Linux Audio

Check our new training course

Loading...
  1/*
  2 * Request reply cache. This is currently a global cache, but this may
  3 * change in the future and be a per-client cache.
  4 *
  5 * This code is heavily inspired by the 44BSD implementation, although
  6 * it does things a bit differently.
  7 *
  8 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
  9 */
 10
 11#include <linux/slab.h>
 
 12#include <linux/sunrpc/addr.h>
 13#include <linux/highmem.h>
 14#include <linux/log2.h>
 15#include <linux/hash.h>
 16#include <net/checksum.h>
 17
 18#include "nfsd.h"
 19#include "cache.h"
 20
 21#define NFSDDBG_FACILITY	NFSDDBG_REPCACHE
 22
 23/*
 24 * We use this value to determine the number of hash buckets from the max
 25 * cache size, the idea being that when the cache is at its maximum number
 26 * of entries, then this should be the average number of entries per bucket.
 27 */
 28#define TARGET_BUCKET_SIZE	64
 29
 30struct nfsd_drc_bucket {
 31	struct list_head lru_head;
 32	spinlock_t cache_lock;
 33};
 34
 35static struct nfsd_drc_bucket	*drc_hashtbl;
 36static struct kmem_cache	*drc_slab;
 37
 38/* max number of entries allowed in the cache */
 39static unsigned int		max_drc_entries;
 40
 41/* number of significant bits in the hash value */
 42static unsigned int		maskbits;
 43static unsigned int		drc_hashsize;
 44
 45/*
 46 * Stats and other tracking of on the duplicate reply cache. All of these and
 47 * the "rc" fields in nfsdstats are protected by the cache_lock
 48 */
 49
 50/* total number of entries */
 51static atomic_t			num_drc_entries;
 52
 53/* cache misses due only to checksum comparison failures */
 54static unsigned int		payload_misses;
 55
 56/* amount of memory (in bytes) currently consumed by the DRC */
 57static unsigned int		drc_mem_usage;
 58
 59/* longest hash chain seen */
 60static unsigned int		longest_chain;
 61
 62/* size of cache when we saw the longest hash chain */
 63static unsigned int		longest_chain_cachesize;
 64
 65static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
 66static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
 67					    struct shrink_control *sc);
 68static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
 69					   struct shrink_control *sc);
 70
 71static struct shrinker nfsd_reply_cache_shrinker = {
 72	.scan_objects = nfsd_reply_cache_scan,
 73	.count_objects = nfsd_reply_cache_count,
 74	.seeks	= 1,
 75};
 76
 77/*
 78 * Put a cap on the size of the DRC based on the amount of available
 79 * low memory in the machine.
 80 *
 81 *  64MB:    8192
 82 * 128MB:   11585
 83 * 256MB:   16384
 84 * 512MB:   23170
 85 *   1GB:   32768
 86 *   2GB:   46340
 87 *   4GB:   65536
 88 *   8GB:   92681
 89 *  16GB:  131072
 90 *
 91 * ...with a hard cap of 256k entries. In the worst case, each entry will be
 92 * ~1k, so the above numbers should give a rough max of the amount of memory
 93 * used in k.
 94 */
 95static unsigned int
 96nfsd_cache_size_limit(void)
 97{
 98	unsigned int limit;
 99	unsigned long low_pages = totalram_pages - totalhigh_pages;
100
101	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
102	return min_t(unsigned int, limit, 256*1024);
103}
104
105/*
106 * Compute the number of hash buckets we need. Divide the max cachesize by
107 * the "target" max bucket size, and round up to next power of two.
108 */
109static unsigned int
110nfsd_hashsize(unsigned int limit)
111{
112	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
113}
114
115static u32
116nfsd_cache_hash(__be32 xid)
117{
118	return hash_32(be32_to_cpu(xid), maskbits);
119}
120
121static struct svc_cacherep *
122nfsd_reply_cache_alloc(void)
123{
124	struct svc_cacherep	*rp;
125
126	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
127	if (rp) {
128		rp->c_state = RC_UNUSED;
129		rp->c_type = RC_NOCACHE;
130		INIT_LIST_HEAD(&rp->c_lru);
131	}
132	return rp;
133}
134
135static void
136nfsd_reply_cache_free_locked(struct svc_cacherep *rp)
137{
138	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
139		drc_mem_usage -= rp->c_replvec.iov_len;
140		kfree(rp->c_replvec.iov_base);
141	}
142	list_del(&rp->c_lru);
143	atomic_dec(&num_drc_entries);
144	drc_mem_usage -= sizeof(*rp);
145	kmem_cache_free(drc_slab, rp);
146}
147
148static void
149nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
150{
151	spin_lock(&b->cache_lock);
152	nfsd_reply_cache_free_locked(rp);
153	spin_unlock(&b->cache_lock);
154}
155
156int nfsd_reply_cache_init(void)
157{
158	unsigned int hashsize;
159	unsigned int i;
160	int status = 0;
161
162	max_drc_entries = nfsd_cache_size_limit();
163	atomic_set(&num_drc_entries, 0);
164	hashsize = nfsd_hashsize(max_drc_entries);
165	maskbits = ilog2(hashsize);
166
167	status = register_shrinker(&nfsd_reply_cache_shrinker);
168	if (status)
169		return status;
170
171	drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
172					0, 0, NULL);
173	if (!drc_slab)
174		goto out_nomem;
175
176	drc_hashtbl = kcalloc(hashsize, sizeof(*drc_hashtbl), GFP_KERNEL);
177	if (!drc_hashtbl)
178		goto out_nomem;
 
 
 
 
179	for (i = 0; i < hashsize; i++) {
180		INIT_LIST_HEAD(&drc_hashtbl[i].lru_head);
181		spin_lock_init(&drc_hashtbl[i].cache_lock);
182	}
183	drc_hashsize = hashsize;
184
185	return 0;
186out_nomem:
187	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
188	nfsd_reply_cache_shutdown();
189	return -ENOMEM;
190}
191
192void nfsd_reply_cache_shutdown(void)
193{
194	struct svc_cacherep	*rp;
195	unsigned int i;
196
197	unregister_shrinker(&nfsd_reply_cache_shrinker);
198
199	for (i = 0; i < drc_hashsize; i++) {
200		struct list_head *head = &drc_hashtbl[i].lru_head;
201		while (!list_empty(head)) {
202			rp = list_first_entry(head, struct svc_cacherep, c_lru);
203			nfsd_reply_cache_free_locked(rp);
204		}
205	}
206
207	kfree (drc_hashtbl);
208	drc_hashtbl = NULL;
209	drc_hashsize = 0;
210
211	kmem_cache_destroy(drc_slab);
212	drc_slab = NULL;
213}
214
215/*
216 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
217 * not already scheduled.
218 */
219static void
220lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
221{
222	rp->c_timestamp = jiffies;
223	list_move_tail(&rp->c_lru, &b->lru_head);
224}
225
226static long
227prune_bucket(struct nfsd_drc_bucket *b)
228{
229	struct svc_cacherep *rp, *tmp;
230	long freed = 0;
231
232	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
233		/*
234		 * Don't free entries attached to calls that are still
235		 * in-progress, but do keep scanning the list.
236		 */
237		if (rp->c_state == RC_INPROG)
238			continue;
239		if (atomic_read(&num_drc_entries) <= max_drc_entries &&
240		    time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
241			break;
242		nfsd_reply_cache_free_locked(rp);
243		freed++;
244	}
245	return freed;
246}
247
248/*
249 * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
250 * Also prune the oldest ones when the total exceeds the max number of entries.
251 */
252static long
253prune_cache_entries(void)
254{
255	unsigned int i;
256	long freed = 0;
257
258	for (i = 0; i < drc_hashsize; i++) {
259		struct nfsd_drc_bucket *b = &drc_hashtbl[i];
260
261		if (list_empty(&b->lru_head))
262			continue;
263		spin_lock(&b->cache_lock);
264		freed += prune_bucket(b);
265		spin_unlock(&b->cache_lock);
266	}
267	return freed;
268}
269
270static unsigned long
271nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
272{
273	return atomic_read(&num_drc_entries);
274}
275
276static unsigned long
277nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
278{
279	return prune_cache_entries();
280}
281/*
282 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
283 */
284static __wsum
285nfsd_cache_csum(struct svc_rqst *rqstp)
286{
287	int idx;
288	unsigned int base;
289	__wsum csum;
290	struct xdr_buf *buf = &rqstp->rq_arg;
291	const unsigned char *p = buf->head[0].iov_base;
292	size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
293				RC_CSUMLEN);
294	size_t len = min(buf->head[0].iov_len, csum_len);
295
296	/* rq_arg.head first */
297	csum = csum_partial(p, len, 0);
298	csum_len -= len;
299
300	/* Continue into page array */
301	idx = buf->page_base / PAGE_SIZE;
302	base = buf->page_base & ~PAGE_MASK;
303	while (csum_len) {
304		p = page_address(buf->pages[idx]) + base;
305		len = min_t(size_t, PAGE_SIZE - base, csum_len);
306		csum = csum_partial(p, len, csum);
307		csum_len -= len;
308		base = 0;
309		++idx;
310	}
311	return csum;
312}
313
314static bool
315nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp)
316{
317	/* Check RPC XID first */
318	if (rqstp->rq_xid != rp->c_xid)
319		return false;
320	/* compare checksum of NFS data */
321	if (csum != rp->c_csum) {
322		++payload_misses;
323		return false;
324	}
325
326	/* Other discriminators */
327	if (rqstp->rq_proc != rp->c_proc ||
328	    rqstp->rq_prot != rp->c_prot ||
329	    rqstp->rq_vers != rp->c_vers ||
330	    rqstp->rq_arg.len != rp->c_len ||
331	    !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) ||
332	    rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr))
333		return false;
334
335	return true;
336}
337
338/*
339 * Search the request hash for an entry that matches the given rqstp.
340 * Must be called with cache_lock held. Returns the found entry or
341 * NULL on failure.
342 */
343static struct svc_cacherep *
344nfsd_cache_search(struct nfsd_drc_bucket *b, struct svc_rqst *rqstp,
345		__wsum csum)
346{
347	struct svc_cacherep	*rp, *ret = NULL;
348	struct list_head 	*rh = &b->lru_head;
349	unsigned int		entries = 0;
350
351	list_for_each_entry(rp, rh, c_lru) {
352		++entries;
353		if (nfsd_cache_match(rqstp, csum, rp)) {
354			ret = rp;
355			break;
356		}
357	}
358
359	/* tally hash chain length stats */
360	if (entries > longest_chain) {
361		longest_chain = entries;
362		longest_chain_cachesize = atomic_read(&num_drc_entries);
363	} else if (entries == longest_chain) {
364		/* prefer to keep the smallest cachesize possible here */
365		longest_chain_cachesize = min_t(unsigned int,
366				longest_chain_cachesize,
367				atomic_read(&num_drc_entries));
368	}
369
370	return ret;
371}
372
373/*
374 * Try to find an entry matching the current call in the cache. When none
375 * is found, we try to grab the oldest expired entry off the LRU list. If
376 * a suitable one isn't there, then drop the cache_lock and allocate a
377 * new one, then search again in case one got inserted while this thread
378 * didn't hold the lock.
379 */
380int
381nfsd_cache_lookup(struct svc_rqst *rqstp)
382{
383	struct svc_cacherep	*rp, *found;
384	__be32			xid = rqstp->rq_xid;
385	u32			proto =  rqstp->rq_prot,
386				vers = rqstp->rq_vers,
387				proc = rqstp->rq_proc;
388	__wsum			csum;
389	u32 hash = nfsd_cache_hash(xid);
390	struct nfsd_drc_bucket *b = &drc_hashtbl[hash];
391	unsigned long		age;
392	int type = rqstp->rq_cachetype;
393	int rtn = RC_DOIT;
394
395	rqstp->rq_cacherep = NULL;
396	if (type == RC_NOCACHE) {
397		nfsdstats.rcnocache++;
398		return rtn;
399	}
400
401	csum = nfsd_cache_csum(rqstp);
402
403	/*
404	 * Since the common case is a cache miss followed by an insert,
405	 * preallocate an entry.
406	 */
407	rp = nfsd_reply_cache_alloc();
408	spin_lock(&b->cache_lock);
409	if (likely(rp)) {
410		atomic_inc(&num_drc_entries);
411		drc_mem_usage += sizeof(*rp);
412	}
413
414	/* go ahead and prune the cache */
415	prune_bucket(b);
416
417	found = nfsd_cache_search(b, rqstp, csum);
418	if (found) {
419		if (likely(rp))
420			nfsd_reply_cache_free_locked(rp);
421		rp = found;
422		goto found_entry;
423	}
424
425	if (!rp) {
426		dprintk("nfsd: unable to allocate DRC entry!\n");
427		goto out;
428	}
429
430	nfsdstats.rcmisses++;
431	rqstp->rq_cacherep = rp;
432	rp->c_state = RC_INPROG;
433	rp->c_xid = xid;
434	rp->c_proc = proc;
435	rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp));
436	rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp)));
437	rp->c_prot = proto;
438	rp->c_vers = vers;
439	rp->c_len = rqstp->rq_arg.len;
440	rp->c_csum = csum;
441
442	lru_put_end(b, rp);
443
444	/* release any buffer */
445	if (rp->c_type == RC_REPLBUFF) {
446		drc_mem_usage -= rp->c_replvec.iov_len;
447		kfree(rp->c_replvec.iov_base);
448		rp->c_replvec.iov_base = NULL;
449	}
450	rp->c_type = RC_NOCACHE;
451 out:
452	spin_unlock(&b->cache_lock);
453	return rtn;
454
455found_entry:
456	nfsdstats.rchits++;
457	/* We found a matching entry which is either in progress or done. */
458	age = jiffies - rp->c_timestamp;
459	lru_put_end(b, rp);
460
461	rtn = RC_DROPIT;
462	/* Request being processed or excessive rexmits */
463	if (rp->c_state == RC_INPROG || age < RC_DELAY)
464		goto out;
465
466	/* From the hall of fame of impractical attacks:
467	 * Is this a user who tries to snoop on the cache? */
468	rtn = RC_DOIT;
469	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
470		goto out;
471
472	/* Compose RPC reply header */
473	switch (rp->c_type) {
474	case RC_NOCACHE:
475		break;
476	case RC_REPLSTAT:
477		svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
478		rtn = RC_REPLY;
479		break;
480	case RC_REPLBUFF:
481		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
482			goto out;	/* should not happen */
483		rtn = RC_REPLY;
484		break;
485	default:
486		printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
487		nfsd_reply_cache_free_locked(rp);
488	}
489
490	goto out;
491}
492
493/*
494 * Update a cache entry. This is called from nfsd_dispatch when
495 * the procedure has been executed and the complete reply is in
496 * rqstp->rq_res.
497 *
498 * We're copying around data here rather than swapping buffers because
499 * the toplevel loop requires max-sized buffers, which would be a waste
500 * of memory for a cache with a max reply size of 100 bytes (diropokres).
501 *
502 * If we should start to use different types of cache entries tailored
503 * specifically for attrstat and fh's, we may save even more space.
504 *
505 * Also note that a cachetype of RC_NOCACHE can legally be passed when
506 * nfsd failed to encode a reply that otherwise would have been cached.
507 * In this case, nfsd_cache_update is called with statp == NULL.
508 */
509void
510nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
511{
512	struct svc_cacherep *rp = rqstp->rq_cacherep;
513	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
514	u32		hash;
515	struct nfsd_drc_bucket *b;
516	int		len;
517	size_t		bufsize = 0;
518
519	if (!rp)
520		return;
521
522	hash = nfsd_cache_hash(rp->c_xid);
523	b = &drc_hashtbl[hash];
524
525	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
526	len >>= 2;
527
528	/* Don't cache excessive amounts of data and XDR failures */
529	if (!statp || len > (256 >> 2)) {
530		nfsd_reply_cache_free(b, rp);
531		return;
532	}
533
534	switch (cachetype) {
535	case RC_REPLSTAT:
536		if (len != 1)
537			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
538		rp->c_replstat = *statp;
539		break;
540	case RC_REPLBUFF:
541		cachv = &rp->c_replvec;
542		bufsize = len << 2;
543		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
544		if (!cachv->iov_base) {
545			nfsd_reply_cache_free(b, rp);
546			return;
547		}
548		cachv->iov_len = bufsize;
549		memcpy(cachv->iov_base, statp, bufsize);
550		break;
551	case RC_NOCACHE:
552		nfsd_reply_cache_free(b, rp);
553		return;
554	}
555	spin_lock(&b->cache_lock);
556	drc_mem_usage += bufsize;
557	lru_put_end(b, rp);
558	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
559	rp->c_type = cachetype;
560	rp->c_state = RC_DONE;
561	spin_unlock(&b->cache_lock);
562	return;
563}
564
565/*
566 * Copy cached reply to current reply buffer. Should always fit.
567 * FIXME as reply is in a page, we should just attach the page, and
568 * keep a refcount....
569 */
570static int
571nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
572{
573	struct kvec	*vec = &rqstp->rq_res.head[0];
574
575	if (vec->iov_len + data->iov_len > PAGE_SIZE) {
576		printk(KERN_WARNING "nfsd: cached reply too large (%Zd).\n",
577				data->iov_len);
578		return 0;
579	}
580	memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
581	vec->iov_len += data->iov_len;
582	return 1;
583}
584
585/*
586 * Note that fields may be added, removed or reordered in the future. Programs
587 * scraping this file for info should test the labels to ensure they're
588 * getting the correct field.
589 */
590static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
591{
592	seq_printf(m, "max entries:           %u\n", max_drc_entries);
593	seq_printf(m, "num entries:           %u\n",
594			atomic_read(&num_drc_entries));
595	seq_printf(m, "hash buckets:          %u\n", 1 << maskbits);
596	seq_printf(m, "mem usage:             %u\n", drc_mem_usage);
597	seq_printf(m, "cache hits:            %u\n", nfsdstats.rchits);
598	seq_printf(m, "cache misses:          %u\n", nfsdstats.rcmisses);
599	seq_printf(m, "not cached:            %u\n", nfsdstats.rcnocache);
600	seq_printf(m, "payload misses:        %u\n", payload_misses);
601	seq_printf(m, "longest chain len:     %u\n", longest_chain);
602	seq_printf(m, "cachesize at longest:  %u\n", longest_chain_cachesize);
603	return 0;
604}
605
606int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
607{
608	return single_open(file, nfsd_reply_cache_stats_show, NULL);
609}
  1/*
  2 * Request reply cache. This is currently a global cache, but this may
  3 * change in the future and be a per-client cache.
  4 *
  5 * This code is heavily inspired by the 44BSD implementation, although
  6 * it does things a bit differently.
  7 *
  8 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
  9 */
 10
 11#include <linux/slab.h>
 12#include <linux/vmalloc.h>
 13#include <linux/sunrpc/addr.h>
 14#include <linux/highmem.h>
 15#include <linux/log2.h>
 16#include <linux/hash.h>
 17#include <net/checksum.h>
 18
 19#include "nfsd.h"
 20#include "cache.h"
 21
 22#define NFSDDBG_FACILITY	NFSDDBG_REPCACHE
 23
 24/*
 25 * We use this value to determine the number of hash buckets from the max
 26 * cache size, the idea being that when the cache is at its maximum number
 27 * of entries, then this should be the average number of entries per bucket.
 28 */
 29#define TARGET_BUCKET_SIZE	64
 30
 31struct nfsd_drc_bucket {
 32	struct list_head lru_head;
 33	spinlock_t cache_lock;
 34};
 35
 36static struct nfsd_drc_bucket	*drc_hashtbl;
 37static struct kmem_cache	*drc_slab;
 38
 39/* max number of entries allowed in the cache */
 40static unsigned int		max_drc_entries;
 41
 42/* number of significant bits in the hash value */
 43static unsigned int		maskbits;
 44static unsigned int		drc_hashsize;
 45
 46/*
 47 * Stats and other tracking of on the duplicate reply cache. All of these and
 48 * the "rc" fields in nfsdstats are protected by the cache_lock
 49 */
 50
 51/* total number of entries */
 52static atomic_t			num_drc_entries;
 53
 54/* cache misses due only to checksum comparison failures */
 55static unsigned int		payload_misses;
 56
 57/* amount of memory (in bytes) currently consumed by the DRC */
 58static unsigned int		drc_mem_usage;
 59
 60/* longest hash chain seen */
 61static unsigned int		longest_chain;
 62
 63/* size of cache when we saw the longest hash chain */
 64static unsigned int		longest_chain_cachesize;
 65
 66static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
 67static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
 68					    struct shrink_control *sc);
 69static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
 70					   struct shrink_control *sc);
 71
 72static struct shrinker nfsd_reply_cache_shrinker = {
 73	.scan_objects = nfsd_reply_cache_scan,
 74	.count_objects = nfsd_reply_cache_count,
 75	.seeks	= 1,
 76};
 77
 78/*
 79 * Put a cap on the size of the DRC based on the amount of available
 80 * low memory in the machine.
 81 *
 82 *  64MB:    8192
 83 * 128MB:   11585
 84 * 256MB:   16384
 85 * 512MB:   23170
 86 *   1GB:   32768
 87 *   2GB:   46340
 88 *   4GB:   65536
 89 *   8GB:   92681
 90 *  16GB:  131072
 91 *
 92 * ...with a hard cap of 256k entries. In the worst case, each entry will be
 93 * ~1k, so the above numbers should give a rough max of the amount of memory
 94 * used in k.
 95 */
 96static unsigned int
 97nfsd_cache_size_limit(void)
 98{
 99	unsigned int limit;
100	unsigned long low_pages = totalram_pages - totalhigh_pages;
101
102	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
103	return min_t(unsigned int, limit, 256*1024);
104}
105
106/*
107 * Compute the number of hash buckets we need. Divide the max cachesize by
108 * the "target" max bucket size, and round up to next power of two.
109 */
110static unsigned int
111nfsd_hashsize(unsigned int limit)
112{
113	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
114}
115
116static u32
117nfsd_cache_hash(__be32 xid)
118{
119	return hash_32(be32_to_cpu(xid), maskbits);
120}
121
122static struct svc_cacherep *
123nfsd_reply_cache_alloc(void)
124{
125	struct svc_cacherep	*rp;
126
127	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
128	if (rp) {
129		rp->c_state = RC_UNUSED;
130		rp->c_type = RC_NOCACHE;
131		INIT_LIST_HEAD(&rp->c_lru);
132	}
133	return rp;
134}
135
136static void
137nfsd_reply_cache_free_locked(struct svc_cacherep *rp)
138{
139	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
140		drc_mem_usage -= rp->c_replvec.iov_len;
141		kfree(rp->c_replvec.iov_base);
142	}
143	list_del(&rp->c_lru);
144	atomic_dec(&num_drc_entries);
145	drc_mem_usage -= sizeof(*rp);
146	kmem_cache_free(drc_slab, rp);
147}
148
149static void
150nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
151{
152	spin_lock(&b->cache_lock);
153	nfsd_reply_cache_free_locked(rp);
154	spin_unlock(&b->cache_lock);
155}
156
157int nfsd_reply_cache_init(void)
158{
159	unsigned int hashsize;
160	unsigned int i;
161	int status = 0;
162
163	max_drc_entries = nfsd_cache_size_limit();
164	atomic_set(&num_drc_entries, 0);
165	hashsize = nfsd_hashsize(max_drc_entries);
166	maskbits = ilog2(hashsize);
167
168	status = register_shrinker(&nfsd_reply_cache_shrinker);
169	if (status)
170		return status;
171
172	drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
173					0, 0, NULL);
174	if (!drc_slab)
175		goto out_nomem;
176
177	drc_hashtbl = kcalloc(hashsize, sizeof(*drc_hashtbl), GFP_KERNEL);
178	if (!drc_hashtbl) {
179		drc_hashtbl = vzalloc(hashsize * sizeof(*drc_hashtbl));
180		if (!drc_hashtbl)
181			goto out_nomem;
182	}
183
184	for (i = 0; i < hashsize; i++) {
185		INIT_LIST_HEAD(&drc_hashtbl[i].lru_head);
186		spin_lock_init(&drc_hashtbl[i].cache_lock);
187	}
188	drc_hashsize = hashsize;
189
190	return 0;
191out_nomem:
192	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
193	nfsd_reply_cache_shutdown();
194	return -ENOMEM;
195}
196
197void nfsd_reply_cache_shutdown(void)
198{
199	struct svc_cacherep	*rp;
200	unsigned int i;
201
202	unregister_shrinker(&nfsd_reply_cache_shrinker);
203
204	for (i = 0; i < drc_hashsize; i++) {
205		struct list_head *head = &drc_hashtbl[i].lru_head;
206		while (!list_empty(head)) {
207			rp = list_first_entry(head, struct svc_cacherep, c_lru);
208			nfsd_reply_cache_free_locked(rp);
209		}
210	}
211
212	kvfree(drc_hashtbl);
213	drc_hashtbl = NULL;
214	drc_hashsize = 0;
215
216	kmem_cache_destroy(drc_slab);
217	drc_slab = NULL;
218}
219
220/*
221 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
222 * not already scheduled.
223 */
224static void
225lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
226{
227	rp->c_timestamp = jiffies;
228	list_move_tail(&rp->c_lru, &b->lru_head);
229}
230
231static long
232prune_bucket(struct nfsd_drc_bucket *b)
233{
234	struct svc_cacherep *rp, *tmp;
235	long freed = 0;
236
237	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
238		/*
239		 * Don't free entries attached to calls that are still
240		 * in-progress, but do keep scanning the list.
241		 */
242		if (rp->c_state == RC_INPROG)
243			continue;
244		if (atomic_read(&num_drc_entries) <= max_drc_entries &&
245		    time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
246			break;
247		nfsd_reply_cache_free_locked(rp);
248		freed++;
249	}
250	return freed;
251}
252
253/*
254 * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
255 * Also prune the oldest ones when the total exceeds the max number of entries.
256 */
257static long
258prune_cache_entries(void)
259{
260	unsigned int i;
261	long freed = 0;
262
263	for (i = 0; i < drc_hashsize; i++) {
264		struct nfsd_drc_bucket *b = &drc_hashtbl[i];
265
266		if (list_empty(&b->lru_head))
267			continue;
268		spin_lock(&b->cache_lock);
269		freed += prune_bucket(b);
270		spin_unlock(&b->cache_lock);
271	}
272	return freed;
273}
274
275static unsigned long
276nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
277{
278	return atomic_read(&num_drc_entries);
279}
280
281static unsigned long
282nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
283{
284	return prune_cache_entries();
285}
286/*
287 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
288 */
289static __wsum
290nfsd_cache_csum(struct svc_rqst *rqstp)
291{
292	int idx;
293	unsigned int base;
294	__wsum csum;
295	struct xdr_buf *buf = &rqstp->rq_arg;
296	const unsigned char *p = buf->head[0].iov_base;
297	size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
298				RC_CSUMLEN);
299	size_t len = min(buf->head[0].iov_len, csum_len);
300
301	/* rq_arg.head first */
302	csum = csum_partial(p, len, 0);
303	csum_len -= len;
304
305	/* Continue into page array */
306	idx = buf->page_base / PAGE_SIZE;
307	base = buf->page_base & ~PAGE_MASK;
308	while (csum_len) {
309		p = page_address(buf->pages[idx]) + base;
310		len = min_t(size_t, PAGE_SIZE - base, csum_len);
311		csum = csum_partial(p, len, csum);
312		csum_len -= len;
313		base = 0;
314		++idx;
315	}
316	return csum;
317}
318
319static bool
320nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp)
321{
322	/* Check RPC XID first */
323	if (rqstp->rq_xid != rp->c_xid)
324		return false;
325	/* compare checksum of NFS data */
326	if (csum != rp->c_csum) {
327		++payload_misses;
328		return false;
329	}
330
331	/* Other discriminators */
332	if (rqstp->rq_proc != rp->c_proc ||
333	    rqstp->rq_prot != rp->c_prot ||
334	    rqstp->rq_vers != rp->c_vers ||
335	    rqstp->rq_arg.len != rp->c_len ||
336	    !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) ||
337	    rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr))
338		return false;
339
340	return true;
341}
342
343/*
344 * Search the request hash for an entry that matches the given rqstp.
345 * Must be called with cache_lock held. Returns the found entry or
346 * NULL on failure.
347 */
348static struct svc_cacherep *
349nfsd_cache_search(struct nfsd_drc_bucket *b, struct svc_rqst *rqstp,
350		__wsum csum)
351{
352	struct svc_cacherep	*rp, *ret = NULL;
353	struct list_head 	*rh = &b->lru_head;
354	unsigned int		entries = 0;
355
356	list_for_each_entry(rp, rh, c_lru) {
357		++entries;
358		if (nfsd_cache_match(rqstp, csum, rp)) {
359			ret = rp;
360			break;
361		}
362	}
363
364	/* tally hash chain length stats */
365	if (entries > longest_chain) {
366		longest_chain = entries;
367		longest_chain_cachesize = atomic_read(&num_drc_entries);
368	} else if (entries == longest_chain) {
369		/* prefer to keep the smallest cachesize possible here */
370		longest_chain_cachesize = min_t(unsigned int,
371				longest_chain_cachesize,
372				atomic_read(&num_drc_entries));
373	}
374
375	return ret;
376}
377
378/*
379 * Try to find an entry matching the current call in the cache. When none
380 * is found, we try to grab the oldest expired entry off the LRU list. If
381 * a suitable one isn't there, then drop the cache_lock and allocate a
382 * new one, then search again in case one got inserted while this thread
383 * didn't hold the lock.
384 */
385int
386nfsd_cache_lookup(struct svc_rqst *rqstp)
387{
388	struct svc_cacherep	*rp, *found;
389	__be32			xid = rqstp->rq_xid;
390	u32			proto =  rqstp->rq_prot,
391				vers = rqstp->rq_vers,
392				proc = rqstp->rq_proc;
393	__wsum			csum;
394	u32 hash = nfsd_cache_hash(xid);
395	struct nfsd_drc_bucket *b = &drc_hashtbl[hash];
396	unsigned long		age;
397	int type = rqstp->rq_cachetype;
398	int rtn = RC_DOIT;
399
400	rqstp->rq_cacherep = NULL;
401	if (type == RC_NOCACHE) {
402		nfsdstats.rcnocache++;
403		return rtn;
404	}
405
406	csum = nfsd_cache_csum(rqstp);
407
408	/*
409	 * Since the common case is a cache miss followed by an insert,
410	 * preallocate an entry.
411	 */
412	rp = nfsd_reply_cache_alloc();
413	spin_lock(&b->cache_lock);
414	if (likely(rp)) {
415		atomic_inc(&num_drc_entries);
416		drc_mem_usage += sizeof(*rp);
417	}
418
419	/* go ahead and prune the cache */
420	prune_bucket(b);
421
422	found = nfsd_cache_search(b, rqstp, csum);
423	if (found) {
424		if (likely(rp))
425			nfsd_reply_cache_free_locked(rp);
426		rp = found;
427		goto found_entry;
428	}
429
430	if (!rp) {
431		dprintk("nfsd: unable to allocate DRC entry!\n");
432		goto out;
433	}
434
435	nfsdstats.rcmisses++;
436	rqstp->rq_cacherep = rp;
437	rp->c_state = RC_INPROG;
438	rp->c_xid = xid;
439	rp->c_proc = proc;
440	rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp));
441	rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp)));
442	rp->c_prot = proto;
443	rp->c_vers = vers;
444	rp->c_len = rqstp->rq_arg.len;
445	rp->c_csum = csum;
446
447	lru_put_end(b, rp);
448
449	/* release any buffer */
450	if (rp->c_type == RC_REPLBUFF) {
451		drc_mem_usage -= rp->c_replvec.iov_len;
452		kfree(rp->c_replvec.iov_base);
453		rp->c_replvec.iov_base = NULL;
454	}
455	rp->c_type = RC_NOCACHE;
456 out:
457	spin_unlock(&b->cache_lock);
458	return rtn;
459
460found_entry:
461	nfsdstats.rchits++;
462	/* We found a matching entry which is either in progress or done. */
463	age = jiffies - rp->c_timestamp;
464	lru_put_end(b, rp);
465
466	rtn = RC_DROPIT;
467	/* Request being processed or excessive rexmits */
468	if (rp->c_state == RC_INPROG || age < RC_DELAY)
469		goto out;
470
471	/* From the hall of fame of impractical attacks:
472	 * Is this a user who tries to snoop on the cache? */
473	rtn = RC_DOIT;
474	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
475		goto out;
476
477	/* Compose RPC reply header */
478	switch (rp->c_type) {
479	case RC_NOCACHE:
480		break;
481	case RC_REPLSTAT:
482		svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
483		rtn = RC_REPLY;
484		break;
485	case RC_REPLBUFF:
486		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
487			goto out;	/* should not happen */
488		rtn = RC_REPLY;
489		break;
490	default:
491		printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
492		nfsd_reply_cache_free_locked(rp);
493	}
494
495	goto out;
496}
497
498/*
499 * Update a cache entry. This is called from nfsd_dispatch when
500 * the procedure has been executed and the complete reply is in
501 * rqstp->rq_res.
502 *
503 * We're copying around data here rather than swapping buffers because
504 * the toplevel loop requires max-sized buffers, which would be a waste
505 * of memory for a cache with a max reply size of 100 bytes (diropokres).
506 *
507 * If we should start to use different types of cache entries tailored
508 * specifically for attrstat and fh's, we may save even more space.
509 *
510 * Also note that a cachetype of RC_NOCACHE can legally be passed when
511 * nfsd failed to encode a reply that otherwise would have been cached.
512 * In this case, nfsd_cache_update is called with statp == NULL.
513 */
514void
515nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
516{
517	struct svc_cacherep *rp = rqstp->rq_cacherep;
518	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
519	u32		hash;
520	struct nfsd_drc_bucket *b;
521	int		len;
522	size_t		bufsize = 0;
523
524	if (!rp)
525		return;
526
527	hash = nfsd_cache_hash(rp->c_xid);
528	b = &drc_hashtbl[hash];
529
530	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
531	len >>= 2;
532
533	/* Don't cache excessive amounts of data and XDR failures */
534	if (!statp || len > (256 >> 2)) {
535		nfsd_reply_cache_free(b, rp);
536		return;
537	}
538
539	switch (cachetype) {
540	case RC_REPLSTAT:
541		if (len != 1)
542			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
543		rp->c_replstat = *statp;
544		break;
545	case RC_REPLBUFF:
546		cachv = &rp->c_replvec;
547		bufsize = len << 2;
548		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
549		if (!cachv->iov_base) {
550			nfsd_reply_cache_free(b, rp);
551			return;
552		}
553		cachv->iov_len = bufsize;
554		memcpy(cachv->iov_base, statp, bufsize);
555		break;
556	case RC_NOCACHE:
557		nfsd_reply_cache_free(b, rp);
558		return;
559	}
560	spin_lock(&b->cache_lock);
561	drc_mem_usage += bufsize;
562	lru_put_end(b, rp);
563	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
564	rp->c_type = cachetype;
565	rp->c_state = RC_DONE;
566	spin_unlock(&b->cache_lock);
567	return;
568}
569
570/*
571 * Copy cached reply to current reply buffer. Should always fit.
572 * FIXME as reply is in a page, we should just attach the page, and
573 * keep a refcount....
574 */
575static int
576nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
577{
578	struct kvec	*vec = &rqstp->rq_res.head[0];
579
580	if (vec->iov_len + data->iov_len > PAGE_SIZE) {
581		printk(KERN_WARNING "nfsd: cached reply too large (%Zd).\n",
582				data->iov_len);
583		return 0;
584	}
585	memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
586	vec->iov_len += data->iov_len;
587	return 1;
588}
589
590/*
591 * Note that fields may be added, removed or reordered in the future. Programs
592 * scraping this file for info should test the labels to ensure they're
593 * getting the correct field.
594 */
595static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
596{
597	seq_printf(m, "max entries:           %u\n", max_drc_entries);
598	seq_printf(m, "num entries:           %u\n",
599			atomic_read(&num_drc_entries));
600	seq_printf(m, "hash buckets:          %u\n", 1 << maskbits);
601	seq_printf(m, "mem usage:             %u\n", drc_mem_usage);
602	seq_printf(m, "cache hits:            %u\n", nfsdstats.rchits);
603	seq_printf(m, "cache misses:          %u\n", nfsdstats.rcmisses);
604	seq_printf(m, "not cached:            %u\n", nfsdstats.rcnocache);
605	seq_printf(m, "payload misses:        %u\n", payload_misses);
606	seq_printf(m, "longest chain len:     %u\n", longest_chain);
607	seq_printf(m, "cachesize at longest:  %u\n", longest_chain_cachesize);
608	return 0;
609}
610
611int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
612{
613	return single_open(file, nfsd_reply_cache_stats_show, NULL);
614}