Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Copyright © 2012-2014 Intel Corporation
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 21 * IN THE SOFTWARE.
 22 *
 23 */
 24
 25#include <drm/drmP.h>
 26#include <drm/i915_drm.h>
 27#include "i915_drv.h"
 28#include "i915_trace.h"
 29#include "intel_drv.h"
 30#include <linux/mmu_context.h>
 31#include <linux/mmu_notifier.h>
 32#include <linux/mempolicy.h>
 33#include <linux/swap.h>
 34
 35struct i915_mm_struct {
 36	struct mm_struct *mm;
 37	struct drm_device *dev;
 38	struct i915_mmu_notifier *mn;
 39	struct hlist_node node;
 40	struct kref kref;
 41	struct work_struct work;
 42};
 43
 44#if defined(CONFIG_MMU_NOTIFIER)
 45#include <linux/interval_tree.h>
 46
 47struct i915_mmu_notifier {
 48	spinlock_t lock;
 49	struct hlist_node node;
 50	struct mmu_notifier mn;
 51	struct rb_root objects;
 
 52};
 53
 54struct i915_mmu_object {
 55	struct i915_mmu_notifier *mn;
 56	struct drm_i915_gem_object *obj;
 57	struct interval_tree_node it;
 58	struct list_head link;
 59	struct work_struct work;
 60	bool attached;
 61};
 62
 63static void cancel_userptr(struct work_struct *work)
 64{
 65	struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
 66	struct drm_i915_gem_object *obj = mo->obj;
 67	struct drm_device *dev = obj->base.dev;
 68
 
 
 69	mutex_lock(&dev->struct_mutex);
 70	/* Cancel any active worker and force us to re-evaluate gup */
 71	obj->userptr.work = NULL;
 72
 73	if (obj->pages != NULL) {
 74		struct drm_i915_private *dev_priv = to_i915(dev);
 75		struct i915_vma *vma, *tmp;
 76		bool was_interruptible;
 77
 78		was_interruptible = dev_priv->mm.interruptible;
 79		dev_priv->mm.interruptible = false;
 80
 81		list_for_each_entry_safe(vma, tmp, &obj->vma_list, obj_link) {
 82			int ret = i915_vma_unbind(vma);
 83			WARN_ON(ret && ret != -EIO);
 84		}
 85		WARN_ON(i915_gem_object_put_pages(obj));
 86
 87		dev_priv->mm.interruptible = was_interruptible;
 88	}
 89
 90	drm_gem_object_unreference(&obj->base);
 91	mutex_unlock(&dev->struct_mutex);
 92}
 93
 94static void add_object(struct i915_mmu_object *mo)
 95{
 96	if (mo->attached)
 97		return;
 98
 99	interval_tree_insert(&mo->it, &mo->mn->objects);
100	mo->attached = true;
101}
102
103static void del_object(struct i915_mmu_object *mo)
104{
105	if (!mo->attached)
106		return;
107
108	interval_tree_remove(&mo->it, &mo->mn->objects);
109	mo->attached = false;
110}
111
112static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
113						       struct mm_struct *mm,
114						       unsigned long start,
115						       unsigned long end)
116{
117	struct i915_mmu_notifier *mn =
118		container_of(_mn, struct i915_mmu_notifier, mn);
119	struct i915_mmu_object *mo;
120	struct interval_tree_node *it;
121	LIST_HEAD(cancelled);
122
123	if (RB_EMPTY_ROOT(&mn->objects))
124		return;
125
126	/* interval ranges are inclusive, but invalidate range is exclusive */
127	end--;
128
129	spin_lock(&mn->lock);
130	it = interval_tree_iter_first(&mn->objects, start, end);
131	while (it) {
132		/* The mmu_object is released late when destroying the
133		 * GEM object so it is entirely possible to gain a
134		 * reference on an object in the process of being freed
135		 * since our serialisation is via the spinlock and not
136		 * the struct_mutex - and consequently use it after it
137		 * is freed and then double free it. To prevent that
138		 * use-after-free we only acquire a reference on the
139		 * object if it is not in the process of being destroyed.
140		 */
141		mo = container_of(it, struct i915_mmu_object, it);
142		if (kref_get_unless_zero(&mo->obj->base.refcount))
143			schedule_work(&mo->work);
144
145		list_add(&mo->link, &cancelled);
146		it = interval_tree_iter_next(it, start, end);
147	}
148	list_for_each_entry(mo, &cancelled, link)
149		del_object(mo);
150	spin_unlock(&mn->lock);
 
 
151}
152
153static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
154	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
155};
156
157static struct i915_mmu_notifier *
158i915_mmu_notifier_create(struct mm_struct *mm)
159{
160	struct i915_mmu_notifier *mn;
161	int ret;
162
163	mn = kmalloc(sizeof(*mn), GFP_KERNEL);
164	if (mn == NULL)
165		return ERR_PTR(-ENOMEM);
166
167	spin_lock_init(&mn->lock);
168	mn->mn.ops = &i915_gem_userptr_notifier;
169	mn->objects = RB_ROOT;
 
 
 
 
 
170
171	 /* Protected by mmap_sem (write-lock) */
172	ret = __mmu_notifier_register(&mn->mn, mm);
173	if (ret) {
 
174		kfree(mn);
175		return ERR_PTR(ret);
176	}
177
178	return mn;
179}
180
181static void
182i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
183{
184	struct i915_mmu_object *mo;
185
186	mo = obj->userptr.mmu_object;
187	if (mo == NULL)
188		return;
189
190	spin_lock(&mo->mn->lock);
191	del_object(mo);
192	spin_unlock(&mo->mn->lock);
193	kfree(mo);
194
195	obj->userptr.mmu_object = NULL;
196}
197
198static struct i915_mmu_notifier *
199i915_mmu_notifier_find(struct i915_mm_struct *mm)
200{
201	struct i915_mmu_notifier *mn = mm->mn;
202
203	mn = mm->mn;
204	if (mn)
205		return mn;
206
207	down_write(&mm->mm->mmap_sem);
208	mutex_lock(&to_i915(mm->dev)->mm_lock);
209	if ((mn = mm->mn) == NULL) {
210		mn = i915_mmu_notifier_create(mm->mm);
211		if (!IS_ERR(mn))
212			mm->mn = mn;
213	}
214	mutex_unlock(&to_i915(mm->dev)->mm_lock);
215	up_write(&mm->mm->mmap_sem);
216
217	return mn;
218}
219
220static int
221i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
222				    unsigned flags)
223{
224	struct i915_mmu_notifier *mn;
225	struct i915_mmu_object *mo;
226
227	if (flags & I915_USERPTR_UNSYNCHRONIZED)
228		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
229
230	if (WARN_ON(obj->userptr.mm == NULL))
231		return -EINVAL;
232
233	mn = i915_mmu_notifier_find(obj->userptr.mm);
234	if (IS_ERR(mn))
235		return PTR_ERR(mn);
236
237	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
238	if (mo == NULL)
239		return -ENOMEM;
240
241	mo->mn = mn;
242	mo->obj = obj;
243	mo->it.start = obj->userptr.ptr;
244	mo->it.last = obj->userptr.ptr + obj->base.size - 1;
245	INIT_WORK(&mo->work, cancel_userptr);
246
247	obj->userptr.mmu_object = mo;
248	return 0;
249}
250
251static void
252i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
253		       struct mm_struct *mm)
254{
255	if (mn == NULL)
256		return;
257
258	mmu_notifier_unregister(&mn->mn, mm);
 
259	kfree(mn);
260}
261
262#else
263
264static void
265i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
266{
267}
268
269static int
270i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
271				    unsigned flags)
272{
273	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
274		return -ENODEV;
275
276	if (!capable(CAP_SYS_ADMIN))
277		return -EPERM;
278
279	return 0;
280}
281
282static void
283i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
284		       struct mm_struct *mm)
285{
286}
287
288#endif
289
290static struct i915_mm_struct *
291__i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
292{
293	struct i915_mm_struct *mm;
294
295	/* Protected by dev_priv->mm_lock */
296	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
297		if (mm->mm == real)
298			return mm;
299
300	return NULL;
301}
302
303static int
304i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
305{
306	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
307	struct i915_mm_struct *mm;
308	int ret = 0;
309
310	/* During release of the GEM object we hold the struct_mutex. This
311	 * precludes us from calling mmput() at that time as that may be
312	 * the last reference and so call exit_mmap(). exit_mmap() will
313	 * attempt to reap the vma, and if we were holding a GTT mmap
314	 * would then call drm_gem_vm_close() and attempt to reacquire
315	 * the struct mutex. So in order to avoid that recursion, we have
316	 * to defer releasing the mm reference until after we drop the
317	 * struct_mutex, i.e. we need to schedule a worker to do the clean
318	 * up.
319	 */
320	mutex_lock(&dev_priv->mm_lock);
321	mm = __i915_mm_struct_find(dev_priv, current->mm);
322	if (mm == NULL) {
323		mm = kmalloc(sizeof(*mm), GFP_KERNEL);
324		if (mm == NULL) {
325			ret = -ENOMEM;
326			goto out;
327		}
328
329		kref_init(&mm->kref);
330		mm->dev = obj->base.dev;
331
332		mm->mm = current->mm;
333		atomic_inc(&current->mm->mm_count);
334
335		mm->mn = NULL;
336
337		/* Protected by dev_priv->mm_lock */
338		hash_add(dev_priv->mm_structs,
339			 &mm->node, (unsigned long)mm->mm);
340	} else
341		kref_get(&mm->kref);
342
343	obj->userptr.mm = mm;
344out:
345	mutex_unlock(&dev_priv->mm_lock);
346	return ret;
347}
348
349static void
350__i915_mm_struct_free__worker(struct work_struct *work)
351{
352	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
353	i915_mmu_notifier_free(mm->mn, mm->mm);
354	mmdrop(mm->mm);
355	kfree(mm);
356}
357
358static void
359__i915_mm_struct_free(struct kref *kref)
360{
361	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
362
363	/* Protected by dev_priv->mm_lock */
364	hash_del(&mm->node);
365	mutex_unlock(&to_i915(mm->dev)->mm_lock);
366
367	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
368	schedule_work(&mm->work);
369}
370
371static void
372i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
373{
374	if (obj->userptr.mm == NULL)
375		return;
376
377	kref_put_mutex(&obj->userptr.mm->kref,
378		       __i915_mm_struct_free,
379		       &to_i915(obj->base.dev)->mm_lock);
380	obj->userptr.mm = NULL;
381}
382
383struct get_pages_work {
384	struct work_struct work;
385	struct drm_i915_gem_object *obj;
386	struct task_struct *task;
387};
388
389#if IS_ENABLED(CONFIG_SWIOTLB)
390#define swiotlb_active() swiotlb_nr_tbl()
391#else
392#define swiotlb_active() 0
393#endif
394
395static int
396st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
397{
398	struct scatterlist *sg;
399	int ret, n;
400
401	*st = kmalloc(sizeof(**st), GFP_KERNEL);
402	if (*st == NULL)
403		return -ENOMEM;
404
405	if (swiotlb_active()) {
406		ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
407		if (ret)
408			goto err;
409
410		for_each_sg((*st)->sgl, sg, num_pages, n)
411			sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
412	} else {
413		ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
414						0, num_pages << PAGE_SHIFT,
415						GFP_KERNEL);
416		if (ret)
417			goto err;
418	}
419
420	return 0;
421
422err:
423	kfree(*st);
424	*st = NULL;
425	return ret;
426}
427
428static int
429__i915_gem_userptr_set_pages(struct drm_i915_gem_object *obj,
430			     struct page **pvec, int num_pages)
431{
 
432	int ret;
433
434	ret = st_set_pages(&obj->pages, pvec, num_pages);
435	if (ret)
436		return ret;
437
438	ret = i915_gem_gtt_prepare_object(obj);
439	if (ret) {
440		sg_free_table(obj->pages);
441		kfree(obj->pages);
442		obj->pages = NULL;
443	}
444
445	return ret;
446}
447
448static int
449__i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
450			      bool value)
451{
452	int ret = 0;
453
454	/* During mm_invalidate_range we need to cancel any userptr that
455	 * overlaps the range being invalidated. Doing so requires the
456	 * struct_mutex, and that risks recursion. In order to cause
457	 * recursion, the user must alias the userptr address space with
458	 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
459	 * to invalidate that mmaping, mm_invalidate_range is called with
460	 * the userptr address *and* the struct_mutex held.  To prevent that
461	 * we set a flag under the i915_mmu_notifier spinlock to indicate
462	 * whether this object is valid.
463	 */
464#if defined(CONFIG_MMU_NOTIFIER)
465	if (obj->userptr.mmu_object == NULL)
466		return 0;
467
468	spin_lock(&obj->userptr.mmu_object->mn->lock);
469	/* In order to serialise get_pages with an outstanding
470	 * cancel_userptr, we must drop the struct_mutex and try again.
471	 */
472	if (!value)
473		del_object(obj->userptr.mmu_object);
474	else if (!work_pending(&obj->userptr.mmu_object->work))
475		add_object(obj->userptr.mmu_object);
476	else
477		ret = -EAGAIN;
478	spin_unlock(&obj->userptr.mmu_object->mn->lock);
479#endif
480
481	return ret;
482}
483
484static void
485__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
486{
487	struct get_pages_work *work = container_of(_work, typeof(*work), work);
488	struct drm_i915_gem_object *obj = work->obj;
489	struct drm_device *dev = obj->base.dev;
490	const int npages = obj->base.size >> PAGE_SHIFT;
491	struct page **pvec;
492	int pinned, ret;
493
494	ret = -ENOMEM;
495	pinned = 0;
496
497	pvec = kmalloc(npages*sizeof(struct page *),
498		       GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
499	if (pvec == NULL)
500		pvec = drm_malloc_ab(npages, sizeof(struct page *));
501	if (pvec != NULL) {
502		struct mm_struct *mm = obj->userptr.mm->mm;
 
 
 
 
503
504		ret = -EFAULT;
505		if (atomic_inc_not_zero(&mm->mm_users)) {
506			down_read(&mm->mmap_sem);
507			while (pinned < npages) {
508				ret = get_user_pages_remote
509					(work->task, mm,
510					 obj->userptr.ptr + pinned * PAGE_SIZE,
511					 npages - pinned,
512					 !obj->userptr.read_only, 0,
513					 pvec + pinned, NULL);
514				if (ret < 0)
515					break;
516
517				pinned += ret;
518			}
519			up_read(&mm->mmap_sem);
520			mmput(mm);
521		}
522	}
523
524	mutex_lock(&dev->struct_mutex);
525	if (obj->userptr.work == &work->work) {
 
 
526		if (pinned == npages) {
527			ret = __i915_gem_userptr_set_pages(obj, pvec, npages);
528			if (ret == 0) {
529				list_add_tail(&obj->global_list,
530					      &to_i915(dev)->mm.unbound_list);
531				obj->get_page.sg = obj->pages->sgl;
532				obj->get_page.last = 0;
533				pinned = 0;
 
534			}
535		}
536		obj->userptr.work = ERR_PTR(ret);
537		if (ret)
538			__i915_gem_userptr_set_active(obj, false);
539	}
540
541	obj->userptr.workers--;
542	drm_gem_object_unreference(&obj->base);
543	mutex_unlock(&dev->struct_mutex);
544
545	release_pages(pvec, pinned, 0);
546	drm_free_large(pvec);
547
 
548	put_task_struct(work->task);
549	kfree(work);
550}
551
552static int
553__i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj,
554				      bool *active)
555{
556	struct get_pages_work *work;
557
558	/* Spawn a worker so that we can acquire the
559	 * user pages without holding our mutex. Access
560	 * to the user pages requires mmap_sem, and we have
561	 * a strict lock ordering of mmap_sem, struct_mutex -
562	 * we already hold struct_mutex here and so cannot
563	 * call gup without encountering a lock inversion.
564	 *
565	 * Userspace will keep on repeating the operation
566	 * (thanks to EAGAIN) until either we hit the fast
567	 * path or the worker completes. If the worker is
568	 * cancelled or superseded, the task is still run
569	 * but the results ignored. (This leads to
570	 * complications that we may have a stray object
571	 * refcount that we need to be wary of when
572	 * checking for existing objects during creation.)
573	 * If the worker encounters an error, it reports
574	 * that error back to this function through
575	 * obj->userptr.work = ERR_PTR.
576	 */
577	if (obj->userptr.workers >= I915_GEM_USERPTR_MAX_WORKERS)
578		return -EAGAIN;
579
580	work = kmalloc(sizeof(*work), GFP_KERNEL);
581	if (work == NULL)
582		return -ENOMEM;
583
584	obj->userptr.work = &work->work;
585	obj->userptr.workers++;
586
587	work->obj = obj;
588	drm_gem_object_reference(&obj->base);
589
590	work->task = current;
591	get_task_struct(work->task);
592
593	INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
594	schedule_work(&work->work);
595
596	*active = true;
597	return -EAGAIN;
598}
599
600static int
601i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
602{
603	const int num_pages = obj->base.size >> PAGE_SHIFT;
604	struct page **pvec;
 
605	int pinned, ret;
606	bool active;
607
608	/* If userspace should engineer that these pages are replaced in
609	 * the vma between us binding this page into the GTT and completion
610	 * of rendering... Their loss. If they change the mapping of their
611	 * pages they need to create a new bo to point to the new vma.
612	 *
613	 * However, that still leaves open the possibility of the vma
614	 * being copied upon fork. Which falls under the same userspace
615	 * synchronisation issue as a regular bo, except that this time
616	 * the process may not be expecting that a particular piece of
617	 * memory is tied to the GPU.
618	 *
619	 * Fortunately, we can hook into the mmu_notifier in order to
620	 * discard the page references prior to anything nasty happening
621	 * to the vma (discard or cloning) which should prevent the more
622	 * egregious cases from causing harm.
623	 */
624	if (IS_ERR(obj->userptr.work)) {
625		/* active flag will have been dropped already by the worker */
626		ret = PTR_ERR(obj->userptr.work);
627		obj->userptr.work = NULL;
628		return ret;
629	}
630	if (obj->userptr.work)
631		/* active flag should still be held for the pending work */
632		return -EAGAIN;
 
 
 
 
633
634	/* Let the mmu-notifier know that we have begun and need cancellation */
635	ret = __i915_gem_userptr_set_active(obj, true);
636	if (ret)
637		return ret;
638
639	pvec = NULL;
640	pinned = 0;
641	if (obj->userptr.mm->mm == current->mm) {
642		pvec = kmalloc(num_pages*sizeof(struct page *),
643			       GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
644		if (pvec == NULL) {
645			pvec = drm_malloc_ab(num_pages, sizeof(struct page *));
646			if (pvec == NULL) {
647				__i915_gem_userptr_set_active(obj, false);
648				return -ENOMEM;
649			}
650		}
651
652		pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
653					       !obj->userptr.read_only, pvec);
654	}
655
656	active = false;
657	if (pinned < 0)
658		ret = pinned, pinned = 0;
659	else if (pinned < num_pages)
660		ret = __i915_gem_userptr_get_pages_schedule(obj, &active);
661	else
662		ret = __i915_gem_userptr_set_pages(obj, pvec, num_pages);
663	if (ret) {
664		__i915_gem_userptr_set_active(obj, active);
665		release_pages(pvec, pinned, 0);
666	}
667	drm_free_large(pvec);
668	return ret;
669}
670
671static void
672i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj)
 
673{
674	struct sg_page_iter sg_iter;
 
675
676	BUG_ON(obj->userptr.work != NULL);
677	__i915_gem_userptr_set_active(obj, false);
678
679	if (obj->madv != I915_MADV_WILLNEED)
680		obj->dirty = 0;
681
682	i915_gem_gtt_finish_object(obj);
683
684	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
685		struct page *page = sg_page_iter_page(&sg_iter);
686
687		if (obj->dirty)
 
688			set_page_dirty(page);
689
690		mark_page_accessed(page);
691		put_page(page);
692	}
693	obj->dirty = 0;
694
695	sg_free_table(obj->pages);
696	kfree(obj->pages);
697}
698
699static void
700i915_gem_userptr_release(struct drm_i915_gem_object *obj)
701{
702	i915_gem_userptr_release__mmu_notifier(obj);
703	i915_gem_userptr_release__mm_struct(obj);
704}
705
706static int
707i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
708{
709	if (obj->userptr.mmu_object)
710		return 0;
711
712	return i915_gem_userptr_init__mmu_notifier(obj, 0);
713}
714
715static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
716	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
 
717	.get_pages = i915_gem_userptr_get_pages,
718	.put_pages = i915_gem_userptr_put_pages,
719	.dmabuf_export = i915_gem_userptr_dmabuf_export,
720	.release = i915_gem_userptr_release,
721};
722
723/**
724 * Creates a new mm object that wraps some normal memory from the process
725 * context - user memory.
726 *
727 * We impose several restrictions upon the memory being mapped
728 * into the GPU.
729 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
730 * 2. It must be normal system memory, not a pointer into another map of IO
731 *    space (e.g. it must not be a GTT mmapping of another object).
732 * 3. We only allow a bo as large as we could in theory map into the GTT,
733 *    that is we limit the size to the total size of the GTT.
734 * 4. The bo is marked as being snoopable. The backing pages are left
735 *    accessible directly by the CPU, but reads and writes by the GPU may
736 *    incur the cost of a snoop (unless you have an LLC architecture).
737 *
738 * Synchronisation between multiple users and the GPU is left to userspace
739 * through the normal set-domain-ioctl. The kernel will enforce that the
740 * GPU relinquishes the VMA before it is returned back to the system
741 * i.e. upon free(), munmap() or process termination. However, the userspace
742 * malloc() library may not immediately relinquish the VMA after free() and
743 * instead reuse it whilst the GPU is still reading and writing to the VMA.
744 * Caveat emptor.
745 *
746 * Also note, that the object created here is not currently a "first class"
747 * object, in that several ioctls are banned. These are the CPU access
748 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
749 * direct access via your pointer rather than use those ioctls. Another
750 * restriction is that we do not allow userptr surfaces to be pinned to the
751 * hardware and so we reject any attempt to create a framebuffer out of a
752 * userptr.
753 *
754 * If you think this is a good interface to use to pass GPU memory between
755 * drivers, please use dma-buf instead. In fact, wherever possible use
756 * dma-buf instead.
757 */
758int
759i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
760{
 
761	struct drm_i915_gem_userptr *args = data;
762	struct drm_i915_gem_object *obj;
763	int ret;
764	u32 handle;
765
 
 
 
 
 
 
 
766	if (args->flags & ~(I915_USERPTR_READ_ONLY |
767			    I915_USERPTR_UNSYNCHRONIZED))
768		return -EINVAL;
769
770	if (offset_in_page(args->user_ptr | args->user_size))
771		return -EINVAL;
772
773	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
774		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
775		return -EFAULT;
776
777	if (args->flags & I915_USERPTR_READ_ONLY) {
778		/* On almost all of the current hw, we cannot tell the GPU that a
779		 * page is readonly, so this is just a placeholder in the uAPI.
780		 */
781		return -ENODEV;
782	}
783
784	obj = i915_gem_object_alloc(dev);
785	if (obj == NULL)
786		return -ENOMEM;
787
788	drm_gem_private_object_init(dev, &obj->base, args->user_size);
789	i915_gem_object_init(obj, &i915_gem_userptr_ops);
790	obj->cache_level = I915_CACHE_LLC;
791	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
792	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
793
794	obj->userptr.ptr = args->user_ptr;
795	obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);
796
797	/* And keep a pointer to the current->mm for resolving the user pages
798	 * at binding. This means that we need to hook into the mmu_notifier
799	 * in order to detect if the mmu is destroyed.
800	 */
801	ret = i915_gem_userptr_init__mm_struct(obj);
802	if (ret == 0)
803		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
804	if (ret == 0)
805		ret = drm_gem_handle_create(file, &obj->base, &handle);
806
807	/* drop reference from allocate - handle holds it now */
808	drm_gem_object_unreference_unlocked(&obj->base);
809	if (ret)
810		return ret;
811
812	args->handle = handle;
813	return 0;
814}
815
816int
817i915_gem_init_userptr(struct drm_device *dev)
818{
819	struct drm_i915_private *dev_priv = to_i915(dev);
820	mutex_init(&dev_priv->mm_lock);
821	hash_init(dev_priv->mm_structs);
822	return 0;
823}
v4.10.11
  1/*
  2 * Copyright © 2012-2014 Intel Corporation
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 21 * IN THE SOFTWARE.
 22 *
 23 */
 24
 25#include <drm/drmP.h>
 26#include <drm/i915_drm.h>
 27#include "i915_drv.h"
 28#include "i915_trace.h"
 29#include "intel_drv.h"
 30#include <linux/mmu_context.h>
 31#include <linux/mmu_notifier.h>
 32#include <linux/mempolicy.h>
 33#include <linux/swap.h>
 34
 35struct i915_mm_struct {
 36	struct mm_struct *mm;
 37	struct drm_i915_private *i915;
 38	struct i915_mmu_notifier *mn;
 39	struct hlist_node node;
 40	struct kref kref;
 41	struct work_struct work;
 42};
 43
 44#if defined(CONFIG_MMU_NOTIFIER)
 45#include <linux/interval_tree.h>
 46
 47struct i915_mmu_notifier {
 48	spinlock_t lock;
 49	struct hlist_node node;
 50	struct mmu_notifier mn;
 51	struct rb_root objects;
 52	struct workqueue_struct *wq;
 53};
 54
 55struct i915_mmu_object {
 56	struct i915_mmu_notifier *mn;
 57	struct drm_i915_gem_object *obj;
 58	struct interval_tree_node it;
 59	struct list_head link;
 60	struct work_struct work;
 61	bool attached;
 62};
 63
 64static void cancel_userptr(struct work_struct *work)
 65{
 66	struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
 67	struct drm_i915_gem_object *obj = mo->obj;
 68	struct drm_device *dev = obj->base.dev;
 69
 70	i915_gem_object_wait(obj, I915_WAIT_ALL, MAX_SCHEDULE_TIMEOUT, NULL);
 71
 72	mutex_lock(&dev->struct_mutex);
 73	/* Cancel any active worker and force us to re-evaluate gup */
 74	obj->userptr.work = NULL;
 75
 76	/* We are inside a kthread context and can't be interrupted */
 77	if (i915_gem_object_unbind(obj) == 0)
 78		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
 79	WARN_ONCE(obj->mm.pages,
 80		  "Failed to release pages: bind_count=%d, pages_pin_count=%d, pin_display=%d\n",
 81		  obj->bind_count,
 82		  atomic_read(&obj->mm.pages_pin_count),
 83		  obj->pin_display);
 
 
 
 
 
 
 
 
 84
 85	i915_gem_object_put(obj);
 86	mutex_unlock(&dev->struct_mutex);
 87}
 88
 89static void add_object(struct i915_mmu_object *mo)
 90{
 91	if (mo->attached)
 92		return;
 93
 94	interval_tree_insert(&mo->it, &mo->mn->objects);
 95	mo->attached = true;
 96}
 97
 98static void del_object(struct i915_mmu_object *mo)
 99{
100	if (!mo->attached)
101		return;
102
103	interval_tree_remove(&mo->it, &mo->mn->objects);
104	mo->attached = false;
105}
106
107static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
108						       struct mm_struct *mm,
109						       unsigned long start,
110						       unsigned long end)
111{
112	struct i915_mmu_notifier *mn =
113		container_of(_mn, struct i915_mmu_notifier, mn);
114	struct i915_mmu_object *mo;
115	struct interval_tree_node *it;
116	LIST_HEAD(cancelled);
117
118	if (RB_EMPTY_ROOT(&mn->objects))
119		return;
120
121	/* interval ranges are inclusive, but invalidate range is exclusive */
122	end--;
123
124	spin_lock(&mn->lock);
125	it = interval_tree_iter_first(&mn->objects, start, end);
126	while (it) {
127		/* The mmu_object is released late when destroying the
128		 * GEM object so it is entirely possible to gain a
129		 * reference on an object in the process of being freed
130		 * since our serialisation is via the spinlock and not
131		 * the struct_mutex - and consequently use it after it
132		 * is freed and then double free it. To prevent that
133		 * use-after-free we only acquire a reference on the
134		 * object if it is not in the process of being destroyed.
135		 */
136		mo = container_of(it, struct i915_mmu_object, it);
137		if (kref_get_unless_zero(&mo->obj->base.refcount))
138			queue_work(mn->wq, &mo->work);
139
140		list_add(&mo->link, &cancelled);
141		it = interval_tree_iter_next(it, start, end);
142	}
143	list_for_each_entry(mo, &cancelled, link)
144		del_object(mo);
145	spin_unlock(&mn->lock);
146
147	flush_workqueue(mn->wq);
148}
149
150static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
151	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
152};
153
154static struct i915_mmu_notifier *
155i915_mmu_notifier_create(struct mm_struct *mm)
156{
157	struct i915_mmu_notifier *mn;
158	int ret;
159
160	mn = kmalloc(sizeof(*mn), GFP_KERNEL);
161	if (mn == NULL)
162		return ERR_PTR(-ENOMEM);
163
164	spin_lock_init(&mn->lock);
165	mn->mn.ops = &i915_gem_userptr_notifier;
166	mn->objects = RB_ROOT;
167	mn->wq = alloc_workqueue("i915-userptr-release", WQ_UNBOUND, 0);
168	if (mn->wq == NULL) {
169		kfree(mn);
170		return ERR_PTR(-ENOMEM);
171	}
172
173	 /* Protected by mmap_sem (write-lock) */
174	ret = __mmu_notifier_register(&mn->mn, mm);
175	if (ret) {
176		destroy_workqueue(mn->wq);
177		kfree(mn);
178		return ERR_PTR(ret);
179	}
180
181	return mn;
182}
183
184static void
185i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
186{
187	struct i915_mmu_object *mo;
188
189	mo = obj->userptr.mmu_object;
190	if (mo == NULL)
191		return;
192
193	spin_lock(&mo->mn->lock);
194	del_object(mo);
195	spin_unlock(&mo->mn->lock);
196	kfree(mo);
197
198	obj->userptr.mmu_object = NULL;
199}
200
201static struct i915_mmu_notifier *
202i915_mmu_notifier_find(struct i915_mm_struct *mm)
203{
204	struct i915_mmu_notifier *mn = mm->mn;
205
206	mn = mm->mn;
207	if (mn)
208		return mn;
209
210	down_write(&mm->mm->mmap_sem);
211	mutex_lock(&mm->i915->mm_lock);
212	if ((mn = mm->mn) == NULL) {
213		mn = i915_mmu_notifier_create(mm->mm);
214		if (!IS_ERR(mn))
215			mm->mn = mn;
216	}
217	mutex_unlock(&mm->i915->mm_lock);
218	up_write(&mm->mm->mmap_sem);
219
220	return mn;
221}
222
223static int
224i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
225				    unsigned flags)
226{
227	struct i915_mmu_notifier *mn;
228	struct i915_mmu_object *mo;
229
230	if (flags & I915_USERPTR_UNSYNCHRONIZED)
231		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
232
233	if (WARN_ON(obj->userptr.mm == NULL))
234		return -EINVAL;
235
236	mn = i915_mmu_notifier_find(obj->userptr.mm);
237	if (IS_ERR(mn))
238		return PTR_ERR(mn);
239
240	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
241	if (mo == NULL)
242		return -ENOMEM;
243
244	mo->mn = mn;
245	mo->obj = obj;
246	mo->it.start = obj->userptr.ptr;
247	mo->it.last = obj->userptr.ptr + obj->base.size - 1;
248	INIT_WORK(&mo->work, cancel_userptr);
249
250	obj->userptr.mmu_object = mo;
251	return 0;
252}
253
254static void
255i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
256		       struct mm_struct *mm)
257{
258	if (mn == NULL)
259		return;
260
261	mmu_notifier_unregister(&mn->mn, mm);
262	destroy_workqueue(mn->wq);
263	kfree(mn);
264}
265
266#else
267
268static void
269i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
270{
271}
272
273static int
274i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
275				    unsigned flags)
276{
277	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
278		return -ENODEV;
279
280	if (!capable(CAP_SYS_ADMIN))
281		return -EPERM;
282
283	return 0;
284}
285
286static void
287i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
288		       struct mm_struct *mm)
289{
290}
291
292#endif
293
294static struct i915_mm_struct *
295__i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
296{
297	struct i915_mm_struct *mm;
298
299	/* Protected by dev_priv->mm_lock */
300	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
301		if (mm->mm == real)
302			return mm;
303
304	return NULL;
305}
306
307static int
308i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
309{
310	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
311	struct i915_mm_struct *mm;
312	int ret = 0;
313
314	/* During release of the GEM object we hold the struct_mutex. This
315	 * precludes us from calling mmput() at that time as that may be
316	 * the last reference and so call exit_mmap(). exit_mmap() will
317	 * attempt to reap the vma, and if we were holding a GTT mmap
318	 * would then call drm_gem_vm_close() and attempt to reacquire
319	 * the struct mutex. So in order to avoid that recursion, we have
320	 * to defer releasing the mm reference until after we drop the
321	 * struct_mutex, i.e. we need to schedule a worker to do the clean
322	 * up.
323	 */
324	mutex_lock(&dev_priv->mm_lock);
325	mm = __i915_mm_struct_find(dev_priv, current->mm);
326	if (mm == NULL) {
327		mm = kmalloc(sizeof(*mm), GFP_KERNEL);
328		if (mm == NULL) {
329			ret = -ENOMEM;
330			goto out;
331		}
332
333		kref_init(&mm->kref);
334		mm->i915 = to_i915(obj->base.dev);
335
336		mm->mm = current->mm;
337		atomic_inc(&current->mm->mm_count);
338
339		mm->mn = NULL;
340
341		/* Protected by dev_priv->mm_lock */
342		hash_add(dev_priv->mm_structs,
343			 &mm->node, (unsigned long)mm->mm);
344	} else
345		kref_get(&mm->kref);
346
347	obj->userptr.mm = mm;
348out:
349	mutex_unlock(&dev_priv->mm_lock);
350	return ret;
351}
352
353static void
354__i915_mm_struct_free__worker(struct work_struct *work)
355{
356	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
357	i915_mmu_notifier_free(mm->mn, mm->mm);
358	mmdrop(mm->mm);
359	kfree(mm);
360}
361
362static void
363__i915_mm_struct_free(struct kref *kref)
364{
365	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
366
367	/* Protected by dev_priv->mm_lock */
368	hash_del(&mm->node);
369	mutex_unlock(&mm->i915->mm_lock);
370
371	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
372	schedule_work(&mm->work);
373}
374
375static void
376i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
377{
378	if (obj->userptr.mm == NULL)
379		return;
380
381	kref_put_mutex(&obj->userptr.mm->kref,
382		       __i915_mm_struct_free,
383		       &to_i915(obj->base.dev)->mm_lock);
384	obj->userptr.mm = NULL;
385}
386
387struct get_pages_work {
388	struct work_struct work;
389	struct drm_i915_gem_object *obj;
390	struct task_struct *task;
391};
392
393#if IS_ENABLED(CONFIG_SWIOTLB)
394#define swiotlb_active() swiotlb_nr_tbl()
395#else
396#define swiotlb_active() 0
397#endif
398
399static int
400st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
401{
402	struct scatterlist *sg;
403	int ret, n;
404
405	*st = kmalloc(sizeof(**st), GFP_KERNEL);
406	if (*st == NULL)
407		return -ENOMEM;
408
409	if (swiotlb_active()) {
410		ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
411		if (ret)
412			goto err;
413
414		for_each_sg((*st)->sgl, sg, num_pages, n)
415			sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
416	} else {
417		ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
418						0, num_pages << PAGE_SHIFT,
419						GFP_KERNEL);
420		if (ret)
421			goto err;
422	}
423
424	return 0;
425
426err:
427	kfree(*st);
428	*st = NULL;
429	return ret;
430}
431
432static struct sg_table *
433__i915_gem_userptr_set_pages(struct drm_i915_gem_object *obj,
434			     struct page **pvec, int num_pages)
435{
436	struct sg_table *pages;
437	int ret;
438
439	ret = st_set_pages(&pages, pvec, num_pages);
440	if (ret)
441		return ERR_PTR(ret);
442
443	ret = i915_gem_gtt_prepare_pages(obj, pages);
444	if (ret) {
445		sg_free_table(pages);
446		kfree(pages);
447		return ERR_PTR(ret);
448	}
449
450	return pages;
451}
452
453static int
454__i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
455			      bool value)
456{
457	int ret = 0;
458
459	/* During mm_invalidate_range we need to cancel any userptr that
460	 * overlaps the range being invalidated. Doing so requires the
461	 * struct_mutex, and that risks recursion. In order to cause
462	 * recursion, the user must alias the userptr address space with
463	 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
464	 * to invalidate that mmaping, mm_invalidate_range is called with
465	 * the userptr address *and* the struct_mutex held.  To prevent that
466	 * we set a flag under the i915_mmu_notifier spinlock to indicate
467	 * whether this object is valid.
468	 */
469#if defined(CONFIG_MMU_NOTIFIER)
470	if (obj->userptr.mmu_object == NULL)
471		return 0;
472
473	spin_lock(&obj->userptr.mmu_object->mn->lock);
474	/* In order to serialise get_pages with an outstanding
475	 * cancel_userptr, we must drop the struct_mutex and try again.
476	 */
477	if (!value)
478		del_object(obj->userptr.mmu_object);
479	else if (!work_pending(&obj->userptr.mmu_object->work))
480		add_object(obj->userptr.mmu_object);
481	else
482		ret = -EAGAIN;
483	spin_unlock(&obj->userptr.mmu_object->mn->lock);
484#endif
485
486	return ret;
487}
488
489static void
490__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
491{
492	struct get_pages_work *work = container_of(_work, typeof(*work), work);
493	struct drm_i915_gem_object *obj = work->obj;
 
494	const int npages = obj->base.size >> PAGE_SHIFT;
495	struct page **pvec;
496	int pinned, ret;
497
498	ret = -ENOMEM;
499	pinned = 0;
500
501	pvec = drm_malloc_gfp(npages, sizeof(struct page *), GFP_TEMPORARY);
 
 
 
502	if (pvec != NULL) {
503		struct mm_struct *mm = obj->userptr.mm->mm;
504		unsigned int flags = 0;
505
506		if (!obj->userptr.read_only)
507			flags |= FOLL_WRITE;
508
509		ret = -EFAULT;
510		if (atomic_inc_not_zero(&mm->mm_users)) {
511			down_read(&mm->mmap_sem);
512			while (pinned < npages) {
513				ret = get_user_pages_remote
514					(work->task, mm,
515					 obj->userptr.ptr + pinned * PAGE_SIZE,
516					 npages - pinned,
517					 flags,
518					 pvec + pinned, NULL, NULL);
519				if (ret < 0)
520					break;
521
522				pinned += ret;
523			}
524			up_read(&mm->mmap_sem);
525			mmput(mm);
526		}
527	}
528
529	mutex_lock(&obj->mm.lock);
530	if (obj->userptr.work == &work->work) {
531		struct sg_table *pages = ERR_PTR(ret);
532
533		if (pinned == npages) {
534			pages = __i915_gem_userptr_set_pages(obj, pvec, npages);
535			if (!IS_ERR(pages)) {
536				__i915_gem_object_set_pages(obj, pages);
 
 
 
537				pinned = 0;
538				pages = NULL;
539			}
540		}
 
 
 
 
541
542		obj->userptr.work = ERR_CAST(pages);
543	}
544	mutex_unlock(&obj->mm.lock);
545
546	release_pages(pvec, pinned, 0);
547	drm_free_large(pvec);
548
549	i915_gem_object_put(obj);
550	put_task_struct(work->task);
551	kfree(work);
552}
553
554static struct sg_table *
555__i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj,
556				      bool *active)
557{
558	struct get_pages_work *work;
559
560	/* Spawn a worker so that we can acquire the
561	 * user pages without holding our mutex. Access
562	 * to the user pages requires mmap_sem, and we have
563	 * a strict lock ordering of mmap_sem, struct_mutex -
564	 * we already hold struct_mutex here and so cannot
565	 * call gup without encountering a lock inversion.
566	 *
567	 * Userspace will keep on repeating the operation
568	 * (thanks to EAGAIN) until either we hit the fast
569	 * path or the worker completes. If the worker is
570	 * cancelled or superseded, the task is still run
571	 * but the results ignored. (This leads to
572	 * complications that we may have a stray object
573	 * refcount that we need to be wary of when
574	 * checking for existing objects during creation.)
575	 * If the worker encounters an error, it reports
576	 * that error back to this function through
577	 * obj->userptr.work = ERR_PTR.
578	 */
 
 
 
579	work = kmalloc(sizeof(*work), GFP_KERNEL);
580	if (work == NULL)
581		return ERR_PTR(-ENOMEM);
582
583	obj->userptr.work = &work->work;
 
584
585	work->obj = i915_gem_object_get(obj);
 
586
587	work->task = current;
588	get_task_struct(work->task);
589
590	INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
591	schedule_work(&work->work);
592
593	*active = true;
594	return ERR_PTR(-EAGAIN);
595}
596
597static struct sg_table *
598i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
599{
600	const int num_pages = obj->base.size >> PAGE_SHIFT;
601	struct page **pvec;
602	struct sg_table *pages;
603	int pinned, ret;
604	bool active;
605
606	/* If userspace should engineer that these pages are replaced in
607	 * the vma between us binding this page into the GTT and completion
608	 * of rendering... Their loss. If they change the mapping of their
609	 * pages they need to create a new bo to point to the new vma.
610	 *
611	 * However, that still leaves open the possibility of the vma
612	 * being copied upon fork. Which falls under the same userspace
613	 * synchronisation issue as a regular bo, except that this time
614	 * the process may not be expecting that a particular piece of
615	 * memory is tied to the GPU.
616	 *
617	 * Fortunately, we can hook into the mmu_notifier in order to
618	 * discard the page references prior to anything nasty happening
619	 * to the vma (discard or cloning) which should prevent the more
620	 * egregious cases from causing harm.
621	 */
622
623	if (obj->userptr.work) {
 
 
 
 
 
624		/* active flag should still be held for the pending work */
625		if (IS_ERR(obj->userptr.work))
626			return ERR_CAST(obj->userptr.work);
627		else
628			return ERR_PTR(-EAGAIN);
629	}
630
631	/* Let the mmu-notifier know that we have begun and need cancellation */
632	ret = __i915_gem_userptr_set_active(obj, true);
633	if (ret)
634		return ERR_PTR(ret);
635
636	pvec = NULL;
637	pinned = 0;
638	if (obj->userptr.mm->mm == current->mm) {
639		pvec = drm_malloc_gfp(num_pages, sizeof(struct page *),
640				      GFP_TEMPORARY);
641		if (pvec == NULL) {
642			__i915_gem_userptr_set_active(obj, false);
643			return ERR_PTR(-ENOMEM);
 
 
 
644		}
645
646		pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
647					       !obj->userptr.read_only, pvec);
648	}
649
650	active = false;
651	if (pinned < 0)
652		pages = ERR_PTR(pinned), pinned = 0;
653	else if (pinned < num_pages)
654		pages = __i915_gem_userptr_get_pages_schedule(obj, &active);
655	else
656		pages = __i915_gem_userptr_set_pages(obj, pvec, num_pages);
657	if (IS_ERR(pages)) {
658		__i915_gem_userptr_set_active(obj, active);
659		release_pages(pvec, pinned, 0);
660	}
661	drm_free_large(pvec);
662	return pages;
663}
664
665static void
666i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj,
667			   struct sg_table *pages)
668{
669	struct sgt_iter sgt_iter;
670	struct page *page;
671
672	BUG_ON(obj->userptr.work != NULL);
673	__i915_gem_userptr_set_active(obj, false);
674
675	if (obj->mm.madv != I915_MADV_WILLNEED)
676		obj->mm.dirty = false;
 
 
677
678	i915_gem_gtt_finish_pages(obj, pages);
 
679
680	for_each_sgt_page(page, sgt_iter, pages) {
681		if (obj->mm.dirty)
682			set_page_dirty(page);
683
684		mark_page_accessed(page);
685		put_page(page);
686	}
687	obj->mm.dirty = false;
688
689	sg_free_table(pages);
690	kfree(pages);
691}
692
693static void
694i915_gem_userptr_release(struct drm_i915_gem_object *obj)
695{
696	i915_gem_userptr_release__mmu_notifier(obj);
697	i915_gem_userptr_release__mm_struct(obj);
698}
699
700static int
701i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
702{
703	if (obj->userptr.mmu_object)
704		return 0;
705
706	return i915_gem_userptr_init__mmu_notifier(obj, 0);
707}
708
709static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
710	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
711		 I915_GEM_OBJECT_IS_SHRINKABLE,
712	.get_pages = i915_gem_userptr_get_pages,
713	.put_pages = i915_gem_userptr_put_pages,
714	.dmabuf_export = i915_gem_userptr_dmabuf_export,
715	.release = i915_gem_userptr_release,
716};
717
718/**
719 * Creates a new mm object that wraps some normal memory from the process
720 * context - user memory.
721 *
722 * We impose several restrictions upon the memory being mapped
723 * into the GPU.
724 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
725 * 2. It must be normal system memory, not a pointer into another map of IO
726 *    space (e.g. it must not be a GTT mmapping of another object).
727 * 3. We only allow a bo as large as we could in theory map into the GTT,
728 *    that is we limit the size to the total size of the GTT.
729 * 4. The bo is marked as being snoopable. The backing pages are left
730 *    accessible directly by the CPU, but reads and writes by the GPU may
731 *    incur the cost of a snoop (unless you have an LLC architecture).
732 *
733 * Synchronisation between multiple users and the GPU is left to userspace
734 * through the normal set-domain-ioctl. The kernel will enforce that the
735 * GPU relinquishes the VMA before it is returned back to the system
736 * i.e. upon free(), munmap() or process termination. However, the userspace
737 * malloc() library may not immediately relinquish the VMA after free() and
738 * instead reuse it whilst the GPU is still reading and writing to the VMA.
739 * Caveat emptor.
740 *
741 * Also note, that the object created here is not currently a "first class"
742 * object, in that several ioctls are banned. These are the CPU access
743 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
744 * direct access via your pointer rather than use those ioctls. Another
745 * restriction is that we do not allow userptr surfaces to be pinned to the
746 * hardware and so we reject any attempt to create a framebuffer out of a
747 * userptr.
748 *
749 * If you think this is a good interface to use to pass GPU memory between
750 * drivers, please use dma-buf instead. In fact, wherever possible use
751 * dma-buf instead.
752 */
753int
754i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
755{
756	struct drm_i915_private *dev_priv = to_i915(dev);
757	struct drm_i915_gem_userptr *args = data;
758	struct drm_i915_gem_object *obj;
759	int ret;
760	u32 handle;
761
762	if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) {
763		/* We cannot support coherent userptr objects on hw without
764		 * LLC and broken snooping.
765		 */
766		return -ENODEV;
767	}
768
769	if (args->flags & ~(I915_USERPTR_READ_ONLY |
770			    I915_USERPTR_UNSYNCHRONIZED))
771		return -EINVAL;
772
773	if (offset_in_page(args->user_ptr | args->user_size))
774		return -EINVAL;
775
776	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
777		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
778		return -EFAULT;
779
780	if (args->flags & I915_USERPTR_READ_ONLY) {
781		/* On almost all of the current hw, we cannot tell the GPU that a
782		 * page is readonly, so this is just a placeholder in the uAPI.
783		 */
784		return -ENODEV;
785	}
786
787	obj = i915_gem_object_alloc(dev);
788	if (obj == NULL)
789		return -ENOMEM;
790
791	drm_gem_private_object_init(dev, &obj->base, args->user_size);
792	i915_gem_object_init(obj, &i915_gem_userptr_ops);
793	obj->cache_level = I915_CACHE_LLC;
794	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
795	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
796
797	obj->userptr.ptr = args->user_ptr;
798	obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);
799
800	/* And keep a pointer to the current->mm for resolving the user pages
801	 * at binding. This means that we need to hook into the mmu_notifier
802	 * in order to detect if the mmu is destroyed.
803	 */
804	ret = i915_gem_userptr_init__mm_struct(obj);
805	if (ret == 0)
806		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
807	if (ret == 0)
808		ret = drm_gem_handle_create(file, &obj->base, &handle);
809
810	/* drop reference from allocate - handle holds it now */
811	i915_gem_object_put(obj);
812	if (ret)
813		return ret;
814
815	args->handle = handle;
816	return 0;
817}
818
819void i915_gem_init_userptr(struct drm_i915_private *dev_priv)
 
820{
 
821	mutex_init(&dev_priv->mm_lock);
822	hash_init(dev_priv->mm_structs);
 
823}