Loading...
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34#ifndef __I915_GEM_GTT_H__
35#define __I915_GEM_GTT_H__
36
37struct drm_i915_file_private;
38
39typedef uint32_t gen6_pte_t;
40typedef uint64_t gen8_pte_t;
41typedef uint64_t gen8_pde_t;
42typedef uint64_t gen8_ppgtt_pdpe_t;
43typedef uint64_t gen8_ppgtt_pml4e_t;
44
45#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
46
47/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
48#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
49#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
50#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
51#define GEN6_PTE_CACHE_LLC (2 << 1)
52#define GEN6_PTE_UNCACHED (1 << 1)
53#define GEN6_PTE_VALID (1 << 0)
54
55#define I915_PTES(pte_len) (PAGE_SIZE / (pte_len))
56#define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
57#define I915_PDES 512
58#define I915_PDE_MASK (I915_PDES - 1)
59#define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
60
61#define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
62#define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
63#define GEN6_PD_ALIGN (PAGE_SIZE * 16)
64#define GEN6_PDE_SHIFT 22
65#define GEN6_PDE_VALID (1 << 0)
66
67#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
68
69#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
70#define BYT_PTE_WRITEABLE (1 << 1)
71
72/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
73 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
74 */
75#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
76 (((bits) & 0x8) << (11 - 3)))
77#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
78#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
79#define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
80#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
81#define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
82#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
83#define HSW_PTE_UNCACHED (0)
84#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
85#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
86
87/* GEN8 legacy style address is defined as a 3 level page table:
88 * 31:30 | 29:21 | 20:12 | 11:0
89 * PDPE | PDE | PTE | offset
90 * The difference as compared to normal x86 3 level page table is the PDPEs are
91 * programmed via register.
92 *
93 * GEN8 48b legacy style address is defined as a 4 level page table:
94 * 47:39 | 38:30 | 29:21 | 20:12 | 11:0
95 * PML4E | PDPE | PDE | PTE | offset
96 */
97#define GEN8_PML4ES_PER_PML4 512
98#define GEN8_PML4E_SHIFT 39
99#define GEN8_PML4E_MASK (GEN8_PML4ES_PER_PML4 - 1)
100#define GEN8_PDPE_SHIFT 30
101/* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
102 * tables */
103#define GEN8_PDPE_MASK 0x1ff
104#define GEN8_PDE_SHIFT 21
105#define GEN8_PDE_MASK 0x1ff
106#define GEN8_PTE_SHIFT 12
107#define GEN8_PTE_MASK 0x1ff
108#define GEN8_LEGACY_PDPES 4
109#define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
110
111#define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
112 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
113
114#define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
115#define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
116#define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
117#define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
118
119#define CHV_PPAT_SNOOP (1<<6)
120#define GEN8_PPAT_AGE(x) (x<<4)
121#define GEN8_PPAT_LLCeLLC (3<<2)
122#define GEN8_PPAT_LLCELLC (2<<2)
123#define GEN8_PPAT_LLC (1<<2)
124#define GEN8_PPAT_WB (3<<0)
125#define GEN8_PPAT_WT (2<<0)
126#define GEN8_PPAT_WC (1<<0)
127#define GEN8_PPAT_UC (0<<0)
128#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
129#define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
130
131enum i915_ggtt_view_type {
132 I915_GGTT_VIEW_NORMAL = 0,
133 I915_GGTT_VIEW_ROTATED,
134 I915_GGTT_VIEW_PARTIAL,
135};
136
137struct intel_rotation_info {
138 unsigned int height;
139 unsigned int pitch;
140 unsigned int uv_offset;
141 uint32_t pixel_format;
142 uint64_t fb_modifier;
143 unsigned int width_pages, height_pages;
144 uint64_t size;
145 unsigned int width_pages_uv, height_pages_uv;
146 uint64_t size_uv;
147 unsigned int uv_start_page;
148};
149
150struct i915_ggtt_view {
151 enum i915_ggtt_view_type type;
152
153 union {
154 struct {
155 u64 offset;
156 unsigned int size;
157 } partial;
158 struct intel_rotation_info rotated;
159 } params;
160
161 struct sg_table *pages;
162};
163
164extern const struct i915_ggtt_view i915_ggtt_view_normal;
165extern const struct i915_ggtt_view i915_ggtt_view_rotated;
166
167enum i915_cache_level;
168
169/**
170 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
171 * VMA's presence cannot be guaranteed before binding, or after unbinding the
172 * object into/from the address space.
173 *
174 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
175 * will always be <= an objects lifetime. So object refcounting should cover us.
176 */
177struct i915_vma {
178 struct drm_mm_node node;
179 struct drm_i915_gem_object *obj;
180 struct i915_address_space *vm;
181
182 /** Flags and address space this VMA is bound to */
183#define GLOBAL_BIND (1<<0)
184#define LOCAL_BIND (1<<1)
185 unsigned int bound : 4;
186 bool is_ggtt : 1;
187
188 /**
189 * Support different GGTT views into the same object.
190 * This means there can be multiple VMA mappings per object and per VM.
191 * i915_ggtt_view_type is used to distinguish between those entries.
192 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
193 * assumed in GEM functions which take no ggtt view parameter.
194 */
195 struct i915_ggtt_view ggtt_view;
196
197 /** This object's place on the active/inactive lists */
198 struct list_head vm_link;
199
200 struct list_head obj_link; /* Link in the object's VMA list */
201
202 /** This vma's place in the batchbuffer or on the eviction list */
203 struct list_head exec_list;
204
205 /**
206 * Used for performing relocations during execbuffer insertion.
207 */
208 struct hlist_node exec_node;
209 unsigned long exec_handle;
210 struct drm_i915_gem_exec_object2 *exec_entry;
211
212 /**
213 * How many users have pinned this object in GTT space. The following
214 * users can each hold at most one reference: pwrite/pread, execbuffer
215 * (objects are not allowed multiple times for the same batchbuffer),
216 * and the framebuffer code. When switching/pageflipping, the
217 * framebuffer code has at most two buffers pinned per crtc.
218 *
219 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
220 * bits with absolutely no headroom. So use 4 bits. */
221 unsigned int pin_count:4;
222#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
223};
224
225struct i915_page_dma {
226 struct page *page;
227 union {
228 dma_addr_t daddr;
229
230 /* For gen6/gen7 only. This is the offset in the GGTT
231 * where the page directory entries for PPGTT begin
232 */
233 uint32_t ggtt_offset;
234 };
235};
236
237#define px_base(px) (&(px)->base)
238#define px_page(px) (px_base(px)->page)
239#define px_dma(px) (px_base(px)->daddr)
240
241struct i915_page_scratch {
242 struct i915_page_dma base;
243};
244
245struct i915_page_table {
246 struct i915_page_dma base;
247
248 unsigned long *used_ptes;
249};
250
251struct i915_page_directory {
252 struct i915_page_dma base;
253
254 unsigned long *used_pdes;
255 struct i915_page_table *page_table[I915_PDES]; /* PDEs */
256};
257
258struct i915_page_directory_pointer {
259 struct i915_page_dma base;
260
261 unsigned long *used_pdpes;
262 struct i915_page_directory **page_directory;
263};
264
265struct i915_pml4 {
266 struct i915_page_dma base;
267
268 DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
269 struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
270};
271
272struct i915_address_space {
273 struct drm_mm mm;
274 struct drm_device *dev;
275 struct list_head global_link;
276 u64 start; /* Start offset always 0 for dri2 */
277 u64 total; /* size addr space maps (ex. 2GB for ggtt) */
278
279 bool is_ggtt;
280
281 struct i915_page_scratch *scratch_page;
282 struct i915_page_table *scratch_pt;
283 struct i915_page_directory *scratch_pd;
284 struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
285
286 /**
287 * List of objects currently involved in rendering.
288 *
289 * Includes buffers having the contents of their GPU caches
290 * flushed, not necessarily primitives. last_read_req
291 * represents when the rendering involved will be completed.
292 *
293 * A reference is held on the buffer while on this list.
294 */
295 struct list_head active_list;
296
297 /**
298 * LRU list of objects which are not in the ringbuffer and
299 * are ready to unbind, but are still in the GTT.
300 *
301 * last_read_req is NULL while an object is in this list.
302 *
303 * A reference is not held on the buffer while on this list,
304 * as merely being GTT-bound shouldn't prevent its being
305 * freed, and we'll pull it off the list in the free path.
306 */
307 struct list_head inactive_list;
308
309 /* FIXME: Need a more generic return type */
310 gen6_pte_t (*pte_encode)(dma_addr_t addr,
311 enum i915_cache_level level,
312 bool valid, u32 flags); /* Create a valid PTE */
313 /* flags for pte_encode */
314#define PTE_READ_ONLY (1<<0)
315 int (*allocate_va_range)(struct i915_address_space *vm,
316 uint64_t start,
317 uint64_t length);
318 void (*clear_range)(struct i915_address_space *vm,
319 uint64_t start,
320 uint64_t length,
321 bool use_scratch);
322 void (*insert_entries)(struct i915_address_space *vm,
323 struct sg_table *st,
324 uint64_t start,
325 enum i915_cache_level cache_level, u32 flags);
326 void (*cleanup)(struct i915_address_space *vm);
327 /** Unmap an object from an address space. This usually consists of
328 * setting the valid PTE entries to a reserved scratch page. */
329 void (*unbind_vma)(struct i915_vma *vma);
330 /* Map an object into an address space with the given cache flags. */
331 int (*bind_vma)(struct i915_vma *vma,
332 enum i915_cache_level cache_level,
333 u32 flags);
334};
335
336#define i915_is_ggtt(V) ((V)->is_ggtt)
337
338/* The Graphics Translation Table is the way in which GEN hardware translates a
339 * Graphics Virtual Address into a Physical Address. In addition to the normal
340 * collateral associated with any va->pa translations GEN hardware also has a
341 * portion of the GTT which can be mapped by the CPU and remain both coherent
342 * and correct (in cases like swizzling). That region is referred to as GMADR in
343 * the spec.
344 */
345struct i915_gtt {
346 struct i915_address_space base;
347
348 size_t stolen_size; /* Total size of stolen memory */
349 size_t stolen_usable_size; /* Total size minus BIOS reserved */
350 size_t stolen_reserved_base;
351 size_t stolen_reserved_size;
352 u64 mappable_end; /* End offset that we can CPU map */
353 struct io_mapping *mappable; /* Mapping to our CPU mappable region */
354 phys_addr_t mappable_base; /* PA of our GMADR */
355
356 /** "Graphics Stolen Memory" holds the global PTEs */
357 void __iomem *gsm;
358
359 bool do_idle_maps;
360
361 int mtrr;
362
363 /* global gtt ops */
364 int (*gtt_probe)(struct drm_device *dev, u64 *gtt_total,
365 size_t *stolen, phys_addr_t *mappable_base,
366 u64 *mappable_end);
367};
368
369struct i915_hw_ppgtt {
370 struct i915_address_space base;
371 struct kref ref;
372 struct drm_mm_node node;
373 unsigned long pd_dirty_rings;
374 union {
375 struct i915_pml4 pml4; /* GEN8+ & 48b PPGTT */
376 struct i915_page_directory_pointer pdp; /* GEN8+ */
377 struct i915_page_directory pd; /* GEN6-7 */
378 };
379
380 struct drm_i915_file_private *file_priv;
381
382 gen6_pte_t __iomem *pd_addr;
383
384 int (*enable)(struct i915_hw_ppgtt *ppgtt);
385 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
386 struct drm_i915_gem_request *req);
387 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
388};
389
390/* For each pde iterates over every pde between from start until start + length.
391 * If start, and start+length are not perfectly divisible, the macro will round
392 * down, and up as needed. The macro modifies pde, start, and length. Dev is
393 * only used to differentiate shift values. Temp is temp. On gen6/7, start = 0,
394 * and length = 2G effectively iterates over every PDE in the system.
395 *
396 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
397 */
398#define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
399 for (iter = gen6_pde_index(start); \
400 length > 0 && iter < I915_PDES ? \
401 (pt = (pd)->page_table[iter]), 1 : 0; \
402 iter++, \
403 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
404 temp = min_t(unsigned, temp, length), \
405 start += temp, length -= temp)
406
407#define gen6_for_all_pdes(pt, ppgtt, iter) \
408 for (iter = 0; \
409 pt = ppgtt->pd.page_table[iter], iter < I915_PDES; \
410 iter++)
411
412static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
413{
414 const uint32_t mask = NUM_PTE(pde_shift) - 1;
415
416 return (address >> PAGE_SHIFT) & mask;
417}
418
419/* Helper to counts the number of PTEs within the given length. This count
420 * does not cross a page table boundary, so the max value would be
421 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
422*/
423static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
424 uint32_t pde_shift)
425{
426 const uint64_t mask = ~((1ULL << pde_shift) - 1);
427 uint64_t end;
428
429 WARN_ON(length == 0);
430 WARN_ON(offset_in_page(addr|length));
431
432 end = addr + length;
433
434 if ((addr & mask) != (end & mask))
435 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
436
437 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
438}
439
440static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
441{
442 return (addr >> shift) & I915_PDE_MASK;
443}
444
445static inline uint32_t gen6_pte_index(uint32_t addr)
446{
447 return i915_pte_index(addr, GEN6_PDE_SHIFT);
448}
449
450static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
451{
452 return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
453}
454
455static inline uint32_t gen6_pde_index(uint32_t addr)
456{
457 return i915_pde_index(addr, GEN6_PDE_SHIFT);
458}
459
460/* Equivalent to the gen6 version, For each pde iterates over every pde
461 * between from start until start + length. On gen8+ it simply iterates
462 * over every page directory entry in a page directory.
463 */
464#define gen8_for_each_pde(pt, pd, start, length, iter) \
465 for (iter = gen8_pde_index(start); \
466 length > 0 && iter < I915_PDES && \
467 (pt = (pd)->page_table[iter], true); \
468 ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT); \
469 temp = min(temp - start, length); \
470 start += temp, length -= temp; }), ++iter)
471
472#define gen8_for_each_pdpe(pd, pdp, start, length, iter) \
473 for (iter = gen8_pdpe_index(start); \
474 length > 0 && iter < I915_PDPES_PER_PDP(dev) && \
475 (pd = (pdp)->page_directory[iter], true); \
476 ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT); \
477 temp = min(temp - start, length); \
478 start += temp, length -= temp; }), ++iter)
479
480#define gen8_for_each_pml4e(pdp, pml4, start, length, iter) \
481 for (iter = gen8_pml4e_index(start); \
482 length > 0 && iter < GEN8_PML4ES_PER_PML4 && \
483 (pdp = (pml4)->pdps[iter], true); \
484 ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT); \
485 temp = min(temp - start, length); \
486 start += temp, length -= temp; }), ++iter)
487
488static inline uint32_t gen8_pte_index(uint64_t address)
489{
490 return i915_pte_index(address, GEN8_PDE_SHIFT);
491}
492
493static inline uint32_t gen8_pde_index(uint64_t address)
494{
495 return i915_pde_index(address, GEN8_PDE_SHIFT);
496}
497
498static inline uint32_t gen8_pdpe_index(uint64_t address)
499{
500 return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
501}
502
503static inline uint32_t gen8_pml4e_index(uint64_t address)
504{
505 return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
506}
507
508static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
509{
510 return i915_pte_count(address, length, GEN8_PDE_SHIFT);
511}
512
513static inline dma_addr_t
514i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
515{
516 return test_bit(n, ppgtt->pdp.used_pdpes) ?
517 px_dma(ppgtt->pdp.page_directory[n]) :
518 px_dma(ppgtt->base.scratch_pd);
519}
520
521int i915_gem_gtt_init(struct drm_device *dev);
522void i915_gem_init_global_gtt(struct drm_device *dev);
523void i915_global_gtt_cleanup(struct drm_device *dev);
524
525
526int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
527int i915_ppgtt_init_hw(struct drm_device *dev);
528int i915_ppgtt_init_ring(struct drm_i915_gem_request *req);
529void i915_ppgtt_release(struct kref *kref);
530struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
531 struct drm_i915_file_private *fpriv);
532static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
533{
534 if (ppgtt)
535 kref_get(&ppgtt->ref);
536}
537static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
538{
539 if (ppgtt)
540 kref_put(&ppgtt->ref, i915_ppgtt_release);
541}
542
543void i915_check_and_clear_faults(struct drm_device *dev);
544void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
545void i915_gem_restore_gtt_mappings(struct drm_device *dev);
546
547int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
548void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
549
550static inline bool
551i915_ggtt_view_equal(const struct i915_ggtt_view *a,
552 const struct i915_ggtt_view *b)
553{
554 if (WARN_ON(!a || !b))
555 return false;
556
557 if (a->type != b->type)
558 return false;
559 if (a->type != I915_GGTT_VIEW_NORMAL)
560 return !memcmp(&a->params, &b->params, sizeof(a->params));
561 return true;
562}
563
564size_t
565i915_ggtt_view_size(struct drm_i915_gem_object *obj,
566 const struct i915_ggtt_view *view);
567
568#endif
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34#ifndef __I915_GEM_GTT_H__
35#define __I915_GEM_GTT_H__
36
37#include <linux/io-mapping.h>
38#include <linux/mm.h>
39
40#include "i915_gem_timeline.h"
41#include "i915_gem_request.h"
42
43#define I915_FENCE_REG_NONE -1
44#define I915_MAX_NUM_FENCES 32
45/* 32 fences + sign bit for FENCE_REG_NONE */
46#define I915_MAX_NUM_FENCE_BITS 6
47
48struct drm_i915_file_private;
49struct drm_i915_fence_reg;
50
51typedef uint32_t gen6_pte_t;
52typedef uint64_t gen8_pte_t;
53typedef uint64_t gen8_pde_t;
54typedef uint64_t gen8_ppgtt_pdpe_t;
55typedef uint64_t gen8_ppgtt_pml4e_t;
56
57#define ggtt_total_entries(ggtt) ((ggtt)->base.total >> PAGE_SHIFT)
58
59/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
60#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
61#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
62#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
63#define GEN6_PTE_CACHE_LLC (2 << 1)
64#define GEN6_PTE_UNCACHED (1 << 1)
65#define GEN6_PTE_VALID (1 << 0)
66
67#define I915_PTES(pte_len) (PAGE_SIZE / (pte_len))
68#define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
69#define I915_PDES 512
70#define I915_PDE_MASK (I915_PDES - 1)
71#define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
72
73#define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
74#define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
75#define GEN6_PD_ALIGN (PAGE_SIZE * 16)
76#define GEN6_PDE_SHIFT 22
77#define GEN6_PDE_VALID (1 << 0)
78
79#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
80
81#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
82#define BYT_PTE_WRITEABLE (1 << 1)
83
84/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
85 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
86 */
87#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
88 (((bits) & 0x8) << (11 - 3)))
89#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
90#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
91#define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
92#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
93#define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
94#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
95#define HSW_PTE_UNCACHED (0)
96#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
97#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
98
99/* GEN8 legacy style address is defined as a 3 level page table:
100 * 31:30 | 29:21 | 20:12 | 11:0
101 * PDPE | PDE | PTE | offset
102 * The difference as compared to normal x86 3 level page table is the PDPEs are
103 * programmed via register.
104 *
105 * GEN8 48b legacy style address is defined as a 4 level page table:
106 * 47:39 | 38:30 | 29:21 | 20:12 | 11:0
107 * PML4E | PDPE | PDE | PTE | offset
108 */
109#define GEN8_PML4ES_PER_PML4 512
110#define GEN8_PML4E_SHIFT 39
111#define GEN8_PML4E_MASK (GEN8_PML4ES_PER_PML4 - 1)
112#define GEN8_PDPE_SHIFT 30
113/* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
114 * tables */
115#define GEN8_PDPE_MASK 0x1ff
116#define GEN8_PDE_SHIFT 21
117#define GEN8_PDE_MASK 0x1ff
118#define GEN8_PTE_SHIFT 12
119#define GEN8_PTE_MASK 0x1ff
120#define GEN8_LEGACY_PDPES 4
121#define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
122
123#define I915_PDPES_PER_PDP(dev_priv) (USES_FULL_48BIT_PPGTT(dev_priv) ?\
124 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
125
126#define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
127#define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
128#define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
129#define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
130
131#define CHV_PPAT_SNOOP (1<<6)
132#define GEN8_PPAT_AGE(x) (x<<4)
133#define GEN8_PPAT_LLCeLLC (3<<2)
134#define GEN8_PPAT_LLCELLC (2<<2)
135#define GEN8_PPAT_LLC (1<<2)
136#define GEN8_PPAT_WB (3<<0)
137#define GEN8_PPAT_WT (2<<0)
138#define GEN8_PPAT_WC (1<<0)
139#define GEN8_PPAT_UC (0<<0)
140#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
141#define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
142
143struct sg_table;
144
145enum i915_ggtt_view_type {
146 I915_GGTT_VIEW_NORMAL = 0,
147 I915_GGTT_VIEW_ROTATED,
148 I915_GGTT_VIEW_PARTIAL,
149};
150
151struct intel_rotation_info {
152 struct {
153 /* tiles */
154 unsigned int width, height, stride, offset;
155 } plane[2];
156};
157
158struct i915_ggtt_view {
159 enum i915_ggtt_view_type type;
160
161 union {
162 struct {
163 u64 offset;
164 unsigned int size;
165 } partial;
166 struct intel_rotation_info rotated;
167 } params;
168};
169
170extern const struct i915_ggtt_view i915_ggtt_view_normal;
171extern const struct i915_ggtt_view i915_ggtt_view_rotated;
172
173enum i915_cache_level;
174
175struct i915_vma;
176
177struct i915_page_dma {
178 struct page *page;
179 union {
180 dma_addr_t daddr;
181
182 /* For gen6/gen7 only. This is the offset in the GGTT
183 * where the page directory entries for PPGTT begin
184 */
185 uint32_t ggtt_offset;
186 };
187};
188
189#define px_base(px) (&(px)->base)
190#define px_page(px) (px_base(px)->page)
191#define px_dma(px) (px_base(px)->daddr)
192
193struct i915_page_table {
194 struct i915_page_dma base;
195
196 unsigned long *used_ptes;
197};
198
199struct i915_page_directory {
200 struct i915_page_dma base;
201
202 unsigned long *used_pdes;
203 struct i915_page_table *page_table[I915_PDES]; /* PDEs */
204};
205
206struct i915_page_directory_pointer {
207 struct i915_page_dma base;
208
209 unsigned long *used_pdpes;
210 struct i915_page_directory **page_directory;
211};
212
213struct i915_pml4 {
214 struct i915_page_dma base;
215
216 DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
217 struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
218};
219
220struct i915_address_space {
221 struct drm_mm mm;
222 struct i915_gem_timeline timeline;
223 struct drm_device *dev;
224 /* Every address space belongs to a struct file - except for the global
225 * GTT that is owned by the driver (and so @file is set to NULL). In
226 * principle, no information should leak from one context to another
227 * (or between files/processes etc) unless explicitly shared by the
228 * owner. Tracking the owner is important in order to free up per-file
229 * objects along with the file, to aide resource tracking, and to
230 * assign blame.
231 */
232 struct drm_i915_file_private *file;
233 struct list_head global_link;
234 u64 start; /* Start offset always 0 for dri2 */
235 u64 total; /* size addr space maps (ex. 2GB for ggtt) */
236
237 bool closed;
238
239 struct i915_page_dma scratch_page;
240 struct i915_page_table *scratch_pt;
241 struct i915_page_directory *scratch_pd;
242 struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
243
244 /**
245 * List of objects currently involved in rendering.
246 *
247 * Includes buffers having the contents of their GPU caches
248 * flushed, not necessarily primitives. last_read_req
249 * represents when the rendering involved will be completed.
250 *
251 * A reference is held on the buffer while on this list.
252 */
253 struct list_head active_list;
254
255 /**
256 * LRU list of objects which are not in the ringbuffer and
257 * are ready to unbind, but are still in the GTT.
258 *
259 * last_read_req is NULL while an object is in this list.
260 *
261 * A reference is not held on the buffer while on this list,
262 * as merely being GTT-bound shouldn't prevent its being
263 * freed, and we'll pull it off the list in the free path.
264 */
265 struct list_head inactive_list;
266
267 /**
268 * List of vma that have been unbound.
269 *
270 * A reference is not held on the buffer while on this list.
271 */
272 struct list_head unbound_list;
273
274 /* FIXME: Need a more generic return type */
275 gen6_pte_t (*pte_encode)(dma_addr_t addr,
276 enum i915_cache_level level,
277 u32 flags); /* Create a valid PTE */
278 /* flags for pte_encode */
279#define PTE_READ_ONLY (1<<0)
280 int (*allocate_va_range)(struct i915_address_space *vm,
281 uint64_t start,
282 uint64_t length);
283 void (*clear_range)(struct i915_address_space *vm,
284 uint64_t start,
285 uint64_t length);
286 void (*insert_page)(struct i915_address_space *vm,
287 dma_addr_t addr,
288 uint64_t offset,
289 enum i915_cache_level cache_level,
290 u32 flags);
291 void (*insert_entries)(struct i915_address_space *vm,
292 struct sg_table *st,
293 uint64_t start,
294 enum i915_cache_level cache_level, u32 flags);
295 void (*cleanup)(struct i915_address_space *vm);
296 /** Unmap an object from an address space. This usually consists of
297 * setting the valid PTE entries to a reserved scratch page. */
298 void (*unbind_vma)(struct i915_vma *vma);
299 /* Map an object into an address space with the given cache flags. */
300 int (*bind_vma)(struct i915_vma *vma,
301 enum i915_cache_level cache_level,
302 u32 flags);
303};
304
305#define i915_is_ggtt(V) (!(V)->file)
306
307/* The Graphics Translation Table is the way in which GEN hardware translates a
308 * Graphics Virtual Address into a Physical Address. In addition to the normal
309 * collateral associated with any va->pa translations GEN hardware also has a
310 * portion of the GTT which can be mapped by the CPU and remain both coherent
311 * and correct (in cases like swizzling). That region is referred to as GMADR in
312 * the spec.
313 */
314struct i915_ggtt {
315 struct i915_address_space base;
316 struct io_mapping mappable; /* Mapping to our CPU mappable region */
317
318 size_t stolen_size; /* Total size of stolen memory */
319 size_t stolen_usable_size; /* Total size minus BIOS reserved */
320 size_t stolen_reserved_base;
321 size_t stolen_reserved_size;
322 u64 mappable_end; /* End offset that we can CPU map */
323 phys_addr_t mappable_base; /* PA of our GMADR */
324
325 /** "Graphics Stolen Memory" holds the global PTEs */
326 void __iomem *gsm;
327
328 bool do_idle_maps;
329
330 int mtrr;
331
332 struct drm_mm_node error_capture;
333};
334
335struct i915_hw_ppgtt {
336 struct i915_address_space base;
337 struct kref ref;
338 struct drm_mm_node node;
339 unsigned long pd_dirty_rings;
340 union {
341 struct i915_pml4 pml4; /* GEN8+ & 48b PPGTT */
342 struct i915_page_directory_pointer pdp; /* GEN8+ */
343 struct i915_page_directory pd; /* GEN6-7 */
344 };
345
346 gen6_pte_t __iomem *pd_addr;
347
348 int (*enable)(struct i915_hw_ppgtt *ppgtt);
349 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
350 struct drm_i915_gem_request *req);
351 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
352};
353
354/*
355 * gen6_for_each_pde() iterates over every pde from start until start+length.
356 * If start and start+length are not perfectly divisible, the macro will round
357 * down and up as needed. Start=0 and length=2G effectively iterates over
358 * every PDE in the system. The macro modifies ALL its parameters except 'pd',
359 * so each of the other parameters should preferably be a simple variable, or
360 * at most an lvalue with no side-effects!
361 */
362#define gen6_for_each_pde(pt, pd, start, length, iter) \
363 for (iter = gen6_pde_index(start); \
364 length > 0 && iter < I915_PDES && \
365 (pt = (pd)->page_table[iter], true); \
366 ({ u32 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT); \
367 temp = min(temp - start, length); \
368 start += temp, length -= temp; }), ++iter)
369
370#define gen6_for_all_pdes(pt, pd, iter) \
371 for (iter = 0; \
372 iter < I915_PDES && \
373 (pt = (pd)->page_table[iter], true); \
374 ++iter)
375
376static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
377{
378 const uint32_t mask = NUM_PTE(pde_shift) - 1;
379
380 return (address >> PAGE_SHIFT) & mask;
381}
382
383/* Helper to counts the number of PTEs within the given length. This count
384 * does not cross a page table boundary, so the max value would be
385 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
386*/
387static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
388 uint32_t pde_shift)
389{
390 const uint64_t mask = ~((1ULL << pde_shift) - 1);
391 uint64_t end;
392
393 WARN_ON(length == 0);
394 WARN_ON(offset_in_page(addr|length));
395
396 end = addr + length;
397
398 if ((addr & mask) != (end & mask))
399 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
400
401 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
402}
403
404static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
405{
406 return (addr >> shift) & I915_PDE_MASK;
407}
408
409static inline uint32_t gen6_pte_index(uint32_t addr)
410{
411 return i915_pte_index(addr, GEN6_PDE_SHIFT);
412}
413
414static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
415{
416 return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
417}
418
419static inline uint32_t gen6_pde_index(uint32_t addr)
420{
421 return i915_pde_index(addr, GEN6_PDE_SHIFT);
422}
423
424/* Equivalent to the gen6 version, For each pde iterates over every pde
425 * between from start until start + length. On gen8+ it simply iterates
426 * over every page directory entry in a page directory.
427 */
428#define gen8_for_each_pde(pt, pd, start, length, iter) \
429 for (iter = gen8_pde_index(start); \
430 length > 0 && iter < I915_PDES && \
431 (pt = (pd)->page_table[iter], true); \
432 ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT); \
433 temp = min(temp - start, length); \
434 start += temp, length -= temp; }), ++iter)
435
436#define gen8_for_each_pdpe(pd, pdp, start, length, iter) \
437 for (iter = gen8_pdpe_index(start); \
438 length > 0 && iter < I915_PDPES_PER_PDP(dev) && \
439 (pd = (pdp)->page_directory[iter], true); \
440 ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT); \
441 temp = min(temp - start, length); \
442 start += temp, length -= temp; }), ++iter)
443
444#define gen8_for_each_pml4e(pdp, pml4, start, length, iter) \
445 for (iter = gen8_pml4e_index(start); \
446 length > 0 && iter < GEN8_PML4ES_PER_PML4 && \
447 (pdp = (pml4)->pdps[iter], true); \
448 ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT); \
449 temp = min(temp - start, length); \
450 start += temp, length -= temp; }), ++iter)
451
452static inline uint32_t gen8_pte_index(uint64_t address)
453{
454 return i915_pte_index(address, GEN8_PDE_SHIFT);
455}
456
457static inline uint32_t gen8_pde_index(uint64_t address)
458{
459 return i915_pde_index(address, GEN8_PDE_SHIFT);
460}
461
462static inline uint32_t gen8_pdpe_index(uint64_t address)
463{
464 return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
465}
466
467static inline uint32_t gen8_pml4e_index(uint64_t address)
468{
469 return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
470}
471
472static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
473{
474 return i915_pte_count(address, length, GEN8_PDE_SHIFT);
475}
476
477static inline dma_addr_t
478i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
479{
480 return test_bit(n, ppgtt->pdp.used_pdpes) ?
481 px_dma(ppgtt->pdp.page_directory[n]) :
482 px_dma(ppgtt->base.scratch_pd);
483}
484
485static inline struct i915_ggtt *
486i915_vm_to_ggtt(struct i915_address_space *vm)
487{
488 GEM_BUG_ON(!i915_is_ggtt(vm));
489 return container_of(vm, struct i915_ggtt, base);
490}
491
492int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv);
493int i915_ggtt_init_hw(struct drm_i915_private *dev_priv);
494int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv);
495int i915_gem_init_ggtt(struct drm_i915_private *dev_priv);
496void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv);
497
498int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv);
499void i915_ppgtt_release(struct kref *kref);
500struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_i915_private *dev_priv,
501 struct drm_i915_file_private *fpriv,
502 const char *name);
503static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
504{
505 if (ppgtt)
506 kref_get(&ppgtt->ref);
507}
508static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
509{
510 if (ppgtt)
511 kref_put(&ppgtt->ref, i915_ppgtt_release);
512}
513
514void i915_check_and_clear_faults(struct drm_i915_private *dev_priv);
515void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv);
516void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv);
517
518int __must_check i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
519 struct sg_table *pages);
520void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
521 struct sg_table *pages);
522
523/* Flags used by pin/bind&friends. */
524#define PIN_NONBLOCK BIT(0)
525#define PIN_MAPPABLE BIT(1)
526#define PIN_ZONE_4G BIT(2)
527#define PIN_NONFAULT BIT(3)
528
529#define PIN_MBZ BIT(5) /* I915_VMA_PIN_OVERFLOW */
530#define PIN_GLOBAL BIT(6) /* I915_VMA_GLOBAL_BIND */
531#define PIN_USER BIT(7) /* I915_VMA_LOCAL_BIND */
532#define PIN_UPDATE BIT(8)
533
534#define PIN_HIGH BIT(9)
535#define PIN_OFFSET_BIAS BIT(10)
536#define PIN_OFFSET_FIXED BIT(11)
537#define PIN_OFFSET_MASK (~4095)
538
539#endif