Linux Audio

Check our new training course

Loading...
v4.6
   1/* smp.c: Sparc64 SMP support.
   2 *
   3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   4 */
   5
   6#include <linux/export.h>
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/pagemap.h>
  11#include <linux/threads.h>
  12#include <linux/smp.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/cache.h>
  21#include <linux/jiffies.h>
  22#include <linux/profile.h>
  23#include <linux/bootmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ftrace.h>
  26#include <linux/cpu.h>
  27#include <linux/slab.h>
  28#include <linux/kgdb.h>
  29
  30#include <asm/head.h>
  31#include <asm/ptrace.h>
  32#include <linux/atomic.h>
  33#include <asm/tlbflush.h>
  34#include <asm/mmu_context.h>
  35#include <asm/cpudata.h>
  36#include <asm/hvtramp.h>
  37#include <asm/io.h>
  38#include <asm/timer.h>
  39#include <asm/setup.h>
  40
  41#include <asm/irq.h>
  42#include <asm/irq_regs.h>
  43#include <asm/page.h>
  44#include <asm/pgtable.h>
  45#include <asm/oplib.h>
  46#include <asm/uaccess.h>
  47#include <asm/starfire.h>
  48#include <asm/tlb.h>
  49#include <asm/sections.h>
  50#include <asm/prom.h>
  51#include <asm/mdesc.h>
  52#include <asm/ldc.h>
  53#include <asm/hypervisor.h>
  54#include <asm/pcr.h>
  55
  56#include "cpumap.h"
  57#include "kernel.h"
  58
  59DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  60cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  61	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  62
  63cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
  64	[0 ... NR_CPUS-1] = CPU_MASK_NONE };
  65
 
 
 
  66EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  67EXPORT_SYMBOL(cpu_core_map);
  68EXPORT_SYMBOL(cpu_core_sib_map);
 
  69
  70static cpumask_t smp_commenced_mask;
  71
  72void smp_info(struct seq_file *m)
  73{
  74	int i;
  75	
  76	seq_printf(m, "State:\n");
  77	for_each_online_cpu(i)
  78		seq_printf(m, "CPU%d:\t\tonline\n", i);
  79}
  80
  81void smp_bogo(struct seq_file *m)
  82{
  83	int i;
  84	
  85	for_each_online_cpu(i)
  86		seq_printf(m,
  87			   "Cpu%dClkTck\t: %016lx\n",
  88			   i, cpu_data(i).clock_tick);
  89}
  90
  91extern void setup_sparc64_timer(void);
  92
  93static volatile unsigned long callin_flag = 0;
  94
  95void smp_callin(void)
  96{
  97	int cpuid = hard_smp_processor_id();
  98
  99	__local_per_cpu_offset = __per_cpu_offset(cpuid);
 100
 101	if (tlb_type == hypervisor)
 102		sun4v_ktsb_register();
 103
 104	__flush_tlb_all();
 105
 106	setup_sparc64_timer();
 107
 108	if (cheetah_pcache_forced_on)
 109		cheetah_enable_pcache();
 110
 111	callin_flag = 1;
 112	__asm__ __volatile__("membar #Sync\n\t"
 113			     "flush  %%g6" : : : "memory");
 114
 115	/* Clear this or we will die instantly when we
 116	 * schedule back to this idler...
 117	 */
 118	current_thread_info()->new_child = 0;
 119
 120	/* Attach to the address space of init_task. */
 121	atomic_inc(&init_mm.mm_count);
 122	current->active_mm = &init_mm;
 123
 124	/* inform the notifiers about the new cpu */
 125	notify_cpu_starting(cpuid);
 126
 127	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 128		rmb();
 129
 130	set_cpu_online(cpuid, true);
 131
 132	/* idle thread is expected to have preempt disabled */
 133	preempt_disable();
 134
 135	local_irq_enable();
 136
 137	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 138}
 139
 140void cpu_panic(void)
 141{
 142	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 143	panic("SMP bolixed\n");
 144}
 145
 146/* This tick register synchronization scheme is taken entirely from
 147 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 148 *
 149 * The only change I've made is to rework it so that the master
 150 * initiates the synchonization instead of the slave. -DaveM
 151 */
 152
 153#define MASTER	0
 154#define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
 155
 156#define NUM_ROUNDS	64	/* magic value */
 157#define NUM_ITERS	5	/* likewise */
 158
 159static DEFINE_RAW_SPINLOCK(itc_sync_lock);
 160static unsigned long go[SLAVE + 1];
 161
 162#define DEBUG_TICK_SYNC	0
 163
 164static inline long get_delta (long *rt, long *master)
 165{
 166	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 167	unsigned long tcenter, t0, t1, tm;
 168	unsigned long i;
 169
 170	for (i = 0; i < NUM_ITERS; i++) {
 171		t0 = tick_ops->get_tick();
 172		go[MASTER] = 1;
 173		membar_safe("#StoreLoad");
 174		while (!(tm = go[SLAVE]))
 175			rmb();
 176		go[SLAVE] = 0;
 177		wmb();
 178		t1 = tick_ops->get_tick();
 179
 180		if (t1 - t0 < best_t1 - best_t0)
 181			best_t0 = t0, best_t1 = t1, best_tm = tm;
 182	}
 183
 184	*rt = best_t1 - best_t0;
 185	*master = best_tm - best_t0;
 186
 187	/* average best_t0 and best_t1 without overflow: */
 188	tcenter = (best_t0/2 + best_t1/2);
 189	if (best_t0 % 2 + best_t1 % 2 == 2)
 190		tcenter++;
 191	return tcenter - best_tm;
 192}
 193
 194void smp_synchronize_tick_client(void)
 195{
 196	long i, delta, adj, adjust_latency = 0, done = 0;
 197	unsigned long flags, rt, master_time_stamp;
 198#if DEBUG_TICK_SYNC
 199	struct {
 200		long rt;	/* roundtrip time */
 201		long master;	/* master's timestamp */
 202		long diff;	/* difference between midpoint and master's timestamp */
 203		long lat;	/* estimate of itc adjustment latency */
 204	} t[NUM_ROUNDS];
 205#endif
 206
 207	go[MASTER] = 1;
 208
 209	while (go[MASTER])
 210		rmb();
 211
 212	local_irq_save(flags);
 213	{
 214		for (i = 0; i < NUM_ROUNDS; i++) {
 215			delta = get_delta(&rt, &master_time_stamp);
 216			if (delta == 0)
 217				done = 1;	/* let's lock on to this... */
 218
 219			if (!done) {
 220				if (i > 0) {
 221					adjust_latency += -delta;
 222					adj = -delta + adjust_latency/4;
 223				} else
 224					adj = -delta;
 225
 226				tick_ops->add_tick(adj);
 227			}
 228#if DEBUG_TICK_SYNC
 229			t[i].rt = rt;
 230			t[i].master = master_time_stamp;
 231			t[i].diff = delta;
 232			t[i].lat = adjust_latency/4;
 233#endif
 234		}
 235	}
 236	local_irq_restore(flags);
 237
 238#if DEBUG_TICK_SYNC
 239	for (i = 0; i < NUM_ROUNDS; i++)
 240		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 241		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 242#endif
 243
 244	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 245	       "(last diff %ld cycles, maxerr %lu cycles)\n",
 246	       smp_processor_id(), delta, rt);
 247}
 248
 249static void smp_start_sync_tick_client(int cpu);
 250
 251static void smp_synchronize_one_tick(int cpu)
 252{
 253	unsigned long flags, i;
 254
 255	go[MASTER] = 0;
 256
 257	smp_start_sync_tick_client(cpu);
 258
 259	/* wait for client to be ready */
 260	while (!go[MASTER])
 261		rmb();
 262
 263	/* now let the client proceed into his loop */
 264	go[MASTER] = 0;
 265	membar_safe("#StoreLoad");
 266
 267	raw_spin_lock_irqsave(&itc_sync_lock, flags);
 268	{
 269		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 270			while (!go[MASTER])
 271				rmb();
 272			go[MASTER] = 0;
 273			wmb();
 274			go[SLAVE] = tick_ops->get_tick();
 275			membar_safe("#StoreLoad");
 276		}
 277	}
 278	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
 279}
 280
 281#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 282static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
 283				void **descrp)
 284{
 285	extern unsigned long sparc64_ttable_tl0;
 286	extern unsigned long kern_locked_tte_data;
 287	struct hvtramp_descr *hdesc;
 288	unsigned long trampoline_ra;
 289	struct trap_per_cpu *tb;
 290	u64 tte_vaddr, tte_data;
 291	unsigned long hv_err;
 292	int i;
 293
 294	hdesc = kzalloc(sizeof(*hdesc) +
 295			(sizeof(struct hvtramp_mapping) *
 296			 num_kernel_image_mappings - 1),
 297			GFP_KERNEL);
 298	if (!hdesc) {
 299		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 300		       "hvtramp_descr.\n");
 301		return;
 302	}
 303	*descrp = hdesc;
 304
 305	hdesc->cpu = cpu;
 306	hdesc->num_mappings = num_kernel_image_mappings;
 307
 308	tb = &trap_block[cpu];
 309
 310	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 311	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 312
 313	hdesc->thread_reg = thread_reg;
 314
 315	tte_vaddr = (unsigned long) KERNBASE;
 316	tte_data = kern_locked_tte_data;
 317
 318	for (i = 0; i < hdesc->num_mappings; i++) {
 319		hdesc->maps[i].vaddr = tte_vaddr;
 320		hdesc->maps[i].tte   = tte_data;
 321		tte_vaddr += 0x400000;
 322		tte_data  += 0x400000;
 323	}
 324
 325	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 326
 327	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 328				 kimage_addr_to_ra(&sparc64_ttable_tl0),
 329				 __pa(hdesc));
 330	if (hv_err)
 331		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 332		       "gives error %lu\n", hv_err);
 333}
 334#endif
 335
 336extern unsigned long sparc64_cpu_startup;
 337
 338/* The OBP cpu startup callback truncates the 3rd arg cookie to
 339 * 32-bits (I think) so to be safe we have it read the pointer
 340 * contained here so we work on >4GB machines. -DaveM
 341 */
 342static struct thread_info *cpu_new_thread = NULL;
 343
 344static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 345{
 346	unsigned long entry =
 347		(unsigned long)(&sparc64_cpu_startup);
 348	unsigned long cookie =
 349		(unsigned long)(&cpu_new_thread);
 350	void *descr = NULL;
 351	int timeout, ret;
 352
 353	callin_flag = 0;
 354	cpu_new_thread = task_thread_info(idle);
 355
 356	if (tlb_type == hypervisor) {
 357#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 358		if (ldom_domaining_enabled)
 359			ldom_startcpu_cpuid(cpu,
 360					    (unsigned long) cpu_new_thread,
 361					    &descr);
 362		else
 363#endif
 364			prom_startcpu_cpuid(cpu, entry, cookie);
 365	} else {
 366		struct device_node *dp = of_find_node_by_cpuid(cpu);
 367
 368		prom_startcpu(dp->phandle, entry, cookie);
 369	}
 370
 371	for (timeout = 0; timeout < 50000; timeout++) {
 372		if (callin_flag)
 373			break;
 374		udelay(100);
 375	}
 376
 377	if (callin_flag) {
 378		ret = 0;
 379	} else {
 380		printk("Processor %d is stuck.\n", cpu);
 381		ret = -ENODEV;
 382	}
 383	cpu_new_thread = NULL;
 384
 385	kfree(descr);
 386
 387	return ret;
 388}
 389
 390static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 391{
 392	u64 result, target;
 393	int stuck, tmp;
 394
 395	if (this_is_starfire) {
 396		/* map to real upaid */
 397		cpu = (((cpu & 0x3c) << 1) |
 398			((cpu & 0x40) >> 4) |
 399			(cpu & 0x3));
 400	}
 401
 402	target = (cpu << 14) | 0x70;
 403again:
 404	/* Ok, this is the real Spitfire Errata #54.
 405	 * One must read back from a UDB internal register
 406	 * after writes to the UDB interrupt dispatch, but
 407	 * before the membar Sync for that write.
 408	 * So we use the high UDB control register (ASI 0x7f,
 409	 * ADDR 0x20) for the dummy read. -DaveM
 410	 */
 411	tmp = 0x40;
 412	__asm__ __volatile__(
 413	"wrpr	%1, %2, %%pstate\n\t"
 414	"stxa	%4, [%0] %3\n\t"
 415	"stxa	%5, [%0+%8] %3\n\t"
 416	"add	%0, %8, %0\n\t"
 417	"stxa	%6, [%0+%8] %3\n\t"
 418	"membar	#Sync\n\t"
 419	"stxa	%%g0, [%7] %3\n\t"
 420	"membar	#Sync\n\t"
 421	"mov	0x20, %%g1\n\t"
 422	"ldxa	[%%g1] 0x7f, %%g0\n\t"
 423	"membar	#Sync"
 424	: "=r" (tmp)
 425	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 426	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
 427	  "r" (0x10), "0" (tmp)
 428        : "g1");
 429
 430	/* NOTE: PSTATE_IE is still clear. */
 431	stuck = 100000;
 432	do {
 433		__asm__ __volatile__("ldxa [%%g0] %1, %0"
 434			: "=r" (result)
 435			: "i" (ASI_INTR_DISPATCH_STAT));
 436		if (result == 0) {
 437			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 438					     : : "r" (pstate));
 439			return;
 440		}
 441		stuck -= 1;
 442		if (stuck == 0)
 443			break;
 444	} while (result & 0x1);
 445	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 446			     : : "r" (pstate));
 447	if (stuck == 0) {
 448		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 449		       smp_processor_id(), result);
 450	} else {
 451		udelay(2);
 452		goto again;
 453	}
 454}
 455
 456static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 457{
 458	u64 *mondo, data0, data1, data2;
 459	u16 *cpu_list;
 460	u64 pstate;
 461	int i;
 462
 463	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 464	cpu_list = __va(tb->cpu_list_pa);
 465	mondo = __va(tb->cpu_mondo_block_pa);
 466	data0 = mondo[0];
 467	data1 = mondo[1];
 468	data2 = mondo[2];
 469	for (i = 0; i < cnt; i++)
 470		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 471}
 472
 473/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 474 * packet, but we have no use for that.  However we do take advantage of
 475 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 476 */
 477static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 478{
 479	int nack_busy_id, is_jbus, need_more;
 480	u64 *mondo, pstate, ver, busy_mask;
 481	u16 *cpu_list;
 482
 483	cpu_list = __va(tb->cpu_list_pa);
 484	mondo = __va(tb->cpu_mondo_block_pa);
 485
 486	/* Unfortunately, someone at Sun had the brilliant idea to make the
 487	 * busy/nack fields hard-coded by ITID number for this Ultra-III
 488	 * derivative processor.
 489	 */
 490	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 491	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 492		   (ver >> 32) == __SERRANO_ID);
 493
 494	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 495
 496retry:
 497	need_more = 0;
 498	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 499			     : : "r" (pstate), "i" (PSTATE_IE));
 500
 501	/* Setup the dispatch data registers. */
 502	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
 503			     "stxa	%1, [%4] %6\n\t"
 504			     "stxa	%2, [%5] %6\n\t"
 505			     "membar	#Sync\n\t"
 506			     : /* no outputs */
 507			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 508			       "r" (0x40), "r" (0x50), "r" (0x60),
 509			       "i" (ASI_INTR_W));
 510
 511	nack_busy_id = 0;
 512	busy_mask = 0;
 513	{
 514		int i;
 515
 516		for (i = 0; i < cnt; i++) {
 517			u64 target, nr;
 518
 519			nr = cpu_list[i];
 520			if (nr == 0xffff)
 521				continue;
 522
 523			target = (nr << 14) | 0x70;
 524			if (is_jbus) {
 525				busy_mask |= (0x1UL << (nr * 2));
 526			} else {
 527				target |= (nack_busy_id << 24);
 528				busy_mask |= (0x1UL <<
 529					      (nack_busy_id * 2));
 530			}
 531			__asm__ __volatile__(
 532				"stxa	%%g0, [%0] %1\n\t"
 533				"membar	#Sync\n\t"
 534				: /* no outputs */
 535				: "r" (target), "i" (ASI_INTR_W));
 536			nack_busy_id++;
 537			if (nack_busy_id == 32) {
 538				need_more = 1;
 539				break;
 540			}
 541		}
 542	}
 543
 544	/* Now, poll for completion. */
 545	{
 546		u64 dispatch_stat, nack_mask;
 547		long stuck;
 548
 549		stuck = 100000 * nack_busy_id;
 550		nack_mask = busy_mask << 1;
 551		do {
 552			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
 553					     : "=r" (dispatch_stat)
 554					     : "i" (ASI_INTR_DISPATCH_STAT));
 555			if (!(dispatch_stat & (busy_mask | nack_mask))) {
 556				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 557						     : : "r" (pstate));
 558				if (unlikely(need_more)) {
 559					int i, this_cnt = 0;
 560					for (i = 0; i < cnt; i++) {
 561						if (cpu_list[i] == 0xffff)
 562							continue;
 563						cpu_list[i] = 0xffff;
 564						this_cnt++;
 565						if (this_cnt == 32)
 566							break;
 567					}
 568					goto retry;
 569				}
 570				return;
 571			}
 572			if (!--stuck)
 573				break;
 574		} while (dispatch_stat & busy_mask);
 575
 576		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 577				     : : "r" (pstate));
 578
 579		if (dispatch_stat & busy_mask) {
 580			/* Busy bits will not clear, continue instead
 581			 * of freezing up on this cpu.
 582			 */
 583			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 584			       smp_processor_id(), dispatch_stat);
 585		} else {
 586			int i, this_busy_nack = 0;
 587
 588			/* Delay some random time with interrupts enabled
 589			 * to prevent deadlock.
 590			 */
 591			udelay(2 * nack_busy_id);
 592
 593			/* Clear out the mask bits for cpus which did not
 594			 * NACK us.
 595			 */
 596			for (i = 0; i < cnt; i++) {
 597				u64 check_mask, nr;
 598
 599				nr = cpu_list[i];
 600				if (nr == 0xffff)
 601					continue;
 602
 603				if (is_jbus)
 604					check_mask = (0x2UL << (2*nr));
 605				else
 606					check_mask = (0x2UL <<
 607						      this_busy_nack);
 608				if ((dispatch_stat & check_mask) == 0)
 609					cpu_list[i] = 0xffff;
 610				this_busy_nack += 2;
 611				if (this_busy_nack == 64)
 612					break;
 613			}
 614
 615			goto retry;
 616		}
 617	}
 618}
 619
 620/* Multi-cpu list version.  */
 621static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 622{
 623	int retries, this_cpu, prev_sent, i, saw_cpu_error;
 624	unsigned long status;
 625	u16 *cpu_list;
 626
 627	this_cpu = smp_processor_id();
 628
 629	cpu_list = __va(tb->cpu_list_pa);
 630
 631	saw_cpu_error = 0;
 632	retries = 0;
 633	prev_sent = 0;
 634	do {
 635		int forward_progress, n_sent;
 636
 637		status = sun4v_cpu_mondo_send(cnt,
 638					      tb->cpu_list_pa,
 639					      tb->cpu_mondo_block_pa);
 640
 641		/* HV_EOK means all cpus received the xcall, we're done.  */
 642		if (likely(status == HV_EOK))
 643			break;
 644
 645		/* First, see if we made any forward progress.
 646		 *
 647		 * The hypervisor indicates successful sends by setting
 648		 * cpu list entries to the value 0xffff.
 649		 */
 650		n_sent = 0;
 651		for (i = 0; i < cnt; i++) {
 652			if (likely(cpu_list[i] == 0xffff))
 653				n_sent++;
 654		}
 655
 656		forward_progress = 0;
 657		if (n_sent > prev_sent)
 658			forward_progress = 1;
 659
 660		prev_sent = n_sent;
 661
 662		/* If we get a HV_ECPUERROR, then one or more of the cpus
 663		 * in the list are in error state.  Use the cpu_state()
 664		 * hypervisor call to find out which cpus are in error state.
 665		 */
 666		if (unlikely(status == HV_ECPUERROR)) {
 667			for (i = 0; i < cnt; i++) {
 668				long err;
 669				u16 cpu;
 670
 671				cpu = cpu_list[i];
 672				if (cpu == 0xffff)
 673					continue;
 674
 675				err = sun4v_cpu_state(cpu);
 676				if (err == HV_CPU_STATE_ERROR) {
 677					saw_cpu_error = (cpu + 1);
 678					cpu_list[i] = 0xffff;
 679				}
 680			}
 681		} else if (unlikely(status != HV_EWOULDBLOCK))
 682			goto fatal_mondo_error;
 683
 684		/* Don't bother rewriting the CPU list, just leave the
 685		 * 0xffff and non-0xffff entries in there and the
 686		 * hypervisor will do the right thing.
 687		 *
 688		 * Only advance timeout state if we didn't make any
 689		 * forward progress.
 690		 */
 691		if (unlikely(!forward_progress)) {
 692			if (unlikely(++retries > 10000))
 693				goto fatal_mondo_timeout;
 694
 695			/* Delay a little bit to let other cpus catch up
 696			 * on their cpu mondo queue work.
 697			 */
 698			udelay(2 * cnt);
 699		}
 700	} while (1);
 701
 702	if (unlikely(saw_cpu_error))
 703		goto fatal_mondo_cpu_error;
 704
 705	return;
 706
 707fatal_mondo_cpu_error:
 708	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 709	       "(including %d) were in error state\n",
 710	       this_cpu, saw_cpu_error - 1);
 711	return;
 712
 713fatal_mondo_timeout:
 714	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 715	       " progress after %d retries.\n",
 716	       this_cpu, retries);
 717	goto dump_cpu_list_and_out;
 718
 719fatal_mondo_error:
 720	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 721	       this_cpu, status);
 722	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 723	       "mondo_block_pa(%lx)\n",
 724	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 725
 726dump_cpu_list_and_out:
 727	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 728	for (i = 0; i < cnt; i++)
 729		printk("%u ", cpu_list[i]);
 730	printk("]\n");
 731}
 732
 733static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 734
 735static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 736{
 737	struct trap_per_cpu *tb;
 738	int this_cpu, i, cnt;
 739	unsigned long flags;
 740	u16 *cpu_list;
 741	u64 *mondo;
 742
 743	/* We have to do this whole thing with interrupts fully disabled.
 744	 * Otherwise if we send an xcall from interrupt context it will
 745	 * corrupt both our mondo block and cpu list state.
 746	 *
 747	 * One consequence of this is that we cannot use timeout mechanisms
 748	 * that depend upon interrupts being delivered locally.  So, for
 749	 * example, we cannot sample jiffies and expect it to advance.
 750	 *
 751	 * Fortunately, udelay() uses %stick/%tick so we can use that.
 752	 */
 753	local_irq_save(flags);
 754
 755	this_cpu = smp_processor_id();
 756	tb = &trap_block[this_cpu];
 757
 758	mondo = __va(tb->cpu_mondo_block_pa);
 759	mondo[0] = data0;
 760	mondo[1] = data1;
 761	mondo[2] = data2;
 762	wmb();
 763
 764	cpu_list = __va(tb->cpu_list_pa);
 765
 766	/* Setup the initial cpu list.  */
 767	cnt = 0;
 768	for_each_cpu(i, mask) {
 769		if (i == this_cpu || !cpu_online(i))
 770			continue;
 771		cpu_list[cnt++] = i;
 772	}
 773
 774	if (cnt)
 775		xcall_deliver_impl(tb, cnt);
 776
 777	local_irq_restore(flags);
 778}
 779
 780/* Send cross call to all processors mentioned in MASK_P
 781 * except self.  Really, there are only two cases currently,
 782 * "cpu_online_mask" and "mm_cpumask(mm)".
 783 */
 784static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 785{
 786	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 787
 788	xcall_deliver(data0, data1, data2, mask);
 789}
 790
 791/* Send cross call to all processors except self. */
 792static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 793{
 794	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 795}
 796
 797extern unsigned long xcall_sync_tick;
 798
 799static void smp_start_sync_tick_client(int cpu)
 800{
 801	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 802		      cpumask_of(cpu));
 803}
 804
 805extern unsigned long xcall_call_function;
 806
 807void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 808{
 809	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 810}
 811
 812extern unsigned long xcall_call_function_single;
 813
 814void arch_send_call_function_single_ipi(int cpu)
 815{
 816	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 817		      cpumask_of(cpu));
 818}
 819
 820void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 821{
 822	clear_softint(1 << irq);
 823	irq_enter();
 824	generic_smp_call_function_interrupt();
 825	irq_exit();
 826}
 827
 828void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 829{
 830	clear_softint(1 << irq);
 831	irq_enter();
 832	generic_smp_call_function_single_interrupt();
 833	irq_exit();
 834}
 835
 836static void tsb_sync(void *info)
 837{
 838	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 839	struct mm_struct *mm = info;
 840
 841	/* It is not valid to test "current->active_mm == mm" here.
 842	 *
 843	 * The value of "current" is not changed atomically with
 844	 * switch_mm().  But that's OK, we just need to check the
 845	 * current cpu's trap block PGD physical address.
 846	 */
 847	if (tp->pgd_paddr == __pa(mm->pgd))
 848		tsb_context_switch(mm);
 849}
 850
 851void smp_tsb_sync(struct mm_struct *mm)
 852{
 853	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 854}
 855
 856extern unsigned long xcall_flush_tlb_mm;
 857extern unsigned long xcall_flush_tlb_page;
 858extern unsigned long xcall_flush_tlb_kernel_range;
 859extern unsigned long xcall_fetch_glob_regs;
 860extern unsigned long xcall_fetch_glob_pmu;
 861extern unsigned long xcall_fetch_glob_pmu_n4;
 862extern unsigned long xcall_receive_signal;
 863extern unsigned long xcall_new_mmu_context_version;
 864#ifdef CONFIG_KGDB
 865extern unsigned long xcall_kgdb_capture;
 866#endif
 867
 868#ifdef DCACHE_ALIASING_POSSIBLE
 869extern unsigned long xcall_flush_dcache_page_cheetah;
 870#endif
 871extern unsigned long xcall_flush_dcache_page_spitfire;
 872
 873static inline void __local_flush_dcache_page(struct page *page)
 874{
 875#ifdef DCACHE_ALIASING_POSSIBLE
 876	__flush_dcache_page(page_address(page),
 877			    ((tlb_type == spitfire) &&
 878			     page_mapping(page) != NULL));
 879#else
 880	if (page_mapping(page) != NULL &&
 881	    tlb_type == spitfire)
 882		__flush_icache_page(__pa(page_address(page)));
 883#endif
 884}
 885
 886void smp_flush_dcache_page_impl(struct page *page, int cpu)
 887{
 888	int this_cpu;
 889
 890	if (tlb_type == hypervisor)
 891		return;
 892
 893#ifdef CONFIG_DEBUG_DCFLUSH
 894	atomic_inc(&dcpage_flushes);
 895#endif
 896
 897	this_cpu = get_cpu();
 898
 899	if (cpu == this_cpu) {
 900		__local_flush_dcache_page(page);
 901	} else if (cpu_online(cpu)) {
 902		void *pg_addr = page_address(page);
 903		u64 data0 = 0;
 904
 905		if (tlb_type == spitfire) {
 906			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 907			if (page_mapping(page) != NULL)
 908				data0 |= ((u64)1 << 32);
 909		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 910#ifdef DCACHE_ALIASING_POSSIBLE
 911			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
 912#endif
 913		}
 914		if (data0) {
 915			xcall_deliver(data0, __pa(pg_addr),
 916				      (u64) pg_addr, cpumask_of(cpu));
 917#ifdef CONFIG_DEBUG_DCFLUSH
 918			atomic_inc(&dcpage_flushes_xcall);
 919#endif
 920		}
 921	}
 922
 923	put_cpu();
 924}
 925
 926void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 927{
 928	void *pg_addr;
 929	u64 data0;
 930
 931	if (tlb_type == hypervisor)
 932		return;
 933
 934	preempt_disable();
 935
 936#ifdef CONFIG_DEBUG_DCFLUSH
 937	atomic_inc(&dcpage_flushes);
 938#endif
 939	data0 = 0;
 940	pg_addr = page_address(page);
 941	if (tlb_type == spitfire) {
 942		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 943		if (page_mapping(page) != NULL)
 944			data0 |= ((u64)1 << 32);
 945	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 946#ifdef DCACHE_ALIASING_POSSIBLE
 947		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 948#endif
 949	}
 950	if (data0) {
 951		xcall_deliver(data0, __pa(pg_addr),
 952			      (u64) pg_addr, cpu_online_mask);
 953#ifdef CONFIG_DEBUG_DCFLUSH
 954		atomic_inc(&dcpage_flushes_xcall);
 955#endif
 956	}
 957	__local_flush_dcache_page(page);
 958
 959	preempt_enable();
 960}
 961
 962void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 963{
 964	struct mm_struct *mm;
 965	unsigned long flags;
 966
 967	clear_softint(1 << irq);
 968
 969	/* See if we need to allocate a new TLB context because
 970	 * the version of the one we are using is now out of date.
 971	 */
 972	mm = current->active_mm;
 973	if (unlikely(!mm || (mm == &init_mm)))
 974		return;
 975
 976	spin_lock_irqsave(&mm->context.lock, flags);
 977
 978	if (unlikely(!CTX_VALID(mm->context)))
 979		get_new_mmu_context(mm);
 980
 981	spin_unlock_irqrestore(&mm->context.lock, flags);
 982
 983	load_secondary_context(mm);
 984	__flush_tlb_mm(CTX_HWBITS(mm->context),
 985		       SECONDARY_CONTEXT);
 986}
 987
 988void smp_new_mmu_context_version(void)
 989{
 990	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 991}
 992
 993#ifdef CONFIG_KGDB
 994void kgdb_roundup_cpus(unsigned long flags)
 995{
 996	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
 997}
 998#endif
 999
1000void smp_fetch_global_regs(void)
1001{
1002	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1003}
1004
1005void smp_fetch_global_pmu(void)
1006{
1007	if (tlb_type == hypervisor &&
1008	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1009		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1010	else
1011		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1012}
1013
1014/* We know that the window frames of the user have been flushed
1015 * to the stack before we get here because all callers of us
1016 * are flush_tlb_*() routines, and these run after flush_cache_*()
1017 * which performs the flushw.
1018 *
1019 * The SMP TLB coherency scheme we use works as follows:
1020 *
1021 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1022 *    space has (potentially) executed on, this is the heuristic
1023 *    we use to avoid doing cross calls.
1024 *
1025 *    Also, for flushing from kswapd and also for clones, we
1026 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1027 *
1028 * 2) TLB context numbers are shared globally across all processors
1029 *    in the system, this allows us to play several games to avoid
1030 *    cross calls.
1031 *
1032 *    One invariant is that when a cpu switches to a process, and
1033 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1034 *    current cpu's bit set, that tlb context is flushed locally.
1035 *
1036 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1037 *    cross calls when we want to flush the currently running process's
1038 *    tlb state.  This is done by clearing all cpu bits except the current
1039 *    processor's in current->mm->cpu_vm_mask and performing the
1040 *    flush locally only.  This will force any subsequent cpus which run
1041 *    this task to flush the context from the local tlb if the process
1042 *    migrates to another cpu (again).
1043 *
1044 * 3) For shared address spaces (threads) and swapping we bite the
1045 *    bullet for most cases and perform the cross call (but only to
1046 *    the cpus listed in cpu_vm_mask).
1047 *
1048 *    The performance gain from "optimizing" away the cross call for threads is
1049 *    questionable (in theory the big win for threads is the massive sharing of
1050 *    address space state across processors).
1051 */
1052
1053/* This currently is only used by the hugetlb arch pre-fault
1054 * hook on UltraSPARC-III+ and later when changing the pagesize
1055 * bits of the context register for an address space.
1056 */
1057void smp_flush_tlb_mm(struct mm_struct *mm)
1058{
1059	u32 ctx = CTX_HWBITS(mm->context);
1060	int cpu = get_cpu();
1061
1062	if (atomic_read(&mm->mm_users) == 1) {
1063		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1064		goto local_flush_and_out;
1065	}
1066
1067	smp_cross_call_masked(&xcall_flush_tlb_mm,
1068			      ctx, 0, 0,
1069			      mm_cpumask(mm));
1070
1071local_flush_and_out:
1072	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1073
1074	put_cpu();
1075}
1076
1077struct tlb_pending_info {
1078	unsigned long ctx;
1079	unsigned long nr;
1080	unsigned long *vaddrs;
1081};
1082
1083static void tlb_pending_func(void *info)
1084{
1085	struct tlb_pending_info *t = info;
1086
1087	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1088}
1089
1090void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1091{
1092	u32 ctx = CTX_HWBITS(mm->context);
1093	struct tlb_pending_info info;
1094	int cpu = get_cpu();
1095
1096	info.ctx = ctx;
1097	info.nr = nr;
1098	info.vaddrs = vaddrs;
1099
1100	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1101		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1102	else
1103		smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1104				       &info, 1);
1105
1106	__flush_tlb_pending(ctx, nr, vaddrs);
1107
1108	put_cpu();
1109}
1110
1111void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1112{
1113	unsigned long context = CTX_HWBITS(mm->context);
1114	int cpu = get_cpu();
1115
1116	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1117		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1118	else
1119		smp_cross_call_masked(&xcall_flush_tlb_page,
1120				      context, vaddr, 0,
1121				      mm_cpumask(mm));
1122	__flush_tlb_page(context, vaddr);
1123
1124	put_cpu();
1125}
1126
1127void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1128{
1129	start &= PAGE_MASK;
1130	end    = PAGE_ALIGN(end);
1131	if (start != end) {
1132		smp_cross_call(&xcall_flush_tlb_kernel_range,
1133			       0, start, end);
1134
1135		__flush_tlb_kernel_range(start, end);
1136	}
1137}
1138
1139/* CPU capture. */
1140/* #define CAPTURE_DEBUG */
1141extern unsigned long xcall_capture;
1142
1143static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1144static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1145static unsigned long penguins_are_doing_time;
1146
1147void smp_capture(void)
1148{
1149	int result = atomic_add_return(1, &smp_capture_depth);
1150
1151	if (result == 1) {
1152		int ncpus = num_online_cpus();
1153
1154#ifdef CAPTURE_DEBUG
1155		printk("CPU[%d]: Sending penguins to jail...",
1156		       smp_processor_id());
1157#endif
1158		penguins_are_doing_time = 1;
1159		atomic_inc(&smp_capture_registry);
1160		smp_cross_call(&xcall_capture, 0, 0, 0);
1161		while (atomic_read(&smp_capture_registry) != ncpus)
1162			rmb();
1163#ifdef CAPTURE_DEBUG
1164		printk("done\n");
1165#endif
1166	}
1167}
1168
1169void smp_release(void)
1170{
1171	if (atomic_dec_and_test(&smp_capture_depth)) {
1172#ifdef CAPTURE_DEBUG
1173		printk("CPU[%d]: Giving pardon to "
1174		       "imprisoned penguins\n",
1175		       smp_processor_id());
1176#endif
1177		penguins_are_doing_time = 0;
1178		membar_safe("#StoreLoad");
1179		atomic_dec(&smp_capture_registry);
1180	}
1181}
1182
1183/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1184 * set, so they can service tlb flush xcalls...
1185 */
1186extern void prom_world(int);
1187
1188void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1189{
1190	clear_softint(1 << irq);
1191
1192	preempt_disable();
1193
1194	__asm__ __volatile__("flushw");
1195	prom_world(1);
1196	atomic_inc(&smp_capture_registry);
1197	membar_safe("#StoreLoad");
1198	while (penguins_are_doing_time)
1199		rmb();
1200	atomic_dec(&smp_capture_registry);
1201	prom_world(0);
1202
1203	preempt_enable();
1204}
1205
1206/* /proc/profile writes can call this, don't __init it please. */
1207int setup_profiling_timer(unsigned int multiplier)
1208{
1209	return -EINVAL;
1210}
1211
1212void __init smp_prepare_cpus(unsigned int max_cpus)
1213{
1214}
1215
1216void smp_prepare_boot_cpu(void)
1217{
1218}
1219
1220void __init smp_setup_processor_id(void)
1221{
1222	if (tlb_type == spitfire)
1223		xcall_deliver_impl = spitfire_xcall_deliver;
1224	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1225		xcall_deliver_impl = cheetah_xcall_deliver;
1226	else
1227		xcall_deliver_impl = hypervisor_xcall_deliver;
1228}
1229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1230void smp_fill_in_sib_core_maps(void)
1231{
1232	unsigned int i;
1233
1234	for_each_present_cpu(i) {
1235		unsigned int j;
1236
1237		cpumask_clear(&cpu_core_map[i]);
1238		if (cpu_data(i).core_id == 0) {
1239			cpumask_set_cpu(i, &cpu_core_map[i]);
1240			continue;
1241		}
1242
1243		for_each_present_cpu(j) {
1244			if (cpu_data(i).core_id ==
1245			    cpu_data(j).core_id)
1246				cpumask_set_cpu(j, &cpu_core_map[i]);
1247		}
1248	}
1249
1250	for_each_present_cpu(i)  {
1251		unsigned int j;
1252
1253		for_each_present_cpu(j)  {
 
 
 
 
1254			if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1255				cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1256		}
1257	}
1258
1259	for_each_present_cpu(i) {
1260		unsigned int j;
1261
1262		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1263		if (cpu_data(i).proc_id == -1) {
1264			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1265			continue;
1266		}
1267
1268		for_each_present_cpu(j) {
1269			if (cpu_data(i).proc_id ==
1270			    cpu_data(j).proc_id)
1271				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1272		}
1273	}
1274}
1275
1276int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1277{
1278	int ret = smp_boot_one_cpu(cpu, tidle);
1279
1280	if (!ret) {
1281		cpumask_set_cpu(cpu, &smp_commenced_mask);
1282		while (!cpu_online(cpu))
1283			mb();
1284		if (!cpu_online(cpu)) {
1285			ret = -ENODEV;
1286		} else {
1287			/* On SUN4V, writes to %tick and %stick are
1288			 * not allowed.
1289			 */
1290			if (tlb_type != hypervisor)
1291				smp_synchronize_one_tick(cpu);
1292		}
1293	}
1294	return ret;
1295}
1296
1297#ifdef CONFIG_HOTPLUG_CPU
1298void cpu_play_dead(void)
1299{
1300	int cpu = smp_processor_id();
1301	unsigned long pstate;
1302
1303	idle_task_exit();
1304
1305	if (tlb_type == hypervisor) {
1306		struct trap_per_cpu *tb = &trap_block[cpu];
1307
1308		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1309				tb->cpu_mondo_pa, 0);
1310		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1311				tb->dev_mondo_pa, 0);
1312		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1313				tb->resum_mondo_pa, 0);
1314		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1315				tb->nonresum_mondo_pa, 0);
1316	}
1317
1318	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1319	membar_safe("#Sync");
1320
1321	local_irq_disable();
1322
1323	__asm__ __volatile__(
1324		"rdpr	%%pstate, %0\n\t"
1325		"wrpr	%0, %1, %%pstate"
1326		: "=r" (pstate)
1327		: "i" (PSTATE_IE));
1328
1329	while (1)
1330		barrier();
1331}
1332
1333int __cpu_disable(void)
1334{
1335	int cpu = smp_processor_id();
1336	cpuinfo_sparc *c;
1337	int i;
1338
1339	for_each_cpu(i, &cpu_core_map[cpu])
1340		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1341	cpumask_clear(&cpu_core_map[cpu]);
1342
1343	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1344		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1345	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1346
1347	c = &cpu_data(cpu);
1348
1349	c->core_id = 0;
1350	c->proc_id = -1;
1351
1352	smp_wmb();
1353
1354	/* Make sure no interrupts point to this cpu.  */
1355	fixup_irqs();
1356
1357	local_irq_enable();
1358	mdelay(1);
1359	local_irq_disable();
1360
1361	set_cpu_online(cpu, false);
1362
1363	cpu_map_rebuild();
1364
1365	return 0;
1366}
1367
1368void __cpu_die(unsigned int cpu)
1369{
1370	int i;
1371
1372	for (i = 0; i < 100; i++) {
1373		smp_rmb();
1374		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1375			break;
1376		msleep(100);
1377	}
1378	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1379		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1380	} else {
1381#if defined(CONFIG_SUN_LDOMS)
1382		unsigned long hv_err;
1383		int limit = 100;
1384
1385		do {
1386			hv_err = sun4v_cpu_stop(cpu);
1387			if (hv_err == HV_EOK) {
1388				set_cpu_present(cpu, false);
1389				break;
1390			}
1391		} while (--limit > 0);
1392		if (limit <= 0) {
1393			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1394			       hv_err);
1395		}
1396#endif
1397	}
1398}
1399#endif
1400
1401void __init smp_cpus_done(unsigned int max_cpus)
1402{
1403}
1404
1405void smp_send_reschedule(int cpu)
1406{
1407	if (cpu == smp_processor_id()) {
1408		WARN_ON_ONCE(preemptible());
1409		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1410	} else {
1411		xcall_deliver((u64) &xcall_receive_signal,
1412			      0, 0, cpumask_of(cpu));
1413	}
1414}
1415
1416void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1417{
1418	clear_softint(1 << irq);
1419	scheduler_ipi();
1420}
1421
1422static void stop_this_cpu(void *dummy)
1423{
1424	prom_stopself();
1425}
1426
1427void smp_send_stop(void)
1428{
1429	int cpu;
1430
1431	if (tlb_type == hypervisor) {
1432		for_each_online_cpu(cpu) {
1433			if (cpu == smp_processor_id())
1434				continue;
1435#ifdef CONFIG_SUN_LDOMS
1436			if (ldom_domaining_enabled) {
1437				unsigned long hv_err;
1438				hv_err = sun4v_cpu_stop(cpu);
1439				if (hv_err)
1440					printk(KERN_ERR "sun4v_cpu_stop() "
1441					       "failed err=%lu\n", hv_err);
1442			} else
1443#endif
1444				prom_stopcpu_cpuid(cpu);
1445		}
1446	} else
1447		smp_call_function(stop_this_cpu, NULL, 0);
1448}
1449
1450/**
1451 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1452 * @cpu: cpu to allocate for
1453 * @size: size allocation in bytes
1454 * @align: alignment
1455 *
1456 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1457 * does the right thing for NUMA regardless of the current
1458 * configuration.
1459 *
1460 * RETURNS:
1461 * Pointer to the allocated area on success, NULL on failure.
1462 */
1463static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1464					size_t align)
1465{
1466	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1467#ifdef CONFIG_NEED_MULTIPLE_NODES
1468	int node = cpu_to_node(cpu);
1469	void *ptr;
1470
1471	if (!node_online(node) || !NODE_DATA(node)) {
1472		ptr = __alloc_bootmem(size, align, goal);
1473		pr_info("cpu %d has no node %d or node-local memory\n",
1474			cpu, node);
1475		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1476			 cpu, size, __pa(ptr));
1477	} else {
1478		ptr = __alloc_bootmem_node(NODE_DATA(node),
1479					   size, align, goal);
1480		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1481			 "%016lx\n", cpu, size, node, __pa(ptr));
1482	}
1483	return ptr;
1484#else
1485	return __alloc_bootmem(size, align, goal);
1486#endif
1487}
1488
1489static void __init pcpu_free_bootmem(void *ptr, size_t size)
1490{
1491	free_bootmem(__pa(ptr), size);
1492}
1493
1494static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1495{
1496	if (cpu_to_node(from) == cpu_to_node(to))
1497		return LOCAL_DISTANCE;
1498	else
1499		return REMOTE_DISTANCE;
1500}
1501
1502static void __init pcpu_populate_pte(unsigned long addr)
1503{
1504	pgd_t *pgd = pgd_offset_k(addr);
1505	pud_t *pud;
1506	pmd_t *pmd;
1507
1508	if (pgd_none(*pgd)) {
1509		pud_t *new;
1510
1511		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1512		pgd_populate(&init_mm, pgd, new);
1513	}
1514
1515	pud = pud_offset(pgd, addr);
1516	if (pud_none(*pud)) {
1517		pmd_t *new;
1518
1519		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1520		pud_populate(&init_mm, pud, new);
1521	}
1522
1523	pmd = pmd_offset(pud, addr);
1524	if (!pmd_present(*pmd)) {
1525		pte_t *new;
1526
1527		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1528		pmd_populate_kernel(&init_mm, pmd, new);
1529	}
1530}
1531
1532void __init setup_per_cpu_areas(void)
1533{
1534	unsigned long delta;
1535	unsigned int cpu;
1536	int rc = -EINVAL;
1537
1538	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1539		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1540					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1541					    pcpu_cpu_distance,
1542					    pcpu_alloc_bootmem,
1543					    pcpu_free_bootmem);
1544		if (rc)
1545			pr_warning("PERCPU: %s allocator failed (%d), "
1546				   "falling back to page size\n",
1547				   pcpu_fc_names[pcpu_chosen_fc], rc);
1548	}
1549	if (rc < 0)
1550		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1551					   pcpu_alloc_bootmem,
1552					   pcpu_free_bootmem,
1553					   pcpu_populate_pte);
1554	if (rc < 0)
1555		panic("cannot initialize percpu area (err=%d)", rc);
1556
1557	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1558	for_each_possible_cpu(cpu)
1559		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1560
1561	/* Setup %g5 for the boot cpu.  */
1562	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1563
1564	of_fill_in_cpu_data();
1565	if (tlb_type == hypervisor)
1566		mdesc_fill_in_cpu_data(cpu_all_mask);
1567}
v4.10.11
   1/* smp.c: Sparc64 SMP support.
   2 *
   3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   4 */
   5
   6#include <linux/export.h>
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/pagemap.h>
  11#include <linux/threads.h>
  12#include <linux/smp.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/cache.h>
  21#include <linux/jiffies.h>
  22#include <linux/profile.h>
  23#include <linux/bootmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ftrace.h>
  26#include <linux/cpu.h>
  27#include <linux/slab.h>
  28#include <linux/kgdb.h>
  29
  30#include <asm/head.h>
  31#include <asm/ptrace.h>
  32#include <linux/atomic.h>
  33#include <asm/tlbflush.h>
  34#include <asm/mmu_context.h>
  35#include <asm/cpudata.h>
  36#include <asm/hvtramp.h>
  37#include <asm/io.h>
  38#include <asm/timer.h>
  39#include <asm/setup.h>
  40
  41#include <asm/irq.h>
  42#include <asm/irq_regs.h>
  43#include <asm/page.h>
  44#include <asm/pgtable.h>
  45#include <asm/oplib.h>
  46#include <linux/uaccess.h>
  47#include <asm/starfire.h>
  48#include <asm/tlb.h>
  49#include <asm/sections.h>
  50#include <asm/prom.h>
  51#include <asm/mdesc.h>
  52#include <asm/ldc.h>
  53#include <asm/hypervisor.h>
  54#include <asm/pcr.h>
  55
  56#include "cpumap.h"
  57#include "kernel.h"
  58
  59DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  60cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  61	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  62
  63cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
  64	[0 ... NR_CPUS-1] = CPU_MASK_NONE };
  65
  66cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
  67	[0 ... NR_CPUS - 1] = CPU_MASK_NONE };
  68
  69EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  70EXPORT_SYMBOL(cpu_core_map);
  71EXPORT_SYMBOL(cpu_core_sib_map);
  72EXPORT_SYMBOL(cpu_core_sib_cache_map);
  73
  74static cpumask_t smp_commenced_mask;
  75
  76void smp_info(struct seq_file *m)
  77{
  78	int i;
  79	
  80	seq_printf(m, "State:\n");
  81	for_each_online_cpu(i)
  82		seq_printf(m, "CPU%d:\t\tonline\n", i);
  83}
  84
  85void smp_bogo(struct seq_file *m)
  86{
  87	int i;
  88	
  89	for_each_online_cpu(i)
  90		seq_printf(m,
  91			   "Cpu%dClkTck\t: %016lx\n",
  92			   i, cpu_data(i).clock_tick);
  93}
  94
  95extern void setup_sparc64_timer(void);
  96
  97static volatile unsigned long callin_flag = 0;
  98
  99void smp_callin(void)
 100{
 101	int cpuid = hard_smp_processor_id();
 102
 103	__local_per_cpu_offset = __per_cpu_offset(cpuid);
 104
 105	if (tlb_type == hypervisor)
 106		sun4v_ktsb_register();
 107
 108	__flush_tlb_all();
 109
 110	setup_sparc64_timer();
 111
 112	if (cheetah_pcache_forced_on)
 113		cheetah_enable_pcache();
 114
 115	callin_flag = 1;
 116	__asm__ __volatile__("membar #Sync\n\t"
 117			     "flush  %%g6" : : : "memory");
 118
 119	/* Clear this or we will die instantly when we
 120	 * schedule back to this idler...
 121	 */
 122	current_thread_info()->new_child = 0;
 123
 124	/* Attach to the address space of init_task. */
 125	atomic_inc(&init_mm.mm_count);
 126	current->active_mm = &init_mm;
 127
 128	/* inform the notifiers about the new cpu */
 129	notify_cpu_starting(cpuid);
 130
 131	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 132		rmb();
 133
 134	set_cpu_online(cpuid, true);
 135
 136	/* idle thread is expected to have preempt disabled */
 137	preempt_disable();
 138
 139	local_irq_enable();
 140
 141	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 142}
 143
 144void cpu_panic(void)
 145{
 146	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 147	panic("SMP bolixed\n");
 148}
 149
 150/* This tick register synchronization scheme is taken entirely from
 151 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 152 *
 153 * The only change I've made is to rework it so that the master
 154 * initiates the synchonization instead of the slave. -DaveM
 155 */
 156
 157#define MASTER	0
 158#define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
 159
 160#define NUM_ROUNDS	64	/* magic value */
 161#define NUM_ITERS	5	/* likewise */
 162
 163static DEFINE_RAW_SPINLOCK(itc_sync_lock);
 164static unsigned long go[SLAVE + 1];
 165
 166#define DEBUG_TICK_SYNC	0
 167
 168static inline long get_delta (long *rt, long *master)
 169{
 170	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 171	unsigned long tcenter, t0, t1, tm;
 172	unsigned long i;
 173
 174	for (i = 0; i < NUM_ITERS; i++) {
 175		t0 = tick_ops->get_tick();
 176		go[MASTER] = 1;
 177		membar_safe("#StoreLoad");
 178		while (!(tm = go[SLAVE]))
 179			rmb();
 180		go[SLAVE] = 0;
 181		wmb();
 182		t1 = tick_ops->get_tick();
 183
 184		if (t1 - t0 < best_t1 - best_t0)
 185			best_t0 = t0, best_t1 = t1, best_tm = tm;
 186	}
 187
 188	*rt = best_t1 - best_t0;
 189	*master = best_tm - best_t0;
 190
 191	/* average best_t0 and best_t1 without overflow: */
 192	tcenter = (best_t0/2 + best_t1/2);
 193	if (best_t0 % 2 + best_t1 % 2 == 2)
 194		tcenter++;
 195	return tcenter - best_tm;
 196}
 197
 198void smp_synchronize_tick_client(void)
 199{
 200	long i, delta, adj, adjust_latency = 0, done = 0;
 201	unsigned long flags, rt, master_time_stamp;
 202#if DEBUG_TICK_SYNC
 203	struct {
 204		long rt;	/* roundtrip time */
 205		long master;	/* master's timestamp */
 206		long diff;	/* difference between midpoint and master's timestamp */
 207		long lat;	/* estimate of itc adjustment latency */
 208	} t[NUM_ROUNDS];
 209#endif
 210
 211	go[MASTER] = 1;
 212
 213	while (go[MASTER])
 214		rmb();
 215
 216	local_irq_save(flags);
 217	{
 218		for (i = 0; i < NUM_ROUNDS; i++) {
 219			delta = get_delta(&rt, &master_time_stamp);
 220			if (delta == 0)
 221				done = 1;	/* let's lock on to this... */
 222
 223			if (!done) {
 224				if (i > 0) {
 225					adjust_latency += -delta;
 226					adj = -delta + adjust_latency/4;
 227				} else
 228					adj = -delta;
 229
 230				tick_ops->add_tick(adj);
 231			}
 232#if DEBUG_TICK_SYNC
 233			t[i].rt = rt;
 234			t[i].master = master_time_stamp;
 235			t[i].diff = delta;
 236			t[i].lat = adjust_latency/4;
 237#endif
 238		}
 239	}
 240	local_irq_restore(flags);
 241
 242#if DEBUG_TICK_SYNC
 243	for (i = 0; i < NUM_ROUNDS; i++)
 244		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 245		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 246#endif
 247
 248	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 249	       "(last diff %ld cycles, maxerr %lu cycles)\n",
 250	       smp_processor_id(), delta, rt);
 251}
 252
 253static void smp_start_sync_tick_client(int cpu);
 254
 255static void smp_synchronize_one_tick(int cpu)
 256{
 257	unsigned long flags, i;
 258
 259	go[MASTER] = 0;
 260
 261	smp_start_sync_tick_client(cpu);
 262
 263	/* wait for client to be ready */
 264	while (!go[MASTER])
 265		rmb();
 266
 267	/* now let the client proceed into his loop */
 268	go[MASTER] = 0;
 269	membar_safe("#StoreLoad");
 270
 271	raw_spin_lock_irqsave(&itc_sync_lock, flags);
 272	{
 273		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 274			while (!go[MASTER])
 275				rmb();
 276			go[MASTER] = 0;
 277			wmb();
 278			go[SLAVE] = tick_ops->get_tick();
 279			membar_safe("#StoreLoad");
 280		}
 281	}
 282	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
 283}
 284
 285#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 286static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
 287				void **descrp)
 288{
 289	extern unsigned long sparc64_ttable_tl0;
 290	extern unsigned long kern_locked_tte_data;
 291	struct hvtramp_descr *hdesc;
 292	unsigned long trampoline_ra;
 293	struct trap_per_cpu *tb;
 294	u64 tte_vaddr, tte_data;
 295	unsigned long hv_err;
 296	int i;
 297
 298	hdesc = kzalloc(sizeof(*hdesc) +
 299			(sizeof(struct hvtramp_mapping) *
 300			 num_kernel_image_mappings - 1),
 301			GFP_KERNEL);
 302	if (!hdesc) {
 303		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 304		       "hvtramp_descr.\n");
 305		return;
 306	}
 307	*descrp = hdesc;
 308
 309	hdesc->cpu = cpu;
 310	hdesc->num_mappings = num_kernel_image_mappings;
 311
 312	tb = &trap_block[cpu];
 313
 314	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 315	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 316
 317	hdesc->thread_reg = thread_reg;
 318
 319	tte_vaddr = (unsigned long) KERNBASE;
 320	tte_data = kern_locked_tte_data;
 321
 322	for (i = 0; i < hdesc->num_mappings; i++) {
 323		hdesc->maps[i].vaddr = tte_vaddr;
 324		hdesc->maps[i].tte   = tte_data;
 325		tte_vaddr += 0x400000;
 326		tte_data  += 0x400000;
 327	}
 328
 329	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 330
 331	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 332				 kimage_addr_to_ra(&sparc64_ttable_tl0),
 333				 __pa(hdesc));
 334	if (hv_err)
 335		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 336		       "gives error %lu\n", hv_err);
 337}
 338#endif
 339
 340extern unsigned long sparc64_cpu_startup;
 341
 342/* The OBP cpu startup callback truncates the 3rd arg cookie to
 343 * 32-bits (I think) so to be safe we have it read the pointer
 344 * contained here so we work on >4GB machines. -DaveM
 345 */
 346static struct thread_info *cpu_new_thread = NULL;
 347
 348static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 349{
 350	unsigned long entry =
 351		(unsigned long)(&sparc64_cpu_startup);
 352	unsigned long cookie =
 353		(unsigned long)(&cpu_new_thread);
 354	void *descr = NULL;
 355	int timeout, ret;
 356
 357	callin_flag = 0;
 358	cpu_new_thread = task_thread_info(idle);
 359
 360	if (tlb_type == hypervisor) {
 361#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 362		if (ldom_domaining_enabled)
 363			ldom_startcpu_cpuid(cpu,
 364					    (unsigned long) cpu_new_thread,
 365					    &descr);
 366		else
 367#endif
 368			prom_startcpu_cpuid(cpu, entry, cookie);
 369	} else {
 370		struct device_node *dp = of_find_node_by_cpuid(cpu);
 371
 372		prom_startcpu(dp->phandle, entry, cookie);
 373	}
 374
 375	for (timeout = 0; timeout < 50000; timeout++) {
 376		if (callin_flag)
 377			break;
 378		udelay(100);
 379	}
 380
 381	if (callin_flag) {
 382		ret = 0;
 383	} else {
 384		printk("Processor %d is stuck.\n", cpu);
 385		ret = -ENODEV;
 386	}
 387	cpu_new_thread = NULL;
 388
 389	kfree(descr);
 390
 391	return ret;
 392}
 393
 394static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 395{
 396	u64 result, target;
 397	int stuck, tmp;
 398
 399	if (this_is_starfire) {
 400		/* map to real upaid */
 401		cpu = (((cpu & 0x3c) << 1) |
 402			((cpu & 0x40) >> 4) |
 403			(cpu & 0x3));
 404	}
 405
 406	target = (cpu << 14) | 0x70;
 407again:
 408	/* Ok, this is the real Spitfire Errata #54.
 409	 * One must read back from a UDB internal register
 410	 * after writes to the UDB interrupt dispatch, but
 411	 * before the membar Sync for that write.
 412	 * So we use the high UDB control register (ASI 0x7f,
 413	 * ADDR 0x20) for the dummy read. -DaveM
 414	 */
 415	tmp = 0x40;
 416	__asm__ __volatile__(
 417	"wrpr	%1, %2, %%pstate\n\t"
 418	"stxa	%4, [%0] %3\n\t"
 419	"stxa	%5, [%0+%8] %3\n\t"
 420	"add	%0, %8, %0\n\t"
 421	"stxa	%6, [%0+%8] %3\n\t"
 422	"membar	#Sync\n\t"
 423	"stxa	%%g0, [%7] %3\n\t"
 424	"membar	#Sync\n\t"
 425	"mov	0x20, %%g1\n\t"
 426	"ldxa	[%%g1] 0x7f, %%g0\n\t"
 427	"membar	#Sync"
 428	: "=r" (tmp)
 429	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 430	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
 431	  "r" (0x10), "0" (tmp)
 432        : "g1");
 433
 434	/* NOTE: PSTATE_IE is still clear. */
 435	stuck = 100000;
 436	do {
 437		__asm__ __volatile__("ldxa [%%g0] %1, %0"
 438			: "=r" (result)
 439			: "i" (ASI_INTR_DISPATCH_STAT));
 440		if (result == 0) {
 441			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 442					     : : "r" (pstate));
 443			return;
 444		}
 445		stuck -= 1;
 446		if (stuck == 0)
 447			break;
 448	} while (result & 0x1);
 449	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 450			     : : "r" (pstate));
 451	if (stuck == 0) {
 452		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 453		       smp_processor_id(), result);
 454	} else {
 455		udelay(2);
 456		goto again;
 457	}
 458}
 459
 460static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 461{
 462	u64 *mondo, data0, data1, data2;
 463	u16 *cpu_list;
 464	u64 pstate;
 465	int i;
 466
 467	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 468	cpu_list = __va(tb->cpu_list_pa);
 469	mondo = __va(tb->cpu_mondo_block_pa);
 470	data0 = mondo[0];
 471	data1 = mondo[1];
 472	data2 = mondo[2];
 473	for (i = 0; i < cnt; i++)
 474		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 475}
 476
 477/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 478 * packet, but we have no use for that.  However we do take advantage of
 479 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 480 */
 481static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 482{
 483	int nack_busy_id, is_jbus, need_more;
 484	u64 *mondo, pstate, ver, busy_mask;
 485	u16 *cpu_list;
 486
 487	cpu_list = __va(tb->cpu_list_pa);
 488	mondo = __va(tb->cpu_mondo_block_pa);
 489
 490	/* Unfortunately, someone at Sun had the brilliant idea to make the
 491	 * busy/nack fields hard-coded by ITID number for this Ultra-III
 492	 * derivative processor.
 493	 */
 494	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 495	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 496		   (ver >> 32) == __SERRANO_ID);
 497
 498	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 499
 500retry:
 501	need_more = 0;
 502	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 503			     : : "r" (pstate), "i" (PSTATE_IE));
 504
 505	/* Setup the dispatch data registers. */
 506	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
 507			     "stxa	%1, [%4] %6\n\t"
 508			     "stxa	%2, [%5] %6\n\t"
 509			     "membar	#Sync\n\t"
 510			     : /* no outputs */
 511			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 512			       "r" (0x40), "r" (0x50), "r" (0x60),
 513			       "i" (ASI_INTR_W));
 514
 515	nack_busy_id = 0;
 516	busy_mask = 0;
 517	{
 518		int i;
 519
 520		for (i = 0; i < cnt; i++) {
 521			u64 target, nr;
 522
 523			nr = cpu_list[i];
 524			if (nr == 0xffff)
 525				continue;
 526
 527			target = (nr << 14) | 0x70;
 528			if (is_jbus) {
 529				busy_mask |= (0x1UL << (nr * 2));
 530			} else {
 531				target |= (nack_busy_id << 24);
 532				busy_mask |= (0x1UL <<
 533					      (nack_busy_id * 2));
 534			}
 535			__asm__ __volatile__(
 536				"stxa	%%g0, [%0] %1\n\t"
 537				"membar	#Sync\n\t"
 538				: /* no outputs */
 539				: "r" (target), "i" (ASI_INTR_W));
 540			nack_busy_id++;
 541			if (nack_busy_id == 32) {
 542				need_more = 1;
 543				break;
 544			}
 545		}
 546	}
 547
 548	/* Now, poll for completion. */
 549	{
 550		u64 dispatch_stat, nack_mask;
 551		long stuck;
 552
 553		stuck = 100000 * nack_busy_id;
 554		nack_mask = busy_mask << 1;
 555		do {
 556			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
 557					     : "=r" (dispatch_stat)
 558					     : "i" (ASI_INTR_DISPATCH_STAT));
 559			if (!(dispatch_stat & (busy_mask | nack_mask))) {
 560				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 561						     : : "r" (pstate));
 562				if (unlikely(need_more)) {
 563					int i, this_cnt = 0;
 564					for (i = 0; i < cnt; i++) {
 565						if (cpu_list[i] == 0xffff)
 566							continue;
 567						cpu_list[i] = 0xffff;
 568						this_cnt++;
 569						if (this_cnt == 32)
 570							break;
 571					}
 572					goto retry;
 573				}
 574				return;
 575			}
 576			if (!--stuck)
 577				break;
 578		} while (dispatch_stat & busy_mask);
 579
 580		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 581				     : : "r" (pstate));
 582
 583		if (dispatch_stat & busy_mask) {
 584			/* Busy bits will not clear, continue instead
 585			 * of freezing up on this cpu.
 586			 */
 587			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 588			       smp_processor_id(), dispatch_stat);
 589		} else {
 590			int i, this_busy_nack = 0;
 591
 592			/* Delay some random time with interrupts enabled
 593			 * to prevent deadlock.
 594			 */
 595			udelay(2 * nack_busy_id);
 596
 597			/* Clear out the mask bits for cpus which did not
 598			 * NACK us.
 599			 */
 600			for (i = 0; i < cnt; i++) {
 601				u64 check_mask, nr;
 602
 603				nr = cpu_list[i];
 604				if (nr == 0xffff)
 605					continue;
 606
 607				if (is_jbus)
 608					check_mask = (0x2UL << (2*nr));
 609				else
 610					check_mask = (0x2UL <<
 611						      this_busy_nack);
 612				if ((dispatch_stat & check_mask) == 0)
 613					cpu_list[i] = 0xffff;
 614				this_busy_nack += 2;
 615				if (this_busy_nack == 64)
 616					break;
 617			}
 618
 619			goto retry;
 620		}
 621	}
 622}
 623
 624/* Multi-cpu list version.  */
 625static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 626{
 627	int retries, this_cpu, prev_sent, i, saw_cpu_error;
 628	unsigned long status;
 629	u16 *cpu_list;
 630
 631	this_cpu = smp_processor_id();
 632
 633	cpu_list = __va(tb->cpu_list_pa);
 634
 635	saw_cpu_error = 0;
 636	retries = 0;
 637	prev_sent = 0;
 638	do {
 639		int forward_progress, n_sent;
 640
 641		status = sun4v_cpu_mondo_send(cnt,
 642					      tb->cpu_list_pa,
 643					      tb->cpu_mondo_block_pa);
 644
 645		/* HV_EOK means all cpus received the xcall, we're done.  */
 646		if (likely(status == HV_EOK))
 647			break;
 648
 649		/* First, see if we made any forward progress.
 650		 *
 651		 * The hypervisor indicates successful sends by setting
 652		 * cpu list entries to the value 0xffff.
 653		 */
 654		n_sent = 0;
 655		for (i = 0; i < cnt; i++) {
 656			if (likely(cpu_list[i] == 0xffff))
 657				n_sent++;
 658		}
 659
 660		forward_progress = 0;
 661		if (n_sent > prev_sent)
 662			forward_progress = 1;
 663
 664		prev_sent = n_sent;
 665
 666		/* If we get a HV_ECPUERROR, then one or more of the cpus
 667		 * in the list are in error state.  Use the cpu_state()
 668		 * hypervisor call to find out which cpus are in error state.
 669		 */
 670		if (unlikely(status == HV_ECPUERROR)) {
 671			for (i = 0; i < cnt; i++) {
 672				long err;
 673				u16 cpu;
 674
 675				cpu = cpu_list[i];
 676				if (cpu == 0xffff)
 677					continue;
 678
 679				err = sun4v_cpu_state(cpu);
 680				if (err == HV_CPU_STATE_ERROR) {
 681					saw_cpu_error = (cpu + 1);
 682					cpu_list[i] = 0xffff;
 683				}
 684			}
 685		} else if (unlikely(status != HV_EWOULDBLOCK))
 686			goto fatal_mondo_error;
 687
 688		/* Don't bother rewriting the CPU list, just leave the
 689		 * 0xffff and non-0xffff entries in there and the
 690		 * hypervisor will do the right thing.
 691		 *
 692		 * Only advance timeout state if we didn't make any
 693		 * forward progress.
 694		 */
 695		if (unlikely(!forward_progress)) {
 696			if (unlikely(++retries > 10000))
 697				goto fatal_mondo_timeout;
 698
 699			/* Delay a little bit to let other cpus catch up
 700			 * on their cpu mondo queue work.
 701			 */
 702			udelay(2 * cnt);
 703		}
 704	} while (1);
 705
 706	if (unlikely(saw_cpu_error))
 707		goto fatal_mondo_cpu_error;
 708
 709	return;
 710
 711fatal_mondo_cpu_error:
 712	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 713	       "(including %d) were in error state\n",
 714	       this_cpu, saw_cpu_error - 1);
 715	return;
 716
 717fatal_mondo_timeout:
 718	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 719	       " progress after %d retries.\n",
 720	       this_cpu, retries);
 721	goto dump_cpu_list_and_out;
 722
 723fatal_mondo_error:
 724	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 725	       this_cpu, status);
 726	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 727	       "mondo_block_pa(%lx)\n",
 728	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 729
 730dump_cpu_list_and_out:
 731	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 732	for (i = 0; i < cnt; i++)
 733		printk("%u ", cpu_list[i]);
 734	printk("]\n");
 735}
 736
 737static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 738
 739static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 740{
 741	struct trap_per_cpu *tb;
 742	int this_cpu, i, cnt;
 743	unsigned long flags;
 744	u16 *cpu_list;
 745	u64 *mondo;
 746
 747	/* We have to do this whole thing with interrupts fully disabled.
 748	 * Otherwise if we send an xcall from interrupt context it will
 749	 * corrupt both our mondo block and cpu list state.
 750	 *
 751	 * One consequence of this is that we cannot use timeout mechanisms
 752	 * that depend upon interrupts being delivered locally.  So, for
 753	 * example, we cannot sample jiffies and expect it to advance.
 754	 *
 755	 * Fortunately, udelay() uses %stick/%tick so we can use that.
 756	 */
 757	local_irq_save(flags);
 758
 759	this_cpu = smp_processor_id();
 760	tb = &trap_block[this_cpu];
 761
 762	mondo = __va(tb->cpu_mondo_block_pa);
 763	mondo[0] = data0;
 764	mondo[1] = data1;
 765	mondo[2] = data2;
 766	wmb();
 767
 768	cpu_list = __va(tb->cpu_list_pa);
 769
 770	/* Setup the initial cpu list.  */
 771	cnt = 0;
 772	for_each_cpu(i, mask) {
 773		if (i == this_cpu || !cpu_online(i))
 774			continue;
 775		cpu_list[cnt++] = i;
 776	}
 777
 778	if (cnt)
 779		xcall_deliver_impl(tb, cnt);
 780
 781	local_irq_restore(flags);
 782}
 783
 784/* Send cross call to all processors mentioned in MASK_P
 785 * except self.  Really, there are only two cases currently,
 786 * "cpu_online_mask" and "mm_cpumask(mm)".
 787 */
 788static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 789{
 790	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 791
 792	xcall_deliver(data0, data1, data2, mask);
 793}
 794
 795/* Send cross call to all processors except self. */
 796static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 797{
 798	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 799}
 800
 801extern unsigned long xcall_sync_tick;
 802
 803static void smp_start_sync_tick_client(int cpu)
 804{
 805	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 806		      cpumask_of(cpu));
 807}
 808
 809extern unsigned long xcall_call_function;
 810
 811void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 812{
 813	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 814}
 815
 816extern unsigned long xcall_call_function_single;
 817
 818void arch_send_call_function_single_ipi(int cpu)
 819{
 820	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 821		      cpumask_of(cpu));
 822}
 823
 824void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 825{
 826	clear_softint(1 << irq);
 827	irq_enter();
 828	generic_smp_call_function_interrupt();
 829	irq_exit();
 830}
 831
 832void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 833{
 834	clear_softint(1 << irq);
 835	irq_enter();
 836	generic_smp_call_function_single_interrupt();
 837	irq_exit();
 838}
 839
 840static void tsb_sync(void *info)
 841{
 842	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 843	struct mm_struct *mm = info;
 844
 845	/* It is not valid to test "current->active_mm == mm" here.
 846	 *
 847	 * The value of "current" is not changed atomically with
 848	 * switch_mm().  But that's OK, we just need to check the
 849	 * current cpu's trap block PGD physical address.
 850	 */
 851	if (tp->pgd_paddr == __pa(mm->pgd))
 852		tsb_context_switch(mm);
 853}
 854
 855void smp_tsb_sync(struct mm_struct *mm)
 856{
 857	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 858}
 859
 860extern unsigned long xcall_flush_tlb_mm;
 861extern unsigned long xcall_flush_tlb_page;
 862extern unsigned long xcall_flush_tlb_kernel_range;
 863extern unsigned long xcall_fetch_glob_regs;
 864extern unsigned long xcall_fetch_glob_pmu;
 865extern unsigned long xcall_fetch_glob_pmu_n4;
 866extern unsigned long xcall_receive_signal;
 867extern unsigned long xcall_new_mmu_context_version;
 868#ifdef CONFIG_KGDB
 869extern unsigned long xcall_kgdb_capture;
 870#endif
 871
 872#ifdef DCACHE_ALIASING_POSSIBLE
 873extern unsigned long xcall_flush_dcache_page_cheetah;
 874#endif
 875extern unsigned long xcall_flush_dcache_page_spitfire;
 876
 877static inline void __local_flush_dcache_page(struct page *page)
 878{
 879#ifdef DCACHE_ALIASING_POSSIBLE
 880	__flush_dcache_page(page_address(page),
 881			    ((tlb_type == spitfire) &&
 882			     page_mapping(page) != NULL));
 883#else
 884	if (page_mapping(page) != NULL &&
 885	    tlb_type == spitfire)
 886		__flush_icache_page(__pa(page_address(page)));
 887#endif
 888}
 889
 890void smp_flush_dcache_page_impl(struct page *page, int cpu)
 891{
 892	int this_cpu;
 893
 894	if (tlb_type == hypervisor)
 895		return;
 896
 897#ifdef CONFIG_DEBUG_DCFLUSH
 898	atomic_inc(&dcpage_flushes);
 899#endif
 900
 901	this_cpu = get_cpu();
 902
 903	if (cpu == this_cpu) {
 904		__local_flush_dcache_page(page);
 905	} else if (cpu_online(cpu)) {
 906		void *pg_addr = page_address(page);
 907		u64 data0 = 0;
 908
 909		if (tlb_type == spitfire) {
 910			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 911			if (page_mapping(page) != NULL)
 912				data0 |= ((u64)1 << 32);
 913		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 914#ifdef DCACHE_ALIASING_POSSIBLE
 915			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
 916#endif
 917		}
 918		if (data0) {
 919			xcall_deliver(data0, __pa(pg_addr),
 920				      (u64) pg_addr, cpumask_of(cpu));
 921#ifdef CONFIG_DEBUG_DCFLUSH
 922			atomic_inc(&dcpage_flushes_xcall);
 923#endif
 924		}
 925	}
 926
 927	put_cpu();
 928}
 929
 930void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 931{
 932	void *pg_addr;
 933	u64 data0;
 934
 935	if (tlb_type == hypervisor)
 936		return;
 937
 938	preempt_disable();
 939
 940#ifdef CONFIG_DEBUG_DCFLUSH
 941	atomic_inc(&dcpage_flushes);
 942#endif
 943	data0 = 0;
 944	pg_addr = page_address(page);
 945	if (tlb_type == spitfire) {
 946		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 947		if (page_mapping(page) != NULL)
 948			data0 |= ((u64)1 << 32);
 949	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 950#ifdef DCACHE_ALIASING_POSSIBLE
 951		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 952#endif
 953	}
 954	if (data0) {
 955		xcall_deliver(data0, __pa(pg_addr),
 956			      (u64) pg_addr, cpu_online_mask);
 957#ifdef CONFIG_DEBUG_DCFLUSH
 958		atomic_inc(&dcpage_flushes_xcall);
 959#endif
 960	}
 961	__local_flush_dcache_page(page);
 962
 963	preempt_enable();
 964}
 965
 966void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 967{
 968	struct mm_struct *mm;
 969	unsigned long flags;
 970
 971	clear_softint(1 << irq);
 972
 973	/* See if we need to allocate a new TLB context because
 974	 * the version of the one we are using is now out of date.
 975	 */
 976	mm = current->active_mm;
 977	if (unlikely(!mm || (mm == &init_mm)))
 978		return;
 979
 980	spin_lock_irqsave(&mm->context.lock, flags);
 981
 982	if (unlikely(!CTX_VALID(mm->context)))
 983		get_new_mmu_context(mm);
 984
 985	spin_unlock_irqrestore(&mm->context.lock, flags);
 986
 987	load_secondary_context(mm);
 988	__flush_tlb_mm(CTX_HWBITS(mm->context),
 989		       SECONDARY_CONTEXT);
 990}
 991
 992void smp_new_mmu_context_version(void)
 993{
 994	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 995}
 996
 997#ifdef CONFIG_KGDB
 998void kgdb_roundup_cpus(unsigned long flags)
 999{
1000	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1001}
1002#endif
1003
1004void smp_fetch_global_regs(void)
1005{
1006	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1007}
1008
1009void smp_fetch_global_pmu(void)
1010{
1011	if (tlb_type == hypervisor &&
1012	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1013		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1014	else
1015		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1016}
1017
1018/* We know that the window frames of the user have been flushed
1019 * to the stack before we get here because all callers of us
1020 * are flush_tlb_*() routines, and these run after flush_cache_*()
1021 * which performs the flushw.
1022 *
1023 * The SMP TLB coherency scheme we use works as follows:
1024 *
1025 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1026 *    space has (potentially) executed on, this is the heuristic
1027 *    we use to avoid doing cross calls.
1028 *
1029 *    Also, for flushing from kswapd and also for clones, we
1030 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1031 *
1032 * 2) TLB context numbers are shared globally across all processors
1033 *    in the system, this allows us to play several games to avoid
1034 *    cross calls.
1035 *
1036 *    One invariant is that when a cpu switches to a process, and
1037 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1038 *    current cpu's bit set, that tlb context is flushed locally.
1039 *
1040 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1041 *    cross calls when we want to flush the currently running process's
1042 *    tlb state.  This is done by clearing all cpu bits except the current
1043 *    processor's in current->mm->cpu_vm_mask and performing the
1044 *    flush locally only.  This will force any subsequent cpus which run
1045 *    this task to flush the context from the local tlb if the process
1046 *    migrates to another cpu (again).
1047 *
1048 * 3) For shared address spaces (threads) and swapping we bite the
1049 *    bullet for most cases and perform the cross call (but only to
1050 *    the cpus listed in cpu_vm_mask).
1051 *
1052 *    The performance gain from "optimizing" away the cross call for threads is
1053 *    questionable (in theory the big win for threads is the massive sharing of
1054 *    address space state across processors).
1055 */
1056
1057/* This currently is only used by the hugetlb arch pre-fault
1058 * hook on UltraSPARC-III+ and later when changing the pagesize
1059 * bits of the context register for an address space.
1060 */
1061void smp_flush_tlb_mm(struct mm_struct *mm)
1062{
1063	u32 ctx = CTX_HWBITS(mm->context);
1064	int cpu = get_cpu();
1065
1066	if (atomic_read(&mm->mm_users) == 1) {
1067		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1068		goto local_flush_and_out;
1069	}
1070
1071	smp_cross_call_masked(&xcall_flush_tlb_mm,
1072			      ctx, 0, 0,
1073			      mm_cpumask(mm));
1074
1075local_flush_and_out:
1076	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1077
1078	put_cpu();
1079}
1080
1081struct tlb_pending_info {
1082	unsigned long ctx;
1083	unsigned long nr;
1084	unsigned long *vaddrs;
1085};
1086
1087static void tlb_pending_func(void *info)
1088{
1089	struct tlb_pending_info *t = info;
1090
1091	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1092}
1093
1094void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1095{
1096	u32 ctx = CTX_HWBITS(mm->context);
1097	struct tlb_pending_info info;
1098	int cpu = get_cpu();
1099
1100	info.ctx = ctx;
1101	info.nr = nr;
1102	info.vaddrs = vaddrs;
1103
1104	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1105		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1106	else
1107		smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1108				       &info, 1);
1109
1110	__flush_tlb_pending(ctx, nr, vaddrs);
1111
1112	put_cpu();
1113}
1114
1115void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1116{
1117	unsigned long context = CTX_HWBITS(mm->context);
1118	int cpu = get_cpu();
1119
1120	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1121		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1122	else
1123		smp_cross_call_masked(&xcall_flush_tlb_page,
1124				      context, vaddr, 0,
1125				      mm_cpumask(mm));
1126	__flush_tlb_page(context, vaddr);
1127
1128	put_cpu();
1129}
1130
1131void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1132{
1133	start &= PAGE_MASK;
1134	end    = PAGE_ALIGN(end);
1135	if (start != end) {
1136		smp_cross_call(&xcall_flush_tlb_kernel_range,
1137			       0, start, end);
1138
1139		__flush_tlb_kernel_range(start, end);
1140	}
1141}
1142
1143/* CPU capture. */
1144/* #define CAPTURE_DEBUG */
1145extern unsigned long xcall_capture;
1146
1147static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1148static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1149static unsigned long penguins_are_doing_time;
1150
1151void smp_capture(void)
1152{
1153	int result = atomic_add_return(1, &smp_capture_depth);
1154
1155	if (result == 1) {
1156		int ncpus = num_online_cpus();
1157
1158#ifdef CAPTURE_DEBUG
1159		printk("CPU[%d]: Sending penguins to jail...",
1160		       smp_processor_id());
1161#endif
1162		penguins_are_doing_time = 1;
1163		atomic_inc(&smp_capture_registry);
1164		smp_cross_call(&xcall_capture, 0, 0, 0);
1165		while (atomic_read(&smp_capture_registry) != ncpus)
1166			rmb();
1167#ifdef CAPTURE_DEBUG
1168		printk("done\n");
1169#endif
1170	}
1171}
1172
1173void smp_release(void)
1174{
1175	if (atomic_dec_and_test(&smp_capture_depth)) {
1176#ifdef CAPTURE_DEBUG
1177		printk("CPU[%d]: Giving pardon to "
1178		       "imprisoned penguins\n",
1179		       smp_processor_id());
1180#endif
1181		penguins_are_doing_time = 0;
1182		membar_safe("#StoreLoad");
1183		atomic_dec(&smp_capture_registry);
1184	}
1185}
1186
1187/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1188 * set, so they can service tlb flush xcalls...
1189 */
1190extern void prom_world(int);
1191
1192void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1193{
1194	clear_softint(1 << irq);
1195
1196	preempt_disable();
1197
1198	__asm__ __volatile__("flushw");
1199	prom_world(1);
1200	atomic_inc(&smp_capture_registry);
1201	membar_safe("#StoreLoad");
1202	while (penguins_are_doing_time)
1203		rmb();
1204	atomic_dec(&smp_capture_registry);
1205	prom_world(0);
1206
1207	preempt_enable();
1208}
1209
1210/* /proc/profile writes can call this, don't __init it please. */
1211int setup_profiling_timer(unsigned int multiplier)
1212{
1213	return -EINVAL;
1214}
1215
1216void __init smp_prepare_cpus(unsigned int max_cpus)
1217{
1218}
1219
1220void smp_prepare_boot_cpu(void)
1221{
1222}
1223
1224void __init smp_setup_processor_id(void)
1225{
1226	if (tlb_type == spitfire)
1227		xcall_deliver_impl = spitfire_xcall_deliver;
1228	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1229		xcall_deliver_impl = cheetah_xcall_deliver;
1230	else
1231		xcall_deliver_impl = hypervisor_xcall_deliver;
1232}
1233
1234void __init smp_fill_in_cpu_possible_map(void)
1235{
1236	int possible_cpus = num_possible_cpus();
1237	int i;
1238
1239	if (possible_cpus > nr_cpu_ids)
1240		possible_cpus = nr_cpu_ids;
1241
1242	for (i = 0; i < possible_cpus; i++)
1243		set_cpu_possible(i, true);
1244	for (; i < NR_CPUS; i++)
1245		set_cpu_possible(i, false);
1246}
1247
1248void smp_fill_in_sib_core_maps(void)
1249{
1250	unsigned int i;
1251
1252	for_each_present_cpu(i) {
1253		unsigned int j;
1254
1255		cpumask_clear(&cpu_core_map[i]);
1256		if (cpu_data(i).core_id == 0) {
1257			cpumask_set_cpu(i, &cpu_core_map[i]);
1258			continue;
1259		}
1260
1261		for_each_present_cpu(j) {
1262			if (cpu_data(i).core_id ==
1263			    cpu_data(j).core_id)
1264				cpumask_set_cpu(j, &cpu_core_map[i]);
1265		}
1266	}
1267
1268	for_each_present_cpu(i)  {
1269		unsigned int j;
1270
1271		for_each_present_cpu(j)  {
1272			if (cpu_data(i).max_cache_id ==
1273			    cpu_data(j).max_cache_id)
1274				cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1275
1276			if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1277				cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1278		}
1279	}
1280
1281	for_each_present_cpu(i) {
1282		unsigned int j;
1283
1284		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1285		if (cpu_data(i).proc_id == -1) {
1286			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1287			continue;
1288		}
1289
1290		for_each_present_cpu(j) {
1291			if (cpu_data(i).proc_id ==
1292			    cpu_data(j).proc_id)
1293				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1294		}
1295	}
1296}
1297
1298int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1299{
1300	int ret = smp_boot_one_cpu(cpu, tidle);
1301
1302	if (!ret) {
1303		cpumask_set_cpu(cpu, &smp_commenced_mask);
1304		while (!cpu_online(cpu))
1305			mb();
1306		if (!cpu_online(cpu)) {
1307			ret = -ENODEV;
1308		} else {
1309			/* On SUN4V, writes to %tick and %stick are
1310			 * not allowed.
1311			 */
1312			if (tlb_type != hypervisor)
1313				smp_synchronize_one_tick(cpu);
1314		}
1315	}
1316	return ret;
1317}
1318
1319#ifdef CONFIG_HOTPLUG_CPU
1320void cpu_play_dead(void)
1321{
1322	int cpu = smp_processor_id();
1323	unsigned long pstate;
1324
1325	idle_task_exit();
1326
1327	if (tlb_type == hypervisor) {
1328		struct trap_per_cpu *tb = &trap_block[cpu];
1329
1330		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1331				tb->cpu_mondo_pa, 0);
1332		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1333				tb->dev_mondo_pa, 0);
1334		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1335				tb->resum_mondo_pa, 0);
1336		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1337				tb->nonresum_mondo_pa, 0);
1338	}
1339
1340	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1341	membar_safe("#Sync");
1342
1343	local_irq_disable();
1344
1345	__asm__ __volatile__(
1346		"rdpr	%%pstate, %0\n\t"
1347		"wrpr	%0, %1, %%pstate"
1348		: "=r" (pstate)
1349		: "i" (PSTATE_IE));
1350
1351	while (1)
1352		barrier();
1353}
1354
1355int __cpu_disable(void)
1356{
1357	int cpu = smp_processor_id();
1358	cpuinfo_sparc *c;
1359	int i;
1360
1361	for_each_cpu(i, &cpu_core_map[cpu])
1362		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1363	cpumask_clear(&cpu_core_map[cpu]);
1364
1365	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1366		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1367	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1368
1369	c = &cpu_data(cpu);
1370
1371	c->core_id = 0;
1372	c->proc_id = -1;
1373
1374	smp_wmb();
1375
1376	/* Make sure no interrupts point to this cpu.  */
1377	fixup_irqs();
1378
1379	local_irq_enable();
1380	mdelay(1);
1381	local_irq_disable();
1382
1383	set_cpu_online(cpu, false);
1384
1385	cpu_map_rebuild();
1386
1387	return 0;
1388}
1389
1390void __cpu_die(unsigned int cpu)
1391{
1392	int i;
1393
1394	for (i = 0; i < 100; i++) {
1395		smp_rmb();
1396		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1397			break;
1398		msleep(100);
1399	}
1400	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1401		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1402	} else {
1403#if defined(CONFIG_SUN_LDOMS)
1404		unsigned long hv_err;
1405		int limit = 100;
1406
1407		do {
1408			hv_err = sun4v_cpu_stop(cpu);
1409			if (hv_err == HV_EOK) {
1410				set_cpu_present(cpu, false);
1411				break;
1412			}
1413		} while (--limit > 0);
1414		if (limit <= 0) {
1415			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1416			       hv_err);
1417		}
1418#endif
1419	}
1420}
1421#endif
1422
1423void __init smp_cpus_done(unsigned int max_cpus)
1424{
1425}
1426
1427void smp_send_reschedule(int cpu)
1428{
1429	if (cpu == smp_processor_id()) {
1430		WARN_ON_ONCE(preemptible());
1431		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1432	} else {
1433		xcall_deliver((u64) &xcall_receive_signal,
1434			      0, 0, cpumask_of(cpu));
1435	}
1436}
1437
1438void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1439{
1440	clear_softint(1 << irq);
1441	scheduler_ipi();
1442}
1443
1444static void stop_this_cpu(void *dummy)
1445{
1446	prom_stopself();
1447}
1448
1449void smp_send_stop(void)
1450{
1451	int cpu;
1452
1453	if (tlb_type == hypervisor) {
1454		for_each_online_cpu(cpu) {
1455			if (cpu == smp_processor_id())
1456				continue;
1457#ifdef CONFIG_SUN_LDOMS
1458			if (ldom_domaining_enabled) {
1459				unsigned long hv_err;
1460				hv_err = sun4v_cpu_stop(cpu);
1461				if (hv_err)
1462					printk(KERN_ERR "sun4v_cpu_stop() "
1463					       "failed err=%lu\n", hv_err);
1464			} else
1465#endif
1466				prom_stopcpu_cpuid(cpu);
1467		}
1468	} else
1469		smp_call_function(stop_this_cpu, NULL, 0);
1470}
1471
1472/**
1473 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1474 * @cpu: cpu to allocate for
1475 * @size: size allocation in bytes
1476 * @align: alignment
1477 *
1478 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1479 * does the right thing for NUMA regardless of the current
1480 * configuration.
1481 *
1482 * RETURNS:
1483 * Pointer to the allocated area on success, NULL on failure.
1484 */
1485static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1486					size_t align)
1487{
1488	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1489#ifdef CONFIG_NEED_MULTIPLE_NODES
1490	int node = cpu_to_node(cpu);
1491	void *ptr;
1492
1493	if (!node_online(node) || !NODE_DATA(node)) {
1494		ptr = __alloc_bootmem(size, align, goal);
1495		pr_info("cpu %d has no node %d or node-local memory\n",
1496			cpu, node);
1497		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1498			 cpu, size, __pa(ptr));
1499	} else {
1500		ptr = __alloc_bootmem_node(NODE_DATA(node),
1501					   size, align, goal);
1502		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1503			 "%016lx\n", cpu, size, node, __pa(ptr));
1504	}
1505	return ptr;
1506#else
1507	return __alloc_bootmem(size, align, goal);
1508#endif
1509}
1510
1511static void __init pcpu_free_bootmem(void *ptr, size_t size)
1512{
1513	free_bootmem(__pa(ptr), size);
1514}
1515
1516static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1517{
1518	if (cpu_to_node(from) == cpu_to_node(to))
1519		return LOCAL_DISTANCE;
1520	else
1521		return REMOTE_DISTANCE;
1522}
1523
1524static void __init pcpu_populate_pte(unsigned long addr)
1525{
1526	pgd_t *pgd = pgd_offset_k(addr);
1527	pud_t *pud;
1528	pmd_t *pmd;
1529
1530	if (pgd_none(*pgd)) {
1531		pud_t *new;
1532
1533		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1534		pgd_populate(&init_mm, pgd, new);
1535	}
1536
1537	pud = pud_offset(pgd, addr);
1538	if (pud_none(*pud)) {
1539		pmd_t *new;
1540
1541		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1542		pud_populate(&init_mm, pud, new);
1543	}
1544
1545	pmd = pmd_offset(pud, addr);
1546	if (!pmd_present(*pmd)) {
1547		pte_t *new;
1548
1549		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1550		pmd_populate_kernel(&init_mm, pmd, new);
1551	}
1552}
1553
1554void __init setup_per_cpu_areas(void)
1555{
1556	unsigned long delta;
1557	unsigned int cpu;
1558	int rc = -EINVAL;
1559
1560	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1561		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1562					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1563					    pcpu_cpu_distance,
1564					    pcpu_alloc_bootmem,
1565					    pcpu_free_bootmem);
1566		if (rc)
1567			pr_warning("PERCPU: %s allocator failed (%d), "
1568				   "falling back to page size\n",
1569				   pcpu_fc_names[pcpu_chosen_fc], rc);
1570	}
1571	if (rc < 0)
1572		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1573					   pcpu_alloc_bootmem,
1574					   pcpu_free_bootmem,
1575					   pcpu_populate_pte);
1576	if (rc < 0)
1577		panic("cannot initialize percpu area (err=%d)", rc);
1578
1579	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1580	for_each_possible_cpu(cpu)
1581		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1582
1583	/* Setup %g5 for the boot cpu.  */
1584	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1585
1586	of_fill_in_cpu_data();
1587	if (tlb_type == hypervisor)
1588		mdesc_fill_in_cpu_data(cpu_all_mask);
1589}