Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * fs/kernfs/mount.c - kernfs mount implementation
  3 *
  4 * Copyright (c) 2001-3 Patrick Mochel
  5 * Copyright (c) 2007 SUSE Linux Products GmbH
  6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
  7 *
  8 * This file is released under the GPLv2.
  9 */
 10
 11#include <linux/fs.h>
 12#include <linux/mount.h>
 13#include <linux/init.h>
 14#include <linux/magic.h>
 15#include <linux/slab.h>
 16#include <linux/pagemap.h>
 17#include <linux/namei.h>
 18#include <linux/seq_file.h>
 19
 20#include "kernfs-internal.h"
 21
 22struct kmem_cache *kernfs_node_cache;
 23
 24static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
 25{
 26	struct kernfs_root *root = kernfs_info(sb)->root;
 27	struct kernfs_syscall_ops *scops = root->syscall_ops;
 28
 29	if (scops && scops->remount_fs)
 30		return scops->remount_fs(root, flags, data);
 31	return 0;
 32}
 33
 34static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
 35{
 36	struct kernfs_root *root = kernfs_root(dentry->d_fsdata);
 37	struct kernfs_syscall_ops *scops = root->syscall_ops;
 38
 39	if (scops && scops->show_options)
 40		return scops->show_options(sf, root);
 41	return 0;
 42}
 43
 44static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
 45{
 46	struct kernfs_node *node = dentry->d_fsdata;
 47	struct kernfs_root *root = kernfs_root(node);
 48	struct kernfs_syscall_ops *scops = root->syscall_ops;
 49
 50	if (scops && scops->show_path)
 51		return scops->show_path(sf, node, root);
 52
 53	seq_dentry(sf, dentry, " \t\n\\");
 54	return 0;
 55}
 56
 57const struct super_operations kernfs_sops = {
 58	.statfs		= simple_statfs,
 59	.drop_inode	= generic_delete_inode,
 60	.evict_inode	= kernfs_evict_inode,
 61
 62	.remount_fs	= kernfs_sop_remount_fs,
 63	.show_options	= kernfs_sop_show_options,
 64	.show_path	= kernfs_sop_show_path,
 65};
 66
 67/**
 68 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
 69 * @sb: the super_block in question
 70 *
 71 * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
 72 * %NULL is returned.
 73 */
 74struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
 75{
 76	if (sb->s_op == &kernfs_sops)
 77		return kernfs_info(sb)->root;
 78	return NULL;
 79}
 80
 81/*
 82 * find the next ancestor in the path down to @child, where @parent was the
 83 * ancestor whose descendant we want to find.
 84 *
 85 * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
 86 * node.  If @parent is b, then we return the node for c.
 87 * Passing in d as @parent is not ok.
 88 */
 89static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
 90					      struct kernfs_node *parent)
 91{
 92	if (child == parent) {
 93		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
 94		return NULL;
 95	}
 96
 97	while (child->parent != parent) {
 98		if (!child->parent)
 99			return NULL;
100		child = child->parent;
101	}
102
103	return child;
104}
105
106/**
107 * kernfs_node_dentry - get a dentry for the given kernfs_node
108 * @kn: kernfs_node for which a dentry is needed
109 * @sb: the kernfs super_block
110 */
111struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
112				  struct super_block *sb)
113{
114	struct dentry *dentry;
115	struct kernfs_node *knparent = NULL;
116
117	BUG_ON(sb->s_op != &kernfs_sops);
118
119	dentry = dget(sb->s_root);
120
121	/* Check if this is the root kernfs_node */
122	if (!kn->parent)
123		return dentry;
124
125	knparent = find_next_ancestor(kn, NULL);
126	if (WARN_ON(!knparent))
127		return ERR_PTR(-EINVAL);
128
129	do {
130		struct dentry *dtmp;
131		struct kernfs_node *kntmp;
132
133		if (kn == knparent)
134			return dentry;
135		kntmp = find_next_ancestor(kn, knparent);
136		if (WARN_ON(!kntmp))
137			return ERR_PTR(-EINVAL);
138		mutex_lock(&d_inode(dentry)->i_mutex);
139		dtmp = lookup_one_len(kntmp->name, dentry, strlen(kntmp->name));
140		mutex_unlock(&d_inode(dentry)->i_mutex);
141		dput(dentry);
142		if (IS_ERR(dtmp))
143			return dtmp;
144		knparent = kntmp;
145		dentry = dtmp;
146	} while (true);
147}
148
149static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
150{
151	struct kernfs_super_info *info = kernfs_info(sb);
152	struct inode *inode;
153	struct dentry *root;
154
155	info->sb = sb;
 
 
156	sb->s_blocksize = PAGE_SIZE;
157	sb->s_blocksize_bits = PAGE_SHIFT;
158	sb->s_magic = magic;
159	sb->s_op = &kernfs_sops;
 
160	sb->s_time_gran = 1;
161
162	/* get root inode, initialize and unlock it */
163	mutex_lock(&kernfs_mutex);
164	inode = kernfs_get_inode(sb, info->root->kn);
165	mutex_unlock(&kernfs_mutex);
166	if (!inode) {
167		pr_debug("kernfs: could not get root inode\n");
168		return -ENOMEM;
169	}
170
171	/* instantiate and link root dentry */
172	root = d_make_root(inode);
173	if (!root) {
174		pr_debug("%s: could not get root dentry!\n", __func__);
175		return -ENOMEM;
176	}
177	kernfs_get(info->root->kn);
178	root->d_fsdata = info->root->kn;
179	sb->s_root = root;
180	sb->s_d_op = &kernfs_dops;
181	return 0;
182}
183
184static int kernfs_test_super(struct super_block *sb, void *data)
185{
186	struct kernfs_super_info *sb_info = kernfs_info(sb);
187	struct kernfs_super_info *info = data;
188
189	return sb_info->root == info->root && sb_info->ns == info->ns;
190}
191
192static int kernfs_set_super(struct super_block *sb, void *data)
193{
194	int error;
195	error = set_anon_super(sb, data);
196	if (!error)
197		sb->s_fs_info = data;
198	return error;
199}
200
201/**
202 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
203 * @sb: super_block of interest
204 *
205 * Return the namespace tag associated with kernfs super_block @sb.
206 */
207const void *kernfs_super_ns(struct super_block *sb)
208{
209	struct kernfs_super_info *info = kernfs_info(sb);
210
211	return info->ns;
212}
213
214/**
215 * kernfs_mount_ns - kernfs mount helper
216 * @fs_type: file_system_type of the fs being mounted
217 * @flags: mount flags specified for the mount
218 * @root: kernfs_root of the hierarchy being mounted
219 * @magic: file system specific magic number
220 * @new_sb_created: tell the caller if we allocated a new superblock
221 * @ns: optional namespace tag of the mount
222 *
223 * This is to be called from each kernfs user's file_system_type->mount()
224 * implementation, which should pass through the specified @fs_type and
225 * @flags, and specify the hierarchy and namespace tag to mount via @root
226 * and @ns, respectively.
227 *
228 * The return value can be passed to the vfs layer verbatim.
229 */
230struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
231				struct kernfs_root *root, unsigned long magic,
232				bool *new_sb_created, const void *ns)
233{
234	struct super_block *sb;
235	struct kernfs_super_info *info;
236	int error;
237
238	info = kzalloc(sizeof(*info), GFP_KERNEL);
239	if (!info)
240		return ERR_PTR(-ENOMEM);
241
242	info->root = root;
243	info->ns = ns;
244
245	sb = sget(fs_type, kernfs_test_super, kernfs_set_super, flags, info);
 
246	if (IS_ERR(sb) || sb->s_fs_info != info)
247		kfree(info);
248	if (IS_ERR(sb))
249		return ERR_CAST(sb);
250
251	if (new_sb_created)
252		*new_sb_created = !sb->s_root;
253
254	if (!sb->s_root) {
255		struct kernfs_super_info *info = kernfs_info(sb);
256
257		error = kernfs_fill_super(sb, magic);
258		if (error) {
259			deactivate_locked_super(sb);
260			return ERR_PTR(error);
261		}
262		sb->s_flags |= MS_ACTIVE;
263
264		mutex_lock(&kernfs_mutex);
265		list_add(&info->node, &root->supers);
266		mutex_unlock(&kernfs_mutex);
267	}
268
269	return dget(sb->s_root);
270}
271
272/**
273 * kernfs_kill_sb - kill_sb for kernfs
274 * @sb: super_block being killed
275 *
276 * This can be used directly for file_system_type->kill_sb().  If a kernfs
277 * user needs extra cleanup, it can implement its own kill_sb() and call
278 * this function at the end.
279 */
280void kernfs_kill_sb(struct super_block *sb)
281{
282	struct kernfs_super_info *info = kernfs_info(sb);
283	struct kernfs_node *root_kn = sb->s_root->d_fsdata;
284
285	mutex_lock(&kernfs_mutex);
286	list_del(&info->node);
287	mutex_unlock(&kernfs_mutex);
288
289	/*
290	 * Remove the superblock from fs_supers/s_instances
291	 * so we can't find it, before freeing kernfs_super_info.
292	 */
293	kill_anon_super(sb);
294	kfree(info);
295	kernfs_put(root_kn);
296}
297
298/**
299 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
300 * @kernfs_root: the kernfs_root in question
301 * @ns: the namespace tag
302 *
303 * Pin the superblock so the superblock won't be destroyed in subsequent
304 * operations.  This can be used to block ->kill_sb() which may be useful
305 * for kernfs users which dynamically manage superblocks.
306 *
307 * Returns NULL if there's no superblock associated to this kernfs_root, or
308 * -EINVAL if the superblock is being freed.
309 */
310struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
311{
312	struct kernfs_super_info *info;
313	struct super_block *sb = NULL;
314
315	mutex_lock(&kernfs_mutex);
316	list_for_each_entry(info, &root->supers, node) {
317		if (info->ns == ns) {
318			sb = info->sb;
319			if (!atomic_inc_not_zero(&info->sb->s_active))
320				sb = ERR_PTR(-EINVAL);
321			break;
322		}
323	}
324	mutex_unlock(&kernfs_mutex);
325	return sb;
326}
327
328void __init kernfs_init(void)
329{
330	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
331					      sizeof(struct kernfs_node),
332					      0, SLAB_PANIC, NULL);
333}
v4.10.11
  1/*
  2 * fs/kernfs/mount.c - kernfs mount implementation
  3 *
  4 * Copyright (c) 2001-3 Patrick Mochel
  5 * Copyright (c) 2007 SUSE Linux Products GmbH
  6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
  7 *
  8 * This file is released under the GPLv2.
  9 */
 10
 11#include <linux/fs.h>
 12#include <linux/mount.h>
 13#include <linux/init.h>
 14#include <linux/magic.h>
 15#include <linux/slab.h>
 16#include <linux/pagemap.h>
 17#include <linux/namei.h>
 18#include <linux/seq_file.h>
 19
 20#include "kernfs-internal.h"
 21
 22struct kmem_cache *kernfs_node_cache;
 23
 24static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
 25{
 26	struct kernfs_root *root = kernfs_info(sb)->root;
 27	struct kernfs_syscall_ops *scops = root->syscall_ops;
 28
 29	if (scops && scops->remount_fs)
 30		return scops->remount_fs(root, flags, data);
 31	return 0;
 32}
 33
 34static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
 35{
 36	struct kernfs_root *root = kernfs_root(dentry->d_fsdata);
 37	struct kernfs_syscall_ops *scops = root->syscall_ops;
 38
 39	if (scops && scops->show_options)
 40		return scops->show_options(sf, root);
 41	return 0;
 42}
 43
 44static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
 45{
 46	struct kernfs_node *node = dentry->d_fsdata;
 47	struct kernfs_root *root = kernfs_root(node);
 48	struct kernfs_syscall_ops *scops = root->syscall_ops;
 49
 50	if (scops && scops->show_path)
 51		return scops->show_path(sf, node, root);
 52
 53	seq_dentry(sf, dentry, " \t\n\\");
 54	return 0;
 55}
 56
 57const struct super_operations kernfs_sops = {
 58	.statfs		= simple_statfs,
 59	.drop_inode	= generic_delete_inode,
 60	.evict_inode	= kernfs_evict_inode,
 61
 62	.remount_fs	= kernfs_sop_remount_fs,
 63	.show_options	= kernfs_sop_show_options,
 64	.show_path	= kernfs_sop_show_path,
 65};
 66
 67/**
 68 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
 69 * @sb: the super_block in question
 70 *
 71 * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
 72 * %NULL is returned.
 73 */
 74struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
 75{
 76	if (sb->s_op == &kernfs_sops)
 77		return kernfs_info(sb)->root;
 78	return NULL;
 79}
 80
 81/*
 82 * find the next ancestor in the path down to @child, where @parent was the
 83 * ancestor whose descendant we want to find.
 84 *
 85 * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
 86 * node.  If @parent is b, then we return the node for c.
 87 * Passing in d as @parent is not ok.
 88 */
 89static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
 90					      struct kernfs_node *parent)
 91{
 92	if (child == parent) {
 93		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
 94		return NULL;
 95	}
 96
 97	while (child->parent != parent) {
 98		if (!child->parent)
 99			return NULL;
100		child = child->parent;
101	}
102
103	return child;
104}
105
106/**
107 * kernfs_node_dentry - get a dentry for the given kernfs_node
108 * @kn: kernfs_node for which a dentry is needed
109 * @sb: the kernfs super_block
110 */
111struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
112				  struct super_block *sb)
113{
114	struct dentry *dentry;
115	struct kernfs_node *knparent = NULL;
116
117	BUG_ON(sb->s_op != &kernfs_sops);
118
119	dentry = dget(sb->s_root);
120
121	/* Check if this is the root kernfs_node */
122	if (!kn->parent)
123		return dentry;
124
125	knparent = find_next_ancestor(kn, NULL);
126	if (WARN_ON(!knparent))
127		return ERR_PTR(-EINVAL);
128
129	do {
130		struct dentry *dtmp;
131		struct kernfs_node *kntmp;
132
133		if (kn == knparent)
134			return dentry;
135		kntmp = find_next_ancestor(kn, knparent);
136		if (WARN_ON(!kntmp))
137			return ERR_PTR(-EINVAL);
138		dtmp = lookup_one_len_unlocked(kntmp->name, dentry,
139					       strlen(kntmp->name));
 
140		dput(dentry);
141		if (IS_ERR(dtmp))
142			return dtmp;
143		knparent = kntmp;
144		dentry = dtmp;
145	} while (true);
146}
147
148static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
149{
150	struct kernfs_super_info *info = kernfs_info(sb);
151	struct inode *inode;
152	struct dentry *root;
153
154	info->sb = sb;
155	/* Userspace would break if executables or devices appear on sysfs */
156	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
157	sb->s_blocksize = PAGE_SIZE;
158	sb->s_blocksize_bits = PAGE_SHIFT;
159	sb->s_magic = magic;
160	sb->s_op = &kernfs_sops;
161	sb->s_xattr = kernfs_xattr_handlers;
162	sb->s_time_gran = 1;
163
164	/* get root inode, initialize and unlock it */
165	mutex_lock(&kernfs_mutex);
166	inode = kernfs_get_inode(sb, info->root->kn);
167	mutex_unlock(&kernfs_mutex);
168	if (!inode) {
169		pr_debug("kernfs: could not get root inode\n");
170		return -ENOMEM;
171	}
172
173	/* instantiate and link root dentry */
174	root = d_make_root(inode);
175	if (!root) {
176		pr_debug("%s: could not get root dentry!\n", __func__);
177		return -ENOMEM;
178	}
179	kernfs_get(info->root->kn);
180	root->d_fsdata = info->root->kn;
181	sb->s_root = root;
182	sb->s_d_op = &kernfs_dops;
183	return 0;
184}
185
186static int kernfs_test_super(struct super_block *sb, void *data)
187{
188	struct kernfs_super_info *sb_info = kernfs_info(sb);
189	struct kernfs_super_info *info = data;
190
191	return sb_info->root == info->root && sb_info->ns == info->ns;
192}
193
194static int kernfs_set_super(struct super_block *sb, void *data)
195{
196	int error;
197	error = set_anon_super(sb, data);
198	if (!error)
199		sb->s_fs_info = data;
200	return error;
201}
202
203/**
204 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
205 * @sb: super_block of interest
206 *
207 * Return the namespace tag associated with kernfs super_block @sb.
208 */
209const void *kernfs_super_ns(struct super_block *sb)
210{
211	struct kernfs_super_info *info = kernfs_info(sb);
212
213	return info->ns;
214}
215
216/**
217 * kernfs_mount_ns - kernfs mount helper
218 * @fs_type: file_system_type of the fs being mounted
219 * @flags: mount flags specified for the mount
220 * @root: kernfs_root of the hierarchy being mounted
221 * @magic: file system specific magic number
222 * @new_sb_created: tell the caller if we allocated a new superblock
223 * @ns: optional namespace tag of the mount
224 *
225 * This is to be called from each kernfs user's file_system_type->mount()
226 * implementation, which should pass through the specified @fs_type and
227 * @flags, and specify the hierarchy and namespace tag to mount via @root
228 * and @ns, respectively.
229 *
230 * The return value can be passed to the vfs layer verbatim.
231 */
232struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
233				struct kernfs_root *root, unsigned long magic,
234				bool *new_sb_created, const void *ns)
235{
236	struct super_block *sb;
237	struct kernfs_super_info *info;
238	int error;
239
240	info = kzalloc(sizeof(*info), GFP_KERNEL);
241	if (!info)
242		return ERR_PTR(-ENOMEM);
243
244	info->root = root;
245	info->ns = ns;
246
247	sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags,
248			 &init_user_ns, info);
249	if (IS_ERR(sb) || sb->s_fs_info != info)
250		kfree(info);
251	if (IS_ERR(sb))
252		return ERR_CAST(sb);
253
254	if (new_sb_created)
255		*new_sb_created = !sb->s_root;
256
257	if (!sb->s_root) {
258		struct kernfs_super_info *info = kernfs_info(sb);
259
260		error = kernfs_fill_super(sb, magic);
261		if (error) {
262			deactivate_locked_super(sb);
263			return ERR_PTR(error);
264		}
265		sb->s_flags |= MS_ACTIVE;
266
267		mutex_lock(&kernfs_mutex);
268		list_add(&info->node, &root->supers);
269		mutex_unlock(&kernfs_mutex);
270	}
271
272	return dget(sb->s_root);
273}
274
275/**
276 * kernfs_kill_sb - kill_sb for kernfs
277 * @sb: super_block being killed
278 *
279 * This can be used directly for file_system_type->kill_sb().  If a kernfs
280 * user needs extra cleanup, it can implement its own kill_sb() and call
281 * this function at the end.
282 */
283void kernfs_kill_sb(struct super_block *sb)
284{
285	struct kernfs_super_info *info = kernfs_info(sb);
286	struct kernfs_node *root_kn = sb->s_root->d_fsdata;
287
288	mutex_lock(&kernfs_mutex);
289	list_del(&info->node);
290	mutex_unlock(&kernfs_mutex);
291
292	/*
293	 * Remove the superblock from fs_supers/s_instances
294	 * so we can't find it, before freeing kernfs_super_info.
295	 */
296	kill_anon_super(sb);
297	kfree(info);
298	kernfs_put(root_kn);
299}
300
301/**
302 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
303 * @kernfs_root: the kernfs_root in question
304 * @ns: the namespace tag
305 *
306 * Pin the superblock so the superblock won't be destroyed in subsequent
307 * operations.  This can be used to block ->kill_sb() which may be useful
308 * for kernfs users which dynamically manage superblocks.
309 *
310 * Returns NULL if there's no superblock associated to this kernfs_root, or
311 * -EINVAL if the superblock is being freed.
312 */
313struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
314{
315	struct kernfs_super_info *info;
316	struct super_block *sb = NULL;
317
318	mutex_lock(&kernfs_mutex);
319	list_for_each_entry(info, &root->supers, node) {
320		if (info->ns == ns) {
321			sb = info->sb;
322			if (!atomic_inc_not_zero(&info->sb->s_active))
323				sb = ERR_PTR(-EINVAL);
324			break;
325		}
326	}
327	mutex_unlock(&kernfs_mutex);
328	return sb;
329}
330
331void __init kernfs_init(void)
332{
333	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
334					      sizeof(struct kernfs_node),
335					      0, SLAB_PANIC, NULL);
336}