whether the card received the r/w cmd or not, so try to
 980 * restore things back to a sane state.  Essentially, we do this as follows:
 981 * - Obtain card status.  If the first attempt to obtain card status fails,
 982 *   the status word will reflect the failed status cmd, not the failed
 983 *   r/w cmd.  If we fail to obtain card status, it suggests we can no
 984 *   longer communicate with the card.
 985 * - Check the card state.  If the card received the cmd but there was a
 986 *   transient problem with the response, it might still be in a data transfer
 987 *   mode.  Try to send it a stop command.  If this fails, we can't recover.
 988 * - If the r/w cmd failed due to a response CRC error, it was probably
 989 *   transient, so retry the cmd.
 990 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
 991 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
 992 *   illegal cmd, retry.
 993 * Otherwise we don't understand what happened, so abort.
 994 */
 995static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
 996	struct mmc_blk_request *brq, bool *ecc_err, bool *gen_err)
 997{
 998	bool prev_cmd_status_valid = true;
 999	u32 status, stop_status = 0;
1000	int err, retry;
1001
1002	if (mmc_card_removed(card))
1003		return ERR_NOMEDIUM;
1004
1005	/*
1006	 * Try to get card status which indicates both the card state
1007	 * and why there was no response.  If the first attempt fails,
1008	 * we can't be sure the returned status is for the r/w command.
1009	 */
1010	for (retry = 2; retry >= 0; retry--) {
1011		err = get_card_status(card, &status, 0);
1012		if (!err)
1013			break;
1014
1015		/* Re-tune if needed */
1016		mmc_retune_recheck(card->host);
1017
1018		prev_cmd_status_valid = false;
1019		pr_err("%s: error %d sending status command, %sing\n",
1020		       req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1021	}
1022
1023	/* We couldn't get a response from the card.  Give up. */
1024	if (err) {
1025		/* Check if the card is removed */
1026		if (mmc_detect_card_removed(card->host))
1027			return ERR_NOMEDIUM;
1028		return ERR_ABORT;
1029	}
1030
1031	/* Flag ECC errors */
1032	if ((status & R1_CARD_ECC_FAILED) ||
1033	    (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1034	    (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1035		*ecc_err = true;
1036
1037	/* Flag General errors */
1038	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1039		if ((status & R1_ERROR) ||
1040			(brq->stop.resp[0] & R1_ERROR)) {
1041			pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1042			       req->rq_disk->disk_name, __func__,
1043			       brq->stop.resp[0], status);
1044			*gen_err = true;
1045		}
1046
1047	/*
1048	 * Check the current card state.  If it is in some data transfer
1049	 * mode, tell it to stop (and hopefully transition back to TRAN.)
1050	 */
1051	if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1052	    R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1053		err = send_stop(card,
1054			DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1055			req, gen_err, &stop_status);
1056		if (err) {
1057			pr_err("%s: error %d sending stop command\n",
1058			       req->rq_disk->disk_name, err);
1059			/*
1060			 * If the stop cmd also timed out, the card is probably
1061			 * not present, so abort. Other errors are bad news too.
1062			 */
1063			return ERR_ABORT;
1064		}
1065
1066		if (stop_status & R1_CARD_ECC_FAILED)
1067			*ecc_err = true;
1068	}
1069
1070	/* Check for set block count errors */
1071	if (brq->sbc.error)
1072		return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1073				prev_cmd_status_valid, status);
1074
1075	/* Check for r/w command errors */
1076	if (brq->cmd.error)
1077		return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1078				prev_cmd_status_valid, status);
1079
1080	/* Data errors */
1081	if (!brq->stop.error)
1082		return ERR_CONTINUE;
1083
1084	/* Now for stop errors.  These aren't fatal to the transfer. */
1085	pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1086	       req->rq_disk->disk_name, brq->stop.error,
1087	       brq->cmd.resp[0], status);
1088
1089	/*
1090	 * Subsitute in our own stop status as this will give the error
1091	 * state which happened during the execution of the r/w command.
1092	 */
1093	if (stop_status) {
1094		brq->stop.resp[0] = stop_status;
1095		brq->stop.error = 0;
1096	}
1097	return ERR_CONTINUE;
1098}
1099
1100static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1101			 int type)
1102{
1103	int err;
1104
1105	if (md->reset_done & type)
1106		return -EEXIST;
1107
1108	md->reset_done |= type;
1109	err = mmc_hw_reset(host);
1110	/* Ensure we switch back to the correct partition */
1111	if (err != -EOPNOTSUPP) {
1112		struct mmc_blk_data *main_md =
1113			dev_get_drvdata(&host->card->dev);
1114		int part_err;
1115
1116		main_md->part_curr = main_md->part_type;
1117		part_err = mmc_blk_part_switch(host->card, md);
1118		if (part_err) {
1119			/*
1120			 * We have failed to get back into the correct
1121			 * partition, so we need to abort the whole request.
1122			 */
1123			return -ENODEV;
1124		}
1125	}
1126	return err;
1127}
1128
1129static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1130{
1131	md->reset_done &= ~type;
1132}
1133
1134int mmc_access_rpmb(struct mmc_queue *mq)
1135{
1136	struct mmc_blk_data *md = mq->blkdata;
1137	/*
1138	 * If this is a RPMB partition access, return ture
1139	 */
1140	if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1141		return true;
1142
1143	return false;
1144}
1145
1146static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1147{
1148	struct mmc_blk_data *md = mq->blkdata;
1149	struct mmc_card *card = md->queue.card;
1150	unsigned int from, nr, arg;
1151	int err = 0, type = MMC_BLK_DISCARD;
1152
1153	if (!mmc_can_erase(card)) {
1154		err = -EOPNOTSUPP;
1155		goto out;
1156	}
1157
1158	from = blk_rq_pos(req);
1159	nr = blk_rq_sectors(req);
1160
1161	if (mmc_can_discard(card))
1162		arg = MMC_DISCARD_ARG;
1163	else if (mmc_can_trim(card))
1164		arg = MMC_TRIM_ARG;
1165	else
1166		arg = MMC_ERASE_ARG;
1167retry:
1168	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1169		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1170				 INAND_CMD38_ARG_EXT_CSD,
1171				 arg == MMC_TRIM_ARG ?
1172				 INAND_CMD38_ARG_TRIM :
1173				 INAND_CMD38_ARG_ERASE,
1174				 0);
1175		if (err)
1176			goto out;
1177	}
1178	err = mmc_erase(card, from, nr, arg);
1179out:
1180	if (err == -EIO && !mmc_blk_reset(md, card->host, type))
1181		goto retry;
1182	if (!err)
1183		mmc_blk_reset_success(md, type);
1184	blk_end_request(req, err, blk_rq_bytes(req));
1185
1186	return err ? 0 : 1;
1187}
1188
1189static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1190				       struct request *req)
1191{
1192	struct mmc_blk_data *md = mq->blkdata;
1193	struct mmc_card *card = md->queue.card;
1194	unsigned int from, nr, arg;
1195	int err = 0, type = MMC_BLK_SECDISCARD;
1196
1197	if (!(mmc_can_secure_erase_trim(card))) {
1198		err = -EOPNOTSUPP;
1199		goto out;
1200	}
1201
1202	from = blk_rq_pos(req);
1203	nr = blk_rq_sectors(req);
1204
1205	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1206		arg = MMC_SECURE_TRIM1_ARG;
1207	else
1208		arg = MMC_SECURE_ERASE_ARG;
1209
1210retry:
1211	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1212		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1213				 INAND_CMD38_ARG_EXT_CSD,
1214				 arg == MMC_SECURE_TRIM1_ARG ?
1215				 INAND_CMD38_ARG_SECTRIM1 :
1216				 INAND_CMD38_ARG_SECERASE,
1217				 0);
1218		if (err)
1219			goto out_retry;
1220	}
1221
1222	err = mmc_erase(card, from, nr, arg);
1223	if (err == -EIO)
1224		goto out_retry;
1225	if (err)
1226		goto out;
1227
1228	if (arg == MMC_SECURE_TRIM1_ARG) {
1229		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1230			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1231					 INAND_CMD38_ARG_EXT_CSD,
1232					 INAND_CMD38_ARG_SECTRIM2,
1233					 0);
1234			if (err)
1235				goto out_retry;
1236		}
1237
1238		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1239		if (err == -EIO)
1240			goto out_retry;
1241		if (err)
1242			goto out;
1243	}
1244
1245out_retry:
1246	if (err && !mmc_blk_reset(md, card->host, type))
1247		goto retry;
1248	if (!err)
1249		mmc_blk_reset_success(md, type);
1250out:
1251	blk_end_request(req, err, blk_rq_bytes(req));
1252
1253	return err ? 0 : 1;
1254}
1255
1256static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1257{
1258	struct mmc_blk_data *md = mq->blkdata;
1259	struct mmc_card *card = md->queue.card;
1260	int ret = 0;
1261
1262	ret = mmc_flush_cache(card);
1263	if (ret)
1264		ret = -EIO;
1265
1266	blk_end_request_all(req, ret);
1267
1268	return ret ? 0 : 1;
1269}
1270
1271/*
1272 * Reformat current write as a reliable write, supporting
1273 * both legacy and the enhanced reliable write MMC cards.
1274 * In each transfer we'll handle only as much as a single
1275 * reliable write can handle, thus finish the request in
1276 * partial completions.
1277 */
1278static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1279				    struct mmc_card *card,
1280				    struct request *req)
1281{
1282	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1283		/* Legacy mode imposes restrictions on transfers. */
1284		if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1285			brq->data.blocks = 1;
1286
1287		if (brq->data.blocks > card->ext_csd.rel_sectors)
1288			brq->data.blocks = card->ext_csd.rel_sectors;
1289		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1290			brq->data.blocks = 1;
1291	}
1292}
1293
1294#define CMD_ERRORS							\
1295	(R1_OUT_OF_RANGE |	/* Command argument out of range */	\
1296	 R1_ADDRESS_ERROR |	/* Misaligned address */		\
1297	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1298	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1299	 R1_CC_ERROR |		/* Card controller error */		\
1300	 R1_ERROR)		/* General/unknown error */
1301
1302static enum mmc_blk_status mmc_blk_err_check(struct mmc_card *card,
1303					     struct mmc_async_req *areq)
1304{
1305	struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1306						    mmc_active);
1307	struct mmc_blk_request *brq = &mq_mrq->brq;
1308	struct request *req = mq_mrq->req;
1309	int need_retune = card->host->need_retune;
1310	bool ecc_err = false;
1311	bool gen_err = false;
1312
1313	/*
1314	 * sbc.error indicates a problem with the set block count
1315	 * command.  No data will have been transferred.
1316	 *
1317	 * cmd.error indicates a problem with the r/w command.  No
1318	 * data will have been transferred.
1319	 *
1320	 * stop.error indicates a problem with the stop command.  Data
1321	 * may have been transferred, or may still be transferring.
1322	 */
1323	if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1324	    brq->data.error) {
1325		switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1326		case ERR_RETRY:
1327			return MMC_BLK_RETRY;
1328		case ERR_ABORT:
1329			return MMC_BLK_ABORT;
1330		case ERR_NOMEDIUM:
1331			return MMC_BLK_NOMEDIUM;
1332		case ERR_CONTINUE:
1333			break;
1334		}
1335	}
1336
1337	/*
1338	 * Check for errors relating to the execution of the
1339	 * initial command - such as address errors.  No data
1340	 * has been transferred.
1341	 */
1342	if (brq->cmd.resp[0] & CMD_ERRORS) {
1343		pr_err("%s: r/w command failed, status = %#x\n",
1344		       req->rq_disk->disk_name, brq->cmd.resp[0]);
1345		return MMC_BLK_ABORT;
1346	}
1347
1348	/*
1349	 * Everything else is either success, or a data error of some
1350	 * kind.  If it was a write, we may have transitioned to
1351	 * program mode, which we have to wait for it to complete.
1352	 */
1353	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1354		int err;
1355
1356		/* Check stop command response */
1357		if (brq->stop.resp[0] & R1_ERROR) {
1358			pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1359			       req->rq_disk->disk_name, __func__,
1360			       brq->stop.resp[0]);
1361			gen_err = true;
1362		}
1363
1364		err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1365					&gen_err);
1366		if (err)
1367			return MMC_BLK_CMD_ERR;
1368	}
1369
1370	/* if general error occurs, retry the write operation. */
1371	if (gen_err) {
1372		pr_warn("%s: retrying write for general error\n",
1373				req->rq_disk->disk_name);
1374		return MMC_BLK_RETRY;
1375	}
1376
1377	if (brq->data.error) {
1378		if (need_retune && !brq->retune_retry_done) {
1379			pr_debug("%s: retrying because a re-tune was needed\n",
1380				 req->rq_disk->disk_name);
1381			brq->retune_retry_done = 1;
1382			return MMC_BLK_RETRY;
1383		}
1384		pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1385		       req->rq_disk->disk_name, brq->data.error,
1386		       (unsigned)blk_rq_pos(req),
1387		       (unsigned)blk_rq_sectors(req),
1388		       brq->cmd.resp[0], brq->stop.resp[0]);
1389
1390		if (rq_data_dir(req) == READ) {
1391			if (ecc_err)
1392				return MMC_BLK_ECC_ERR;
1393			return MMC_BLK_DATA_ERR;
1394		} else {
1395			return MMC_BLK_CMD_ERR;
1396		}
1397	}
1398
1399	if (!brq->data.bytes_xfered)
1400		return MMC_BLK_RETRY;
1401
1402	if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1403		return MMC_BLK_PARTIAL;
1404
1405	return MMC_BLK_SUCCESS;
1406}
1407
1408static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1409			       struct mmc_card *card,
1410			       int disable_multi,
1411			       struct mmc_queue *mq)
1412{
1413	u32 readcmd, writecmd;
1414	struct mmc_blk_request *brq = &mqrq->brq;
1415	struct request *req = mqrq->req;
1416	struct mmc_blk_data *md = mq->blkdata;
1417	bool do_data_tag;
1418
1419	/*
1420	 * Reliable writes are used to implement Forced Unit Access and
1421	 * are supported only on MMCs.
1422	 */
1423	bool do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1424		(rq_data_dir(req) == WRITE) &&
1425		(md->flags & MMC_BLK_REL_WR);
1426
1427	memset(brq, 0, sizeof(struct mmc_blk_request));
1428	brq->mrq.cmd = &brq->cmd;
1429	brq->mrq.data = &brq->data;
1430
1431	brq->cmd.arg = blk_rq_pos(req);
1432	if (!mmc_card_blockaddr(card))
1433		brq->cmd.arg <<= 9;
1434	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1435	brq->data.blksz = 512;
1436	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1437	brq->stop.arg = 0;
1438	brq->data.blocks = blk_rq_sectors(req);
1439
1440	/*
1441	 * The block layer doesn't support all sector count
1442	 * restrictions, so we need to be prepared for too big
1443	 * requests.
1444	 */
1445	if (brq->data.blocks > card->host->max_blk_count)
1446		brq->data.blocks = card->host->max_blk_count;
1447
1448	if (brq->data.blocks > 1) {
1449		/*
1450		 * After a read error, we redo the request one sector
1451		 * at a time in order to accurately determine which
1452		 * sectors can be read successfully.
1453		 */
1454		if (disable_multi)
1455			brq->data.blocks = 1;
1456
1457		/*
1458		 * Some controllers have HW issues while operating
1459		 * in multiple I/O mode
1460		 */
1461		if (card->host->ops->multi_io_quirk)
1462			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1463						(rq_data_dir(req) == READ) ?
1464						MMC_DATA_READ : MMC_DATA_WRITE,
1465						brq->data.blocks);
1466	}
1467
1468	if (brq->data.blocks > 1 || do_rel_wr) {
1469		/* SPI multiblock writes terminate using a special
1470		 * token, not a STOP_TRANSMISSION request.
1471		 */
1472		if (!mmc_host_is_spi(card->host) ||
1473		    rq_data_dir(req) == READ)
1474			brq->mrq.stop = &brq->stop;
1475		readcmd = MMC_READ_MULTIPLE_BLOCK;
1476		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1477	} else {
1478		brq->mrq.stop = NULL;
1479		readcmd = MMC_READ_SINGLE_BLOCK;
1480		writecmd = MMC_WRITE_BLOCK;
1481	}
1482	if (rq_data_dir(req) == READ) {
1483		brq->cmd.opcode = readcmd;
1484		brq->data.flags = MMC_DATA_READ;
1485		if (brq->mrq.stop)
1486			brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 |
1487					MMC_CMD_AC;
1488	} else {
1489		brq->cmd.opcode = writecmd;
1490		brq->data.flags = MMC_DATA_WRITE;
1491		if (brq->mrq.stop)
1492			brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B |
1493					MMC_CMD_AC;
1494	}
1495
1496	if (do_rel_wr)
1497		mmc_apply_rel_rw(brq, card, req);
1498
1499	/*
1500	 * Data tag is used only during writing meta data to speed
1501	 * up write and any subsequent read of this meta data
1502	 */
1503	do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1504		(req->cmd_flags & REQ_META) &&
1505		(rq_data_dir(req) == WRITE) &&
1506		((brq->data.blocks * brq->data.blksz) >=
1507		 card->ext_csd.data_tag_unit_size);
1508
1509	/*
1510	 * Pre-defined multi-block transfers are preferable to
1511	 * open ended-ones (and necessary for reliable writes).
1512	 * However, it is not sufficient to just send CMD23,
1513	 * and avoid the final CMD12, as on an error condition
1514	 * CMD12 (stop) needs to be sent anyway. This, coupled
1515	 * with Auto-CMD23 enhancements provided by some
1516	 * hosts, means that the complexity of dealing
1517	 * with this is best left to the host. If CMD23 is
1518	 * supported by card and host, we'll fill sbc in and let
1519	 * the host deal with handling it correctly. This means
1520	 * that for hosts that don't expose MMC_CAP_CMD23, no
1521	 * change of behavior will be observed.
1522	 *
1523	 * N.B: Some MMC cards experience perf degradation.
1524	 * We'll avoid using CMD23-bounded multiblock writes for
1525	 * these, while retaining features like reliable writes.
1526	 */
1527	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1528	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1529	     do_data_tag)) {
1530		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1531		brq->sbc.arg = brq->data.blocks |
1532			(do_rel_wr ? (1 << 31) : 0) |
1533			(do_data_tag ? (1 << 29) : 0);
1534		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1535		brq->mrq.sbc = &brq->sbc;
1536	}
1537
1538	mmc_set_data_timeout(&brq->data, card);
1539
1540	brq->data.sg = mqrq->sg;
1541	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1542
1543	/*
1544	 * Adjust the sg list so it is the same size as the
1545	 * request.
1546	 */
1547	if (brq->data.blocks != blk_rq_sectors(req)) {
1548		int i, data_size = brq->data.blocks << 9;
1549		struct scatterlist *sg;
1550
1551		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1552			data_size -= sg->length;
1553			if (data_size <= 0) {
1554				sg->length += data_size;
1555				i++;
1556				break;
1557			}
1558		}
1559		brq->data.sg_len = i;
1560	}
1561
1562	mqrq->mmc_active.mrq = &brq->mrq;
1563	mqrq->mmc_active.err_check = mmc_blk_err_check;
1564
1565	mmc_queue_bounce_pre(mqrq);
1566}
1567
1568static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1569			   struct mmc_blk_request *brq, struct request *req,
1570			   int ret)
1571{
1572	struct mmc_queue_req *mq_rq;
1573	mq_rq = container_of(brq, struct mmc_queue_req, brq);
1574
1575	/*
1576	 * If this is an SD card and we're writing, we can first
1577	 * mark the known good sectors as ok.
1578	 *
1579	 * If the card is not SD, we can still ok written sectors
1580	 * as reported by the controller (which might be less than
1581	 * the real number of written sectors, but never more).
1582	 */
1583	if (mmc_card_sd(card)) {
1584		u32 blocks;
1585
1586		blocks = mmc_sd_num_wr_blocks(card);
1587		if (blocks != (u32)-1) {
1588			ret = blk_end_request(req, 0, blocks << 9);
1589		}
1590	} else {
1591		ret = blk_end_request(req, 0, brq->data.bytes_xfered);
1592	}
1593	return ret;
1594}
1595
1596static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1597{
1598	struct mmc_blk_data *md = mq->blkdata;
1599	struct mmc_card *card = md->queue.card;
1600	struct mmc_blk_request *brq;
1601	int ret = 1, disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1602	enum mmc_blk_status status;
1603	struct mmc_queue_req *mq_rq;
1604	struct request *req;
1605	struct mmc_async_req *areq;
1606
1607	if (!rqc && !mq->mqrq_prev->req)
1608		return 0;
1609
1610	do {
1611		if (rqc) {
1612			/*
1613			 * When 4KB native sector is enabled, only 8 blocks
1614			 * multiple read or write is allowed
1615			 */
1616			if (mmc_large_sector(card) &&
1617				!IS_ALIGNED(blk_rq_sectors(rqc), 8)) {
1618				pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1619					rqc->rq_disk->disk_name);
1620				mq_rq = mq->mqrq_cur;
1621				req = rqc;
1622				rqc = NULL;
1623				goto cmd_abort;
1624			}
1625
1626			mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1627			areq = &mq->mqrq_cur->mmc_active;
1628		} else
1629			areq = NULL;
1630		areq = mmc_start_req(card->host, areq, &status);
1631		if (!areq) {
1632			if (status == MMC_BLK_NEW_REQUEST)
1633				mq->flags |= MMC_QUEUE_NEW_REQUEST;
1634			return 0;
1635		}
1636
1637		mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1638		brq = &mq_rq->brq;
1639		req = mq_rq->req;
1640		type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1641		mmc_queue_bounce_post(mq_rq);
1642
1643		switch (status) {
1644		case MMC_BLK_SUCCESS:
1645		case MMC_BLK_PARTIAL:
1646			/*
1647			 * A block was successfully transferred.
1648			 */
1649			mmc_blk_reset_success(md, type);
1650
1651			ret = blk_end_request(req, 0,
1652					brq->data.bytes_xfered);
1653
1654			/*
1655			 * If the blk_end_request function returns non-zero even
1656			 * though all data has been transferred and no errors
1657			 * were returned by the host controller, it's a bug.
1658			 */
1659			if (status == MMC_BLK_SUCCESS && ret) {
1660				pr_err("%s BUG rq_tot %d d_xfer %d\n",
1661				       __func__, blk_rq_bytes(req),
1662				       brq->data.bytes_xfered);
1663				rqc = NULL;
1664				goto cmd_abort;
1665			}
1666			break;
1667		case MMC_BLK_CMD_ERR:
1668			ret = mmc_blk_cmd_err(md, card, brq, req, ret);
1669			if (mmc_blk_reset(md, card->host, type))
1670				goto cmd_abort;
1671			if (!ret)
1672				goto start_new_req;
1673			break;
1674		case MMC_BLK_RETRY:
1675			retune_retry_done = brq->retune_retry_done;
1676			if (retry++ < 5)
1677				break;
1678			/* Fall through */
1679		case MMC_BLK_ABORT:
1680			if (!mmc_blk_reset(md, card->host, type))
1681				break;
1682			goto cmd_abort;
1683		case MMC_BLK_DATA_ERR: {
1684			int err;
1685
1686			err = mmc_blk_reset(md, card->host, type);
1687			if (!err)
1688				break;
1689			if (err == -ENODEV)
1690				goto cmd_abort;
1691			/* Fall through */
1692		}
1693		case MMC_BLK_ECC_ERR:
1694			if (brq->data.blocks > 1) {
1695				/* Redo read one sector at a time */
1696				pr_warn("%s: retrying using single block read\n",
1697					req->rq_disk->disk_name);
1698				disable_multi = 1;
1699				break;
1700			}
1701			/*
1702			 * After an error, we redo I/O one sector at a
1703			 * time, so we only reach here after trying to
1704			 * read a single sector.
1705			 */
1706			ret = blk_end_request(req, -EIO,
1707						brq->data.blksz);
1708			if (!ret)
1709				goto start_new_req;
1710			break;
1711		case MMC_BLK_NOMEDIUM:
1712			goto cmd_abort;
1713		default:
1714			pr_err("%s: Unhandled return value (%d)",
1715					req->rq_disk->disk_name, status);
1716			goto cmd_abort;
1717		}
1718
1719		if (ret) {
1720			/*
1721			 * In case of a incomplete request
1722			 * prepare it again and resend.
1723			 */
1724			mmc_blk_rw_rq_prep(mq_rq, card,
1725					disable_multi, mq);
1726			mmc_start_req(card->host,
1727					&mq_rq->mmc_active, NULL);
1728			mq_rq->brq.retune_retry_done = retune_retry_done;
1729		}
1730	} while (ret);
1731
1732	return 1;
1733
1734 cmd_abort:
1735	if (mmc_card_removed(card))
1736		req->rq_flags |= RQF_QUIET;
1737	while (ret)
1738		ret = blk_end_request(req, -EIO,
1739				blk_rq_cur_bytes(req));
1740
1741 start_new_req:
1742	if (rqc) {
1743		if (mmc_card_removed(card)) {
1744			rqc->rq_flags |= RQF_QUIET;
1745			blk_end_request_all(rqc, -EIO);
1746		} else {
1747			mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1748			mmc_start_req(card->host,
1749				      &mq->mqrq_cur->mmc_active, NULL);
1750		}
1751	}
1752
1753	return 0;
1754}
1755
1756int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1757{
1758	int ret;
1759	struct mmc_blk_data *md = mq->blkdata;
1760	struct mmc_card *card = md->queue.card;
1761	bool req_is_special = mmc_req_is_special(req);
1762
1763	if (req && !mq->mqrq_prev->req)
1764		/* claim host only for the first request */
1765		mmc_get_card(card);
1766
1767	ret = mmc_blk_part_switch(card, md);
1768	if (ret) {
1769		if (req) {
1770			blk_end_request_all(req, -EIO);
1771		}
1772		ret = 0;
1773		goto out;
1774	}
1775
1776	mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
1777	if (req && req_op(req) == REQ_OP_DISCARD) {
1778		/* complete ongoing async transfer before issuing discard */
1779		if (card->host->areq)
1780			mmc_blk_issue_rw_rq(mq, NULL);
1781		ret = mmc_blk_issue_discard_rq(mq, req);
1782	} else if (req && req_op(req) == REQ_OP_SECURE_ERASE) {
1783		/* complete ongoing async transfer before issuing secure erase*/
1784		if (card->host->areq)
1785			mmc_blk_issue_rw_rq(mq, NULL);
1786		ret = mmc_blk_issue_secdiscard_rq(mq, req);
1787	} else if (req && req_op(req) == REQ_OP_FLUSH) {
1788		/* complete ongoing async transfer before issuing flush */
1789		if (card->host->areq)
1790			mmc_blk_issue_rw_rq(mq, NULL);
1791		ret = mmc_blk_issue_flush(mq, req);
1792	} else {
1793		ret = mmc_blk_issue_rw_rq(mq, req);
1794		card->host->context_info.is_waiting_last_req = false;
1795	}
1796
1797out:
1798	if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) || req_is_special)
1799		/*
1800		 * Release host when there are no more requests
1801		 * and after special request(discard, flush) is done.
1802		 * In case sepecial request, there is no reentry to
1803		 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
1804		 */
1805		mmc_put_card(card);
1806	return ret;
1807}
1808
1809static inline int mmc_blk_readonly(struct mmc_card *card)
1810{
1811	return mmc_card_readonly(card) ||
1812	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1813}
1814
1815static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1816					      struct device *parent,
1817					      sector_t size,
1818					      bool default_ro,
1819					      const char *subname,
1820					      int area_type)
1821{
1822	struct mmc_blk_data *md;
1823	int devidx, ret;
1824
1825again:
1826	if (!ida_pre_get(&mmc_blk_ida, GFP_KERNEL))
1827		return ERR_PTR(-ENOMEM);
1828
1829	spin_lock(&mmc_blk_lock);
1830	ret = ida_get_new(&mmc_blk_ida, &devidx);
1831	spin_unlock(&mmc_blk_lock);
1832
1833	if (ret == -EAGAIN)
1834		goto again;
1835	else if (ret)
1836		return ERR_PTR(ret);
1837
1838	if (devidx >= max_devices) {
1839		ret = -ENOSPC;
1840		goto out;
1841	}
1842
1843	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1844	if (!md) {
1845		ret = -ENOMEM;
1846		goto out;
1847	}
1848
1849	md->area_type = area_type;
1850
1851	/*
1852	 * Set the read-only status based on the supported commands
1853	 * and the write protect switch.
1854	 */
1855	md->read_only = mmc_blk_readonly(card);
1856
1857	md->disk = alloc_disk(perdev_minors);
1858	if (md->disk == NULL) {
1859		ret = -ENOMEM;
1860		goto err_kfree;
1861	}
1862
1863	spin_lock_init(&md->lock);
1864	INIT_LIST_HEAD(&md->part);
1865	md->usage = 1;
1866
1867	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
1868	if (ret)
1869		goto err_putdisk;
1870
1871	md->queue.blkdata = md;
1872
1873	md->disk->major	= MMC_BLOCK_MAJOR;
1874	md->disk->first_minor = devidx * perdev_minors;
1875	md->disk->fops = &mmc_bdops;
1876	md->disk->private_data = md;
1877	md->disk->queue = md->queue.queue;
1878	md->parent = parent;
1879	set_disk_ro(md->disk, md->read_only || default_ro);
1880	md->disk->flags = GENHD_FL_EXT_DEVT;
1881	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
1882		md->disk->flags |= GENHD_FL_NO_PART_SCAN;
1883
1884	/*
1885	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
1886	 *
1887	 * - be set for removable media with permanent block devices
1888	 * - be unset for removable block devices with permanent media
1889	 *
1890	 * Since MMC block devices clearly fall under the second
1891	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
1892	 * should use the block device creation/destruction hotplug
1893	 * messages to tell when the card is present.
1894	 */
1895
1896	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
1897		 "mmcblk%u%s", card->host->index, subname ? subname : "");
1898
1899	if (mmc_card_mmc(card))
1900		blk_queue_logical_block_size(md->queue.queue,
1901					     card->ext_csd.data_sector_size);
1902	else
1903		blk_queue_logical_block_size(md->queue.queue, 512);
1904
1905	set_capacity(md->disk, size);
1906
1907	if (mmc_host_cmd23(card->host)) {
1908		if ((mmc_card_mmc(card) &&
1909		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
1910		    (mmc_card_sd(card) &&
1911		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
1912			md->flags |= MMC_BLK_CMD23;
1913	}
1914
1915	if (mmc_card_mmc(card) &&
1916	    md->flags & MMC_BLK_CMD23 &&
1917	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
1918	     card->ext_csd.rel_sectors)) {
1919		md->flags |= MMC_BLK_REL_WR;
1920		blk_queue_write_cache(md->queue.queue, true, true);
1921	}
1922
1923	return md;
1924
1925 err_putdisk:
1926	put_disk(md->disk);
1927 err_kfree:
1928	kfree(md);
1929 out:
1930	spin_lock(&mmc_blk_lock);
1931	ida_remove(&mmc_blk_ida, devidx);
1932	spin_unlock(&mmc_blk_lock);
1933	return ERR_PTR(ret);
1934}
1935
1936static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
1937{
1938	sector_t size;
1939
1940	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
1941		/*
1942		 * The EXT_CSD sector count is in number or 512 byte
1943		 * sectors.
1944		 */
1945		size = card->ext_csd.sectors;
1946	} else {
1947		/*
1948		 * The CSD capacity field is in units of read_blkbits.
1949		 * set_capacity takes units of 512 bytes.
1950		 */
1951		size = (typeof(sector_t))card->csd.capacity
1952			<< (card->csd.read_blkbits - 9);
1953	}
1954
1955	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
1956					MMC_BLK_DATA_AREA_MAIN);
1957}
1958
1959static int mmc_blk_alloc_part(struct mmc_card *card,
1960			      struct mmc_blk_data *md,
1961			      unsigned int part_type,
1962			      sector_t size,
1963			      bool default_ro,
1964			      const char *subname,
1965			      int area_type)
1966{
1967	char cap_str[10];
1968	struct mmc_blk_data *part_md;
1969
1970	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
1971				    subname, area_type);
1972	if (IS_ERR(part_md))
1973		return PTR_ERR(part_md);
1974	part_md->part_type = part_type;
1975	list_add(&part_md->part, &md->part);
1976
1977	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
1978			cap_str, sizeof(cap_str));
1979	pr_info("%s: %s %s partition %u %s\n",
1980	       part_md->disk->disk_name, mmc_card_id(card),
1981	       mmc_card_name(card), part_md->part_type, cap_str);
1982	return 0;
1983}
1984
1985/* MMC Physical partitions consist of two boot partitions and
1986 * up to four general purpose partitions.
1987 * For each partition enabled in EXT_CSD a block device will be allocatedi
1988 * to provide access to the partition.
1989 */
1990
1991static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
1992{
1993	int idx, ret = 0;
1994
1995	if (!mmc_card_mmc(card))
1996		return 0;
1997
1998	for (idx = 0; idx < card->nr_parts; idx++) {
1999		if (card->part[idx].size) {
2000			ret = mmc_blk_alloc_part(card, md,
2001				card->part[idx].part_cfg,
2002				card->part[idx].size >> 9,
2003				card->part[idx].force_ro,
2004				card->part[idx].name,
2005				card->part[idx].area_type);
2006			if (ret)
2007				return ret;
2008		}
2009	}
2010
2011	return ret;
2012}
2013
2014static void mmc_blk_remove_req(struct mmc_blk_data *md)
2015{
2016	struct mmc_card *card;
2017
2018	if (md) {
2019		/*
2020		 * Flush remaining requests and free queues. It
2021		 * is freeing the queue that stops new requests
2022		 * from being accepted.
2023		 */
2024		card = md->queue.card;
2025		mmc_cleanup_queue(&md->queue);
2026		if (md->disk->flags & GENHD_FL_UP) {
2027			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2028			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2029					card->ext_csd.boot_ro_lockable)
2030				device_remove_file(disk_to_dev(md->disk),
2031					&md->power_ro_lock);
2032
2033			del_gendisk(md->disk);
2034		}
2035		mmc_blk_put(md);
2036	}
2037}
2038
2039static void mmc_blk_remove_parts(struct mmc_card *card,
2040				 struct mmc_blk_data *md)
2041{
2042	struct list_head *pos, *q;
2043	struct mmc_blk_data *part_md;
2044
2045	list_for_each_safe(pos, q, &md->part) {
2046		part_md = list_entry(pos, struct mmc_blk_data, part);
2047		list_del(pos);
2048		mmc_blk_remove_req(part_md);
2049	}
2050}
2051
2052static int mmc_add_disk(struct mmc_blk_data *md)
2053{
2054	int ret;
2055	struct mmc_card *card = md->queue.card;
2056
2057	device_add_disk(md->parent, md->disk);
2058	md->force_ro.show = force_ro_show;
2059	md->force_ro.store = force_ro_store;
2060	sysfs_attr_init(&md->force_ro.attr);
2061	md->force_ro.attr.name = "force_ro";
2062	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2063	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2064	if (ret)
2065		goto force_ro_fail;
2066
2067	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2068	     card->ext_csd.boot_ro_lockable) {
2069		umode_t mode;
2070
2071		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2072			mode = S_IRUGO;
2073		else
2074			mode = S_IRUGO | S_IWUSR;
2075
2076		md->power_ro_lock.show = power_ro_lock_show;
2077		md->power_ro_lock.store = power_ro_lock_store;
2078		sysfs_attr_init(&md->power_ro_lock.attr);
2079		md->power_ro_lock.attr.mode = mode;
2080		md->power_ro_lock.attr.name =
2081					"ro_lock_until_next_power_on";
2082		ret = device_create_file(disk_to_dev(md->disk),
2083				&md->power_ro_lock);
2084		if (ret)
2085			goto power_ro_lock_fail;
2086	}
2087	return ret;
2088
2089power_ro_lock_fail:
2090	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2091force_ro_fail:
2092	del_gendisk(md->disk);
2093
2094	return ret;
2095}
2096
2097static const struct mmc_fixup blk_fixups[] =
2098{
2099	MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
2100		  MMC_QUIRK_INAND_CMD38),
2101	MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
2102		  MMC_QUIRK_INAND_CMD38),
2103	MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
2104		  MMC_QUIRK_INAND_CMD38),
2105	MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
2106		  MMC_QUIRK_INAND_CMD38),
2107	MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
2108		  MMC_QUIRK_INAND_CMD38),
2109
2110	/*
2111	 * Some MMC cards experience performance degradation with CMD23
2112	 * instead of CMD12-bounded multiblock transfers. For now we'll
2113	 * black list what's bad...
2114	 * - Certain Toshiba cards.
2115	 *
2116	 * N.B. This doesn't affect SD cards.
2117	 */
2118	MMC_FIXUP("SDMB-32", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2119		  MMC_QUIRK_BLK_NO_CMD23),
2120	MMC_FIXUP("SDM032", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2121		  MMC_QUIRK_BLK_NO_CMD23),
2122	MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2123		  MMC_QUIRK_BLK_NO_CMD23),
2124	MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2125		  MMC_QUIRK_BLK_NO_CMD23),
2126	MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2127		  MMC_QUIRK_BLK_NO_CMD23),
2128
2129	/*
2130	 * Some MMC cards need longer data read timeout than indicated in CSD.
2131	 */
2132	MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
2133		  MMC_QUIRK_LONG_READ_TIME),
2134	MMC_FIXUP("008GE0", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2135		  MMC_QUIRK_LONG_READ_TIME),
2136
2137	/*
2138	 * On these Samsung MoviNAND parts, performing secure erase or
2139	 * secure trim can result in unrecoverable corruption due to a
2140	 * firmware bug.
2141	 */
2142	MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2143		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2144	MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2145		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2146	MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2147		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2148	MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2149		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2150	MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2151		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2152	MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2153		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2154	MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2155		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2156	MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2157		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2158
2159	/*
2160	 *  On Some Kingston eMMCs, performing trim can result in
2161	 *  unrecoverable data conrruption occasionally due to a firmware bug.
2162	 */
2163	MMC_FIXUP("V10008", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2164		  MMC_QUIRK_TRIM_BROKEN),
2165	MMC_FIXUP("V10016", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2166		  MMC_QUIRK_TRIM_BROKEN),
2167
2168	END_FIXUP
2169};
2170
2171static int mmc_blk_probe(struct mmc_card *card)
2172{
2173	struct mmc_blk_data *md, *part_md;
2174	char cap_str[10];
2175
2176	/*
2177	 * Check that the card supports the command class(es) we need.
2178	 */
2179	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2180		return -ENODEV;
2181
2182	mmc_fixup_device(card, blk_fixups);
2183
2184	md = mmc_blk_alloc(card);
2185	if (IS_ERR(md))
2186		return PTR_ERR(md);
2187
2188	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2189			cap_str, sizeof(cap_str));
2190	pr_info("%s: %s %s %s %s\n",
2191		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2192		cap_str, md->read_only ? "(ro)" : "");
2193
2194	if (mmc_blk_alloc_parts(card, md))
2195		goto out;
2196
2197	dev_set_drvdata(&card->dev, md);
2198
2199	if (mmc_add_disk(md))
2200		goto out;
2201
2202	list_for_each_entry(part_md, &md->part, part) {
2203		if (mmc_add_disk(part_md))
2204			goto out;
2205	}
2206
2207	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2208	pm_runtime_use_autosuspend(&card->dev);
2209
2210	/*
2211	 * Don't enable runtime PM for SD-combo cards here. Leave that
2212	 * decision to be taken during the SDIO init sequence instead.
2213	 */
2214	if (card->type != MMC_TYPE_SD_COMBO) {
2215		pm_runtime_set_active(&card->dev);
2216		pm_runtime_enable(&card->dev);
2217	}
2218
2219	return 0;
2220
2221 out:
2222	mmc_blk_remove_parts(card, md);
2223	mmc_blk_remove_req(md);
2224	return 0;
2225}
2226
2227static void mmc_blk_remove(struct mmc_card *card)
2228{
2229	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2230
2231	mmc_blk_remove_parts(card, md);
2232	pm_runtime_get_sync(&card->dev);
2233	mmc_claim_host(card->host);
2234	mmc_blk_part_switch(card, md);
2235	mmc_release_host(card->host);
2236	if (card->type != MMC_TYPE_SD_COMBO)
2237		pm_runtime_disable(&card->dev);
2238	pm_runtime_put_noidle(&card->dev);
2239	mmc_blk_remove_req(md);
2240	dev_set_drvdata(&card->dev, NULL);
2241}
2242
2243static int _mmc_blk_suspend(struct mmc_card *card)
2244{
2245	struct mmc_blk_data *part_md;
2246	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2247
2248	if (md) {
2249		mmc_queue_suspend(&md->queue);
2250		list_for_each_entry(part_md, &md->part, part) {
2251			mmc_queue_suspend(&part_md->queue);
2252		}
2253	}
2254	return 0;
2255}
2256
2257static void mmc_blk_shutdown(struct mmc_card *card)
2258{
2259	_mmc_blk_suspend(card);
2260}
2261
2262#ifdef CONFIG_PM_SLEEP
2263static int mmc_blk_suspend(struct device *dev)
2264{
2265	struct mmc_card *card = mmc_dev_to_card(dev);
2266
2267	return _mmc_blk_suspend(card);
2268}
2269
2270static int mmc_blk_resume(struct device *dev)
2271{
2272	struct mmc_blk_data *part_md;
2273	struct mmc_blk_data *md = dev_get_drvdata(dev);
2274
2275	if (md) {
2276		/*
2277		 * Resume involves the card going into idle state,
2278		 * so current partition is always the main one.
2279		 */
2280		md->part_curr = md->part_type;
2281		mmc_queue_resume(&md->queue);
2282		list_for_each_entry(part_md, &md->part, part) {
2283			mmc_queue_resume(&part_md->queue);
2284		}
2285	}
2286	return 0;
2287}
2288#endif
2289
2290static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2291
2292static struct mmc_driver mmc_driver = {
2293	.drv		= {
2294		.name	= "mmcblk",
2295		.pm	= &mmc_blk_pm_ops,
2296	},
2297	.probe		= mmc_blk_probe,
2298	.remove		= mmc_blk_remove,
2299	.shutdown	= mmc_blk_shutdown,
2300};
2301
2302static int __init mmc_blk_init(void)
2303{
2304	int res;
2305
2306	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2307		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2308
2309	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2310
2311	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2312	if (res)
2313		goto out;
2314
2315	res = mmc_register_driver(&mmc_driver);
2316	if (res)
2317		goto out2;
2318
2319	return 0;
2320 out2:
2321	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2322 out:
2323	return res;
2324}
2325
2326static void __exit mmc_blk_exit(void)
2327{
2328	mmc_unregister_driver(&mmc_driver);
2329	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2330}
2331
2332module_init(mmc_blk_init);
2333module_exit(mmc_blk_exit);
2334
2335MODULE_LICENSE("GPL");
2336MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2337