Loading...
1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11#include <linux/timekeeper_internal.h>
12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/syscore_ops.h>
19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
23#include <linux/stop_machine.h>
24#include <linux/pvclock_gtod.h>
25#include <linux/compiler.h>
26
27#include "tick-internal.h"
28#include "ntp_internal.h"
29#include "timekeeping_internal.h"
30
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
33#define TK_CLOCK_WAS_SET (1 << 2)
34
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45static struct timekeeper shadow_timekeeper;
46
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
62static struct tk_fast tk_fast_raw ____cacheline_aligned;
63
64/* flag for if timekeeping is suspended */
65int __read_mostly timekeeping_suspended;
66
67static inline void tk_normalize_xtime(struct timekeeper *tk)
68{
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 tk->xtime_sec++;
72 }
73}
74
75static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76{
77 struct timespec64 ts;
78
79 ts.tv_sec = tk->xtime_sec;
80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 return ts;
82}
83
84static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85{
86 tk->xtime_sec = ts->tv_sec;
87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88}
89
90static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91{
92 tk->xtime_sec += ts->tv_sec;
93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 tk_normalize_xtime(tk);
95}
96
97static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98{
99 struct timespec64 tmp;
100
101 /*
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
104 */
105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 -tk->wall_to_monotonic.tv_nsec);
107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108 tk->wall_to_monotonic = wtm;
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112}
113
114static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115{
116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
117}
118
119#ifdef CONFIG_DEBUG_TIMEKEEPING
120#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121
122static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123{
124
125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 const char *name = tk->tkr_mono.clock->name;
127
128 if (offset > max_cycles) {
129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 offset, name, max_cycles);
131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 } else {
133 if (offset > (max_cycles >> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 offset, name, max_cycles >> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 }
138 }
139
140 if (tk->underflow_seen) {
141 if (jiffies - tk->last_warning > WARNING_FREQ) {
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
145 tk->last_warning = jiffies;
146 }
147 tk->underflow_seen = 0;
148 }
149
150 if (tk->overflow_seen) {
151 if (jiffies - tk->last_warning > WARNING_FREQ) {
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
155 tk->last_warning = jiffies;
156 }
157 tk->overflow_seen = 0;
158 }
159}
160
161static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162{
163 struct timekeeper *tk = &tk_core.timekeeper;
164 cycle_t now, last, mask, max, delta;
165 unsigned int seq;
166
167 /*
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
173 */
174 do {
175 seq = read_seqcount_begin(&tk_core.seq);
176 now = tkr->read(tkr->clock);
177 last = tkr->cycle_last;
178 mask = tkr->mask;
179 max = tkr->clock->max_cycles;
180 } while (read_seqcount_retry(&tk_core.seq, seq));
181
182 delta = clocksource_delta(now, last, mask);
183
184 /*
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
187 */
188 if (unlikely((~delta & mask) < (mask >> 3))) {
189 tk->underflow_seen = 1;
190 delta = 0;
191 }
192
193 /* Cap delta value to the max_cycles values to avoid mult overflows */
194 if (unlikely(delta > max)) {
195 tk->overflow_seen = 1;
196 delta = tkr->clock->max_cycles;
197 }
198
199 return delta;
200}
201#else
202static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203{
204}
205static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206{
207 cycle_t cycle_now, delta;
208
209 /* read clocksource */
210 cycle_now = tkr->read(tkr->clock);
211
212 /* calculate the delta since the last update_wall_time */
213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215 return delta;
216}
217#endif
218
219/**
220 * tk_setup_internals - Set up internals to use clocksource clock.
221 *
222 * @tk: The target timekeeper to setup.
223 * @clock: Pointer to clocksource.
224 *
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
227 *
228 * Unless you're the timekeeping code, you should not be using this!
229 */
230static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231{
232 cycle_t interval;
233 u64 tmp, ntpinterval;
234 struct clocksource *old_clock;
235
236 ++tk->cs_was_changed_seq;
237 old_clock = tk->tkr_mono.clock;
238 tk->tkr_mono.clock = clock;
239 tk->tkr_mono.read = clock->read;
240 tk->tkr_mono.mask = clock->mask;
241 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242
243 tk->tkr_raw.clock = clock;
244 tk->tkr_raw.read = clock->read;
245 tk->tkr_raw.mask = clock->mask;
246 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247
248 /* Do the ns -> cycle conversion first, using original mult */
249 tmp = NTP_INTERVAL_LENGTH;
250 tmp <<= clock->shift;
251 ntpinterval = tmp;
252 tmp += clock->mult/2;
253 do_div(tmp, clock->mult);
254 if (tmp == 0)
255 tmp = 1;
256
257 interval = (cycle_t) tmp;
258 tk->cycle_interval = interval;
259
260 /* Go back from cycles -> shifted ns */
261 tk->xtime_interval = (u64) interval * clock->mult;
262 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263 tk->raw_interval =
264 ((u64) interval * clock->mult) >> clock->shift;
265
266 /* if changing clocks, convert xtime_nsec shift units */
267 if (old_clock) {
268 int shift_change = clock->shift - old_clock->shift;
269 if (shift_change < 0)
270 tk->tkr_mono.xtime_nsec >>= -shift_change;
271 else
272 tk->tkr_mono.xtime_nsec <<= shift_change;
273 }
274 tk->tkr_raw.xtime_nsec = 0;
275
276 tk->tkr_mono.shift = clock->shift;
277 tk->tkr_raw.shift = clock->shift;
278
279 tk->ntp_error = 0;
280 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
281 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
282
283 /*
284 * The timekeeper keeps its own mult values for the currently
285 * active clocksource. These value will be adjusted via NTP
286 * to counteract clock drifting.
287 */
288 tk->tkr_mono.mult = clock->mult;
289 tk->tkr_raw.mult = clock->mult;
290 tk->ntp_err_mult = 0;
291}
292
293/* Timekeeper helper functions. */
294
295#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
296static u32 default_arch_gettimeoffset(void) { return 0; }
297u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
298#else
299static inline u32 arch_gettimeoffset(void) { return 0; }
300#endif
301
302static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
303 cycle_t delta)
304{
305 s64 nsec;
306
307 nsec = delta * tkr->mult + tkr->xtime_nsec;
308 nsec >>= tkr->shift;
309
310 /* If arch requires, add in get_arch_timeoffset() */
311 return nsec + arch_gettimeoffset();
312}
313
314static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
315{
316 cycle_t delta;
317
318 delta = timekeeping_get_delta(tkr);
319 return timekeeping_delta_to_ns(tkr, delta);
320}
321
322static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
323 cycle_t cycles)
324{
325 cycle_t delta;
326
327 /* calculate the delta since the last update_wall_time */
328 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
329 return timekeeping_delta_to_ns(tkr, delta);
330}
331
332/**
333 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
334 * @tkr: Timekeeping readout base from which we take the update
335 *
336 * We want to use this from any context including NMI and tracing /
337 * instrumenting the timekeeping code itself.
338 *
339 * Employ the latch technique; see @raw_write_seqcount_latch.
340 *
341 * So if a NMI hits the update of base[0] then it will use base[1]
342 * which is still consistent. In the worst case this can result is a
343 * slightly wrong timestamp (a few nanoseconds). See
344 * @ktime_get_mono_fast_ns.
345 */
346static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
347{
348 struct tk_read_base *base = tkf->base;
349
350 /* Force readers off to base[1] */
351 raw_write_seqcount_latch(&tkf->seq);
352
353 /* Update base[0] */
354 memcpy(base, tkr, sizeof(*base));
355
356 /* Force readers back to base[0] */
357 raw_write_seqcount_latch(&tkf->seq);
358
359 /* Update base[1] */
360 memcpy(base + 1, base, sizeof(*base));
361}
362
363/**
364 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
365 *
366 * This timestamp is not guaranteed to be monotonic across an update.
367 * The timestamp is calculated by:
368 *
369 * now = base_mono + clock_delta * slope
370 *
371 * So if the update lowers the slope, readers who are forced to the
372 * not yet updated second array are still using the old steeper slope.
373 *
374 * tmono
375 * ^
376 * | o n
377 * | o n
378 * | u
379 * | o
380 * |o
381 * |12345678---> reader order
382 *
383 * o = old slope
384 * u = update
385 * n = new slope
386 *
387 * So reader 6 will observe time going backwards versus reader 5.
388 *
389 * While other CPUs are likely to be able observe that, the only way
390 * for a CPU local observation is when an NMI hits in the middle of
391 * the update. Timestamps taken from that NMI context might be ahead
392 * of the following timestamps. Callers need to be aware of that and
393 * deal with it.
394 */
395static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
396{
397 struct tk_read_base *tkr;
398 unsigned int seq;
399 u64 now;
400
401 do {
402 seq = raw_read_seqcount_latch(&tkf->seq);
403 tkr = tkf->base + (seq & 0x01);
404 now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
405 } while (read_seqcount_retry(&tkf->seq, seq));
406
407 return now;
408}
409
410u64 ktime_get_mono_fast_ns(void)
411{
412 return __ktime_get_fast_ns(&tk_fast_mono);
413}
414EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
415
416u64 ktime_get_raw_fast_ns(void)
417{
418 return __ktime_get_fast_ns(&tk_fast_raw);
419}
420EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
421
422/* Suspend-time cycles value for halted fast timekeeper. */
423static cycle_t cycles_at_suspend;
424
425static cycle_t dummy_clock_read(struct clocksource *cs)
426{
427 return cycles_at_suspend;
428}
429
430/**
431 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
432 * @tk: Timekeeper to snapshot.
433 *
434 * It generally is unsafe to access the clocksource after timekeeping has been
435 * suspended, so take a snapshot of the readout base of @tk and use it as the
436 * fast timekeeper's readout base while suspended. It will return the same
437 * number of cycles every time until timekeeping is resumed at which time the
438 * proper readout base for the fast timekeeper will be restored automatically.
439 */
440static void halt_fast_timekeeper(struct timekeeper *tk)
441{
442 static struct tk_read_base tkr_dummy;
443 struct tk_read_base *tkr = &tk->tkr_mono;
444
445 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
446 cycles_at_suspend = tkr->read(tkr->clock);
447 tkr_dummy.read = dummy_clock_read;
448 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
449
450 tkr = &tk->tkr_raw;
451 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
452 tkr_dummy.read = dummy_clock_read;
453 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
454}
455
456#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
457
458static inline void update_vsyscall(struct timekeeper *tk)
459{
460 struct timespec xt, wm;
461
462 xt = timespec64_to_timespec(tk_xtime(tk));
463 wm = timespec64_to_timespec(tk->wall_to_monotonic);
464 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
465 tk->tkr_mono.cycle_last);
466}
467
468static inline void old_vsyscall_fixup(struct timekeeper *tk)
469{
470 s64 remainder;
471
472 /*
473 * Store only full nanoseconds into xtime_nsec after rounding
474 * it up and add the remainder to the error difference.
475 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
476 * by truncating the remainder in vsyscalls. However, it causes
477 * additional work to be done in timekeeping_adjust(). Once
478 * the vsyscall implementations are converted to use xtime_nsec
479 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
480 * users are removed, this can be killed.
481 */
482 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
483 tk->tkr_mono.xtime_nsec -= remainder;
484 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
485 tk->ntp_error += remainder << tk->ntp_error_shift;
486 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
487}
488#else
489#define old_vsyscall_fixup(tk)
490#endif
491
492static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
493
494static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
495{
496 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
497}
498
499/**
500 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
501 */
502int pvclock_gtod_register_notifier(struct notifier_block *nb)
503{
504 struct timekeeper *tk = &tk_core.timekeeper;
505 unsigned long flags;
506 int ret;
507
508 raw_spin_lock_irqsave(&timekeeper_lock, flags);
509 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
510 update_pvclock_gtod(tk, true);
511 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
512
513 return ret;
514}
515EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
516
517/**
518 * pvclock_gtod_unregister_notifier - unregister a pvclock
519 * timedata update listener
520 */
521int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
522{
523 unsigned long flags;
524 int ret;
525
526 raw_spin_lock_irqsave(&timekeeper_lock, flags);
527 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
528 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
529
530 return ret;
531}
532EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
533
534/*
535 * tk_update_leap_state - helper to update the next_leap_ktime
536 */
537static inline void tk_update_leap_state(struct timekeeper *tk)
538{
539 tk->next_leap_ktime = ntp_get_next_leap();
540 if (tk->next_leap_ktime.tv64 != KTIME_MAX)
541 /* Convert to monotonic time */
542 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
543}
544
545/*
546 * Update the ktime_t based scalar nsec members of the timekeeper
547 */
548static inline void tk_update_ktime_data(struct timekeeper *tk)
549{
550 u64 seconds;
551 u32 nsec;
552
553 /*
554 * The xtime based monotonic readout is:
555 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
556 * The ktime based monotonic readout is:
557 * nsec = base_mono + now();
558 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
559 */
560 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
561 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
562 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
563
564 /* Update the monotonic raw base */
565 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
566
567 /*
568 * The sum of the nanoseconds portions of xtime and
569 * wall_to_monotonic can be greater/equal one second. Take
570 * this into account before updating tk->ktime_sec.
571 */
572 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
573 if (nsec >= NSEC_PER_SEC)
574 seconds++;
575 tk->ktime_sec = seconds;
576}
577
578/* must hold timekeeper_lock */
579static void timekeeping_update(struct timekeeper *tk, unsigned int action)
580{
581 if (action & TK_CLEAR_NTP) {
582 tk->ntp_error = 0;
583 ntp_clear();
584 }
585
586 tk_update_leap_state(tk);
587 tk_update_ktime_data(tk);
588
589 update_vsyscall(tk);
590 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
591
592 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
593 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
594
595 if (action & TK_CLOCK_WAS_SET)
596 tk->clock_was_set_seq++;
597 /*
598 * The mirroring of the data to the shadow-timekeeper needs
599 * to happen last here to ensure we don't over-write the
600 * timekeeper structure on the next update with stale data
601 */
602 if (action & TK_MIRROR)
603 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
604 sizeof(tk_core.timekeeper));
605}
606
607/**
608 * timekeeping_forward_now - update clock to the current time
609 *
610 * Forward the current clock to update its state since the last call to
611 * update_wall_time(). This is useful before significant clock changes,
612 * as it avoids having to deal with this time offset explicitly.
613 */
614static void timekeeping_forward_now(struct timekeeper *tk)
615{
616 struct clocksource *clock = tk->tkr_mono.clock;
617 cycle_t cycle_now, delta;
618 s64 nsec;
619
620 cycle_now = tk->tkr_mono.read(clock);
621 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
622 tk->tkr_mono.cycle_last = cycle_now;
623 tk->tkr_raw.cycle_last = cycle_now;
624
625 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
626
627 /* If arch requires, add in get_arch_timeoffset() */
628 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
629
630 tk_normalize_xtime(tk);
631
632 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
633 timespec64_add_ns(&tk->raw_time, nsec);
634}
635
636/**
637 * __getnstimeofday64 - Returns the time of day in a timespec64.
638 * @ts: pointer to the timespec to be set
639 *
640 * Updates the time of day in the timespec.
641 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
642 */
643int __getnstimeofday64(struct timespec64 *ts)
644{
645 struct timekeeper *tk = &tk_core.timekeeper;
646 unsigned long seq;
647 s64 nsecs = 0;
648
649 do {
650 seq = read_seqcount_begin(&tk_core.seq);
651
652 ts->tv_sec = tk->xtime_sec;
653 nsecs = timekeeping_get_ns(&tk->tkr_mono);
654
655 } while (read_seqcount_retry(&tk_core.seq, seq));
656
657 ts->tv_nsec = 0;
658 timespec64_add_ns(ts, nsecs);
659
660 /*
661 * Do not bail out early, in case there were callers still using
662 * the value, even in the face of the WARN_ON.
663 */
664 if (unlikely(timekeeping_suspended))
665 return -EAGAIN;
666 return 0;
667}
668EXPORT_SYMBOL(__getnstimeofday64);
669
670/**
671 * getnstimeofday64 - Returns the time of day in a timespec64.
672 * @ts: pointer to the timespec64 to be set
673 *
674 * Returns the time of day in a timespec64 (WARN if suspended).
675 */
676void getnstimeofday64(struct timespec64 *ts)
677{
678 WARN_ON(__getnstimeofday64(ts));
679}
680EXPORT_SYMBOL(getnstimeofday64);
681
682ktime_t ktime_get(void)
683{
684 struct timekeeper *tk = &tk_core.timekeeper;
685 unsigned int seq;
686 ktime_t base;
687 s64 nsecs;
688
689 WARN_ON(timekeeping_suspended);
690
691 do {
692 seq = read_seqcount_begin(&tk_core.seq);
693 base = tk->tkr_mono.base;
694 nsecs = timekeeping_get_ns(&tk->tkr_mono);
695
696 } while (read_seqcount_retry(&tk_core.seq, seq));
697
698 return ktime_add_ns(base, nsecs);
699}
700EXPORT_SYMBOL_GPL(ktime_get);
701
702u32 ktime_get_resolution_ns(void)
703{
704 struct timekeeper *tk = &tk_core.timekeeper;
705 unsigned int seq;
706 u32 nsecs;
707
708 WARN_ON(timekeeping_suspended);
709
710 do {
711 seq = read_seqcount_begin(&tk_core.seq);
712 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
713 } while (read_seqcount_retry(&tk_core.seq, seq));
714
715 return nsecs;
716}
717EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
718
719static ktime_t *offsets[TK_OFFS_MAX] = {
720 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
721 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
722 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
723};
724
725ktime_t ktime_get_with_offset(enum tk_offsets offs)
726{
727 struct timekeeper *tk = &tk_core.timekeeper;
728 unsigned int seq;
729 ktime_t base, *offset = offsets[offs];
730 s64 nsecs;
731
732 WARN_ON(timekeeping_suspended);
733
734 do {
735 seq = read_seqcount_begin(&tk_core.seq);
736 base = ktime_add(tk->tkr_mono.base, *offset);
737 nsecs = timekeeping_get_ns(&tk->tkr_mono);
738
739 } while (read_seqcount_retry(&tk_core.seq, seq));
740
741 return ktime_add_ns(base, nsecs);
742
743}
744EXPORT_SYMBOL_GPL(ktime_get_with_offset);
745
746/**
747 * ktime_mono_to_any() - convert mononotic time to any other time
748 * @tmono: time to convert.
749 * @offs: which offset to use
750 */
751ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
752{
753 ktime_t *offset = offsets[offs];
754 unsigned long seq;
755 ktime_t tconv;
756
757 do {
758 seq = read_seqcount_begin(&tk_core.seq);
759 tconv = ktime_add(tmono, *offset);
760 } while (read_seqcount_retry(&tk_core.seq, seq));
761
762 return tconv;
763}
764EXPORT_SYMBOL_GPL(ktime_mono_to_any);
765
766/**
767 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
768 */
769ktime_t ktime_get_raw(void)
770{
771 struct timekeeper *tk = &tk_core.timekeeper;
772 unsigned int seq;
773 ktime_t base;
774 s64 nsecs;
775
776 do {
777 seq = read_seqcount_begin(&tk_core.seq);
778 base = tk->tkr_raw.base;
779 nsecs = timekeeping_get_ns(&tk->tkr_raw);
780
781 } while (read_seqcount_retry(&tk_core.seq, seq));
782
783 return ktime_add_ns(base, nsecs);
784}
785EXPORT_SYMBOL_GPL(ktime_get_raw);
786
787/**
788 * ktime_get_ts64 - get the monotonic clock in timespec64 format
789 * @ts: pointer to timespec variable
790 *
791 * The function calculates the monotonic clock from the realtime
792 * clock and the wall_to_monotonic offset and stores the result
793 * in normalized timespec64 format in the variable pointed to by @ts.
794 */
795void ktime_get_ts64(struct timespec64 *ts)
796{
797 struct timekeeper *tk = &tk_core.timekeeper;
798 struct timespec64 tomono;
799 s64 nsec;
800 unsigned int seq;
801
802 WARN_ON(timekeeping_suspended);
803
804 do {
805 seq = read_seqcount_begin(&tk_core.seq);
806 ts->tv_sec = tk->xtime_sec;
807 nsec = timekeeping_get_ns(&tk->tkr_mono);
808 tomono = tk->wall_to_monotonic;
809
810 } while (read_seqcount_retry(&tk_core.seq, seq));
811
812 ts->tv_sec += tomono.tv_sec;
813 ts->tv_nsec = 0;
814 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
815}
816EXPORT_SYMBOL_GPL(ktime_get_ts64);
817
818/**
819 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
820 *
821 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
822 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
823 * works on both 32 and 64 bit systems. On 32 bit systems the readout
824 * covers ~136 years of uptime which should be enough to prevent
825 * premature wrap arounds.
826 */
827time64_t ktime_get_seconds(void)
828{
829 struct timekeeper *tk = &tk_core.timekeeper;
830
831 WARN_ON(timekeeping_suspended);
832 return tk->ktime_sec;
833}
834EXPORT_SYMBOL_GPL(ktime_get_seconds);
835
836/**
837 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
838 *
839 * Returns the wall clock seconds since 1970. This replaces the
840 * get_seconds() interface which is not y2038 safe on 32bit systems.
841 *
842 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
843 * 32bit systems the access must be protected with the sequence
844 * counter to provide "atomic" access to the 64bit tk->xtime_sec
845 * value.
846 */
847time64_t ktime_get_real_seconds(void)
848{
849 struct timekeeper *tk = &tk_core.timekeeper;
850 time64_t seconds;
851 unsigned int seq;
852
853 if (IS_ENABLED(CONFIG_64BIT))
854 return tk->xtime_sec;
855
856 do {
857 seq = read_seqcount_begin(&tk_core.seq);
858 seconds = tk->xtime_sec;
859
860 } while (read_seqcount_retry(&tk_core.seq, seq));
861
862 return seconds;
863}
864EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
865
866/**
867 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
868 * but without the sequence counter protect. This internal function
869 * is called just when timekeeping lock is already held.
870 */
871time64_t __ktime_get_real_seconds(void)
872{
873 struct timekeeper *tk = &tk_core.timekeeper;
874
875 return tk->xtime_sec;
876}
877
878/**
879 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
880 * @systime_snapshot: pointer to struct receiving the system time snapshot
881 */
882void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
883{
884 struct timekeeper *tk = &tk_core.timekeeper;
885 unsigned long seq;
886 ktime_t base_raw;
887 ktime_t base_real;
888 s64 nsec_raw;
889 s64 nsec_real;
890 cycle_t now;
891
892 WARN_ON_ONCE(timekeeping_suspended);
893
894 do {
895 seq = read_seqcount_begin(&tk_core.seq);
896
897 now = tk->tkr_mono.read(tk->tkr_mono.clock);
898 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
899 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
900 base_real = ktime_add(tk->tkr_mono.base,
901 tk_core.timekeeper.offs_real);
902 base_raw = tk->tkr_raw.base;
903 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
904 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
905 } while (read_seqcount_retry(&tk_core.seq, seq));
906
907 systime_snapshot->cycles = now;
908 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
909 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
910}
911EXPORT_SYMBOL_GPL(ktime_get_snapshot);
912
913/* Scale base by mult/div checking for overflow */
914static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
915{
916 u64 tmp, rem;
917
918 tmp = div64_u64_rem(*base, div, &rem);
919
920 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
921 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
922 return -EOVERFLOW;
923 tmp *= mult;
924 rem *= mult;
925
926 do_div(rem, div);
927 *base = tmp + rem;
928 return 0;
929}
930
931/**
932 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
933 * @history: Snapshot representing start of history
934 * @partial_history_cycles: Cycle offset into history (fractional part)
935 * @total_history_cycles: Total history length in cycles
936 * @discontinuity: True indicates clock was set on history period
937 * @ts: Cross timestamp that should be adjusted using
938 * partial/total ratio
939 *
940 * Helper function used by get_device_system_crosststamp() to correct the
941 * crosstimestamp corresponding to the start of the current interval to the
942 * system counter value (timestamp point) provided by the driver. The
943 * total_history_* quantities are the total history starting at the provided
944 * reference point and ending at the start of the current interval. The cycle
945 * count between the driver timestamp point and the start of the current
946 * interval is partial_history_cycles.
947 */
948static int adjust_historical_crosststamp(struct system_time_snapshot *history,
949 cycle_t partial_history_cycles,
950 cycle_t total_history_cycles,
951 bool discontinuity,
952 struct system_device_crosststamp *ts)
953{
954 struct timekeeper *tk = &tk_core.timekeeper;
955 u64 corr_raw, corr_real;
956 bool interp_forward;
957 int ret;
958
959 if (total_history_cycles == 0 || partial_history_cycles == 0)
960 return 0;
961
962 /* Interpolate shortest distance from beginning or end of history */
963 interp_forward = partial_history_cycles > total_history_cycles/2 ?
964 true : false;
965 partial_history_cycles = interp_forward ?
966 total_history_cycles - partial_history_cycles :
967 partial_history_cycles;
968
969 /*
970 * Scale the monotonic raw time delta by:
971 * partial_history_cycles / total_history_cycles
972 */
973 corr_raw = (u64)ktime_to_ns(
974 ktime_sub(ts->sys_monoraw, history->raw));
975 ret = scale64_check_overflow(partial_history_cycles,
976 total_history_cycles, &corr_raw);
977 if (ret)
978 return ret;
979
980 /*
981 * If there is a discontinuity in the history, scale monotonic raw
982 * correction by:
983 * mult(real)/mult(raw) yielding the realtime correction
984 * Otherwise, calculate the realtime correction similar to monotonic
985 * raw calculation
986 */
987 if (discontinuity) {
988 corr_real = mul_u64_u32_div
989 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
990 } else {
991 corr_real = (u64)ktime_to_ns(
992 ktime_sub(ts->sys_realtime, history->real));
993 ret = scale64_check_overflow(partial_history_cycles,
994 total_history_cycles, &corr_real);
995 if (ret)
996 return ret;
997 }
998
999 /* Fixup monotonic raw and real time time values */
1000 if (interp_forward) {
1001 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1002 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1003 } else {
1004 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1005 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1006 }
1007
1008 return 0;
1009}
1010
1011/*
1012 * cycle_between - true if test occurs chronologically between before and after
1013 */
1014static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1015{
1016 if (test > before && test < after)
1017 return true;
1018 if (test < before && before > after)
1019 return true;
1020 return false;
1021}
1022
1023/**
1024 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1025 * @get_time_fn: Callback to get simultaneous device time and
1026 * system counter from the device driver
1027 * @ctx: Context passed to get_time_fn()
1028 * @history_begin: Historical reference point used to interpolate system
1029 * time when counter provided by the driver is before the current interval
1030 * @xtstamp: Receives simultaneously captured system and device time
1031 *
1032 * Reads a timestamp from a device and correlates it to system time
1033 */
1034int get_device_system_crosststamp(int (*get_time_fn)
1035 (ktime_t *device_time,
1036 struct system_counterval_t *sys_counterval,
1037 void *ctx),
1038 void *ctx,
1039 struct system_time_snapshot *history_begin,
1040 struct system_device_crosststamp *xtstamp)
1041{
1042 struct system_counterval_t system_counterval;
1043 struct timekeeper *tk = &tk_core.timekeeper;
1044 cycle_t cycles, now, interval_start;
1045 unsigned int clock_was_set_seq = 0;
1046 ktime_t base_real, base_raw;
1047 s64 nsec_real, nsec_raw;
1048 u8 cs_was_changed_seq;
1049 unsigned long seq;
1050 bool do_interp;
1051 int ret;
1052
1053 do {
1054 seq = read_seqcount_begin(&tk_core.seq);
1055 /*
1056 * Try to synchronously capture device time and a system
1057 * counter value calling back into the device driver
1058 */
1059 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1060 if (ret)
1061 return ret;
1062
1063 /*
1064 * Verify that the clocksource associated with the captured
1065 * system counter value is the same as the currently installed
1066 * timekeeper clocksource
1067 */
1068 if (tk->tkr_mono.clock != system_counterval.cs)
1069 return -ENODEV;
1070 cycles = system_counterval.cycles;
1071
1072 /*
1073 * Check whether the system counter value provided by the
1074 * device driver is on the current timekeeping interval.
1075 */
1076 now = tk->tkr_mono.read(tk->tkr_mono.clock);
1077 interval_start = tk->tkr_mono.cycle_last;
1078 if (!cycle_between(interval_start, cycles, now)) {
1079 clock_was_set_seq = tk->clock_was_set_seq;
1080 cs_was_changed_seq = tk->cs_was_changed_seq;
1081 cycles = interval_start;
1082 do_interp = true;
1083 } else {
1084 do_interp = false;
1085 }
1086
1087 base_real = ktime_add(tk->tkr_mono.base,
1088 tk_core.timekeeper.offs_real);
1089 base_raw = tk->tkr_raw.base;
1090
1091 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1092 system_counterval.cycles);
1093 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1094 system_counterval.cycles);
1095 } while (read_seqcount_retry(&tk_core.seq, seq));
1096
1097 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1098 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1099
1100 /*
1101 * Interpolate if necessary, adjusting back from the start of the
1102 * current interval
1103 */
1104 if (do_interp) {
1105 cycle_t partial_history_cycles, total_history_cycles;
1106 bool discontinuity;
1107
1108 /*
1109 * Check that the counter value occurs after the provided
1110 * history reference and that the history doesn't cross a
1111 * clocksource change
1112 */
1113 if (!history_begin ||
1114 !cycle_between(history_begin->cycles,
1115 system_counterval.cycles, cycles) ||
1116 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1117 return -EINVAL;
1118 partial_history_cycles = cycles - system_counterval.cycles;
1119 total_history_cycles = cycles - history_begin->cycles;
1120 discontinuity =
1121 history_begin->clock_was_set_seq != clock_was_set_seq;
1122
1123 ret = adjust_historical_crosststamp(history_begin,
1124 partial_history_cycles,
1125 total_history_cycles,
1126 discontinuity, xtstamp);
1127 if (ret)
1128 return ret;
1129 }
1130
1131 return 0;
1132}
1133EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1134
1135/**
1136 * do_gettimeofday - Returns the time of day in a timeval
1137 * @tv: pointer to the timeval to be set
1138 *
1139 * NOTE: Users should be converted to using getnstimeofday()
1140 */
1141void do_gettimeofday(struct timeval *tv)
1142{
1143 struct timespec64 now;
1144
1145 getnstimeofday64(&now);
1146 tv->tv_sec = now.tv_sec;
1147 tv->tv_usec = now.tv_nsec/1000;
1148}
1149EXPORT_SYMBOL(do_gettimeofday);
1150
1151/**
1152 * do_settimeofday64 - Sets the time of day.
1153 * @ts: pointer to the timespec64 variable containing the new time
1154 *
1155 * Sets the time of day to the new time and update NTP and notify hrtimers
1156 */
1157int do_settimeofday64(const struct timespec64 *ts)
1158{
1159 struct timekeeper *tk = &tk_core.timekeeper;
1160 struct timespec64 ts_delta, xt;
1161 unsigned long flags;
1162 int ret = 0;
1163
1164 if (!timespec64_valid_strict(ts))
1165 return -EINVAL;
1166
1167 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1168 write_seqcount_begin(&tk_core.seq);
1169
1170 timekeeping_forward_now(tk);
1171
1172 xt = tk_xtime(tk);
1173 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1174 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1175
1176 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1177 ret = -EINVAL;
1178 goto out;
1179 }
1180
1181 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1182
1183 tk_set_xtime(tk, ts);
1184out:
1185 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1186
1187 write_seqcount_end(&tk_core.seq);
1188 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1189
1190 /* signal hrtimers about time change */
1191 clock_was_set();
1192
1193 return ret;
1194}
1195EXPORT_SYMBOL(do_settimeofday64);
1196
1197/**
1198 * timekeeping_inject_offset - Adds or subtracts from the current time.
1199 * @tv: pointer to the timespec variable containing the offset
1200 *
1201 * Adds or subtracts an offset value from the current time.
1202 */
1203int timekeeping_inject_offset(struct timespec *ts)
1204{
1205 struct timekeeper *tk = &tk_core.timekeeper;
1206 unsigned long flags;
1207 struct timespec64 ts64, tmp;
1208 int ret = 0;
1209
1210 if (!timespec_inject_offset_valid(ts))
1211 return -EINVAL;
1212
1213 ts64 = timespec_to_timespec64(*ts);
1214
1215 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1216 write_seqcount_begin(&tk_core.seq);
1217
1218 timekeeping_forward_now(tk);
1219
1220 /* Make sure the proposed value is valid */
1221 tmp = timespec64_add(tk_xtime(tk), ts64);
1222 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1223 !timespec64_valid_strict(&tmp)) {
1224 ret = -EINVAL;
1225 goto error;
1226 }
1227
1228 tk_xtime_add(tk, &ts64);
1229 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1230
1231error: /* even if we error out, we forwarded the time, so call update */
1232 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1233
1234 write_seqcount_end(&tk_core.seq);
1235 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1236
1237 /* signal hrtimers about time change */
1238 clock_was_set();
1239
1240 return ret;
1241}
1242EXPORT_SYMBOL(timekeeping_inject_offset);
1243
1244
1245/**
1246 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1247 *
1248 */
1249s32 timekeeping_get_tai_offset(void)
1250{
1251 struct timekeeper *tk = &tk_core.timekeeper;
1252 unsigned int seq;
1253 s32 ret;
1254
1255 do {
1256 seq = read_seqcount_begin(&tk_core.seq);
1257 ret = tk->tai_offset;
1258 } while (read_seqcount_retry(&tk_core.seq, seq));
1259
1260 return ret;
1261}
1262
1263/**
1264 * __timekeeping_set_tai_offset - Lock free worker function
1265 *
1266 */
1267static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1268{
1269 tk->tai_offset = tai_offset;
1270 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1271}
1272
1273/**
1274 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1275 *
1276 */
1277void timekeeping_set_tai_offset(s32 tai_offset)
1278{
1279 struct timekeeper *tk = &tk_core.timekeeper;
1280 unsigned long flags;
1281
1282 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1283 write_seqcount_begin(&tk_core.seq);
1284 __timekeeping_set_tai_offset(tk, tai_offset);
1285 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1286 write_seqcount_end(&tk_core.seq);
1287 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1288 clock_was_set();
1289}
1290
1291/**
1292 * change_clocksource - Swaps clocksources if a new one is available
1293 *
1294 * Accumulates current time interval and initializes new clocksource
1295 */
1296static int change_clocksource(void *data)
1297{
1298 struct timekeeper *tk = &tk_core.timekeeper;
1299 struct clocksource *new, *old;
1300 unsigned long flags;
1301
1302 new = (struct clocksource *) data;
1303
1304 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1305 write_seqcount_begin(&tk_core.seq);
1306
1307 timekeeping_forward_now(tk);
1308 /*
1309 * If the cs is in module, get a module reference. Succeeds
1310 * for built-in code (owner == NULL) as well.
1311 */
1312 if (try_module_get(new->owner)) {
1313 if (!new->enable || new->enable(new) == 0) {
1314 old = tk->tkr_mono.clock;
1315 tk_setup_internals(tk, new);
1316 if (old->disable)
1317 old->disable(old);
1318 module_put(old->owner);
1319 } else {
1320 module_put(new->owner);
1321 }
1322 }
1323 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1324
1325 write_seqcount_end(&tk_core.seq);
1326 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1327
1328 return 0;
1329}
1330
1331/**
1332 * timekeeping_notify - Install a new clock source
1333 * @clock: pointer to the clock source
1334 *
1335 * This function is called from clocksource.c after a new, better clock
1336 * source has been registered. The caller holds the clocksource_mutex.
1337 */
1338int timekeeping_notify(struct clocksource *clock)
1339{
1340 struct timekeeper *tk = &tk_core.timekeeper;
1341
1342 if (tk->tkr_mono.clock == clock)
1343 return 0;
1344 stop_machine(change_clocksource, clock, NULL);
1345 tick_clock_notify();
1346 return tk->tkr_mono.clock == clock ? 0 : -1;
1347}
1348
1349/**
1350 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1351 * @ts: pointer to the timespec64 to be set
1352 *
1353 * Returns the raw monotonic time (completely un-modified by ntp)
1354 */
1355void getrawmonotonic64(struct timespec64 *ts)
1356{
1357 struct timekeeper *tk = &tk_core.timekeeper;
1358 struct timespec64 ts64;
1359 unsigned long seq;
1360 s64 nsecs;
1361
1362 do {
1363 seq = read_seqcount_begin(&tk_core.seq);
1364 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1365 ts64 = tk->raw_time;
1366
1367 } while (read_seqcount_retry(&tk_core.seq, seq));
1368
1369 timespec64_add_ns(&ts64, nsecs);
1370 *ts = ts64;
1371}
1372EXPORT_SYMBOL(getrawmonotonic64);
1373
1374
1375/**
1376 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1377 */
1378int timekeeping_valid_for_hres(void)
1379{
1380 struct timekeeper *tk = &tk_core.timekeeper;
1381 unsigned long seq;
1382 int ret;
1383
1384 do {
1385 seq = read_seqcount_begin(&tk_core.seq);
1386
1387 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1388
1389 } while (read_seqcount_retry(&tk_core.seq, seq));
1390
1391 return ret;
1392}
1393
1394/**
1395 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1396 */
1397u64 timekeeping_max_deferment(void)
1398{
1399 struct timekeeper *tk = &tk_core.timekeeper;
1400 unsigned long seq;
1401 u64 ret;
1402
1403 do {
1404 seq = read_seqcount_begin(&tk_core.seq);
1405
1406 ret = tk->tkr_mono.clock->max_idle_ns;
1407
1408 } while (read_seqcount_retry(&tk_core.seq, seq));
1409
1410 return ret;
1411}
1412
1413/**
1414 * read_persistent_clock - Return time from the persistent clock.
1415 *
1416 * Weak dummy function for arches that do not yet support it.
1417 * Reads the time from the battery backed persistent clock.
1418 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1419 *
1420 * XXX - Do be sure to remove it once all arches implement it.
1421 */
1422void __weak read_persistent_clock(struct timespec *ts)
1423{
1424 ts->tv_sec = 0;
1425 ts->tv_nsec = 0;
1426}
1427
1428void __weak read_persistent_clock64(struct timespec64 *ts64)
1429{
1430 struct timespec ts;
1431
1432 read_persistent_clock(&ts);
1433 *ts64 = timespec_to_timespec64(ts);
1434}
1435
1436/**
1437 * read_boot_clock64 - Return time of the system start.
1438 *
1439 * Weak dummy function for arches that do not yet support it.
1440 * Function to read the exact time the system has been started.
1441 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1442 *
1443 * XXX - Do be sure to remove it once all arches implement it.
1444 */
1445void __weak read_boot_clock64(struct timespec64 *ts)
1446{
1447 ts->tv_sec = 0;
1448 ts->tv_nsec = 0;
1449}
1450
1451/* Flag for if timekeeping_resume() has injected sleeptime */
1452static bool sleeptime_injected;
1453
1454/* Flag for if there is a persistent clock on this platform */
1455static bool persistent_clock_exists;
1456
1457/*
1458 * timekeeping_init - Initializes the clocksource and common timekeeping values
1459 */
1460void __init timekeeping_init(void)
1461{
1462 struct timekeeper *tk = &tk_core.timekeeper;
1463 struct clocksource *clock;
1464 unsigned long flags;
1465 struct timespec64 now, boot, tmp;
1466
1467 read_persistent_clock64(&now);
1468 if (!timespec64_valid_strict(&now)) {
1469 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1470 " Check your CMOS/BIOS settings.\n");
1471 now.tv_sec = 0;
1472 now.tv_nsec = 0;
1473 } else if (now.tv_sec || now.tv_nsec)
1474 persistent_clock_exists = true;
1475
1476 read_boot_clock64(&boot);
1477 if (!timespec64_valid_strict(&boot)) {
1478 pr_warn("WARNING: Boot clock returned invalid value!\n"
1479 " Check your CMOS/BIOS settings.\n");
1480 boot.tv_sec = 0;
1481 boot.tv_nsec = 0;
1482 }
1483
1484 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1485 write_seqcount_begin(&tk_core.seq);
1486 ntp_init();
1487
1488 clock = clocksource_default_clock();
1489 if (clock->enable)
1490 clock->enable(clock);
1491 tk_setup_internals(tk, clock);
1492
1493 tk_set_xtime(tk, &now);
1494 tk->raw_time.tv_sec = 0;
1495 tk->raw_time.tv_nsec = 0;
1496 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1497 boot = tk_xtime(tk);
1498
1499 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1500 tk_set_wall_to_mono(tk, tmp);
1501
1502 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1503
1504 write_seqcount_end(&tk_core.seq);
1505 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1506}
1507
1508/* time in seconds when suspend began for persistent clock */
1509static struct timespec64 timekeeping_suspend_time;
1510
1511/**
1512 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1513 * @delta: pointer to a timespec delta value
1514 *
1515 * Takes a timespec offset measuring a suspend interval and properly
1516 * adds the sleep offset to the timekeeping variables.
1517 */
1518static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1519 struct timespec64 *delta)
1520{
1521 if (!timespec64_valid_strict(delta)) {
1522 printk_deferred(KERN_WARNING
1523 "__timekeeping_inject_sleeptime: Invalid "
1524 "sleep delta value!\n");
1525 return;
1526 }
1527 tk_xtime_add(tk, delta);
1528 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1529 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1530 tk_debug_account_sleep_time(delta);
1531}
1532
1533#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1534/**
1535 * We have three kinds of time sources to use for sleep time
1536 * injection, the preference order is:
1537 * 1) non-stop clocksource
1538 * 2) persistent clock (ie: RTC accessible when irqs are off)
1539 * 3) RTC
1540 *
1541 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1542 * If system has neither 1) nor 2), 3) will be used finally.
1543 *
1544 *
1545 * If timekeeping has injected sleeptime via either 1) or 2),
1546 * 3) becomes needless, so in this case we don't need to call
1547 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1548 * means.
1549 */
1550bool timekeeping_rtc_skipresume(void)
1551{
1552 return sleeptime_injected;
1553}
1554
1555/**
1556 * 1) can be determined whether to use or not only when doing
1557 * timekeeping_resume() which is invoked after rtc_suspend(),
1558 * so we can't skip rtc_suspend() surely if system has 1).
1559 *
1560 * But if system has 2), 2) will definitely be used, so in this
1561 * case we don't need to call rtc_suspend(), and this is what
1562 * timekeeping_rtc_skipsuspend() means.
1563 */
1564bool timekeeping_rtc_skipsuspend(void)
1565{
1566 return persistent_clock_exists;
1567}
1568
1569/**
1570 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1571 * @delta: pointer to a timespec64 delta value
1572 *
1573 * This hook is for architectures that cannot support read_persistent_clock64
1574 * because their RTC/persistent clock is only accessible when irqs are enabled.
1575 * and also don't have an effective nonstop clocksource.
1576 *
1577 * This function should only be called by rtc_resume(), and allows
1578 * a suspend offset to be injected into the timekeeping values.
1579 */
1580void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1581{
1582 struct timekeeper *tk = &tk_core.timekeeper;
1583 unsigned long flags;
1584
1585 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1586 write_seqcount_begin(&tk_core.seq);
1587
1588 timekeeping_forward_now(tk);
1589
1590 __timekeeping_inject_sleeptime(tk, delta);
1591
1592 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1593
1594 write_seqcount_end(&tk_core.seq);
1595 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1596
1597 /* signal hrtimers about time change */
1598 clock_was_set();
1599}
1600#endif
1601
1602/**
1603 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1604 */
1605void timekeeping_resume(void)
1606{
1607 struct timekeeper *tk = &tk_core.timekeeper;
1608 struct clocksource *clock = tk->tkr_mono.clock;
1609 unsigned long flags;
1610 struct timespec64 ts_new, ts_delta;
1611 cycle_t cycle_now, cycle_delta;
1612
1613 sleeptime_injected = false;
1614 read_persistent_clock64(&ts_new);
1615
1616 clockevents_resume();
1617 clocksource_resume();
1618
1619 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1620 write_seqcount_begin(&tk_core.seq);
1621
1622 /*
1623 * After system resumes, we need to calculate the suspended time and
1624 * compensate it for the OS time. There are 3 sources that could be
1625 * used: Nonstop clocksource during suspend, persistent clock and rtc
1626 * device.
1627 *
1628 * One specific platform may have 1 or 2 or all of them, and the
1629 * preference will be:
1630 * suspend-nonstop clocksource -> persistent clock -> rtc
1631 * The less preferred source will only be tried if there is no better
1632 * usable source. The rtc part is handled separately in rtc core code.
1633 */
1634 cycle_now = tk->tkr_mono.read(clock);
1635 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1636 cycle_now > tk->tkr_mono.cycle_last) {
1637 u64 num, max = ULLONG_MAX;
1638 u32 mult = clock->mult;
1639 u32 shift = clock->shift;
1640 s64 nsec = 0;
1641
1642 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1643 tk->tkr_mono.mask);
1644
1645 /*
1646 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1647 * suspended time is too long. In that case we need do the
1648 * 64 bits math carefully
1649 */
1650 do_div(max, mult);
1651 if (cycle_delta > max) {
1652 num = div64_u64(cycle_delta, max);
1653 nsec = (((u64) max * mult) >> shift) * num;
1654 cycle_delta -= num * max;
1655 }
1656 nsec += ((u64) cycle_delta * mult) >> shift;
1657
1658 ts_delta = ns_to_timespec64(nsec);
1659 sleeptime_injected = true;
1660 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1661 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1662 sleeptime_injected = true;
1663 }
1664
1665 if (sleeptime_injected)
1666 __timekeeping_inject_sleeptime(tk, &ts_delta);
1667
1668 /* Re-base the last cycle value */
1669 tk->tkr_mono.cycle_last = cycle_now;
1670 tk->tkr_raw.cycle_last = cycle_now;
1671
1672 tk->ntp_error = 0;
1673 timekeeping_suspended = 0;
1674 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1675 write_seqcount_end(&tk_core.seq);
1676 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1677
1678 touch_softlockup_watchdog();
1679
1680 tick_resume();
1681 hrtimers_resume();
1682}
1683
1684int timekeeping_suspend(void)
1685{
1686 struct timekeeper *tk = &tk_core.timekeeper;
1687 unsigned long flags;
1688 struct timespec64 delta, delta_delta;
1689 static struct timespec64 old_delta;
1690
1691 read_persistent_clock64(&timekeeping_suspend_time);
1692
1693 /*
1694 * On some systems the persistent_clock can not be detected at
1695 * timekeeping_init by its return value, so if we see a valid
1696 * value returned, update the persistent_clock_exists flag.
1697 */
1698 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1699 persistent_clock_exists = true;
1700
1701 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1702 write_seqcount_begin(&tk_core.seq);
1703 timekeeping_forward_now(tk);
1704 timekeeping_suspended = 1;
1705
1706 if (persistent_clock_exists) {
1707 /*
1708 * To avoid drift caused by repeated suspend/resumes,
1709 * which each can add ~1 second drift error,
1710 * try to compensate so the difference in system time
1711 * and persistent_clock time stays close to constant.
1712 */
1713 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1714 delta_delta = timespec64_sub(delta, old_delta);
1715 if (abs(delta_delta.tv_sec) >= 2) {
1716 /*
1717 * if delta_delta is too large, assume time correction
1718 * has occurred and set old_delta to the current delta.
1719 */
1720 old_delta = delta;
1721 } else {
1722 /* Otherwise try to adjust old_system to compensate */
1723 timekeeping_suspend_time =
1724 timespec64_add(timekeeping_suspend_time, delta_delta);
1725 }
1726 }
1727
1728 timekeeping_update(tk, TK_MIRROR);
1729 halt_fast_timekeeper(tk);
1730 write_seqcount_end(&tk_core.seq);
1731 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1732
1733 tick_suspend();
1734 clocksource_suspend();
1735 clockevents_suspend();
1736
1737 return 0;
1738}
1739
1740/* sysfs resume/suspend bits for timekeeping */
1741static struct syscore_ops timekeeping_syscore_ops = {
1742 .resume = timekeeping_resume,
1743 .suspend = timekeeping_suspend,
1744};
1745
1746static int __init timekeeping_init_ops(void)
1747{
1748 register_syscore_ops(&timekeeping_syscore_ops);
1749 return 0;
1750}
1751device_initcall(timekeeping_init_ops);
1752
1753/*
1754 * Apply a multiplier adjustment to the timekeeper
1755 */
1756static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1757 s64 offset,
1758 bool negative,
1759 int adj_scale)
1760{
1761 s64 interval = tk->cycle_interval;
1762 s32 mult_adj = 1;
1763
1764 if (negative) {
1765 mult_adj = -mult_adj;
1766 interval = -interval;
1767 offset = -offset;
1768 }
1769 mult_adj <<= adj_scale;
1770 interval <<= adj_scale;
1771 offset <<= adj_scale;
1772
1773 /*
1774 * So the following can be confusing.
1775 *
1776 * To keep things simple, lets assume mult_adj == 1 for now.
1777 *
1778 * When mult_adj != 1, remember that the interval and offset values
1779 * have been appropriately scaled so the math is the same.
1780 *
1781 * The basic idea here is that we're increasing the multiplier
1782 * by one, this causes the xtime_interval to be incremented by
1783 * one cycle_interval. This is because:
1784 * xtime_interval = cycle_interval * mult
1785 * So if mult is being incremented by one:
1786 * xtime_interval = cycle_interval * (mult + 1)
1787 * Its the same as:
1788 * xtime_interval = (cycle_interval * mult) + cycle_interval
1789 * Which can be shortened to:
1790 * xtime_interval += cycle_interval
1791 *
1792 * So offset stores the non-accumulated cycles. Thus the current
1793 * time (in shifted nanoseconds) is:
1794 * now = (offset * adj) + xtime_nsec
1795 * Now, even though we're adjusting the clock frequency, we have
1796 * to keep time consistent. In other words, we can't jump back
1797 * in time, and we also want to avoid jumping forward in time.
1798 *
1799 * So given the same offset value, we need the time to be the same
1800 * both before and after the freq adjustment.
1801 * now = (offset * adj_1) + xtime_nsec_1
1802 * now = (offset * adj_2) + xtime_nsec_2
1803 * So:
1804 * (offset * adj_1) + xtime_nsec_1 =
1805 * (offset * adj_2) + xtime_nsec_2
1806 * And we know:
1807 * adj_2 = adj_1 + 1
1808 * So:
1809 * (offset * adj_1) + xtime_nsec_1 =
1810 * (offset * (adj_1+1)) + xtime_nsec_2
1811 * (offset * adj_1) + xtime_nsec_1 =
1812 * (offset * adj_1) + offset + xtime_nsec_2
1813 * Canceling the sides:
1814 * xtime_nsec_1 = offset + xtime_nsec_2
1815 * Which gives us:
1816 * xtime_nsec_2 = xtime_nsec_1 - offset
1817 * Which simplfies to:
1818 * xtime_nsec -= offset
1819 *
1820 * XXX - TODO: Doc ntp_error calculation.
1821 */
1822 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1823 /* NTP adjustment caused clocksource mult overflow */
1824 WARN_ON_ONCE(1);
1825 return;
1826 }
1827
1828 tk->tkr_mono.mult += mult_adj;
1829 tk->xtime_interval += interval;
1830 tk->tkr_mono.xtime_nsec -= offset;
1831 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1832}
1833
1834/*
1835 * Calculate the multiplier adjustment needed to match the frequency
1836 * specified by NTP
1837 */
1838static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1839 s64 offset)
1840{
1841 s64 interval = tk->cycle_interval;
1842 s64 xinterval = tk->xtime_interval;
1843 u32 base = tk->tkr_mono.clock->mult;
1844 u32 max = tk->tkr_mono.clock->maxadj;
1845 u32 cur_adj = tk->tkr_mono.mult;
1846 s64 tick_error;
1847 bool negative;
1848 u32 adj_scale;
1849
1850 /* Remove any current error adj from freq calculation */
1851 if (tk->ntp_err_mult)
1852 xinterval -= tk->cycle_interval;
1853
1854 tk->ntp_tick = ntp_tick_length();
1855
1856 /* Calculate current error per tick */
1857 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1858 tick_error -= (xinterval + tk->xtime_remainder);
1859
1860 /* Don't worry about correcting it if its small */
1861 if (likely((tick_error >= 0) && (tick_error <= interval)))
1862 return;
1863
1864 /* preserve the direction of correction */
1865 negative = (tick_error < 0);
1866
1867 /* If any adjustment would pass the max, just return */
1868 if (negative && (cur_adj - 1) <= (base - max))
1869 return;
1870 if (!negative && (cur_adj + 1) >= (base + max))
1871 return;
1872 /*
1873 * Sort out the magnitude of the correction, but
1874 * avoid making so large a correction that we go
1875 * over the max adjustment.
1876 */
1877 adj_scale = 0;
1878 tick_error = abs(tick_error);
1879 while (tick_error > interval) {
1880 u32 adj = 1 << (adj_scale + 1);
1881
1882 /* Check if adjustment gets us within 1 unit from the max */
1883 if (negative && (cur_adj - adj) <= (base - max))
1884 break;
1885 if (!negative && (cur_adj + adj) >= (base + max))
1886 break;
1887
1888 adj_scale++;
1889 tick_error >>= 1;
1890 }
1891
1892 /* scale the corrections */
1893 timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1894}
1895
1896/*
1897 * Adjust the timekeeper's multiplier to the correct frequency
1898 * and also to reduce the accumulated error value.
1899 */
1900static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1901{
1902 /* Correct for the current frequency error */
1903 timekeeping_freqadjust(tk, offset);
1904
1905 /* Next make a small adjustment to fix any cumulative error */
1906 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1907 tk->ntp_err_mult = 1;
1908 timekeeping_apply_adjustment(tk, offset, 0, 0);
1909 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1910 /* Undo any existing error adjustment */
1911 timekeeping_apply_adjustment(tk, offset, 1, 0);
1912 tk->ntp_err_mult = 0;
1913 }
1914
1915 if (unlikely(tk->tkr_mono.clock->maxadj &&
1916 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1917 > tk->tkr_mono.clock->maxadj))) {
1918 printk_once(KERN_WARNING
1919 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1920 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1921 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1922 }
1923
1924 /*
1925 * It may be possible that when we entered this function, xtime_nsec
1926 * was very small. Further, if we're slightly speeding the clocksource
1927 * in the code above, its possible the required corrective factor to
1928 * xtime_nsec could cause it to underflow.
1929 *
1930 * Now, since we already accumulated the second, cannot simply roll
1931 * the accumulated second back, since the NTP subsystem has been
1932 * notified via second_overflow. So instead we push xtime_nsec forward
1933 * by the amount we underflowed, and add that amount into the error.
1934 *
1935 * We'll correct this error next time through this function, when
1936 * xtime_nsec is not as small.
1937 */
1938 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1939 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1940 tk->tkr_mono.xtime_nsec = 0;
1941 tk->ntp_error += neg << tk->ntp_error_shift;
1942 }
1943}
1944
1945/**
1946 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1947 *
1948 * Helper function that accumulates the nsecs greater than a second
1949 * from the xtime_nsec field to the xtime_secs field.
1950 * It also calls into the NTP code to handle leapsecond processing.
1951 *
1952 */
1953static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1954{
1955 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1956 unsigned int clock_set = 0;
1957
1958 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1959 int leap;
1960
1961 tk->tkr_mono.xtime_nsec -= nsecps;
1962 tk->xtime_sec++;
1963
1964 /* Figure out if its a leap sec and apply if needed */
1965 leap = second_overflow(tk->xtime_sec);
1966 if (unlikely(leap)) {
1967 struct timespec64 ts;
1968
1969 tk->xtime_sec += leap;
1970
1971 ts.tv_sec = leap;
1972 ts.tv_nsec = 0;
1973 tk_set_wall_to_mono(tk,
1974 timespec64_sub(tk->wall_to_monotonic, ts));
1975
1976 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1977
1978 clock_set = TK_CLOCK_WAS_SET;
1979 }
1980 }
1981 return clock_set;
1982}
1983
1984/**
1985 * logarithmic_accumulation - shifted accumulation of cycles
1986 *
1987 * This functions accumulates a shifted interval of cycles into
1988 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1989 * loop.
1990 *
1991 * Returns the unconsumed cycles.
1992 */
1993static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1994 u32 shift,
1995 unsigned int *clock_set)
1996{
1997 cycle_t interval = tk->cycle_interval << shift;
1998 u64 raw_nsecs;
1999
2000 /* If the offset is smaller than a shifted interval, do nothing */
2001 if (offset < interval)
2002 return offset;
2003
2004 /* Accumulate one shifted interval */
2005 offset -= interval;
2006 tk->tkr_mono.cycle_last += interval;
2007 tk->tkr_raw.cycle_last += interval;
2008
2009 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2010 *clock_set |= accumulate_nsecs_to_secs(tk);
2011
2012 /* Accumulate raw time */
2013 raw_nsecs = (u64)tk->raw_interval << shift;
2014 raw_nsecs += tk->raw_time.tv_nsec;
2015 if (raw_nsecs >= NSEC_PER_SEC) {
2016 u64 raw_secs = raw_nsecs;
2017 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2018 tk->raw_time.tv_sec += raw_secs;
2019 }
2020 tk->raw_time.tv_nsec = raw_nsecs;
2021
2022 /* Accumulate error between NTP and clock interval */
2023 tk->ntp_error += tk->ntp_tick << shift;
2024 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2025 (tk->ntp_error_shift + shift);
2026
2027 return offset;
2028}
2029
2030/**
2031 * update_wall_time - Uses the current clocksource to increment the wall time
2032 *
2033 */
2034void update_wall_time(void)
2035{
2036 struct timekeeper *real_tk = &tk_core.timekeeper;
2037 struct timekeeper *tk = &shadow_timekeeper;
2038 cycle_t offset;
2039 int shift = 0, maxshift;
2040 unsigned int clock_set = 0;
2041 unsigned long flags;
2042
2043 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2044
2045 /* Make sure we're fully resumed: */
2046 if (unlikely(timekeeping_suspended))
2047 goto out;
2048
2049#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2050 offset = real_tk->cycle_interval;
2051#else
2052 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2053 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2054#endif
2055
2056 /* Check if there's really nothing to do */
2057 if (offset < real_tk->cycle_interval)
2058 goto out;
2059
2060 /* Do some additional sanity checking */
2061 timekeeping_check_update(real_tk, offset);
2062
2063 /*
2064 * With NO_HZ we may have to accumulate many cycle_intervals
2065 * (think "ticks") worth of time at once. To do this efficiently,
2066 * we calculate the largest doubling multiple of cycle_intervals
2067 * that is smaller than the offset. We then accumulate that
2068 * chunk in one go, and then try to consume the next smaller
2069 * doubled multiple.
2070 */
2071 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2072 shift = max(0, shift);
2073 /* Bound shift to one less than what overflows tick_length */
2074 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2075 shift = min(shift, maxshift);
2076 while (offset >= tk->cycle_interval) {
2077 offset = logarithmic_accumulation(tk, offset, shift,
2078 &clock_set);
2079 if (offset < tk->cycle_interval<<shift)
2080 shift--;
2081 }
2082
2083 /* correct the clock when NTP error is too big */
2084 timekeeping_adjust(tk, offset);
2085
2086 /*
2087 * XXX This can be killed once everyone converts
2088 * to the new update_vsyscall.
2089 */
2090 old_vsyscall_fixup(tk);
2091
2092 /*
2093 * Finally, make sure that after the rounding
2094 * xtime_nsec isn't larger than NSEC_PER_SEC
2095 */
2096 clock_set |= accumulate_nsecs_to_secs(tk);
2097
2098 write_seqcount_begin(&tk_core.seq);
2099 /*
2100 * Update the real timekeeper.
2101 *
2102 * We could avoid this memcpy by switching pointers, but that
2103 * requires changes to all other timekeeper usage sites as
2104 * well, i.e. move the timekeeper pointer getter into the
2105 * spinlocked/seqcount protected sections. And we trade this
2106 * memcpy under the tk_core.seq against one before we start
2107 * updating.
2108 */
2109 timekeeping_update(tk, clock_set);
2110 memcpy(real_tk, tk, sizeof(*tk));
2111 /* The memcpy must come last. Do not put anything here! */
2112 write_seqcount_end(&tk_core.seq);
2113out:
2114 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2115 if (clock_set)
2116 /* Have to call _delayed version, since in irq context*/
2117 clock_was_set_delayed();
2118}
2119
2120/**
2121 * getboottime64 - Return the real time of system boot.
2122 * @ts: pointer to the timespec64 to be set
2123 *
2124 * Returns the wall-time of boot in a timespec64.
2125 *
2126 * This is based on the wall_to_monotonic offset and the total suspend
2127 * time. Calls to settimeofday will affect the value returned (which
2128 * basically means that however wrong your real time clock is at boot time,
2129 * you get the right time here).
2130 */
2131void getboottime64(struct timespec64 *ts)
2132{
2133 struct timekeeper *tk = &tk_core.timekeeper;
2134 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2135
2136 *ts = ktime_to_timespec64(t);
2137}
2138EXPORT_SYMBOL_GPL(getboottime64);
2139
2140unsigned long get_seconds(void)
2141{
2142 struct timekeeper *tk = &tk_core.timekeeper;
2143
2144 return tk->xtime_sec;
2145}
2146EXPORT_SYMBOL(get_seconds);
2147
2148struct timespec __current_kernel_time(void)
2149{
2150 struct timekeeper *tk = &tk_core.timekeeper;
2151
2152 return timespec64_to_timespec(tk_xtime(tk));
2153}
2154
2155struct timespec64 current_kernel_time64(void)
2156{
2157 struct timekeeper *tk = &tk_core.timekeeper;
2158 struct timespec64 now;
2159 unsigned long seq;
2160
2161 do {
2162 seq = read_seqcount_begin(&tk_core.seq);
2163
2164 now = tk_xtime(tk);
2165 } while (read_seqcount_retry(&tk_core.seq, seq));
2166
2167 return now;
2168}
2169EXPORT_SYMBOL(current_kernel_time64);
2170
2171struct timespec64 get_monotonic_coarse64(void)
2172{
2173 struct timekeeper *tk = &tk_core.timekeeper;
2174 struct timespec64 now, mono;
2175 unsigned long seq;
2176
2177 do {
2178 seq = read_seqcount_begin(&tk_core.seq);
2179
2180 now = tk_xtime(tk);
2181 mono = tk->wall_to_monotonic;
2182 } while (read_seqcount_retry(&tk_core.seq, seq));
2183
2184 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2185 now.tv_nsec + mono.tv_nsec);
2186
2187 return now;
2188}
2189
2190/*
2191 * Must hold jiffies_lock
2192 */
2193void do_timer(unsigned long ticks)
2194{
2195 jiffies_64 += ticks;
2196 calc_global_load(ticks);
2197}
2198
2199/**
2200 * ktime_get_update_offsets_now - hrtimer helper
2201 * @cwsseq: pointer to check and store the clock was set sequence number
2202 * @offs_real: pointer to storage for monotonic -> realtime offset
2203 * @offs_boot: pointer to storage for monotonic -> boottime offset
2204 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2205 *
2206 * Returns current monotonic time and updates the offsets if the
2207 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2208 * different.
2209 *
2210 * Called from hrtimer_interrupt() or retrigger_next_event()
2211 */
2212ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2213 ktime_t *offs_boot, ktime_t *offs_tai)
2214{
2215 struct timekeeper *tk = &tk_core.timekeeper;
2216 unsigned int seq;
2217 ktime_t base;
2218 u64 nsecs;
2219
2220 do {
2221 seq = read_seqcount_begin(&tk_core.seq);
2222
2223 base = tk->tkr_mono.base;
2224 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2225 base = ktime_add_ns(base, nsecs);
2226
2227 if (*cwsseq != tk->clock_was_set_seq) {
2228 *cwsseq = tk->clock_was_set_seq;
2229 *offs_real = tk->offs_real;
2230 *offs_boot = tk->offs_boot;
2231 *offs_tai = tk->offs_tai;
2232 }
2233
2234 /* Handle leapsecond insertion adjustments */
2235 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2236 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2237
2238 } while (read_seqcount_retry(&tk_core.seq, seq));
2239
2240 return base;
2241}
2242
2243/**
2244 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2245 */
2246int do_adjtimex(struct timex *txc)
2247{
2248 struct timekeeper *tk = &tk_core.timekeeper;
2249 unsigned long flags;
2250 struct timespec64 ts;
2251 s32 orig_tai, tai;
2252 int ret;
2253
2254 /* Validate the data before disabling interrupts */
2255 ret = ntp_validate_timex(txc);
2256 if (ret)
2257 return ret;
2258
2259 if (txc->modes & ADJ_SETOFFSET) {
2260 struct timespec delta;
2261 delta.tv_sec = txc->time.tv_sec;
2262 delta.tv_nsec = txc->time.tv_usec;
2263 if (!(txc->modes & ADJ_NANO))
2264 delta.tv_nsec *= 1000;
2265 ret = timekeeping_inject_offset(&delta);
2266 if (ret)
2267 return ret;
2268 }
2269
2270 getnstimeofday64(&ts);
2271
2272 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2273 write_seqcount_begin(&tk_core.seq);
2274
2275 orig_tai = tai = tk->tai_offset;
2276 ret = __do_adjtimex(txc, &ts, &tai);
2277
2278 if (tai != orig_tai) {
2279 __timekeeping_set_tai_offset(tk, tai);
2280 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2281 }
2282 tk_update_leap_state(tk);
2283
2284 write_seqcount_end(&tk_core.seq);
2285 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2286
2287 if (tai != orig_tai)
2288 clock_was_set();
2289
2290 ntp_notify_cmos_timer();
2291
2292 return ret;
2293}
2294
2295#ifdef CONFIG_NTP_PPS
2296/**
2297 * hardpps() - Accessor function to NTP __hardpps function
2298 */
2299void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2300{
2301 unsigned long flags;
2302
2303 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2304 write_seqcount_begin(&tk_core.seq);
2305
2306 __hardpps(phase_ts, raw_ts);
2307
2308 write_seqcount_end(&tk_core.seq);
2309 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2310}
2311EXPORT_SYMBOL(hardpps);
2312#endif
2313
2314/**
2315 * xtime_update() - advances the timekeeping infrastructure
2316 * @ticks: number of ticks, that have elapsed since the last call.
2317 *
2318 * Must be called with interrupts disabled.
2319 */
2320void xtime_update(unsigned long ticks)
2321{
2322 write_seqlock(&jiffies_lock);
2323 do_timer(ticks);
2324 write_sequnlock(&jiffies_lock);
2325 update_wall_time();
2326}
1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11#include <linux/timekeeper_internal.h>
12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/syscore_ops.h>
19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
23#include <linux/stop_machine.h>
24#include <linux/pvclock_gtod.h>
25#include <linux/compiler.h>
26
27#include "tick-internal.h"
28#include "ntp_internal.h"
29#include "timekeeping_internal.h"
30
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
33#define TK_CLOCK_WAS_SET (1 << 2)
34
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45static struct timekeeper shadow_timekeeper;
46
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
62static struct tk_fast tk_fast_raw ____cacheline_aligned;
63
64/* flag for if timekeeping is suspended */
65int __read_mostly timekeeping_suspended;
66
67static inline void tk_normalize_xtime(struct timekeeper *tk)
68{
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 tk->xtime_sec++;
72 }
73}
74
75static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76{
77 struct timespec64 ts;
78
79 ts.tv_sec = tk->xtime_sec;
80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 return ts;
82}
83
84static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85{
86 tk->xtime_sec = ts->tv_sec;
87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88}
89
90static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91{
92 tk->xtime_sec += ts->tv_sec;
93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 tk_normalize_xtime(tk);
95}
96
97static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98{
99 struct timespec64 tmp;
100
101 /*
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
104 */
105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 -tk->wall_to_monotonic.tv_nsec);
107 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
108 tk->wall_to_monotonic = wtm;
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112}
113
114static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115{
116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
117}
118
119#ifdef CONFIG_DEBUG_TIMEKEEPING
120#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121
122static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
123{
124
125 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
126 const char *name = tk->tkr_mono.clock->name;
127
128 if (offset > max_cycles) {
129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 offset, name, max_cycles);
131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 } else {
133 if (offset > (max_cycles >> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 offset, name, max_cycles >> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 }
138 }
139
140 if (tk->underflow_seen) {
141 if (jiffies - tk->last_warning > WARNING_FREQ) {
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
145 tk->last_warning = jiffies;
146 }
147 tk->underflow_seen = 0;
148 }
149
150 if (tk->overflow_seen) {
151 if (jiffies - tk->last_warning > WARNING_FREQ) {
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
155 tk->last_warning = jiffies;
156 }
157 tk->overflow_seen = 0;
158 }
159}
160
161static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
162{
163 struct timekeeper *tk = &tk_core.timekeeper;
164 u64 now, last, mask, max, delta;
165 unsigned int seq;
166
167 /*
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
173 */
174 do {
175 seq = read_seqcount_begin(&tk_core.seq);
176 now = tkr->read(tkr->clock);
177 last = tkr->cycle_last;
178 mask = tkr->mask;
179 max = tkr->clock->max_cycles;
180 } while (read_seqcount_retry(&tk_core.seq, seq));
181
182 delta = clocksource_delta(now, last, mask);
183
184 /*
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
187 */
188 if (unlikely((~delta & mask) < (mask >> 3))) {
189 tk->underflow_seen = 1;
190 delta = 0;
191 }
192
193 /* Cap delta value to the max_cycles values to avoid mult overflows */
194 if (unlikely(delta > max)) {
195 tk->overflow_seen = 1;
196 delta = tkr->clock->max_cycles;
197 }
198
199 return delta;
200}
201#else
202static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
203{
204}
205static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
206{
207 u64 cycle_now, delta;
208
209 /* read clocksource */
210 cycle_now = tkr->read(tkr->clock);
211
212 /* calculate the delta since the last update_wall_time */
213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215 return delta;
216}
217#endif
218
219/**
220 * tk_setup_internals - Set up internals to use clocksource clock.
221 *
222 * @tk: The target timekeeper to setup.
223 * @clock: Pointer to clocksource.
224 *
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
227 *
228 * Unless you're the timekeeping code, you should not be using this!
229 */
230static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231{
232 u64 interval;
233 u64 tmp, ntpinterval;
234 struct clocksource *old_clock;
235
236 ++tk->cs_was_changed_seq;
237 old_clock = tk->tkr_mono.clock;
238 tk->tkr_mono.clock = clock;
239 tk->tkr_mono.read = clock->read;
240 tk->tkr_mono.mask = clock->mask;
241 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242
243 tk->tkr_raw.clock = clock;
244 tk->tkr_raw.read = clock->read;
245 tk->tkr_raw.mask = clock->mask;
246 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247
248 /* Do the ns -> cycle conversion first, using original mult */
249 tmp = NTP_INTERVAL_LENGTH;
250 tmp <<= clock->shift;
251 ntpinterval = tmp;
252 tmp += clock->mult/2;
253 do_div(tmp, clock->mult);
254 if (tmp == 0)
255 tmp = 1;
256
257 interval = (u64) tmp;
258 tk->cycle_interval = interval;
259
260 /* Go back from cycles -> shifted ns */
261 tk->xtime_interval = interval * clock->mult;
262 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263 tk->raw_interval = (interval * clock->mult) >> clock->shift;
264
265 /* if changing clocks, convert xtime_nsec shift units */
266 if (old_clock) {
267 int shift_change = clock->shift - old_clock->shift;
268 if (shift_change < 0)
269 tk->tkr_mono.xtime_nsec >>= -shift_change;
270 else
271 tk->tkr_mono.xtime_nsec <<= shift_change;
272 }
273 tk->tkr_raw.xtime_nsec = 0;
274
275 tk->tkr_mono.shift = clock->shift;
276 tk->tkr_raw.shift = clock->shift;
277
278 tk->ntp_error = 0;
279 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281
282 /*
283 * The timekeeper keeps its own mult values for the currently
284 * active clocksource. These value will be adjusted via NTP
285 * to counteract clock drifting.
286 */
287 tk->tkr_mono.mult = clock->mult;
288 tk->tkr_raw.mult = clock->mult;
289 tk->ntp_err_mult = 0;
290}
291
292/* Timekeeper helper functions. */
293
294#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295static u32 default_arch_gettimeoffset(void) { return 0; }
296u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297#else
298static inline u32 arch_gettimeoffset(void) { return 0; }
299#endif
300
301static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
302{
303 u64 nsec;
304
305 nsec = delta * tkr->mult + tkr->xtime_nsec;
306 nsec >>= tkr->shift;
307
308 /* If arch requires, add in get_arch_timeoffset() */
309 return nsec + arch_gettimeoffset();
310}
311
312static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
313{
314 u64 delta;
315
316 delta = timekeeping_get_delta(tkr);
317 return timekeeping_delta_to_ns(tkr, delta);
318}
319
320static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
321{
322 u64 delta;
323
324 /* calculate the delta since the last update_wall_time */
325 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
326 return timekeeping_delta_to_ns(tkr, delta);
327}
328
329/**
330 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
331 * @tkr: Timekeeping readout base from which we take the update
332 *
333 * We want to use this from any context including NMI and tracing /
334 * instrumenting the timekeeping code itself.
335 *
336 * Employ the latch technique; see @raw_write_seqcount_latch.
337 *
338 * So if a NMI hits the update of base[0] then it will use base[1]
339 * which is still consistent. In the worst case this can result is a
340 * slightly wrong timestamp (a few nanoseconds). See
341 * @ktime_get_mono_fast_ns.
342 */
343static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
344{
345 struct tk_read_base *base = tkf->base;
346
347 /* Force readers off to base[1] */
348 raw_write_seqcount_latch(&tkf->seq);
349
350 /* Update base[0] */
351 memcpy(base, tkr, sizeof(*base));
352
353 /* Force readers back to base[0] */
354 raw_write_seqcount_latch(&tkf->seq);
355
356 /* Update base[1] */
357 memcpy(base + 1, base, sizeof(*base));
358}
359
360/**
361 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
362 *
363 * This timestamp is not guaranteed to be monotonic across an update.
364 * The timestamp is calculated by:
365 *
366 * now = base_mono + clock_delta * slope
367 *
368 * So if the update lowers the slope, readers who are forced to the
369 * not yet updated second array are still using the old steeper slope.
370 *
371 * tmono
372 * ^
373 * | o n
374 * | o n
375 * | u
376 * | o
377 * |o
378 * |12345678---> reader order
379 *
380 * o = old slope
381 * u = update
382 * n = new slope
383 *
384 * So reader 6 will observe time going backwards versus reader 5.
385 *
386 * While other CPUs are likely to be able observe that, the only way
387 * for a CPU local observation is when an NMI hits in the middle of
388 * the update. Timestamps taken from that NMI context might be ahead
389 * of the following timestamps. Callers need to be aware of that and
390 * deal with it.
391 */
392static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
393{
394 struct tk_read_base *tkr;
395 unsigned int seq;
396 u64 now;
397
398 do {
399 seq = raw_read_seqcount_latch(&tkf->seq);
400 tkr = tkf->base + (seq & 0x01);
401 now = ktime_to_ns(tkr->base);
402
403 now += timekeeping_delta_to_ns(tkr,
404 clocksource_delta(
405 tkr->read(tkr->clock),
406 tkr->cycle_last,
407 tkr->mask));
408 } while (read_seqcount_retry(&tkf->seq, seq));
409
410 return now;
411}
412
413u64 ktime_get_mono_fast_ns(void)
414{
415 return __ktime_get_fast_ns(&tk_fast_mono);
416}
417EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
418
419u64 ktime_get_raw_fast_ns(void)
420{
421 return __ktime_get_fast_ns(&tk_fast_raw);
422}
423EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
424
425/**
426 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
427 *
428 * To keep it NMI safe since we're accessing from tracing, we're not using a
429 * separate timekeeper with updates to monotonic clock and boot offset
430 * protected with seqlocks. This has the following minor side effects:
431 *
432 * (1) Its possible that a timestamp be taken after the boot offset is updated
433 * but before the timekeeper is updated. If this happens, the new boot offset
434 * is added to the old timekeeping making the clock appear to update slightly
435 * earlier:
436 * CPU 0 CPU 1
437 * timekeeping_inject_sleeptime64()
438 * __timekeeping_inject_sleeptime(tk, delta);
439 * timestamp();
440 * timekeeping_update(tk, TK_CLEAR_NTP...);
441 *
442 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
443 * partially updated. Since the tk->offs_boot update is a rare event, this
444 * should be a rare occurrence which postprocessing should be able to handle.
445 */
446u64 notrace ktime_get_boot_fast_ns(void)
447{
448 struct timekeeper *tk = &tk_core.timekeeper;
449
450 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
451}
452EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
453
454/* Suspend-time cycles value for halted fast timekeeper. */
455static u64 cycles_at_suspend;
456
457static u64 dummy_clock_read(struct clocksource *cs)
458{
459 return cycles_at_suspend;
460}
461
462/**
463 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
464 * @tk: Timekeeper to snapshot.
465 *
466 * It generally is unsafe to access the clocksource after timekeeping has been
467 * suspended, so take a snapshot of the readout base of @tk and use it as the
468 * fast timekeeper's readout base while suspended. It will return the same
469 * number of cycles every time until timekeeping is resumed at which time the
470 * proper readout base for the fast timekeeper will be restored automatically.
471 */
472static void halt_fast_timekeeper(struct timekeeper *tk)
473{
474 static struct tk_read_base tkr_dummy;
475 struct tk_read_base *tkr = &tk->tkr_mono;
476
477 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
478 cycles_at_suspend = tkr->read(tkr->clock);
479 tkr_dummy.read = dummy_clock_read;
480 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
481
482 tkr = &tk->tkr_raw;
483 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
484 tkr_dummy.read = dummy_clock_read;
485 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
486}
487
488#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
489
490static inline void update_vsyscall(struct timekeeper *tk)
491{
492 struct timespec xt, wm;
493
494 xt = timespec64_to_timespec(tk_xtime(tk));
495 wm = timespec64_to_timespec(tk->wall_to_monotonic);
496 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
497 tk->tkr_mono.cycle_last);
498}
499
500static inline void old_vsyscall_fixup(struct timekeeper *tk)
501{
502 s64 remainder;
503
504 /*
505 * Store only full nanoseconds into xtime_nsec after rounding
506 * it up and add the remainder to the error difference.
507 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
508 * by truncating the remainder in vsyscalls. However, it causes
509 * additional work to be done in timekeeping_adjust(). Once
510 * the vsyscall implementations are converted to use xtime_nsec
511 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
512 * users are removed, this can be killed.
513 */
514 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
515 if (remainder != 0) {
516 tk->tkr_mono.xtime_nsec -= remainder;
517 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
518 tk->ntp_error += remainder << tk->ntp_error_shift;
519 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
520 }
521}
522#else
523#define old_vsyscall_fixup(tk)
524#endif
525
526static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
527
528static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
529{
530 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
531}
532
533/**
534 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
535 */
536int pvclock_gtod_register_notifier(struct notifier_block *nb)
537{
538 struct timekeeper *tk = &tk_core.timekeeper;
539 unsigned long flags;
540 int ret;
541
542 raw_spin_lock_irqsave(&timekeeper_lock, flags);
543 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
544 update_pvclock_gtod(tk, true);
545 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
546
547 return ret;
548}
549EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
550
551/**
552 * pvclock_gtod_unregister_notifier - unregister a pvclock
553 * timedata update listener
554 */
555int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
556{
557 unsigned long flags;
558 int ret;
559
560 raw_spin_lock_irqsave(&timekeeper_lock, flags);
561 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
562 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
563
564 return ret;
565}
566EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
567
568/*
569 * tk_update_leap_state - helper to update the next_leap_ktime
570 */
571static inline void tk_update_leap_state(struct timekeeper *tk)
572{
573 tk->next_leap_ktime = ntp_get_next_leap();
574 if (tk->next_leap_ktime != KTIME_MAX)
575 /* Convert to monotonic time */
576 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
577}
578
579/*
580 * Update the ktime_t based scalar nsec members of the timekeeper
581 */
582static inline void tk_update_ktime_data(struct timekeeper *tk)
583{
584 u64 seconds;
585 u32 nsec;
586
587 /*
588 * The xtime based monotonic readout is:
589 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
590 * The ktime based monotonic readout is:
591 * nsec = base_mono + now();
592 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
593 */
594 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
595 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
596 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
597
598 /* Update the monotonic raw base */
599 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
600
601 /*
602 * The sum of the nanoseconds portions of xtime and
603 * wall_to_monotonic can be greater/equal one second. Take
604 * this into account before updating tk->ktime_sec.
605 */
606 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
607 if (nsec >= NSEC_PER_SEC)
608 seconds++;
609 tk->ktime_sec = seconds;
610}
611
612/* must hold timekeeper_lock */
613static void timekeeping_update(struct timekeeper *tk, unsigned int action)
614{
615 if (action & TK_CLEAR_NTP) {
616 tk->ntp_error = 0;
617 ntp_clear();
618 }
619
620 tk_update_leap_state(tk);
621 tk_update_ktime_data(tk);
622
623 update_vsyscall(tk);
624 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
625
626 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
627 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
628
629 if (action & TK_CLOCK_WAS_SET)
630 tk->clock_was_set_seq++;
631 /*
632 * The mirroring of the data to the shadow-timekeeper needs
633 * to happen last here to ensure we don't over-write the
634 * timekeeper structure on the next update with stale data
635 */
636 if (action & TK_MIRROR)
637 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
638 sizeof(tk_core.timekeeper));
639}
640
641/**
642 * timekeeping_forward_now - update clock to the current time
643 *
644 * Forward the current clock to update its state since the last call to
645 * update_wall_time(). This is useful before significant clock changes,
646 * as it avoids having to deal with this time offset explicitly.
647 */
648static void timekeeping_forward_now(struct timekeeper *tk)
649{
650 struct clocksource *clock = tk->tkr_mono.clock;
651 u64 cycle_now, delta;
652 u64 nsec;
653
654 cycle_now = tk->tkr_mono.read(clock);
655 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
656 tk->tkr_mono.cycle_last = cycle_now;
657 tk->tkr_raw.cycle_last = cycle_now;
658
659 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
660
661 /* If arch requires, add in get_arch_timeoffset() */
662 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
663
664 tk_normalize_xtime(tk);
665
666 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
667 timespec64_add_ns(&tk->raw_time, nsec);
668}
669
670/**
671 * __getnstimeofday64 - Returns the time of day in a timespec64.
672 * @ts: pointer to the timespec to be set
673 *
674 * Updates the time of day in the timespec.
675 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
676 */
677int __getnstimeofday64(struct timespec64 *ts)
678{
679 struct timekeeper *tk = &tk_core.timekeeper;
680 unsigned long seq;
681 u64 nsecs;
682
683 do {
684 seq = read_seqcount_begin(&tk_core.seq);
685
686 ts->tv_sec = tk->xtime_sec;
687 nsecs = timekeeping_get_ns(&tk->tkr_mono);
688
689 } while (read_seqcount_retry(&tk_core.seq, seq));
690
691 ts->tv_nsec = 0;
692 timespec64_add_ns(ts, nsecs);
693
694 /*
695 * Do not bail out early, in case there were callers still using
696 * the value, even in the face of the WARN_ON.
697 */
698 if (unlikely(timekeeping_suspended))
699 return -EAGAIN;
700 return 0;
701}
702EXPORT_SYMBOL(__getnstimeofday64);
703
704/**
705 * getnstimeofday64 - Returns the time of day in a timespec64.
706 * @ts: pointer to the timespec64 to be set
707 *
708 * Returns the time of day in a timespec64 (WARN if suspended).
709 */
710void getnstimeofday64(struct timespec64 *ts)
711{
712 WARN_ON(__getnstimeofday64(ts));
713}
714EXPORT_SYMBOL(getnstimeofday64);
715
716ktime_t ktime_get(void)
717{
718 struct timekeeper *tk = &tk_core.timekeeper;
719 unsigned int seq;
720 ktime_t base;
721 u64 nsecs;
722
723 WARN_ON(timekeeping_suspended);
724
725 do {
726 seq = read_seqcount_begin(&tk_core.seq);
727 base = tk->tkr_mono.base;
728 nsecs = timekeeping_get_ns(&tk->tkr_mono);
729
730 } while (read_seqcount_retry(&tk_core.seq, seq));
731
732 return ktime_add_ns(base, nsecs);
733}
734EXPORT_SYMBOL_GPL(ktime_get);
735
736u32 ktime_get_resolution_ns(void)
737{
738 struct timekeeper *tk = &tk_core.timekeeper;
739 unsigned int seq;
740 u32 nsecs;
741
742 WARN_ON(timekeeping_suspended);
743
744 do {
745 seq = read_seqcount_begin(&tk_core.seq);
746 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
747 } while (read_seqcount_retry(&tk_core.seq, seq));
748
749 return nsecs;
750}
751EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
752
753static ktime_t *offsets[TK_OFFS_MAX] = {
754 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
755 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
756 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
757};
758
759ktime_t ktime_get_with_offset(enum tk_offsets offs)
760{
761 struct timekeeper *tk = &tk_core.timekeeper;
762 unsigned int seq;
763 ktime_t base, *offset = offsets[offs];
764 u64 nsecs;
765
766 WARN_ON(timekeeping_suspended);
767
768 do {
769 seq = read_seqcount_begin(&tk_core.seq);
770 base = ktime_add(tk->tkr_mono.base, *offset);
771 nsecs = timekeeping_get_ns(&tk->tkr_mono);
772
773 } while (read_seqcount_retry(&tk_core.seq, seq));
774
775 return ktime_add_ns(base, nsecs);
776
777}
778EXPORT_SYMBOL_GPL(ktime_get_with_offset);
779
780/**
781 * ktime_mono_to_any() - convert mononotic time to any other time
782 * @tmono: time to convert.
783 * @offs: which offset to use
784 */
785ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
786{
787 ktime_t *offset = offsets[offs];
788 unsigned long seq;
789 ktime_t tconv;
790
791 do {
792 seq = read_seqcount_begin(&tk_core.seq);
793 tconv = ktime_add(tmono, *offset);
794 } while (read_seqcount_retry(&tk_core.seq, seq));
795
796 return tconv;
797}
798EXPORT_SYMBOL_GPL(ktime_mono_to_any);
799
800/**
801 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
802 */
803ktime_t ktime_get_raw(void)
804{
805 struct timekeeper *tk = &tk_core.timekeeper;
806 unsigned int seq;
807 ktime_t base;
808 u64 nsecs;
809
810 do {
811 seq = read_seqcount_begin(&tk_core.seq);
812 base = tk->tkr_raw.base;
813 nsecs = timekeeping_get_ns(&tk->tkr_raw);
814
815 } while (read_seqcount_retry(&tk_core.seq, seq));
816
817 return ktime_add_ns(base, nsecs);
818}
819EXPORT_SYMBOL_GPL(ktime_get_raw);
820
821/**
822 * ktime_get_ts64 - get the monotonic clock in timespec64 format
823 * @ts: pointer to timespec variable
824 *
825 * The function calculates the monotonic clock from the realtime
826 * clock and the wall_to_monotonic offset and stores the result
827 * in normalized timespec64 format in the variable pointed to by @ts.
828 */
829void ktime_get_ts64(struct timespec64 *ts)
830{
831 struct timekeeper *tk = &tk_core.timekeeper;
832 struct timespec64 tomono;
833 unsigned int seq;
834 u64 nsec;
835
836 WARN_ON(timekeeping_suspended);
837
838 do {
839 seq = read_seqcount_begin(&tk_core.seq);
840 ts->tv_sec = tk->xtime_sec;
841 nsec = timekeeping_get_ns(&tk->tkr_mono);
842 tomono = tk->wall_to_monotonic;
843
844 } while (read_seqcount_retry(&tk_core.seq, seq));
845
846 ts->tv_sec += tomono.tv_sec;
847 ts->tv_nsec = 0;
848 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
849}
850EXPORT_SYMBOL_GPL(ktime_get_ts64);
851
852/**
853 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
854 *
855 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
856 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
857 * works on both 32 and 64 bit systems. On 32 bit systems the readout
858 * covers ~136 years of uptime which should be enough to prevent
859 * premature wrap arounds.
860 */
861time64_t ktime_get_seconds(void)
862{
863 struct timekeeper *tk = &tk_core.timekeeper;
864
865 WARN_ON(timekeeping_suspended);
866 return tk->ktime_sec;
867}
868EXPORT_SYMBOL_GPL(ktime_get_seconds);
869
870/**
871 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
872 *
873 * Returns the wall clock seconds since 1970. This replaces the
874 * get_seconds() interface which is not y2038 safe on 32bit systems.
875 *
876 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
877 * 32bit systems the access must be protected with the sequence
878 * counter to provide "atomic" access to the 64bit tk->xtime_sec
879 * value.
880 */
881time64_t ktime_get_real_seconds(void)
882{
883 struct timekeeper *tk = &tk_core.timekeeper;
884 time64_t seconds;
885 unsigned int seq;
886
887 if (IS_ENABLED(CONFIG_64BIT))
888 return tk->xtime_sec;
889
890 do {
891 seq = read_seqcount_begin(&tk_core.seq);
892 seconds = tk->xtime_sec;
893
894 } while (read_seqcount_retry(&tk_core.seq, seq));
895
896 return seconds;
897}
898EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
899
900/**
901 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
902 * but without the sequence counter protect. This internal function
903 * is called just when timekeeping lock is already held.
904 */
905time64_t __ktime_get_real_seconds(void)
906{
907 struct timekeeper *tk = &tk_core.timekeeper;
908
909 return tk->xtime_sec;
910}
911
912/**
913 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
914 * @systime_snapshot: pointer to struct receiving the system time snapshot
915 */
916void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
917{
918 struct timekeeper *tk = &tk_core.timekeeper;
919 unsigned long seq;
920 ktime_t base_raw;
921 ktime_t base_real;
922 u64 nsec_raw;
923 u64 nsec_real;
924 u64 now;
925
926 WARN_ON_ONCE(timekeeping_suspended);
927
928 do {
929 seq = read_seqcount_begin(&tk_core.seq);
930
931 now = tk->tkr_mono.read(tk->tkr_mono.clock);
932 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
933 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
934 base_real = ktime_add(tk->tkr_mono.base,
935 tk_core.timekeeper.offs_real);
936 base_raw = tk->tkr_raw.base;
937 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
938 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
939 } while (read_seqcount_retry(&tk_core.seq, seq));
940
941 systime_snapshot->cycles = now;
942 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
943 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
944}
945EXPORT_SYMBOL_GPL(ktime_get_snapshot);
946
947/* Scale base by mult/div checking for overflow */
948static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
949{
950 u64 tmp, rem;
951
952 tmp = div64_u64_rem(*base, div, &rem);
953
954 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
955 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
956 return -EOVERFLOW;
957 tmp *= mult;
958 rem *= mult;
959
960 do_div(rem, div);
961 *base = tmp + rem;
962 return 0;
963}
964
965/**
966 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
967 * @history: Snapshot representing start of history
968 * @partial_history_cycles: Cycle offset into history (fractional part)
969 * @total_history_cycles: Total history length in cycles
970 * @discontinuity: True indicates clock was set on history period
971 * @ts: Cross timestamp that should be adjusted using
972 * partial/total ratio
973 *
974 * Helper function used by get_device_system_crosststamp() to correct the
975 * crosstimestamp corresponding to the start of the current interval to the
976 * system counter value (timestamp point) provided by the driver. The
977 * total_history_* quantities are the total history starting at the provided
978 * reference point and ending at the start of the current interval. The cycle
979 * count between the driver timestamp point and the start of the current
980 * interval is partial_history_cycles.
981 */
982static int adjust_historical_crosststamp(struct system_time_snapshot *history,
983 u64 partial_history_cycles,
984 u64 total_history_cycles,
985 bool discontinuity,
986 struct system_device_crosststamp *ts)
987{
988 struct timekeeper *tk = &tk_core.timekeeper;
989 u64 corr_raw, corr_real;
990 bool interp_forward;
991 int ret;
992
993 if (total_history_cycles == 0 || partial_history_cycles == 0)
994 return 0;
995
996 /* Interpolate shortest distance from beginning or end of history */
997 interp_forward = partial_history_cycles > total_history_cycles/2 ?
998 true : false;
999 partial_history_cycles = interp_forward ?
1000 total_history_cycles - partial_history_cycles :
1001 partial_history_cycles;
1002
1003 /*
1004 * Scale the monotonic raw time delta by:
1005 * partial_history_cycles / total_history_cycles
1006 */
1007 corr_raw = (u64)ktime_to_ns(
1008 ktime_sub(ts->sys_monoraw, history->raw));
1009 ret = scale64_check_overflow(partial_history_cycles,
1010 total_history_cycles, &corr_raw);
1011 if (ret)
1012 return ret;
1013
1014 /*
1015 * If there is a discontinuity in the history, scale monotonic raw
1016 * correction by:
1017 * mult(real)/mult(raw) yielding the realtime correction
1018 * Otherwise, calculate the realtime correction similar to monotonic
1019 * raw calculation
1020 */
1021 if (discontinuity) {
1022 corr_real = mul_u64_u32_div
1023 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1024 } else {
1025 corr_real = (u64)ktime_to_ns(
1026 ktime_sub(ts->sys_realtime, history->real));
1027 ret = scale64_check_overflow(partial_history_cycles,
1028 total_history_cycles, &corr_real);
1029 if (ret)
1030 return ret;
1031 }
1032
1033 /* Fixup monotonic raw and real time time values */
1034 if (interp_forward) {
1035 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1036 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1037 } else {
1038 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1039 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1040 }
1041
1042 return 0;
1043}
1044
1045/*
1046 * cycle_between - true if test occurs chronologically between before and after
1047 */
1048static bool cycle_between(u64 before, u64 test, u64 after)
1049{
1050 if (test > before && test < after)
1051 return true;
1052 if (test < before && before > after)
1053 return true;
1054 return false;
1055}
1056
1057/**
1058 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1059 * @get_time_fn: Callback to get simultaneous device time and
1060 * system counter from the device driver
1061 * @ctx: Context passed to get_time_fn()
1062 * @history_begin: Historical reference point used to interpolate system
1063 * time when counter provided by the driver is before the current interval
1064 * @xtstamp: Receives simultaneously captured system and device time
1065 *
1066 * Reads a timestamp from a device and correlates it to system time
1067 */
1068int get_device_system_crosststamp(int (*get_time_fn)
1069 (ktime_t *device_time,
1070 struct system_counterval_t *sys_counterval,
1071 void *ctx),
1072 void *ctx,
1073 struct system_time_snapshot *history_begin,
1074 struct system_device_crosststamp *xtstamp)
1075{
1076 struct system_counterval_t system_counterval;
1077 struct timekeeper *tk = &tk_core.timekeeper;
1078 u64 cycles, now, interval_start;
1079 unsigned int clock_was_set_seq = 0;
1080 ktime_t base_real, base_raw;
1081 u64 nsec_real, nsec_raw;
1082 u8 cs_was_changed_seq;
1083 unsigned long seq;
1084 bool do_interp;
1085 int ret;
1086
1087 do {
1088 seq = read_seqcount_begin(&tk_core.seq);
1089 /*
1090 * Try to synchronously capture device time and a system
1091 * counter value calling back into the device driver
1092 */
1093 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1094 if (ret)
1095 return ret;
1096
1097 /*
1098 * Verify that the clocksource associated with the captured
1099 * system counter value is the same as the currently installed
1100 * timekeeper clocksource
1101 */
1102 if (tk->tkr_mono.clock != system_counterval.cs)
1103 return -ENODEV;
1104 cycles = system_counterval.cycles;
1105
1106 /*
1107 * Check whether the system counter value provided by the
1108 * device driver is on the current timekeeping interval.
1109 */
1110 now = tk->tkr_mono.read(tk->tkr_mono.clock);
1111 interval_start = tk->tkr_mono.cycle_last;
1112 if (!cycle_between(interval_start, cycles, now)) {
1113 clock_was_set_seq = tk->clock_was_set_seq;
1114 cs_was_changed_seq = tk->cs_was_changed_seq;
1115 cycles = interval_start;
1116 do_interp = true;
1117 } else {
1118 do_interp = false;
1119 }
1120
1121 base_real = ktime_add(tk->tkr_mono.base,
1122 tk_core.timekeeper.offs_real);
1123 base_raw = tk->tkr_raw.base;
1124
1125 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1126 system_counterval.cycles);
1127 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1128 system_counterval.cycles);
1129 } while (read_seqcount_retry(&tk_core.seq, seq));
1130
1131 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1132 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1133
1134 /*
1135 * Interpolate if necessary, adjusting back from the start of the
1136 * current interval
1137 */
1138 if (do_interp) {
1139 u64 partial_history_cycles, total_history_cycles;
1140 bool discontinuity;
1141
1142 /*
1143 * Check that the counter value occurs after the provided
1144 * history reference and that the history doesn't cross a
1145 * clocksource change
1146 */
1147 if (!history_begin ||
1148 !cycle_between(history_begin->cycles,
1149 system_counterval.cycles, cycles) ||
1150 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1151 return -EINVAL;
1152 partial_history_cycles = cycles - system_counterval.cycles;
1153 total_history_cycles = cycles - history_begin->cycles;
1154 discontinuity =
1155 history_begin->clock_was_set_seq != clock_was_set_seq;
1156
1157 ret = adjust_historical_crosststamp(history_begin,
1158 partial_history_cycles,
1159 total_history_cycles,
1160 discontinuity, xtstamp);
1161 if (ret)
1162 return ret;
1163 }
1164
1165 return 0;
1166}
1167EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1168
1169/**
1170 * do_gettimeofday - Returns the time of day in a timeval
1171 * @tv: pointer to the timeval to be set
1172 *
1173 * NOTE: Users should be converted to using getnstimeofday()
1174 */
1175void do_gettimeofday(struct timeval *tv)
1176{
1177 struct timespec64 now;
1178
1179 getnstimeofday64(&now);
1180 tv->tv_sec = now.tv_sec;
1181 tv->tv_usec = now.tv_nsec/1000;
1182}
1183EXPORT_SYMBOL(do_gettimeofday);
1184
1185/**
1186 * do_settimeofday64 - Sets the time of day.
1187 * @ts: pointer to the timespec64 variable containing the new time
1188 *
1189 * Sets the time of day to the new time and update NTP and notify hrtimers
1190 */
1191int do_settimeofday64(const struct timespec64 *ts)
1192{
1193 struct timekeeper *tk = &tk_core.timekeeper;
1194 struct timespec64 ts_delta, xt;
1195 unsigned long flags;
1196 int ret = 0;
1197
1198 if (!timespec64_valid_strict(ts))
1199 return -EINVAL;
1200
1201 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1202 write_seqcount_begin(&tk_core.seq);
1203
1204 timekeeping_forward_now(tk);
1205
1206 xt = tk_xtime(tk);
1207 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1208 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1209
1210 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1211 ret = -EINVAL;
1212 goto out;
1213 }
1214
1215 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1216
1217 tk_set_xtime(tk, ts);
1218out:
1219 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1220
1221 write_seqcount_end(&tk_core.seq);
1222 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1223
1224 /* signal hrtimers about time change */
1225 clock_was_set();
1226
1227 return ret;
1228}
1229EXPORT_SYMBOL(do_settimeofday64);
1230
1231/**
1232 * timekeeping_inject_offset - Adds or subtracts from the current time.
1233 * @tv: pointer to the timespec variable containing the offset
1234 *
1235 * Adds or subtracts an offset value from the current time.
1236 */
1237int timekeeping_inject_offset(struct timespec *ts)
1238{
1239 struct timekeeper *tk = &tk_core.timekeeper;
1240 unsigned long flags;
1241 struct timespec64 ts64, tmp;
1242 int ret = 0;
1243
1244 if (!timespec_inject_offset_valid(ts))
1245 return -EINVAL;
1246
1247 ts64 = timespec_to_timespec64(*ts);
1248
1249 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1250 write_seqcount_begin(&tk_core.seq);
1251
1252 timekeeping_forward_now(tk);
1253
1254 /* Make sure the proposed value is valid */
1255 tmp = timespec64_add(tk_xtime(tk), ts64);
1256 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1257 !timespec64_valid_strict(&tmp)) {
1258 ret = -EINVAL;
1259 goto error;
1260 }
1261
1262 tk_xtime_add(tk, &ts64);
1263 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1264
1265error: /* even if we error out, we forwarded the time, so call update */
1266 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1267
1268 write_seqcount_end(&tk_core.seq);
1269 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1270
1271 /* signal hrtimers about time change */
1272 clock_was_set();
1273
1274 return ret;
1275}
1276EXPORT_SYMBOL(timekeeping_inject_offset);
1277
1278
1279/**
1280 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1281 *
1282 */
1283s32 timekeeping_get_tai_offset(void)
1284{
1285 struct timekeeper *tk = &tk_core.timekeeper;
1286 unsigned int seq;
1287 s32 ret;
1288
1289 do {
1290 seq = read_seqcount_begin(&tk_core.seq);
1291 ret = tk->tai_offset;
1292 } while (read_seqcount_retry(&tk_core.seq, seq));
1293
1294 return ret;
1295}
1296
1297/**
1298 * __timekeeping_set_tai_offset - Lock free worker function
1299 *
1300 */
1301static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1302{
1303 tk->tai_offset = tai_offset;
1304 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1305}
1306
1307/**
1308 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1309 *
1310 */
1311void timekeeping_set_tai_offset(s32 tai_offset)
1312{
1313 struct timekeeper *tk = &tk_core.timekeeper;
1314 unsigned long flags;
1315
1316 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1317 write_seqcount_begin(&tk_core.seq);
1318 __timekeeping_set_tai_offset(tk, tai_offset);
1319 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1320 write_seqcount_end(&tk_core.seq);
1321 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1322 clock_was_set();
1323}
1324
1325/**
1326 * change_clocksource - Swaps clocksources if a new one is available
1327 *
1328 * Accumulates current time interval and initializes new clocksource
1329 */
1330static int change_clocksource(void *data)
1331{
1332 struct timekeeper *tk = &tk_core.timekeeper;
1333 struct clocksource *new, *old;
1334 unsigned long flags;
1335
1336 new = (struct clocksource *) data;
1337
1338 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1339 write_seqcount_begin(&tk_core.seq);
1340
1341 timekeeping_forward_now(tk);
1342 /*
1343 * If the cs is in module, get a module reference. Succeeds
1344 * for built-in code (owner == NULL) as well.
1345 */
1346 if (try_module_get(new->owner)) {
1347 if (!new->enable || new->enable(new) == 0) {
1348 old = tk->tkr_mono.clock;
1349 tk_setup_internals(tk, new);
1350 if (old->disable)
1351 old->disable(old);
1352 module_put(old->owner);
1353 } else {
1354 module_put(new->owner);
1355 }
1356 }
1357 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1358
1359 write_seqcount_end(&tk_core.seq);
1360 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1361
1362 return 0;
1363}
1364
1365/**
1366 * timekeeping_notify - Install a new clock source
1367 * @clock: pointer to the clock source
1368 *
1369 * This function is called from clocksource.c after a new, better clock
1370 * source has been registered. The caller holds the clocksource_mutex.
1371 */
1372int timekeeping_notify(struct clocksource *clock)
1373{
1374 struct timekeeper *tk = &tk_core.timekeeper;
1375
1376 if (tk->tkr_mono.clock == clock)
1377 return 0;
1378 stop_machine(change_clocksource, clock, NULL);
1379 tick_clock_notify();
1380 return tk->tkr_mono.clock == clock ? 0 : -1;
1381}
1382
1383/**
1384 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1385 * @ts: pointer to the timespec64 to be set
1386 *
1387 * Returns the raw monotonic time (completely un-modified by ntp)
1388 */
1389void getrawmonotonic64(struct timespec64 *ts)
1390{
1391 struct timekeeper *tk = &tk_core.timekeeper;
1392 struct timespec64 ts64;
1393 unsigned long seq;
1394 u64 nsecs;
1395
1396 do {
1397 seq = read_seqcount_begin(&tk_core.seq);
1398 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1399 ts64 = tk->raw_time;
1400
1401 } while (read_seqcount_retry(&tk_core.seq, seq));
1402
1403 timespec64_add_ns(&ts64, nsecs);
1404 *ts = ts64;
1405}
1406EXPORT_SYMBOL(getrawmonotonic64);
1407
1408
1409/**
1410 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1411 */
1412int timekeeping_valid_for_hres(void)
1413{
1414 struct timekeeper *tk = &tk_core.timekeeper;
1415 unsigned long seq;
1416 int ret;
1417
1418 do {
1419 seq = read_seqcount_begin(&tk_core.seq);
1420
1421 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1422
1423 } while (read_seqcount_retry(&tk_core.seq, seq));
1424
1425 return ret;
1426}
1427
1428/**
1429 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1430 */
1431u64 timekeeping_max_deferment(void)
1432{
1433 struct timekeeper *tk = &tk_core.timekeeper;
1434 unsigned long seq;
1435 u64 ret;
1436
1437 do {
1438 seq = read_seqcount_begin(&tk_core.seq);
1439
1440 ret = tk->tkr_mono.clock->max_idle_ns;
1441
1442 } while (read_seqcount_retry(&tk_core.seq, seq));
1443
1444 return ret;
1445}
1446
1447/**
1448 * read_persistent_clock - Return time from the persistent clock.
1449 *
1450 * Weak dummy function for arches that do not yet support it.
1451 * Reads the time from the battery backed persistent clock.
1452 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1453 *
1454 * XXX - Do be sure to remove it once all arches implement it.
1455 */
1456void __weak read_persistent_clock(struct timespec *ts)
1457{
1458 ts->tv_sec = 0;
1459 ts->tv_nsec = 0;
1460}
1461
1462void __weak read_persistent_clock64(struct timespec64 *ts64)
1463{
1464 struct timespec ts;
1465
1466 read_persistent_clock(&ts);
1467 *ts64 = timespec_to_timespec64(ts);
1468}
1469
1470/**
1471 * read_boot_clock64 - Return time of the system start.
1472 *
1473 * Weak dummy function for arches that do not yet support it.
1474 * Function to read the exact time the system has been started.
1475 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1476 *
1477 * XXX - Do be sure to remove it once all arches implement it.
1478 */
1479void __weak read_boot_clock64(struct timespec64 *ts)
1480{
1481 ts->tv_sec = 0;
1482 ts->tv_nsec = 0;
1483}
1484
1485/* Flag for if timekeeping_resume() has injected sleeptime */
1486static bool sleeptime_injected;
1487
1488/* Flag for if there is a persistent clock on this platform */
1489static bool persistent_clock_exists;
1490
1491/*
1492 * timekeeping_init - Initializes the clocksource and common timekeeping values
1493 */
1494void __init timekeeping_init(void)
1495{
1496 struct timekeeper *tk = &tk_core.timekeeper;
1497 struct clocksource *clock;
1498 unsigned long flags;
1499 struct timespec64 now, boot, tmp;
1500
1501 read_persistent_clock64(&now);
1502 if (!timespec64_valid_strict(&now)) {
1503 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1504 " Check your CMOS/BIOS settings.\n");
1505 now.tv_sec = 0;
1506 now.tv_nsec = 0;
1507 } else if (now.tv_sec || now.tv_nsec)
1508 persistent_clock_exists = true;
1509
1510 read_boot_clock64(&boot);
1511 if (!timespec64_valid_strict(&boot)) {
1512 pr_warn("WARNING: Boot clock returned invalid value!\n"
1513 " Check your CMOS/BIOS settings.\n");
1514 boot.tv_sec = 0;
1515 boot.tv_nsec = 0;
1516 }
1517
1518 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1519 write_seqcount_begin(&tk_core.seq);
1520 ntp_init();
1521
1522 clock = clocksource_default_clock();
1523 if (clock->enable)
1524 clock->enable(clock);
1525 tk_setup_internals(tk, clock);
1526
1527 tk_set_xtime(tk, &now);
1528 tk->raw_time.tv_sec = 0;
1529 tk->raw_time.tv_nsec = 0;
1530 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1531 boot = tk_xtime(tk);
1532
1533 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1534 tk_set_wall_to_mono(tk, tmp);
1535
1536 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1537
1538 write_seqcount_end(&tk_core.seq);
1539 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1540}
1541
1542/* time in seconds when suspend began for persistent clock */
1543static struct timespec64 timekeeping_suspend_time;
1544
1545/**
1546 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1547 * @delta: pointer to a timespec delta value
1548 *
1549 * Takes a timespec offset measuring a suspend interval and properly
1550 * adds the sleep offset to the timekeeping variables.
1551 */
1552static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1553 struct timespec64 *delta)
1554{
1555 if (!timespec64_valid_strict(delta)) {
1556 printk_deferred(KERN_WARNING
1557 "__timekeeping_inject_sleeptime: Invalid "
1558 "sleep delta value!\n");
1559 return;
1560 }
1561 tk_xtime_add(tk, delta);
1562 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1563 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1564 tk_debug_account_sleep_time(delta);
1565}
1566
1567#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1568/**
1569 * We have three kinds of time sources to use for sleep time
1570 * injection, the preference order is:
1571 * 1) non-stop clocksource
1572 * 2) persistent clock (ie: RTC accessible when irqs are off)
1573 * 3) RTC
1574 *
1575 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1576 * If system has neither 1) nor 2), 3) will be used finally.
1577 *
1578 *
1579 * If timekeeping has injected sleeptime via either 1) or 2),
1580 * 3) becomes needless, so in this case we don't need to call
1581 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1582 * means.
1583 */
1584bool timekeeping_rtc_skipresume(void)
1585{
1586 return sleeptime_injected;
1587}
1588
1589/**
1590 * 1) can be determined whether to use or not only when doing
1591 * timekeeping_resume() which is invoked after rtc_suspend(),
1592 * so we can't skip rtc_suspend() surely if system has 1).
1593 *
1594 * But if system has 2), 2) will definitely be used, so in this
1595 * case we don't need to call rtc_suspend(), and this is what
1596 * timekeeping_rtc_skipsuspend() means.
1597 */
1598bool timekeeping_rtc_skipsuspend(void)
1599{
1600 return persistent_clock_exists;
1601}
1602
1603/**
1604 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1605 * @delta: pointer to a timespec64 delta value
1606 *
1607 * This hook is for architectures that cannot support read_persistent_clock64
1608 * because their RTC/persistent clock is only accessible when irqs are enabled.
1609 * and also don't have an effective nonstop clocksource.
1610 *
1611 * This function should only be called by rtc_resume(), and allows
1612 * a suspend offset to be injected into the timekeeping values.
1613 */
1614void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1615{
1616 struct timekeeper *tk = &tk_core.timekeeper;
1617 unsigned long flags;
1618
1619 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1620 write_seqcount_begin(&tk_core.seq);
1621
1622 timekeeping_forward_now(tk);
1623
1624 __timekeeping_inject_sleeptime(tk, delta);
1625
1626 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1627
1628 write_seqcount_end(&tk_core.seq);
1629 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1630
1631 /* signal hrtimers about time change */
1632 clock_was_set();
1633}
1634#endif
1635
1636/**
1637 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1638 */
1639void timekeeping_resume(void)
1640{
1641 struct timekeeper *tk = &tk_core.timekeeper;
1642 struct clocksource *clock = tk->tkr_mono.clock;
1643 unsigned long flags;
1644 struct timespec64 ts_new, ts_delta;
1645 u64 cycle_now;
1646
1647 sleeptime_injected = false;
1648 read_persistent_clock64(&ts_new);
1649
1650 clockevents_resume();
1651 clocksource_resume();
1652
1653 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1654 write_seqcount_begin(&tk_core.seq);
1655
1656 /*
1657 * After system resumes, we need to calculate the suspended time and
1658 * compensate it for the OS time. There are 3 sources that could be
1659 * used: Nonstop clocksource during suspend, persistent clock and rtc
1660 * device.
1661 *
1662 * One specific platform may have 1 or 2 or all of them, and the
1663 * preference will be:
1664 * suspend-nonstop clocksource -> persistent clock -> rtc
1665 * The less preferred source will only be tried if there is no better
1666 * usable source. The rtc part is handled separately in rtc core code.
1667 */
1668 cycle_now = tk->tkr_mono.read(clock);
1669 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1670 cycle_now > tk->tkr_mono.cycle_last) {
1671 u64 nsec, cyc_delta;
1672
1673 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1674 tk->tkr_mono.mask);
1675 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1676 ts_delta = ns_to_timespec64(nsec);
1677 sleeptime_injected = true;
1678 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1679 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1680 sleeptime_injected = true;
1681 }
1682
1683 if (sleeptime_injected)
1684 __timekeeping_inject_sleeptime(tk, &ts_delta);
1685
1686 /* Re-base the last cycle value */
1687 tk->tkr_mono.cycle_last = cycle_now;
1688 tk->tkr_raw.cycle_last = cycle_now;
1689
1690 tk->ntp_error = 0;
1691 timekeeping_suspended = 0;
1692 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1693 write_seqcount_end(&tk_core.seq);
1694 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1695
1696 touch_softlockup_watchdog();
1697
1698 tick_resume();
1699 hrtimers_resume();
1700}
1701
1702int timekeeping_suspend(void)
1703{
1704 struct timekeeper *tk = &tk_core.timekeeper;
1705 unsigned long flags;
1706 struct timespec64 delta, delta_delta;
1707 static struct timespec64 old_delta;
1708
1709 read_persistent_clock64(&timekeeping_suspend_time);
1710
1711 /*
1712 * On some systems the persistent_clock can not be detected at
1713 * timekeeping_init by its return value, so if we see a valid
1714 * value returned, update the persistent_clock_exists flag.
1715 */
1716 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1717 persistent_clock_exists = true;
1718
1719 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1720 write_seqcount_begin(&tk_core.seq);
1721 timekeeping_forward_now(tk);
1722 timekeeping_suspended = 1;
1723
1724 if (persistent_clock_exists) {
1725 /*
1726 * To avoid drift caused by repeated suspend/resumes,
1727 * which each can add ~1 second drift error,
1728 * try to compensate so the difference in system time
1729 * and persistent_clock time stays close to constant.
1730 */
1731 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1732 delta_delta = timespec64_sub(delta, old_delta);
1733 if (abs(delta_delta.tv_sec) >= 2) {
1734 /*
1735 * if delta_delta is too large, assume time correction
1736 * has occurred and set old_delta to the current delta.
1737 */
1738 old_delta = delta;
1739 } else {
1740 /* Otherwise try to adjust old_system to compensate */
1741 timekeeping_suspend_time =
1742 timespec64_add(timekeeping_suspend_time, delta_delta);
1743 }
1744 }
1745
1746 timekeeping_update(tk, TK_MIRROR);
1747 halt_fast_timekeeper(tk);
1748 write_seqcount_end(&tk_core.seq);
1749 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1750
1751 tick_suspend();
1752 clocksource_suspend();
1753 clockevents_suspend();
1754
1755 return 0;
1756}
1757
1758/* sysfs resume/suspend bits for timekeeping */
1759static struct syscore_ops timekeeping_syscore_ops = {
1760 .resume = timekeeping_resume,
1761 .suspend = timekeeping_suspend,
1762};
1763
1764static int __init timekeeping_init_ops(void)
1765{
1766 register_syscore_ops(&timekeeping_syscore_ops);
1767 return 0;
1768}
1769device_initcall(timekeeping_init_ops);
1770
1771/*
1772 * Apply a multiplier adjustment to the timekeeper
1773 */
1774static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1775 s64 offset,
1776 bool negative,
1777 int adj_scale)
1778{
1779 s64 interval = tk->cycle_interval;
1780 s32 mult_adj = 1;
1781
1782 if (negative) {
1783 mult_adj = -mult_adj;
1784 interval = -interval;
1785 offset = -offset;
1786 }
1787 mult_adj <<= adj_scale;
1788 interval <<= adj_scale;
1789 offset <<= adj_scale;
1790
1791 /*
1792 * So the following can be confusing.
1793 *
1794 * To keep things simple, lets assume mult_adj == 1 for now.
1795 *
1796 * When mult_adj != 1, remember that the interval and offset values
1797 * have been appropriately scaled so the math is the same.
1798 *
1799 * The basic idea here is that we're increasing the multiplier
1800 * by one, this causes the xtime_interval to be incremented by
1801 * one cycle_interval. This is because:
1802 * xtime_interval = cycle_interval * mult
1803 * So if mult is being incremented by one:
1804 * xtime_interval = cycle_interval * (mult + 1)
1805 * Its the same as:
1806 * xtime_interval = (cycle_interval * mult) + cycle_interval
1807 * Which can be shortened to:
1808 * xtime_interval += cycle_interval
1809 *
1810 * So offset stores the non-accumulated cycles. Thus the current
1811 * time (in shifted nanoseconds) is:
1812 * now = (offset * adj) + xtime_nsec
1813 * Now, even though we're adjusting the clock frequency, we have
1814 * to keep time consistent. In other words, we can't jump back
1815 * in time, and we also want to avoid jumping forward in time.
1816 *
1817 * So given the same offset value, we need the time to be the same
1818 * both before and after the freq adjustment.
1819 * now = (offset * adj_1) + xtime_nsec_1
1820 * now = (offset * adj_2) + xtime_nsec_2
1821 * So:
1822 * (offset * adj_1) + xtime_nsec_1 =
1823 * (offset * adj_2) + xtime_nsec_2
1824 * And we know:
1825 * adj_2 = adj_1 + 1
1826 * So:
1827 * (offset * adj_1) + xtime_nsec_1 =
1828 * (offset * (adj_1+1)) + xtime_nsec_2
1829 * (offset * adj_1) + xtime_nsec_1 =
1830 * (offset * adj_1) + offset + xtime_nsec_2
1831 * Canceling the sides:
1832 * xtime_nsec_1 = offset + xtime_nsec_2
1833 * Which gives us:
1834 * xtime_nsec_2 = xtime_nsec_1 - offset
1835 * Which simplfies to:
1836 * xtime_nsec -= offset
1837 *
1838 * XXX - TODO: Doc ntp_error calculation.
1839 */
1840 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1841 /* NTP adjustment caused clocksource mult overflow */
1842 WARN_ON_ONCE(1);
1843 return;
1844 }
1845
1846 tk->tkr_mono.mult += mult_adj;
1847 tk->xtime_interval += interval;
1848 tk->tkr_mono.xtime_nsec -= offset;
1849 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1850}
1851
1852/*
1853 * Calculate the multiplier adjustment needed to match the frequency
1854 * specified by NTP
1855 */
1856static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1857 s64 offset)
1858{
1859 s64 interval = tk->cycle_interval;
1860 s64 xinterval = tk->xtime_interval;
1861 u32 base = tk->tkr_mono.clock->mult;
1862 u32 max = tk->tkr_mono.clock->maxadj;
1863 u32 cur_adj = tk->tkr_mono.mult;
1864 s64 tick_error;
1865 bool negative;
1866 u32 adj_scale;
1867
1868 /* Remove any current error adj from freq calculation */
1869 if (tk->ntp_err_mult)
1870 xinterval -= tk->cycle_interval;
1871
1872 tk->ntp_tick = ntp_tick_length();
1873
1874 /* Calculate current error per tick */
1875 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1876 tick_error -= (xinterval + tk->xtime_remainder);
1877
1878 /* Don't worry about correcting it if its small */
1879 if (likely((tick_error >= 0) && (tick_error <= interval)))
1880 return;
1881
1882 /* preserve the direction of correction */
1883 negative = (tick_error < 0);
1884
1885 /* If any adjustment would pass the max, just return */
1886 if (negative && (cur_adj - 1) <= (base - max))
1887 return;
1888 if (!negative && (cur_adj + 1) >= (base + max))
1889 return;
1890 /*
1891 * Sort out the magnitude of the correction, but
1892 * avoid making so large a correction that we go
1893 * over the max adjustment.
1894 */
1895 adj_scale = 0;
1896 tick_error = abs(tick_error);
1897 while (tick_error > interval) {
1898 u32 adj = 1 << (adj_scale + 1);
1899
1900 /* Check if adjustment gets us within 1 unit from the max */
1901 if (negative && (cur_adj - adj) <= (base - max))
1902 break;
1903 if (!negative && (cur_adj + adj) >= (base + max))
1904 break;
1905
1906 adj_scale++;
1907 tick_error >>= 1;
1908 }
1909
1910 /* scale the corrections */
1911 timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1912}
1913
1914/*
1915 * Adjust the timekeeper's multiplier to the correct frequency
1916 * and also to reduce the accumulated error value.
1917 */
1918static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1919{
1920 /* Correct for the current frequency error */
1921 timekeeping_freqadjust(tk, offset);
1922
1923 /* Next make a small adjustment to fix any cumulative error */
1924 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1925 tk->ntp_err_mult = 1;
1926 timekeeping_apply_adjustment(tk, offset, 0, 0);
1927 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1928 /* Undo any existing error adjustment */
1929 timekeeping_apply_adjustment(tk, offset, 1, 0);
1930 tk->ntp_err_mult = 0;
1931 }
1932
1933 if (unlikely(tk->tkr_mono.clock->maxadj &&
1934 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1935 > tk->tkr_mono.clock->maxadj))) {
1936 printk_once(KERN_WARNING
1937 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1938 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1939 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1940 }
1941
1942 /*
1943 * It may be possible that when we entered this function, xtime_nsec
1944 * was very small. Further, if we're slightly speeding the clocksource
1945 * in the code above, its possible the required corrective factor to
1946 * xtime_nsec could cause it to underflow.
1947 *
1948 * Now, since we already accumulated the second, cannot simply roll
1949 * the accumulated second back, since the NTP subsystem has been
1950 * notified via second_overflow. So instead we push xtime_nsec forward
1951 * by the amount we underflowed, and add that amount into the error.
1952 *
1953 * We'll correct this error next time through this function, when
1954 * xtime_nsec is not as small.
1955 */
1956 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1957 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1958 tk->tkr_mono.xtime_nsec = 0;
1959 tk->ntp_error += neg << tk->ntp_error_shift;
1960 }
1961}
1962
1963/**
1964 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1965 *
1966 * Helper function that accumulates the nsecs greater than a second
1967 * from the xtime_nsec field to the xtime_secs field.
1968 * It also calls into the NTP code to handle leapsecond processing.
1969 *
1970 */
1971static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1972{
1973 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1974 unsigned int clock_set = 0;
1975
1976 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1977 int leap;
1978
1979 tk->tkr_mono.xtime_nsec -= nsecps;
1980 tk->xtime_sec++;
1981
1982 /* Figure out if its a leap sec and apply if needed */
1983 leap = second_overflow(tk->xtime_sec);
1984 if (unlikely(leap)) {
1985 struct timespec64 ts;
1986
1987 tk->xtime_sec += leap;
1988
1989 ts.tv_sec = leap;
1990 ts.tv_nsec = 0;
1991 tk_set_wall_to_mono(tk,
1992 timespec64_sub(tk->wall_to_monotonic, ts));
1993
1994 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1995
1996 clock_set = TK_CLOCK_WAS_SET;
1997 }
1998 }
1999 return clock_set;
2000}
2001
2002/**
2003 * logarithmic_accumulation - shifted accumulation of cycles
2004 *
2005 * This functions accumulates a shifted interval of cycles into
2006 * into a shifted interval nanoseconds. Allows for O(log) accumulation
2007 * loop.
2008 *
2009 * Returns the unconsumed cycles.
2010 */
2011static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2012 u32 shift, unsigned int *clock_set)
2013{
2014 u64 interval = tk->cycle_interval << shift;
2015 u64 raw_nsecs;
2016
2017 /* If the offset is smaller than a shifted interval, do nothing */
2018 if (offset < interval)
2019 return offset;
2020
2021 /* Accumulate one shifted interval */
2022 offset -= interval;
2023 tk->tkr_mono.cycle_last += interval;
2024 tk->tkr_raw.cycle_last += interval;
2025
2026 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2027 *clock_set |= accumulate_nsecs_to_secs(tk);
2028
2029 /* Accumulate raw time */
2030 raw_nsecs = (u64)tk->raw_interval << shift;
2031 raw_nsecs += tk->raw_time.tv_nsec;
2032 if (raw_nsecs >= NSEC_PER_SEC) {
2033 u64 raw_secs = raw_nsecs;
2034 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2035 tk->raw_time.tv_sec += raw_secs;
2036 }
2037 tk->raw_time.tv_nsec = raw_nsecs;
2038
2039 /* Accumulate error between NTP and clock interval */
2040 tk->ntp_error += tk->ntp_tick << shift;
2041 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2042 (tk->ntp_error_shift + shift);
2043
2044 return offset;
2045}
2046
2047/**
2048 * update_wall_time - Uses the current clocksource to increment the wall time
2049 *
2050 */
2051void update_wall_time(void)
2052{
2053 struct timekeeper *real_tk = &tk_core.timekeeper;
2054 struct timekeeper *tk = &shadow_timekeeper;
2055 u64 offset;
2056 int shift = 0, maxshift;
2057 unsigned int clock_set = 0;
2058 unsigned long flags;
2059
2060 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2061
2062 /* Make sure we're fully resumed: */
2063 if (unlikely(timekeeping_suspended))
2064 goto out;
2065
2066#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2067 offset = real_tk->cycle_interval;
2068#else
2069 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2070 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2071#endif
2072
2073 /* Check if there's really nothing to do */
2074 if (offset < real_tk->cycle_interval)
2075 goto out;
2076
2077 /* Do some additional sanity checking */
2078 timekeeping_check_update(real_tk, offset);
2079
2080 /*
2081 * With NO_HZ we may have to accumulate many cycle_intervals
2082 * (think "ticks") worth of time at once. To do this efficiently,
2083 * we calculate the largest doubling multiple of cycle_intervals
2084 * that is smaller than the offset. We then accumulate that
2085 * chunk in one go, and then try to consume the next smaller
2086 * doubled multiple.
2087 */
2088 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2089 shift = max(0, shift);
2090 /* Bound shift to one less than what overflows tick_length */
2091 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2092 shift = min(shift, maxshift);
2093 while (offset >= tk->cycle_interval) {
2094 offset = logarithmic_accumulation(tk, offset, shift,
2095 &clock_set);
2096 if (offset < tk->cycle_interval<<shift)
2097 shift--;
2098 }
2099
2100 /* correct the clock when NTP error is too big */
2101 timekeeping_adjust(tk, offset);
2102
2103 /*
2104 * XXX This can be killed once everyone converts
2105 * to the new update_vsyscall.
2106 */
2107 old_vsyscall_fixup(tk);
2108
2109 /*
2110 * Finally, make sure that after the rounding
2111 * xtime_nsec isn't larger than NSEC_PER_SEC
2112 */
2113 clock_set |= accumulate_nsecs_to_secs(tk);
2114
2115 write_seqcount_begin(&tk_core.seq);
2116 /*
2117 * Update the real timekeeper.
2118 *
2119 * We could avoid this memcpy by switching pointers, but that
2120 * requires changes to all other timekeeper usage sites as
2121 * well, i.e. move the timekeeper pointer getter into the
2122 * spinlocked/seqcount protected sections. And we trade this
2123 * memcpy under the tk_core.seq against one before we start
2124 * updating.
2125 */
2126 timekeeping_update(tk, clock_set);
2127 memcpy(real_tk, tk, sizeof(*tk));
2128 /* The memcpy must come last. Do not put anything here! */
2129 write_seqcount_end(&tk_core.seq);
2130out:
2131 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2132 if (clock_set)
2133 /* Have to call _delayed version, since in irq context*/
2134 clock_was_set_delayed();
2135}
2136
2137/**
2138 * getboottime64 - Return the real time of system boot.
2139 * @ts: pointer to the timespec64 to be set
2140 *
2141 * Returns the wall-time of boot in a timespec64.
2142 *
2143 * This is based on the wall_to_monotonic offset and the total suspend
2144 * time. Calls to settimeofday will affect the value returned (which
2145 * basically means that however wrong your real time clock is at boot time,
2146 * you get the right time here).
2147 */
2148void getboottime64(struct timespec64 *ts)
2149{
2150 struct timekeeper *tk = &tk_core.timekeeper;
2151 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2152
2153 *ts = ktime_to_timespec64(t);
2154}
2155EXPORT_SYMBOL_GPL(getboottime64);
2156
2157unsigned long get_seconds(void)
2158{
2159 struct timekeeper *tk = &tk_core.timekeeper;
2160
2161 return tk->xtime_sec;
2162}
2163EXPORT_SYMBOL(get_seconds);
2164
2165struct timespec __current_kernel_time(void)
2166{
2167 struct timekeeper *tk = &tk_core.timekeeper;
2168
2169 return timespec64_to_timespec(tk_xtime(tk));
2170}
2171
2172struct timespec64 current_kernel_time64(void)
2173{
2174 struct timekeeper *tk = &tk_core.timekeeper;
2175 struct timespec64 now;
2176 unsigned long seq;
2177
2178 do {
2179 seq = read_seqcount_begin(&tk_core.seq);
2180
2181 now = tk_xtime(tk);
2182 } while (read_seqcount_retry(&tk_core.seq, seq));
2183
2184 return now;
2185}
2186EXPORT_SYMBOL(current_kernel_time64);
2187
2188struct timespec64 get_monotonic_coarse64(void)
2189{
2190 struct timekeeper *tk = &tk_core.timekeeper;
2191 struct timespec64 now, mono;
2192 unsigned long seq;
2193
2194 do {
2195 seq = read_seqcount_begin(&tk_core.seq);
2196
2197 now = tk_xtime(tk);
2198 mono = tk->wall_to_monotonic;
2199 } while (read_seqcount_retry(&tk_core.seq, seq));
2200
2201 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2202 now.tv_nsec + mono.tv_nsec);
2203
2204 return now;
2205}
2206EXPORT_SYMBOL(get_monotonic_coarse64);
2207
2208/*
2209 * Must hold jiffies_lock
2210 */
2211void do_timer(unsigned long ticks)
2212{
2213 jiffies_64 += ticks;
2214 calc_global_load(ticks);
2215}
2216
2217/**
2218 * ktime_get_update_offsets_now - hrtimer helper
2219 * @cwsseq: pointer to check and store the clock was set sequence number
2220 * @offs_real: pointer to storage for monotonic -> realtime offset
2221 * @offs_boot: pointer to storage for monotonic -> boottime offset
2222 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2223 *
2224 * Returns current monotonic time and updates the offsets if the
2225 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2226 * different.
2227 *
2228 * Called from hrtimer_interrupt() or retrigger_next_event()
2229 */
2230ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2231 ktime_t *offs_boot, ktime_t *offs_tai)
2232{
2233 struct timekeeper *tk = &tk_core.timekeeper;
2234 unsigned int seq;
2235 ktime_t base;
2236 u64 nsecs;
2237
2238 do {
2239 seq = read_seqcount_begin(&tk_core.seq);
2240
2241 base = tk->tkr_mono.base;
2242 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2243 base = ktime_add_ns(base, nsecs);
2244
2245 if (*cwsseq != tk->clock_was_set_seq) {
2246 *cwsseq = tk->clock_was_set_seq;
2247 *offs_real = tk->offs_real;
2248 *offs_boot = tk->offs_boot;
2249 *offs_tai = tk->offs_tai;
2250 }
2251
2252 /* Handle leapsecond insertion adjustments */
2253 if (unlikely(base >= tk->next_leap_ktime))
2254 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2255
2256 } while (read_seqcount_retry(&tk_core.seq, seq));
2257
2258 return base;
2259}
2260
2261/**
2262 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2263 */
2264int do_adjtimex(struct timex *txc)
2265{
2266 struct timekeeper *tk = &tk_core.timekeeper;
2267 unsigned long flags;
2268 struct timespec64 ts;
2269 s32 orig_tai, tai;
2270 int ret;
2271
2272 /* Validate the data before disabling interrupts */
2273 ret = ntp_validate_timex(txc);
2274 if (ret)
2275 return ret;
2276
2277 if (txc->modes & ADJ_SETOFFSET) {
2278 struct timespec delta;
2279 delta.tv_sec = txc->time.tv_sec;
2280 delta.tv_nsec = txc->time.tv_usec;
2281 if (!(txc->modes & ADJ_NANO))
2282 delta.tv_nsec *= 1000;
2283 ret = timekeeping_inject_offset(&delta);
2284 if (ret)
2285 return ret;
2286 }
2287
2288 getnstimeofday64(&ts);
2289
2290 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2291 write_seqcount_begin(&tk_core.seq);
2292
2293 orig_tai = tai = tk->tai_offset;
2294 ret = __do_adjtimex(txc, &ts, &tai);
2295
2296 if (tai != orig_tai) {
2297 __timekeeping_set_tai_offset(tk, tai);
2298 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2299 }
2300 tk_update_leap_state(tk);
2301
2302 write_seqcount_end(&tk_core.seq);
2303 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2304
2305 if (tai != orig_tai)
2306 clock_was_set();
2307
2308 ntp_notify_cmos_timer();
2309
2310 return ret;
2311}
2312
2313#ifdef CONFIG_NTP_PPS
2314/**
2315 * hardpps() - Accessor function to NTP __hardpps function
2316 */
2317void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2318{
2319 unsigned long flags;
2320
2321 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2322 write_seqcount_begin(&tk_core.seq);
2323
2324 __hardpps(phase_ts, raw_ts);
2325
2326 write_seqcount_end(&tk_core.seq);
2327 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2328}
2329EXPORT_SYMBOL(hardpps);
2330#endif
2331
2332/**
2333 * xtime_update() - advances the timekeeping infrastructure
2334 * @ticks: number of ticks, that have elapsed since the last call.
2335 *
2336 * Must be called with interrupts disabled.
2337 */
2338void xtime_update(unsigned long ticks)
2339{
2340 write_seqlock(&jiffies_lock);
2341 do_timer(ticks);
2342 write_sequnlock(&jiffies_lock);
2343 update_wall_time();
2344}