Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * processor_idle - idle state submodule to the ACPI processor driver
   3 *
   4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   6 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   7 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   8 *  			- Added processor hotplug support
   9 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10 *  			- Added support for C3 on SMP
  11 *
  12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13 *
  14 *  This program is free software; you can redistribute it and/or modify
  15 *  it under the terms of the GNU General Public License as published by
  16 *  the Free Software Foundation; either version 2 of the License, or (at
  17 *  your option) any later version.
  18 *
  19 *  This program is distributed in the hope that it will be useful, but
  20 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  21 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 *  General Public License for more details.
  23 *
  24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  25 */
  26#define pr_fmt(fmt) "ACPI: " fmt
  27
  28#include <linux/module.h>
  29#include <linux/acpi.h>
  30#include <linux/dmi.h>
  31#include <linux/sched.h>       /* need_resched() */
  32#include <linux/tick.h>
  33#include <linux/cpuidle.h>
 
  34#include <acpi/processor.h>
  35
  36/*
  37 * Include the apic definitions for x86 to have the APIC timer related defines
  38 * available also for UP (on SMP it gets magically included via linux/smp.h).
  39 * asm/acpi.h is not an option, as it would require more include magic. Also
  40 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  41 */
  42#ifdef CONFIG_X86
  43#include <asm/apic.h>
  44#endif
  45
  46#define ACPI_PROCESSOR_CLASS            "processor"
  47#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
  48ACPI_MODULE_NAME("processor_idle");
  49
  50static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  51module_param(max_cstate, uint, 0000);
  52static unsigned int nocst __read_mostly;
  53module_param(nocst, uint, 0000);
  54static int bm_check_disable __read_mostly;
  55module_param(bm_check_disable, uint, 0000);
  56
  57static unsigned int latency_factor __read_mostly = 2;
  58module_param(latency_factor, uint, 0644);
  59
  60static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  61
 
 
 
 
 
 
  62static
  63DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
  64
  65static int disabled_by_idle_boot_param(void)
  66{
  67	return boot_option_idle_override == IDLE_POLL ||
  68		boot_option_idle_override == IDLE_HALT;
  69}
  70
  71/*
  72 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  73 * For now disable this. Probably a bug somewhere else.
  74 *
  75 * To skip this limit, boot/load with a large max_cstate limit.
  76 */
  77static int set_max_cstate(const struct dmi_system_id *id)
  78{
  79	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  80		return 0;
  81
  82	pr_notice("%s detected - limiting to C%ld max_cstate."
  83		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
  84		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  85
  86	max_cstate = (long)id->driver_data;
  87
  88	return 0;
  89}
  90
  91static const struct dmi_system_id processor_power_dmi_table[] = {
  92	{ set_max_cstate, "Clevo 5600D", {
  93	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  94	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  95	 (void *)2},
  96	{ set_max_cstate, "Pavilion zv5000", {
  97	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
  98	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
  99	 (void *)1},
 100	{ set_max_cstate, "Asus L8400B", {
 101	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
 102	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
 103	 (void *)1},
 104	{},
 105};
 106
 107
 108/*
 109 * Callers should disable interrupts before the call and enable
 110 * interrupts after return.
 111 */
 112static void acpi_safe_halt(void)
 113{
 114	if (!tif_need_resched()) {
 115		safe_halt();
 116		local_irq_disable();
 117	}
 118}
 119
 120#ifdef ARCH_APICTIMER_STOPS_ON_C3
 121
 122/*
 123 * Some BIOS implementations switch to C3 in the published C2 state.
 124 * This seems to be a common problem on AMD boxen, but other vendors
 125 * are affected too. We pick the most conservative approach: we assume
 126 * that the local APIC stops in both C2 and C3.
 127 */
 128static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 129				   struct acpi_processor_cx *cx)
 130{
 131	struct acpi_processor_power *pwr = &pr->power;
 132	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 133
 134	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 135		return;
 136
 137	if (amd_e400_c1e_detected)
 138		type = ACPI_STATE_C1;
 139
 140	/*
 141	 * Check, if one of the previous states already marked the lapic
 142	 * unstable
 143	 */
 144	if (pwr->timer_broadcast_on_state < state)
 145		return;
 146
 147	if (cx->type >= type)
 148		pr->power.timer_broadcast_on_state = state;
 149}
 150
 151static void __lapic_timer_propagate_broadcast(void *arg)
 152{
 153	struct acpi_processor *pr = (struct acpi_processor *) arg;
 154
 155	if (pr->power.timer_broadcast_on_state < INT_MAX)
 156		tick_broadcast_enable();
 157	else
 158		tick_broadcast_disable();
 159}
 160
 161static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 162{
 163	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 164				 (void *)pr, 1);
 165}
 166
 167/* Power(C) State timer broadcast control */
 168static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 169				       struct acpi_processor_cx *cx,
 170				       int broadcast)
 171{
 172	int state = cx - pr->power.states;
 173
 174	if (state >= pr->power.timer_broadcast_on_state) {
 175		if (broadcast)
 176			tick_broadcast_enter();
 177		else
 178			tick_broadcast_exit();
 179	}
 180}
 181
 182#else
 183
 184static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 185				   struct acpi_processor_cx *cstate) { }
 186static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 187static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 188				       struct acpi_processor_cx *cx,
 189				       int broadcast)
 190{
 191}
 192
 193#endif
 194
 195#if defined(CONFIG_X86)
 196static void tsc_check_state(int state)
 197{
 198	switch (boot_cpu_data.x86_vendor) {
 199	case X86_VENDOR_AMD:
 200	case X86_VENDOR_INTEL:
 201		/*
 202		 * AMD Fam10h TSC will tick in all
 203		 * C/P/S0/S1 states when this bit is set.
 204		 */
 205		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 206			return;
 207
 208		/*FALL THROUGH*/
 209	default:
 210		/* TSC could halt in idle, so notify users */
 211		if (state > ACPI_STATE_C1)
 212			mark_tsc_unstable("TSC halts in idle");
 213	}
 214}
 215#else
 216static void tsc_check_state(int state) { return; }
 217#endif
 218
 219static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 220{
 221
 222	if (!pr->pblk)
 223		return -ENODEV;
 224
 225	/* if info is obtained from pblk/fadt, type equals state */
 226	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 227	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 228
 229#ifndef CONFIG_HOTPLUG_CPU
 230	/*
 231	 * Check for P_LVL2_UP flag before entering C2 and above on
 232	 * an SMP system.
 233	 */
 234	if ((num_online_cpus() > 1) &&
 235	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 236		return -ENODEV;
 237#endif
 238
 239	/* determine C2 and C3 address from pblk */
 240	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 241	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 242
 243	/* determine latencies from FADT */
 244	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 245	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 246
 247	/*
 248	 * FADT specified C2 latency must be less than or equal to
 249	 * 100 microseconds.
 250	 */
 251	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 252		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 253			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
 254		/* invalidate C2 */
 255		pr->power.states[ACPI_STATE_C2].address = 0;
 256	}
 257
 258	/*
 259	 * FADT supplied C3 latency must be less than or equal to
 260	 * 1000 microseconds.
 261	 */
 262	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 263		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 264			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
 265		/* invalidate C3 */
 266		pr->power.states[ACPI_STATE_C3].address = 0;
 267	}
 268
 269	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 270			  "lvl2[0x%08x] lvl3[0x%08x]\n",
 271			  pr->power.states[ACPI_STATE_C2].address,
 272			  pr->power.states[ACPI_STATE_C3].address));
 273
 274	return 0;
 275}
 276
 277static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 278{
 279	if (!pr->power.states[ACPI_STATE_C1].valid) {
 280		/* set the first C-State to C1 */
 281		/* all processors need to support C1 */
 282		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 283		pr->power.states[ACPI_STATE_C1].valid = 1;
 284		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 285	}
 286	/* the C0 state only exists as a filler in our array */
 287	pr->power.states[ACPI_STATE_C0].valid = 1;
 288	return 0;
 289}
 290
 291static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 292{
 293	acpi_status status;
 294	u64 count;
 295	int current_count;
 296	int i, ret = 0;
 297	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 298	union acpi_object *cst;
 299
 300
 301	if (nocst)
 302		return -ENODEV;
 303
 304	current_count = 0;
 305
 306	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
 307	if (ACPI_FAILURE(status)) {
 308		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
 309		return -ENODEV;
 310	}
 311
 312	cst = buffer.pointer;
 313
 314	/* There must be at least 2 elements */
 315	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
 316		pr_err("not enough elements in _CST\n");
 317		ret = -EFAULT;
 318		goto end;
 319	}
 320
 321	count = cst->package.elements[0].integer.value;
 322
 323	/* Validate number of power states. */
 324	if (count < 1 || count != cst->package.count - 1) {
 325		pr_err("count given by _CST is not valid\n");
 326		ret = -EFAULT;
 327		goto end;
 328	}
 329
 330	/* Tell driver that at least _CST is supported. */
 331	pr->flags.has_cst = 1;
 332
 333	for (i = 1; i <= count; i++) {
 334		union acpi_object *element;
 335		union acpi_object *obj;
 336		struct acpi_power_register *reg;
 337		struct acpi_processor_cx cx;
 338
 339		memset(&cx, 0, sizeof(cx));
 340
 341		element = &(cst->package.elements[i]);
 342		if (element->type != ACPI_TYPE_PACKAGE)
 343			continue;
 344
 345		if (element->package.count != 4)
 346			continue;
 347
 348		obj = &(element->package.elements[0]);
 349
 350		if (obj->type != ACPI_TYPE_BUFFER)
 351			continue;
 352
 353		reg = (struct acpi_power_register *)obj->buffer.pointer;
 354
 355		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 356		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
 357			continue;
 358
 359		/* There should be an easy way to extract an integer... */
 360		obj = &(element->package.elements[1]);
 361		if (obj->type != ACPI_TYPE_INTEGER)
 362			continue;
 363
 364		cx.type = obj->integer.value;
 365		/*
 366		 * Some buggy BIOSes won't list C1 in _CST -
 367		 * Let acpi_processor_get_power_info_default() handle them later
 368		 */
 369		if (i == 1 && cx.type != ACPI_STATE_C1)
 370			current_count++;
 371
 372		cx.address = reg->address;
 373		cx.index = current_count + 1;
 374
 375		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
 376		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
 377			if (acpi_processor_ffh_cstate_probe
 378					(pr->id, &cx, reg) == 0) {
 379				cx.entry_method = ACPI_CSTATE_FFH;
 380			} else if (cx.type == ACPI_STATE_C1) {
 381				/*
 382				 * C1 is a special case where FIXED_HARDWARE
 383				 * can be handled in non-MWAIT way as well.
 384				 * In that case, save this _CST entry info.
 385				 * Otherwise, ignore this info and continue.
 386				 */
 387				cx.entry_method = ACPI_CSTATE_HALT;
 388				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 389			} else {
 390				continue;
 391			}
 392			if (cx.type == ACPI_STATE_C1 &&
 393			    (boot_option_idle_override == IDLE_NOMWAIT)) {
 394				/*
 395				 * In most cases the C1 space_id obtained from
 396				 * _CST object is FIXED_HARDWARE access mode.
 397				 * But when the option of idle=halt is added,
 398				 * the entry_method type should be changed from
 399				 * CSTATE_FFH to CSTATE_HALT.
 400				 * When the option of idle=nomwait is added,
 401				 * the C1 entry_method type should be
 402				 * CSTATE_HALT.
 403				 */
 404				cx.entry_method = ACPI_CSTATE_HALT;
 405				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 406			}
 407		} else {
 408			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
 409				 cx.address);
 410		}
 411
 412		if (cx.type == ACPI_STATE_C1) {
 413			cx.valid = 1;
 414		}
 415
 416		obj = &(element->package.elements[2]);
 417		if (obj->type != ACPI_TYPE_INTEGER)
 418			continue;
 419
 420		cx.latency = obj->integer.value;
 421
 422		obj = &(element->package.elements[3]);
 423		if (obj->type != ACPI_TYPE_INTEGER)
 424			continue;
 425
 426		current_count++;
 427		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
 428
 429		/*
 430		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
 431		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
 432		 */
 433		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
 434			pr_warn("Limiting number of power states to max (%d)\n",
 435				ACPI_PROCESSOR_MAX_POWER);
 436			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
 437			break;
 438		}
 439	}
 440
 441	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
 442			  current_count));
 443
 444	/* Validate number of power states discovered */
 445	if (current_count < 2)
 446		ret = -EFAULT;
 447
 448      end:
 449	kfree(buffer.pointer);
 450
 451	return ret;
 452}
 453
 454static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 455					   struct acpi_processor_cx *cx)
 456{
 457	static int bm_check_flag = -1;
 458	static int bm_control_flag = -1;
 459
 460
 461	if (!cx->address)
 462		return;
 463
 464	/*
 465	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 466	 * DMA transfers are used by any ISA device to avoid livelock.
 467	 * Note that we could disable Type-F DMA (as recommended by
 468	 * the erratum), but this is known to disrupt certain ISA
 469	 * devices thus we take the conservative approach.
 470	 */
 471	else if (errata.piix4.fdma) {
 472		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 473				  "C3 not supported on PIIX4 with Type-F DMA\n"));
 474		return;
 475	}
 476
 477	/* All the logic here assumes flags.bm_check is same across all CPUs */
 478	if (bm_check_flag == -1) {
 479		/* Determine whether bm_check is needed based on CPU  */
 480		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 481		bm_check_flag = pr->flags.bm_check;
 482		bm_control_flag = pr->flags.bm_control;
 483	} else {
 484		pr->flags.bm_check = bm_check_flag;
 485		pr->flags.bm_control = bm_control_flag;
 486	}
 487
 488	if (pr->flags.bm_check) {
 489		if (!pr->flags.bm_control) {
 490			if (pr->flags.has_cst != 1) {
 491				/* bus mastering control is necessary */
 492				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 493					"C3 support requires BM control\n"));
 494				return;
 495			} else {
 496				/* Here we enter C3 without bus mastering */
 497				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 498					"C3 support without BM control\n"));
 499			}
 500		}
 501	} else {
 502		/*
 503		 * WBINVD should be set in fadt, for C3 state to be
 504		 * supported on when bm_check is not required.
 505		 */
 506		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 507			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 508					  "Cache invalidation should work properly"
 509					  " for C3 to be enabled on SMP systems\n"));
 510			return;
 511		}
 512	}
 513
 514	/*
 515	 * Otherwise we've met all of our C3 requirements.
 516	 * Normalize the C3 latency to expidite policy.  Enable
 517	 * checking of bus mastering status (bm_check) so we can
 518	 * use this in our C3 policy
 519	 */
 520	cx->valid = 1;
 521
 522	/*
 523	 * On older chipsets, BM_RLD needs to be set
 524	 * in order for Bus Master activity to wake the
 525	 * system from C3.  Newer chipsets handle DMA
 526	 * during C3 automatically and BM_RLD is a NOP.
 527	 * In either case, the proper way to
 528	 * handle BM_RLD is to set it and leave it set.
 529	 */
 530	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 531
 532	return;
 533}
 534
 535static int acpi_processor_power_verify(struct acpi_processor *pr)
 536{
 537	unsigned int i;
 538	unsigned int working = 0;
 539
 540	pr->power.timer_broadcast_on_state = INT_MAX;
 541
 542	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 543		struct acpi_processor_cx *cx = &pr->power.states[i];
 544
 545		switch (cx->type) {
 546		case ACPI_STATE_C1:
 547			cx->valid = 1;
 548			break;
 549
 550		case ACPI_STATE_C2:
 551			if (!cx->address)
 552				break;
 553			cx->valid = 1;
 554			break;
 555
 556		case ACPI_STATE_C3:
 557			acpi_processor_power_verify_c3(pr, cx);
 558			break;
 559		}
 560		if (!cx->valid)
 561			continue;
 562
 563		lapic_timer_check_state(i, pr, cx);
 564		tsc_check_state(cx->type);
 565		working++;
 566	}
 567
 568	lapic_timer_propagate_broadcast(pr);
 569
 570	return (working);
 571}
 572
 573static int acpi_processor_get_power_info(struct acpi_processor *pr)
 574{
 575	unsigned int i;
 576	int result;
 577
 578
 579	/* NOTE: the idle thread may not be running while calling
 580	 * this function */
 581
 582	/* Zero initialize all the C-states info. */
 583	memset(pr->power.states, 0, sizeof(pr->power.states));
 584
 585	result = acpi_processor_get_power_info_cst(pr);
 586	if (result == -ENODEV)
 587		result = acpi_processor_get_power_info_fadt(pr);
 588
 589	if (result)
 590		return result;
 591
 592	acpi_processor_get_power_info_default(pr);
 593
 594	pr->power.count = acpi_processor_power_verify(pr);
 595
 596	/*
 597	 * if one state of type C2 or C3 is available, mark this
 598	 * CPU as being "idle manageable"
 599	 */
 600	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 601		if (pr->power.states[i].valid) {
 602			pr->power.count = i;
 603			if (pr->power.states[i].type >= ACPI_STATE_C2)
 604				pr->flags.power = 1;
 605		}
 606	}
 607
 608	return 0;
 609}
 610
 611/**
 612 * acpi_idle_bm_check - checks if bus master activity was detected
 613 */
 614static int acpi_idle_bm_check(void)
 615{
 616	u32 bm_status = 0;
 617
 618	if (bm_check_disable)
 619		return 0;
 620
 621	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 622	if (bm_status)
 623		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 624	/*
 625	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 626	 * the true state of bus mastering activity; forcing us to
 627	 * manually check the BMIDEA bit of each IDE channel.
 628	 */
 629	else if (errata.piix4.bmisx) {
 630		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 631		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 632			bm_status = 1;
 633	}
 634	return bm_status;
 635}
 636
 637/**
 638 * acpi_idle_do_entry - enter idle state using the appropriate method
 639 * @cx: cstate data
 640 *
 641 * Caller disables interrupt before call and enables interrupt after return.
 642 */
 643static void acpi_idle_do_entry(struct acpi_processor_cx *cx)
 644{
 645	if (cx->entry_method == ACPI_CSTATE_FFH) {
 646		/* Call into architectural FFH based C-state */
 647		acpi_processor_ffh_cstate_enter(cx);
 648	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 649		acpi_safe_halt();
 650	} else {
 651		/* IO port based C-state */
 652		inb(cx->address);
 653		/* Dummy wait op - must do something useless after P_LVL2 read
 654		   because chipsets cannot guarantee that STPCLK# signal
 655		   gets asserted in time to freeze execution properly. */
 656		inl(acpi_gbl_FADT.xpm_timer_block.address);
 657	}
 658}
 659
 660/**
 661 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 662 * @dev: the target CPU
 663 * @index: the index of suggested state
 664 */
 665static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 666{
 667	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 668
 669	ACPI_FLUSH_CPU_CACHE();
 670
 671	while (1) {
 672
 673		if (cx->entry_method == ACPI_CSTATE_HALT)
 674			safe_halt();
 675		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 676			inb(cx->address);
 677			/* See comment in acpi_idle_do_entry() */
 678			inl(acpi_gbl_FADT.xpm_timer_block.address);
 679		} else
 680			return -ENODEV;
 681	}
 682
 683	/* Never reached */
 684	return 0;
 685}
 686
 687static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 688{
 689	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 690		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 691}
 692
 693static int c3_cpu_count;
 694static DEFINE_RAW_SPINLOCK(c3_lock);
 695
 696/**
 697 * acpi_idle_enter_bm - enters C3 with proper BM handling
 698 * @pr: Target processor
 699 * @cx: Target state context
 700 * @timer_bc: Whether or not to change timer mode to broadcast
 701 */
 702static void acpi_idle_enter_bm(struct acpi_processor *pr,
 703			       struct acpi_processor_cx *cx, bool timer_bc)
 704{
 705	acpi_unlazy_tlb(smp_processor_id());
 706
 707	/*
 708	 * Must be done before busmaster disable as we might need to
 709	 * access HPET !
 710	 */
 711	if (timer_bc)
 712		lapic_timer_state_broadcast(pr, cx, 1);
 713
 714	/*
 715	 * disable bus master
 716	 * bm_check implies we need ARB_DIS
 717	 * bm_control implies whether we can do ARB_DIS
 718	 *
 719	 * That leaves a case where bm_check is set and bm_control is
 720	 * not set. In that case we cannot do much, we enter C3
 721	 * without doing anything.
 722	 */
 723	if (pr->flags.bm_control) {
 724		raw_spin_lock(&c3_lock);
 725		c3_cpu_count++;
 726		/* Disable bus master arbitration when all CPUs are in C3 */
 727		if (c3_cpu_count == num_online_cpus())
 728			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 729		raw_spin_unlock(&c3_lock);
 730	}
 731
 732	acpi_idle_do_entry(cx);
 733
 734	/* Re-enable bus master arbitration */
 735	if (pr->flags.bm_control) {
 736		raw_spin_lock(&c3_lock);
 737		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 738		c3_cpu_count--;
 739		raw_spin_unlock(&c3_lock);
 740	}
 741
 742	if (timer_bc)
 743		lapic_timer_state_broadcast(pr, cx, 0);
 744}
 745
 746static int acpi_idle_enter(struct cpuidle_device *dev,
 747			   struct cpuidle_driver *drv, int index)
 748{
 749	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 750	struct acpi_processor *pr;
 751
 752	pr = __this_cpu_read(processors);
 753	if (unlikely(!pr))
 754		return -EINVAL;
 755
 756	if (cx->type != ACPI_STATE_C1) {
 757		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 758			index = CPUIDLE_DRIVER_STATE_START;
 759			cx = per_cpu(acpi_cstate[index], dev->cpu);
 760		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
 761			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
 762				acpi_idle_enter_bm(pr, cx, true);
 763				return index;
 764			} else if (drv->safe_state_index >= 0) {
 765				index = drv->safe_state_index;
 766				cx = per_cpu(acpi_cstate[index], dev->cpu);
 767			} else {
 768				acpi_safe_halt();
 769				return -EBUSY;
 770			}
 771		}
 772	}
 773
 774	lapic_timer_state_broadcast(pr, cx, 1);
 775
 776	if (cx->type == ACPI_STATE_C3)
 777		ACPI_FLUSH_CPU_CACHE();
 778
 779	acpi_idle_do_entry(cx);
 780
 781	lapic_timer_state_broadcast(pr, cx, 0);
 782
 783	return index;
 784}
 785
 786static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
 787				   struct cpuidle_driver *drv, int index)
 788{
 789	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 790
 791	if (cx->type == ACPI_STATE_C3) {
 792		struct acpi_processor *pr = __this_cpu_read(processors);
 793
 794		if (unlikely(!pr))
 795			return;
 796
 797		if (pr->flags.bm_check) {
 798			acpi_idle_enter_bm(pr, cx, false);
 799			return;
 800		} else {
 801			ACPI_FLUSH_CPU_CACHE();
 802		}
 803	}
 804	acpi_idle_do_entry(cx);
 805}
 806
 807struct cpuidle_driver acpi_idle_driver = {
 808	.name =		"acpi_idle",
 809	.owner =	THIS_MODULE,
 810};
 811
 812/**
 813 * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
 814 * device i.e. per-cpu data
 815 *
 816 * @pr: the ACPI processor
 817 * @dev : the cpuidle device
 818 */
 819static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 820					   struct cpuidle_device *dev)
 821{
 822	int i, count = CPUIDLE_DRIVER_STATE_START;
 823	struct acpi_processor_cx *cx;
 824
 825	if (!pr->flags.power_setup_done)
 826		return -EINVAL;
 827
 828	if (pr->flags.power == 0) {
 829		return -EINVAL;
 830	}
 831
 832	if (!dev)
 833		return -EINVAL;
 834
 835	dev->cpu = pr->id;
 836
 837	if (max_cstate == 0)
 838		max_cstate = 1;
 839
 840	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 841		cx = &pr->power.states[i];
 842
 843		if (!cx->valid)
 844			continue;
 845
 846		per_cpu(acpi_cstate[count], dev->cpu) = cx;
 847
 848		count++;
 849		if (count == CPUIDLE_STATE_MAX)
 850			break;
 851	}
 852
 853	if (!count)
 854		return -EINVAL;
 855
 856	return 0;
 857}
 858
 859/**
 860 * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
 861 * global state data i.e. idle routines
 862 *
 863 * @pr: the ACPI processor
 864 */
 865static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
 866{
 867	int i, count = CPUIDLE_DRIVER_STATE_START;
 868	struct acpi_processor_cx *cx;
 869	struct cpuidle_state *state;
 870	struct cpuidle_driver *drv = &acpi_idle_driver;
 871
 872	if (!pr->flags.power_setup_done)
 873		return -EINVAL;
 874
 875	if (pr->flags.power == 0)
 876		return -EINVAL;
 877
 878	drv->safe_state_index = -1;
 879	for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
 880		drv->states[i].name[0] = '\0';
 881		drv->states[i].desc[0] = '\0';
 882	}
 883
 884	if (max_cstate == 0)
 885		max_cstate = 1;
 886
 887	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 888		cx = &pr->power.states[i];
 889
 890		if (!cx->valid)
 891			continue;
 892
 893		state = &drv->states[count];
 894		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 895		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 896		state->exit_latency = cx->latency;
 897		state->target_residency = cx->latency * latency_factor;
 898		state->enter = acpi_idle_enter;
 899
 900		state->flags = 0;
 901		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
 902			state->enter_dead = acpi_idle_play_dead;
 903			drv->safe_state_index = count;
 904		}
 905		/*
 906		 * Halt-induced C1 is not good for ->enter_freeze, because it
 907		 * re-enables interrupts on exit.  Moreover, C1 is generally not
 908		 * particularly interesting from the suspend-to-idle angle, so
 909		 * avoid C1 and the situations in which we may need to fall back
 910		 * to it altogether.
 911		 */
 912		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 913			state->enter_freeze = acpi_idle_enter_freeze;
 914
 915		count++;
 916		if (count == CPUIDLE_STATE_MAX)
 917			break;
 918	}
 919
 920	drv->state_count = count;
 921
 922	if (!count)
 923		return -EINVAL;
 924
 925	return 0;
 926}
 927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928int acpi_processor_hotplug(struct acpi_processor *pr)
 929{
 930	int ret = 0;
 931	struct cpuidle_device *dev;
 932
 933	if (disabled_by_idle_boot_param())
 934		return 0;
 935
 936	if (nocst)
 937		return -ENODEV;
 938
 939	if (!pr->flags.power_setup_done)
 940		return -ENODEV;
 941
 942	dev = per_cpu(acpi_cpuidle_device, pr->id);
 943	cpuidle_pause_and_lock();
 944	cpuidle_disable_device(dev);
 945	acpi_processor_get_power_info(pr);
 946	if (pr->flags.power) {
 947		acpi_processor_setup_cpuidle_cx(pr, dev);
 948		ret = cpuidle_enable_device(dev);
 949	}
 950	cpuidle_resume_and_unlock();
 951
 952	return ret;
 953}
 954
 955int acpi_processor_cst_has_changed(struct acpi_processor *pr)
 956{
 957	int cpu;
 958	struct acpi_processor *_pr;
 959	struct cpuidle_device *dev;
 960
 961	if (disabled_by_idle_boot_param())
 962		return 0;
 963
 964	if (nocst)
 965		return -ENODEV;
 966
 967	if (!pr->flags.power_setup_done)
 968		return -ENODEV;
 969
 970	/*
 971	 * FIXME:  Design the ACPI notification to make it once per
 972	 * system instead of once per-cpu.  This condition is a hack
 973	 * to make the code that updates C-States be called once.
 974	 */
 975
 976	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
 977
 978		/* Protect against cpu-hotplug */
 979		get_online_cpus();
 980		cpuidle_pause_and_lock();
 981
 982		/* Disable all cpuidle devices */
 983		for_each_online_cpu(cpu) {
 984			_pr = per_cpu(processors, cpu);
 985			if (!_pr || !_pr->flags.power_setup_done)
 986				continue;
 987			dev = per_cpu(acpi_cpuidle_device, cpu);
 988			cpuidle_disable_device(dev);
 989		}
 990
 991		/* Populate Updated C-state information */
 992		acpi_processor_get_power_info(pr);
 993		acpi_processor_setup_cpuidle_states(pr);
 994
 995		/* Enable all cpuidle devices */
 996		for_each_online_cpu(cpu) {
 997			_pr = per_cpu(processors, cpu);
 998			if (!_pr || !_pr->flags.power_setup_done)
 999				continue;
1000			acpi_processor_get_power_info(_pr);
1001			if (_pr->flags.power) {
1002				dev = per_cpu(acpi_cpuidle_device, cpu);
1003				acpi_processor_setup_cpuidle_cx(_pr, dev);
1004				cpuidle_enable_device(dev);
1005			}
1006		}
1007		cpuidle_resume_and_unlock();
1008		put_online_cpus();
1009	}
1010
1011	return 0;
1012}
1013
1014static int acpi_processor_registered;
1015
1016int acpi_processor_power_init(struct acpi_processor *pr)
1017{
1018	acpi_status status;
1019	int retval;
1020	struct cpuidle_device *dev;
1021	static int first_run;
1022
1023	if (disabled_by_idle_boot_param())
1024		return 0;
1025
1026	if (!first_run) {
1027		dmi_check_system(processor_power_dmi_table);
1028		max_cstate = acpi_processor_cstate_check(max_cstate);
1029		if (max_cstate < ACPI_C_STATES_MAX)
1030			printk(KERN_NOTICE
1031			       "ACPI: processor limited to max C-state %d\n",
1032			       max_cstate);
1033		first_run++;
1034	}
1035
1036	if (acpi_gbl_FADT.cst_control && !nocst) {
1037		status =
1038		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1039		if (ACPI_FAILURE(status)) {
1040			ACPI_EXCEPTION((AE_INFO, status,
1041					"Notifying BIOS of _CST ability failed"));
1042		}
1043	}
1044
1045	acpi_processor_get_power_info(pr);
1046	pr->flags.power_setup_done = 1;
1047
1048	/*
1049	 * Install the idle handler if processor power management is supported.
1050	 * Note that we use previously set idle handler will be used on
1051	 * platforms that only support C1.
1052	 */
1053	if (pr->flags.power) {
1054		/* Register acpi_idle_driver if not already registered */
1055		if (!acpi_processor_registered) {
1056			acpi_processor_setup_cpuidle_states(pr);
1057			retval = cpuidle_register_driver(&acpi_idle_driver);
1058			if (retval)
1059				return retval;
1060			pr_debug("%s registered with cpuidle\n",
1061				 acpi_idle_driver.name);
1062		}
1063
1064		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1065		if (!dev)
1066			return -ENOMEM;
1067		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1068
1069		acpi_processor_setup_cpuidle_cx(pr, dev);
1070
1071		/* Register per-cpu cpuidle_device. Cpuidle driver
1072		 * must already be registered before registering device
1073		 */
1074		retval = cpuidle_register_device(dev);
1075		if (retval) {
1076			if (acpi_processor_registered == 0)
1077				cpuidle_unregister_driver(&acpi_idle_driver);
1078			return retval;
1079		}
1080		acpi_processor_registered++;
1081	}
1082	return 0;
1083}
1084
1085int acpi_processor_power_exit(struct acpi_processor *pr)
1086{
1087	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1088
1089	if (disabled_by_idle_boot_param())
1090		return 0;
1091
1092	if (pr->flags.power) {
1093		cpuidle_unregister_device(dev);
1094		acpi_processor_registered--;
1095		if (acpi_processor_registered == 0)
1096			cpuidle_unregister_driver(&acpi_idle_driver);
1097	}
1098
1099	pr->flags.power_setup_done = 0;
1100	return 0;
1101}
v4.10.11
   1/*
   2 * processor_idle - idle state submodule to the ACPI processor driver
   3 *
   4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   6 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   7 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   8 *  			- Added processor hotplug support
   9 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10 *  			- Added support for C3 on SMP
  11 *
  12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13 *
  14 *  This program is free software; you can redistribute it and/or modify
  15 *  it under the terms of the GNU General Public License as published by
  16 *  the Free Software Foundation; either version 2 of the License, or (at
  17 *  your option) any later version.
  18 *
  19 *  This program is distributed in the hope that it will be useful, but
  20 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  21 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 *  General Public License for more details.
  23 *
  24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  25 */
  26#define pr_fmt(fmt) "ACPI: " fmt
  27
  28#include <linux/module.h>
  29#include <linux/acpi.h>
  30#include <linux/dmi.h>
  31#include <linux/sched.h>       /* need_resched() */
  32#include <linux/tick.h>
  33#include <linux/cpuidle.h>
  34#include <linux/cpu.h>
  35#include <acpi/processor.h>
  36
  37/*
  38 * Include the apic definitions for x86 to have the APIC timer related defines
  39 * available also for UP (on SMP it gets magically included via linux/smp.h).
  40 * asm/acpi.h is not an option, as it would require more include magic. Also
  41 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  42 */
  43#ifdef CONFIG_X86
  44#include <asm/apic.h>
  45#endif
  46
  47#define ACPI_PROCESSOR_CLASS            "processor"
  48#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
  49ACPI_MODULE_NAME("processor_idle");
  50
  51static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  52module_param(max_cstate, uint, 0000);
  53static unsigned int nocst __read_mostly;
  54module_param(nocst, uint, 0000);
  55static int bm_check_disable __read_mostly;
  56module_param(bm_check_disable, uint, 0000);
  57
  58static unsigned int latency_factor __read_mostly = 2;
  59module_param(latency_factor, uint, 0644);
  60
  61static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  62
  63struct cpuidle_driver acpi_idle_driver = {
  64	.name =		"acpi_idle",
  65	.owner =	THIS_MODULE,
  66};
  67
  68#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
  69static
  70DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
  71
  72static int disabled_by_idle_boot_param(void)
  73{
  74	return boot_option_idle_override == IDLE_POLL ||
  75		boot_option_idle_override == IDLE_HALT;
  76}
  77
  78/*
  79 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  80 * For now disable this. Probably a bug somewhere else.
  81 *
  82 * To skip this limit, boot/load with a large max_cstate limit.
  83 */
  84static int set_max_cstate(const struct dmi_system_id *id)
  85{
  86	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  87		return 0;
  88
  89	pr_notice("%s detected - limiting to C%ld max_cstate."
  90		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
  91		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  92
  93	max_cstate = (long)id->driver_data;
  94
  95	return 0;
  96}
  97
  98static const struct dmi_system_id processor_power_dmi_table[] = {
  99	{ set_max_cstate, "Clevo 5600D", {
 100	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
 101	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
 102	 (void *)2},
 103	{ set_max_cstate, "Pavilion zv5000", {
 104	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
 105	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
 106	 (void *)1},
 107	{ set_max_cstate, "Asus L8400B", {
 108	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
 109	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
 110	 (void *)1},
 111	{},
 112};
 113
 114
 115/*
 116 * Callers should disable interrupts before the call and enable
 117 * interrupts after return.
 118 */
 119static void __cpuidle acpi_safe_halt(void)
 120{
 121	if (!tif_need_resched()) {
 122		safe_halt();
 123		local_irq_disable();
 124	}
 125}
 126
 127#ifdef ARCH_APICTIMER_STOPS_ON_C3
 128
 129/*
 130 * Some BIOS implementations switch to C3 in the published C2 state.
 131 * This seems to be a common problem on AMD boxen, but other vendors
 132 * are affected too. We pick the most conservative approach: we assume
 133 * that the local APIC stops in both C2 and C3.
 134 */
 135static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 136				   struct acpi_processor_cx *cx)
 137{
 138	struct acpi_processor_power *pwr = &pr->power;
 139	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 140
 141	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 142		return;
 143
 144	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 145		type = ACPI_STATE_C1;
 146
 147	/*
 148	 * Check, if one of the previous states already marked the lapic
 149	 * unstable
 150	 */
 151	if (pwr->timer_broadcast_on_state < state)
 152		return;
 153
 154	if (cx->type >= type)
 155		pr->power.timer_broadcast_on_state = state;
 156}
 157
 158static void __lapic_timer_propagate_broadcast(void *arg)
 159{
 160	struct acpi_processor *pr = (struct acpi_processor *) arg;
 161
 162	if (pr->power.timer_broadcast_on_state < INT_MAX)
 163		tick_broadcast_enable();
 164	else
 165		tick_broadcast_disable();
 166}
 167
 168static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 169{
 170	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 171				 (void *)pr, 1);
 172}
 173
 174/* Power(C) State timer broadcast control */
 175static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 176				       struct acpi_processor_cx *cx,
 177				       int broadcast)
 178{
 179	int state = cx - pr->power.states;
 180
 181	if (state >= pr->power.timer_broadcast_on_state) {
 182		if (broadcast)
 183			tick_broadcast_enter();
 184		else
 185			tick_broadcast_exit();
 186	}
 187}
 188
 189#else
 190
 191static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 192				   struct acpi_processor_cx *cstate) { }
 193static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 194static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 195				       struct acpi_processor_cx *cx,
 196				       int broadcast)
 197{
 198}
 199
 200#endif
 201
 202#if defined(CONFIG_X86)
 203static void tsc_check_state(int state)
 204{
 205	switch (boot_cpu_data.x86_vendor) {
 206	case X86_VENDOR_AMD:
 207	case X86_VENDOR_INTEL:
 208		/*
 209		 * AMD Fam10h TSC will tick in all
 210		 * C/P/S0/S1 states when this bit is set.
 211		 */
 212		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 213			return;
 214
 215		/*FALL THROUGH*/
 216	default:
 217		/* TSC could halt in idle, so notify users */
 218		if (state > ACPI_STATE_C1)
 219			mark_tsc_unstable("TSC halts in idle");
 220	}
 221}
 222#else
 223static void tsc_check_state(int state) { return; }
 224#endif
 225
 226static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 227{
 228
 229	if (!pr->pblk)
 230		return -ENODEV;
 231
 232	/* if info is obtained from pblk/fadt, type equals state */
 233	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 234	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 235
 236#ifndef CONFIG_HOTPLUG_CPU
 237	/*
 238	 * Check for P_LVL2_UP flag before entering C2 and above on
 239	 * an SMP system.
 240	 */
 241	if ((num_online_cpus() > 1) &&
 242	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 243		return -ENODEV;
 244#endif
 245
 246	/* determine C2 and C3 address from pblk */
 247	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 248	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 249
 250	/* determine latencies from FADT */
 251	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 252	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 253
 254	/*
 255	 * FADT specified C2 latency must be less than or equal to
 256	 * 100 microseconds.
 257	 */
 258	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 259		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 260			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
 261		/* invalidate C2 */
 262		pr->power.states[ACPI_STATE_C2].address = 0;
 263	}
 264
 265	/*
 266	 * FADT supplied C3 latency must be less than or equal to
 267	 * 1000 microseconds.
 268	 */
 269	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 270		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 271			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
 272		/* invalidate C3 */
 273		pr->power.states[ACPI_STATE_C3].address = 0;
 274	}
 275
 276	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 277			  "lvl2[0x%08x] lvl3[0x%08x]\n",
 278			  pr->power.states[ACPI_STATE_C2].address,
 279			  pr->power.states[ACPI_STATE_C3].address));
 280
 281	return 0;
 282}
 283
 284static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 285{
 286	if (!pr->power.states[ACPI_STATE_C1].valid) {
 287		/* set the first C-State to C1 */
 288		/* all processors need to support C1 */
 289		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 290		pr->power.states[ACPI_STATE_C1].valid = 1;
 291		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 292	}
 293	/* the C0 state only exists as a filler in our array */
 294	pr->power.states[ACPI_STATE_C0].valid = 1;
 295	return 0;
 296}
 297
 298static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 299{
 300	acpi_status status;
 301	u64 count;
 302	int current_count;
 303	int i, ret = 0;
 304	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 305	union acpi_object *cst;
 306
 
 307	if (nocst)
 308		return -ENODEV;
 309
 310	current_count = 0;
 311
 312	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
 313	if (ACPI_FAILURE(status)) {
 314		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
 315		return -ENODEV;
 316	}
 317
 318	cst = buffer.pointer;
 319
 320	/* There must be at least 2 elements */
 321	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
 322		pr_err("not enough elements in _CST\n");
 323		ret = -EFAULT;
 324		goto end;
 325	}
 326
 327	count = cst->package.elements[0].integer.value;
 328
 329	/* Validate number of power states. */
 330	if (count < 1 || count != cst->package.count - 1) {
 331		pr_err("count given by _CST is not valid\n");
 332		ret = -EFAULT;
 333		goto end;
 334	}
 335
 336	/* Tell driver that at least _CST is supported. */
 337	pr->flags.has_cst = 1;
 338
 339	for (i = 1; i <= count; i++) {
 340		union acpi_object *element;
 341		union acpi_object *obj;
 342		struct acpi_power_register *reg;
 343		struct acpi_processor_cx cx;
 344
 345		memset(&cx, 0, sizeof(cx));
 346
 347		element = &(cst->package.elements[i]);
 348		if (element->type != ACPI_TYPE_PACKAGE)
 349			continue;
 350
 351		if (element->package.count != 4)
 352			continue;
 353
 354		obj = &(element->package.elements[0]);
 355
 356		if (obj->type != ACPI_TYPE_BUFFER)
 357			continue;
 358
 359		reg = (struct acpi_power_register *)obj->buffer.pointer;
 360
 361		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 362		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
 363			continue;
 364
 365		/* There should be an easy way to extract an integer... */
 366		obj = &(element->package.elements[1]);
 367		if (obj->type != ACPI_TYPE_INTEGER)
 368			continue;
 369
 370		cx.type = obj->integer.value;
 371		/*
 372		 * Some buggy BIOSes won't list C1 in _CST -
 373		 * Let acpi_processor_get_power_info_default() handle them later
 374		 */
 375		if (i == 1 && cx.type != ACPI_STATE_C1)
 376			current_count++;
 377
 378		cx.address = reg->address;
 379		cx.index = current_count + 1;
 380
 381		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
 382		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
 383			if (acpi_processor_ffh_cstate_probe
 384					(pr->id, &cx, reg) == 0) {
 385				cx.entry_method = ACPI_CSTATE_FFH;
 386			} else if (cx.type == ACPI_STATE_C1) {
 387				/*
 388				 * C1 is a special case where FIXED_HARDWARE
 389				 * can be handled in non-MWAIT way as well.
 390				 * In that case, save this _CST entry info.
 391				 * Otherwise, ignore this info and continue.
 392				 */
 393				cx.entry_method = ACPI_CSTATE_HALT;
 394				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 395			} else {
 396				continue;
 397			}
 398			if (cx.type == ACPI_STATE_C1 &&
 399			    (boot_option_idle_override == IDLE_NOMWAIT)) {
 400				/*
 401				 * In most cases the C1 space_id obtained from
 402				 * _CST object is FIXED_HARDWARE access mode.
 403				 * But when the option of idle=halt is added,
 404				 * the entry_method type should be changed from
 405				 * CSTATE_FFH to CSTATE_HALT.
 406				 * When the option of idle=nomwait is added,
 407				 * the C1 entry_method type should be
 408				 * CSTATE_HALT.
 409				 */
 410				cx.entry_method = ACPI_CSTATE_HALT;
 411				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 412			}
 413		} else {
 414			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
 415				 cx.address);
 416		}
 417
 418		if (cx.type == ACPI_STATE_C1) {
 419			cx.valid = 1;
 420		}
 421
 422		obj = &(element->package.elements[2]);
 423		if (obj->type != ACPI_TYPE_INTEGER)
 424			continue;
 425
 426		cx.latency = obj->integer.value;
 427
 428		obj = &(element->package.elements[3]);
 429		if (obj->type != ACPI_TYPE_INTEGER)
 430			continue;
 431
 432		current_count++;
 433		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
 434
 435		/*
 436		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
 437		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
 438		 */
 439		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
 440			pr_warn("Limiting number of power states to max (%d)\n",
 441				ACPI_PROCESSOR_MAX_POWER);
 442			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
 443			break;
 444		}
 445	}
 446
 447	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
 448			  current_count));
 449
 450	/* Validate number of power states discovered */
 451	if (current_count < 2)
 452		ret = -EFAULT;
 453
 454      end:
 455	kfree(buffer.pointer);
 456
 457	return ret;
 458}
 459
 460static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 461					   struct acpi_processor_cx *cx)
 462{
 463	static int bm_check_flag = -1;
 464	static int bm_control_flag = -1;
 465
 466
 467	if (!cx->address)
 468		return;
 469
 470	/*
 471	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 472	 * DMA transfers are used by any ISA device to avoid livelock.
 473	 * Note that we could disable Type-F DMA (as recommended by
 474	 * the erratum), but this is known to disrupt certain ISA
 475	 * devices thus we take the conservative approach.
 476	 */
 477	else if (errata.piix4.fdma) {
 478		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 479				  "C3 not supported on PIIX4 with Type-F DMA\n"));
 480		return;
 481	}
 482
 483	/* All the logic here assumes flags.bm_check is same across all CPUs */
 484	if (bm_check_flag == -1) {
 485		/* Determine whether bm_check is needed based on CPU  */
 486		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 487		bm_check_flag = pr->flags.bm_check;
 488		bm_control_flag = pr->flags.bm_control;
 489	} else {
 490		pr->flags.bm_check = bm_check_flag;
 491		pr->flags.bm_control = bm_control_flag;
 492	}
 493
 494	if (pr->flags.bm_check) {
 495		if (!pr->flags.bm_control) {
 496			if (pr->flags.has_cst != 1) {
 497				/* bus mastering control is necessary */
 498				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 499					"C3 support requires BM control\n"));
 500				return;
 501			} else {
 502				/* Here we enter C3 without bus mastering */
 503				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 504					"C3 support without BM control\n"));
 505			}
 506		}
 507	} else {
 508		/*
 509		 * WBINVD should be set in fadt, for C3 state to be
 510		 * supported on when bm_check is not required.
 511		 */
 512		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 513			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 514					  "Cache invalidation should work properly"
 515					  " for C3 to be enabled on SMP systems\n"));
 516			return;
 517		}
 518	}
 519
 520	/*
 521	 * Otherwise we've met all of our C3 requirements.
 522	 * Normalize the C3 latency to expidite policy.  Enable
 523	 * checking of bus mastering status (bm_check) so we can
 524	 * use this in our C3 policy
 525	 */
 526	cx->valid = 1;
 527
 528	/*
 529	 * On older chipsets, BM_RLD needs to be set
 530	 * in order for Bus Master activity to wake the
 531	 * system from C3.  Newer chipsets handle DMA
 532	 * during C3 automatically and BM_RLD is a NOP.
 533	 * In either case, the proper way to
 534	 * handle BM_RLD is to set it and leave it set.
 535	 */
 536	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 537
 538	return;
 539}
 540
 541static int acpi_processor_power_verify(struct acpi_processor *pr)
 542{
 543	unsigned int i;
 544	unsigned int working = 0;
 545
 546	pr->power.timer_broadcast_on_state = INT_MAX;
 547
 548	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 549		struct acpi_processor_cx *cx = &pr->power.states[i];
 550
 551		switch (cx->type) {
 552		case ACPI_STATE_C1:
 553			cx->valid = 1;
 554			break;
 555
 556		case ACPI_STATE_C2:
 557			if (!cx->address)
 558				break;
 559			cx->valid = 1;
 560			break;
 561
 562		case ACPI_STATE_C3:
 563			acpi_processor_power_verify_c3(pr, cx);
 564			break;
 565		}
 566		if (!cx->valid)
 567			continue;
 568
 569		lapic_timer_check_state(i, pr, cx);
 570		tsc_check_state(cx->type);
 571		working++;
 572	}
 573
 574	lapic_timer_propagate_broadcast(pr);
 575
 576	return (working);
 577}
 578
 579static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 580{
 581	unsigned int i;
 582	int result;
 583
 584
 585	/* NOTE: the idle thread may not be running while calling
 586	 * this function */
 587
 588	/* Zero initialize all the C-states info. */
 589	memset(pr->power.states, 0, sizeof(pr->power.states));
 590
 591	result = acpi_processor_get_power_info_cst(pr);
 592	if (result == -ENODEV)
 593		result = acpi_processor_get_power_info_fadt(pr);
 594
 595	if (result)
 596		return result;
 597
 598	acpi_processor_get_power_info_default(pr);
 599
 600	pr->power.count = acpi_processor_power_verify(pr);
 601
 602	/*
 603	 * if one state of type C2 or C3 is available, mark this
 604	 * CPU as being "idle manageable"
 605	 */
 606	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 607		if (pr->power.states[i].valid) {
 608			pr->power.count = i;
 609			if (pr->power.states[i].type >= ACPI_STATE_C2)
 610				pr->flags.power = 1;
 611		}
 612	}
 613
 614	return 0;
 615}
 616
 617/**
 618 * acpi_idle_bm_check - checks if bus master activity was detected
 619 */
 620static int acpi_idle_bm_check(void)
 621{
 622	u32 bm_status = 0;
 623
 624	if (bm_check_disable)
 625		return 0;
 626
 627	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 628	if (bm_status)
 629		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 630	/*
 631	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 632	 * the true state of bus mastering activity; forcing us to
 633	 * manually check the BMIDEA bit of each IDE channel.
 634	 */
 635	else if (errata.piix4.bmisx) {
 636		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 637		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 638			bm_status = 1;
 639	}
 640	return bm_status;
 641}
 642
 643/**
 644 * acpi_idle_do_entry - enter idle state using the appropriate method
 645 * @cx: cstate data
 646 *
 647 * Caller disables interrupt before call and enables interrupt after return.
 648 */
 649static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
 650{
 651	if (cx->entry_method == ACPI_CSTATE_FFH) {
 652		/* Call into architectural FFH based C-state */
 653		acpi_processor_ffh_cstate_enter(cx);
 654	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 655		acpi_safe_halt();
 656	} else {
 657		/* IO port based C-state */
 658		inb(cx->address);
 659		/* Dummy wait op - must do something useless after P_LVL2 read
 660		   because chipsets cannot guarantee that STPCLK# signal
 661		   gets asserted in time to freeze execution properly. */
 662		inl(acpi_gbl_FADT.xpm_timer_block.address);
 663	}
 664}
 665
 666/**
 667 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 668 * @dev: the target CPU
 669 * @index: the index of suggested state
 670 */
 671static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 672{
 673	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 674
 675	ACPI_FLUSH_CPU_CACHE();
 676
 677	while (1) {
 678
 679		if (cx->entry_method == ACPI_CSTATE_HALT)
 680			safe_halt();
 681		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 682			inb(cx->address);
 683			/* See comment in acpi_idle_do_entry() */
 684			inl(acpi_gbl_FADT.xpm_timer_block.address);
 685		} else
 686			return -ENODEV;
 687	}
 688
 689	/* Never reached */
 690	return 0;
 691}
 692
 693static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 694{
 695	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 696		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 697}
 698
 699static int c3_cpu_count;
 700static DEFINE_RAW_SPINLOCK(c3_lock);
 701
 702/**
 703 * acpi_idle_enter_bm - enters C3 with proper BM handling
 704 * @pr: Target processor
 705 * @cx: Target state context
 706 * @timer_bc: Whether or not to change timer mode to broadcast
 707 */
 708static void acpi_idle_enter_bm(struct acpi_processor *pr,
 709			       struct acpi_processor_cx *cx, bool timer_bc)
 710{
 711	acpi_unlazy_tlb(smp_processor_id());
 712
 713	/*
 714	 * Must be done before busmaster disable as we might need to
 715	 * access HPET !
 716	 */
 717	if (timer_bc)
 718		lapic_timer_state_broadcast(pr, cx, 1);
 719
 720	/*
 721	 * disable bus master
 722	 * bm_check implies we need ARB_DIS
 723	 * bm_control implies whether we can do ARB_DIS
 724	 *
 725	 * That leaves a case where bm_check is set and bm_control is
 726	 * not set. In that case we cannot do much, we enter C3
 727	 * without doing anything.
 728	 */
 729	if (pr->flags.bm_control) {
 730		raw_spin_lock(&c3_lock);
 731		c3_cpu_count++;
 732		/* Disable bus master arbitration when all CPUs are in C3 */
 733		if (c3_cpu_count == num_online_cpus())
 734			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 735		raw_spin_unlock(&c3_lock);
 736	}
 737
 738	acpi_idle_do_entry(cx);
 739
 740	/* Re-enable bus master arbitration */
 741	if (pr->flags.bm_control) {
 742		raw_spin_lock(&c3_lock);
 743		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 744		c3_cpu_count--;
 745		raw_spin_unlock(&c3_lock);
 746	}
 747
 748	if (timer_bc)
 749		lapic_timer_state_broadcast(pr, cx, 0);
 750}
 751
 752static int acpi_idle_enter(struct cpuidle_device *dev,
 753			   struct cpuidle_driver *drv, int index)
 754{
 755	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 756	struct acpi_processor *pr;
 757
 758	pr = __this_cpu_read(processors);
 759	if (unlikely(!pr))
 760		return -EINVAL;
 761
 762	if (cx->type != ACPI_STATE_C1) {
 763		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 764			index = CPUIDLE_DRIVER_STATE_START;
 765			cx = per_cpu(acpi_cstate[index], dev->cpu);
 766		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
 767			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
 768				acpi_idle_enter_bm(pr, cx, true);
 769				return index;
 770			} else if (drv->safe_state_index >= 0) {
 771				index = drv->safe_state_index;
 772				cx = per_cpu(acpi_cstate[index], dev->cpu);
 773			} else {
 774				acpi_safe_halt();
 775				return -EBUSY;
 776			}
 777		}
 778	}
 779
 780	lapic_timer_state_broadcast(pr, cx, 1);
 781
 782	if (cx->type == ACPI_STATE_C3)
 783		ACPI_FLUSH_CPU_CACHE();
 784
 785	acpi_idle_do_entry(cx);
 786
 787	lapic_timer_state_broadcast(pr, cx, 0);
 788
 789	return index;
 790}
 791
 792static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
 793				   struct cpuidle_driver *drv, int index)
 794{
 795	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 796
 797	if (cx->type == ACPI_STATE_C3) {
 798		struct acpi_processor *pr = __this_cpu_read(processors);
 799
 800		if (unlikely(!pr))
 801			return;
 802
 803		if (pr->flags.bm_check) {
 804			acpi_idle_enter_bm(pr, cx, false);
 805			return;
 806		} else {
 807			ACPI_FLUSH_CPU_CACHE();
 808		}
 809	}
 810	acpi_idle_do_entry(cx);
 811}
 812
 
 
 
 
 
 
 
 
 
 
 
 
 813static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 814					   struct cpuidle_device *dev)
 815{
 816	int i, count = CPUIDLE_DRIVER_STATE_START;
 817	struct acpi_processor_cx *cx;
 818
 
 
 
 
 
 
 
 
 
 
 
 
 819	if (max_cstate == 0)
 820		max_cstate = 1;
 821
 822	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 823		cx = &pr->power.states[i];
 824
 825		if (!cx->valid)
 826			continue;
 827
 828		per_cpu(acpi_cstate[count], dev->cpu) = cx;
 829
 830		count++;
 831		if (count == CPUIDLE_STATE_MAX)
 832			break;
 833	}
 834
 835	if (!count)
 836		return -EINVAL;
 837
 838	return 0;
 839}
 840
 841static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 
 
 
 
 
 
 842{
 843	int i, count = CPUIDLE_DRIVER_STATE_START;
 844	struct acpi_processor_cx *cx;
 845	struct cpuidle_state *state;
 846	struct cpuidle_driver *drv = &acpi_idle_driver;
 847
 
 
 
 
 
 
 
 
 
 
 
 
 848	if (max_cstate == 0)
 849		max_cstate = 1;
 850
 851	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 852		cx = &pr->power.states[i];
 853
 854		if (!cx->valid)
 855			continue;
 856
 857		state = &drv->states[count];
 858		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 859		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 860		state->exit_latency = cx->latency;
 861		state->target_residency = cx->latency * latency_factor;
 862		state->enter = acpi_idle_enter;
 863
 864		state->flags = 0;
 865		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
 866			state->enter_dead = acpi_idle_play_dead;
 867			drv->safe_state_index = count;
 868		}
 869		/*
 870		 * Halt-induced C1 is not good for ->enter_freeze, because it
 871		 * re-enables interrupts on exit.  Moreover, C1 is generally not
 872		 * particularly interesting from the suspend-to-idle angle, so
 873		 * avoid C1 and the situations in which we may need to fall back
 874		 * to it altogether.
 875		 */
 876		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 877			state->enter_freeze = acpi_idle_enter_freeze;
 878
 879		count++;
 880		if (count == CPUIDLE_STATE_MAX)
 881			break;
 882	}
 883
 884	drv->state_count = count;
 885
 886	if (!count)
 887		return -EINVAL;
 888
 889	return 0;
 890}
 891
 892static inline void acpi_processor_cstate_first_run_checks(void)
 893{
 894	acpi_status status;
 895	static int first_run;
 896
 897	if (first_run)
 898		return;
 899	dmi_check_system(processor_power_dmi_table);
 900	max_cstate = acpi_processor_cstate_check(max_cstate);
 901	if (max_cstate < ACPI_C_STATES_MAX)
 902		pr_notice("ACPI: processor limited to max C-state %d\n",
 903			  max_cstate);
 904	first_run++;
 905
 906	if (acpi_gbl_FADT.cst_control && !nocst) {
 907		status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
 908					    acpi_gbl_FADT.cst_control, 8);
 909		if (ACPI_FAILURE(status))
 910			ACPI_EXCEPTION((AE_INFO, status,
 911					"Notifying BIOS of _CST ability failed"));
 912	}
 913}
 914#else
 915
 916static inline int disabled_by_idle_boot_param(void) { return 0; }
 917static inline void acpi_processor_cstate_first_run_checks(void) { }
 918static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 919{
 920	return -ENODEV;
 921}
 922
 923static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 924					   struct cpuidle_device *dev)
 925{
 926	return -EINVAL;
 927}
 928
 929static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 930{
 931	return -EINVAL;
 932}
 933
 934#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
 935
 936struct acpi_lpi_states_array {
 937	unsigned int size;
 938	unsigned int composite_states_size;
 939	struct acpi_lpi_state *entries;
 940	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
 941};
 942
 943static int obj_get_integer(union acpi_object *obj, u32 *value)
 944{
 945	if (obj->type != ACPI_TYPE_INTEGER)
 946		return -EINVAL;
 947
 948	*value = obj->integer.value;
 949	return 0;
 950}
 951
 952static int acpi_processor_evaluate_lpi(acpi_handle handle,
 953				       struct acpi_lpi_states_array *info)
 954{
 955	acpi_status status;
 956	int ret = 0;
 957	int pkg_count, state_idx = 1, loop;
 958	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 959	union acpi_object *lpi_data;
 960	struct acpi_lpi_state *lpi_state;
 961
 962	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
 963	if (ACPI_FAILURE(status)) {
 964		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
 965		return -ENODEV;
 966	}
 967
 968	lpi_data = buffer.pointer;
 969
 970	/* There must be at least 4 elements = 3 elements + 1 package */
 971	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
 972	    lpi_data->package.count < 4) {
 973		pr_debug("not enough elements in _LPI\n");
 974		ret = -ENODATA;
 975		goto end;
 976	}
 977
 978	pkg_count = lpi_data->package.elements[2].integer.value;
 979
 980	/* Validate number of power states. */
 981	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
 982		pr_debug("count given by _LPI is not valid\n");
 983		ret = -ENODATA;
 984		goto end;
 985	}
 986
 987	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
 988	if (!lpi_state) {
 989		ret = -ENOMEM;
 990		goto end;
 991	}
 992
 993	info->size = pkg_count;
 994	info->entries = lpi_state;
 995
 996	/* LPI States start at index 3 */
 997	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
 998		union acpi_object *element, *pkg_elem, *obj;
 999
1000		element = &lpi_data->package.elements[loop];
1001		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1002			continue;
1003
1004		pkg_elem = element->package.elements;
1005
1006		obj = pkg_elem + 6;
1007		if (obj->type == ACPI_TYPE_BUFFER) {
1008			struct acpi_power_register *reg;
1009
1010			reg = (struct acpi_power_register *)obj->buffer.pointer;
1011			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1012			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1013				continue;
1014
1015			lpi_state->address = reg->address;
1016			lpi_state->entry_method =
1017				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1018				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1019		} else if (obj->type == ACPI_TYPE_INTEGER) {
1020			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1021			lpi_state->address = obj->integer.value;
1022		} else {
1023			continue;
1024		}
1025
1026		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1027
1028		obj = pkg_elem + 9;
1029		if (obj->type == ACPI_TYPE_STRING)
1030			strlcpy(lpi_state->desc, obj->string.pointer,
1031				ACPI_CX_DESC_LEN);
1032
1033		lpi_state->index = state_idx;
1034		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1035			pr_debug("No min. residency found, assuming 10 us\n");
1036			lpi_state->min_residency = 10;
1037		}
1038
1039		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1040			pr_debug("No wakeup residency found, assuming 10 us\n");
1041			lpi_state->wake_latency = 10;
1042		}
1043
1044		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1045			lpi_state->flags = 0;
1046
1047		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1048			lpi_state->arch_flags = 0;
1049
1050		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1051			lpi_state->res_cnt_freq = 1;
1052
1053		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1054			lpi_state->enable_parent_state = 0;
1055	}
1056
1057	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1058end:
1059	kfree(buffer.pointer);
1060	return ret;
1061}
1062
1063/*
1064 * flat_state_cnt - the number of composite LPI states after the process of flattening
1065 */
1066static int flat_state_cnt;
1067
1068/**
1069 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1070 *
1071 * @local: local LPI state
1072 * @parent: parent LPI state
1073 * @result: composite LPI state
1074 */
1075static bool combine_lpi_states(struct acpi_lpi_state *local,
1076			       struct acpi_lpi_state *parent,
1077			       struct acpi_lpi_state *result)
1078{
1079	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1080		if (!parent->address) /* 0 means autopromotable */
1081			return false;
1082		result->address = local->address + parent->address;
1083	} else {
1084		result->address = parent->address;
1085	}
1086
1087	result->min_residency = max(local->min_residency, parent->min_residency);
1088	result->wake_latency = local->wake_latency + parent->wake_latency;
1089	result->enable_parent_state = parent->enable_parent_state;
1090	result->entry_method = local->entry_method;
1091
1092	result->flags = parent->flags;
1093	result->arch_flags = parent->arch_flags;
1094	result->index = parent->index;
1095
1096	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1097	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1098	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1099	return true;
1100}
1101
1102#define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1103
1104static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1105				  struct acpi_lpi_state *t)
1106{
1107	curr_level->composite_states[curr_level->composite_states_size++] = t;
1108}
1109
1110static int flatten_lpi_states(struct acpi_processor *pr,
1111			      struct acpi_lpi_states_array *curr_level,
1112			      struct acpi_lpi_states_array *prev_level)
1113{
1114	int i, j, state_count = curr_level->size;
1115	struct acpi_lpi_state *p, *t = curr_level->entries;
1116
1117	curr_level->composite_states_size = 0;
1118	for (j = 0; j < state_count; j++, t++) {
1119		struct acpi_lpi_state *flpi;
1120
1121		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1122			continue;
1123
1124		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1125			pr_warn("Limiting number of LPI states to max (%d)\n",
1126				ACPI_PROCESSOR_MAX_POWER);
1127			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1128			break;
1129		}
1130
1131		flpi = &pr->power.lpi_states[flat_state_cnt];
1132
1133		if (!prev_level) { /* leaf/processor node */
1134			memcpy(flpi, t, sizeof(*t));
1135			stash_composite_state(curr_level, flpi);
1136			flat_state_cnt++;
1137			continue;
1138		}
1139
1140		for (i = 0; i < prev_level->composite_states_size; i++) {
1141			p = prev_level->composite_states[i];
1142			if (t->index <= p->enable_parent_state &&
1143			    combine_lpi_states(p, t, flpi)) {
1144				stash_composite_state(curr_level, flpi);
1145				flat_state_cnt++;
1146				flpi++;
1147			}
1148		}
1149	}
1150
1151	kfree(curr_level->entries);
1152	return 0;
1153}
1154
1155static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1156{
1157	int ret, i;
1158	acpi_status status;
1159	acpi_handle handle = pr->handle, pr_ahandle;
1160	struct acpi_device *d = NULL;
1161	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1162
1163	if (!osc_pc_lpi_support_confirmed)
1164		return -EOPNOTSUPP;
1165
1166	if (!acpi_has_method(handle, "_LPI"))
1167		return -EINVAL;
1168
1169	flat_state_cnt = 0;
1170	prev = &info[0];
1171	curr = &info[1];
1172	handle = pr->handle;
1173	ret = acpi_processor_evaluate_lpi(handle, prev);
1174	if (ret)
1175		return ret;
1176	flatten_lpi_states(pr, prev, NULL);
1177
1178	status = acpi_get_parent(handle, &pr_ahandle);
1179	while (ACPI_SUCCESS(status)) {
1180		acpi_bus_get_device(pr_ahandle, &d);
1181		handle = pr_ahandle;
1182
1183		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1184			break;
1185
1186		/* can be optional ? */
1187		if (!acpi_has_method(handle, "_LPI"))
1188			break;
1189
1190		ret = acpi_processor_evaluate_lpi(handle, curr);
1191		if (ret)
1192			break;
1193
1194		/* flatten all the LPI states in this level of hierarchy */
1195		flatten_lpi_states(pr, curr, prev);
1196
1197		tmp = prev, prev = curr, curr = tmp;
1198
1199		status = acpi_get_parent(handle, &pr_ahandle);
1200	}
1201
1202	pr->power.count = flat_state_cnt;
1203	/* reset the index after flattening */
1204	for (i = 0; i < pr->power.count; i++)
1205		pr->power.lpi_states[i].index = i;
1206
1207	/* Tell driver that _LPI is supported. */
1208	pr->flags.has_lpi = 1;
1209	pr->flags.power = 1;
1210
1211	return 0;
1212}
1213
1214int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1215{
1216	return -ENODEV;
1217}
1218
1219int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1220{
1221	return -ENODEV;
1222}
1223
1224/**
1225 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1226 * @dev: the target CPU
1227 * @drv: cpuidle driver containing cpuidle state info
1228 * @index: index of target state
1229 *
1230 * Return: 0 for success or negative value for error
1231 */
1232static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1233			       struct cpuidle_driver *drv, int index)
1234{
1235	struct acpi_processor *pr;
1236	struct acpi_lpi_state *lpi;
1237
1238	pr = __this_cpu_read(processors);
1239
1240	if (unlikely(!pr))
1241		return -EINVAL;
1242
1243	lpi = &pr->power.lpi_states[index];
1244	if (lpi->entry_method == ACPI_CSTATE_FFH)
1245		return acpi_processor_ffh_lpi_enter(lpi);
1246
1247	return -EINVAL;
1248}
1249
1250static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1251{
1252	int i;
1253	struct acpi_lpi_state *lpi;
1254	struct cpuidle_state *state;
1255	struct cpuidle_driver *drv = &acpi_idle_driver;
1256
1257	if (!pr->flags.has_lpi)
1258		return -EOPNOTSUPP;
1259
1260	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1261		lpi = &pr->power.lpi_states[i];
1262
1263		state = &drv->states[i];
1264		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1265		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1266		state->exit_latency = lpi->wake_latency;
1267		state->target_residency = lpi->min_residency;
1268		if (lpi->arch_flags)
1269			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1270		state->enter = acpi_idle_lpi_enter;
1271		drv->safe_state_index = i;
1272	}
1273
1274	drv->state_count = i;
1275
1276	return 0;
1277}
1278
1279/**
1280 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1281 * global state data i.e. idle routines
1282 *
1283 * @pr: the ACPI processor
1284 */
1285static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1286{
1287	int i;
1288	struct cpuidle_driver *drv = &acpi_idle_driver;
1289
1290	if (!pr->flags.power_setup_done || !pr->flags.power)
1291		return -EINVAL;
1292
1293	drv->safe_state_index = -1;
1294	for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1295		drv->states[i].name[0] = '\0';
1296		drv->states[i].desc[0] = '\0';
1297	}
1298
1299	if (pr->flags.has_lpi)
1300		return acpi_processor_setup_lpi_states(pr);
1301
1302	return acpi_processor_setup_cstates(pr);
1303}
1304
1305/**
1306 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1307 * device i.e. per-cpu data
1308 *
1309 * @pr: the ACPI processor
1310 * @dev : the cpuidle device
1311 */
1312static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1313					    struct cpuidle_device *dev)
1314{
1315	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1316		return -EINVAL;
1317
1318	dev->cpu = pr->id;
1319	if (pr->flags.has_lpi)
1320		return acpi_processor_ffh_lpi_probe(pr->id);
1321
1322	return acpi_processor_setup_cpuidle_cx(pr, dev);
1323}
1324
1325static int acpi_processor_get_power_info(struct acpi_processor *pr)
1326{
1327	int ret;
1328
1329	ret = acpi_processor_get_lpi_info(pr);
1330	if (ret)
1331		ret = acpi_processor_get_cstate_info(pr);
1332
1333	return ret;
1334}
1335
1336int acpi_processor_hotplug(struct acpi_processor *pr)
1337{
1338	int ret = 0;
1339	struct cpuidle_device *dev;
1340
1341	if (disabled_by_idle_boot_param())
1342		return 0;
1343
 
 
 
1344	if (!pr->flags.power_setup_done)
1345		return -ENODEV;
1346
1347	dev = per_cpu(acpi_cpuidle_device, pr->id);
1348	cpuidle_pause_and_lock();
1349	cpuidle_disable_device(dev);
1350	ret = acpi_processor_get_power_info(pr);
1351	if (!ret && pr->flags.power) {
1352		acpi_processor_setup_cpuidle_dev(pr, dev);
1353		ret = cpuidle_enable_device(dev);
1354	}
1355	cpuidle_resume_and_unlock();
1356
1357	return ret;
1358}
1359
1360int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1361{
1362	int cpu;
1363	struct acpi_processor *_pr;
1364	struct cpuidle_device *dev;
1365
1366	if (disabled_by_idle_boot_param())
1367		return 0;
1368
 
 
 
1369	if (!pr->flags.power_setup_done)
1370		return -ENODEV;
1371
1372	/*
1373	 * FIXME:  Design the ACPI notification to make it once per
1374	 * system instead of once per-cpu.  This condition is a hack
1375	 * to make the code that updates C-States be called once.
1376	 */
1377
1378	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1379
1380		/* Protect against cpu-hotplug */
1381		get_online_cpus();
1382		cpuidle_pause_and_lock();
1383
1384		/* Disable all cpuidle devices */
1385		for_each_online_cpu(cpu) {
1386			_pr = per_cpu(processors, cpu);
1387			if (!_pr || !_pr->flags.power_setup_done)
1388				continue;
1389			dev = per_cpu(acpi_cpuidle_device, cpu);
1390			cpuidle_disable_device(dev);
1391		}
1392
1393		/* Populate Updated C-state information */
1394		acpi_processor_get_power_info(pr);
1395		acpi_processor_setup_cpuidle_states(pr);
1396
1397		/* Enable all cpuidle devices */
1398		for_each_online_cpu(cpu) {
1399			_pr = per_cpu(processors, cpu);
1400			if (!_pr || !_pr->flags.power_setup_done)
1401				continue;
1402			acpi_processor_get_power_info(_pr);
1403			if (_pr->flags.power) {
1404				dev = per_cpu(acpi_cpuidle_device, cpu);
1405				acpi_processor_setup_cpuidle_dev(_pr, dev);
1406				cpuidle_enable_device(dev);
1407			}
1408		}
1409		cpuidle_resume_and_unlock();
1410		put_online_cpus();
1411	}
1412
1413	return 0;
1414}
1415
1416static int acpi_processor_registered;
1417
1418int acpi_processor_power_init(struct acpi_processor *pr)
1419{
 
1420	int retval;
1421	struct cpuidle_device *dev;
 
1422
1423	if (disabled_by_idle_boot_param())
1424		return 0;
1425
1426	acpi_processor_cstate_first_run_checks();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1427
1428	if (!acpi_processor_get_power_info(pr))
1429		pr->flags.power_setup_done = 1;
1430
1431	/*
1432	 * Install the idle handler if processor power management is supported.
1433	 * Note that we use previously set idle handler will be used on
1434	 * platforms that only support C1.
1435	 */
1436	if (pr->flags.power) {
1437		/* Register acpi_idle_driver if not already registered */
1438		if (!acpi_processor_registered) {
1439			acpi_processor_setup_cpuidle_states(pr);
1440			retval = cpuidle_register_driver(&acpi_idle_driver);
1441			if (retval)
1442				return retval;
1443			pr_debug("%s registered with cpuidle\n",
1444				 acpi_idle_driver.name);
1445		}
1446
1447		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1448		if (!dev)
1449			return -ENOMEM;
1450		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1451
1452		acpi_processor_setup_cpuidle_dev(pr, dev);
1453
1454		/* Register per-cpu cpuidle_device. Cpuidle driver
1455		 * must already be registered before registering device
1456		 */
1457		retval = cpuidle_register_device(dev);
1458		if (retval) {
1459			if (acpi_processor_registered == 0)
1460				cpuidle_unregister_driver(&acpi_idle_driver);
1461			return retval;
1462		}
1463		acpi_processor_registered++;
1464	}
1465	return 0;
1466}
1467
1468int acpi_processor_power_exit(struct acpi_processor *pr)
1469{
1470	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1471
1472	if (disabled_by_idle_boot_param())
1473		return 0;
1474
1475	if (pr->flags.power) {
1476		cpuidle_unregister_device(dev);
1477		acpi_processor_registered--;
1478		if (acpi_processor_registered == 0)
1479			cpuidle_unregister_driver(&acpi_idle_driver);
1480	}
1481
1482	pr->flags.power_setup_done = 0;
1483	return 0;
1484}