Linux Audio

Check our new training course

Loading...
v4.6
   1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
 
   2 *
   3 * This program is free software; you can redistribute it and/or
   4 * modify it under the terms of version 2 of the GNU General Public
   5 * License as published by the Free Software Foundation.
   6 *
   7 * This program is distributed in the hope that it will be useful, but
   8 * WITHOUT ANY WARRANTY; without even the implied warranty of
   9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  10 * General Public License for more details.
  11 */
  12#include <linux/kernel.h>
  13#include <linux/types.h>
  14#include <linux/slab.h>
  15#include <linux/bpf.h>
 
  16#include <linux/filter.h>
  17#include <net/netlink.h>
  18#include <linux/file.h>
  19#include <linux/vmalloc.h>
 
  20
  21/* bpf_check() is a static code analyzer that walks eBPF program
  22 * instruction by instruction and updates register/stack state.
  23 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
  24 *
  25 * The first pass is depth-first-search to check that the program is a DAG.
  26 * It rejects the following programs:
  27 * - larger than BPF_MAXINSNS insns
  28 * - if loop is present (detected via back-edge)
  29 * - unreachable insns exist (shouldn't be a forest. program = one function)
  30 * - out of bounds or malformed jumps
  31 * The second pass is all possible path descent from the 1st insn.
  32 * Since it's analyzing all pathes through the program, the length of the
  33 * analysis is limited to 32k insn, which may be hit even if total number of
  34 * insn is less then 4K, but there are too many branches that change stack/regs.
  35 * Number of 'branches to be analyzed' is limited to 1k
  36 *
  37 * On entry to each instruction, each register has a type, and the instruction
  38 * changes the types of the registers depending on instruction semantics.
  39 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
  40 * copied to R1.
  41 *
  42 * All registers are 64-bit.
  43 * R0 - return register
  44 * R1-R5 argument passing registers
  45 * R6-R9 callee saved registers
  46 * R10 - frame pointer read-only
  47 *
  48 * At the start of BPF program the register R1 contains a pointer to bpf_context
  49 * and has type PTR_TO_CTX.
  50 *
  51 * Verifier tracks arithmetic operations on pointers in case:
  52 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  53 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
  54 * 1st insn copies R10 (which has FRAME_PTR) type into R1
  55 * and 2nd arithmetic instruction is pattern matched to recognize
  56 * that it wants to construct a pointer to some element within stack.
  57 * So after 2nd insn, the register R1 has type PTR_TO_STACK
  58 * (and -20 constant is saved for further stack bounds checking).
  59 * Meaning that this reg is a pointer to stack plus known immediate constant.
  60 *
  61 * Most of the time the registers have UNKNOWN_VALUE type, which
  62 * means the register has some value, but it's not a valid pointer.
  63 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
  64 *
  65 * When verifier sees load or store instructions the type of base register
  66 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
  67 * types recognized by check_mem_access() function.
  68 *
  69 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
  70 * and the range of [ptr, ptr + map's value_size) is accessible.
  71 *
  72 * registers used to pass values to function calls are checked against
  73 * function argument constraints.
  74 *
  75 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
  76 * It means that the register type passed to this function must be
  77 * PTR_TO_STACK and it will be used inside the function as
  78 * 'pointer to map element key'
  79 *
  80 * For example the argument constraints for bpf_map_lookup_elem():
  81 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
  82 *   .arg1_type = ARG_CONST_MAP_PTR,
  83 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
  84 *
  85 * ret_type says that this function returns 'pointer to map elem value or null'
  86 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
  87 * 2nd argument should be a pointer to stack, which will be used inside
  88 * the helper function as a pointer to map element key.
  89 *
  90 * On the kernel side the helper function looks like:
  91 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
  92 * {
  93 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
  94 *    void *key = (void *) (unsigned long) r2;
  95 *    void *value;
  96 *
  97 *    here kernel can access 'key' and 'map' pointers safely, knowing that
  98 *    [key, key + map->key_size) bytes are valid and were initialized on
  99 *    the stack of eBPF program.
 100 * }
 101 *
 102 * Corresponding eBPF program may look like:
 103 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 104 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 105 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 106 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 107 * here verifier looks at prototype of map_lookup_elem() and sees:
 108 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 109 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 110 *
 111 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 112 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 113 * and were initialized prior to this call.
 114 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 115 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 116 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 117 * returns ether pointer to map value or NULL.
 118 *
 119 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 120 * insn, the register holding that pointer in the true branch changes state to
 121 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 122 * branch. See check_cond_jmp_op().
 123 *
 124 * After the call R0 is set to return type of the function and registers R1-R5
 125 * are set to NOT_INIT to indicate that they are no longer readable.
 126 */
 127
 128/* types of values stored in eBPF registers */
 129enum bpf_reg_type {
 130	NOT_INIT = 0,		 /* nothing was written into register */
 131	UNKNOWN_VALUE,		 /* reg doesn't contain a valid pointer */
 132	PTR_TO_CTX,		 /* reg points to bpf_context */
 133	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
 134	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
 135	PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */
 136	FRAME_PTR,		 /* reg == frame_pointer */
 137	PTR_TO_STACK,		 /* reg == frame_pointer + imm */
 138	CONST_IMM,		 /* constant integer value */
 139};
 140
 141struct reg_state {
 142	enum bpf_reg_type type;
 143	union {
 144		/* valid when type == CONST_IMM | PTR_TO_STACK */
 145		int imm;
 146
 147		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
 148		 *   PTR_TO_MAP_VALUE_OR_NULL
 149		 */
 150		struct bpf_map *map_ptr;
 151	};
 152};
 153
 154enum bpf_stack_slot_type {
 155	STACK_INVALID,    /* nothing was stored in this stack slot */
 156	STACK_SPILL,      /* register spilled into stack */
 157	STACK_MISC	  /* BPF program wrote some data into this slot */
 158};
 159
 160#define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
 161
 162/* state of the program:
 163 * type of all registers and stack info
 164 */
 165struct verifier_state {
 166	struct reg_state regs[MAX_BPF_REG];
 167	u8 stack_slot_type[MAX_BPF_STACK];
 168	struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
 169};
 170
 171/* linked list of verifier states used to prune search */
 172struct verifier_state_list {
 173	struct verifier_state state;
 174	struct verifier_state_list *next;
 175};
 176
 177/* verifier_state + insn_idx are pushed to stack when branch is encountered */
 178struct verifier_stack_elem {
 179	/* verifer state is 'st'
 180	 * before processing instruction 'insn_idx'
 181	 * and after processing instruction 'prev_insn_idx'
 182	 */
 183	struct verifier_state st;
 184	int insn_idx;
 185	int prev_insn_idx;
 186	struct verifier_stack_elem *next;
 187};
 188
 189#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
 
 190
 191/* single container for all structs
 192 * one verifier_env per bpf_check() call
 193 */
 194struct verifier_env {
 195	struct bpf_prog *prog;		/* eBPF program being verified */
 196	struct verifier_stack_elem *head; /* stack of verifier states to be processed */
 197	int stack_size;			/* number of states to be processed */
 198	struct verifier_state cur_state; /* current verifier state */
 199	struct verifier_state_list **explored_states; /* search pruning optimization */
 200	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
 201	u32 used_map_cnt;		/* number of used maps */
 202	bool allow_ptr_leaks;
 203};
 204
 205/* verbose verifier prints what it's seeing
 206 * bpf_check() is called under lock, so no race to access these global vars
 207 */
 208static u32 log_level, log_size, log_len;
 209static char *log_buf;
 210
 211static DEFINE_MUTEX(bpf_verifier_lock);
 212
 213/* log_level controls verbosity level of eBPF verifier.
 214 * verbose() is used to dump the verification trace to the log, so the user
 215 * can figure out what's wrong with the program
 216 */
 217static __printf(1, 2) void verbose(const char *fmt, ...)
 218{
 219	va_list args;
 220
 221	if (log_level == 0 || log_len >= log_size - 1)
 222		return;
 223
 224	va_start(args, fmt);
 225	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
 226	va_end(args);
 227}
 228
 229/* string representation of 'enum bpf_reg_type' */
 230static const char * const reg_type_str[] = {
 231	[NOT_INIT]		= "?",
 232	[UNKNOWN_VALUE]		= "inv",
 233	[PTR_TO_CTX]		= "ctx",
 234	[CONST_PTR_TO_MAP]	= "map_ptr",
 235	[PTR_TO_MAP_VALUE]	= "map_value",
 236	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
 
 237	[FRAME_PTR]		= "fp",
 238	[PTR_TO_STACK]		= "fp",
 239	[CONST_IMM]		= "imm",
 
 
 240};
 241
 242static void print_verifier_state(struct verifier_env *env)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243{
 
 244	enum bpf_reg_type t;
 245	int i;
 246
 247	for (i = 0; i < MAX_BPF_REG; i++) {
 248		t = env->cur_state.regs[i].type;
 
 249		if (t == NOT_INIT)
 250			continue;
 251		verbose(" R%d=%s", i, reg_type_str[t]);
 252		if (t == CONST_IMM || t == PTR_TO_STACK)
 253			verbose("%d", env->cur_state.regs[i].imm);
 
 
 
 
 
 254		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
 255			 t == PTR_TO_MAP_VALUE_OR_NULL)
 256			verbose("(ks=%d,vs=%d)",
 257				env->cur_state.regs[i].map_ptr->key_size,
 258				env->cur_state.regs[i].map_ptr->value_size);
 
 
 
 
 
 
 
 
 259	}
 260	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
 261		if (env->cur_state.stack_slot_type[i] == STACK_SPILL)
 262			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
 263				reg_type_str[env->cur_state.spilled_regs[i / BPF_REG_SIZE].type]);
 264	}
 265	verbose("\n");
 266}
 267
 268static const char *const bpf_class_string[] = {
 269	[BPF_LD]    = "ld",
 270	[BPF_LDX]   = "ldx",
 271	[BPF_ST]    = "st",
 272	[BPF_STX]   = "stx",
 273	[BPF_ALU]   = "alu",
 274	[BPF_JMP]   = "jmp",
 275	[BPF_RET]   = "BUG",
 276	[BPF_ALU64] = "alu64",
 277};
 278
 279static const char *const bpf_alu_string[16] = {
 280	[BPF_ADD >> 4]  = "+=",
 281	[BPF_SUB >> 4]  = "-=",
 282	[BPF_MUL >> 4]  = "*=",
 283	[BPF_DIV >> 4]  = "/=",
 284	[BPF_OR  >> 4]  = "|=",
 285	[BPF_AND >> 4]  = "&=",
 286	[BPF_LSH >> 4]  = "<<=",
 287	[BPF_RSH >> 4]  = ">>=",
 288	[BPF_NEG >> 4]  = "neg",
 289	[BPF_MOD >> 4]  = "%=",
 290	[BPF_XOR >> 4]  = "^=",
 291	[BPF_MOV >> 4]  = "=",
 292	[BPF_ARSH >> 4] = "s>>=",
 293	[BPF_END >> 4]  = "endian",
 294};
 295
 296static const char *const bpf_ldst_string[] = {
 297	[BPF_W >> 3]  = "u32",
 298	[BPF_H >> 3]  = "u16",
 299	[BPF_B >> 3]  = "u8",
 300	[BPF_DW >> 3] = "u64",
 301};
 302
 303static const char *const bpf_jmp_string[16] = {
 304	[BPF_JA >> 4]   = "jmp",
 305	[BPF_JEQ >> 4]  = "==",
 306	[BPF_JGT >> 4]  = ">",
 307	[BPF_JGE >> 4]  = ">=",
 308	[BPF_JSET >> 4] = "&",
 309	[BPF_JNE >> 4]  = "!=",
 310	[BPF_JSGT >> 4] = "s>",
 311	[BPF_JSGE >> 4] = "s>=",
 312	[BPF_CALL >> 4] = "call",
 313	[BPF_EXIT >> 4] = "exit",
 314};
 315
 316static void print_bpf_insn(struct bpf_insn *insn)
 317{
 318	u8 class = BPF_CLASS(insn->code);
 319
 320	if (class == BPF_ALU || class == BPF_ALU64) {
 321		if (BPF_SRC(insn->code) == BPF_X)
 322			verbose("(%02x) %sr%d %s %sr%d\n",
 323				insn->code, class == BPF_ALU ? "(u32) " : "",
 324				insn->dst_reg,
 325				bpf_alu_string[BPF_OP(insn->code) >> 4],
 326				class == BPF_ALU ? "(u32) " : "",
 327				insn->src_reg);
 328		else
 329			verbose("(%02x) %sr%d %s %s%d\n",
 330				insn->code, class == BPF_ALU ? "(u32) " : "",
 331				insn->dst_reg,
 332				bpf_alu_string[BPF_OP(insn->code) >> 4],
 333				class == BPF_ALU ? "(u32) " : "",
 334				insn->imm);
 335	} else if (class == BPF_STX) {
 336		if (BPF_MODE(insn->code) == BPF_MEM)
 337			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
 338				insn->code,
 339				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
 340				insn->dst_reg,
 341				insn->off, insn->src_reg);
 342		else if (BPF_MODE(insn->code) == BPF_XADD)
 343			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
 344				insn->code,
 345				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
 346				insn->dst_reg, insn->off,
 347				insn->src_reg);
 348		else
 349			verbose("BUG_%02x\n", insn->code);
 350	} else if (class == BPF_ST) {
 351		if (BPF_MODE(insn->code) != BPF_MEM) {
 352			verbose("BUG_st_%02x\n", insn->code);
 353			return;
 354		}
 355		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
 356			insn->code,
 357			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
 358			insn->dst_reg,
 359			insn->off, insn->imm);
 360	} else if (class == BPF_LDX) {
 361		if (BPF_MODE(insn->code) != BPF_MEM) {
 362			verbose("BUG_ldx_%02x\n", insn->code);
 363			return;
 364		}
 365		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
 366			insn->code, insn->dst_reg,
 367			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
 368			insn->src_reg, insn->off);
 369	} else if (class == BPF_LD) {
 370		if (BPF_MODE(insn->code) == BPF_ABS) {
 371			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
 372				insn->code,
 373				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
 374				insn->imm);
 375		} else if (BPF_MODE(insn->code) == BPF_IND) {
 376			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
 377				insn->code,
 378				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
 379				insn->src_reg, insn->imm);
 380		} else if (BPF_MODE(insn->code) == BPF_IMM) {
 381			verbose("(%02x) r%d = 0x%x\n",
 382				insn->code, insn->dst_reg, insn->imm);
 383		} else {
 384			verbose("BUG_ld_%02x\n", insn->code);
 385			return;
 386		}
 387	} else if (class == BPF_JMP) {
 388		u8 opcode = BPF_OP(insn->code);
 389
 390		if (opcode == BPF_CALL) {
 391			verbose("(%02x) call %d\n", insn->code, insn->imm);
 
 392		} else if (insn->code == (BPF_JMP | BPF_JA)) {
 393			verbose("(%02x) goto pc%+d\n",
 394				insn->code, insn->off);
 395		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
 396			verbose("(%02x) exit\n", insn->code);
 397		} else if (BPF_SRC(insn->code) == BPF_X) {
 398			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
 399				insn->code, insn->dst_reg,
 400				bpf_jmp_string[BPF_OP(insn->code) >> 4],
 401				insn->src_reg, insn->off);
 402		} else {
 403			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
 404				insn->code, insn->dst_reg,
 405				bpf_jmp_string[BPF_OP(insn->code) >> 4],
 406				insn->imm, insn->off);
 407		}
 408	} else {
 409		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
 410	}
 411}
 412
 413static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
 414{
 415	struct verifier_stack_elem *elem;
 416	int insn_idx;
 417
 418	if (env->head == NULL)
 419		return -1;
 420
 421	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
 422	insn_idx = env->head->insn_idx;
 423	if (prev_insn_idx)
 424		*prev_insn_idx = env->head->prev_insn_idx;
 425	elem = env->head->next;
 426	kfree(env->head);
 427	env->head = elem;
 428	env->stack_size--;
 429	return insn_idx;
 430}
 431
 432static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
 433					 int prev_insn_idx)
 434{
 435	struct verifier_stack_elem *elem;
 436
 437	elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
 438	if (!elem)
 439		goto err;
 440
 441	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
 442	elem->insn_idx = insn_idx;
 443	elem->prev_insn_idx = prev_insn_idx;
 444	elem->next = env->head;
 445	env->head = elem;
 446	env->stack_size++;
 447	if (env->stack_size > 1024) {
 448		verbose("BPF program is too complex\n");
 449		goto err;
 450	}
 451	return &elem->st;
 452err:
 453	/* pop all elements and return */
 454	while (pop_stack(env, NULL) >= 0);
 455	return NULL;
 456}
 457
 458#define CALLER_SAVED_REGS 6
 459static const int caller_saved[CALLER_SAVED_REGS] = {
 460	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
 461};
 462
 463static void init_reg_state(struct reg_state *regs)
 464{
 465	int i;
 466
 467	for (i = 0; i < MAX_BPF_REG; i++) {
 468		regs[i].type = NOT_INIT;
 469		regs[i].imm = 0;
 470		regs[i].map_ptr = NULL;
 
 471	}
 472
 473	/* frame pointer */
 474	regs[BPF_REG_FP].type = FRAME_PTR;
 475
 476	/* 1st arg to a function */
 477	regs[BPF_REG_1].type = PTR_TO_CTX;
 478}
 479
 480static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
 481{
 482	BUG_ON(regno >= MAX_BPF_REG);
 483	regs[regno].type = UNKNOWN_VALUE;
 
 484	regs[regno].imm = 0;
 485	regs[regno].map_ptr = NULL;
 
 
 
 
 
 
 
 
 
 
 
 486}
 487
 488enum reg_arg_type {
 489	SRC_OP,		/* register is used as source operand */
 490	DST_OP,		/* register is used as destination operand */
 491	DST_OP_NO_MARK	/* same as above, check only, don't mark */
 492};
 493
 494static int check_reg_arg(struct reg_state *regs, u32 regno,
 495			 enum reg_arg_type t)
 496{
 497	if (regno >= MAX_BPF_REG) {
 498		verbose("R%d is invalid\n", regno);
 499		return -EINVAL;
 500	}
 501
 502	if (t == SRC_OP) {
 503		/* check whether register used as source operand can be read */
 504		if (regs[regno].type == NOT_INIT) {
 505			verbose("R%d !read_ok\n", regno);
 506			return -EACCES;
 507		}
 508	} else {
 509		/* check whether register used as dest operand can be written to */
 510		if (regno == BPF_REG_FP) {
 511			verbose("frame pointer is read only\n");
 512			return -EACCES;
 513		}
 514		if (t == DST_OP)
 515			mark_reg_unknown_value(regs, regno);
 516	}
 517	return 0;
 518}
 519
 520static int bpf_size_to_bytes(int bpf_size)
 521{
 522	if (bpf_size == BPF_W)
 523		return 4;
 524	else if (bpf_size == BPF_H)
 525		return 2;
 526	else if (bpf_size == BPF_B)
 527		return 1;
 528	else if (bpf_size == BPF_DW)
 529		return 8;
 530	else
 531		return -EINVAL;
 532}
 533
 534static bool is_spillable_regtype(enum bpf_reg_type type)
 535{
 536	switch (type) {
 537	case PTR_TO_MAP_VALUE:
 538	case PTR_TO_MAP_VALUE_OR_NULL:
 539	case PTR_TO_STACK:
 540	case PTR_TO_CTX:
 
 
 541	case FRAME_PTR:
 542	case CONST_PTR_TO_MAP:
 543		return true;
 544	default:
 545		return false;
 546	}
 547}
 548
 549/* check_stack_read/write functions track spill/fill of registers,
 550 * stack boundary and alignment are checked in check_mem_access()
 551 */
 552static int check_stack_write(struct verifier_state *state, int off, int size,
 553			     int value_regno)
 554{
 555	int i;
 556	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
 557	 * so it's aligned access and [off, off + size) are within stack limits
 558	 */
 559
 560	if (value_regno >= 0 &&
 561	    is_spillable_regtype(state->regs[value_regno].type)) {
 562
 563		/* register containing pointer is being spilled into stack */
 564		if (size != BPF_REG_SIZE) {
 565			verbose("invalid size of register spill\n");
 566			return -EACCES;
 567		}
 568
 569		/* save register state */
 570		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
 571			state->regs[value_regno];
 572
 573		for (i = 0; i < BPF_REG_SIZE; i++)
 574			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
 575	} else {
 576		/* regular write of data into stack */
 577		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
 578			(struct reg_state) {};
 579
 580		for (i = 0; i < size; i++)
 581			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
 582	}
 583	return 0;
 584}
 585
 586static int check_stack_read(struct verifier_state *state, int off, int size,
 587			    int value_regno)
 588{
 589	u8 *slot_type;
 590	int i;
 591
 592	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
 593
 594	if (slot_type[0] == STACK_SPILL) {
 595		if (size != BPF_REG_SIZE) {
 596			verbose("invalid size of register spill\n");
 597			return -EACCES;
 598		}
 599		for (i = 1; i < BPF_REG_SIZE; i++) {
 600			if (slot_type[i] != STACK_SPILL) {
 601				verbose("corrupted spill memory\n");
 602				return -EACCES;
 603			}
 604		}
 605
 606		if (value_regno >= 0)
 607			/* restore register state from stack */
 608			state->regs[value_regno] =
 609				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
 610		return 0;
 611	} else {
 612		for (i = 0; i < size; i++) {
 613			if (slot_type[i] != STACK_MISC) {
 614				verbose("invalid read from stack off %d+%d size %d\n",
 615					off, i, size);
 616				return -EACCES;
 617			}
 618		}
 619		if (value_regno >= 0)
 620			/* have read misc data from the stack */
 621			mark_reg_unknown_value(state->regs, value_regno);
 622		return 0;
 623	}
 624}
 625
 626/* check read/write into map element returned by bpf_map_lookup_elem() */
 627static int check_map_access(struct verifier_env *env, u32 regno, int off,
 628			    int size)
 629{
 630	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
 631
 632	if (off < 0 || off + size > map->value_size) {
 633		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
 634			map->value_size, off, size);
 635		return -EACCES;
 636	}
 637	return 0;
 638}
 639
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 640/* check access to 'struct bpf_context' fields */
 641static int check_ctx_access(struct verifier_env *env, int off, int size,
 642			    enum bpf_access_type t)
 643{
 
 
 
 
 644	if (env->prog->aux->ops->is_valid_access &&
 645	    env->prog->aux->ops->is_valid_access(off, size, t))
 
 
 
 646		return 0;
 
 647
 648	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
 649	return -EACCES;
 650}
 651
 652static bool is_pointer_value(struct verifier_env *env, int regno)
 653{
 654	if (env->allow_ptr_leaks)
 655		return false;
 656
 657	switch (env->cur_state.regs[regno].type) {
 658	case UNKNOWN_VALUE:
 659	case CONST_IMM:
 660		return false;
 661	default:
 662		return true;
 663	}
 664}
 665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666/* check whether memory at (regno + off) is accessible for t = (read | write)
 667 * if t==write, value_regno is a register which value is stored into memory
 668 * if t==read, value_regno is a register which will receive the value from memory
 669 * if t==write && value_regno==-1, some unknown value is stored into memory
 670 * if t==read && value_regno==-1, don't care what we read from memory
 671 */
 672static int check_mem_access(struct verifier_env *env, u32 regno, int off,
 673			    int bpf_size, enum bpf_access_type t,
 674			    int value_regno)
 675{
 676	struct verifier_state *state = &env->cur_state;
 
 677	int size, err = 0;
 678
 679	if (state->regs[regno].type == PTR_TO_STACK)
 680		off += state->regs[regno].imm;
 681
 682	size = bpf_size_to_bytes(bpf_size);
 683	if (size < 0)
 684		return size;
 685
 686	if (off % size != 0) {
 687		verbose("misaligned access off %d size %d\n", off, size);
 688		return -EACCES;
 689	}
 690
 691	if (state->regs[regno].type == PTR_TO_MAP_VALUE) {
 
 692		if (t == BPF_WRITE && value_regno >= 0 &&
 693		    is_pointer_value(env, value_regno)) {
 694			verbose("R%d leaks addr into map\n", value_regno);
 695			return -EACCES;
 696		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 697		err = check_map_access(env, regno, off, size);
 698		if (!err && t == BPF_READ && value_regno >= 0)
 699			mark_reg_unknown_value(state->regs, value_regno);
 700
 701	} else if (state->regs[regno].type == PTR_TO_CTX) {
 
 
 702		if (t == BPF_WRITE && value_regno >= 0 &&
 703		    is_pointer_value(env, value_regno)) {
 704			verbose("R%d leaks addr into ctx\n", value_regno);
 705			return -EACCES;
 706		}
 707		err = check_ctx_access(env, off, size, t);
 708		if (!err && t == BPF_READ && value_regno >= 0)
 709			mark_reg_unknown_value(state->regs, value_regno);
 
 
 
 710
 711	} else if (state->regs[regno].type == FRAME_PTR ||
 712		   state->regs[regno].type == PTR_TO_STACK) {
 713		if (off >= 0 || off < -MAX_BPF_STACK) {
 714			verbose("invalid stack off=%d size=%d\n", off, size);
 715			return -EACCES;
 716		}
 717		if (t == BPF_WRITE) {
 718			if (!env->allow_ptr_leaks &&
 719			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
 720			    size != BPF_REG_SIZE) {
 721				verbose("attempt to corrupt spilled pointer on stack\n");
 722				return -EACCES;
 723			}
 724			err = check_stack_write(state, off, size, value_regno);
 725		} else {
 726			err = check_stack_read(state, off, size, value_regno);
 727		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 728	} else {
 729		verbose("R%d invalid mem access '%s'\n",
 730			regno, reg_type_str[state->regs[regno].type]);
 731		return -EACCES;
 732	}
 
 
 
 
 
 
 
 
 
 733	return err;
 734}
 735
 736static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
 737{
 738	struct reg_state *regs = env->cur_state.regs;
 739	int err;
 740
 741	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
 742	    insn->imm != 0) {
 743		verbose("BPF_XADD uses reserved fields\n");
 744		return -EINVAL;
 745	}
 746
 747	/* check src1 operand */
 748	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
 749	if (err)
 750		return err;
 751
 752	/* check src2 operand */
 753	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
 754	if (err)
 755		return err;
 756
 757	/* check whether atomic_add can read the memory */
 758	err = check_mem_access(env, insn->dst_reg, insn->off,
 759			       BPF_SIZE(insn->code), BPF_READ, -1);
 760	if (err)
 761		return err;
 762
 763	/* check whether atomic_add can write into the same memory */
 764	return check_mem_access(env, insn->dst_reg, insn->off,
 765				BPF_SIZE(insn->code), BPF_WRITE, -1);
 766}
 767
 768/* when register 'regno' is passed into function that will read 'access_size'
 769 * bytes from that pointer, make sure that it's within stack boundary
 770 * and all elements of stack are initialized
 771 */
 772static int check_stack_boundary(struct verifier_env *env, int regno,
 773				int access_size, bool zero_size_allowed)
 
 774{
 775	struct verifier_state *state = &env->cur_state;
 776	struct reg_state *regs = state->regs;
 777	int off, i;
 778
 779	if (regs[regno].type != PTR_TO_STACK) {
 780		if (zero_size_allowed && access_size == 0 &&
 781		    regs[regno].type == CONST_IMM &&
 782		    regs[regno].imm  == 0)
 783			return 0;
 784
 785		verbose("R%d type=%s expected=%s\n", regno,
 786			reg_type_str[regs[regno].type],
 787			reg_type_str[PTR_TO_STACK]);
 788		return -EACCES;
 789	}
 790
 791	off = regs[regno].imm;
 792	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
 793	    access_size <= 0) {
 794		verbose("invalid stack type R%d off=%d access_size=%d\n",
 795			regno, off, access_size);
 796		return -EACCES;
 797	}
 798
 
 
 
 
 
 
 799	for (i = 0; i < access_size; i++) {
 800		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
 801			verbose("invalid indirect read from stack off %d+%d size %d\n",
 802				off, i, access_size);
 803			return -EACCES;
 804		}
 805	}
 806	return 0;
 807}
 808
 809static int check_func_arg(struct verifier_env *env, u32 regno,
 810			  enum bpf_arg_type arg_type, struct bpf_map **mapp)
 
 811{
 812	struct reg_state *reg = env->cur_state.regs + regno;
 813	enum bpf_reg_type expected_type;
 814	int err = 0;
 815
 816	if (arg_type == ARG_DONTCARE)
 817		return 0;
 818
 819	if (reg->type == NOT_INIT) {
 820		verbose("R%d !read_ok\n", regno);
 821		return -EACCES;
 822	}
 823
 824	if (arg_type == ARG_ANYTHING) {
 825		if (is_pointer_value(env, regno)) {
 826			verbose("R%d leaks addr into helper function\n", regno);
 827			return -EACCES;
 828		}
 829		return 0;
 830	}
 831
 
 
 
 
 
 
 832	if (arg_type == ARG_PTR_TO_MAP_KEY ||
 833	    arg_type == ARG_PTR_TO_MAP_VALUE) {
 834		expected_type = PTR_TO_STACK;
 
 
 835	} else if (arg_type == ARG_CONST_STACK_SIZE ||
 836		   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
 837		expected_type = CONST_IMM;
 
 
 838	} else if (arg_type == ARG_CONST_MAP_PTR) {
 839		expected_type = CONST_PTR_TO_MAP;
 
 
 840	} else if (arg_type == ARG_PTR_TO_CTX) {
 841		expected_type = PTR_TO_CTX;
 842	} else if (arg_type == ARG_PTR_TO_STACK) {
 
 
 
 843		expected_type = PTR_TO_STACK;
 844		/* One exception here. In case function allows for NULL to be
 845		 * passed in as argument, it's a CONST_IMM type. Final test
 846		 * happens during stack boundary checking.
 847		 */
 848		if (reg->type == CONST_IMM && reg->imm == 0)
 849			expected_type = CONST_IMM;
 
 
 
 850	} else {
 851		verbose("unsupported arg_type %d\n", arg_type);
 852		return -EFAULT;
 853	}
 854
 855	if (reg->type != expected_type) {
 856		verbose("R%d type=%s expected=%s\n", regno,
 857			reg_type_str[reg->type], reg_type_str[expected_type]);
 858		return -EACCES;
 859	}
 860
 861	if (arg_type == ARG_CONST_MAP_PTR) {
 862		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
 863		*mapp = reg->map_ptr;
 864
 865	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
 866		/* bpf_map_xxx(..., map_ptr, ..., key) call:
 867		 * check that [key, key + map->key_size) are within
 868		 * stack limits and initialized
 869		 */
 870		if (!*mapp) {
 871			/* in function declaration map_ptr must come before
 872			 * map_key, so that it's verified and known before
 873			 * we have to check map_key here. Otherwise it means
 874			 * that kernel subsystem misconfigured verifier
 875			 */
 876			verbose("invalid map_ptr to access map->key\n");
 877			return -EACCES;
 878		}
 879		err = check_stack_boundary(env, regno, (*mapp)->key_size,
 880					   false);
 
 
 
 
 
 881	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
 882		/* bpf_map_xxx(..., map_ptr, ..., value) call:
 883		 * check [value, value + map->value_size) validity
 884		 */
 885		if (!*mapp) {
 886			/* kernel subsystem misconfigured verifier */
 887			verbose("invalid map_ptr to access map->value\n");
 888			return -EACCES;
 889		}
 890		err = check_stack_boundary(env, regno, (*mapp)->value_size,
 891					   false);
 
 
 
 
 
 892	} else if (arg_type == ARG_CONST_STACK_SIZE ||
 893		   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
 894		bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
 895
 896		/* bpf_xxx(..., buf, len) call will access 'len' bytes
 897		 * from stack pointer 'buf'. Check it
 898		 * note: regno == len, regno - 1 == buf
 899		 */
 900		if (regno == 0) {
 901			/* kernel subsystem misconfigured verifier */
 902			verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
 903			return -EACCES;
 904		}
 905		err = check_stack_boundary(env, regno - 1, reg->imm,
 906					   zero_size_allowed);
 
 
 
 907	}
 908
 909	return err;
 
 
 
 
 910}
 911
 912static int check_map_func_compatibility(struct bpf_map *map, int func_id)
 913{
 914	if (!map)
 915		return 0;
 916
 917	/* We need a two way check, first is from map perspective ... */
 918	switch (map->map_type) {
 919	case BPF_MAP_TYPE_PROG_ARRAY:
 920		if (func_id != BPF_FUNC_tail_call)
 921			goto error;
 922		break;
 923	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
 924		if (func_id != BPF_FUNC_perf_event_read &&
 925		    func_id != BPF_FUNC_perf_event_output)
 926			goto error;
 927		break;
 928	case BPF_MAP_TYPE_STACK_TRACE:
 929		if (func_id != BPF_FUNC_get_stackid)
 930			goto error;
 931		break;
 
 
 
 
 
 932	default:
 933		break;
 934	}
 935
 936	/* ... and second from the function itself. */
 937	switch (func_id) {
 938	case BPF_FUNC_tail_call:
 939		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
 940			goto error;
 941		break;
 942	case BPF_FUNC_perf_event_read:
 943	case BPF_FUNC_perf_event_output:
 944		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
 945			goto error;
 946		break;
 947	case BPF_FUNC_get_stackid:
 948		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
 949			goto error;
 950		break;
 
 
 
 
 
 951	default:
 952		break;
 953	}
 954
 955	return 0;
 956error:
 957	verbose("cannot pass map_type %d into func %d\n",
 958		map->map_type, func_id);
 959	return -EINVAL;
 960}
 961
 962static int check_call(struct verifier_env *env, int func_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963{
 964	struct verifier_state *state = &env->cur_state;
 965	const struct bpf_func_proto *fn = NULL;
 966	struct reg_state *regs = state->regs;
 967	struct bpf_map *map = NULL;
 968	struct reg_state *reg;
 
 969	int i, err;
 970
 971	/* find function prototype */
 972	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
 973		verbose("invalid func %d\n", func_id);
 974		return -EINVAL;
 975	}
 976
 977	if (env->prog->aux->ops->get_func_proto)
 978		fn = env->prog->aux->ops->get_func_proto(func_id);
 979
 980	if (!fn) {
 981		verbose("unknown func %d\n", func_id);
 982		return -EINVAL;
 983	}
 984
 985	/* eBPF programs must be GPL compatible to use GPL-ed functions */
 986	if (!env->prog->gpl_compatible && fn->gpl_only) {
 987		verbose("cannot call GPL only function from proprietary program\n");
 988		return -EINVAL;
 989	}
 990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 991	/* check args */
 992	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &map);
 993	if (err)
 994		return err;
 995	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &map);
 996	if (err)
 997		return err;
 998	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &map);
 999	if (err)
1000		return err;
1001	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &map);
1002	if (err)
1003		return err;
1004	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &map);
1005	if (err)
1006		return err;
1007
 
 
 
 
 
 
 
 
 
1008	/* reset caller saved regs */
1009	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1010		reg = regs + caller_saved[i];
1011		reg->type = NOT_INIT;
1012		reg->imm = 0;
1013	}
1014
1015	/* update return register */
1016	if (fn->ret_type == RET_INTEGER) {
1017		regs[BPF_REG_0].type = UNKNOWN_VALUE;
1018	} else if (fn->ret_type == RET_VOID) {
1019		regs[BPF_REG_0].type = NOT_INIT;
1020	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1021		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
 
1022		/* remember map_ptr, so that check_map_access()
1023		 * can check 'value_size' boundary of memory access
1024		 * to map element returned from bpf_map_lookup_elem()
1025		 */
1026		if (map == NULL) {
1027			verbose("kernel subsystem misconfigured verifier\n");
1028			return -EINVAL;
1029		}
1030		regs[BPF_REG_0].map_ptr = map;
 
1031	} else {
1032		verbose("unknown return type %d of func %d\n",
1033			fn->ret_type, func_id);
1034		return -EINVAL;
1035	}
1036
1037	err = check_map_func_compatibility(map, func_id);
1038	if (err)
1039		return err;
1040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041	return 0;
1042}
1043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044/* check validity of 32-bit and 64-bit arithmetic operations */
1045static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn)
1046{
1047	struct reg_state *regs = env->cur_state.regs;
1048	u8 opcode = BPF_OP(insn->code);
1049	int err;
1050
1051	if (opcode == BPF_END || opcode == BPF_NEG) {
1052		if (opcode == BPF_NEG) {
1053			if (BPF_SRC(insn->code) != 0 ||
1054			    insn->src_reg != BPF_REG_0 ||
1055			    insn->off != 0 || insn->imm != 0) {
1056				verbose("BPF_NEG uses reserved fields\n");
1057				return -EINVAL;
1058			}
1059		} else {
1060			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1061			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1062				verbose("BPF_END uses reserved fields\n");
1063				return -EINVAL;
1064			}
1065		}
1066
1067		/* check src operand */
1068		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1069		if (err)
1070			return err;
1071
1072		if (is_pointer_value(env, insn->dst_reg)) {
1073			verbose("R%d pointer arithmetic prohibited\n",
1074				insn->dst_reg);
1075			return -EACCES;
1076		}
1077
1078		/* check dest operand */
1079		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1080		if (err)
1081			return err;
1082
1083	} else if (opcode == BPF_MOV) {
1084
1085		if (BPF_SRC(insn->code) == BPF_X) {
1086			if (insn->imm != 0 || insn->off != 0) {
1087				verbose("BPF_MOV uses reserved fields\n");
1088				return -EINVAL;
1089			}
1090
1091			/* check src operand */
1092			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1093			if (err)
1094				return err;
1095		} else {
1096			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1097				verbose("BPF_MOV uses reserved fields\n");
1098				return -EINVAL;
1099			}
1100		}
1101
1102		/* check dest operand */
1103		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1104		if (err)
1105			return err;
1106
 
 
 
 
 
1107		if (BPF_SRC(insn->code) == BPF_X) {
1108			if (BPF_CLASS(insn->code) == BPF_ALU64) {
1109				/* case: R1 = R2
1110				 * copy register state to dest reg
1111				 */
1112				regs[insn->dst_reg] = regs[insn->src_reg];
1113			} else {
1114				if (is_pointer_value(env, insn->src_reg)) {
1115					verbose("R%d partial copy of pointer\n",
1116						insn->src_reg);
1117					return -EACCES;
1118				}
1119				regs[insn->dst_reg].type = UNKNOWN_VALUE;
1120				regs[insn->dst_reg].map_ptr = NULL;
1121			}
1122		} else {
1123			/* case: R = imm
1124			 * remember the value we stored into this reg
1125			 */
1126			regs[insn->dst_reg].type = CONST_IMM;
1127			regs[insn->dst_reg].imm = insn->imm;
 
 
1128		}
1129
1130	} else if (opcode > BPF_END) {
1131		verbose("invalid BPF_ALU opcode %x\n", opcode);
1132		return -EINVAL;
1133
1134	} else {	/* all other ALU ops: and, sub, xor, add, ... */
1135
1136		bool stack_relative = false;
1137
1138		if (BPF_SRC(insn->code) == BPF_X) {
1139			if (insn->imm != 0 || insn->off != 0) {
1140				verbose("BPF_ALU uses reserved fields\n");
1141				return -EINVAL;
1142			}
1143			/* check src1 operand */
1144			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1145			if (err)
1146				return err;
1147		} else {
1148			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1149				verbose("BPF_ALU uses reserved fields\n");
1150				return -EINVAL;
1151			}
1152		}
1153
1154		/* check src2 operand */
1155		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1156		if (err)
1157			return err;
1158
1159		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1160		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1161			verbose("div by zero\n");
1162			return -EINVAL;
1163		}
1164
1165		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1166		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1167			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1168
1169			if (insn->imm < 0 || insn->imm >= size) {
1170				verbose("invalid shift %d\n", insn->imm);
1171				return -EINVAL;
1172			}
1173		}
1174
 
 
 
 
 
 
 
 
 
 
1175		/* pattern match 'bpf_add Rx, imm' instruction */
1176		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1177		    regs[insn->dst_reg].type == FRAME_PTR &&
1178		    BPF_SRC(insn->code) == BPF_K) {
1179			stack_relative = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180		} else if (is_pointer_value(env, insn->dst_reg)) {
1181			verbose("R%d pointer arithmetic prohibited\n",
1182				insn->dst_reg);
1183			return -EACCES;
1184		} else if (BPF_SRC(insn->code) == BPF_X &&
1185			   is_pointer_value(env, insn->src_reg)) {
1186			verbose("R%d pointer arithmetic prohibited\n",
1187				insn->src_reg);
1188			return -EACCES;
1189		}
1190
1191		/* check dest operand */
1192		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1193		if (err)
1194			return err;
1195
1196		if (stack_relative) {
1197			regs[insn->dst_reg].type = PTR_TO_STACK;
1198			regs[insn->dst_reg].imm = insn->imm;
1199		}
 
 
1200	}
1201
1202	return 0;
1203}
1204
1205static int check_cond_jmp_op(struct verifier_env *env,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1206			     struct bpf_insn *insn, int *insn_idx)
1207{
1208	struct reg_state *regs = env->cur_state.regs;
1209	struct verifier_state *other_branch;
1210	u8 opcode = BPF_OP(insn->code);
1211	int err;
1212
1213	if (opcode > BPF_EXIT) {
1214		verbose("invalid BPF_JMP opcode %x\n", opcode);
1215		return -EINVAL;
1216	}
1217
1218	if (BPF_SRC(insn->code) == BPF_X) {
1219		if (insn->imm != 0) {
1220			verbose("BPF_JMP uses reserved fields\n");
1221			return -EINVAL;
1222		}
1223
1224		/* check src1 operand */
1225		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1226		if (err)
1227			return err;
1228
1229		if (is_pointer_value(env, insn->src_reg)) {
1230			verbose("R%d pointer comparison prohibited\n",
1231				insn->src_reg);
1232			return -EACCES;
1233		}
1234	} else {
1235		if (insn->src_reg != BPF_REG_0) {
1236			verbose("BPF_JMP uses reserved fields\n");
1237			return -EINVAL;
1238		}
1239	}
1240
1241	/* check src2 operand */
1242	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1243	if (err)
1244		return err;
1245
 
 
1246	/* detect if R == 0 where R was initialized to zero earlier */
1247	if (BPF_SRC(insn->code) == BPF_K &&
1248	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1249	    regs[insn->dst_reg].type == CONST_IMM &&
1250	    regs[insn->dst_reg].imm == insn->imm) {
1251		if (opcode == BPF_JEQ) {
1252			/* if (imm == imm) goto pc+off;
1253			 * only follow the goto, ignore fall-through
1254			 */
1255			*insn_idx += insn->off;
1256			return 0;
1257		} else {
1258			/* if (imm != imm) goto pc+off;
1259			 * only follow fall-through branch, since
1260			 * that's where the program will go
1261			 */
1262			return 0;
1263		}
1264	}
1265
1266	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
1267	if (!other_branch)
1268		return -EFAULT;
1269
1270	/* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271	if (BPF_SRC(insn->code) == BPF_K &&
1272	    insn->imm == 0 && (opcode == BPF_JEQ ||
1273			       opcode == BPF_JNE) &&
1274	    regs[insn->dst_reg].type == PTR_TO_MAP_VALUE_OR_NULL) {
1275		if (opcode == BPF_JEQ) {
1276			/* next fallthrough insn can access memory via
1277			 * this register
1278			 */
1279			regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1280			/* branch targer cannot access it, since reg == 0 */
1281			other_branch->regs[insn->dst_reg].type = CONST_IMM;
1282			other_branch->regs[insn->dst_reg].imm = 0;
1283		} else {
1284			other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1285			regs[insn->dst_reg].type = CONST_IMM;
1286			regs[insn->dst_reg].imm = 0;
1287		}
 
1288	} else if (is_pointer_value(env, insn->dst_reg)) {
1289		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
1290		return -EACCES;
1291	} else if (BPF_SRC(insn->code) == BPF_K &&
1292		   (opcode == BPF_JEQ || opcode == BPF_JNE)) {
1293
1294		if (opcode == BPF_JEQ) {
1295			/* detect if (R == imm) goto
1296			 * and in the target state recognize that R = imm
1297			 */
1298			other_branch->regs[insn->dst_reg].type = CONST_IMM;
1299			other_branch->regs[insn->dst_reg].imm = insn->imm;
1300		} else {
1301			/* detect if (R != imm) goto
1302			 * and in the fall-through state recognize that R = imm
1303			 */
1304			regs[insn->dst_reg].type = CONST_IMM;
1305			regs[insn->dst_reg].imm = insn->imm;
1306		}
1307	}
1308	if (log_level)
1309		print_verifier_state(env);
1310	return 0;
1311}
1312
1313/* return the map pointer stored inside BPF_LD_IMM64 instruction */
1314static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
1315{
1316	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
1317
1318	return (struct bpf_map *) (unsigned long) imm64;
1319}
1320
1321/* verify BPF_LD_IMM64 instruction */
1322static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
1323{
1324	struct reg_state *regs = env->cur_state.regs;
1325	int err;
1326
1327	if (BPF_SIZE(insn->code) != BPF_DW) {
1328		verbose("invalid BPF_LD_IMM insn\n");
1329		return -EINVAL;
1330	}
1331	if (insn->off != 0) {
1332		verbose("BPF_LD_IMM64 uses reserved fields\n");
1333		return -EINVAL;
1334	}
1335
1336	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1337	if (err)
1338		return err;
1339
1340	if (insn->src_reg == 0)
1341		/* generic move 64-bit immediate into a register */
 
 
 
 
 
 
 
 
 
1342		return 0;
 
1343
1344	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
1345	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
1346
1347	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
1348	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
1349	return 0;
1350}
1351
1352static bool may_access_skb(enum bpf_prog_type type)
1353{
1354	switch (type) {
1355	case BPF_PROG_TYPE_SOCKET_FILTER:
1356	case BPF_PROG_TYPE_SCHED_CLS:
1357	case BPF_PROG_TYPE_SCHED_ACT:
1358		return true;
1359	default:
1360		return false;
1361	}
1362}
1363
1364/* verify safety of LD_ABS|LD_IND instructions:
1365 * - they can only appear in the programs where ctx == skb
1366 * - since they are wrappers of function calls, they scratch R1-R5 registers,
1367 *   preserve R6-R9, and store return value into R0
1368 *
1369 * Implicit input:
1370 *   ctx == skb == R6 == CTX
1371 *
1372 * Explicit input:
1373 *   SRC == any register
1374 *   IMM == 32-bit immediate
1375 *
1376 * Output:
1377 *   R0 - 8/16/32-bit skb data converted to cpu endianness
1378 */
1379static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn)
1380{
1381	struct reg_state *regs = env->cur_state.regs;
1382	u8 mode = BPF_MODE(insn->code);
1383	struct reg_state *reg;
1384	int i, err;
1385
1386	if (!may_access_skb(env->prog->type)) {
1387		verbose("BPF_LD_ABS|IND instructions not allowed for this program type\n");
1388		return -EINVAL;
1389	}
1390
1391	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
1392	    BPF_SIZE(insn->code) == BPF_DW ||
1393	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1394		verbose("BPF_LD_ABS uses reserved fields\n");
1395		return -EINVAL;
1396	}
1397
1398	/* check whether implicit source operand (register R6) is readable */
1399	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
1400	if (err)
1401		return err;
1402
1403	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
1404		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
1405		return -EINVAL;
1406	}
1407
1408	if (mode == BPF_IND) {
1409		/* check explicit source operand */
1410		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1411		if (err)
1412			return err;
1413	}
1414
1415	/* reset caller saved regs to unreadable */
1416	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1417		reg = regs + caller_saved[i];
1418		reg->type = NOT_INIT;
1419		reg->imm = 0;
1420	}
1421
1422	/* mark destination R0 register as readable, since it contains
1423	 * the value fetched from the packet
1424	 */
1425	regs[BPF_REG_0].type = UNKNOWN_VALUE;
1426	return 0;
1427}
1428
1429/* non-recursive DFS pseudo code
1430 * 1  procedure DFS-iterative(G,v):
1431 * 2      label v as discovered
1432 * 3      let S be a stack
1433 * 4      S.push(v)
1434 * 5      while S is not empty
1435 * 6            t <- S.pop()
1436 * 7            if t is what we're looking for:
1437 * 8                return t
1438 * 9            for all edges e in G.adjacentEdges(t) do
1439 * 10               if edge e is already labelled
1440 * 11                   continue with the next edge
1441 * 12               w <- G.adjacentVertex(t,e)
1442 * 13               if vertex w is not discovered and not explored
1443 * 14                   label e as tree-edge
1444 * 15                   label w as discovered
1445 * 16                   S.push(w)
1446 * 17                   continue at 5
1447 * 18               else if vertex w is discovered
1448 * 19                   label e as back-edge
1449 * 20               else
1450 * 21                   // vertex w is explored
1451 * 22                   label e as forward- or cross-edge
1452 * 23           label t as explored
1453 * 24           S.pop()
1454 *
1455 * convention:
1456 * 0x10 - discovered
1457 * 0x11 - discovered and fall-through edge labelled
1458 * 0x12 - discovered and fall-through and branch edges labelled
1459 * 0x20 - explored
1460 */
1461
1462enum {
1463	DISCOVERED = 0x10,
1464	EXPLORED = 0x20,
1465	FALLTHROUGH = 1,
1466	BRANCH = 2,
1467};
1468
1469#define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
1470
1471static int *insn_stack;	/* stack of insns to process */
1472static int cur_stack;	/* current stack index */
1473static int *insn_state;
1474
1475/* t, w, e - match pseudo-code above:
1476 * t - index of current instruction
1477 * w - next instruction
1478 * e - edge
1479 */
1480static int push_insn(int t, int w, int e, struct verifier_env *env)
1481{
1482	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
1483		return 0;
1484
1485	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
1486		return 0;
1487
1488	if (w < 0 || w >= env->prog->len) {
1489		verbose("jump out of range from insn %d to %d\n", t, w);
1490		return -EINVAL;
1491	}
1492
1493	if (e == BRANCH)
1494		/* mark branch target for state pruning */
1495		env->explored_states[w] = STATE_LIST_MARK;
1496
1497	if (insn_state[w] == 0) {
1498		/* tree-edge */
1499		insn_state[t] = DISCOVERED | e;
1500		insn_state[w] = DISCOVERED;
1501		if (cur_stack >= env->prog->len)
1502			return -E2BIG;
1503		insn_stack[cur_stack++] = w;
1504		return 1;
1505	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
1506		verbose("back-edge from insn %d to %d\n", t, w);
1507		return -EINVAL;
1508	} else if (insn_state[w] == EXPLORED) {
1509		/* forward- or cross-edge */
1510		insn_state[t] = DISCOVERED | e;
1511	} else {
1512		verbose("insn state internal bug\n");
1513		return -EFAULT;
1514	}
1515	return 0;
1516}
1517
1518/* non-recursive depth-first-search to detect loops in BPF program
1519 * loop == back-edge in directed graph
1520 */
1521static int check_cfg(struct verifier_env *env)
1522{
1523	struct bpf_insn *insns = env->prog->insnsi;
1524	int insn_cnt = env->prog->len;
1525	int ret = 0;
1526	int i, t;
1527
1528	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1529	if (!insn_state)
1530		return -ENOMEM;
1531
1532	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1533	if (!insn_stack) {
1534		kfree(insn_state);
1535		return -ENOMEM;
1536	}
1537
1538	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
1539	insn_stack[0] = 0; /* 0 is the first instruction */
1540	cur_stack = 1;
1541
1542peek_stack:
1543	if (cur_stack == 0)
1544		goto check_state;
1545	t = insn_stack[cur_stack - 1];
1546
1547	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
1548		u8 opcode = BPF_OP(insns[t].code);
1549
1550		if (opcode == BPF_EXIT) {
1551			goto mark_explored;
1552		} else if (opcode == BPF_CALL) {
1553			ret = push_insn(t, t + 1, FALLTHROUGH, env);
1554			if (ret == 1)
1555				goto peek_stack;
1556			else if (ret < 0)
1557				goto err_free;
 
 
1558		} else if (opcode == BPF_JA) {
1559			if (BPF_SRC(insns[t].code) != BPF_K) {
1560				ret = -EINVAL;
1561				goto err_free;
1562			}
1563			/* unconditional jump with single edge */
1564			ret = push_insn(t, t + insns[t].off + 1,
1565					FALLTHROUGH, env);
1566			if (ret == 1)
1567				goto peek_stack;
1568			else if (ret < 0)
1569				goto err_free;
1570			/* tell verifier to check for equivalent states
1571			 * after every call and jump
1572			 */
1573			if (t + 1 < insn_cnt)
1574				env->explored_states[t + 1] = STATE_LIST_MARK;
1575		} else {
1576			/* conditional jump with two edges */
1577			ret = push_insn(t, t + 1, FALLTHROUGH, env);
1578			if (ret == 1)
1579				goto peek_stack;
1580			else if (ret < 0)
1581				goto err_free;
1582
1583			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
1584			if (ret == 1)
1585				goto peek_stack;
1586			else if (ret < 0)
1587				goto err_free;
1588		}
1589	} else {
1590		/* all other non-branch instructions with single
1591		 * fall-through edge
1592		 */
1593		ret = push_insn(t, t + 1, FALLTHROUGH, env);
1594		if (ret == 1)
1595			goto peek_stack;
1596		else if (ret < 0)
1597			goto err_free;
1598	}
1599
1600mark_explored:
1601	insn_state[t] = EXPLORED;
1602	if (cur_stack-- <= 0) {
1603		verbose("pop stack internal bug\n");
1604		ret = -EFAULT;
1605		goto err_free;
1606	}
1607	goto peek_stack;
1608
1609check_state:
1610	for (i = 0; i < insn_cnt; i++) {
1611		if (insn_state[i] != EXPLORED) {
1612			verbose("unreachable insn %d\n", i);
1613			ret = -EINVAL;
1614			goto err_free;
1615		}
1616	}
1617	ret = 0; /* cfg looks good */
1618
1619err_free:
1620	kfree(insn_state);
1621	kfree(insn_stack);
1622	return ret;
1623}
1624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1625/* compare two verifier states
1626 *
1627 * all states stored in state_list are known to be valid, since
1628 * verifier reached 'bpf_exit' instruction through them
1629 *
1630 * this function is called when verifier exploring different branches of
1631 * execution popped from the state stack. If it sees an old state that has
1632 * more strict register state and more strict stack state then this execution
1633 * branch doesn't need to be explored further, since verifier already
1634 * concluded that more strict state leads to valid finish.
1635 *
1636 * Therefore two states are equivalent if register state is more conservative
1637 * and explored stack state is more conservative than the current one.
1638 * Example:
1639 *       explored                   current
1640 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
1641 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
1642 *
1643 * In other words if current stack state (one being explored) has more
1644 * valid slots than old one that already passed validation, it means
1645 * the verifier can stop exploring and conclude that current state is valid too
1646 *
1647 * Similarly with registers. If explored state has register type as invalid
1648 * whereas register type in current state is meaningful, it means that
1649 * the current state will reach 'bpf_exit' instruction safely
1650 */
1651static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
 
 
1652{
 
 
1653	int i;
1654
1655	for (i = 0; i < MAX_BPF_REG; i++) {
1656		if (memcmp(&old->regs[i], &cur->regs[i],
1657			   sizeof(old->regs[0])) != 0) {
1658			if (old->regs[i].type == NOT_INIT ||
1659			    (old->regs[i].type == UNKNOWN_VALUE &&
1660			     cur->regs[i].type != NOT_INIT))
1661				continue;
1662			return false;
1663		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664	}
1665
1666	for (i = 0; i < MAX_BPF_STACK; i++) {
1667		if (old->stack_slot_type[i] == STACK_INVALID)
1668			continue;
1669		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
1670			/* Ex: old explored (safe) state has STACK_SPILL in
1671			 * this stack slot, but current has has STACK_MISC ->
1672			 * this verifier states are not equivalent,
1673			 * return false to continue verification of this path
1674			 */
1675			return false;
1676		if (i % BPF_REG_SIZE)
1677			continue;
1678		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
1679			   &cur->spilled_regs[i / BPF_REG_SIZE],
1680			   sizeof(old->spilled_regs[0])))
1681			/* when explored and current stack slot types are
1682			 * the same, check that stored pointers types
1683			 * are the same as well.
1684			 * Ex: explored safe path could have stored
1685			 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8}
1686			 * but current path has stored:
1687			 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16}
1688			 * such verifier states are not equivalent.
1689			 * return false to continue verification of this path
1690			 */
1691			return false;
1692		else
1693			continue;
1694	}
1695	return true;
1696}
1697
1698static int is_state_visited(struct verifier_env *env, int insn_idx)
1699{
1700	struct verifier_state_list *new_sl;
1701	struct verifier_state_list *sl;
1702
1703	sl = env->explored_states[insn_idx];
1704	if (!sl)
1705		/* this 'insn_idx' instruction wasn't marked, so we will not
1706		 * be doing state search here
1707		 */
1708		return 0;
1709
1710	while (sl != STATE_LIST_MARK) {
1711		if (states_equal(&sl->state, &env->cur_state))
1712			/* reached equivalent register/stack state,
1713			 * prune the search
1714			 */
1715			return 1;
1716		sl = sl->next;
1717	}
1718
1719	/* there were no equivalent states, remember current one.
1720	 * technically the current state is not proven to be safe yet,
1721	 * but it will either reach bpf_exit (which means it's safe) or
1722	 * it will be rejected. Since there are no loops, we won't be
1723	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
1724	 */
1725	new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
1726	if (!new_sl)
1727		return -ENOMEM;
1728
1729	/* add new state to the head of linked list */
1730	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
1731	new_sl->next = env->explored_states[insn_idx];
1732	env->explored_states[insn_idx] = new_sl;
1733	return 0;
1734}
1735
1736static int do_check(struct verifier_env *env)
 
1737{
1738	struct verifier_state *state = &env->cur_state;
 
 
 
 
 
 
 
 
1739	struct bpf_insn *insns = env->prog->insnsi;
1740	struct reg_state *regs = state->regs;
1741	int insn_cnt = env->prog->len;
1742	int insn_idx, prev_insn_idx = 0;
1743	int insn_processed = 0;
1744	bool do_print_state = false;
1745
1746	init_reg_state(regs);
1747	insn_idx = 0;
 
1748	for (;;) {
1749		struct bpf_insn *insn;
1750		u8 class;
1751		int err;
1752
1753		if (insn_idx >= insn_cnt) {
1754			verbose("invalid insn idx %d insn_cnt %d\n",
1755				insn_idx, insn_cnt);
1756			return -EFAULT;
1757		}
1758
1759		insn = &insns[insn_idx];
1760		class = BPF_CLASS(insn->code);
1761
1762		if (++insn_processed > 32768) {
1763			verbose("BPF program is too large. Proccessed %d insn\n",
1764				insn_processed);
1765			return -E2BIG;
1766		}
1767
1768		err = is_state_visited(env, insn_idx);
1769		if (err < 0)
1770			return err;
1771		if (err == 1) {
1772			/* found equivalent state, can prune the search */
1773			if (log_level) {
1774				if (do_print_state)
1775					verbose("\nfrom %d to %d: safe\n",
1776						prev_insn_idx, insn_idx);
1777				else
1778					verbose("%d: safe\n", insn_idx);
1779			}
1780			goto process_bpf_exit;
1781		}
1782
1783		if (log_level && do_print_state) {
1784			verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1785			print_verifier_state(env);
1786			do_print_state = false;
1787		}
1788
1789		if (log_level) {
1790			verbose("%d: ", insn_idx);
1791			print_bpf_insn(insn);
1792		}
1793
 
 
 
 
1794		if (class == BPF_ALU || class == BPF_ALU64) {
1795			err = check_alu_op(env, insn);
1796			if (err)
1797				return err;
1798
1799		} else if (class == BPF_LDX) {
1800			enum bpf_reg_type src_reg_type;
1801
1802			/* check for reserved fields is already done */
1803
1804			/* check src operand */
1805			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1806			if (err)
1807				return err;
1808
1809			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1810			if (err)
1811				return err;
1812
1813			src_reg_type = regs[insn->src_reg].type;
1814
1815			/* check that memory (src_reg + off) is readable,
1816			 * the state of dst_reg will be updated by this func
1817			 */
1818			err = check_mem_access(env, insn->src_reg, insn->off,
1819					       BPF_SIZE(insn->code), BPF_READ,
1820					       insn->dst_reg);
1821			if (err)
1822				return err;
1823
1824			if (BPF_SIZE(insn->code) != BPF_W) {
 
 
1825				insn_idx++;
1826				continue;
1827			}
1828
1829			if (insn->imm == 0) {
 
 
1830				/* saw a valid insn
1831				 * dst_reg = *(u32 *)(src_reg + off)
1832				 * use reserved 'imm' field to mark this insn
1833				 */
1834				insn->imm = src_reg_type;
1835
1836			} else if (src_reg_type != insn->imm &&
1837				   (src_reg_type == PTR_TO_CTX ||
1838				    insn->imm == PTR_TO_CTX)) {
1839				/* ABuser program is trying to use the same insn
1840				 * dst_reg = *(u32*) (src_reg + off)
1841				 * with different pointer types:
1842				 * src_reg == ctx in one branch and
1843				 * src_reg == stack|map in some other branch.
1844				 * Reject it.
1845				 */
1846				verbose("same insn cannot be used with different pointers\n");
1847				return -EINVAL;
1848			}
1849
1850		} else if (class == BPF_STX) {
1851			enum bpf_reg_type dst_reg_type;
1852
1853			if (BPF_MODE(insn->code) == BPF_XADD) {
1854				err = check_xadd(env, insn);
1855				if (err)
1856					return err;
1857				insn_idx++;
1858				continue;
1859			}
1860
1861			/* check src1 operand */
1862			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1863			if (err)
1864				return err;
1865			/* check src2 operand */
1866			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1867			if (err)
1868				return err;
1869
1870			dst_reg_type = regs[insn->dst_reg].type;
1871
1872			/* check that memory (dst_reg + off) is writeable */
1873			err = check_mem_access(env, insn->dst_reg, insn->off,
1874					       BPF_SIZE(insn->code), BPF_WRITE,
1875					       insn->src_reg);
1876			if (err)
1877				return err;
1878
1879			if (insn->imm == 0) {
1880				insn->imm = dst_reg_type;
1881			} else if (dst_reg_type != insn->imm &&
 
 
1882				   (dst_reg_type == PTR_TO_CTX ||
1883				    insn->imm == PTR_TO_CTX)) {
1884				verbose("same insn cannot be used with different pointers\n");
1885				return -EINVAL;
1886			}
1887
1888		} else if (class == BPF_ST) {
1889			if (BPF_MODE(insn->code) != BPF_MEM ||
1890			    insn->src_reg != BPF_REG_0) {
1891				verbose("BPF_ST uses reserved fields\n");
1892				return -EINVAL;
1893			}
1894			/* check src operand */
1895			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1896			if (err)
1897				return err;
1898
1899			/* check that memory (dst_reg + off) is writeable */
1900			err = check_mem_access(env, insn->dst_reg, insn->off,
1901					       BPF_SIZE(insn->code), BPF_WRITE,
1902					       -1);
1903			if (err)
1904				return err;
1905
1906		} else if (class == BPF_JMP) {
1907			u8 opcode = BPF_OP(insn->code);
1908
1909			if (opcode == BPF_CALL) {
1910				if (BPF_SRC(insn->code) != BPF_K ||
1911				    insn->off != 0 ||
1912				    insn->src_reg != BPF_REG_0 ||
1913				    insn->dst_reg != BPF_REG_0) {
1914					verbose("BPF_CALL uses reserved fields\n");
1915					return -EINVAL;
1916				}
1917
1918				err = check_call(env, insn->imm);
1919				if (err)
1920					return err;
1921
1922			} else if (opcode == BPF_JA) {
1923				if (BPF_SRC(insn->code) != BPF_K ||
1924				    insn->imm != 0 ||
1925				    insn->src_reg != BPF_REG_0 ||
1926				    insn->dst_reg != BPF_REG_0) {
1927					verbose("BPF_JA uses reserved fields\n");
1928					return -EINVAL;
1929				}
1930
1931				insn_idx += insn->off + 1;
1932				continue;
1933
1934			} else if (opcode == BPF_EXIT) {
1935				if (BPF_SRC(insn->code) != BPF_K ||
1936				    insn->imm != 0 ||
1937				    insn->src_reg != BPF_REG_0 ||
1938				    insn->dst_reg != BPF_REG_0) {
1939					verbose("BPF_EXIT uses reserved fields\n");
1940					return -EINVAL;
1941				}
1942
1943				/* eBPF calling convetion is such that R0 is used
1944				 * to return the value from eBPF program.
1945				 * Make sure that it's readable at this time
1946				 * of bpf_exit, which means that program wrote
1947				 * something into it earlier
1948				 */
1949				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
1950				if (err)
1951					return err;
1952
1953				if (is_pointer_value(env, BPF_REG_0)) {
1954					verbose("R0 leaks addr as return value\n");
1955					return -EACCES;
1956				}
1957
1958process_bpf_exit:
1959				insn_idx = pop_stack(env, &prev_insn_idx);
1960				if (insn_idx < 0) {
1961					break;
1962				} else {
1963					do_print_state = true;
1964					continue;
1965				}
1966			} else {
1967				err = check_cond_jmp_op(env, insn, &insn_idx);
1968				if (err)
1969					return err;
1970			}
1971		} else if (class == BPF_LD) {
1972			u8 mode = BPF_MODE(insn->code);
1973
1974			if (mode == BPF_ABS || mode == BPF_IND) {
1975				err = check_ld_abs(env, insn);
1976				if (err)
1977					return err;
1978
1979			} else if (mode == BPF_IMM) {
1980				err = check_ld_imm(env, insn);
1981				if (err)
1982					return err;
1983
1984				insn_idx++;
1985			} else {
1986				verbose("invalid BPF_LD mode\n");
1987				return -EINVAL;
1988			}
 
1989		} else {
1990			verbose("unknown insn class %d\n", class);
1991			return -EINVAL;
1992		}
1993
1994		insn_idx++;
1995	}
1996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1997	return 0;
1998}
1999
2000/* look for pseudo eBPF instructions that access map FDs and
2001 * replace them with actual map pointers
2002 */
2003static int replace_map_fd_with_map_ptr(struct verifier_env *env)
2004{
2005	struct bpf_insn *insn = env->prog->insnsi;
2006	int insn_cnt = env->prog->len;
2007	int i, j;
 
 
 
 
2008
2009	for (i = 0; i < insn_cnt; i++, insn++) {
2010		if (BPF_CLASS(insn->code) == BPF_LDX &&
2011		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
2012			verbose("BPF_LDX uses reserved fields\n");
2013			return -EINVAL;
2014		}
2015
2016		if (BPF_CLASS(insn->code) == BPF_STX &&
2017		    ((BPF_MODE(insn->code) != BPF_MEM &&
2018		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
2019			verbose("BPF_STX uses reserved fields\n");
2020			return -EINVAL;
2021		}
2022
2023		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
2024			struct bpf_map *map;
2025			struct fd f;
2026
2027			if (i == insn_cnt - 1 || insn[1].code != 0 ||
2028			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
2029			    insn[1].off != 0) {
2030				verbose("invalid bpf_ld_imm64 insn\n");
2031				return -EINVAL;
2032			}
2033
2034			if (insn->src_reg == 0)
2035				/* valid generic load 64-bit imm */
2036				goto next_insn;
2037
2038			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
2039				verbose("unrecognized bpf_ld_imm64 insn\n");
2040				return -EINVAL;
2041			}
2042
2043			f = fdget(insn->imm);
2044			map = __bpf_map_get(f);
2045			if (IS_ERR(map)) {
2046				verbose("fd %d is not pointing to valid bpf_map\n",
2047					insn->imm);
2048				return PTR_ERR(map);
2049			}
2050
 
 
 
 
 
 
2051			/* store map pointer inside BPF_LD_IMM64 instruction */
2052			insn[0].imm = (u32) (unsigned long) map;
2053			insn[1].imm = ((u64) (unsigned long) map) >> 32;
2054
2055			/* check whether we recorded this map already */
2056			for (j = 0; j < env->used_map_cnt; j++)
2057				if (env->used_maps[j] == map) {
2058					fdput(f);
2059					goto next_insn;
2060				}
2061
2062			if (env->used_map_cnt >= MAX_USED_MAPS) {
2063				fdput(f);
2064				return -E2BIG;
2065			}
2066
2067			/* hold the map. If the program is rejected by verifier,
2068			 * the map will be released by release_maps() or it
2069			 * will be used by the valid program until it's unloaded
2070			 * and all maps are released in free_bpf_prog_info()
2071			 */
2072			map = bpf_map_inc(map, false);
2073			if (IS_ERR(map)) {
2074				fdput(f);
2075				return PTR_ERR(map);
2076			}
2077			env->used_maps[env->used_map_cnt++] = map;
2078
2079			fdput(f);
2080next_insn:
2081			insn++;
2082			i++;
2083		}
2084	}
2085
2086	/* now all pseudo BPF_LD_IMM64 instructions load valid
2087	 * 'struct bpf_map *' into a register instead of user map_fd.
2088	 * These pointers will be used later by verifier to validate map access.
2089	 */
2090	return 0;
2091}
2092
2093/* drop refcnt of maps used by the rejected program */
2094static void release_maps(struct verifier_env *env)
2095{
2096	int i;
2097
2098	for (i = 0; i < env->used_map_cnt; i++)
2099		bpf_map_put(env->used_maps[i]);
2100}
2101
2102/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
2103static void convert_pseudo_ld_imm64(struct verifier_env *env)
2104{
2105	struct bpf_insn *insn = env->prog->insnsi;
2106	int insn_cnt = env->prog->len;
2107	int i;
2108
2109	for (i = 0; i < insn_cnt; i++, insn++)
2110		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
2111			insn->src_reg = 0;
2112}
2113
2114static void adjust_branches(struct bpf_prog *prog, int pos, int delta)
2115{
2116	struct bpf_insn *insn = prog->insnsi;
2117	int insn_cnt = prog->len;
2118	int i;
2119
2120	for (i = 0; i < insn_cnt; i++, insn++) {
2121		if (BPF_CLASS(insn->code) != BPF_JMP ||
2122		    BPF_OP(insn->code) == BPF_CALL ||
2123		    BPF_OP(insn->code) == BPF_EXIT)
2124			continue;
2125
2126		/* adjust offset of jmps if necessary */
2127		if (i < pos && i + insn->off + 1 > pos)
2128			insn->off += delta;
2129		else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
2130			insn->off -= delta;
2131	}
2132}
2133
2134/* convert load instructions that access fields of 'struct __sk_buff'
2135 * into sequence of instructions that access fields of 'struct sk_buff'
2136 */
2137static int convert_ctx_accesses(struct verifier_env *env)
2138{
2139	struct bpf_insn *insn = env->prog->insnsi;
2140	int insn_cnt = env->prog->len;
2141	struct bpf_insn insn_buf[16];
2142	struct bpf_prog *new_prog;
2143	u32 cnt;
2144	int i;
2145	enum bpf_access_type type;
 
2146
2147	if (!env->prog->aux->ops->convert_ctx_access)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2148		return 0;
2149
 
 
2150	for (i = 0; i < insn_cnt; i++, insn++) {
2151		if (insn->code == (BPF_LDX | BPF_MEM | BPF_W))
 
2152			type = BPF_READ;
2153		else if (insn->code == (BPF_STX | BPF_MEM | BPF_W))
 
2154			type = BPF_WRITE;
2155		else
2156			continue;
2157
2158		if (insn->imm != PTR_TO_CTX) {
2159			/* clear internal mark */
2160			insn->imm = 0;
2161			continue;
2162		}
2163
2164		cnt = env->prog->aux->ops->
2165			convert_ctx_access(type, insn->dst_reg, insn->src_reg,
2166					   insn->off, insn_buf, env->prog);
2167		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
2168			verbose("bpf verifier is misconfigured\n");
2169			return -EINVAL;
2170		}
2171
2172		if (cnt == 1) {
2173			memcpy(insn, insn_buf, sizeof(*insn));
2174			continue;
2175		}
2176
2177		/* several new insns need to be inserted. Make room for them */
2178		insn_cnt += cnt - 1;
2179		new_prog = bpf_prog_realloc(env->prog,
2180					    bpf_prog_size(insn_cnt),
2181					    GFP_USER);
2182		if (!new_prog)
2183			return -ENOMEM;
2184
2185		new_prog->len = insn_cnt;
2186
2187		memmove(new_prog->insnsi + i + cnt, new_prog->insns + i + 1,
2188			sizeof(*insn) * (insn_cnt - i - cnt));
2189
2190		/* copy substitute insns in place of load instruction */
2191		memcpy(new_prog->insnsi + i, insn_buf, sizeof(*insn) * cnt);
2192
2193		/* adjust branches in the whole program */
2194		adjust_branches(new_prog, i, cnt - 1);
2195
2196		/* keep walking new program and skip insns we just inserted */
2197		env->prog = new_prog;
2198		insn = new_prog->insnsi + i + cnt - 1;
2199		i += cnt - 1;
2200	}
2201
2202	return 0;
2203}
2204
2205static void free_states(struct verifier_env *env)
2206{
2207	struct verifier_state_list *sl, *sln;
2208	int i;
2209
2210	if (!env->explored_states)
2211		return;
2212
2213	for (i = 0; i < env->prog->len; i++) {
2214		sl = env->explored_states[i];
2215
2216		if (sl)
2217			while (sl != STATE_LIST_MARK) {
2218				sln = sl->next;
2219				kfree(sl);
2220				sl = sln;
2221			}
2222	}
2223
2224	kfree(env->explored_states);
2225}
2226
2227int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
2228{
2229	char __user *log_ubuf = NULL;
2230	struct verifier_env *env;
2231	int ret = -EINVAL;
2232
2233	if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
2234		return -E2BIG;
2235
2236	/* 'struct verifier_env' can be global, but since it's not small,
2237	 * allocate/free it every time bpf_check() is called
2238	 */
2239	env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
2240	if (!env)
2241		return -ENOMEM;
2242
 
 
 
 
 
2243	env->prog = *prog;
2244
2245	/* grab the mutex to protect few globals used by verifier */
2246	mutex_lock(&bpf_verifier_lock);
2247
2248	if (attr->log_level || attr->log_buf || attr->log_size) {
2249		/* user requested verbose verifier output
2250		 * and supplied buffer to store the verification trace
2251		 */
2252		log_level = attr->log_level;
2253		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
2254		log_size = attr->log_size;
2255		log_len = 0;
2256
2257		ret = -EINVAL;
2258		/* log_* values have to be sane */
2259		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
2260		    log_level == 0 || log_ubuf == NULL)
2261			goto free_env;
2262
2263		ret = -ENOMEM;
2264		log_buf = vmalloc(log_size);
2265		if (!log_buf)
2266			goto free_env;
2267	} else {
2268		log_level = 0;
2269	}
2270
2271	ret = replace_map_fd_with_map_ptr(env);
2272	if (ret < 0)
2273		goto skip_full_check;
2274
2275	env->explored_states = kcalloc(env->prog->len,
2276				       sizeof(struct verifier_state_list *),
2277				       GFP_USER);
2278	ret = -ENOMEM;
2279	if (!env->explored_states)
2280		goto skip_full_check;
2281
2282	ret = check_cfg(env);
2283	if (ret < 0)
2284		goto skip_full_check;
2285
2286	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
2287
2288	ret = do_check(env);
2289
2290skip_full_check:
2291	while (pop_stack(env, NULL) >= 0);
2292	free_states(env);
2293
2294	if (ret == 0)
2295		/* program is valid, convert *(u32*)(ctx + off) accesses */
2296		ret = convert_ctx_accesses(env);
2297
2298	if (log_level && log_len >= log_size - 1) {
2299		BUG_ON(log_len >= log_size);
2300		/* verifier log exceeded user supplied buffer */
2301		ret = -ENOSPC;
2302		/* fall through to return what was recorded */
2303	}
2304
2305	/* copy verifier log back to user space including trailing zero */
2306	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
2307		ret = -EFAULT;
2308		goto free_log_buf;
2309	}
2310
2311	if (ret == 0 && env->used_map_cnt) {
2312		/* if program passed verifier, update used_maps in bpf_prog_info */
2313		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
2314							  sizeof(env->used_maps[0]),
2315							  GFP_KERNEL);
2316
2317		if (!env->prog->aux->used_maps) {
2318			ret = -ENOMEM;
2319			goto free_log_buf;
2320		}
2321
2322		memcpy(env->prog->aux->used_maps, env->used_maps,
2323		       sizeof(env->used_maps[0]) * env->used_map_cnt);
2324		env->prog->aux->used_map_cnt = env->used_map_cnt;
2325
2326		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
2327		 * bpf_ld_imm64 instructions
2328		 */
2329		convert_pseudo_ld_imm64(env);
2330	}
2331
2332free_log_buf:
2333	if (log_level)
2334		vfree(log_buf);
2335free_env:
2336	if (!env->prog->aux->used_maps)
2337		/* if we didn't copy map pointers into bpf_prog_info, release
2338		 * them now. Otherwise free_bpf_prog_info() will release them.
2339		 */
2340		release_maps(env);
2341	*prog = env->prog;
 
 
 
 
2342	kfree(env);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2343	mutex_unlock(&bpf_verifier_lock);
 
 
 
2344	return ret;
2345}
v4.10.11
   1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   2 * Copyright (c) 2016 Facebook
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 */
  13#include <linux/kernel.h>
  14#include <linux/types.h>
  15#include <linux/slab.h>
  16#include <linux/bpf.h>
  17#include <linux/bpf_verifier.h>
  18#include <linux/filter.h>
  19#include <net/netlink.h>
  20#include <linux/file.h>
  21#include <linux/vmalloc.h>
  22#include <linux/stringify.h>
  23
  24/* bpf_check() is a static code analyzer that walks eBPF program
  25 * instruction by instruction and updates register/stack state.
  26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
  27 *
  28 * The first pass is depth-first-search to check that the program is a DAG.
  29 * It rejects the following programs:
  30 * - larger than BPF_MAXINSNS insns
  31 * - if loop is present (detected via back-edge)
  32 * - unreachable insns exist (shouldn't be a forest. program = one function)
  33 * - out of bounds or malformed jumps
  34 * The second pass is all possible path descent from the 1st insn.
  35 * Since it's analyzing all pathes through the program, the length of the
  36 * analysis is limited to 32k insn, which may be hit even if total number of
  37 * insn is less then 4K, but there are too many branches that change stack/regs.
  38 * Number of 'branches to be analyzed' is limited to 1k
  39 *
  40 * On entry to each instruction, each register has a type, and the instruction
  41 * changes the types of the registers depending on instruction semantics.
  42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
  43 * copied to R1.
  44 *
  45 * All registers are 64-bit.
  46 * R0 - return register
  47 * R1-R5 argument passing registers
  48 * R6-R9 callee saved registers
  49 * R10 - frame pointer read-only
  50 *
  51 * At the start of BPF program the register R1 contains a pointer to bpf_context
  52 * and has type PTR_TO_CTX.
  53 *
  54 * Verifier tracks arithmetic operations on pointers in case:
  55 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  56 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
  57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
  58 * and 2nd arithmetic instruction is pattern matched to recognize
  59 * that it wants to construct a pointer to some element within stack.
  60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
  61 * (and -20 constant is saved for further stack bounds checking).
  62 * Meaning that this reg is a pointer to stack plus known immediate constant.
  63 *
  64 * Most of the time the registers have UNKNOWN_VALUE type, which
  65 * means the register has some value, but it's not a valid pointer.
  66 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
  67 *
  68 * When verifier sees load or store instructions the type of base register
  69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
  70 * types recognized by check_mem_access() function.
  71 *
  72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
  73 * and the range of [ptr, ptr + map's value_size) is accessible.
  74 *
  75 * registers used to pass values to function calls are checked against
  76 * function argument constraints.
  77 *
  78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
  79 * It means that the register type passed to this function must be
  80 * PTR_TO_STACK and it will be used inside the function as
  81 * 'pointer to map element key'
  82 *
  83 * For example the argument constraints for bpf_map_lookup_elem():
  84 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
  85 *   .arg1_type = ARG_CONST_MAP_PTR,
  86 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
  87 *
  88 * ret_type says that this function returns 'pointer to map elem value or null'
  89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
  90 * 2nd argument should be a pointer to stack, which will be used inside
  91 * the helper function as a pointer to map element key.
  92 *
  93 * On the kernel side the helper function looks like:
  94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
  95 * {
  96 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
  97 *    void *key = (void *) (unsigned long) r2;
  98 *    void *value;
  99 *
 100 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 101 *    [key, key + map->key_size) bytes are valid and were initialized on
 102 *    the stack of eBPF program.
 103 * }
 104 *
 105 * Corresponding eBPF program may look like:
 106 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 107 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 108 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 109 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 110 * here verifier looks at prototype of map_lookup_elem() and sees:
 111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 113 *
 114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 116 * and were initialized prior to this call.
 117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 120 * returns ether pointer to map value or NULL.
 121 *
 122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 123 * insn, the register holding that pointer in the true branch changes state to
 124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 125 * branch. See check_cond_jmp_op().
 126 *
 127 * After the call R0 is set to return type of the function and registers R1-R5
 128 * are set to NOT_INIT to indicate that they are no longer readable.
 129 */
 130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131/* verifier_state + insn_idx are pushed to stack when branch is encountered */
 132struct bpf_verifier_stack_elem {
 133	/* verifer state is 'st'
 134	 * before processing instruction 'insn_idx'
 135	 * and after processing instruction 'prev_insn_idx'
 136	 */
 137	struct bpf_verifier_state st;
 138	int insn_idx;
 139	int prev_insn_idx;
 140	struct bpf_verifier_stack_elem *next;
 141};
 142
 143#define BPF_COMPLEXITY_LIMIT_INSNS	65536
 144#define BPF_COMPLEXITY_LIMIT_STACK	1024
 145
 146struct bpf_call_arg_meta {
 147	struct bpf_map *map_ptr;
 148	bool raw_mode;
 149	bool pkt_access;
 150	int regno;
 151	int access_size;
 
 
 
 
 
 
 152};
 153
 154/* verbose verifier prints what it's seeing
 155 * bpf_check() is called under lock, so no race to access these global vars
 156 */
 157static u32 log_level, log_size, log_len;
 158static char *log_buf;
 159
 160static DEFINE_MUTEX(bpf_verifier_lock);
 161
 162/* log_level controls verbosity level of eBPF verifier.
 163 * verbose() is used to dump the verification trace to the log, so the user
 164 * can figure out what's wrong with the program
 165 */
 166static __printf(1, 2) void verbose(const char *fmt, ...)
 167{
 168	va_list args;
 169
 170	if (log_level == 0 || log_len >= log_size - 1)
 171		return;
 172
 173	va_start(args, fmt);
 174	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
 175	va_end(args);
 176}
 177
 178/* string representation of 'enum bpf_reg_type' */
 179static const char * const reg_type_str[] = {
 180	[NOT_INIT]		= "?",
 181	[UNKNOWN_VALUE]		= "inv",
 182	[PTR_TO_CTX]		= "ctx",
 183	[CONST_PTR_TO_MAP]	= "map_ptr",
 184	[PTR_TO_MAP_VALUE]	= "map_value",
 185	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
 186	[PTR_TO_MAP_VALUE_ADJ]	= "map_value_adj",
 187	[FRAME_PTR]		= "fp",
 188	[PTR_TO_STACK]		= "fp",
 189	[CONST_IMM]		= "imm",
 190	[PTR_TO_PACKET]		= "pkt",
 191	[PTR_TO_PACKET_END]	= "pkt_end",
 192};
 193
 194#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
 195static const char * const func_id_str[] = {
 196	__BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
 197};
 198#undef __BPF_FUNC_STR_FN
 199
 200static const char *func_id_name(int id)
 201{
 202	BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
 203
 204	if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
 205		return func_id_str[id];
 206	else
 207		return "unknown";
 208}
 209
 210static void print_verifier_state(struct bpf_verifier_state *state)
 211{
 212	struct bpf_reg_state *reg;
 213	enum bpf_reg_type t;
 214	int i;
 215
 216	for (i = 0; i < MAX_BPF_REG; i++) {
 217		reg = &state->regs[i];
 218		t = reg->type;
 219		if (t == NOT_INIT)
 220			continue;
 221		verbose(" R%d=%s", i, reg_type_str[t]);
 222		if (t == CONST_IMM || t == PTR_TO_STACK)
 223			verbose("%lld", reg->imm);
 224		else if (t == PTR_TO_PACKET)
 225			verbose("(id=%d,off=%d,r=%d)",
 226				reg->id, reg->off, reg->range);
 227		else if (t == UNKNOWN_VALUE && reg->imm)
 228			verbose("%lld", reg->imm);
 229		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
 230			 t == PTR_TO_MAP_VALUE_OR_NULL ||
 231			 t == PTR_TO_MAP_VALUE_ADJ)
 232			verbose("(ks=%d,vs=%d,id=%u)",
 233				reg->map_ptr->key_size,
 234				reg->map_ptr->value_size,
 235				reg->id);
 236		if (reg->min_value != BPF_REGISTER_MIN_RANGE)
 237			verbose(",min_value=%lld",
 238				(long long)reg->min_value);
 239		if (reg->max_value != BPF_REGISTER_MAX_RANGE)
 240			verbose(",max_value=%llu",
 241				(unsigned long long)reg->max_value);
 242	}
 243	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
 244		if (state->stack_slot_type[i] == STACK_SPILL)
 245			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
 246				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
 247	}
 248	verbose("\n");
 249}
 250
 251static const char *const bpf_class_string[] = {
 252	[BPF_LD]    = "ld",
 253	[BPF_LDX]   = "ldx",
 254	[BPF_ST]    = "st",
 255	[BPF_STX]   = "stx",
 256	[BPF_ALU]   = "alu",
 257	[BPF_JMP]   = "jmp",
 258	[BPF_RET]   = "BUG",
 259	[BPF_ALU64] = "alu64",
 260};
 261
 262static const char *const bpf_alu_string[16] = {
 263	[BPF_ADD >> 4]  = "+=",
 264	[BPF_SUB >> 4]  = "-=",
 265	[BPF_MUL >> 4]  = "*=",
 266	[BPF_DIV >> 4]  = "/=",
 267	[BPF_OR  >> 4]  = "|=",
 268	[BPF_AND >> 4]  = "&=",
 269	[BPF_LSH >> 4]  = "<<=",
 270	[BPF_RSH >> 4]  = ">>=",
 271	[BPF_NEG >> 4]  = "neg",
 272	[BPF_MOD >> 4]  = "%=",
 273	[BPF_XOR >> 4]  = "^=",
 274	[BPF_MOV >> 4]  = "=",
 275	[BPF_ARSH >> 4] = "s>>=",
 276	[BPF_END >> 4]  = "endian",
 277};
 278
 279static const char *const bpf_ldst_string[] = {
 280	[BPF_W >> 3]  = "u32",
 281	[BPF_H >> 3]  = "u16",
 282	[BPF_B >> 3]  = "u8",
 283	[BPF_DW >> 3] = "u64",
 284};
 285
 286static const char *const bpf_jmp_string[16] = {
 287	[BPF_JA >> 4]   = "jmp",
 288	[BPF_JEQ >> 4]  = "==",
 289	[BPF_JGT >> 4]  = ">",
 290	[BPF_JGE >> 4]  = ">=",
 291	[BPF_JSET >> 4] = "&",
 292	[BPF_JNE >> 4]  = "!=",
 293	[BPF_JSGT >> 4] = "s>",
 294	[BPF_JSGE >> 4] = "s>=",
 295	[BPF_CALL >> 4] = "call",
 296	[BPF_EXIT >> 4] = "exit",
 297};
 298
 299static void print_bpf_insn(struct bpf_insn *insn)
 300{
 301	u8 class = BPF_CLASS(insn->code);
 302
 303	if (class == BPF_ALU || class == BPF_ALU64) {
 304		if (BPF_SRC(insn->code) == BPF_X)
 305			verbose("(%02x) %sr%d %s %sr%d\n",
 306				insn->code, class == BPF_ALU ? "(u32) " : "",
 307				insn->dst_reg,
 308				bpf_alu_string[BPF_OP(insn->code) >> 4],
 309				class == BPF_ALU ? "(u32) " : "",
 310				insn->src_reg);
 311		else
 312			verbose("(%02x) %sr%d %s %s%d\n",
 313				insn->code, class == BPF_ALU ? "(u32) " : "",
 314				insn->dst_reg,
 315				bpf_alu_string[BPF_OP(insn->code) >> 4],
 316				class == BPF_ALU ? "(u32) " : "",
 317				insn->imm);
 318	} else if (class == BPF_STX) {
 319		if (BPF_MODE(insn->code) == BPF_MEM)
 320			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
 321				insn->code,
 322				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
 323				insn->dst_reg,
 324				insn->off, insn->src_reg);
 325		else if (BPF_MODE(insn->code) == BPF_XADD)
 326			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
 327				insn->code,
 328				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
 329				insn->dst_reg, insn->off,
 330				insn->src_reg);
 331		else
 332			verbose("BUG_%02x\n", insn->code);
 333	} else if (class == BPF_ST) {
 334		if (BPF_MODE(insn->code) != BPF_MEM) {
 335			verbose("BUG_st_%02x\n", insn->code);
 336			return;
 337		}
 338		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
 339			insn->code,
 340			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
 341			insn->dst_reg,
 342			insn->off, insn->imm);
 343	} else if (class == BPF_LDX) {
 344		if (BPF_MODE(insn->code) != BPF_MEM) {
 345			verbose("BUG_ldx_%02x\n", insn->code);
 346			return;
 347		}
 348		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
 349			insn->code, insn->dst_reg,
 350			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
 351			insn->src_reg, insn->off);
 352	} else if (class == BPF_LD) {
 353		if (BPF_MODE(insn->code) == BPF_ABS) {
 354			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
 355				insn->code,
 356				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
 357				insn->imm);
 358		} else if (BPF_MODE(insn->code) == BPF_IND) {
 359			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
 360				insn->code,
 361				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
 362				insn->src_reg, insn->imm);
 363		} else if (BPF_MODE(insn->code) == BPF_IMM) {
 364			verbose("(%02x) r%d = 0x%x\n",
 365				insn->code, insn->dst_reg, insn->imm);
 366		} else {
 367			verbose("BUG_ld_%02x\n", insn->code);
 368			return;
 369		}
 370	} else if (class == BPF_JMP) {
 371		u8 opcode = BPF_OP(insn->code);
 372
 373		if (opcode == BPF_CALL) {
 374			verbose("(%02x) call %s#%d\n", insn->code,
 375				func_id_name(insn->imm), insn->imm);
 376		} else if (insn->code == (BPF_JMP | BPF_JA)) {
 377			verbose("(%02x) goto pc%+d\n",
 378				insn->code, insn->off);
 379		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
 380			verbose("(%02x) exit\n", insn->code);
 381		} else if (BPF_SRC(insn->code) == BPF_X) {
 382			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
 383				insn->code, insn->dst_reg,
 384				bpf_jmp_string[BPF_OP(insn->code) >> 4],
 385				insn->src_reg, insn->off);
 386		} else {
 387			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
 388				insn->code, insn->dst_reg,
 389				bpf_jmp_string[BPF_OP(insn->code) >> 4],
 390				insn->imm, insn->off);
 391		}
 392	} else {
 393		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
 394	}
 395}
 396
 397static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
 398{
 399	struct bpf_verifier_stack_elem *elem;
 400	int insn_idx;
 401
 402	if (env->head == NULL)
 403		return -1;
 404
 405	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
 406	insn_idx = env->head->insn_idx;
 407	if (prev_insn_idx)
 408		*prev_insn_idx = env->head->prev_insn_idx;
 409	elem = env->head->next;
 410	kfree(env->head);
 411	env->head = elem;
 412	env->stack_size--;
 413	return insn_idx;
 414}
 415
 416static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
 417					     int insn_idx, int prev_insn_idx)
 418{
 419	struct bpf_verifier_stack_elem *elem;
 420
 421	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
 422	if (!elem)
 423		goto err;
 424
 425	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
 426	elem->insn_idx = insn_idx;
 427	elem->prev_insn_idx = prev_insn_idx;
 428	elem->next = env->head;
 429	env->head = elem;
 430	env->stack_size++;
 431	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
 432		verbose("BPF program is too complex\n");
 433		goto err;
 434	}
 435	return &elem->st;
 436err:
 437	/* pop all elements and return */
 438	while (pop_stack(env, NULL) >= 0);
 439	return NULL;
 440}
 441
 442#define CALLER_SAVED_REGS 6
 443static const int caller_saved[CALLER_SAVED_REGS] = {
 444	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
 445};
 446
 447static void init_reg_state(struct bpf_reg_state *regs)
 448{
 449	int i;
 450
 451	for (i = 0; i < MAX_BPF_REG; i++) {
 452		regs[i].type = NOT_INIT;
 453		regs[i].imm = 0;
 454		regs[i].min_value = BPF_REGISTER_MIN_RANGE;
 455		regs[i].max_value = BPF_REGISTER_MAX_RANGE;
 456	}
 457
 458	/* frame pointer */
 459	regs[BPF_REG_FP].type = FRAME_PTR;
 460
 461	/* 1st arg to a function */
 462	regs[BPF_REG_1].type = PTR_TO_CTX;
 463}
 464
 465static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
 466{
 
 467	regs[regno].type = UNKNOWN_VALUE;
 468	regs[regno].id = 0;
 469	regs[regno].imm = 0;
 470}
 471
 472static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
 473{
 474	BUG_ON(regno >= MAX_BPF_REG);
 475	__mark_reg_unknown_value(regs, regno);
 476}
 477
 478static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
 479{
 480	regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
 481	regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
 482}
 483
 484enum reg_arg_type {
 485	SRC_OP,		/* register is used as source operand */
 486	DST_OP,		/* register is used as destination operand */
 487	DST_OP_NO_MARK	/* same as above, check only, don't mark */
 488};
 489
 490static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
 491			 enum reg_arg_type t)
 492{
 493	if (regno >= MAX_BPF_REG) {
 494		verbose("R%d is invalid\n", regno);
 495		return -EINVAL;
 496	}
 497
 498	if (t == SRC_OP) {
 499		/* check whether register used as source operand can be read */
 500		if (regs[regno].type == NOT_INIT) {
 501			verbose("R%d !read_ok\n", regno);
 502			return -EACCES;
 503		}
 504	} else {
 505		/* check whether register used as dest operand can be written to */
 506		if (regno == BPF_REG_FP) {
 507			verbose("frame pointer is read only\n");
 508			return -EACCES;
 509		}
 510		if (t == DST_OP)
 511			mark_reg_unknown_value(regs, regno);
 512	}
 513	return 0;
 514}
 515
 516static int bpf_size_to_bytes(int bpf_size)
 517{
 518	if (bpf_size == BPF_W)
 519		return 4;
 520	else if (bpf_size == BPF_H)
 521		return 2;
 522	else if (bpf_size == BPF_B)
 523		return 1;
 524	else if (bpf_size == BPF_DW)
 525		return 8;
 526	else
 527		return -EINVAL;
 528}
 529
 530static bool is_spillable_regtype(enum bpf_reg_type type)
 531{
 532	switch (type) {
 533	case PTR_TO_MAP_VALUE:
 534	case PTR_TO_MAP_VALUE_OR_NULL:
 535	case PTR_TO_STACK:
 536	case PTR_TO_CTX:
 537	case PTR_TO_PACKET:
 538	case PTR_TO_PACKET_END:
 539	case FRAME_PTR:
 540	case CONST_PTR_TO_MAP:
 541		return true;
 542	default:
 543		return false;
 544	}
 545}
 546
 547/* check_stack_read/write functions track spill/fill of registers,
 548 * stack boundary and alignment are checked in check_mem_access()
 549 */
 550static int check_stack_write(struct bpf_verifier_state *state, int off,
 551			     int size, int value_regno)
 552{
 553	int i;
 554	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
 555	 * so it's aligned access and [off, off + size) are within stack limits
 556	 */
 557
 558	if (value_regno >= 0 &&
 559	    is_spillable_regtype(state->regs[value_regno].type)) {
 560
 561		/* register containing pointer is being spilled into stack */
 562		if (size != BPF_REG_SIZE) {
 563			verbose("invalid size of register spill\n");
 564			return -EACCES;
 565		}
 566
 567		/* save register state */
 568		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
 569			state->regs[value_regno];
 570
 571		for (i = 0; i < BPF_REG_SIZE; i++)
 572			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
 573	} else {
 574		/* regular write of data into stack */
 575		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
 576			(struct bpf_reg_state) {};
 577
 578		for (i = 0; i < size; i++)
 579			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
 580	}
 581	return 0;
 582}
 583
 584static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
 585			    int value_regno)
 586{
 587	u8 *slot_type;
 588	int i;
 589
 590	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
 591
 592	if (slot_type[0] == STACK_SPILL) {
 593		if (size != BPF_REG_SIZE) {
 594			verbose("invalid size of register spill\n");
 595			return -EACCES;
 596		}
 597		for (i = 1; i < BPF_REG_SIZE; i++) {
 598			if (slot_type[i] != STACK_SPILL) {
 599				verbose("corrupted spill memory\n");
 600				return -EACCES;
 601			}
 602		}
 603
 604		if (value_regno >= 0)
 605			/* restore register state from stack */
 606			state->regs[value_regno] =
 607				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
 608		return 0;
 609	} else {
 610		for (i = 0; i < size; i++) {
 611			if (slot_type[i] != STACK_MISC) {
 612				verbose("invalid read from stack off %d+%d size %d\n",
 613					off, i, size);
 614				return -EACCES;
 615			}
 616		}
 617		if (value_regno >= 0)
 618			/* have read misc data from the stack */
 619			mark_reg_unknown_value(state->regs, value_regno);
 620		return 0;
 621	}
 622}
 623
 624/* check read/write into map element returned by bpf_map_lookup_elem() */
 625static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
 626			    int size)
 627{
 628	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
 629
 630	if (off < 0 || off + size > map->value_size) {
 631		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
 632			map->value_size, off, size);
 633		return -EACCES;
 634	}
 635	return 0;
 636}
 637
 638#define MAX_PACKET_OFF 0xffff
 639
 640static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
 641				       const struct bpf_call_arg_meta *meta,
 642				       enum bpf_access_type t)
 643{
 644	switch (env->prog->type) {
 645	case BPF_PROG_TYPE_LWT_IN:
 646	case BPF_PROG_TYPE_LWT_OUT:
 647		/* dst_input() and dst_output() can't write for now */
 648		if (t == BPF_WRITE)
 649			return false;
 650	case BPF_PROG_TYPE_SCHED_CLS:
 651	case BPF_PROG_TYPE_SCHED_ACT:
 652	case BPF_PROG_TYPE_XDP:
 653	case BPF_PROG_TYPE_LWT_XMIT:
 654		if (meta)
 655			return meta->pkt_access;
 656
 657		env->seen_direct_write = true;
 658		return true;
 659	default:
 660		return false;
 661	}
 662}
 663
 664static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
 665			       int size)
 666{
 667	struct bpf_reg_state *regs = env->cur_state.regs;
 668	struct bpf_reg_state *reg = &regs[regno];
 669
 670	off += reg->off;
 671	if (off < 0 || size <= 0 || off + size > reg->range) {
 672		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
 673			off, size, regno, reg->id, reg->off, reg->range);
 674		return -EACCES;
 675	}
 676	return 0;
 677}
 678
 679/* check access to 'struct bpf_context' fields */
 680static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
 681			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
 682{
 683	/* for analyzer ctx accesses are already validated and converted */
 684	if (env->analyzer_ops)
 685		return 0;
 686
 687	if (env->prog->aux->ops->is_valid_access &&
 688	    env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
 689		/* remember the offset of last byte accessed in ctx */
 690		if (env->prog->aux->max_ctx_offset < off + size)
 691			env->prog->aux->max_ctx_offset = off + size;
 692		return 0;
 693	}
 694
 695	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
 696	return -EACCES;
 697}
 698
 699static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
 700{
 701	if (env->allow_ptr_leaks)
 702		return false;
 703
 704	switch (env->cur_state.regs[regno].type) {
 705	case UNKNOWN_VALUE:
 706	case CONST_IMM:
 707		return false;
 708	default:
 709		return true;
 710	}
 711}
 712
 713static int check_ptr_alignment(struct bpf_verifier_env *env,
 714			       struct bpf_reg_state *reg, int off, int size)
 715{
 716	if (reg->type != PTR_TO_PACKET && reg->type != PTR_TO_MAP_VALUE_ADJ) {
 717		if (off % size != 0) {
 718			verbose("misaligned access off %d size %d\n",
 719				off, size);
 720			return -EACCES;
 721		} else {
 722			return 0;
 723		}
 724	}
 725
 726	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
 727		/* misaligned access to packet is ok on x86,arm,arm64 */
 728		return 0;
 729
 730	if (reg->id && size != 1) {
 731		verbose("Unknown packet alignment. Only byte-sized access allowed\n");
 732		return -EACCES;
 733	}
 734
 735	/* skb->data is NET_IP_ALIGN-ed */
 736	if (reg->type == PTR_TO_PACKET &&
 737	    (NET_IP_ALIGN + reg->off + off) % size != 0) {
 738		verbose("misaligned packet access off %d+%d+%d size %d\n",
 739			NET_IP_ALIGN, reg->off, off, size);
 740		return -EACCES;
 741	}
 742	return 0;
 743}
 744
 745/* check whether memory at (regno + off) is accessible for t = (read | write)
 746 * if t==write, value_regno is a register which value is stored into memory
 747 * if t==read, value_regno is a register which will receive the value from memory
 748 * if t==write && value_regno==-1, some unknown value is stored into memory
 749 * if t==read && value_regno==-1, don't care what we read from memory
 750 */
 751static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
 752			    int bpf_size, enum bpf_access_type t,
 753			    int value_regno)
 754{
 755	struct bpf_verifier_state *state = &env->cur_state;
 756	struct bpf_reg_state *reg = &state->regs[regno];
 757	int size, err = 0;
 758
 759	if (reg->type == PTR_TO_STACK)
 760		off += reg->imm;
 761
 762	size = bpf_size_to_bytes(bpf_size);
 763	if (size < 0)
 764		return size;
 765
 766	err = check_ptr_alignment(env, reg, off, size);
 767	if (err)
 768		return err;
 
 769
 770	if (reg->type == PTR_TO_MAP_VALUE ||
 771	    reg->type == PTR_TO_MAP_VALUE_ADJ) {
 772		if (t == BPF_WRITE && value_regno >= 0 &&
 773		    is_pointer_value(env, value_regno)) {
 774			verbose("R%d leaks addr into map\n", value_regno);
 775			return -EACCES;
 776		}
 777
 778		/* If we adjusted the register to this map value at all then we
 779		 * need to change off and size to min_value and max_value
 780		 * respectively to make sure our theoretical access will be
 781		 * safe.
 782		 */
 783		if (reg->type == PTR_TO_MAP_VALUE_ADJ) {
 784			if (log_level)
 785				print_verifier_state(state);
 786			env->varlen_map_value_access = true;
 787			/* The minimum value is only important with signed
 788			 * comparisons where we can't assume the floor of a
 789			 * value is 0.  If we are using signed variables for our
 790			 * index'es we need to make sure that whatever we use
 791			 * will have a set floor within our range.
 792			 */
 793			if (reg->min_value < 0) {
 794				verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
 795					regno);
 796				return -EACCES;
 797			}
 798			err = check_map_access(env, regno, reg->min_value + off,
 799					       size);
 800			if (err) {
 801				verbose("R%d min value is outside of the array range\n",
 802					regno);
 803				return err;
 804			}
 805
 806			/* If we haven't set a max value then we need to bail
 807			 * since we can't be sure we won't do bad things.
 808			 */
 809			if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
 810				verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
 811					regno);
 812				return -EACCES;
 813			}
 814			off += reg->max_value;
 815		}
 816		err = check_map_access(env, regno, off, size);
 817		if (!err && t == BPF_READ && value_regno >= 0)
 818			mark_reg_unknown_value(state->regs, value_regno);
 819
 820	} else if (reg->type == PTR_TO_CTX) {
 821		enum bpf_reg_type reg_type = UNKNOWN_VALUE;
 822
 823		if (t == BPF_WRITE && value_regno >= 0 &&
 824		    is_pointer_value(env, value_regno)) {
 825			verbose("R%d leaks addr into ctx\n", value_regno);
 826			return -EACCES;
 827		}
 828		err = check_ctx_access(env, off, size, t, &reg_type);
 829		if (!err && t == BPF_READ && value_regno >= 0) {
 830			mark_reg_unknown_value(state->regs, value_regno);
 831			/* note that reg.[id|off|range] == 0 */
 832			state->regs[value_regno].type = reg_type;
 833		}
 834
 835	} else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
 
 836		if (off >= 0 || off < -MAX_BPF_STACK) {
 837			verbose("invalid stack off=%d size=%d\n", off, size);
 838			return -EACCES;
 839		}
 840		if (t == BPF_WRITE) {
 841			if (!env->allow_ptr_leaks &&
 842			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
 843			    size != BPF_REG_SIZE) {
 844				verbose("attempt to corrupt spilled pointer on stack\n");
 845				return -EACCES;
 846			}
 847			err = check_stack_write(state, off, size, value_regno);
 848		} else {
 849			err = check_stack_read(state, off, size, value_regno);
 850		}
 851	} else if (state->regs[regno].type == PTR_TO_PACKET) {
 852		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
 853			verbose("cannot write into packet\n");
 854			return -EACCES;
 855		}
 856		if (t == BPF_WRITE && value_regno >= 0 &&
 857		    is_pointer_value(env, value_regno)) {
 858			verbose("R%d leaks addr into packet\n", value_regno);
 859			return -EACCES;
 860		}
 861		err = check_packet_access(env, regno, off, size);
 862		if (!err && t == BPF_READ && value_regno >= 0)
 863			mark_reg_unknown_value(state->regs, value_regno);
 864	} else {
 865		verbose("R%d invalid mem access '%s'\n",
 866			regno, reg_type_str[reg->type]);
 867		return -EACCES;
 868	}
 869
 870	if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
 871	    state->regs[value_regno].type == UNKNOWN_VALUE) {
 872		/* 1 or 2 byte load zero-extends, determine the number of
 873		 * zero upper bits. Not doing it fo 4 byte load, since
 874		 * such values cannot be added to ptr_to_packet anyway.
 875		 */
 876		state->regs[value_regno].imm = 64 - size * 8;
 877	}
 878	return err;
 879}
 880
 881static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
 882{
 883	struct bpf_reg_state *regs = env->cur_state.regs;
 884	int err;
 885
 886	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
 887	    insn->imm != 0) {
 888		verbose("BPF_XADD uses reserved fields\n");
 889		return -EINVAL;
 890	}
 891
 892	/* check src1 operand */
 893	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
 894	if (err)
 895		return err;
 896
 897	/* check src2 operand */
 898	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
 899	if (err)
 900		return err;
 901
 902	/* check whether atomic_add can read the memory */
 903	err = check_mem_access(env, insn->dst_reg, insn->off,
 904			       BPF_SIZE(insn->code), BPF_READ, -1);
 905	if (err)
 906		return err;
 907
 908	/* check whether atomic_add can write into the same memory */
 909	return check_mem_access(env, insn->dst_reg, insn->off,
 910				BPF_SIZE(insn->code), BPF_WRITE, -1);
 911}
 912
 913/* when register 'regno' is passed into function that will read 'access_size'
 914 * bytes from that pointer, make sure that it's within stack boundary
 915 * and all elements of stack are initialized
 916 */
 917static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
 918				int access_size, bool zero_size_allowed,
 919				struct bpf_call_arg_meta *meta)
 920{
 921	struct bpf_verifier_state *state = &env->cur_state;
 922	struct bpf_reg_state *regs = state->regs;
 923	int off, i;
 924
 925	if (regs[regno].type != PTR_TO_STACK) {
 926		if (zero_size_allowed && access_size == 0 &&
 927		    regs[regno].type == CONST_IMM &&
 928		    regs[regno].imm  == 0)
 929			return 0;
 930
 931		verbose("R%d type=%s expected=%s\n", regno,
 932			reg_type_str[regs[regno].type],
 933			reg_type_str[PTR_TO_STACK]);
 934		return -EACCES;
 935	}
 936
 937	off = regs[regno].imm;
 938	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
 939	    access_size <= 0) {
 940		verbose("invalid stack type R%d off=%d access_size=%d\n",
 941			regno, off, access_size);
 942		return -EACCES;
 943	}
 944
 945	if (meta && meta->raw_mode) {
 946		meta->access_size = access_size;
 947		meta->regno = regno;
 948		return 0;
 949	}
 950
 951	for (i = 0; i < access_size; i++) {
 952		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
 953			verbose("invalid indirect read from stack off %d+%d size %d\n",
 954				off, i, access_size);
 955			return -EACCES;
 956		}
 957	}
 958	return 0;
 959}
 960
 961static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
 962			  enum bpf_arg_type arg_type,
 963			  struct bpf_call_arg_meta *meta)
 964{
 965	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
 966	enum bpf_reg_type expected_type, type = reg->type;
 967	int err = 0;
 968
 969	if (arg_type == ARG_DONTCARE)
 970		return 0;
 971
 972	if (type == NOT_INIT) {
 973		verbose("R%d !read_ok\n", regno);
 974		return -EACCES;
 975	}
 976
 977	if (arg_type == ARG_ANYTHING) {
 978		if (is_pointer_value(env, regno)) {
 979			verbose("R%d leaks addr into helper function\n", regno);
 980			return -EACCES;
 981		}
 982		return 0;
 983	}
 984
 985	if (type == PTR_TO_PACKET &&
 986	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
 987		verbose("helper access to the packet is not allowed\n");
 988		return -EACCES;
 989	}
 990
 991	if (arg_type == ARG_PTR_TO_MAP_KEY ||
 992	    arg_type == ARG_PTR_TO_MAP_VALUE) {
 993		expected_type = PTR_TO_STACK;
 994		if (type != PTR_TO_PACKET && type != expected_type)
 995			goto err_type;
 996	} else if (arg_type == ARG_CONST_STACK_SIZE ||
 997		   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
 998		expected_type = CONST_IMM;
 999		if (type != expected_type)
1000			goto err_type;
1001	} else if (arg_type == ARG_CONST_MAP_PTR) {
1002		expected_type = CONST_PTR_TO_MAP;
1003		if (type != expected_type)
1004			goto err_type;
1005	} else if (arg_type == ARG_PTR_TO_CTX) {
1006		expected_type = PTR_TO_CTX;
1007		if (type != expected_type)
1008			goto err_type;
1009	} else if (arg_type == ARG_PTR_TO_STACK ||
1010		   arg_type == ARG_PTR_TO_RAW_STACK) {
1011		expected_type = PTR_TO_STACK;
1012		/* One exception here. In case function allows for NULL to be
1013		 * passed in as argument, it's a CONST_IMM type. Final test
1014		 * happens during stack boundary checking.
1015		 */
1016		if (type == CONST_IMM && reg->imm == 0)
1017			/* final test in check_stack_boundary() */;
1018		else if (type != PTR_TO_PACKET && type != expected_type)
1019			goto err_type;
1020		meta->raw_mode = arg_type == ARG_PTR_TO_RAW_STACK;
1021	} else {
1022		verbose("unsupported arg_type %d\n", arg_type);
1023		return -EFAULT;
1024	}
1025
 
 
 
 
 
 
1026	if (arg_type == ARG_CONST_MAP_PTR) {
1027		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1028		meta->map_ptr = reg->map_ptr;
 
1029	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1030		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1031		 * check that [key, key + map->key_size) are within
1032		 * stack limits and initialized
1033		 */
1034		if (!meta->map_ptr) {
1035			/* in function declaration map_ptr must come before
1036			 * map_key, so that it's verified and known before
1037			 * we have to check map_key here. Otherwise it means
1038			 * that kernel subsystem misconfigured verifier
1039			 */
1040			verbose("invalid map_ptr to access map->key\n");
1041			return -EACCES;
1042		}
1043		if (type == PTR_TO_PACKET)
1044			err = check_packet_access(env, regno, 0,
1045						  meta->map_ptr->key_size);
1046		else
1047			err = check_stack_boundary(env, regno,
1048						   meta->map_ptr->key_size,
1049						   false, NULL);
1050	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1051		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1052		 * check [value, value + map->value_size) validity
1053		 */
1054		if (!meta->map_ptr) {
1055			/* kernel subsystem misconfigured verifier */
1056			verbose("invalid map_ptr to access map->value\n");
1057			return -EACCES;
1058		}
1059		if (type == PTR_TO_PACKET)
1060			err = check_packet_access(env, regno, 0,
1061						  meta->map_ptr->value_size);
1062		else
1063			err = check_stack_boundary(env, regno,
1064						   meta->map_ptr->value_size,
1065						   false, NULL);
1066	} else if (arg_type == ARG_CONST_STACK_SIZE ||
1067		   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
1068		bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
1069
1070		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1071		 * from stack pointer 'buf'. Check it
1072		 * note: regno == len, regno - 1 == buf
1073		 */
1074		if (regno == 0) {
1075			/* kernel subsystem misconfigured verifier */
1076			verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
1077			return -EACCES;
1078		}
1079		if (regs[regno - 1].type == PTR_TO_PACKET)
1080			err = check_packet_access(env, regno - 1, 0, reg->imm);
1081		else
1082			err = check_stack_boundary(env, regno - 1, reg->imm,
1083						   zero_size_allowed, meta);
1084	}
1085
1086	return err;
1087err_type:
1088	verbose("R%d type=%s expected=%s\n", regno,
1089		reg_type_str[type], reg_type_str[expected_type]);
1090	return -EACCES;
1091}
1092
1093static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1094{
1095	if (!map)
1096		return 0;
1097
1098	/* We need a two way check, first is from map perspective ... */
1099	switch (map->map_type) {
1100	case BPF_MAP_TYPE_PROG_ARRAY:
1101		if (func_id != BPF_FUNC_tail_call)
1102			goto error;
1103		break;
1104	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1105		if (func_id != BPF_FUNC_perf_event_read &&
1106		    func_id != BPF_FUNC_perf_event_output)
1107			goto error;
1108		break;
1109	case BPF_MAP_TYPE_STACK_TRACE:
1110		if (func_id != BPF_FUNC_get_stackid)
1111			goto error;
1112		break;
1113	case BPF_MAP_TYPE_CGROUP_ARRAY:
1114		if (func_id != BPF_FUNC_skb_under_cgroup &&
1115		    func_id != BPF_FUNC_current_task_under_cgroup)
1116			goto error;
1117		break;
1118	default:
1119		break;
1120	}
1121
1122	/* ... and second from the function itself. */
1123	switch (func_id) {
1124	case BPF_FUNC_tail_call:
1125		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1126			goto error;
1127		break;
1128	case BPF_FUNC_perf_event_read:
1129	case BPF_FUNC_perf_event_output:
1130		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1131			goto error;
1132		break;
1133	case BPF_FUNC_get_stackid:
1134		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1135			goto error;
1136		break;
1137	case BPF_FUNC_current_task_under_cgroup:
1138	case BPF_FUNC_skb_under_cgroup:
1139		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1140			goto error;
1141		break;
1142	default:
1143		break;
1144	}
1145
1146	return 0;
1147error:
1148	verbose("cannot pass map_type %d into func %s#%d\n",
1149		map->map_type, func_id_name(func_id), func_id);
1150	return -EINVAL;
1151}
1152
1153static int check_raw_mode(const struct bpf_func_proto *fn)
1154{
1155	int count = 0;
1156
1157	if (fn->arg1_type == ARG_PTR_TO_RAW_STACK)
1158		count++;
1159	if (fn->arg2_type == ARG_PTR_TO_RAW_STACK)
1160		count++;
1161	if (fn->arg3_type == ARG_PTR_TO_RAW_STACK)
1162		count++;
1163	if (fn->arg4_type == ARG_PTR_TO_RAW_STACK)
1164		count++;
1165	if (fn->arg5_type == ARG_PTR_TO_RAW_STACK)
1166		count++;
1167
1168	return count > 1 ? -EINVAL : 0;
1169}
1170
1171static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1172{
1173	struct bpf_verifier_state *state = &env->cur_state;
1174	struct bpf_reg_state *regs = state->regs, *reg;
1175	int i;
1176
1177	for (i = 0; i < MAX_BPF_REG; i++)
1178		if (regs[i].type == PTR_TO_PACKET ||
1179		    regs[i].type == PTR_TO_PACKET_END)
1180			mark_reg_unknown_value(regs, i);
1181
1182	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1183		if (state->stack_slot_type[i] != STACK_SPILL)
1184			continue;
1185		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1186		if (reg->type != PTR_TO_PACKET &&
1187		    reg->type != PTR_TO_PACKET_END)
1188			continue;
1189		reg->type = UNKNOWN_VALUE;
1190		reg->imm = 0;
1191	}
1192}
1193
1194static int check_call(struct bpf_verifier_env *env, int func_id)
1195{
1196	struct bpf_verifier_state *state = &env->cur_state;
1197	const struct bpf_func_proto *fn = NULL;
1198	struct bpf_reg_state *regs = state->regs;
1199	struct bpf_reg_state *reg;
1200	struct bpf_call_arg_meta meta;
1201	bool changes_data;
1202	int i, err;
1203
1204	/* find function prototype */
1205	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1206		verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1207		return -EINVAL;
1208	}
1209
1210	if (env->prog->aux->ops->get_func_proto)
1211		fn = env->prog->aux->ops->get_func_proto(func_id);
1212
1213	if (!fn) {
1214		verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1215		return -EINVAL;
1216	}
1217
1218	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1219	if (!env->prog->gpl_compatible && fn->gpl_only) {
1220		verbose("cannot call GPL only function from proprietary program\n");
1221		return -EINVAL;
1222	}
1223
1224	changes_data = bpf_helper_changes_pkt_data(fn->func);
1225
1226	memset(&meta, 0, sizeof(meta));
1227	meta.pkt_access = fn->pkt_access;
1228
1229	/* We only support one arg being in raw mode at the moment, which
1230	 * is sufficient for the helper functions we have right now.
1231	 */
1232	err = check_raw_mode(fn);
1233	if (err) {
1234		verbose("kernel subsystem misconfigured func %s#%d\n",
1235			func_id_name(func_id), func_id);
1236		return err;
1237	}
1238
1239	/* check args */
1240	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1241	if (err)
1242		return err;
1243	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1244	if (err)
1245		return err;
1246	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1247	if (err)
1248		return err;
1249	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1250	if (err)
1251		return err;
1252	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1253	if (err)
1254		return err;
1255
1256	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1257	 * is inferred from register state.
1258	 */
1259	for (i = 0; i < meta.access_size; i++) {
1260		err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1261		if (err)
1262			return err;
1263	}
1264
1265	/* reset caller saved regs */
1266	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1267		reg = regs + caller_saved[i];
1268		reg->type = NOT_INIT;
1269		reg->imm = 0;
1270	}
1271
1272	/* update return register */
1273	if (fn->ret_type == RET_INTEGER) {
1274		regs[BPF_REG_0].type = UNKNOWN_VALUE;
1275	} else if (fn->ret_type == RET_VOID) {
1276		regs[BPF_REG_0].type = NOT_INIT;
1277	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1278		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1279		regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
1280		/* remember map_ptr, so that check_map_access()
1281		 * can check 'value_size' boundary of memory access
1282		 * to map element returned from bpf_map_lookup_elem()
1283		 */
1284		if (meta.map_ptr == NULL) {
1285			verbose("kernel subsystem misconfigured verifier\n");
1286			return -EINVAL;
1287		}
1288		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1289		regs[BPF_REG_0].id = ++env->id_gen;
1290	} else {
1291		verbose("unknown return type %d of func %s#%d\n",
1292			fn->ret_type, func_id_name(func_id), func_id);
1293		return -EINVAL;
1294	}
1295
1296	err = check_map_func_compatibility(meta.map_ptr, func_id);
1297	if (err)
1298		return err;
1299
1300	if (changes_data)
1301		clear_all_pkt_pointers(env);
1302	return 0;
1303}
1304
1305static int check_packet_ptr_add(struct bpf_verifier_env *env,
1306				struct bpf_insn *insn)
1307{
1308	struct bpf_reg_state *regs = env->cur_state.regs;
1309	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1310	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1311	struct bpf_reg_state tmp_reg;
1312	s32 imm;
1313
1314	if (BPF_SRC(insn->code) == BPF_K) {
1315		/* pkt_ptr += imm */
1316		imm = insn->imm;
1317
1318add_imm:
1319		if (imm <= 0) {
1320			verbose("addition of negative constant to packet pointer is not allowed\n");
1321			return -EACCES;
1322		}
1323		if (imm >= MAX_PACKET_OFF ||
1324		    imm + dst_reg->off >= MAX_PACKET_OFF) {
1325			verbose("constant %d is too large to add to packet pointer\n",
1326				imm);
1327			return -EACCES;
1328		}
1329		/* a constant was added to pkt_ptr.
1330		 * Remember it while keeping the same 'id'
1331		 */
1332		dst_reg->off += imm;
1333	} else {
1334		if (src_reg->type == PTR_TO_PACKET) {
1335			/* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1336			tmp_reg = *dst_reg;  /* save r7 state */
1337			*dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1338			src_reg = &tmp_reg;  /* pretend it's src_reg state */
1339			/* if the checks below reject it, the copy won't matter,
1340			 * since we're rejecting the whole program. If all ok,
1341			 * then imm22 state will be added to r7
1342			 * and r7 will be pkt(id=0,off=22,r=62) while
1343			 * r6 will stay as pkt(id=0,off=0,r=62)
1344			 */
1345		}
1346
1347		if (src_reg->type == CONST_IMM) {
1348			/* pkt_ptr += reg where reg is known constant */
1349			imm = src_reg->imm;
1350			goto add_imm;
1351		}
1352		/* disallow pkt_ptr += reg
1353		 * if reg is not uknown_value with guaranteed zero upper bits
1354		 * otherwise pkt_ptr may overflow and addition will become
1355		 * subtraction which is not allowed
1356		 */
1357		if (src_reg->type != UNKNOWN_VALUE) {
1358			verbose("cannot add '%s' to ptr_to_packet\n",
1359				reg_type_str[src_reg->type]);
1360			return -EACCES;
1361		}
1362		if (src_reg->imm < 48) {
1363			verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1364				src_reg->imm);
1365			return -EACCES;
1366		}
1367		/* dst_reg stays as pkt_ptr type and since some positive
1368		 * integer value was added to the pointer, increment its 'id'
1369		 */
1370		dst_reg->id = ++env->id_gen;
1371
1372		/* something was added to pkt_ptr, set range and off to zero */
1373		dst_reg->off = 0;
1374		dst_reg->range = 0;
1375	}
1376	return 0;
1377}
1378
1379static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
1380{
1381	struct bpf_reg_state *regs = env->cur_state.regs;
1382	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1383	u8 opcode = BPF_OP(insn->code);
1384	s64 imm_log2;
1385
1386	/* for type == UNKNOWN_VALUE:
1387	 * imm > 0 -> number of zero upper bits
1388	 * imm == 0 -> don't track which is the same as all bits can be non-zero
1389	 */
1390
1391	if (BPF_SRC(insn->code) == BPF_X) {
1392		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1393
1394		if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1395		    dst_reg->imm && opcode == BPF_ADD) {
1396			/* dreg += sreg
1397			 * where both have zero upper bits. Adding them
1398			 * can only result making one more bit non-zero
1399			 * in the larger value.
1400			 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1401			 *     0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1402			 */
1403			dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1404			dst_reg->imm--;
1405			return 0;
1406		}
1407		if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1408		    dst_reg->imm && opcode == BPF_ADD) {
1409			/* dreg += sreg
1410			 * where dreg has zero upper bits and sreg is const.
1411			 * Adding them can only result making one more bit
1412			 * non-zero in the larger value.
1413			 */
1414			imm_log2 = __ilog2_u64((long long)src_reg->imm);
1415			dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1416			dst_reg->imm--;
1417			return 0;
1418		}
1419		/* all other cases non supported yet, just mark dst_reg */
1420		dst_reg->imm = 0;
1421		return 0;
1422	}
1423
1424	/* sign extend 32-bit imm into 64-bit to make sure that
1425	 * negative values occupy bit 63. Note ilog2() would have
1426	 * been incorrect, since sizeof(insn->imm) == 4
1427	 */
1428	imm_log2 = __ilog2_u64((long long)insn->imm);
1429
1430	if (dst_reg->imm && opcode == BPF_LSH) {
1431		/* reg <<= imm
1432		 * if reg was a result of 2 byte load, then its imm == 48
1433		 * which means that upper 48 bits are zero and shifting this reg
1434		 * left by 4 would mean that upper 44 bits are still zero
1435		 */
1436		dst_reg->imm -= insn->imm;
1437	} else if (dst_reg->imm && opcode == BPF_MUL) {
1438		/* reg *= imm
1439		 * if multiplying by 14 subtract 4
1440		 * This is conservative calculation of upper zero bits.
1441		 * It's not trying to special case insn->imm == 1 or 0 cases
1442		 */
1443		dst_reg->imm -= imm_log2 + 1;
1444	} else if (opcode == BPF_AND) {
1445		/* reg &= imm */
1446		dst_reg->imm = 63 - imm_log2;
1447	} else if (dst_reg->imm && opcode == BPF_ADD) {
1448		/* reg += imm */
1449		dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1450		dst_reg->imm--;
1451	} else if (opcode == BPF_RSH) {
1452		/* reg >>= imm
1453		 * which means that after right shift, upper bits will be zero
1454		 * note that verifier already checked that
1455		 * 0 <= imm < 64 for shift insn
1456		 */
1457		dst_reg->imm += insn->imm;
1458		if (unlikely(dst_reg->imm > 64))
1459			/* some dumb code did:
1460			 * r2 = *(u32 *)mem;
1461			 * r2 >>= 32;
1462			 * and all bits are zero now */
1463			dst_reg->imm = 64;
1464	} else {
1465		/* all other alu ops, means that we don't know what will
1466		 * happen to the value, mark it with unknown number of zero bits
1467		 */
1468		dst_reg->imm = 0;
1469	}
1470
1471	if (dst_reg->imm < 0) {
1472		/* all 64 bits of the register can contain non-zero bits
1473		 * and such value cannot be added to ptr_to_packet, since it
1474		 * may overflow, mark it as unknown to avoid further eval
1475		 */
1476		dst_reg->imm = 0;
1477	}
1478	return 0;
1479}
1480
1481static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1482				struct bpf_insn *insn)
1483{
1484	struct bpf_reg_state *regs = env->cur_state.regs;
1485	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1486	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1487	u8 opcode = BPF_OP(insn->code);
1488
1489	/* dst_reg->type == CONST_IMM here, simulate execution of 'add'/'or'
1490	 * insn. Don't care about overflow or negative values, just add them
1491	 */
1492	if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K)
1493		dst_reg->imm += insn->imm;
1494	else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1495		 src_reg->type == CONST_IMM)
1496		dst_reg->imm += src_reg->imm;
1497	else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K)
1498		dst_reg->imm |= insn->imm;
1499	else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1500		 src_reg->type == CONST_IMM)
1501		dst_reg->imm |= src_reg->imm;
1502	else
1503		mark_reg_unknown_value(regs, insn->dst_reg);
1504	return 0;
1505}
1506
1507static void check_reg_overflow(struct bpf_reg_state *reg)
1508{
1509	if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1510		reg->max_value = BPF_REGISTER_MAX_RANGE;
1511	if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1512	    reg->min_value > BPF_REGISTER_MAX_RANGE)
1513		reg->min_value = BPF_REGISTER_MIN_RANGE;
1514}
1515
1516static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1517				    struct bpf_insn *insn)
1518{
1519	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1520	s64 min_val = BPF_REGISTER_MIN_RANGE;
1521	u64 max_val = BPF_REGISTER_MAX_RANGE;
1522	u8 opcode = BPF_OP(insn->code);
1523
1524	dst_reg = &regs[insn->dst_reg];
1525	if (BPF_SRC(insn->code) == BPF_X) {
1526		check_reg_overflow(&regs[insn->src_reg]);
1527		min_val = regs[insn->src_reg].min_value;
1528		max_val = regs[insn->src_reg].max_value;
1529
1530		/* If the source register is a random pointer then the
1531		 * min_value/max_value values represent the range of the known
1532		 * accesses into that value, not the actual min/max value of the
1533		 * register itself.  In this case we have to reset the reg range
1534		 * values so we know it is not safe to look at.
1535		 */
1536		if (regs[insn->src_reg].type != CONST_IMM &&
1537		    regs[insn->src_reg].type != UNKNOWN_VALUE) {
1538			min_val = BPF_REGISTER_MIN_RANGE;
1539			max_val = BPF_REGISTER_MAX_RANGE;
1540		}
1541	} else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1542		   (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1543		min_val = max_val = insn->imm;
1544	}
1545
1546	/* We don't know anything about what was done to this register, mark it
1547	 * as unknown.
1548	 */
1549	if (min_val == BPF_REGISTER_MIN_RANGE &&
1550	    max_val == BPF_REGISTER_MAX_RANGE) {
1551		reset_reg_range_values(regs, insn->dst_reg);
1552		return;
1553	}
1554
1555	/* If one of our values was at the end of our ranges then we can't just
1556	 * do our normal operations to the register, we need to set the values
1557	 * to the min/max since they are undefined.
1558	 */
1559	if (min_val == BPF_REGISTER_MIN_RANGE)
1560		dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1561	if (max_val == BPF_REGISTER_MAX_RANGE)
1562		dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1563
1564	switch (opcode) {
1565	case BPF_ADD:
1566		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1567			dst_reg->min_value += min_val;
1568		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1569			dst_reg->max_value += max_val;
1570		break;
1571	case BPF_SUB:
1572		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1573			dst_reg->min_value -= min_val;
1574		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1575			dst_reg->max_value -= max_val;
1576		break;
1577	case BPF_MUL:
1578		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1579			dst_reg->min_value *= min_val;
1580		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1581			dst_reg->max_value *= max_val;
1582		break;
1583	case BPF_AND:
1584		/* Disallow AND'ing of negative numbers, ain't nobody got time
1585		 * for that.  Otherwise the minimum is 0 and the max is the max
1586		 * value we could AND against.
1587		 */
1588		if (min_val < 0)
1589			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1590		else
1591			dst_reg->min_value = 0;
1592		dst_reg->max_value = max_val;
1593		break;
1594	case BPF_LSH:
1595		/* Gotta have special overflow logic here, if we're shifting
1596		 * more than MAX_RANGE then just assume we have an invalid
1597		 * range.
1598		 */
1599		if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
1600			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1601		else if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1602			dst_reg->min_value <<= min_val;
1603
1604		if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1605			dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1606		else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1607			dst_reg->max_value <<= max_val;
1608		break;
1609	case BPF_RSH:
1610		/* RSH by a negative number is undefined, and the BPF_RSH is an
1611		 * unsigned shift, so make the appropriate casts.
1612		 */
1613		if (min_val < 0 || dst_reg->min_value < 0)
1614			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1615		else
1616			dst_reg->min_value =
1617				(u64)(dst_reg->min_value) >> min_val;
1618		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1619			dst_reg->max_value >>= max_val;
1620		break;
1621	default:
1622		reset_reg_range_values(regs, insn->dst_reg);
1623		break;
1624	}
1625
1626	check_reg_overflow(dst_reg);
1627}
1628
1629/* check validity of 32-bit and 64-bit arithmetic operations */
1630static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
1631{
1632	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1633	u8 opcode = BPF_OP(insn->code);
1634	int err;
1635
1636	if (opcode == BPF_END || opcode == BPF_NEG) {
1637		if (opcode == BPF_NEG) {
1638			if (BPF_SRC(insn->code) != 0 ||
1639			    insn->src_reg != BPF_REG_0 ||
1640			    insn->off != 0 || insn->imm != 0) {
1641				verbose("BPF_NEG uses reserved fields\n");
1642				return -EINVAL;
1643			}
1644		} else {
1645			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1646			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1647				verbose("BPF_END uses reserved fields\n");
1648				return -EINVAL;
1649			}
1650		}
1651
1652		/* check src operand */
1653		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1654		if (err)
1655			return err;
1656
1657		if (is_pointer_value(env, insn->dst_reg)) {
1658			verbose("R%d pointer arithmetic prohibited\n",
1659				insn->dst_reg);
1660			return -EACCES;
1661		}
1662
1663		/* check dest operand */
1664		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1665		if (err)
1666			return err;
1667
1668	} else if (opcode == BPF_MOV) {
1669
1670		if (BPF_SRC(insn->code) == BPF_X) {
1671			if (insn->imm != 0 || insn->off != 0) {
1672				verbose("BPF_MOV uses reserved fields\n");
1673				return -EINVAL;
1674			}
1675
1676			/* check src operand */
1677			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1678			if (err)
1679				return err;
1680		} else {
1681			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1682				verbose("BPF_MOV uses reserved fields\n");
1683				return -EINVAL;
1684			}
1685		}
1686
1687		/* check dest operand */
1688		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1689		if (err)
1690			return err;
1691
1692		/* we are setting our register to something new, we need to
1693		 * reset its range values.
1694		 */
1695		reset_reg_range_values(regs, insn->dst_reg);
1696
1697		if (BPF_SRC(insn->code) == BPF_X) {
1698			if (BPF_CLASS(insn->code) == BPF_ALU64) {
1699				/* case: R1 = R2
1700				 * copy register state to dest reg
1701				 */
1702				regs[insn->dst_reg] = regs[insn->src_reg];
1703			} else {
1704				if (is_pointer_value(env, insn->src_reg)) {
1705					verbose("R%d partial copy of pointer\n",
1706						insn->src_reg);
1707					return -EACCES;
1708				}
1709				mark_reg_unknown_value(regs, insn->dst_reg);
 
1710			}
1711		} else {
1712			/* case: R = imm
1713			 * remember the value we stored into this reg
1714			 */
1715			regs[insn->dst_reg].type = CONST_IMM;
1716			regs[insn->dst_reg].imm = insn->imm;
1717			regs[insn->dst_reg].max_value = insn->imm;
1718			regs[insn->dst_reg].min_value = insn->imm;
1719		}
1720
1721	} else if (opcode > BPF_END) {
1722		verbose("invalid BPF_ALU opcode %x\n", opcode);
1723		return -EINVAL;
1724
1725	} else {	/* all other ALU ops: and, sub, xor, add, ... */
1726
 
 
1727		if (BPF_SRC(insn->code) == BPF_X) {
1728			if (insn->imm != 0 || insn->off != 0) {
1729				verbose("BPF_ALU uses reserved fields\n");
1730				return -EINVAL;
1731			}
1732			/* check src1 operand */
1733			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1734			if (err)
1735				return err;
1736		} else {
1737			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1738				verbose("BPF_ALU uses reserved fields\n");
1739				return -EINVAL;
1740			}
1741		}
1742
1743		/* check src2 operand */
1744		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1745		if (err)
1746			return err;
1747
1748		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1749		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1750			verbose("div by zero\n");
1751			return -EINVAL;
1752		}
1753
1754		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1755		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1756			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1757
1758			if (insn->imm < 0 || insn->imm >= size) {
1759				verbose("invalid shift %d\n", insn->imm);
1760				return -EINVAL;
1761			}
1762		}
1763
1764		/* check dest operand */
1765		err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1766		if (err)
1767			return err;
1768
1769		dst_reg = &regs[insn->dst_reg];
1770
1771		/* first we want to adjust our ranges. */
1772		adjust_reg_min_max_vals(env, insn);
1773
1774		/* pattern match 'bpf_add Rx, imm' instruction */
1775		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1776		    dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1777			dst_reg->type = PTR_TO_STACK;
1778			dst_reg->imm = insn->imm;
1779			return 0;
1780		} else if (opcode == BPF_ADD &&
1781			   BPF_CLASS(insn->code) == BPF_ALU64 &&
1782			   (dst_reg->type == PTR_TO_PACKET ||
1783			    (BPF_SRC(insn->code) == BPF_X &&
1784			     regs[insn->src_reg].type == PTR_TO_PACKET))) {
1785			/* ptr_to_packet += K|X */
1786			return check_packet_ptr_add(env, insn);
1787		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1788			   dst_reg->type == UNKNOWN_VALUE &&
1789			   env->allow_ptr_leaks) {
1790			/* unknown += K|X */
1791			return evaluate_reg_alu(env, insn);
1792		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1793			   dst_reg->type == CONST_IMM &&
1794			   env->allow_ptr_leaks) {
1795			/* reg_imm += K|X */
1796			return evaluate_reg_imm_alu(env, insn);
1797		} else if (is_pointer_value(env, insn->dst_reg)) {
1798			verbose("R%d pointer arithmetic prohibited\n",
1799				insn->dst_reg);
1800			return -EACCES;
1801		} else if (BPF_SRC(insn->code) == BPF_X &&
1802			   is_pointer_value(env, insn->src_reg)) {
1803			verbose("R%d pointer arithmetic prohibited\n",
1804				insn->src_reg);
1805			return -EACCES;
1806		}
1807
1808		/* If we did pointer math on a map value then just set it to our
1809		 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
1810		 * loads to this register appropriately, otherwise just mark the
1811		 * register as unknown.
1812		 */
1813		if (env->allow_ptr_leaks &&
1814		    (dst_reg->type == PTR_TO_MAP_VALUE ||
1815		     dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
1816			dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
1817		else
1818			mark_reg_unknown_value(regs, insn->dst_reg);
1819	}
1820
1821	return 0;
1822}
1823
1824static void find_good_pkt_pointers(struct bpf_verifier_state *state,
1825				   struct bpf_reg_state *dst_reg)
1826{
1827	struct bpf_reg_state *regs = state->regs, *reg;
1828	int i;
1829
1830	/* LLVM can generate two kind of checks:
1831	 *
1832	 * Type 1:
1833	 *
1834	 *   r2 = r3;
1835	 *   r2 += 8;
1836	 *   if (r2 > pkt_end) goto <handle exception>
1837	 *   <access okay>
1838	 *
1839	 *   Where:
1840	 *     r2 == dst_reg, pkt_end == src_reg
1841	 *     r2=pkt(id=n,off=8,r=0)
1842	 *     r3=pkt(id=n,off=0,r=0)
1843	 *
1844	 * Type 2:
1845	 *
1846	 *   r2 = r3;
1847	 *   r2 += 8;
1848	 *   if (pkt_end >= r2) goto <access okay>
1849	 *   <handle exception>
1850	 *
1851	 *   Where:
1852	 *     pkt_end == dst_reg, r2 == src_reg
1853	 *     r2=pkt(id=n,off=8,r=0)
1854	 *     r3=pkt(id=n,off=0,r=0)
1855	 *
1856	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
1857	 * so that range of bytes [r3, r3 + 8) is safe to access.
1858	 */
1859
1860	for (i = 0; i < MAX_BPF_REG; i++)
1861		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
1862			regs[i].range = dst_reg->off;
1863
1864	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1865		if (state->stack_slot_type[i] != STACK_SPILL)
1866			continue;
1867		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1868		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
1869			reg->range = dst_reg->off;
1870	}
1871}
1872
1873/* Adjusts the register min/max values in the case that the dst_reg is the
1874 * variable register that we are working on, and src_reg is a constant or we're
1875 * simply doing a BPF_K check.
1876 */
1877static void reg_set_min_max(struct bpf_reg_state *true_reg,
1878			    struct bpf_reg_state *false_reg, u64 val,
1879			    u8 opcode)
1880{
1881	switch (opcode) {
1882	case BPF_JEQ:
1883		/* If this is false then we know nothing Jon Snow, but if it is
1884		 * true then we know for sure.
1885		 */
1886		true_reg->max_value = true_reg->min_value = val;
1887		break;
1888	case BPF_JNE:
1889		/* If this is true we know nothing Jon Snow, but if it is false
1890		 * we know the value for sure;
1891		 */
1892		false_reg->max_value = false_reg->min_value = val;
1893		break;
1894	case BPF_JGT:
1895		/* Unsigned comparison, the minimum value is 0. */
1896		false_reg->min_value = 0;
1897	case BPF_JSGT:
1898		/* If this is false then we know the maximum val is val,
1899		 * otherwise we know the min val is val+1.
1900		 */
1901		false_reg->max_value = val;
1902		true_reg->min_value = val + 1;
1903		break;
1904	case BPF_JGE:
1905		/* Unsigned comparison, the minimum value is 0. */
1906		false_reg->min_value = 0;
1907	case BPF_JSGE:
1908		/* If this is false then we know the maximum value is val - 1,
1909		 * otherwise we know the mimimum value is val.
1910		 */
1911		false_reg->max_value = val - 1;
1912		true_reg->min_value = val;
1913		break;
1914	default:
1915		break;
1916	}
1917
1918	check_reg_overflow(false_reg);
1919	check_reg_overflow(true_reg);
1920}
1921
1922/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
1923 * is the variable reg.
1924 */
1925static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
1926				struct bpf_reg_state *false_reg, u64 val,
1927				u8 opcode)
1928{
1929	switch (opcode) {
1930	case BPF_JEQ:
1931		/* If this is false then we know nothing Jon Snow, but if it is
1932		 * true then we know for sure.
1933		 */
1934		true_reg->max_value = true_reg->min_value = val;
1935		break;
1936	case BPF_JNE:
1937		/* If this is true we know nothing Jon Snow, but if it is false
1938		 * we know the value for sure;
1939		 */
1940		false_reg->max_value = false_reg->min_value = val;
1941		break;
1942	case BPF_JGT:
1943		/* Unsigned comparison, the minimum value is 0. */
1944		true_reg->min_value = 0;
1945	case BPF_JSGT:
1946		/*
1947		 * If this is false, then the val is <= the register, if it is
1948		 * true the register <= to the val.
1949		 */
1950		false_reg->min_value = val;
1951		true_reg->max_value = val - 1;
1952		break;
1953	case BPF_JGE:
1954		/* Unsigned comparison, the minimum value is 0. */
1955		true_reg->min_value = 0;
1956	case BPF_JSGE:
1957		/* If this is false then constant < register, if it is true then
1958		 * the register < constant.
1959		 */
1960		false_reg->min_value = val + 1;
1961		true_reg->max_value = val;
1962		break;
1963	default:
1964		break;
1965	}
1966
1967	check_reg_overflow(false_reg);
1968	check_reg_overflow(true_reg);
1969}
1970
1971static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
1972			 enum bpf_reg_type type)
1973{
1974	struct bpf_reg_state *reg = &regs[regno];
1975
1976	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
1977		reg->type = type;
1978		/* We don't need id from this point onwards anymore, thus we
1979		 * should better reset it, so that state pruning has chances
1980		 * to take effect.
1981		 */
1982		reg->id = 0;
1983		if (type == UNKNOWN_VALUE)
1984			__mark_reg_unknown_value(regs, regno);
1985	}
1986}
1987
1988/* The logic is similar to find_good_pkt_pointers(), both could eventually
1989 * be folded together at some point.
1990 */
1991static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
1992			  enum bpf_reg_type type)
1993{
1994	struct bpf_reg_state *regs = state->regs;
1995	u32 id = regs[regno].id;
1996	int i;
1997
1998	for (i = 0; i < MAX_BPF_REG; i++)
1999		mark_map_reg(regs, i, id, type);
2000
2001	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2002		if (state->stack_slot_type[i] != STACK_SPILL)
2003			continue;
2004		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
2005	}
2006}
2007
2008static int check_cond_jmp_op(struct bpf_verifier_env *env,
2009			     struct bpf_insn *insn, int *insn_idx)
2010{
2011	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2012	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2013	u8 opcode = BPF_OP(insn->code);
2014	int err;
2015
2016	if (opcode > BPF_EXIT) {
2017		verbose("invalid BPF_JMP opcode %x\n", opcode);
2018		return -EINVAL;
2019	}
2020
2021	if (BPF_SRC(insn->code) == BPF_X) {
2022		if (insn->imm != 0) {
2023			verbose("BPF_JMP uses reserved fields\n");
2024			return -EINVAL;
2025		}
2026
2027		/* check src1 operand */
2028		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2029		if (err)
2030			return err;
2031
2032		if (is_pointer_value(env, insn->src_reg)) {
2033			verbose("R%d pointer comparison prohibited\n",
2034				insn->src_reg);
2035			return -EACCES;
2036		}
2037	} else {
2038		if (insn->src_reg != BPF_REG_0) {
2039			verbose("BPF_JMP uses reserved fields\n");
2040			return -EINVAL;
2041		}
2042	}
2043
2044	/* check src2 operand */
2045	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2046	if (err)
2047		return err;
2048
2049	dst_reg = &regs[insn->dst_reg];
2050
2051	/* detect if R == 0 where R was initialized to zero earlier */
2052	if (BPF_SRC(insn->code) == BPF_K &&
2053	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2054	    dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
 
2055		if (opcode == BPF_JEQ) {
2056			/* if (imm == imm) goto pc+off;
2057			 * only follow the goto, ignore fall-through
2058			 */
2059			*insn_idx += insn->off;
2060			return 0;
2061		} else {
2062			/* if (imm != imm) goto pc+off;
2063			 * only follow fall-through branch, since
2064			 * that's where the program will go
2065			 */
2066			return 0;
2067		}
2068	}
2069
2070	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2071	if (!other_branch)
2072		return -EFAULT;
2073
2074	/* detect if we are comparing against a constant value so we can adjust
2075	 * our min/max values for our dst register.
2076	 */
2077	if (BPF_SRC(insn->code) == BPF_X) {
2078		if (regs[insn->src_reg].type == CONST_IMM)
2079			reg_set_min_max(&other_branch->regs[insn->dst_reg],
2080					dst_reg, regs[insn->src_reg].imm,
2081					opcode);
2082		else if (dst_reg->type == CONST_IMM)
2083			reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2084					    &regs[insn->src_reg], dst_reg->imm,
2085					    opcode);
2086	} else {
2087		reg_set_min_max(&other_branch->regs[insn->dst_reg],
2088					dst_reg, insn->imm, opcode);
2089	}
2090
2091	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2092	if (BPF_SRC(insn->code) == BPF_K &&
2093	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2094	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2095		/* Mark all identical map registers in each branch as either
2096		 * safe or unknown depending R == 0 or R != 0 conditional.
2097		 */
2098		mark_map_regs(this_branch, insn->dst_reg,
2099			      opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2100		mark_map_regs(other_branch, insn->dst_reg,
2101			      opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
2102	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2103		   dst_reg->type == PTR_TO_PACKET &&
2104		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2105		find_good_pkt_pointers(this_branch, dst_reg);
2106	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2107		   dst_reg->type == PTR_TO_PACKET_END &&
2108		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2109		find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
2110	} else if (is_pointer_value(env, insn->dst_reg)) {
2111		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2112		return -EACCES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2113	}
2114	if (log_level)
2115		print_verifier_state(this_branch);
2116	return 0;
2117}
2118
2119/* return the map pointer stored inside BPF_LD_IMM64 instruction */
2120static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2121{
2122	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2123
2124	return (struct bpf_map *) (unsigned long) imm64;
2125}
2126
2127/* verify BPF_LD_IMM64 instruction */
2128static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2129{
2130	struct bpf_reg_state *regs = env->cur_state.regs;
2131	int err;
2132
2133	if (BPF_SIZE(insn->code) != BPF_DW) {
2134		verbose("invalid BPF_LD_IMM insn\n");
2135		return -EINVAL;
2136	}
2137	if (insn->off != 0) {
2138		verbose("BPF_LD_IMM64 uses reserved fields\n");
2139		return -EINVAL;
2140	}
2141
2142	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2143	if (err)
2144		return err;
2145
2146	if (insn->src_reg == 0) {
2147		/* generic move 64-bit immediate into a register,
2148		 * only analyzer needs to collect the ld_imm value.
2149		 */
2150		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2151
2152		if (!env->analyzer_ops)
2153			return 0;
2154
2155		regs[insn->dst_reg].type = CONST_IMM;
2156		regs[insn->dst_reg].imm = imm;
2157		return 0;
2158	}
2159
2160	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2161	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2162
2163	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2164	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2165	return 0;
2166}
2167
2168static bool may_access_skb(enum bpf_prog_type type)
2169{
2170	switch (type) {
2171	case BPF_PROG_TYPE_SOCKET_FILTER:
2172	case BPF_PROG_TYPE_SCHED_CLS:
2173	case BPF_PROG_TYPE_SCHED_ACT:
2174		return true;
2175	default:
2176		return false;
2177	}
2178}
2179
2180/* verify safety of LD_ABS|LD_IND instructions:
2181 * - they can only appear in the programs where ctx == skb
2182 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2183 *   preserve R6-R9, and store return value into R0
2184 *
2185 * Implicit input:
2186 *   ctx == skb == R6 == CTX
2187 *
2188 * Explicit input:
2189 *   SRC == any register
2190 *   IMM == 32-bit immediate
2191 *
2192 * Output:
2193 *   R0 - 8/16/32-bit skb data converted to cpu endianness
2194 */
2195static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2196{
2197	struct bpf_reg_state *regs = env->cur_state.regs;
2198	u8 mode = BPF_MODE(insn->code);
2199	struct bpf_reg_state *reg;
2200	int i, err;
2201
2202	if (!may_access_skb(env->prog->type)) {
2203		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2204		return -EINVAL;
2205	}
2206
2207	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2208	    BPF_SIZE(insn->code) == BPF_DW ||
2209	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2210		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2211		return -EINVAL;
2212	}
2213
2214	/* check whether implicit source operand (register R6) is readable */
2215	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2216	if (err)
2217		return err;
2218
2219	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2220		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2221		return -EINVAL;
2222	}
2223
2224	if (mode == BPF_IND) {
2225		/* check explicit source operand */
2226		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2227		if (err)
2228			return err;
2229	}
2230
2231	/* reset caller saved regs to unreadable */
2232	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2233		reg = regs + caller_saved[i];
2234		reg->type = NOT_INIT;
2235		reg->imm = 0;
2236	}
2237
2238	/* mark destination R0 register as readable, since it contains
2239	 * the value fetched from the packet
2240	 */
2241	regs[BPF_REG_0].type = UNKNOWN_VALUE;
2242	return 0;
2243}
2244
2245/* non-recursive DFS pseudo code
2246 * 1  procedure DFS-iterative(G,v):
2247 * 2      label v as discovered
2248 * 3      let S be a stack
2249 * 4      S.push(v)
2250 * 5      while S is not empty
2251 * 6            t <- S.pop()
2252 * 7            if t is what we're looking for:
2253 * 8                return t
2254 * 9            for all edges e in G.adjacentEdges(t) do
2255 * 10               if edge e is already labelled
2256 * 11                   continue with the next edge
2257 * 12               w <- G.adjacentVertex(t,e)
2258 * 13               if vertex w is not discovered and not explored
2259 * 14                   label e as tree-edge
2260 * 15                   label w as discovered
2261 * 16                   S.push(w)
2262 * 17                   continue at 5
2263 * 18               else if vertex w is discovered
2264 * 19                   label e as back-edge
2265 * 20               else
2266 * 21                   // vertex w is explored
2267 * 22                   label e as forward- or cross-edge
2268 * 23           label t as explored
2269 * 24           S.pop()
2270 *
2271 * convention:
2272 * 0x10 - discovered
2273 * 0x11 - discovered and fall-through edge labelled
2274 * 0x12 - discovered and fall-through and branch edges labelled
2275 * 0x20 - explored
2276 */
2277
2278enum {
2279	DISCOVERED = 0x10,
2280	EXPLORED = 0x20,
2281	FALLTHROUGH = 1,
2282	BRANCH = 2,
2283};
2284
2285#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
2286
2287static int *insn_stack;	/* stack of insns to process */
2288static int cur_stack;	/* current stack index */
2289static int *insn_state;
2290
2291/* t, w, e - match pseudo-code above:
2292 * t - index of current instruction
2293 * w - next instruction
2294 * e - edge
2295 */
2296static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
2297{
2298	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2299		return 0;
2300
2301	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2302		return 0;
2303
2304	if (w < 0 || w >= env->prog->len) {
2305		verbose("jump out of range from insn %d to %d\n", t, w);
2306		return -EINVAL;
2307	}
2308
2309	if (e == BRANCH)
2310		/* mark branch target for state pruning */
2311		env->explored_states[w] = STATE_LIST_MARK;
2312
2313	if (insn_state[w] == 0) {
2314		/* tree-edge */
2315		insn_state[t] = DISCOVERED | e;
2316		insn_state[w] = DISCOVERED;
2317		if (cur_stack >= env->prog->len)
2318			return -E2BIG;
2319		insn_stack[cur_stack++] = w;
2320		return 1;
2321	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2322		verbose("back-edge from insn %d to %d\n", t, w);
2323		return -EINVAL;
2324	} else if (insn_state[w] == EXPLORED) {
2325		/* forward- or cross-edge */
2326		insn_state[t] = DISCOVERED | e;
2327	} else {
2328		verbose("insn state internal bug\n");
2329		return -EFAULT;
2330	}
2331	return 0;
2332}
2333
2334/* non-recursive depth-first-search to detect loops in BPF program
2335 * loop == back-edge in directed graph
2336 */
2337static int check_cfg(struct bpf_verifier_env *env)
2338{
2339	struct bpf_insn *insns = env->prog->insnsi;
2340	int insn_cnt = env->prog->len;
2341	int ret = 0;
2342	int i, t;
2343
2344	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2345	if (!insn_state)
2346		return -ENOMEM;
2347
2348	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2349	if (!insn_stack) {
2350		kfree(insn_state);
2351		return -ENOMEM;
2352	}
2353
2354	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2355	insn_stack[0] = 0; /* 0 is the first instruction */
2356	cur_stack = 1;
2357
2358peek_stack:
2359	if (cur_stack == 0)
2360		goto check_state;
2361	t = insn_stack[cur_stack - 1];
2362
2363	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2364		u8 opcode = BPF_OP(insns[t].code);
2365
2366		if (opcode == BPF_EXIT) {
2367			goto mark_explored;
2368		} else if (opcode == BPF_CALL) {
2369			ret = push_insn(t, t + 1, FALLTHROUGH, env);
2370			if (ret == 1)
2371				goto peek_stack;
2372			else if (ret < 0)
2373				goto err_free;
2374			if (t + 1 < insn_cnt)
2375				env->explored_states[t + 1] = STATE_LIST_MARK;
2376		} else if (opcode == BPF_JA) {
2377			if (BPF_SRC(insns[t].code) != BPF_K) {
2378				ret = -EINVAL;
2379				goto err_free;
2380			}
2381			/* unconditional jump with single edge */
2382			ret = push_insn(t, t + insns[t].off + 1,
2383					FALLTHROUGH, env);
2384			if (ret == 1)
2385				goto peek_stack;
2386			else if (ret < 0)
2387				goto err_free;
2388			/* tell verifier to check for equivalent states
2389			 * after every call and jump
2390			 */
2391			if (t + 1 < insn_cnt)
2392				env->explored_states[t + 1] = STATE_LIST_MARK;
2393		} else {
2394			/* conditional jump with two edges */
2395			ret = push_insn(t, t + 1, FALLTHROUGH, env);
2396			if (ret == 1)
2397				goto peek_stack;
2398			else if (ret < 0)
2399				goto err_free;
2400
2401			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2402			if (ret == 1)
2403				goto peek_stack;
2404			else if (ret < 0)
2405				goto err_free;
2406		}
2407	} else {
2408		/* all other non-branch instructions with single
2409		 * fall-through edge
2410		 */
2411		ret = push_insn(t, t + 1, FALLTHROUGH, env);
2412		if (ret == 1)
2413			goto peek_stack;
2414		else if (ret < 0)
2415			goto err_free;
2416	}
2417
2418mark_explored:
2419	insn_state[t] = EXPLORED;
2420	if (cur_stack-- <= 0) {
2421		verbose("pop stack internal bug\n");
2422		ret = -EFAULT;
2423		goto err_free;
2424	}
2425	goto peek_stack;
2426
2427check_state:
2428	for (i = 0; i < insn_cnt; i++) {
2429		if (insn_state[i] != EXPLORED) {
2430			verbose("unreachable insn %d\n", i);
2431			ret = -EINVAL;
2432			goto err_free;
2433		}
2434	}
2435	ret = 0; /* cfg looks good */
2436
2437err_free:
2438	kfree(insn_state);
2439	kfree(insn_stack);
2440	return ret;
2441}
2442
2443/* the following conditions reduce the number of explored insns
2444 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2445 */
2446static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
2447				   struct bpf_reg_state *cur)
2448{
2449	if (old->id != cur->id)
2450		return false;
2451
2452	/* old ptr_to_packet is more conservative, since it allows smaller
2453	 * range. Ex:
2454	 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2455	 * old(off=0,r=10) means that with range=10 the verifier proceeded
2456	 * further and found no issues with the program. Now we're in the same
2457	 * spot with cur(off=0,r=20), so we're safe too, since anything further
2458	 * will only be looking at most 10 bytes after this pointer.
2459	 */
2460	if (old->off == cur->off && old->range < cur->range)
2461		return true;
2462
2463	/* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2464	 * since both cannot be used for packet access and safe(old)
2465	 * pointer has smaller off that could be used for further
2466	 * 'if (ptr > data_end)' check
2467	 * Ex:
2468	 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2469	 * that we cannot access the packet.
2470	 * The safe range is:
2471	 * [ptr, ptr + range - off)
2472	 * so whenever off >=range, it means no safe bytes from this pointer.
2473	 * When comparing old->off <= cur->off, it means that older code
2474	 * went with smaller offset and that offset was later
2475	 * used to figure out the safe range after 'if (ptr > data_end)' check
2476	 * Say, 'old' state was explored like:
2477	 * ... R3(off=0, r=0)
2478	 * R4 = R3 + 20
2479	 * ... now R4(off=20,r=0)  <-- here
2480	 * if (R4 > data_end)
2481	 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2482	 * ... the code further went all the way to bpf_exit.
2483	 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2484	 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2485	 * goes further, such cur_R4 will give larger safe packet range after
2486	 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2487	 * so they will be good with r=30 and we can prune the search.
2488	 */
2489	if (old->off <= cur->off &&
2490	    old->off >= old->range && cur->off >= cur->range)
2491		return true;
2492
2493	return false;
2494}
2495
2496/* compare two verifier states
2497 *
2498 * all states stored in state_list are known to be valid, since
2499 * verifier reached 'bpf_exit' instruction through them
2500 *
2501 * this function is called when verifier exploring different branches of
2502 * execution popped from the state stack. If it sees an old state that has
2503 * more strict register state and more strict stack state then this execution
2504 * branch doesn't need to be explored further, since verifier already
2505 * concluded that more strict state leads to valid finish.
2506 *
2507 * Therefore two states are equivalent if register state is more conservative
2508 * and explored stack state is more conservative than the current one.
2509 * Example:
2510 *       explored                   current
2511 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2512 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2513 *
2514 * In other words if current stack state (one being explored) has more
2515 * valid slots than old one that already passed validation, it means
2516 * the verifier can stop exploring and conclude that current state is valid too
2517 *
2518 * Similarly with registers. If explored state has register type as invalid
2519 * whereas register type in current state is meaningful, it means that
2520 * the current state will reach 'bpf_exit' instruction safely
2521 */
2522static bool states_equal(struct bpf_verifier_env *env,
2523			 struct bpf_verifier_state *old,
2524			 struct bpf_verifier_state *cur)
2525{
2526	bool varlen_map_access = env->varlen_map_value_access;
2527	struct bpf_reg_state *rold, *rcur;
2528	int i;
2529
2530	for (i = 0; i < MAX_BPF_REG; i++) {
2531		rold = &old->regs[i];
2532		rcur = &cur->regs[i];
2533
2534		if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2535			continue;
2536
2537		/* If the ranges were not the same, but everything else was and
2538		 * we didn't do a variable access into a map then we are a-ok.
2539		 */
2540		if (!varlen_map_access &&
2541		    memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
2542			continue;
2543
2544		/* If we didn't map access then again we don't care about the
2545		 * mismatched range values and it's ok if our old type was
2546		 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2547		 */
2548		if (rold->type == NOT_INIT ||
2549		    (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2550		     rcur->type != NOT_INIT))
2551			continue;
2552
2553		if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2554		    compare_ptrs_to_packet(rold, rcur))
2555			continue;
2556
2557		return false;
2558	}
2559
2560	for (i = 0; i < MAX_BPF_STACK; i++) {
2561		if (old->stack_slot_type[i] == STACK_INVALID)
2562			continue;
2563		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2564			/* Ex: old explored (safe) state has STACK_SPILL in
2565			 * this stack slot, but current has has STACK_MISC ->
2566			 * this verifier states are not equivalent,
2567			 * return false to continue verification of this path
2568			 */
2569			return false;
2570		if (i % BPF_REG_SIZE)
2571			continue;
2572		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2573			   &cur->spilled_regs[i / BPF_REG_SIZE],
2574			   sizeof(old->spilled_regs[0])))
2575			/* when explored and current stack slot types are
2576			 * the same, check that stored pointers types
2577			 * are the same as well.
2578			 * Ex: explored safe path could have stored
2579			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
2580			 * but current path has stored:
2581			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
2582			 * such verifier states are not equivalent.
2583			 * return false to continue verification of this path
2584			 */
2585			return false;
2586		else
2587			continue;
2588	}
2589	return true;
2590}
2591
2592static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
2593{
2594	struct bpf_verifier_state_list *new_sl;
2595	struct bpf_verifier_state_list *sl;
2596
2597	sl = env->explored_states[insn_idx];
2598	if (!sl)
2599		/* this 'insn_idx' instruction wasn't marked, so we will not
2600		 * be doing state search here
2601		 */
2602		return 0;
2603
2604	while (sl != STATE_LIST_MARK) {
2605		if (states_equal(env, &sl->state, &env->cur_state))
2606			/* reached equivalent register/stack state,
2607			 * prune the search
2608			 */
2609			return 1;
2610		sl = sl->next;
2611	}
2612
2613	/* there were no equivalent states, remember current one.
2614	 * technically the current state is not proven to be safe yet,
2615	 * but it will either reach bpf_exit (which means it's safe) or
2616	 * it will be rejected. Since there are no loops, we won't be
2617	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2618	 */
2619	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
2620	if (!new_sl)
2621		return -ENOMEM;
2622
2623	/* add new state to the head of linked list */
2624	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2625	new_sl->next = env->explored_states[insn_idx];
2626	env->explored_states[insn_idx] = new_sl;
2627	return 0;
2628}
2629
2630static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2631				  int insn_idx, int prev_insn_idx)
2632{
2633	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2634		return 0;
2635
2636	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2637}
2638
2639static int do_check(struct bpf_verifier_env *env)
2640{
2641	struct bpf_verifier_state *state = &env->cur_state;
2642	struct bpf_insn *insns = env->prog->insnsi;
2643	struct bpf_reg_state *regs = state->regs;
2644	int insn_cnt = env->prog->len;
2645	int insn_idx, prev_insn_idx = 0;
2646	int insn_processed = 0;
2647	bool do_print_state = false;
2648
2649	init_reg_state(regs);
2650	insn_idx = 0;
2651	env->varlen_map_value_access = false;
2652	for (;;) {
2653		struct bpf_insn *insn;
2654		u8 class;
2655		int err;
2656
2657		if (insn_idx >= insn_cnt) {
2658			verbose("invalid insn idx %d insn_cnt %d\n",
2659				insn_idx, insn_cnt);
2660			return -EFAULT;
2661		}
2662
2663		insn = &insns[insn_idx];
2664		class = BPF_CLASS(insn->code);
2665
2666		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
2667			verbose("BPF program is too large. Proccessed %d insn\n",
2668				insn_processed);
2669			return -E2BIG;
2670		}
2671
2672		err = is_state_visited(env, insn_idx);
2673		if (err < 0)
2674			return err;
2675		if (err == 1) {
2676			/* found equivalent state, can prune the search */
2677			if (log_level) {
2678				if (do_print_state)
2679					verbose("\nfrom %d to %d: safe\n",
2680						prev_insn_idx, insn_idx);
2681				else
2682					verbose("%d: safe\n", insn_idx);
2683			}
2684			goto process_bpf_exit;
2685		}
2686
2687		if (log_level && do_print_state) {
2688			verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
2689			print_verifier_state(&env->cur_state);
2690			do_print_state = false;
2691		}
2692
2693		if (log_level) {
2694			verbose("%d: ", insn_idx);
2695			print_bpf_insn(insn);
2696		}
2697
2698		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2699		if (err)
2700			return err;
2701
2702		if (class == BPF_ALU || class == BPF_ALU64) {
2703			err = check_alu_op(env, insn);
2704			if (err)
2705				return err;
2706
2707		} else if (class == BPF_LDX) {
2708			enum bpf_reg_type *prev_src_type, src_reg_type;
2709
2710			/* check for reserved fields is already done */
2711
2712			/* check src operand */
2713			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2714			if (err)
2715				return err;
2716
2717			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2718			if (err)
2719				return err;
2720
2721			src_reg_type = regs[insn->src_reg].type;
2722
2723			/* check that memory (src_reg + off) is readable,
2724			 * the state of dst_reg will be updated by this func
2725			 */
2726			err = check_mem_access(env, insn->src_reg, insn->off,
2727					       BPF_SIZE(insn->code), BPF_READ,
2728					       insn->dst_reg);
2729			if (err)
2730				return err;
2731
2732			reset_reg_range_values(regs, insn->dst_reg);
2733			if (BPF_SIZE(insn->code) != BPF_W &&
2734			    BPF_SIZE(insn->code) != BPF_DW) {
2735				insn_idx++;
2736				continue;
2737			}
2738
2739			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
2740
2741			if (*prev_src_type == NOT_INIT) {
2742				/* saw a valid insn
2743				 * dst_reg = *(u32 *)(src_reg + off)
2744				 * save type to validate intersecting paths
2745				 */
2746				*prev_src_type = src_reg_type;
2747
2748			} else if (src_reg_type != *prev_src_type &&
2749				   (src_reg_type == PTR_TO_CTX ||
2750				    *prev_src_type == PTR_TO_CTX)) {
2751				/* ABuser program is trying to use the same insn
2752				 * dst_reg = *(u32*) (src_reg + off)
2753				 * with different pointer types:
2754				 * src_reg == ctx in one branch and
2755				 * src_reg == stack|map in some other branch.
2756				 * Reject it.
2757				 */
2758				verbose("same insn cannot be used with different pointers\n");
2759				return -EINVAL;
2760			}
2761
2762		} else if (class == BPF_STX) {
2763			enum bpf_reg_type *prev_dst_type, dst_reg_type;
2764
2765			if (BPF_MODE(insn->code) == BPF_XADD) {
2766				err = check_xadd(env, insn);
2767				if (err)
2768					return err;
2769				insn_idx++;
2770				continue;
2771			}
2772
2773			/* check src1 operand */
2774			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2775			if (err)
2776				return err;
2777			/* check src2 operand */
2778			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2779			if (err)
2780				return err;
2781
2782			dst_reg_type = regs[insn->dst_reg].type;
2783
2784			/* check that memory (dst_reg + off) is writeable */
2785			err = check_mem_access(env, insn->dst_reg, insn->off,
2786					       BPF_SIZE(insn->code), BPF_WRITE,
2787					       insn->src_reg);
2788			if (err)
2789				return err;
2790
2791			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
2792
2793			if (*prev_dst_type == NOT_INIT) {
2794				*prev_dst_type = dst_reg_type;
2795			} else if (dst_reg_type != *prev_dst_type &&
2796				   (dst_reg_type == PTR_TO_CTX ||
2797				    *prev_dst_type == PTR_TO_CTX)) {
2798				verbose("same insn cannot be used with different pointers\n");
2799				return -EINVAL;
2800			}
2801
2802		} else if (class == BPF_ST) {
2803			if (BPF_MODE(insn->code) != BPF_MEM ||
2804			    insn->src_reg != BPF_REG_0) {
2805				verbose("BPF_ST uses reserved fields\n");
2806				return -EINVAL;
2807			}
2808			/* check src operand */
2809			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2810			if (err)
2811				return err;
2812
2813			/* check that memory (dst_reg + off) is writeable */
2814			err = check_mem_access(env, insn->dst_reg, insn->off,
2815					       BPF_SIZE(insn->code), BPF_WRITE,
2816					       -1);
2817			if (err)
2818				return err;
2819
2820		} else if (class == BPF_JMP) {
2821			u8 opcode = BPF_OP(insn->code);
2822
2823			if (opcode == BPF_CALL) {
2824				if (BPF_SRC(insn->code) != BPF_K ||
2825				    insn->off != 0 ||
2826				    insn->src_reg != BPF_REG_0 ||
2827				    insn->dst_reg != BPF_REG_0) {
2828					verbose("BPF_CALL uses reserved fields\n");
2829					return -EINVAL;
2830				}
2831
2832				err = check_call(env, insn->imm);
2833				if (err)
2834					return err;
2835
2836			} else if (opcode == BPF_JA) {
2837				if (BPF_SRC(insn->code) != BPF_K ||
2838				    insn->imm != 0 ||
2839				    insn->src_reg != BPF_REG_0 ||
2840				    insn->dst_reg != BPF_REG_0) {
2841					verbose("BPF_JA uses reserved fields\n");
2842					return -EINVAL;
2843				}
2844
2845				insn_idx += insn->off + 1;
2846				continue;
2847
2848			} else if (opcode == BPF_EXIT) {
2849				if (BPF_SRC(insn->code) != BPF_K ||
2850				    insn->imm != 0 ||
2851				    insn->src_reg != BPF_REG_0 ||
2852				    insn->dst_reg != BPF_REG_0) {
2853					verbose("BPF_EXIT uses reserved fields\n");
2854					return -EINVAL;
2855				}
2856
2857				/* eBPF calling convetion is such that R0 is used
2858				 * to return the value from eBPF program.
2859				 * Make sure that it's readable at this time
2860				 * of bpf_exit, which means that program wrote
2861				 * something into it earlier
2862				 */
2863				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
2864				if (err)
2865					return err;
2866
2867				if (is_pointer_value(env, BPF_REG_0)) {
2868					verbose("R0 leaks addr as return value\n");
2869					return -EACCES;
2870				}
2871
2872process_bpf_exit:
2873				insn_idx = pop_stack(env, &prev_insn_idx);
2874				if (insn_idx < 0) {
2875					break;
2876				} else {
2877					do_print_state = true;
2878					continue;
2879				}
2880			} else {
2881				err = check_cond_jmp_op(env, insn, &insn_idx);
2882				if (err)
2883					return err;
2884			}
2885		} else if (class == BPF_LD) {
2886			u8 mode = BPF_MODE(insn->code);
2887
2888			if (mode == BPF_ABS || mode == BPF_IND) {
2889				err = check_ld_abs(env, insn);
2890				if (err)
2891					return err;
2892
2893			} else if (mode == BPF_IMM) {
2894				err = check_ld_imm(env, insn);
2895				if (err)
2896					return err;
2897
2898				insn_idx++;
2899			} else {
2900				verbose("invalid BPF_LD mode\n");
2901				return -EINVAL;
2902			}
2903			reset_reg_range_values(regs, insn->dst_reg);
2904		} else {
2905			verbose("unknown insn class %d\n", class);
2906			return -EINVAL;
2907		}
2908
2909		insn_idx++;
2910	}
2911
2912	verbose("processed %d insns\n", insn_processed);
2913	return 0;
2914}
2915
2916static int check_map_prog_compatibility(struct bpf_map *map,
2917					struct bpf_prog *prog)
2918
2919{
2920	if (prog->type == BPF_PROG_TYPE_PERF_EVENT &&
2921	    (map->map_type == BPF_MAP_TYPE_HASH ||
2922	     map->map_type == BPF_MAP_TYPE_PERCPU_HASH) &&
2923	    (map->map_flags & BPF_F_NO_PREALLOC)) {
2924		verbose("perf_event programs can only use preallocated hash map\n");
2925		return -EINVAL;
2926	}
2927	return 0;
2928}
2929
2930/* look for pseudo eBPF instructions that access map FDs and
2931 * replace them with actual map pointers
2932 */
2933static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
2934{
2935	struct bpf_insn *insn = env->prog->insnsi;
2936	int insn_cnt = env->prog->len;
2937	int i, j, err;
2938
2939	err = bpf_prog_calc_tag(env->prog);
2940	if (err)
2941		return err;
2942
2943	for (i = 0; i < insn_cnt; i++, insn++) {
2944		if (BPF_CLASS(insn->code) == BPF_LDX &&
2945		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
2946			verbose("BPF_LDX uses reserved fields\n");
2947			return -EINVAL;
2948		}
2949
2950		if (BPF_CLASS(insn->code) == BPF_STX &&
2951		    ((BPF_MODE(insn->code) != BPF_MEM &&
2952		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
2953			verbose("BPF_STX uses reserved fields\n");
2954			return -EINVAL;
2955		}
2956
2957		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
2958			struct bpf_map *map;
2959			struct fd f;
2960
2961			if (i == insn_cnt - 1 || insn[1].code != 0 ||
2962			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
2963			    insn[1].off != 0) {
2964				verbose("invalid bpf_ld_imm64 insn\n");
2965				return -EINVAL;
2966			}
2967
2968			if (insn->src_reg == 0)
2969				/* valid generic load 64-bit imm */
2970				goto next_insn;
2971
2972			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
2973				verbose("unrecognized bpf_ld_imm64 insn\n");
2974				return -EINVAL;
2975			}
2976
2977			f = fdget(insn->imm);
2978			map = __bpf_map_get(f);
2979			if (IS_ERR(map)) {
2980				verbose("fd %d is not pointing to valid bpf_map\n",
2981					insn->imm);
2982				return PTR_ERR(map);
2983			}
2984
2985			err = check_map_prog_compatibility(map, env->prog);
2986			if (err) {
2987				fdput(f);
2988				return err;
2989			}
2990
2991			/* store map pointer inside BPF_LD_IMM64 instruction */
2992			insn[0].imm = (u32) (unsigned long) map;
2993			insn[1].imm = ((u64) (unsigned long) map) >> 32;
2994
2995			/* check whether we recorded this map already */
2996			for (j = 0; j < env->used_map_cnt; j++)
2997				if (env->used_maps[j] == map) {
2998					fdput(f);
2999					goto next_insn;
3000				}
3001
3002			if (env->used_map_cnt >= MAX_USED_MAPS) {
3003				fdput(f);
3004				return -E2BIG;
3005			}
3006
3007			/* hold the map. If the program is rejected by verifier,
3008			 * the map will be released by release_maps() or it
3009			 * will be used by the valid program until it's unloaded
3010			 * and all maps are released in free_bpf_prog_info()
3011			 */
3012			map = bpf_map_inc(map, false);
3013			if (IS_ERR(map)) {
3014				fdput(f);
3015				return PTR_ERR(map);
3016			}
3017			env->used_maps[env->used_map_cnt++] = map;
3018
3019			fdput(f);
3020next_insn:
3021			insn++;
3022			i++;
3023		}
3024	}
3025
3026	/* now all pseudo BPF_LD_IMM64 instructions load valid
3027	 * 'struct bpf_map *' into a register instead of user map_fd.
3028	 * These pointers will be used later by verifier to validate map access.
3029	 */
3030	return 0;
3031}
3032
3033/* drop refcnt of maps used by the rejected program */
3034static void release_maps(struct bpf_verifier_env *env)
3035{
3036	int i;
3037
3038	for (i = 0; i < env->used_map_cnt; i++)
3039		bpf_map_put(env->used_maps[i]);
3040}
3041
3042/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3043static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3044{
3045	struct bpf_insn *insn = env->prog->insnsi;
3046	int insn_cnt = env->prog->len;
3047	int i;
3048
3049	for (i = 0; i < insn_cnt; i++, insn++)
3050		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3051			insn->src_reg = 0;
3052}
3053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054/* convert load instructions that access fields of 'struct __sk_buff'
3055 * into sequence of instructions that access fields of 'struct sk_buff'
3056 */
3057static int convert_ctx_accesses(struct bpf_verifier_env *env)
3058{
3059	const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3060	const int insn_cnt = env->prog->len;
3061	struct bpf_insn insn_buf[16], *insn;
3062	struct bpf_prog *new_prog;
 
 
3063	enum bpf_access_type type;
3064	int i, cnt, delta = 0;
3065
3066	if (ops->gen_prologue) {
3067		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3068					env->prog);
3069		if (cnt >= ARRAY_SIZE(insn_buf)) {
3070			verbose("bpf verifier is misconfigured\n");
3071			return -EINVAL;
3072		} else if (cnt) {
3073			new_prog = bpf_patch_insn_single(env->prog, 0,
3074							 insn_buf, cnt);
3075			if (!new_prog)
3076				return -ENOMEM;
3077			env->prog = new_prog;
3078			delta += cnt - 1;
3079		}
3080	}
3081
3082	if (!ops->convert_ctx_access)
3083		return 0;
3084
3085	insn = env->prog->insnsi + delta;
3086
3087	for (i = 0; i < insn_cnt; i++, insn++) {
3088		if (insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
3089		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
3090			type = BPF_READ;
3091		else if (insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
3092			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
3093			type = BPF_WRITE;
3094		else
3095			continue;
3096
3097		if (env->insn_aux_data[i].ptr_type != PTR_TO_CTX)
 
 
3098			continue;
 
3099
3100		cnt = ops->convert_ctx_access(type, insn->dst_reg, insn->src_reg,
3101					      insn->off, insn_buf, env->prog);
 
3102		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3103			verbose("bpf verifier is misconfigured\n");
3104			return -EINVAL;
3105		}
3106
3107		new_prog = bpf_patch_insn_single(env->prog, i + delta, insn_buf,
3108						 cnt);
 
 
 
 
 
 
 
 
3109		if (!new_prog)
3110			return -ENOMEM;
3111
3112		delta += cnt - 1;
 
 
 
 
 
 
 
 
 
3113
3114		/* keep walking new program and skip insns we just inserted */
3115		env->prog = new_prog;
3116		insn      = new_prog->insnsi + i + delta;
 
3117	}
3118
3119	return 0;
3120}
3121
3122static void free_states(struct bpf_verifier_env *env)
3123{
3124	struct bpf_verifier_state_list *sl, *sln;
3125	int i;
3126
3127	if (!env->explored_states)
3128		return;
3129
3130	for (i = 0; i < env->prog->len; i++) {
3131		sl = env->explored_states[i];
3132
3133		if (sl)
3134			while (sl != STATE_LIST_MARK) {
3135				sln = sl->next;
3136				kfree(sl);
3137				sl = sln;
3138			}
3139	}
3140
3141	kfree(env->explored_states);
3142}
3143
3144int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
3145{
3146	char __user *log_ubuf = NULL;
3147	struct bpf_verifier_env *env;
3148	int ret = -EINVAL;
3149
3150	/* 'struct bpf_verifier_env' can be global, but since it's not small,
 
 
 
3151	 * allocate/free it every time bpf_check() is called
3152	 */
3153	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3154	if (!env)
3155		return -ENOMEM;
3156
3157	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3158				     (*prog)->len);
3159	ret = -ENOMEM;
3160	if (!env->insn_aux_data)
3161		goto err_free_env;
3162	env->prog = *prog;
3163
3164	/* grab the mutex to protect few globals used by verifier */
3165	mutex_lock(&bpf_verifier_lock);
3166
3167	if (attr->log_level || attr->log_buf || attr->log_size) {
3168		/* user requested verbose verifier output
3169		 * and supplied buffer to store the verification trace
3170		 */
3171		log_level = attr->log_level;
3172		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3173		log_size = attr->log_size;
3174		log_len = 0;
3175
3176		ret = -EINVAL;
3177		/* log_* values have to be sane */
3178		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3179		    log_level == 0 || log_ubuf == NULL)
3180			goto err_unlock;
3181
3182		ret = -ENOMEM;
3183		log_buf = vmalloc(log_size);
3184		if (!log_buf)
3185			goto err_unlock;
3186	} else {
3187		log_level = 0;
3188	}
3189
3190	ret = replace_map_fd_with_map_ptr(env);
3191	if (ret < 0)
3192		goto skip_full_check;
3193
3194	env->explored_states = kcalloc(env->prog->len,
3195				       sizeof(struct bpf_verifier_state_list *),
3196				       GFP_USER);
3197	ret = -ENOMEM;
3198	if (!env->explored_states)
3199		goto skip_full_check;
3200
3201	ret = check_cfg(env);
3202	if (ret < 0)
3203		goto skip_full_check;
3204
3205	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3206
3207	ret = do_check(env);
3208
3209skip_full_check:
3210	while (pop_stack(env, NULL) >= 0);
3211	free_states(env);
3212
3213	if (ret == 0)
3214		/* program is valid, convert *(u32*)(ctx + off) accesses */
3215		ret = convert_ctx_accesses(env);
3216
3217	if (log_level && log_len >= log_size - 1) {
3218		BUG_ON(log_len >= log_size);
3219		/* verifier log exceeded user supplied buffer */
3220		ret = -ENOSPC;
3221		/* fall through to return what was recorded */
3222	}
3223
3224	/* copy verifier log back to user space including trailing zero */
3225	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3226		ret = -EFAULT;
3227		goto free_log_buf;
3228	}
3229
3230	if (ret == 0 && env->used_map_cnt) {
3231		/* if program passed verifier, update used_maps in bpf_prog_info */
3232		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3233							  sizeof(env->used_maps[0]),
3234							  GFP_KERNEL);
3235
3236		if (!env->prog->aux->used_maps) {
3237			ret = -ENOMEM;
3238			goto free_log_buf;
3239		}
3240
3241		memcpy(env->prog->aux->used_maps, env->used_maps,
3242		       sizeof(env->used_maps[0]) * env->used_map_cnt);
3243		env->prog->aux->used_map_cnt = env->used_map_cnt;
3244
3245		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
3246		 * bpf_ld_imm64 instructions
3247		 */
3248		convert_pseudo_ld_imm64(env);
3249	}
3250
3251free_log_buf:
3252	if (log_level)
3253		vfree(log_buf);
 
3254	if (!env->prog->aux->used_maps)
3255		/* if we didn't copy map pointers into bpf_prog_info, release
3256		 * them now. Otherwise free_bpf_prog_info() will release them.
3257		 */
3258		release_maps(env);
3259	*prog = env->prog;
3260err_unlock:
3261	mutex_unlock(&bpf_verifier_lock);
3262	vfree(env->insn_aux_data);
3263err_free_env:
3264	kfree(env);
3265	return ret;
3266}
3267
3268int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3269		 void *priv)
3270{
3271	struct bpf_verifier_env *env;
3272	int ret;
3273
3274	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3275	if (!env)
3276		return -ENOMEM;
3277
3278	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3279				     prog->len);
3280	ret = -ENOMEM;
3281	if (!env->insn_aux_data)
3282		goto err_free_env;
3283	env->prog = prog;
3284	env->analyzer_ops = ops;
3285	env->analyzer_priv = priv;
3286
3287	/* grab the mutex to protect few globals used by verifier */
3288	mutex_lock(&bpf_verifier_lock);
3289
3290	log_level = 0;
3291
3292	env->explored_states = kcalloc(env->prog->len,
3293				       sizeof(struct bpf_verifier_state_list *),
3294				       GFP_KERNEL);
3295	ret = -ENOMEM;
3296	if (!env->explored_states)
3297		goto skip_full_check;
3298
3299	ret = check_cfg(env);
3300	if (ret < 0)
3301		goto skip_full_check;
3302
3303	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3304
3305	ret = do_check(env);
3306
3307skip_full_check:
3308	while (pop_stack(env, NULL) >= 0);
3309	free_states(env);
3310
3311	mutex_unlock(&bpf_verifier_lock);
3312	vfree(env->insn_aux_data);
3313err_free_env:
3314	kfree(env);
3315	return ret;
3316}
3317EXPORT_SYMBOL_GPL(bpf_analyzer);