Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/pagemap.h>
  21#include <linux/highmem.h>
  22#include <linux/time.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/backing-dev.h>
  26#include <linux/mpage.h>
  27#include <linux/falloc.h>
  28#include <linux/swap.h>
  29#include <linux/writeback.h>
  30#include <linux/statfs.h>
  31#include <linux/compat.h>
  32#include <linux/slab.h>
  33#include <linux/btrfs.h>
  34#include <linux/uio.h>
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "print-tree.h"
  40#include "tree-log.h"
  41#include "locking.h"
  42#include "volumes.h"
  43#include "qgroup.h"
  44#include "compression.h"
  45
  46static struct kmem_cache *btrfs_inode_defrag_cachep;
  47/*
  48 * when auto defrag is enabled we
  49 * queue up these defrag structs to remember which
  50 * inodes need defragging passes
  51 */
  52struct inode_defrag {
  53	struct rb_node rb_node;
  54	/* objectid */
  55	u64 ino;
  56	/*
  57	 * transid where the defrag was added, we search for
  58	 * extents newer than this
  59	 */
  60	u64 transid;
  61
  62	/* root objectid */
  63	u64 root;
  64
  65	/* last offset we were able to defrag */
  66	u64 last_offset;
  67
  68	/* if we've wrapped around back to zero once already */
  69	int cycled;
  70};
  71
  72static int __compare_inode_defrag(struct inode_defrag *defrag1,
  73				  struct inode_defrag *defrag2)
  74{
  75	if (defrag1->root > defrag2->root)
  76		return 1;
  77	else if (defrag1->root < defrag2->root)
  78		return -1;
  79	else if (defrag1->ino > defrag2->ino)
  80		return 1;
  81	else if (defrag1->ino < defrag2->ino)
  82		return -1;
  83	else
  84		return 0;
  85}
  86
  87/* pop a record for an inode into the defrag tree.  The lock
  88 * must be held already
  89 *
  90 * If you're inserting a record for an older transid than an
  91 * existing record, the transid already in the tree is lowered
  92 *
  93 * If an existing record is found the defrag item you
  94 * pass in is freed
  95 */
  96static int __btrfs_add_inode_defrag(struct inode *inode,
  97				    struct inode_defrag *defrag)
  98{
  99	struct btrfs_root *root = BTRFS_I(inode)->root;
 100	struct inode_defrag *entry;
 101	struct rb_node **p;
 102	struct rb_node *parent = NULL;
 103	int ret;
 104
 105	p = &root->fs_info->defrag_inodes.rb_node;
 106	while (*p) {
 107		parent = *p;
 108		entry = rb_entry(parent, struct inode_defrag, rb_node);
 109
 110		ret = __compare_inode_defrag(defrag, entry);
 111		if (ret < 0)
 112			p = &parent->rb_left;
 113		else if (ret > 0)
 114			p = &parent->rb_right;
 115		else {
 116			/* if we're reinserting an entry for
 117			 * an old defrag run, make sure to
 118			 * lower the transid of our existing record
 119			 */
 120			if (defrag->transid < entry->transid)
 121				entry->transid = defrag->transid;
 122			if (defrag->last_offset > entry->last_offset)
 123				entry->last_offset = defrag->last_offset;
 124			return -EEXIST;
 125		}
 126	}
 127	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 128	rb_link_node(&defrag->rb_node, parent, p);
 129	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
 130	return 0;
 131}
 132
 133static inline int __need_auto_defrag(struct btrfs_root *root)
 134{
 135	if (!btrfs_test_opt(root, AUTO_DEFRAG))
 136		return 0;
 137
 138	if (btrfs_fs_closing(root->fs_info))
 139		return 0;
 140
 141	return 1;
 142}
 143
 144/*
 145 * insert a defrag record for this inode if auto defrag is
 146 * enabled
 147 */
 148int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 149			   struct inode *inode)
 150{
 
 151	struct btrfs_root *root = BTRFS_I(inode)->root;
 152	struct inode_defrag *defrag;
 153	u64 transid;
 154	int ret;
 155
 156	if (!__need_auto_defrag(root))
 157		return 0;
 158
 159	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
 160		return 0;
 161
 162	if (trans)
 163		transid = trans->transid;
 164	else
 165		transid = BTRFS_I(inode)->root->last_trans;
 166
 167	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 168	if (!defrag)
 169		return -ENOMEM;
 170
 171	defrag->ino = btrfs_ino(inode);
 172	defrag->transid = transid;
 173	defrag->root = root->root_key.objectid;
 174
 175	spin_lock(&root->fs_info->defrag_inodes_lock);
 176	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
 177		/*
 178		 * If we set IN_DEFRAG flag and evict the inode from memory,
 179		 * and then re-read this inode, this new inode doesn't have
 180		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 181		 */
 182		ret = __btrfs_add_inode_defrag(inode, defrag);
 183		if (ret)
 184			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 185	} else {
 186		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 187	}
 188	spin_unlock(&root->fs_info->defrag_inodes_lock);
 189	return 0;
 190}
 191
 192/*
 193 * Requeue the defrag object. If there is a defrag object that points to
 194 * the same inode in the tree, we will merge them together (by
 195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 196 */
 197static void btrfs_requeue_inode_defrag(struct inode *inode,
 198				       struct inode_defrag *defrag)
 199{
 200	struct btrfs_root *root = BTRFS_I(inode)->root;
 201	int ret;
 202
 203	if (!__need_auto_defrag(root))
 204		goto out;
 205
 206	/*
 207	 * Here we don't check the IN_DEFRAG flag, because we need merge
 208	 * them together.
 209	 */
 210	spin_lock(&root->fs_info->defrag_inodes_lock);
 211	ret = __btrfs_add_inode_defrag(inode, defrag);
 212	spin_unlock(&root->fs_info->defrag_inodes_lock);
 213	if (ret)
 214		goto out;
 215	return;
 216out:
 217	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 218}
 219
 220/*
 221 * pick the defragable inode that we want, if it doesn't exist, we will get
 222 * the next one.
 223 */
 224static struct inode_defrag *
 225btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 226{
 227	struct inode_defrag *entry = NULL;
 228	struct inode_defrag tmp;
 229	struct rb_node *p;
 230	struct rb_node *parent = NULL;
 231	int ret;
 232
 233	tmp.ino = ino;
 234	tmp.root = root;
 235
 236	spin_lock(&fs_info->defrag_inodes_lock);
 237	p = fs_info->defrag_inodes.rb_node;
 238	while (p) {
 239		parent = p;
 240		entry = rb_entry(parent, struct inode_defrag, rb_node);
 241
 242		ret = __compare_inode_defrag(&tmp, entry);
 243		if (ret < 0)
 244			p = parent->rb_left;
 245		else if (ret > 0)
 246			p = parent->rb_right;
 247		else
 248			goto out;
 249	}
 250
 251	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 252		parent = rb_next(parent);
 253		if (parent)
 254			entry = rb_entry(parent, struct inode_defrag, rb_node);
 255		else
 256			entry = NULL;
 257	}
 258out:
 259	if (entry)
 260		rb_erase(parent, &fs_info->defrag_inodes);
 261	spin_unlock(&fs_info->defrag_inodes_lock);
 262	return entry;
 263}
 264
 265void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 266{
 267	struct inode_defrag *defrag;
 268	struct rb_node *node;
 269
 270	spin_lock(&fs_info->defrag_inodes_lock);
 271	node = rb_first(&fs_info->defrag_inodes);
 272	while (node) {
 273		rb_erase(node, &fs_info->defrag_inodes);
 274		defrag = rb_entry(node, struct inode_defrag, rb_node);
 275		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 276
 277		cond_resched_lock(&fs_info->defrag_inodes_lock);
 278
 279		node = rb_first(&fs_info->defrag_inodes);
 280	}
 281	spin_unlock(&fs_info->defrag_inodes_lock);
 282}
 283
 284#define BTRFS_DEFRAG_BATCH	1024
 285
 286static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 287				    struct inode_defrag *defrag)
 288{
 289	struct btrfs_root *inode_root;
 290	struct inode *inode;
 291	struct btrfs_key key;
 292	struct btrfs_ioctl_defrag_range_args range;
 293	int num_defrag;
 294	int index;
 295	int ret;
 296
 297	/* get the inode */
 298	key.objectid = defrag->root;
 299	key.type = BTRFS_ROOT_ITEM_KEY;
 300	key.offset = (u64)-1;
 301
 302	index = srcu_read_lock(&fs_info->subvol_srcu);
 303
 304	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
 305	if (IS_ERR(inode_root)) {
 306		ret = PTR_ERR(inode_root);
 307		goto cleanup;
 308	}
 309
 310	key.objectid = defrag->ino;
 311	key.type = BTRFS_INODE_ITEM_KEY;
 312	key.offset = 0;
 313	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
 314	if (IS_ERR(inode)) {
 315		ret = PTR_ERR(inode);
 316		goto cleanup;
 317	}
 318	srcu_read_unlock(&fs_info->subvol_srcu, index);
 319
 320	/* do a chunk of defrag */
 321	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 322	memset(&range, 0, sizeof(range));
 323	range.len = (u64)-1;
 324	range.start = defrag->last_offset;
 325
 326	sb_start_write(fs_info->sb);
 327	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 328				       BTRFS_DEFRAG_BATCH);
 329	sb_end_write(fs_info->sb);
 330	/*
 331	 * if we filled the whole defrag batch, there
 332	 * must be more work to do.  Queue this defrag
 333	 * again
 334	 */
 335	if (num_defrag == BTRFS_DEFRAG_BATCH) {
 336		defrag->last_offset = range.start;
 337		btrfs_requeue_inode_defrag(inode, defrag);
 338	} else if (defrag->last_offset && !defrag->cycled) {
 339		/*
 340		 * we didn't fill our defrag batch, but
 341		 * we didn't start at zero.  Make sure we loop
 342		 * around to the start of the file.
 343		 */
 344		defrag->last_offset = 0;
 345		defrag->cycled = 1;
 346		btrfs_requeue_inode_defrag(inode, defrag);
 347	} else {
 348		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 349	}
 350
 351	iput(inode);
 352	return 0;
 353cleanup:
 354	srcu_read_unlock(&fs_info->subvol_srcu, index);
 355	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 356	return ret;
 357}
 358
 359/*
 360 * run through the list of inodes in the FS that need
 361 * defragging
 362 */
 363int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 364{
 365	struct inode_defrag *defrag;
 366	u64 first_ino = 0;
 367	u64 root_objectid = 0;
 368
 369	atomic_inc(&fs_info->defrag_running);
 370	while (1) {
 371		/* Pause the auto defragger. */
 372		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 373			     &fs_info->fs_state))
 374			break;
 375
 376		if (!__need_auto_defrag(fs_info->tree_root))
 377			break;
 378
 379		/* find an inode to defrag */
 380		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 381						 first_ino);
 382		if (!defrag) {
 383			if (root_objectid || first_ino) {
 384				root_objectid = 0;
 385				first_ino = 0;
 386				continue;
 387			} else {
 388				break;
 389			}
 390		}
 391
 392		first_ino = defrag->ino + 1;
 393		root_objectid = defrag->root;
 394
 395		__btrfs_run_defrag_inode(fs_info, defrag);
 396	}
 397	atomic_dec(&fs_info->defrag_running);
 398
 399	/*
 400	 * during unmount, we use the transaction_wait queue to
 401	 * wait for the defragger to stop
 402	 */
 403	wake_up(&fs_info->transaction_wait);
 404	return 0;
 405}
 406
 407/* simple helper to fault in pages and copy.  This should go away
 408 * and be replaced with calls into generic code.
 409 */
 410static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 411					 struct page **prepared_pages,
 412					 struct iov_iter *i)
 413{
 414	size_t copied = 0;
 415	size_t total_copied = 0;
 416	int pg = 0;
 417	int offset = pos & (PAGE_SIZE - 1);
 418
 419	while (write_bytes > 0) {
 420		size_t count = min_t(size_t,
 421				     PAGE_SIZE - offset, write_bytes);
 422		struct page *page = prepared_pages[pg];
 423		/*
 424		 * Copy data from userspace to the current page
 425		 */
 426		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 427
 428		/* Flush processor's dcache for this page */
 429		flush_dcache_page(page);
 430
 431		/*
 432		 * if we get a partial write, we can end up with
 433		 * partially up to date pages.  These add
 434		 * a lot of complexity, so make sure they don't
 435		 * happen by forcing this copy to be retried.
 436		 *
 437		 * The rest of the btrfs_file_write code will fall
 438		 * back to page at a time copies after we return 0.
 439		 */
 440		if (!PageUptodate(page) && copied < count)
 441			copied = 0;
 442
 443		iov_iter_advance(i, copied);
 444		write_bytes -= copied;
 445		total_copied += copied;
 446
 447		/* Return to btrfs_file_write_iter to fault page */
 448		if (unlikely(copied == 0))
 449			break;
 450
 451		if (copied < PAGE_SIZE - offset) {
 452			offset += copied;
 453		} else {
 454			pg++;
 455			offset = 0;
 456		}
 457	}
 458	return total_copied;
 459}
 460
 461/*
 462 * unlocks pages after btrfs_file_write is done with them
 463 */
 464static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 465{
 466	size_t i;
 467	for (i = 0; i < num_pages; i++) {
 468		/* page checked is some magic around finding pages that
 469		 * have been modified without going through btrfs_set_page_dirty
 470		 * clear it here. There should be no need to mark the pages
 471		 * accessed as prepare_pages should have marked them accessed
 472		 * in prepare_pages via find_or_create_page()
 473		 */
 474		ClearPageChecked(pages[i]);
 475		unlock_page(pages[i]);
 476		put_page(pages[i]);
 477	}
 478}
 479
 480/*
 481 * after copy_from_user, pages need to be dirtied and we need to make
 482 * sure holes are created between the current EOF and the start of
 483 * any next extents (if required).
 484 *
 485 * this also makes the decision about creating an inline extent vs
 486 * doing real data extents, marking pages dirty and delalloc as required.
 487 */
 488int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
 489			     struct page **pages, size_t num_pages,
 490			     loff_t pos, size_t write_bytes,
 491			     struct extent_state **cached)
 492{
 
 493	int err = 0;
 494	int i;
 495	u64 num_bytes;
 496	u64 start_pos;
 497	u64 end_of_last_block;
 498	u64 end_pos = pos + write_bytes;
 499	loff_t isize = i_size_read(inode);
 500
 501	start_pos = pos & ~((u64)root->sectorsize - 1);
 502	num_bytes = round_up(write_bytes + pos - start_pos, root->sectorsize);
 
 503
 504	end_of_last_block = start_pos + num_bytes - 1;
 505	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 506					cached);
 507	if (err)
 508		return err;
 509
 510	for (i = 0; i < num_pages; i++) {
 511		struct page *p = pages[i];
 512		SetPageUptodate(p);
 513		ClearPageChecked(p);
 514		set_page_dirty(p);
 515	}
 516
 517	/*
 518	 * we've only changed i_size in ram, and we haven't updated
 519	 * the disk i_size.  There is no need to log the inode
 520	 * at this time.
 521	 */
 522	if (end_pos > isize)
 523		i_size_write(inode, end_pos);
 524	return 0;
 525}
 526
 527/*
 528 * this drops all the extents in the cache that intersect the range
 529 * [start, end].  Existing extents are split as required.
 530 */
 531void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
 532			     int skip_pinned)
 533{
 534	struct extent_map *em;
 535	struct extent_map *split = NULL;
 536	struct extent_map *split2 = NULL;
 537	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 538	u64 len = end - start + 1;
 539	u64 gen;
 540	int ret;
 541	int testend = 1;
 542	unsigned long flags;
 543	int compressed = 0;
 544	bool modified;
 545
 546	WARN_ON(end < start);
 547	if (end == (u64)-1) {
 548		len = (u64)-1;
 549		testend = 0;
 550	}
 551	while (1) {
 552		int no_splits = 0;
 553
 554		modified = false;
 555		if (!split)
 556			split = alloc_extent_map();
 557		if (!split2)
 558			split2 = alloc_extent_map();
 559		if (!split || !split2)
 560			no_splits = 1;
 561
 562		write_lock(&em_tree->lock);
 563		em = lookup_extent_mapping(em_tree, start, len);
 564		if (!em) {
 565			write_unlock(&em_tree->lock);
 566			break;
 567		}
 568		flags = em->flags;
 569		gen = em->generation;
 570		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 571			if (testend && em->start + em->len >= start + len) {
 572				free_extent_map(em);
 573				write_unlock(&em_tree->lock);
 574				break;
 575			}
 576			start = em->start + em->len;
 577			if (testend)
 578				len = start + len - (em->start + em->len);
 579			free_extent_map(em);
 580			write_unlock(&em_tree->lock);
 581			continue;
 582		}
 583		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 584		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 585		clear_bit(EXTENT_FLAG_LOGGING, &flags);
 586		modified = !list_empty(&em->list);
 587		if (no_splits)
 588			goto next;
 589
 590		if (em->start < start) {
 591			split->start = em->start;
 592			split->len = start - em->start;
 593
 594			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 595				split->orig_start = em->orig_start;
 596				split->block_start = em->block_start;
 597
 598				if (compressed)
 599					split->block_len = em->block_len;
 600				else
 601					split->block_len = split->len;
 602				split->orig_block_len = max(split->block_len,
 603						em->orig_block_len);
 604				split->ram_bytes = em->ram_bytes;
 605			} else {
 606				split->orig_start = split->start;
 607				split->block_len = 0;
 608				split->block_start = em->block_start;
 609				split->orig_block_len = 0;
 610				split->ram_bytes = split->len;
 611			}
 612
 613			split->generation = gen;
 614			split->bdev = em->bdev;
 615			split->flags = flags;
 616			split->compress_type = em->compress_type;
 617			replace_extent_mapping(em_tree, em, split, modified);
 618			free_extent_map(split);
 619			split = split2;
 620			split2 = NULL;
 621		}
 622		if (testend && em->start + em->len > start + len) {
 623			u64 diff = start + len - em->start;
 624
 625			split->start = start + len;
 626			split->len = em->start + em->len - (start + len);
 627			split->bdev = em->bdev;
 628			split->flags = flags;
 629			split->compress_type = em->compress_type;
 630			split->generation = gen;
 631
 632			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 633				split->orig_block_len = max(em->block_len,
 634						    em->orig_block_len);
 635
 636				split->ram_bytes = em->ram_bytes;
 637				if (compressed) {
 638					split->block_len = em->block_len;
 639					split->block_start = em->block_start;
 640					split->orig_start = em->orig_start;
 641				} else {
 642					split->block_len = split->len;
 643					split->block_start = em->block_start
 644						+ diff;
 645					split->orig_start = em->orig_start;
 646				}
 647			} else {
 648				split->ram_bytes = split->len;
 649				split->orig_start = split->start;
 650				split->block_len = 0;
 651				split->block_start = em->block_start;
 652				split->orig_block_len = 0;
 653			}
 654
 655			if (extent_map_in_tree(em)) {
 656				replace_extent_mapping(em_tree, em, split,
 657						       modified);
 658			} else {
 659				ret = add_extent_mapping(em_tree, split,
 660							 modified);
 661				ASSERT(ret == 0); /* Logic error */
 662			}
 663			free_extent_map(split);
 664			split = NULL;
 665		}
 666next:
 667		if (extent_map_in_tree(em))
 668			remove_extent_mapping(em_tree, em);
 669		write_unlock(&em_tree->lock);
 670
 671		/* once for us */
 672		free_extent_map(em);
 673		/* once for the tree*/
 674		free_extent_map(em);
 675	}
 676	if (split)
 677		free_extent_map(split);
 678	if (split2)
 679		free_extent_map(split2);
 680}
 681
 682/*
 683 * this is very complex, but the basic idea is to drop all extents
 684 * in the range start - end.  hint_block is filled in with a block number
 685 * that would be a good hint to the block allocator for this file.
 686 *
 687 * If an extent intersects the range but is not entirely inside the range
 688 * it is either truncated or split.  Anything entirely inside the range
 689 * is deleted from the tree.
 690 */
 691int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 692			 struct btrfs_root *root, struct inode *inode,
 693			 struct btrfs_path *path, u64 start, u64 end,
 694			 u64 *drop_end, int drop_cache,
 695			 int replace_extent,
 696			 u32 extent_item_size,
 697			 int *key_inserted)
 698{
 
 699	struct extent_buffer *leaf;
 700	struct btrfs_file_extent_item *fi;
 701	struct btrfs_key key;
 702	struct btrfs_key new_key;
 703	u64 ino = btrfs_ino(inode);
 704	u64 search_start = start;
 705	u64 disk_bytenr = 0;
 706	u64 num_bytes = 0;
 707	u64 extent_offset = 0;
 708	u64 extent_end = 0;
 
 709	int del_nr = 0;
 710	int del_slot = 0;
 711	int extent_type;
 712	int recow;
 713	int ret;
 714	int modify_tree = -1;
 715	int update_refs;
 716	int found = 0;
 717	int leafs_visited = 0;
 718
 719	if (drop_cache)
 720		btrfs_drop_extent_cache(inode, start, end - 1, 0);
 721
 722	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
 723		modify_tree = 0;
 724
 725	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 726		       root == root->fs_info->tree_root);
 727	while (1) {
 728		recow = 0;
 729		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 730					       search_start, modify_tree);
 731		if (ret < 0)
 732			break;
 733		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 734			leaf = path->nodes[0];
 735			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 736			if (key.objectid == ino &&
 737			    key.type == BTRFS_EXTENT_DATA_KEY)
 738				path->slots[0]--;
 739		}
 740		ret = 0;
 741		leafs_visited++;
 742next_slot:
 743		leaf = path->nodes[0];
 744		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 745			BUG_ON(del_nr > 0);
 746			ret = btrfs_next_leaf(root, path);
 747			if (ret < 0)
 748				break;
 749			if (ret > 0) {
 750				ret = 0;
 751				break;
 752			}
 753			leafs_visited++;
 754			leaf = path->nodes[0];
 755			recow = 1;
 756		}
 757
 758		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 759
 760		if (key.objectid > ino)
 761			break;
 762		if (WARN_ON_ONCE(key.objectid < ino) ||
 763		    key.type < BTRFS_EXTENT_DATA_KEY) {
 764			ASSERT(del_nr == 0);
 765			path->slots[0]++;
 766			goto next_slot;
 767		}
 768		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 769			break;
 770
 771		fi = btrfs_item_ptr(leaf, path->slots[0],
 772				    struct btrfs_file_extent_item);
 773		extent_type = btrfs_file_extent_type(leaf, fi);
 774
 775		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 776		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 777			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 778			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 779			extent_offset = btrfs_file_extent_offset(leaf, fi);
 780			extent_end = key.offset +
 781				btrfs_file_extent_num_bytes(leaf, fi);
 782		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 783			extent_end = key.offset +
 784				btrfs_file_extent_inline_len(leaf,
 785						     path->slots[0], fi);
 786		} else {
 787			/* can't happen */
 788			BUG();
 789		}
 790
 791		/*
 792		 * Don't skip extent items representing 0 byte lengths. They
 793		 * used to be created (bug) if while punching holes we hit
 794		 * -ENOSPC condition. So if we find one here, just ensure we
 795		 * delete it, otherwise we would insert a new file extent item
 796		 * with the same key (offset) as that 0 bytes length file
 797		 * extent item in the call to setup_items_for_insert() later
 798		 * in this function.
 799		 */
 800		if (extent_end == key.offset && extent_end >= search_start)
 
 801			goto delete_extent_item;
 
 802
 803		if (extent_end <= search_start) {
 804			path->slots[0]++;
 805			goto next_slot;
 806		}
 807
 808		found = 1;
 809		search_start = max(key.offset, start);
 810		if (recow || !modify_tree) {
 811			modify_tree = -1;
 812			btrfs_release_path(path);
 813			continue;
 814		}
 815
 816		/*
 817		 *     | - range to drop - |
 818		 *  | -------- extent -------- |
 819		 */
 820		if (start > key.offset && end < extent_end) {
 821			BUG_ON(del_nr > 0);
 822			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 823				ret = -EOPNOTSUPP;
 824				break;
 825			}
 826
 827			memcpy(&new_key, &key, sizeof(new_key));
 828			new_key.offset = start;
 829			ret = btrfs_duplicate_item(trans, root, path,
 830						   &new_key);
 831			if (ret == -EAGAIN) {
 832				btrfs_release_path(path);
 833				continue;
 834			}
 835			if (ret < 0)
 836				break;
 837
 838			leaf = path->nodes[0];
 839			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 840					    struct btrfs_file_extent_item);
 841			btrfs_set_file_extent_num_bytes(leaf, fi,
 842							start - key.offset);
 843
 844			fi = btrfs_item_ptr(leaf, path->slots[0],
 845					    struct btrfs_file_extent_item);
 846
 847			extent_offset += start - key.offset;
 848			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 849			btrfs_set_file_extent_num_bytes(leaf, fi,
 850							extent_end - start);
 851			btrfs_mark_buffer_dirty(leaf);
 852
 853			if (update_refs && disk_bytenr > 0) {
 854				ret = btrfs_inc_extent_ref(trans, root,
 855						disk_bytenr, num_bytes, 0,
 856						root->root_key.objectid,
 857						new_key.objectid,
 858						start - extent_offset);
 859				BUG_ON(ret); /* -ENOMEM */
 860			}
 861			key.offset = start;
 862		}
 863		/*
 
 
 
 
 
 
 864		 *  | ---- range to drop ----- |
 865		 *      | -------- extent -------- |
 866		 */
 867		if (start <= key.offset && end < extent_end) {
 868			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 869				ret = -EOPNOTSUPP;
 870				break;
 871			}
 872
 873			memcpy(&new_key, &key, sizeof(new_key));
 874			new_key.offset = end;
 875			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
 876
 877			extent_offset += end - key.offset;
 878			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 879			btrfs_set_file_extent_num_bytes(leaf, fi,
 880							extent_end - end);
 881			btrfs_mark_buffer_dirty(leaf);
 882			if (update_refs && disk_bytenr > 0)
 883				inode_sub_bytes(inode, end - key.offset);
 884			break;
 885		}
 886
 887		search_start = extent_end;
 888		/*
 889		 *       | ---- range to drop ----- |
 890		 *  | -------- extent -------- |
 891		 */
 892		if (start > key.offset && end >= extent_end) {
 893			BUG_ON(del_nr > 0);
 894			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 895				ret = -EOPNOTSUPP;
 896				break;
 897			}
 898
 899			btrfs_set_file_extent_num_bytes(leaf, fi,
 900							start - key.offset);
 901			btrfs_mark_buffer_dirty(leaf);
 902			if (update_refs && disk_bytenr > 0)
 903				inode_sub_bytes(inode, extent_end - start);
 904			if (end == extent_end)
 905				break;
 906
 907			path->slots[0]++;
 908			goto next_slot;
 909		}
 910
 911		/*
 912		 *  | ---- range to drop ----- |
 913		 *    | ------ extent ------ |
 914		 */
 915		if (start <= key.offset && end >= extent_end) {
 916delete_extent_item:
 917			if (del_nr == 0) {
 918				del_slot = path->slots[0];
 919				del_nr = 1;
 920			} else {
 921				BUG_ON(del_slot + del_nr != path->slots[0]);
 922				del_nr++;
 923			}
 924
 925			if (update_refs &&
 926			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 927				inode_sub_bytes(inode,
 928						extent_end - key.offset);
 929				extent_end = ALIGN(extent_end,
 930						   root->sectorsize);
 931			} else if (update_refs && disk_bytenr > 0) {
 932				ret = btrfs_free_extent(trans, root,
 933						disk_bytenr, num_bytes, 0,
 934						root->root_key.objectid,
 935						key.objectid, key.offset -
 936						extent_offset);
 937				BUG_ON(ret); /* -ENOMEM */
 938				inode_sub_bytes(inode,
 939						extent_end - key.offset);
 940			}
 941
 942			if (end == extent_end)
 943				break;
 944
 945			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 946				path->slots[0]++;
 947				goto next_slot;
 948			}
 949
 950			ret = btrfs_del_items(trans, root, path, del_slot,
 951					      del_nr);
 952			if (ret) {
 953				btrfs_abort_transaction(trans, root, ret);
 954				break;
 955			}
 956
 957			del_nr = 0;
 958			del_slot = 0;
 959
 960			btrfs_release_path(path);
 961			continue;
 962		}
 963
 964		BUG_ON(1);
 965	}
 966
 967	if (!ret && del_nr > 0) {
 968		/*
 969		 * Set path->slots[0] to first slot, so that after the delete
 970		 * if items are move off from our leaf to its immediate left or
 971		 * right neighbor leafs, we end up with a correct and adjusted
 972		 * path->slots[0] for our insertion (if replace_extent != 0).
 973		 */
 974		path->slots[0] = del_slot;
 975		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 976		if (ret)
 977			btrfs_abort_transaction(trans, root, ret);
 978	}
 979
 980	leaf = path->nodes[0];
 981	/*
 982	 * If btrfs_del_items() was called, it might have deleted a leaf, in
 983	 * which case it unlocked our path, so check path->locks[0] matches a
 984	 * write lock.
 985	 */
 986	if (!ret && replace_extent && leafs_visited == 1 &&
 987	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
 988	     path->locks[0] == BTRFS_WRITE_LOCK) &&
 989	    btrfs_leaf_free_space(root, leaf) >=
 990	    sizeof(struct btrfs_item) + extent_item_size) {
 991
 992		key.objectid = ino;
 993		key.type = BTRFS_EXTENT_DATA_KEY;
 994		key.offset = start;
 995		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
 996			struct btrfs_key slot_key;
 997
 998			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
 999			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1000				path->slots[0]++;
1001		}
1002		setup_items_for_insert(root, path, &key,
1003				       &extent_item_size,
1004				       extent_item_size,
1005				       sizeof(struct btrfs_item) +
1006				       extent_item_size, 1);
1007		*key_inserted = 1;
1008	}
1009
1010	if (!replace_extent || !(*key_inserted))
1011		btrfs_release_path(path);
1012	if (drop_end)
1013		*drop_end = found ? min(end, extent_end) : end;
1014	return ret;
1015}
1016
1017int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1018		       struct btrfs_root *root, struct inode *inode, u64 start,
1019		       u64 end, int drop_cache)
1020{
1021	struct btrfs_path *path;
1022	int ret;
1023
1024	path = btrfs_alloc_path();
1025	if (!path)
1026		return -ENOMEM;
1027	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1028				   drop_cache, 0, 0, NULL);
1029	btrfs_free_path(path);
1030	return ret;
1031}
1032
1033static int extent_mergeable(struct extent_buffer *leaf, int slot,
1034			    u64 objectid, u64 bytenr, u64 orig_offset,
1035			    u64 *start, u64 *end)
1036{
1037	struct btrfs_file_extent_item *fi;
1038	struct btrfs_key key;
1039	u64 extent_end;
1040
1041	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1042		return 0;
1043
1044	btrfs_item_key_to_cpu(leaf, &key, slot);
1045	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1046		return 0;
1047
1048	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1049	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1050	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1051	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1052	    btrfs_file_extent_compression(leaf, fi) ||
1053	    btrfs_file_extent_encryption(leaf, fi) ||
1054	    btrfs_file_extent_other_encoding(leaf, fi))
1055		return 0;
1056
1057	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1058	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1059		return 0;
1060
1061	*start = key.offset;
1062	*end = extent_end;
1063	return 1;
1064}
1065
1066/*
1067 * Mark extent in the range start - end as written.
1068 *
1069 * This changes extent type from 'pre-allocated' to 'regular'. If only
1070 * part of extent is marked as written, the extent will be split into
1071 * two or three.
1072 */
1073int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1074			      struct inode *inode, u64 start, u64 end)
1075{
 
1076	struct btrfs_root *root = BTRFS_I(inode)->root;
1077	struct extent_buffer *leaf;
1078	struct btrfs_path *path;
1079	struct btrfs_file_extent_item *fi;
1080	struct btrfs_key key;
1081	struct btrfs_key new_key;
1082	u64 bytenr;
1083	u64 num_bytes;
1084	u64 extent_end;
1085	u64 orig_offset;
1086	u64 other_start;
1087	u64 other_end;
1088	u64 split;
1089	int del_nr = 0;
1090	int del_slot = 0;
1091	int recow;
1092	int ret;
1093	u64 ino = btrfs_ino(inode);
1094
1095	path = btrfs_alloc_path();
1096	if (!path)
1097		return -ENOMEM;
1098again:
1099	recow = 0;
1100	split = start;
1101	key.objectid = ino;
1102	key.type = BTRFS_EXTENT_DATA_KEY;
1103	key.offset = split;
1104
1105	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1106	if (ret < 0)
1107		goto out;
1108	if (ret > 0 && path->slots[0] > 0)
1109		path->slots[0]--;
1110
1111	leaf = path->nodes[0];
1112	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1113	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
 
 
 
 
 
1114	fi = btrfs_item_ptr(leaf, path->slots[0],
1115			    struct btrfs_file_extent_item);
1116	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1117	       BTRFS_FILE_EXTENT_PREALLOC);
 
 
 
1118	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1119	BUG_ON(key.offset > start || extent_end < end);
 
 
 
 
1120
1121	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1122	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1123	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1124	memcpy(&new_key, &key, sizeof(new_key));
1125
1126	if (start == key.offset && end < extent_end) {
1127		other_start = 0;
1128		other_end = start;
1129		if (extent_mergeable(leaf, path->slots[0] - 1,
1130				     ino, bytenr, orig_offset,
1131				     &other_start, &other_end)) {
1132			new_key.offset = end;
1133			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1134			fi = btrfs_item_ptr(leaf, path->slots[0],
1135					    struct btrfs_file_extent_item);
1136			btrfs_set_file_extent_generation(leaf, fi,
1137							 trans->transid);
1138			btrfs_set_file_extent_num_bytes(leaf, fi,
1139							extent_end - end);
1140			btrfs_set_file_extent_offset(leaf, fi,
1141						     end - orig_offset);
1142			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1143					    struct btrfs_file_extent_item);
1144			btrfs_set_file_extent_generation(leaf, fi,
1145							 trans->transid);
1146			btrfs_set_file_extent_num_bytes(leaf, fi,
1147							end - other_start);
1148			btrfs_mark_buffer_dirty(leaf);
1149			goto out;
1150		}
1151	}
1152
1153	if (start > key.offset && end == extent_end) {
1154		other_start = end;
1155		other_end = 0;
1156		if (extent_mergeable(leaf, path->slots[0] + 1,
1157				     ino, bytenr, orig_offset,
1158				     &other_start, &other_end)) {
1159			fi = btrfs_item_ptr(leaf, path->slots[0],
1160					    struct btrfs_file_extent_item);
1161			btrfs_set_file_extent_num_bytes(leaf, fi,
1162							start - key.offset);
1163			btrfs_set_file_extent_generation(leaf, fi,
1164							 trans->transid);
1165			path->slots[0]++;
1166			new_key.offset = start;
1167			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1168
1169			fi = btrfs_item_ptr(leaf, path->slots[0],
1170					    struct btrfs_file_extent_item);
1171			btrfs_set_file_extent_generation(leaf, fi,
1172							 trans->transid);
1173			btrfs_set_file_extent_num_bytes(leaf, fi,
1174							other_end - start);
1175			btrfs_set_file_extent_offset(leaf, fi,
1176						     start - orig_offset);
1177			btrfs_mark_buffer_dirty(leaf);
1178			goto out;
1179		}
1180	}
1181
1182	while (start > key.offset || end < extent_end) {
1183		if (key.offset == start)
1184			split = end;
1185
1186		new_key.offset = split;
1187		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1188		if (ret == -EAGAIN) {
1189			btrfs_release_path(path);
1190			goto again;
1191		}
1192		if (ret < 0) {
1193			btrfs_abort_transaction(trans, root, ret);
1194			goto out;
1195		}
1196
1197		leaf = path->nodes[0];
1198		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1199				    struct btrfs_file_extent_item);
1200		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1201		btrfs_set_file_extent_num_bytes(leaf, fi,
1202						split - key.offset);
1203
1204		fi = btrfs_item_ptr(leaf, path->slots[0],
1205				    struct btrfs_file_extent_item);
1206
1207		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1208		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1209		btrfs_set_file_extent_num_bytes(leaf, fi,
1210						extent_end - split);
1211		btrfs_mark_buffer_dirty(leaf);
1212
1213		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1214					   root->root_key.objectid,
1215					   ino, orig_offset);
1216		BUG_ON(ret); /* -ENOMEM */
 
 
 
1217
1218		if (split == start) {
1219			key.offset = start;
1220		} else {
1221			BUG_ON(start != key.offset);
 
 
 
 
1222			path->slots[0]--;
1223			extent_end = end;
1224		}
1225		recow = 1;
1226	}
1227
1228	other_start = end;
1229	other_end = 0;
1230	if (extent_mergeable(leaf, path->slots[0] + 1,
1231			     ino, bytenr, orig_offset,
1232			     &other_start, &other_end)) {
1233		if (recow) {
1234			btrfs_release_path(path);
1235			goto again;
1236		}
1237		extent_end = other_end;
1238		del_slot = path->slots[0] + 1;
1239		del_nr++;
1240		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1241					0, root->root_key.objectid,
1242					ino, orig_offset);
1243		BUG_ON(ret); /* -ENOMEM */
 
 
 
1244	}
1245	other_start = 0;
1246	other_end = start;
1247	if (extent_mergeable(leaf, path->slots[0] - 1,
1248			     ino, bytenr, orig_offset,
1249			     &other_start, &other_end)) {
1250		if (recow) {
1251			btrfs_release_path(path);
1252			goto again;
1253		}
1254		key.offset = other_start;
1255		del_slot = path->slots[0];
1256		del_nr++;
1257		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1258					0, root->root_key.objectid,
1259					ino, orig_offset);
1260		BUG_ON(ret); /* -ENOMEM */
 
 
 
1261	}
1262	if (del_nr == 0) {
1263		fi = btrfs_item_ptr(leaf, path->slots[0],
1264			   struct btrfs_file_extent_item);
1265		btrfs_set_file_extent_type(leaf, fi,
1266					   BTRFS_FILE_EXTENT_REG);
1267		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1268		btrfs_mark_buffer_dirty(leaf);
1269	} else {
1270		fi = btrfs_item_ptr(leaf, del_slot - 1,
1271			   struct btrfs_file_extent_item);
1272		btrfs_set_file_extent_type(leaf, fi,
1273					   BTRFS_FILE_EXTENT_REG);
1274		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1275		btrfs_set_file_extent_num_bytes(leaf, fi,
1276						extent_end - key.offset);
1277		btrfs_mark_buffer_dirty(leaf);
1278
1279		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1280		if (ret < 0) {
1281			btrfs_abort_transaction(trans, root, ret);
1282			goto out;
1283		}
1284	}
1285out:
1286	btrfs_free_path(path);
1287	return 0;
1288}
1289
1290/*
1291 * on error we return an unlocked page and the error value
1292 * on success we return a locked page and 0
1293 */
1294static int prepare_uptodate_page(struct inode *inode,
1295				 struct page *page, u64 pos,
1296				 bool force_uptodate)
1297{
1298	int ret = 0;
1299
1300	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1301	    !PageUptodate(page)) {
1302		ret = btrfs_readpage(NULL, page);
1303		if (ret)
1304			return ret;
1305		lock_page(page);
1306		if (!PageUptodate(page)) {
1307			unlock_page(page);
1308			return -EIO;
1309		}
1310		if (page->mapping != inode->i_mapping) {
1311			unlock_page(page);
1312			return -EAGAIN;
1313		}
1314	}
1315	return 0;
1316}
1317
1318/*
1319 * this just gets pages into the page cache and locks them down.
1320 */
1321static noinline int prepare_pages(struct inode *inode, struct page **pages,
1322				  size_t num_pages, loff_t pos,
1323				  size_t write_bytes, bool force_uptodate)
1324{
1325	int i;
1326	unsigned long index = pos >> PAGE_SHIFT;
1327	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1328	int err = 0;
1329	int faili;
1330
1331	for (i = 0; i < num_pages; i++) {
1332again:
1333		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1334					       mask | __GFP_WRITE);
1335		if (!pages[i]) {
1336			faili = i - 1;
1337			err = -ENOMEM;
1338			goto fail;
1339		}
1340
1341		if (i == 0)
1342			err = prepare_uptodate_page(inode, pages[i], pos,
1343						    force_uptodate);
1344		if (!err && i == num_pages - 1)
1345			err = prepare_uptodate_page(inode, pages[i],
1346						    pos + write_bytes, false);
1347		if (err) {
1348			put_page(pages[i]);
1349			if (err == -EAGAIN) {
1350				err = 0;
1351				goto again;
1352			}
1353			faili = i - 1;
1354			goto fail;
1355		}
1356		wait_on_page_writeback(pages[i]);
1357	}
1358
1359	return 0;
1360fail:
1361	while (faili >= 0) {
1362		unlock_page(pages[faili]);
1363		put_page(pages[faili]);
1364		faili--;
1365	}
1366	return err;
1367
1368}
1369
1370/*
1371 * This function locks the extent and properly waits for data=ordered extents
1372 * to finish before allowing the pages to be modified if need.
1373 *
1374 * The return value:
1375 * 1 - the extent is locked
1376 * 0 - the extent is not locked, and everything is OK
1377 * -EAGAIN - need re-prepare the pages
1378 * the other < 0 number - Something wrong happens
1379 */
1380static noinline int
1381lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1382				size_t num_pages, loff_t pos,
1383				size_t write_bytes,
1384				u64 *lockstart, u64 *lockend,
1385				struct extent_state **cached_state)
1386{
1387	struct btrfs_root *root = BTRFS_I(inode)->root;
1388	u64 start_pos;
1389	u64 last_pos;
1390	int i;
1391	int ret = 0;
1392
1393	start_pos = round_down(pos, root->sectorsize);
1394	last_pos = start_pos
1395		+ round_up(pos + write_bytes - start_pos, root->sectorsize) - 1;
 
1396
1397	if (start_pos < inode->i_size) {
1398		struct btrfs_ordered_extent *ordered;
1399		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1400				 start_pos, last_pos, cached_state);
1401		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1402						     last_pos - start_pos + 1);
1403		if (ordered &&
1404		    ordered->file_offset + ordered->len > start_pos &&
1405		    ordered->file_offset <= last_pos) {
1406			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1407					     start_pos, last_pos,
1408					     cached_state, GFP_NOFS);
1409			for (i = 0; i < num_pages; i++) {
1410				unlock_page(pages[i]);
1411				put_page(pages[i]);
1412			}
1413			btrfs_start_ordered_extent(inode, ordered, 1);
1414			btrfs_put_ordered_extent(ordered);
1415			return -EAGAIN;
1416		}
1417		if (ordered)
1418			btrfs_put_ordered_extent(ordered);
1419
1420		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1421				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1422				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1423				  0, 0, cached_state, GFP_NOFS);
1424		*lockstart = start_pos;
1425		*lockend = last_pos;
1426		ret = 1;
1427	}
1428
1429	for (i = 0; i < num_pages; i++) {
1430		if (clear_page_dirty_for_io(pages[i]))
1431			account_page_redirty(pages[i]);
1432		set_page_extent_mapped(pages[i]);
1433		WARN_ON(!PageLocked(pages[i]));
1434	}
1435
1436	return ret;
1437}
1438
1439static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1440				    size_t *write_bytes)
1441{
 
1442	struct btrfs_root *root = BTRFS_I(inode)->root;
1443	struct btrfs_ordered_extent *ordered;
1444	u64 lockstart, lockend;
1445	u64 num_bytes;
1446	int ret;
1447
1448	ret = btrfs_start_write_no_snapshoting(root);
1449	if (!ret)
1450		return -ENOSPC;
1451
1452	lockstart = round_down(pos, root->sectorsize);
1453	lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
 
1454
1455	while (1) {
1456		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1457		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1458						     lockend - lockstart + 1);
1459		if (!ordered) {
1460			break;
1461		}
1462		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1463		btrfs_start_ordered_extent(inode, ordered, 1);
1464		btrfs_put_ordered_extent(ordered);
1465	}
1466
1467	num_bytes = lockend - lockstart + 1;
1468	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1469	if (ret <= 0) {
1470		ret = 0;
1471		btrfs_end_write_no_snapshoting(root);
1472	} else {
1473		*write_bytes = min_t(size_t, *write_bytes ,
1474				     num_bytes - pos + lockstart);
1475	}
1476
1477	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1478
1479	return ret;
1480}
1481
1482static noinline ssize_t __btrfs_buffered_write(struct file *file,
1483					       struct iov_iter *i,
1484					       loff_t pos)
1485{
1486	struct inode *inode = file_inode(file);
 
1487	struct btrfs_root *root = BTRFS_I(inode)->root;
1488	struct page **pages = NULL;
1489	struct extent_state *cached_state = NULL;
1490	u64 release_bytes = 0;
1491	u64 lockstart;
1492	u64 lockend;
1493	size_t num_written = 0;
1494	int nrptrs;
1495	int ret = 0;
1496	bool only_release_metadata = false;
1497	bool force_page_uptodate = false;
1498	bool need_unlock;
1499
1500	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1501			PAGE_SIZE / (sizeof(struct page *)));
1502	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1503	nrptrs = max(nrptrs, 8);
1504	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1505	if (!pages)
1506		return -ENOMEM;
1507
1508	while (iov_iter_count(i) > 0) {
1509		size_t offset = pos & (PAGE_SIZE - 1);
1510		size_t sector_offset;
1511		size_t write_bytes = min(iov_iter_count(i),
1512					 nrptrs * (size_t)PAGE_SIZE -
1513					 offset);
1514		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1515						PAGE_SIZE);
1516		size_t reserve_bytes;
1517		size_t dirty_pages;
1518		size_t copied;
1519		size_t dirty_sectors;
1520		size_t num_sectors;
1521
1522		WARN_ON(num_pages > nrptrs);
1523
1524		/*
1525		 * Fault pages before locking them in prepare_pages
1526		 * to avoid recursive lock
1527		 */
1528		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1529			ret = -EFAULT;
1530			break;
1531		}
1532
1533		sector_offset = pos & (root->sectorsize - 1);
1534		reserve_bytes = round_up(write_bytes + sector_offset,
1535				root->sectorsize);
1536
1537		if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1538					      BTRFS_INODE_PREALLOC)) &&
1539		    check_can_nocow(inode, pos, &write_bytes) > 0) {
1540			/*
1541			 * For nodata cow case, no need to reserve
1542			 * data space.
1543			 */
1544			only_release_metadata = true;
1545			/*
1546			 * our prealloc extent may be smaller than
1547			 * write_bytes, so scale down.
1548			 */
1549			num_pages = DIV_ROUND_UP(write_bytes + offset,
1550						 PAGE_SIZE);
1551			reserve_bytes = round_up(write_bytes + sector_offset,
1552					root->sectorsize);
1553			goto reserve_metadata;
1554		}
1555
1556		ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1557		if (ret < 0)
1558			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1559
1560reserve_metadata:
1561		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1562		if (ret) {
1563			if (!only_release_metadata)
1564				btrfs_free_reserved_data_space(inode, pos,
1565							       write_bytes);
1566			else
1567				btrfs_end_write_no_snapshoting(root);
1568			break;
1569		}
1570
1571		release_bytes = reserve_bytes;
1572		need_unlock = false;
1573again:
1574		/*
1575		 * This is going to setup the pages array with the number of
1576		 * pages we want, so we don't really need to worry about the
1577		 * contents of pages from loop to loop
1578		 */
1579		ret = prepare_pages(inode, pages, num_pages,
1580				    pos, write_bytes,
1581				    force_page_uptodate);
1582		if (ret)
1583			break;
1584
1585		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1586						pos, write_bytes, &lockstart,
1587						&lockend, &cached_state);
1588		if (ret < 0) {
1589			if (ret == -EAGAIN)
1590				goto again;
1591			break;
1592		} else if (ret > 0) {
1593			need_unlock = true;
1594			ret = 0;
1595		}
1596
1597		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1598
 
 
 
 
 
1599		/*
1600		 * if we have trouble faulting in the pages, fall
1601		 * back to one page at a time
1602		 */
1603		if (copied < write_bytes)
1604			nrptrs = 1;
1605
1606		if (copied == 0) {
1607			force_page_uptodate = true;
 
1608			dirty_pages = 0;
1609		} else {
1610			force_page_uptodate = false;
1611			dirty_pages = DIV_ROUND_UP(copied + offset,
1612						   PAGE_SIZE);
1613		}
1614
1615		/*
1616		 * If we had a short copy we need to release the excess delaloc
1617		 * bytes we reserved.  We need to increment outstanding_extents
1618		 * because btrfs_delalloc_release_space will decrement it, but
 
1619		 * we still have an outstanding extent for the chunk we actually
1620		 * managed to copy.
1621		 */
1622		num_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1623						reserve_bytes);
1624		dirty_sectors = round_up(copied + sector_offset,
1625					root->sectorsize);
1626		dirty_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1627						dirty_sectors);
1628
1629		if (num_sectors > dirty_sectors) {
1630			release_bytes = (write_bytes - copied)
1631				& ~((u64)root->sectorsize - 1);
 
1632			if (copied > 0) {
1633				spin_lock(&BTRFS_I(inode)->lock);
1634				BTRFS_I(inode)->outstanding_extents++;
1635				spin_unlock(&BTRFS_I(inode)->lock);
1636			}
1637			if (only_release_metadata) {
1638				btrfs_delalloc_release_metadata(inode,
1639								release_bytes);
1640			} else {
1641				u64 __pos;
1642
1643				__pos = round_down(pos, root->sectorsize) +
 
1644					(dirty_pages << PAGE_SHIFT);
1645				btrfs_delalloc_release_space(inode, __pos,
1646							     release_bytes);
1647			}
1648		}
1649
1650		release_bytes = round_up(copied + sector_offset,
1651					root->sectorsize);
1652
1653		if (copied > 0)
1654			ret = btrfs_dirty_pages(root, inode, pages,
1655						dirty_pages, pos, copied,
1656						NULL);
1657		if (need_unlock)
1658			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1659					     lockstart, lockend, &cached_state,
1660					     GFP_NOFS);
1661		if (ret) {
1662			btrfs_drop_pages(pages, num_pages);
1663			break;
1664		}
1665
1666		release_bytes = 0;
1667		if (only_release_metadata)
1668			btrfs_end_write_no_snapshoting(root);
1669
1670		if (only_release_metadata && copied > 0) {
1671			lockstart = round_down(pos, root->sectorsize);
1672			lockend = round_up(pos + copied, root->sectorsize) - 1;
 
 
1673
1674			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1675				       lockend, EXTENT_NORESERVE, NULL,
1676				       NULL, GFP_NOFS);
1677			only_release_metadata = false;
1678		}
1679
1680		btrfs_drop_pages(pages, num_pages);
1681
1682		cond_resched();
1683
1684		balance_dirty_pages_ratelimited(inode->i_mapping);
1685		if (dirty_pages < (root->nodesize >> PAGE_SHIFT) + 1)
1686			btrfs_btree_balance_dirty(root);
1687
1688		pos += copied;
1689		num_written += copied;
1690	}
1691
1692	kfree(pages);
1693
1694	if (release_bytes) {
1695		if (only_release_metadata) {
1696			btrfs_end_write_no_snapshoting(root);
1697			btrfs_delalloc_release_metadata(inode, release_bytes);
1698		} else {
1699			btrfs_delalloc_release_space(inode, pos, release_bytes);
 
 
1700		}
1701	}
1702
1703	return num_written ? num_written : ret;
1704}
1705
1706static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1707				    struct iov_iter *from,
1708				    loff_t pos)
1709{
1710	struct file *file = iocb->ki_filp;
1711	struct inode *inode = file_inode(file);
 
1712	ssize_t written;
1713	ssize_t written_buffered;
1714	loff_t endbyte;
1715	int err;
1716
1717	written = generic_file_direct_write(iocb, from, pos);
1718
1719	if (written < 0 || !iov_iter_count(from))
1720		return written;
1721
1722	pos += written;
1723	written_buffered = __btrfs_buffered_write(file, from, pos);
1724	if (written_buffered < 0) {
1725		err = written_buffered;
1726		goto out;
1727	}
1728	/*
1729	 * Ensure all data is persisted. We want the next direct IO read to be
1730	 * able to read what was just written.
1731	 */
1732	endbyte = pos + written_buffered - 1;
1733	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1734	if (err)
1735		goto out;
1736	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1737	if (err)
1738		goto out;
1739	written += written_buffered;
1740	iocb->ki_pos = pos + written_buffered;
1741	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1742				 endbyte >> PAGE_SHIFT);
1743out:
1744	return written ? written : err;
1745}
1746
1747static void update_time_for_write(struct inode *inode)
1748{
1749	struct timespec now;
1750
1751	if (IS_NOCMTIME(inode))
1752		return;
1753
1754	now = current_fs_time(inode->i_sb);
1755	if (!timespec_equal(&inode->i_mtime, &now))
1756		inode->i_mtime = now;
1757
1758	if (!timespec_equal(&inode->i_ctime, &now))
1759		inode->i_ctime = now;
1760
1761	if (IS_I_VERSION(inode))
1762		inode_inc_iversion(inode);
1763}
1764
1765static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1766				    struct iov_iter *from)
1767{
1768	struct file *file = iocb->ki_filp;
1769	struct inode *inode = file_inode(file);
 
1770	struct btrfs_root *root = BTRFS_I(inode)->root;
1771	u64 start_pos;
1772	u64 end_pos;
1773	ssize_t num_written = 0;
1774	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1775	ssize_t err;
1776	loff_t pos;
1777	size_t count;
1778	loff_t oldsize;
1779	int clean_page = 0;
1780
1781	inode_lock(inode);
1782	err = generic_write_checks(iocb, from);
1783	if (err <= 0) {
1784		inode_unlock(inode);
1785		return err;
1786	}
1787
1788	current->backing_dev_info = inode_to_bdi(inode);
1789	err = file_remove_privs(file);
1790	if (err) {
1791		inode_unlock(inode);
1792		goto out;
1793	}
1794
1795	/*
1796	 * If BTRFS flips readonly due to some impossible error
1797	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1798	 * although we have opened a file as writable, we have
1799	 * to stop this write operation to ensure FS consistency.
1800	 */
1801	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1802		inode_unlock(inode);
1803		err = -EROFS;
1804		goto out;
1805	}
1806
1807	/*
1808	 * We reserve space for updating the inode when we reserve space for the
1809	 * extent we are going to write, so we will enospc out there.  We don't
1810	 * need to start yet another transaction to update the inode as we will
1811	 * update the inode when we finish writing whatever data we write.
1812	 */
1813	update_time_for_write(inode);
1814
1815	pos = iocb->ki_pos;
1816	count = iov_iter_count(from);
1817	start_pos = round_down(pos, root->sectorsize);
1818	oldsize = i_size_read(inode);
1819	if (start_pos > oldsize) {
1820		/* Expand hole size to cover write data, preventing empty gap */
1821		end_pos = round_up(pos + count, root->sectorsize);
 
1822		err = btrfs_cont_expand(inode, oldsize, end_pos);
1823		if (err) {
1824			inode_unlock(inode);
1825			goto out;
1826		}
1827		if (start_pos > round_up(oldsize, root->sectorsize))
1828			clean_page = 1;
1829	}
1830
1831	if (sync)
1832		atomic_inc(&BTRFS_I(inode)->sync_writers);
1833
1834	if (iocb->ki_flags & IOCB_DIRECT) {
1835		num_written = __btrfs_direct_write(iocb, from, pos);
1836	} else {
1837		num_written = __btrfs_buffered_write(file, from, pos);
1838		if (num_written > 0)
1839			iocb->ki_pos = pos + num_written;
1840		if (clean_page)
1841			pagecache_isize_extended(inode, oldsize,
1842						i_size_read(inode));
1843	}
1844
1845	inode_unlock(inode);
1846
1847	/*
1848	 * We also have to set last_sub_trans to the current log transid,
1849	 * otherwise subsequent syncs to a file that's been synced in this
1850	 * transaction will appear to have already occurred.
1851	 */
1852	spin_lock(&BTRFS_I(inode)->lock);
1853	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1854	spin_unlock(&BTRFS_I(inode)->lock);
1855	if (num_written > 0) {
1856		err = generic_write_sync(file, pos, num_written);
1857		if (err < 0)
1858			num_written = err;
1859	}
1860
1861	if (sync)
1862		atomic_dec(&BTRFS_I(inode)->sync_writers);
1863out:
1864	current->backing_dev_info = NULL;
1865	return num_written ? num_written : err;
1866}
1867
1868int btrfs_release_file(struct inode *inode, struct file *filp)
1869{
1870	if (filp->private_data)
1871		btrfs_ioctl_trans_end(filp);
1872	/*
1873	 * ordered_data_close is set by settattr when we are about to truncate
1874	 * a file from a non-zero size to a zero size.  This tries to
1875	 * flush down new bytes that may have been written if the
1876	 * application were using truncate to replace a file in place.
1877	 */
1878	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1879			       &BTRFS_I(inode)->runtime_flags))
1880			filemap_flush(inode->i_mapping);
1881	return 0;
1882}
1883
1884static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1885{
1886	int ret;
1887
1888	atomic_inc(&BTRFS_I(inode)->sync_writers);
1889	ret = btrfs_fdatawrite_range(inode, start, end);
1890	atomic_dec(&BTRFS_I(inode)->sync_writers);
1891
1892	return ret;
1893}
1894
1895/*
1896 * fsync call for both files and directories.  This logs the inode into
1897 * the tree log instead of forcing full commits whenever possible.
1898 *
1899 * It needs to call filemap_fdatawait so that all ordered extent updates are
1900 * in the metadata btree are up to date for copying to the log.
1901 *
1902 * It drops the inode mutex before doing the tree log commit.  This is an
1903 * important optimization for directories because holding the mutex prevents
1904 * new operations on the dir while we write to disk.
1905 */
1906int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1907{
1908	struct dentry *dentry = file_dentry(file);
1909	struct inode *inode = d_inode(dentry);
 
1910	struct btrfs_root *root = BTRFS_I(inode)->root;
1911	struct btrfs_trans_handle *trans;
1912	struct btrfs_log_ctx ctx;
1913	int ret = 0;
1914	bool full_sync = 0;
1915	u64 len;
1916
1917	/*
1918	 * The range length can be represented by u64, we have to do the typecasts
1919	 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1920	 */
1921	len = (u64)end - (u64)start + 1;
1922	trace_btrfs_sync_file(file, datasync);
1923
1924	/*
1925	 * We write the dirty pages in the range and wait until they complete
1926	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1927	 * multi-task, and make the performance up.  See
1928	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1929	 */
1930	ret = start_ordered_ops(inode, start, end);
1931	if (ret)
1932		return ret;
1933
1934	inode_lock(inode);
1935	atomic_inc(&root->log_batch);
1936	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1937			     &BTRFS_I(inode)->runtime_flags);
1938	/*
1939	 * We might have have had more pages made dirty after calling
1940	 * start_ordered_ops and before acquiring the inode's i_mutex.
1941	 */
1942	if (full_sync) {
1943		/*
1944		 * For a full sync, we need to make sure any ordered operations
1945		 * start and finish before we start logging the inode, so that
1946		 * all extents are persisted and the respective file extent
1947		 * items are in the fs/subvol btree.
1948		 */
1949		ret = btrfs_wait_ordered_range(inode, start, len);
1950	} else {
1951		/*
1952		 * Start any new ordered operations before starting to log the
1953		 * inode. We will wait for them to finish in btrfs_sync_log().
1954		 *
1955		 * Right before acquiring the inode's mutex, we might have new
1956		 * writes dirtying pages, which won't immediately start the
1957		 * respective ordered operations - that is done through the
1958		 * fill_delalloc callbacks invoked from the writepage and
1959		 * writepages address space operations. So make sure we start
1960		 * all ordered operations before starting to log our inode. Not
1961		 * doing this means that while logging the inode, writeback
1962		 * could start and invoke writepage/writepages, which would call
1963		 * the fill_delalloc callbacks (cow_file_range,
1964		 * submit_compressed_extents). These callbacks add first an
1965		 * extent map to the modified list of extents and then create
1966		 * the respective ordered operation, which means in
1967		 * tree-log.c:btrfs_log_inode() we might capture all existing
1968		 * ordered operations (with btrfs_get_logged_extents()) before
1969		 * the fill_delalloc callback adds its ordered operation, and by
1970		 * the time we visit the modified list of extent maps (with
1971		 * btrfs_log_changed_extents()), we see and process the extent
1972		 * map they created. We then use the extent map to construct a
1973		 * file extent item for logging without waiting for the
1974		 * respective ordered operation to finish - this file extent
1975		 * item points to a disk location that might not have yet been
1976		 * written to, containing random data - so after a crash a log
1977		 * replay will make our inode have file extent items that point
1978		 * to disk locations containing invalid data, as we returned
1979		 * success to userspace without waiting for the respective
1980		 * ordered operation to finish, because it wasn't captured by
1981		 * btrfs_get_logged_extents().
1982		 */
1983		ret = start_ordered_ops(inode, start, end);
1984	}
1985	if (ret) {
1986		inode_unlock(inode);
1987		goto out;
1988	}
1989	atomic_inc(&root->log_batch);
1990
1991	/*
1992	 * If the last transaction that changed this file was before the current
1993	 * transaction and we have the full sync flag set in our inode, we can
1994	 * bail out now without any syncing.
1995	 *
1996	 * Note that we can't bail out if the full sync flag isn't set. This is
1997	 * because when the full sync flag is set we start all ordered extents
1998	 * and wait for them to fully complete - when they complete they update
1999	 * the inode's last_trans field through:
2000	 *
2001	 *     btrfs_finish_ordered_io() ->
2002	 *         btrfs_update_inode_fallback() ->
2003	 *             btrfs_update_inode() ->
2004	 *                 btrfs_set_inode_last_trans()
2005	 *
2006	 * So we are sure that last_trans is up to date and can do this check to
2007	 * bail out safely. For the fast path, when the full sync flag is not
2008	 * set in our inode, we can not do it because we start only our ordered
2009	 * extents and don't wait for them to complete (that is when
2010	 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2011	 * value might be less than or equals to fs_info->last_trans_committed,
2012	 * and setting a speculative last_trans for an inode when a buffered
2013	 * write is made (such as fs_info->generation + 1 for example) would not
2014	 * be reliable since after setting the value and before fsync is called
2015	 * any number of transactions can start and commit (transaction kthread
2016	 * commits the current transaction periodically), and a transaction
2017	 * commit does not start nor waits for ordered extents to complete.
2018	 */
2019	smp_mb();
2020	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
2021	    (full_sync && BTRFS_I(inode)->last_trans <=
2022	     root->fs_info->last_trans_committed) ||
2023	    (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2024	     BTRFS_I(inode)->last_trans
2025	     <= root->fs_info->last_trans_committed)) {
2026		/*
2027		 * We'v had everything committed since the last time we were
2028		 * modified so clear this flag in case it was set for whatever
2029		 * reason, it's no longer relevant.
2030		 */
2031		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2032			  &BTRFS_I(inode)->runtime_flags);
 
 
 
 
 
 
 
 
2033		inode_unlock(inode);
2034		goto out;
2035	}
2036
2037	/*
2038	 * ok we haven't committed the transaction yet, lets do a commit
2039	 */
2040	if (file->private_data)
2041		btrfs_ioctl_trans_end(file);
2042
2043	/*
2044	 * We use start here because we will need to wait on the IO to complete
2045	 * in btrfs_sync_log, which could require joining a transaction (for
2046	 * example checking cross references in the nocow path).  If we use join
2047	 * here we could get into a situation where we're waiting on IO to
2048	 * happen that is blocked on a transaction trying to commit.  With start
2049	 * we inc the extwriter counter, so we wait for all extwriters to exit
2050	 * before we start blocking join'ers.  This comment is to keep somebody
2051	 * from thinking they are super smart and changing this to
2052	 * btrfs_join_transaction *cough*Josef*cough*.
2053	 */
2054	trans = btrfs_start_transaction(root, 0);
2055	if (IS_ERR(trans)) {
2056		ret = PTR_ERR(trans);
2057		inode_unlock(inode);
2058		goto out;
2059	}
2060	trans->sync = true;
2061
2062	btrfs_init_log_ctx(&ctx);
2063
2064	ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2065	if (ret < 0) {
2066		/* Fallthrough and commit/free transaction. */
2067		ret = 1;
2068	}
2069
2070	/* we've logged all the items and now have a consistent
2071	 * version of the file in the log.  It is possible that
2072	 * someone will come in and modify the file, but that's
2073	 * fine because the log is consistent on disk, and we
2074	 * have references to all of the file's extents
2075	 *
2076	 * It is possible that someone will come in and log the
2077	 * file again, but that will end up using the synchronization
2078	 * inside btrfs_sync_log to keep things safe.
2079	 */
2080	inode_unlock(inode);
2081
2082	/*
2083	 * If any of the ordered extents had an error, just return it to user
2084	 * space, so that the application knows some writes didn't succeed and
2085	 * can take proper action (retry for e.g.). Blindly committing the
2086	 * transaction in this case, would fool userspace that everything was
2087	 * successful. And we also want to make sure our log doesn't contain
2088	 * file extent items pointing to extents that weren't fully written to -
2089	 * just like in the non fast fsync path, where we check for the ordered
2090	 * operation's error flag before writing to the log tree and return -EIO
2091	 * if any of them had this flag set (btrfs_wait_ordered_range) -
2092	 * therefore we need to check for errors in the ordered operations,
2093	 * which are indicated by ctx.io_err.
2094	 */
2095	if (ctx.io_err) {
2096		btrfs_end_transaction(trans, root);
2097		ret = ctx.io_err;
2098		goto out;
2099	}
2100
2101	if (ret != BTRFS_NO_LOG_SYNC) {
2102		if (!ret) {
2103			ret = btrfs_sync_log(trans, root, &ctx);
2104			if (!ret) {
2105				ret = btrfs_end_transaction(trans, root);
2106				goto out;
2107			}
2108		}
2109		if (!full_sync) {
2110			ret = btrfs_wait_ordered_range(inode, start, len);
2111			if (ret) {
2112				btrfs_end_transaction(trans, root);
2113				goto out;
2114			}
2115		}
2116		ret = btrfs_commit_transaction(trans, root);
2117	} else {
2118		ret = btrfs_end_transaction(trans, root);
2119	}
2120out:
2121	return ret > 0 ? -EIO : ret;
2122}
2123
2124static const struct vm_operations_struct btrfs_file_vm_ops = {
2125	.fault		= filemap_fault,
2126	.map_pages	= filemap_map_pages,
2127	.page_mkwrite	= btrfs_page_mkwrite,
2128};
2129
2130static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2131{
2132	struct address_space *mapping = filp->f_mapping;
2133
2134	if (!mapping->a_ops->readpage)
2135		return -ENOEXEC;
2136
2137	file_accessed(filp);
2138	vma->vm_ops = &btrfs_file_vm_ops;
2139
2140	return 0;
2141}
2142
2143static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2144			  int slot, u64 start, u64 end)
2145{
2146	struct btrfs_file_extent_item *fi;
2147	struct btrfs_key key;
2148
2149	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2150		return 0;
2151
2152	btrfs_item_key_to_cpu(leaf, &key, slot);
2153	if (key.objectid != btrfs_ino(inode) ||
2154	    key.type != BTRFS_EXTENT_DATA_KEY)
2155		return 0;
2156
2157	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2158
2159	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2160		return 0;
2161
2162	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2163		return 0;
2164
2165	if (key.offset == end)
2166		return 1;
2167	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2168		return 1;
2169	return 0;
2170}
2171
2172static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2173		      struct btrfs_path *path, u64 offset, u64 end)
2174{
 
2175	struct btrfs_root *root = BTRFS_I(inode)->root;
2176	struct extent_buffer *leaf;
2177	struct btrfs_file_extent_item *fi;
2178	struct extent_map *hole_em;
2179	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2180	struct btrfs_key key;
2181	int ret;
2182
2183	if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2184		goto out;
2185
2186	key.objectid = btrfs_ino(inode);
2187	key.type = BTRFS_EXTENT_DATA_KEY;
2188	key.offset = offset;
2189
2190	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2191	if (ret < 0)
 
 
 
 
 
 
2192		return ret;
2193	BUG_ON(!ret);
2194
2195	leaf = path->nodes[0];
2196	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2197		u64 num_bytes;
2198
2199		path->slots[0]--;
2200		fi = btrfs_item_ptr(leaf, path->slots[0],
2201				    struct btrfs_file_extent_item);
2202		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2203			end - offset;
2204		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2205		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2206		btrfs_set_file_extent_offset(leaf, fi, 0);
2207		btrfs_mark_buffer_dirty(leaf);
2208		goto out;
2209	}
2210
2211	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2212		u64 num_bytes;
2213
2214		key.offset = offset;
2215		btrfs_set_item_key_safe(root->fs_info, path, &key);
2216		fi = btrfs_item_ptr(leaf, path->slots[0],
2217				    struct btrfs_file_extent_item);
2218		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2219			offset;
2220		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2221		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2222		btrfs_set_file_extent_offset(leaf, fi, 0);
2223		btrfs_mark_buffer_dirty(leaf);
2224		goto out;
2225	}
2226	btrfs_release_path(path);
2227
2228	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2229				       0, 0, end - offset, 0, end - offset,
2230				       0, 0, 0);
2231	if (ret)
2232		return ret;
2233
2234out:
2235	btrfs_release_path(path);
2236
2237	hole_em = alloc_extent_map();
2238	if (!hole_em) {
2239		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2240		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2241			&BTRFS_I(inode)->runtime_flags);
2242	} else {
2243		hole_em->start = offset;
2244		hole_em->len = end - offset;
2245		hole_em->ram_bytes = hole_em->len;
2246		hole_em->orig_start = offset;
2247
2248		hole_em->block_start = EXTENT_MAP_HOLE;
2249		hole_em->block_len = 0;
2250		hole_em->orig_block_len = 0;
2251		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2252		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2253		hole_em->generation = trans->transid;
2254
2255		do {
2256			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2257			write_lock(&em_tree->lock);
2258			ret = add_extent_mapping(em_tree, hole_em, 1);
2259			write_unlock(&em_tree->lock);
2260		} while (ret == -EEXIST);
2261		free_extent_map(hole_em);
2262		if (ret)
2263			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2264				&BTRFS_I(inode)->runtime_flags);
2265	}
2266
2267	return 0;
2268}
2269
2270/*
2271 * Find a hole extent on given inode and change start/len to the end of hole
2272 * extent.(hole/vacuum extent whose em->start <= start &&
2273 *	   em->start + em->len > start)
2274 * When a hole extent is found, return 1 and modify start/len.
2275 */
2276static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2277{
2278	struct extent_map *em;
2279	int ret = 0;
2280
2281	em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2282	if (IS_ERR_OR_NULL(em)) {
2283		if (!em)
2284			ret = -ENOMEM;
2285		else
2286			ret = PTR_ERR(em);
2287		return ret;
2288	}
2289
2290	/* Hole or vacuum extent(only exists in no-hole mode) */
2291	if (em->block_start == EXTENT_MAP_HOLE) {
2292		ret = 1;
2293		*len = em->start + em->len > *start + *len ?
2294		       0 : *start + *len - em->start - em->len;
2295		*start = em->start + em->len;
2296	}
2297	free_extent_map(em);
2298	return ret;
2299}
2300
2301static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2302{
 
2303	struct btrfs_root *root = BTRFS_I(inode)->root;
2304	struct extent_state *cached_state = NULL;
2305	struct btrfs_path *path;
2306	struct btrfs_block_rsv *rsv;
2307	struct btrfs_trans_handle *trans;
2308	u64 lockstart;
2309	u64 lockend;
2310	u64 tail_start;
2311	u64 tail_len;
2312	u64 orig_start = offset;
2313	u64 cur_offset;
2314	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2315	u64 drop_end;
2316	int ret = 0;
2317	int err = 0;
2318	unsigned int rsv_count;
2319	bool same_block;
2320	bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2321	u64 ino_size;
2322	bool truncated_block = false;
2323	bool updated_inode = false;
2324
2325	ret = btrfs_wait_ordered_range(inode, offset, len);
2326	if (ret)
2327		return ret;
2328
2329	inode_lock(inode);
2330	ino_size = round_up(inode->i_size, root->sectorsize);
2331	ret = find_first_non_hole(inode, &offset, &len);
2332	if (ret < 0)
2333		goto out_only_mutex;
2334	if (ret && !len) {
2335		/* Already in a large hole */
2336		ret = 0;
2337		goto out_only_mutex;
2338	}
2339
2340	lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2341	lockend = round_down(offset + len,
2342			     BTRFS_I(inode)->root->sectorsize) - 1;
2343	same_block = (BTRFS_BYTES_TO_BLKS(root->fs_info, offset))
2344		== (BTRFS_BYTES_TO_BLKS(root->fs_info, offset + len - 1));
2345	/*
2346	 * We needn't truncate any block which is beyond the end of the file
2347	 * because we are sure there is no data there.
2348	 */
2349	/*
2350	 * Only do this if we are in the same block and we aren't doing the
2351	 * entire block.
2352	 */
2353	if (same_block && len < root->sectorsize) {
2354		if (offset < ino_size) {
2355			truncated_block = true;
2356			ret = btrfs_truncate_block(inode, offset, len, 0);
2357		} else {
2358			ret = 0;
2359		}
2360		goto out_only_mutex;
2361	}
2362
2363	/* zero back part of the first block */
2364	if (offset < ino_size) {
2365		truncated_block = true;
2366		ret = btrfs_truncate_block(inode, offset, 0, 0);
2367		if (ret) {
2368			inode_unlock(inode);
2369			return ret;
2370		}
2371	}
2372
2373	/* Check the aligned pages after the first unaligned page,
2374	 * if offset != orig_start, which means the first unaligned page
2375	 * including serveral following pages are already in holes,
2376	 * the extra check can be skipped */
2377	if (offset == orig_start) {
2378		/* after truncate page, check hole again */
2379		len = offset + len - lockstart;
2380		offset = lockstart;
2381		ret = find_first_non_hole(inode, &offset, &len);
2382		if (ret < 0)
2383			goto out_only_mutex;
2384		if (ret && !len) {
2385			ret = 0;
2386			goto out_only_mutex;
2387		}
2388		lockstart = offset;
2389	}
2390
2391	/* Check the tail unaligned part is in a hole */
2392	tail_start = lockend + 1;
2393	tail_len = offset + len - tail_start;
2394	if (tail_len) {
2395		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2396		if (unlikely(ret < 0))
2397			goto out_only_mutex;
2398		if (!ret) {
2399			/* zero the front end of the last page */
2400			if (tail_start + tail_len < ino_size) {
2401				truncated_block = true;
2402				ret = btrfs_truncate_block(inode,
2403							tail_start + tail_len,
2404							0, 1);
2405				if (ret)
2406					goto out_only_mutex;
2407			}
2408		}
2409	}
2410
2411	if (lockend < lockstart) {
2412		ret = 0;
2413		goto out_only_mutex;
2414	}
2415
2416	while (1) {
2417		struct btrfs_ordered_extent *ordered;
2418
2419		truncate_pagecache_range(inode, lockstart, lockend);
2420
2421		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2422				 &cached_state);
2423		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2424
2425		/*
2426		 * We need to make sure we have no ordered extents in this range
2427		 * and nobody raced in and read a page in this range, if we did
2428		 * we need to try again.
2429		 */
2430		if ((!ordered ||
2431		    (ordered->file_offset + ordered->len <= lockstart ||
2432		     ordered->file_offset > lockend)) &&
2433		     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2434			if (ordered)
2435				btrfs_put_ordered_extent(ordered);
2436			break;
2437		}
2438		if (ordered)
2439			btrfs_put_ordered_extent(ordered);
2440		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2441				     lockend, &cached_state, GFP_NOFS);
2442		ret = btrfs_wait_ordered_range(inode, lockstart,
2443					       lockend - lockstart + 1);
2444		if (ret) {
2445			inode_unlock(inode);
2446			return ret;
2447		}
2448	}
2449
2450	path = btrfs_alloc_path();
2451	if (!path) {
2452		ret = -ENOMEM;
2453		goto out;
2454	}
2455
2456	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2457	if (!rsv) {
2458		ret = -ENOMEM;
2459		goto out_free;
2460	}
2461	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2462	rsv->failfast = 1;
2463
2464	/*
2465	 * 1 - update the inode
2466	 * 1 - removing the extents in the range
2467	 * 1 - adding the hole extent if no_holes isn't set
2468	 */
2469	rsv_count = no_holes ? 2 : 3;
2470	trans = btrfs_start_transaction(root, rsv_count);
2471	if (IS_ERR(trans)) {
2472		err = PTR_ERR(trans);
2473		goto out_free;
2474	}
2475
2476	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2477				      min_size);
2478	BUG_ON(ret);
2479	trans->block_rsv = rsv;
2480
2481	cur_offset = lockstart;
2482	len = lockend - cur_offset;
2483	while (cur_offset < lockend) {
2484		ret = __btrfs_drop_extents(trans, root, inode, path,
2485					   cur_offset, lockend + 1,
2486					   &drop_end, 1, 0, 0, NULL);
2487		if (ret != -ENOSPC)
2488			break;
2489
2490		trans->block_rsv = &root->fs_info->trans_block_rsv;
2491
2492		if (cur_offset < ino_size) {
2493			ret = fill_holes(trans, inode, path, cur_offset,
2494					 drop_end);
2495			if (ret) {
 
 
 
 
 
 
 
2496				err = ret;
2497				break;
2498			}
2499		}
2500
2501		cur_offset = drop_end;
2502
2503		ret = btrfs_update_inode(trans, root, inode);
2504		if (ret) {
2505			err = ret;
2506			break;
2507		}
2508
2509		btrfs_end_transaction(trans, root);
2510		btrfs_btree_balance_dirty(root);
2511
2512		trans = btrfs_start_transaction(root, rsv_count);
2513		if (IS_ERR(trans)) {
2514			ret = PTR_ERR(trans);
2515			trans = NULL;
2516			break;
2517		}
2518
2519		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2520					      rsv, min_size);
2521		BUG_ON(ret);	/* shouldn't happen */
2522		trans->block_rsv = rsv;
2523
2524		ret = find_first_non_hole(inode, &cur_offset, &len);
2525		if (unlikely(ret < 0))
2526			break;
2527		if (ret && !len) {
2528			ret = 0;
2529			break;
2530		}
2531	}
2532
2533	if (ret) {
2534		err = ret;
2535		goto out_trans;
2536	}
2537
2538	trans->block_rsv = &root->fs_info->trans_block_rsv;
2539	/*
2540	 * If we are using the NO_HOLES feature we might have had already an
2541	 * hole that overlaps a part of the region [lockstart, lockend] and
2542	 * ends at (or beyond) lockend. Since we have no file extent items to
2543	 * represent holes, drop_end can be less than lockend and so we must
2544	 * make sure we have an extent map representing the existing hole (the
2545	 * call to __btrfs_drop_extents() might have dropped the existing extent
2546	 * map representing the existing hole), otherwise the fast fsync path
2547	 * will not record the existence of the hole region
2548	 * [existing_hole_start, lockend].
2549	 */
2550	if (drop_end <= lockend)
2551		drop_end = lockend + 1;
2552	/*
2553	 * Don't insert file hole extent item if it's for a range beyond eof
2554	 * (because it's useless) or if it represents a 0 bytes range (when
2555	 * cur_offset == drop_end).
2556	 */
2557	if (cur_offset < ino_size && cur_offset < drop_end) {
2558		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2559		if (ret) {
 
 
2560			err = ret;
2561			goto out_trans;
2562		}
2563	}
2564
2565out_trans:
2566	if (!trans)
2567		goto out_free;
2568
2569	inode_inc_iversion(inode);
2570	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
2571
2572	trans->block_rsv = &root->fs_info->trans_block_rsv;
2573	ret = btrfs_update_inode(trans, root, inode);
2574	updated_inode = true;
2575	btrfs_end_transaction(trans, root);
2576	btrfs_btree_balance_dirty(root);
2577out_free:
2578	btrfs_free_path(path);
2579	btrfs_free_block_rsv(root, rsv);
2580out:
2581	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2582			     &cached_state, GFP_NOFS);
2583out_only_mutex:
2584	if (!updated_inode && truncated_block && !ret && !err) {
2585		/*
2586		 * If we only end up zeroing part of a page, we still need to
2587		 * update the inode item, so that all the time fields are
2588		 * updated as well as the necessary btrfs inode in memory fields
2589		 * for detecting, at fsync time, if the inode isn't yet in the
2590		 * log tree or it's there but not up to date.
2591		 */
2592		trans = btrfs_start_transaction(root, 1);
2593		if (IS_ERR(trans)) {
2594			err = PTR_ERR(trans);
2595		} else {
2596			err = btrfs_update_inode(trans, root, inode);
2597			ret = btrfs_end_transaction(trans, root);
2598		}
2599	}
2600	inode_unlock(inode);
2601	if (ret && !err)
2602		err = ret;
2603	return err;
2604}
2605
2606/* Helper structure to record which range is already reserved */
2607struct falloc_range {
2608	struct list_head list;
2609	u64 start;
2610	u64 len;
2611};
2612
2613/*
2614 * Helper function to add falloc range
2615 *
2616 * Caller should have locked the larger range of extent containing
2617 * [start, len)
2618 */
2619static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2620{
2621	struct falloc_range *prev = NULL;
2622	struct falloc_range *range = NULL;
2623
2624	if (list_empty(head))
2625		goto insert;
2626
2627	/*
2628	 * As fallocate iterate by bytenr order, we only need to check
2629	 * the last range.
2630	 */
2631	prev = list_entry(head->prev, struct falloc_range, list);
2632	if (prev->start + prev->len == start) {
2633		prev->len += len;
2634		return 0;
2635	}
2636insert:
2637	range = kmalloc(sizeof(*range), GFP_KERNEL);
2638	if (!range)
2639		return -ENOMEM;
2640	range->start = start;
2641	range->len = len;
2642	list_add_tail(&range->list, head);
2643	return 0;
2644}
2645
2646static long btrfs_fallocate(struct file *file, int mode,
2647			    loff_t offset, loff_t len)
2648{
2649	struct inode *inode = file_inode(file);
2650	struct extent_state *cached_state = NULL;
2651	struct falloc_range *range;
2652	struct falloc_range *tmp;
2653	struct list_head reserve_list;
2654	u64 cur_offset;
2655	u64 last_byte;
2656	u64 alloc_start;
2657	u64 alloc_end;
2658	u64 alloc_hint = 0;
2659	u64 locked_end;
2660	u64 actual_end = 0;
2661	struct extent_map *em;
2662	int blocksize = BTRFS_I(inode)->root->sectorsize;
2663	int ret;
2664
2665	alloc_start = round_down(offset, blocksize);
2666	alloc_end = round_up(offset + len, blocksize);
 
2667
2668	/* Make sure we aren't being give some crap mode */
2669	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2670		return -EOPNOTSUPP;
2671
2672	if (mode & FALLOC_FL_PUNCH_HOLE)
2673		return btrfs_punch_hole(inode, offset, len);
2674
2675	/*
2676	 * Only trigger disk allocation, don't trigger qgroup reserve
2677	 *
2678	 * For qgroup space, it will be checked later.
2679	 */
2680	ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2681	if (ret < 0)
2682		return ret;
2683
2684	inode_lock(inode);
2685
2686	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2687		ret = inode_newsize_ok(inode, offset + len);
2688		if (ret)
2689			goto out;
2690	}
2691
2692	/*
2693	 * TODO: Move these two operations after we have checked
2694	 * accurate reserved space, or fallocate can still fail but
2695	 * with page truncated or size expanded.
2696	 *
2697	 * But that's a minor problem and won't do much harm BTW.
2698	 */
2699	if (alloc_start > inode->i_size) {
2700		ret = btrfs_cont_expand(inode, i_size_read(inode),
2701					alloc_start);
2702		if (ret)
2703			goto out;
2704	} else if (offset + len > inode->i_size) {
2705		/*
2706		 * If we are fallocating from the end of the file onward we
2707		 * need to zero out the end of the block if i_size lands in the
2708		 * middle of a block.
2709		 */
2710		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2711		if (ret)
2712			goto out;
2713	}
2714
2715	/*
2716	 * wait for ordered IO before we have any locks.  We'll loop again
2717	 * below with the locks held.
2718	 */
2719	ret = btrfs_wait_ordered_range(inode, alloc_start,
2720				       alloc_end - alloc_start);
2721	if (ret)
2722		goto out;
2723
2724	locked_end = alloc_end - 1;
2725	while (1) {
2726		struct btrfs_ordered_extent *ordered;
2727
2728		/* the extent lock is ordered inside the running
2729		 * transaction
2730		 */
2731		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2732				 locked_end, &cached_state);
2733		ordered = btrfs_lookup_first_ordered_extent(inode,
2734							    alloc_end - 1);
2735		if (ordered &&
2736		    ordered->file_offset + ordered->len > alloc_start &&
2737		    ordered->file_offset < alloc_end) {
2738			btrfs_put_ordered_extent(ordered);
2739			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2740					     alloc_start, locked_end,
2741					     &cached_state, GFP_KERNEL);
2742			/*
2743			 * we can't wait on the range with the transaction
2744			 * running or with the extent lock held
2745			 */
2746			ret = btrfs_wait_ordered_range(inode, alloc_start,
2747						       alloc_end - alloc_start);
2748			if (ret)
2749				goto out;
2750		} else {
2751			if (ordered)
2752				btrfs_put_ordered_extent(ordered);
2753			break;
2754		}
2755	}
2756
2757	/* First, check if we exceed the qgroup limit */
2758	INIT_LIST_HEAD(&reserve_list);
2759	cur_offset = alloc_start;
2760	while (1) {
2761		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2762				      alloc_end - cur_offset, 0);
2763		if (IS_ERR_OR_NULL(em)) {
2764			if (!em)
2765				ret = -ENOMEM;
2766			else
2767				ret = PTR_ERR(em);
2768			break;
2769		}
2770		last_byte = min(extent_map_end(em), alloc_end);
2771		actual_end = min_t(u64, extent_map_end(em), offset + len);
2772		last_byte = ALIGN(last_byte, blocksize);
2773		if (em->block_start == EXTENT_MAP_HOLE ||
2774		    (cur_offset >= inode->i_size &&
2775		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2776			ret = add_falloc_range(&reserve_list, cur_offset,
2777					       last_byte - cur_offset);
2778			if (ret < 0) {
2779				free_extent_map(em);
2780				break;
2781			}
2782			ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2783					last_byte - cur_offset);
2784			if (ret < 0)
2785				break;
 
 
 
 
 
 
 
 
2786		}
2787		free_extent_map(em);
2788		cur_offset = last_byte;
2789		if (cur_offset >= alloc_end)
2790			break;
2791	}
2792
2793	/*
2794	 * If ret is still 0, means we're OK to fallocate.
2795	 * Or just cleanup the list and exit.
2796	 */
2797	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2798		if (!ret)
2799			ret = btrfs_prealloc_file_range(inode, mode,
2800					range->start,
2801					range->len, 1 << inode->i_blkbits,
2802					offset + len, &alloc_hint);
 
 
 
2803		list_del(&range->list);
2804		kfree(range);
2805	}
2806	if (ret < 0)
2807		goto out_unlock;
2808
2809	if (actual_end > inode->i_size &&
2810	    !(mode & FALLOC_FL_KEEP_SIZE)) {
2811		struct btrfs_trans_handle *trans;
2812		struct btrfs_root *root = BTRFS_I(inode)->root;
2813
2814		/*
2815		 * We didn't need to allocate any more space, but we
2816		 * still extended the size of the file so we need to
2817		 * update i_size and the inode item.
2818		 */
2819		trans = btrfs_start_transaction(root, 1);
2820		if (IS_ERR(trans)) {
2821			ret = PTR_ERR(trans);
2822		} else {
2823			inode->i_ctime = current_fs_time(inode->i_sb);
2824			i_size_write(inode, actual_end);
2825			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2826			ret = btrfs_update_inode(trans, root, inode);
2827			if (ret)
2828				btrfs_end_transaction(trans, root);
2829			else
2830				ret = btrfs_end_transaction(trans, root);
2831		}
2832	}
2833out_unlock:
2834	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2835			     &cached_state, GFP_KERNEL);
2836out:
2837	/*
2838	 * As we waited the extent range, the data_rsv_map must be empty
2839	 * in the range, as written data range will be released from it.
2840	 * And for prealloacted extent, it will also be released when
2841	 * its metadata is written.
2842	 * So this is completely used as cleanup.
2843	 */
2844	btrfs_qgroup_free_data(inode, alloc_start, alloc_end - alloc_start);
2845	inode_unlock(inode);
2846	/* Let go of our reservation. */
2847	btrfs_free_reserved_data_space(inode, alloc_start,
2848				       alloc_end - alloc_start);
 
2849	return ret;
2850}
2851
2852static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2853{
2854	struct btrfs_root *root = BTRFS_I(inode)->root;
2855	struct extent_map *em = NULL;
2856	struct extent_state *cached_state = NULL;
2857	u64 lockstart;
2858	u64 lockend;
2859	u64 start;
2860	u64 len;
2861	int ret = 0;
2862
2863	if (inode->i_size == 0)
2864		return -ENXIO;
2865
2866	/*
2867	 * *offset can be negative, in this case we start finding DATA/HOLE from
2868	 * the very start of the file.
2869	 */
2870	start = max_t(loff_t, 0, *offset);
2871
2872	lockstart = round_down(start, root->sectorsize);
2873	lockend = round_up(i_size_read(inode), root->sectorsize);
 
2874	if (lockend <= lockstart)
2875		lockend = lockstart + root->sectorsize;
2876	lockend--;
2877	len = lockend - lockstart + 1;
2878
2879	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2880			 &cached_state);
2881
2882	while (start < inode->i_size) {
2883		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2884		if (IS_ERR(em)) {
2885			ret = PTR_ERR(em);
2886			em = NULL;
2887			break;
2888		}
2889
2890		if (whence == SEEK_HOLE &&
2891		    (em->block_start == EXTENT_MAP_HOLE ||
2892		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2893			break;
2894		else if (whence == SEEK_DATA &&
2895			   (em->block_start != EXTENT_MAP_HOLE &&
2896			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2897			break;
2898
2899		start = em->start + em->len;
2900		free_extent_map(em);
2901		em = NULL;
2902		cond_resched();
2903	}
2904	free_extent_map(em);
2905	if (!ret) {
2906		if (whence == SEEK_DATA && start >= inode->i_size)
2907			ret = -ENXIO;
2908		else
2909			*offset = min_t(loff_t, start, inode->i_size);
2910	}
2911	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2912			     &cached_state, GFP_NOFS);
2913	return ret;
2914}
2915
2916static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2917{
2918	struct inode *inode = file->f_mapping->host;
2919	int ret;
2920
2921	inode_lock(inode);
2922	switch (whence) {
2923	case SEEK_END:
2924	case SEEK_CUR:
2925		offset = generic_file_llseek(file, offset, whence);
2926		goto out;
2927	case SEEK_DATA:
2928	case SEEK_HOLE:
2929		if (offset >= i_size_read(inode)) {
2930			inode_unlock(inode);
2931			return -ENXIO;
2932		}
2933
2934		ret = find_desired_extent(inode, &offset, whence);
2935		if (ret) {
2936			inode_unlock(inode);
2937			return ret;
2938		}
2939	}
2940
2941	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2942out:
2943	inode_unlock(inode);
2944	return offset;
2945}
2946
2947const struct file_operations btrfs_file_operations = {
2948	.llseek		= btrfs_file_llseek,
2949	.read_iter      = generic_file_read_iter,
2950	.splice_read	= generic_file_splice_read,
2951	.write_iter	= btrfs_file_write_iter,
2952	.mmap		= btrfs_file_mmap,
2953	.open		= generic_file_open,
2954	.release	= btrfs_release_file,
2955	.fsync		= btrfs_sync_file,
2956	.fallocate	= btrfs_fallocate,
2957	.unlocked_ioctl	= btrfs_ioctl,
2958#ifdef CONFIG_COMPAT
2959	.compat_ioctl	= btrfs_ioctl,
2960#endif
2961	.copy_file_range = btrfs_copy_file_range,
2962	.clone_file_range = btrfs_clone_file_range,
2963	.dedupe_file_range = btrfs_dedupe_file_range,
2964};
2965
2966void btrfs_auto_defrag_exit(void)
2967{
2968	kmem_cache_destroy(btrfs_inode_defrag_cachep);
2969}
2970
2971int btrfs_auto_defrag_init(void)
2972{
2973	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2974					sizeof(struct inode_defrag), 0,
2975					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2976					NULL);
2977	if (!btrfs_inode_defrag_cachep)
2978		return -ENOMEM;
2979
2980	return 0;
2981}
2982
2983int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2984{
2985	int ret;
2986
2987	/*
2988	 * So with compression we will find and lock a dirty page and clear the
2989	 * first one as dirty, setup an async extent, and immediately return
2990	 * with the entire range locked but with nobody actually marked with
2991	 * writeback.  So we can't just filemap_write_and_wait_range() and
2992	 * expect it to work since it will just kick off a thread to do the
2993	 * actual work.  So we need to call filemap_fdatawrite_range _again_
2994	 * since it will wait on the page lock, which won't be unlocked until
2995	 * after the pages have been marked as writeback and so we're good to go
2996	 * from there.  We have to do this otherwise we'll miss the ordered
2997	 * extents and that results in badness.  Please Josef, do not think you
2998	 * know better and pull this out at some point in the future, it is
2999	 * right and you are wrong.
3000	 */
3001	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3002	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3003			     &BTRFS_I(inode)->runtime_flags))
3004		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3005
3006	return ret;
3007}
v4.10.11
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/pagemap.h>
  21#include <linux/highmem.h>
  22#include <linux/time.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/backing-dev.h>
  26#include <linux/mpage.h>
  27#include <linux/falloc.h>
  28#include <linux/swap.h>
  29#include <linux/writeback.h>
 
  30#include <linux/compat.h>
  31#include <linux/slab.h>
  32#include <linux/btrfs.h>
  33#include <linux/uio.h>
  34#include "ctree.h"
  35#include "disk-io.h"
  36#include "transaction.h"
  37#include "btrfs_inode.h"
  38#include "print-tree.h"
  39#include "tree-log.h"
  40#include "locking.h"
  41#include "volumes.h"
  42#include "qgroup.h"
  43#include "compression.h"
  44
  45static struct kmem_cache *btrfs_inode_defrag_cachep;
  46/*
  47 * when auto defrag is enabled we
  48 * queue up these defrag structs to remember which
  49 * inodes need defragging passes
  50 */
  51struct inode_defrag {
  52	struct rb_node rb_node;
  53	/* objectid */
  54	u64 ino;
  55	/*
  56	 * transid where the defrag was added, we search for
  57	 * extents newer than this
  58	 */
  59	u64 transid;
  60
  61	/* root objectid */
  62	u64 root;
  63
  64	/* last offset we were able to defrag */
  65	u64 last_offset;
  66
  67	/* if we've wrapped around back to zero once already */
  68	int cycled;
  69};
  70
  71static int __compare_inode_defrag(struct inode_defrag *defrag1,
  72				  struct inode_defrag *defrag2)
  73{
  74	if (defrag1->root > defrag2->root)
  75		return 1;
  76	else if (defrag1->root < defrag2->root)
  77		return -1;
  78	else if (defrag1->ino > defrag2->ino)
  79		return 1;
  80	else if (defrag1->ino < defrag2->ino)
  81		return -1;
  82	else
  83		return 0;
  84}
  85
  86/* pop a record for an inode into the defrag tree.  The lock
  87 * must be held already
  88 *
  89 * If you're inserting a record for an older transid than an
  90 * existing record, the transid already in the tree is lowered
  91 *
  92 * If an existing record is found the defrag item you
  93 * pass in is freed
  94 */
  95static int __btrfs_add_inode_defrag(struct inode *inode,
  96				    struct inode_defrag *defrag)
  97{
  98	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  99	struct inode_defrag *entry;
 100	struct rb_node **p;
 101	struct rb_node *parent = NULL;
 102	int ret;
 103
 104	p = &fs_info->defrag_inodes.rb_node;
 105	while (*p) {
 106		parent = *p;
 107		entry = rb_entry(parent, struct inode_defrag, rb_node);
 108
 109		ret = __compare_inode_defrag(defrag, entry);
 110		if (ret < 0)
 111			p = &parent->rb_left;
 112		else if (ret > 0)
 113			p = &parent->rb_right;
 114		else {
 115			/* if we're reinserting an entry for
 116			 * an old defrag run, make sure to
 117			 * lower the transid of our existing record
 118			 */
 119			if (defrag->transid < entry->transid)
 120				entry->transid = defrag->transid;
 121			if (defrag->last_offset > entry->last_offset)
 122				entry->last_offset = defrag->last_offset;
 123			return -EEXIST;
 124		}
 125	}
 126	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 127	rb_link_node(&defrag->rb_node, parent, p);
 128	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
 129	return 0;
 130}
 131
 132static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
 133{
 134	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
 135		return 0;
 136
 137	if (btrfs_fs_closing(fs_info))
 138		return 0;
 139
 140	return 1;
 141}
 142
 143/*
 144 * insert a defrag record for this inode if auto defrag is
 145 * enabled
 146 */
 147int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 148			   struct inode *inode)
 149{
 150	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 151	struct btrfs_root *root = BTRFS_I(inode)->root;
 152	struct inode_defrag *defrag;
 153	u64 transid;
 154	int ret;
 155
 156	if (!__need_auto_defrag(fs_info))
 157		return 0;
 158
 159	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
 160		return 0;
 161
 162	if (trans)
 163		transid = trans->transid;
 164	else
 165		transid = BTRFS_I(inode)->root->last_trans;
 166
 167	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 168	if (!defrag)
 169		return -ENOMEM;
 170
 171	defrag->ino = btrfs_ino(inode);
 172	defrag->transid = transid;
 173	defrag->root = root->root_key.objectid;
 174
 175	spin_lock(&fs_info->defrag_inodes_lock);
 176	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
 177		/*
 178		 * If we set IN_DEFRAG flag and evict the inode from memory,
 179		 * and then re-read this inode, this new inode doesn't have
 180		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 181		 */
 182		ret = __btrfs_add_inode_defrag(inode, defrag);
 183		if (ret)
 184			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 185	} else {
 186		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 187	}
 188	spin_unlock(&fs_info->defrag_inodes_lock);
 189	return 0;
 190}
 191
 192/*
 193 * Requeue the defrag object. If there is a defrag object that points to
 194 * the same inode in the tree, we will merge them together (by
 195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 196 */
 197static void btrfs_requeue_inode_defrag(struct inode *inode,
 198				       struct inode_defrag *defrag)
 199{
 200	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 201	int ret;
 202
 203	if (!__need_auto_defrag(fs_info))
 204		goto out;
 205
 206	/*
 207	 * Here we don't check the IN_DEFRAG flag, because we need merge
 208	 * them together.
 209	 */
 210	spin_lock(&fs_info->defrag_inodes_lock);
 211	ret = __btrfs_add_inode_defrag(inode, defrag);
 212	spin_unlock(&fs_info->defrag_inodes_lock);
 213	if (ret)
 214		goto out;
 215	return;
 216out:
 217	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 218}
 219
 220/*
 221 * pick the defragable inode that we want, if it doesn't exist, we will get
 222 * the next one.
 223 */
 224static struct inode_defrag *
 225btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 226{
 227	struct inode_defrag *entry = NULL;
 228	struct inode_defrag tmp;
 229	struct rb_node *p;
 230	struct rb_node *parent = NULL;
 231	int ret;
 232
 233	tmp.ino = ino;
 234	tmp.root = root;
 235
 236	spin_lock(&fs_info->defrag_inodes_lock);
 237	p = fs_info->defrag_inodes.rb_node;
 238	while (p) {
 239		parent = p;
 240		entry = rb_entry(parent, struct inode_defrag, rb_node);
 241
 242		ret = __compare_inode_defrag(&tmp, entry);
 243		if (ret < 0)
 244			p = parent->rb_left;
 245		else if (ret > 0)
 246			p = parent->rb_right;
 247		else
 248			goto out;
 249	}
 250
 251	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 252		parent = rb_next(parent);
 253		if (parent)
 254			entry = rb_entry(parent, struct inode_defrag, rb_node);
 255		else
 256			entry = NULL;
 257	}
 258out:
 259	if (entry)
 260		rb_erase(parent, &fs_info->defrag_inodes);
 261	spin_unlock(&fs_info->defrag_inodes_lock);
 262	return entry;
 263}
 264
 265void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 266{
 267	struct inode_defrag *defrag;
 268	struct rb_node *node;
 269
 270	spin_lock(&fs_info->defrag_inodes_lock);
 271	node = rb_first(&fs_info->defrag_inodes);
 272	while (node) {
 273		rb_erase(node, &fs_info->defrag_inodes);
 274		defrag = rb_entry(node, struct inode_defrag, rb_node);
 275		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 276
 277		cond_resched_lock(&fs_info->defrag_inodes_lock);
 278
 279		node = rb_first(&fs_info->defrag_inodes);
 280	}
 281	spin_unlock(&fs_info->defrag_inodes_lock);
 282}
 283
 284#define BTRFS_DEFRAG_BATCH	1024
 285
 286static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 287				    struct inode_defrag *defrag)
 288{
 289	struct btrfs_root *inode_root;
 290	struct inode *inode;
 291	struct btrfs_key key;
 292	struct btrfs_ioctl_defrag_range_args range;
 293	int num_defrag;
 294	int index;
 295	int ret;
 296
 297	/* get the inode */
 298	key.objectid = defrag->root;
 299	key.type = BTRFS_ROOT_ITEM_KEY;
 300	key.offset = (u64)-1;
 301
 302	index = srcu_read_lock(&fs_info->subvol_srcu);
 303
 304	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
 305	if (IS_ERR(inode_root)) {
 306		ret = PTR_ERR(inode_root);
 307		goto cleanup;
 308	}
 309
 310	key.objectid = defrag->ino;
 311	key.type = BTRFS_INODE_ITEM_KEY;
 312	key.offset = 0;
 313	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
 314	if (IS_ERR(inode)) {
 315		ret = PTR_ERR(inode);
 316		goto cleanup;
 317	}
 318	srcu_read_unlock(&fs_info->subvol_srcu, index);
 319
 320	/* do a chunk of defrag */
 321	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 322	memset(&range, 0, sizeof(range));
 323	range.len = (u64)-1;
 324	range.start = defrag->last_offset;
 325
 326	sb_start_write(fs_info->sb);
 327	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 328				       BTRFS_DEFRAG_BATCH);
 329	sb_end_write(fs_info->sb);
 330	/*
 331	 * if we filled the whole defrag batch, there
 332	 * must be more work to do.  Queue this defrag
 333	 * again
 334	 */
 335	if (num_defrag == BTRFS_DEFRAG_BATCH) {
 336		defrag->last_offset = range.start;
 337		btrfs_requeue_inode_defrag(inode, defrag);
 338	} else if (defrag->last_offset && !defrag->cycled) {
 339		/*
 340		 * we didn't fill our defrag batch, but
 341		 * we didn't start at zero.  Make sure we loop
 342		 * around to the start of the file.
 343		 */
 344		defrag->last_offset = 0;
 345		defrag->cycled = 1;
 346		btrfs_requeue_inode_defrag(inode, defrag);
 347	} else {
 348		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 349	}
 350
 351	iput(inode);
 352	return 0;
 353cleanup:
 354	srcu_read_unlock(&fs_info->subvol_srcu, index);
 355	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 356	return ret;
 357}
 358
 359/*
 360 * run through the list of inodes in the FS that need
 361 * defragging
 362 */
 363int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 364{
 365	struct inode_defrag *defrag;
 366	u64 first_ino = 0;
 367	u64 root_objectid = 0;
 368
 369	atomic_inc(&fs_info->defrag_running);
 370	while (1) {
 371		/* Pause the auto defragger. */
 372		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 373			     &fs_info->fs_state))
 374			break;
 375
 376		if (!__need_auto_defrag(fs_info))
 377			break;
 378
 379		/* find an inode to defrag */
 380		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 381						 first_ino);
 382		if (!defrag) {
 383			if (root_objectid || first_ino) {
 384				root_objectid = 0;
 385				first_ino = 0;
 386				continue;
 387			} else {
 388				break;
 389			}
 390		}
 391
 392		first_ino = defrag->ino + 1;
 393		root_objectid = defrag->root;
 394
 395		__btrfs_run_defrag_inode(fs_info, defrag);
 396	}
 397	atomic_dec(&fs_info->defrag_running);
 398
 399	/*
 400	 * during unmount, we use the transaction_wait queue to
 401	 * wait for the defragger to stop
 402	 */
 403	wake_up(&fs_info->transaction_wait);
 404	return 0;
 405}
 406
 407/* simple helper to fault in pages and copy.  This should go away
 408 * and be replaced with calls into generic code.
 409 */
 410static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 411					 struct page **prepared_pages,
 412					 struct iov_iter *i)
 413{
 414	size_t copied = 0;
 415	size_t total_copied = 0;
 416	int pg = 0;
 417	int offset = pos & (PAGE_SIZE - 1);
 418
 419	while (write_bytes > 0) {
 420		size_t count = min_t(size_t,
 421				     PAGE_SIZE - offset, write_bytes);
 422		struct page *page = prepared_pages[pg];
 423		/*
 424		 * Copy data from userspace to the current page
 425		 */
 426		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 427
 428		/* Flush processor's dcache for this page */
 429		flush_dcache_page(page);
 430
 431		/*
 432		 * if we get a partial write, we can end up with
 433		 * partially up to date pages.  These add
 434		 * a lot of complexity, so make sure they don't
 435		 * happen by forcing this copy to be retried.
 436		 *
 437		 * The rest of the btrfs_file_write code will fall
 438		 * back to page at a time copies after we return 0.
 439		 */
 440		if (!PageUptodate(page) && copied < count)
 441			copied = 0;
 442
 443		iov_iter_advance(i, copied);
 444		write_bytes -= copied;
 445		total_copied += copied;
 446
 447		/* Return to btrfs_file_write_iter to fault page */
 448		if (unlikely(copied == 0))
 449			break;
 450
 451		if (copied < PAGE_SIZE - offset) {
 452			offset += copied;
 453		} else {
 454			pg++;
 455			offset = 0;
 456		}
 457	}
 458	return total_copied;
 459}
 460
 461/*
 462 * unlocks pages after btrfs_file_write is done with them
 463 */
 464static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 465{
 466	size_t i;
 467	for (i = 0; i < num_pages; i++) {
 468		/* page checked is some magic around finding pages that
 469		 * have been modified without going through btrfs_set_page_dirty
 470		 * clear it here. There should be no need to mark the pages
 471		 * accessed as prepare_pages should have marked them accessed
 472		 * in prepare_pages via find_or_create_page()
 473		 */
 474		ClearPageChecked(pages[i]);
 475		unlock_page(pages[i]);
 476		put_page(pages[i]);
 477	}
 478}
 479
 480/*
 481 * after copy_from_user, pages need to be dirtied and we need to make
 482 * sure holes are created between the current EOF and the start of
 483 * any next extents (if required).
 484 *
 485 * this also makes the decision about creating an inline extent vs
 486 * doing real data extents, marking pages dirty and delalloc as required.
 487 */
 488int btrfs_dirty_pages(struct inode *inode, struct page **pages,
 489		      size_t num_pages, loff_t pos, size_t write_bytes,
 490		      struct extent_state **cached)
 
 491{
 492	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 493	int err = 0;
 494	int i;
 495	u64 num_bytes;
 496	u64 start_pos;
 497	u64 end_of_last_block;
 498	u64 end_pos = pos + write_bytes;
 499	loff_t isize = i_size_read(inode);
 500
 501	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
 502	num_bytes = round_up(write_bytes + pos - start_pos,
 503			     fs_info->sectorsize);
 504
 505	end_of_last_block = start_pos + num_bytes - 1;
 506	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 507					cached, 0);
 508	if (err)
 509		return err;
 510
 511	for (i = 0; i < num_pages; i++) {
 512		struct page *p = pages[i];
 513		SetPageUptodate(p);
 514		ClearPageChecked(p);
 515		set_page_dirty(p);
 516	}
 517
 518	/*
 519	 * we've only changed i_size in ram, and we haven't updated
 520	 * the disk i_size.  There is no need to log the inode
 521	 * at this time.
 522	 */
 523	if (end_pos > isize)
 524		i_size_write(inode, end_pos);
 525	return 0;
 526}
 527
 528/*
 529 * this drops all the extents in the cache that intersect the range
 530 * [start, end].  Existing extents are split as required.
 531 */
 532void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
 533			     int skip_pinned)
 534{
 535	struct extent_map *em;
 536	struct extent_map *split = NULL;
 537	struct extent_map *split2 = NULL;
 538	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 539	u64 len = end - start + 1;
 540	u64 gen;
 541	int ret;
 542	int testend = 1;
 543	unsigned long flags;
 544	int compressed = 0;
 545	bool modified;
 546
 547	WARN_ON(end < start);
 548	if (end == (u64)-1) {
 549		len = (u64)-1;
 550		testend = 0;
 551	}
 552	while (1) {
 553		int no_splits = 0;
 554
 555		modified = false;
 556		if (!split)
 557			split = alloc_extent_map();
 558		if (!split2)
 559			split2 = alloc_extent_map();
 560		if (!split || !split2)
 561			no_splits = 1;
 562
 563		write_lock(&em_tree->lock);
 564		em = lookup_extent_mapping(em_tree, start, len);
 565		if (!em) {
 566			write_unlock(&em_tree->lock);
 567			break;
 568		}
 569		flags = em->flags;
 570		gen = em->generation;
 571		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 572			if (testend && em->start + em->len >= start + len) {
 573				free_extent_map(em);
 574				write_unlock(&em_tree->lock);
 575				break;
 576			}
 577			start = em->start + em->len;
 578			if (testend)
 579				len = start + len - (em->start + em->len);
 580			free_extent_map(em);
 581			write_unlock(&em_tree->lock);
 582			continue;
 583		}
 584		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 585		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 586		clear_bit(EXTENT_FLAG_LOGGING, &flags);
 587		modified = !list_empty(&em->list);
 588		if (no_splits)
 589			goto next;
 590
 591		if (em->start < start) {
 592			split->start = em->start;
 593			split->len = start - em->start;
 594
 595			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 596				split->orig_start = em->orig_start;
 597				split->block_start = em->block_start;
 598
 599				if (compressed)
 600					split->block_len = em->block_len;
 601				else
 602					split->block_len = split->len;
 603				split->orig_block_len = max(split->block_len,
 604						em->orig_block_len);
 605				split->ram_bytes = em->ram_bytes;
 606			} else {
 607				split->orig_start = split->start;
 608				split->block_len = 0;
 609				split->block_start = em->block_start;
 610				split->orig_block_len = 0;
 611				split->ram_bytes = split->len;
 612			}
 613
 614			split->generation = gen;
 615			split->bdev = em->bdev;
 616			split->flags = flags;
 617			split->compress_type = em->compress_type;
 618			replace_extent_mapping(em_tree, em, split, modified);
 619			free_extent_map(split);
 620			split = split2;
 621			split2 = NULL;
 622		}
 623		if (testend && em->start + em->len > start + len) {
 624			u64 diff = start + len - em->start;
 625
 626			split->start = start + len;
 627			split->len = em->start + em->len - (start + len);
 628			split->bdev = em->bdev;
 629			split->flags = flags;
 630			split->compress_type = em->compress_type;
 631			split->generation = gen;
 632
 633			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 634				split->orig_block_len = max(em->block_len,
 635						    em->orig_block_len);
 636
 637				split->ram_bytes = em->ram_bytes;
 638				if (compressed) {
 639					split->block_len = em->block_len;
 640					split->block_start = em->block_start;
 641					split->orig_start = em->orig_start;
 642				} else {
 643					split->block_len = split->len;
 644					split->block_start = em->block_start
 645						+ diff;
 646					split->orig_start = em->orig_start;
 647				}
 648			} else {
 649				split->ram_bytes = split->len;
 650				split->orig_start = split->start;
 651				split->block_len = 0;
 652				split->block_start = em->block_start;
 653				split->orig_block_len = 0;
 654			}
 655
 656			if (extent_map_in_tree(em)) {
 657				replace_extent_mapping(em_tree, em, split,
 658						       modified);
 659			} else {
 660				ret = add_extent_mapping(em_tree, split,
 661							 modified);
 662				ASSERT(ret == 0); /* Logic error */
 663			}
 664			free_extent_map(split);
 665			split = NULL;
 666		}
 667next:
 668		if (extent_map_in_tree(em))
 669			remove_extent_mapping(em_tree, em);
 670		write_unlock(&em_tree->lock);
 671
 672		/* once for us */
 673		free_extent_map(em);
 674		/* once for the tree*/
 675		free_extent_map(em);
 676	}
 677	if (split)
 678		free_extent_map(split);
 679	if (split2)
 680		free_extent_map(split2);
 681}
 682
 683/*
 684 * this is very complex, but the basic idea is to drop all extents
 685 * in the range start - end.  hint_block is filled in with a block number
 686 * that would be a good hint to the block allocator for this file.
 687 *
 688 * If an extent intersects the range but is not entirely inside the range
 689 * it is either truncated or split.  Anything entirely inside the range
 690 * is deleted from the tree.
 691 */
 692int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 693			 struct btrfs_root *root, struct inode *inode,
 694			 struct btrfs_path *path, u64 start, u64 end,
 695			 u64 *drop_end, int drop_cache,
 696			 int replace_extent,
 697			 u32 extent_item_size,
 698			 int *key_inserted)
 699{
 700	struct btrfs_fs_info *fs_info = root->fs_info;
 701	struct extent_buffer *leaf;
 702	struct btrfs_file_extent_item *fi;
 703	struct btrfs_key key;
 704	struct btrfs_key new_key;
 705	u64 ino = btrfs_ino(inode);
 706	u64 search_start = start;
 707	u64 disk_bytenr = 0;
 708	u64 num_bytes = 0;
 709	u64 extent_offset = 0;
 710	u64 extent_end = 0;
 711	u64 last_end = start;
 712	int del_nr = 0;
 713	int del_slot = 0;
 714	int extent_type;
 715	int recow;
 716	int ret;
 717	int modify_tree = -1;
 718	int update_refs;
 719	int found = 0;
 720	int leafs_visited = 0;
 721
 722	if (drop_cache)
 723		btrfs_drop_extent_cache(inode, start, end - 1, 0);
 724
 725	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
 726		modify_tree = 0;
 727
 728	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 729		       root == fs_info->tree_root);
 730	while (1) {
 731		recow = 0;
 732		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 733					       search_start, modify_tree);
 734		if (ret < 0)
 735			break;
 736		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 737			leaf = path->nodes[0];
 738			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 739			if (key.objectid == ino &&
 740			    key.type == BTRFS_EXTENT_DATA_KEY)
 741				path->slots[0]--;
 742		}
 743		ret = 0;
 744		leafs_visited++;
 745next_slot:
 746		leaf = path->nodes[0];
 747		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 748			BUG_ON(del_nr > 0);
 749			ret = btrfs_next_leaf(root, path);
 750			if (ret < 0)
 751				break;
 752			if (ret > 0) {
 753				ret = 0;
 754				break;
 755			}
 756			leafs_visited++;
 757			leaf = path->nodes[0];
 758			recow = 1;
 759		}
 760
 761		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 762
 763		if (key.objectid > ino)
 764			break;
 765		if (WARN_ON_ONCE(key.objectid < ino) ||
 766		    key.type < BTRFS_EXTENT_DATA_KEY) {
 767			ASSERT(del_nr == 0);
 768			path->slots[0]++;
 769			goto next_slot;
 770		}
 771		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 772			break;
 773
 774		fi = btrfs_item_ptr(leaf, path->slots[0],
 775				    struct btrfs_file_extent_item);
 776		extent_type = btrfs_file_extent_type(leaf, fi);
 777
 778		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 779		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 780			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 781			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 782			extent_offset = btrfs_file_extent_offset(leaf, fi);
 783			extent_end = key.offset +
 784				btrfs_file_extent_num_bytes(leaf, fi);
 785		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 786			extent_end = key.offset +
 787				btrfs_file_extent_inline_len(leaf,
 788						     path->slots[0], fi);
 789		} else {
 790			/* can't happen */
 791			BUG();
 792		}
 793
 794		/*
 795		 * Don't skip extent items representing 0 byte lengths. They
 796		 * used to be created (bug) if while punching holes we hit
 797		 * -ENOSPC condition. So if we find one here, just ensure we
 798		 * delete it, otherwise we would insert a new file extent item
 799		 * with the same key (offset) as that 0 bytes length file
 800		 * extent item in the call to setup_items_for_insert() later
 801		 * in this function.
 802		 */
 803		if (extent_end == key.offset && extent_end >= search_start) {
 804			last_end = extent_end;
 805			goto delete_extent_item;
 806		}
 807
 808		if (extent_end <= search_start) {
 809			path->slots[0]++;
 810			goto next_slot;
 811		}
 812
 813		found = 1;
 814		search_start = max(key.offset, start);
 815		if (recow || !modify_tree) {
 816			modify_tree = -1;
 817			btrfs_release_path(path);
 818			continue;
 819		}
 820
 821		/*
 822		 *     | - range to drop - |
 823		 *  | -------- extent -------- |
 824		 */
 825		if (start > key.offset && end < extent_end) {
 826			BUG_ON(del_nr > 0);
 827			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 828				ret = -EOPNOTSUPP;
 829				break;
 830			}
 831
 832			memcpy(&new_key, &key, sizeof(new_key));
 833			new_key.offset = start;
 834			ret = btrfs_duplicate_item(trans, root, path,
 835						   &new_key);
 836			if (ret == -EAGAIN) {
 837				btrfs_release_path(path);
 838				continue;
 839			}
 840			if (ret < 0)
 841				break;
 842
 843			leaf = path->nodes[0];
 844			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 845					    struct btrfs_file_extent_item);
 846			btrfs_set_file_extent_num_bytes(leaf, fi,
 847							start - key.offset);
 848
 849			fi = btrfs_item_ptr(leaf, path->slots[0],
 850					    struct btrfs_file_extent_item);
 851
 852			extent_offset += start - key.offset;
 853			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 854			btrfs_set_file_extent_num_bytes(leaf, fi,
 855							extent_end - start);
 856			btrfs_mark_buffer_dirty(leaf);
 857
 858			if (update_refs && disk_bytenr > 0) {
 859				ret = btrfs_inc_extent_ref(trans, fs_info,
 860						disk_bytenr, num_bytes, 0,
 861						root->root_key.objectid,
 862						new_key.objectid,
 863						start - extent_offset);
 864				BUG_ON(ret); /* -ENOMEM */
 865			}
 866			key.offset = start;
 867		}
 868		/*
 869		 * From here on out we will have actually dropped something, so
 870		 * last_end can be updated.
 871		 */
 872		last_end = extent_end;
 873
 874		/*
 875		 *  | ---- range to drop ----- |
 876		 *      | -------- extent -------- |
 877		 */
 878		if (start <= key.offset && end < extent_end) {
 879			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 880				ret = -EOPNOTSUPP;
 881				break;
 882			}
 883
 884			memcpy(&new_key, &key, sizeof(new_key));
 885			new_key.offset = end;
 886			btrfs_set_item_key_safe(fs_info, path, &new_key);
 887
 888			extent_offset += end - key.offset;
 889			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 890			btrfs_set_file_extent_num_bytes(leaf, fi,
 891							extent_end - end);
 892			btrfs_mark_buffer_dirty(leaf);
 893			if (update_refs && disk_bytenr > 0)
 894				inode_sub_bytes(inode, end - key.offset);
 895			break;
 896		}
 897
 898		search_start = extent_end;
 899		/*
 900		 *       | ---- range to drop ----- |
 901		 *  | -------- extent -------- |
 902		 */
 903		if (start > key.offset && end >= extent_end) {
 904			BUG_ON(del_nr > 0);
 905			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 906				ret = -EOPNOTSUPP;
 907				break;
 908			}
 909
 910			btrfs_set_file_extent_num_bytes(leaf, fi,
 911							start - key.offset);
 912			btrfs_mark_buffer_dirty(leaf);
 913			if (update_refs && disk_bytenr > 0)
 914				inode_sub_bytes(inode, extent_end - start);
 915			if (end == extent_end)
 916				break;
 917
 918			path->slots[0]++;
 919			goto next_slot;
 920		}
 921
 922		/*
 923		 *  | ---- range to drop ----- |
 924		 *    | ------ extent ------ |
 925		 */
 926		if (start <= key.offset && end >= extent_end) {
 927delete_extent_item:
 928			if (del_nr == 0) {
 929				del_slot = path->slots[0];
 930				del_nr = 1;
 931			} else {
 932				BUG_ON(del_slot + del_nr != path->slots[0]);
 933				del_nr++;
 934			}
 935
 936			if (update_refs &&
 937			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 938				inode_sub_bytes(inode,
 939						extent_end - key.offset);
 940				extent_end = ALIGN(extent_end,
 941						   fs_info->sectorsize);
 942			} else if (update_refs && disk_bytenr > 0) {
 943				ret = btrfs_free_extent(trans, fs_info,
 944						disk_bytenr, num_bytes, 0,
 945						root->root_key.objectid,
 946						key.objectid, key.offset -
 947						extent_offset);
 948				BUG_ON(ret); /* -ENOMEM */
 949				inode_sub_bytes(inode,
 950						extent_end - key.offset);
 951			}
 952
 953			if (end == extent_end)
 954				break;
 955
 956			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 957				path->slots[0]++;
 958				goto next_slot;
 959			}
 960
 961			ret = btrfs_del_items(trans, root, path, del_slot,
 962					      del_nr);
 963			if (ret) {
 964				btrfs_abort_transaction(trans, ret);
 965				break;
 966			}
 967
 968			del_nr = 0;
 969			del_slot = 0;
 970
 971			btrfs_release_path(path);
 972			continue;
 973		}
 974
 975		BUG_ON(1);
 976	}
 977
 978	if (!ret && del_nr > 0) {
 979		/*
 980		 * Set path->slots[0] to first slot, so that after the delete
 981		 * if items are move off from our leaf to its immediate left or
 982		 * right neighbor leafs, we end up with a correct and adjusted
 983		 * path->slots[0] for our insertion (if replace_extent != 0).
 984		 */
 985		path->slots[0] = del_slot;
 986		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 987		if (ret)
 988			btrfs_abort_transaction(trans, ret);
 989	}
 990
 991	leaf = path->nodes[0];
 992	/*
 993	 * If btrfs_del_items() was called, it might have deleted a leaf, in
 994	 * which case it unlocked our path, so check path->locks[0] matches a
 995	 * write lock.
 996	 */
 997	if (!ret && replace_extent && leafs_visited == 1 &&
 998	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
 999	     path->locks[0] == BTRFS_WRITE_LOCK) &&
1000	    btrfs_leaf_free_space(fs_info, leaf) >=
1001	    sizeof(struct btrfs_item) + extent_item_size) {
1002
1003		key.objectid = ino;
1004		key.type = BTRFS_EXTENT_DATA_KEY;
1005		key.offset = start;
1006		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1007			struct btrfs_key slot_key;
1008
1009			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1010			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1011				path->slots[0]++;
1012		}
1013		setup_items_for_insert(root, path, &key,
1014				       &extent_item_size,
1015				       extent_item_size,
1016				       sizeof(struct btrfs_item) +
1017				       extent_item_size, 1);
1018		*key_inserted = 1;
1019	}
1020
1021	if (!replace_extent || !(*key_inserted))
1022		btrfs_release_path(path);
1023	if (drop_end)
1024		*drop_end = found ? min(end, last_end) : end;
1025	return ret;
1026}
1027
1028int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1029		       struct btrfs_root *root, struct inode *inode, u64 start,
1030		       u64 end, int drop_cache)
1031{
1032	struct btrfs_path *path;
1033	int ret;
1034
1035	path = btrfs_alloc_path();
1036	if (!path)
1037		return -ENOMEM;
1038	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1039				   drop_cache, 0, 0, NULL);
1040	btrfs_free_path(path);
1041	return ret;
1042}
1043
1044static int extent_mergeable(struct extent_buffer *leaf, int slot,
1045			    u64 objectid, u64 bytenr, u64 orig_offset,
1046			    u64 *start, u64 *end)
1047{
1048	struct btrfs_file_extent_item *fi;
1049	struct btrfs_key key;
1050	u64 extent_end;
1051
1052	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1053		return 0;
1054
1055	btrfs_item_key_to_cpu(leaf, &key, slot);
1056	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1057		return 0;
1058
1059	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1060	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1061	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1062	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1063	    btrfs_file_extent_compression(leaf, fi) ||
1064	    btrfs_file_extent_encryption(leaf, fi) ||
1065	    btrfs_file_extent_other_encoding(leaf, fi))
1066		return 0;
1067
1068	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1069	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1070		return 0;
1071
1072	*start = key.offset;
1073	*end = extent_end;
1074	return 1;
1075}
1076
1077/*
1078 * Mark extent in the range start - end as written.
1079 *
1080 * This changes extent type from 'pre-allocated' to 'regular'. If only
1081 * part of extent is marked as written, the extent will be split into
1082 * two or three.
1083 */
1084int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1085			      struct inode *inode, u64 start, u64 end)
1086{
1087	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1088	struct btrfs_root *root = BTRFS_I(inode)->root;
1089	struct extent_buffer *leaf;
1090	struct btrfs_path *path;
1091	struct btrfs_file_extent_item *fi;
1092	struct btrfs_key key;
1093	struct btrfs_key new_key;
1094	u64 bytenr;
1095	u64 num_bytes;
1096	u64 extent_end;
1097	u64 orig_offset;
1098	u64 other_start;
1099	u64 other_end;
1100	u64 split;
1101	int del_nr = 0;
1102	int del_slot = 0;
1103	int recow;
1104	int ret;
1105	u64 ino = btrfs_ino(inode);
1106
1107	path = btrfs_alloc_path();
1108	if (!path)
1109		return -ENOMEM;
1110again:
1111	recow = 0;
1112	split = start;
1113	key.objectid = ino;
1114	key.type = BTRFS_EXTENT_DATA_KEY;
1115	key.offset = split;
1116
1117	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1118	if (ret < 0)
1119		goto out;
1120	if (ret > 0 && path->slots[0] > 0)
1121		path->slots[0]--;
1122
1123	leaf = path->nodes[0];
1124	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1125	if (key.objectid != ino ||
1126	    key.type != BTRFS_EXTENT_DATA_KEY) {
1127		ret = -EINVAL;
1128		btrfs_abort_transaction(trans, ret);
1129		goto out;
1130	}
1131	fi = btrfs_item_ptr(leaf, path->slots[0],
1132			    struct btrfs_file_extent_item);
1133	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1134		ret = -EINVAL;
1135		btrfs_abort_transaction(trans, ret);
1136		goto out;
1137	}
1138	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1139	if (key.offset > start || extent_end < end) {
1140		ret = -EINVAL;
1141		btrfs_abort_transaction(trans, ret);
1142		goto out;
1143	}
1144
1145	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1146	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1147	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1148	memcpy(&new_key, &key, sizeof(new_key));
1149
1150	if (start == key.offset && end < extent_end) {
1151		other_start = 0;
1152		other_end = start;
1153		if (extent_mergeable(leaf, path->slots[0] - 1,
1154				     ino, bytenr, orig_offset,
1155				     &other_start, &other_end)) {
1156			new_key.offset = end;
1157			btrfs_set_item_key_safe(fs_info, path, &new_key);
1158			fi = btrfs_item_ptr(leaf, path->slots[0],
1159					    struct btrfs_file_extent_item);
1160			btrfs_set_file_extent_generation(leaf, fi,
1161							 trans->transid);
1162			btrfs_set_file_extent_num_bytes(leaf, fi,
1163							extent_end - end);
1164			btrfs_set_file_extent_offset(leaf, fi,
1165						     end - orig_offset);
1166			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1167					    struct btrfs_file_extent_item);
1168			btrfs_set_file_extent_generation(leaf, fi,
1169							 trans->transid);
1170			btrfs_set_file_extent_num_bytes(leaf, fi,
1171							end - other_start);
1172			btrfs_mark_buffer_dirty(leaf);
1173			goto out;
1174		}
1175	}
1176
1177	if (start > key.offset && end == extent_end) {
1178		other_start = end;
1179		other_end = 0;
1180		if (extent_mergeable(leaf, path->slots[0] + 1,
1181				     ino, bytenr, orig_offset,
1182				     &other_start, &other_end)) {
1183			fi = btrfs_item_ptr(leaf, path->slots[0],
1184					    struct btrfs_file_extent_item);
1185			btrfs_set_file_extent_num_bytes(leaf, fi,
1186							start - key.offset);
1187			btrfs_set_file_extent_generation(leaf, fi,
1188							 trans->transid);
1189			path->slots[0]++;
1190			new_key.offset = start;
1191			btrfs_set_item_key_safe(fs_info, path, &new_key);
1192
1193			fi = btrfs_item_ptr(leaf, path->slots[0],
1194					    struct btrfs_file_extent_item);
1195			btrfs_set_file_extent_generation(leaf, fi,
1196							 trans->transid);
1197			btrfs_set_file_extent_num_bytes(leaf, fi,
1198							other_end - start);
1199			btrfs_set_file_extent_offset(leaf, fi,
1200						     start - orig_offset);
1201			btrfs_mark_buffer_dirty(leaf);
1202			goto out;
1203		}
1204	}
1205
1206	while (start > key.offset || end < extent_end) {
1207		if (key.offset == start)
1208			split = end;
1209
1210		new_key.offset = split;
1211		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1212		if (ret == -EAGAIN) {
1213			btrfs_release_path(path);
1214			goto again;
1215		}
1216		if (ret < 0) {
1217			btrfs_abort_transaction(trans, ret);
1218			goto out;
1219		}
1220
1221		leaf = path->nodes[0];
1222		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1223				    struct btrfs_file_extent_item);
1224		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1225		btrfs_set_file_extent_num_bytes(leaf, fi,
1226						split - key.offset);
1227
1228		fi = btrfs_item_ptr(leaf, path->slots[0],
1229				    struct btrfs_file_extent_item);
1230
1231		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1232		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1233		btrfs_set_file_extent_num_bytes(leaf, fi,
1234						extent_end - split);
1235		btrfs_mark_buffer_dirty(leaf);
1236
1237		ret = btrfs_inc_extent_ref(trans, fs_info, bytenr, num_bytes,
1238					   0, root->root_key.objectid,
1239					   ino, orig_offset);
1240		if (ret) {
1241			btrfs_abort_transaction(trans, ret);
1242			goto out;
1243		}
1244
1245		if (split == start) {
1246			key.offset = start;
1247		} else {
1248			if (start != key.offset) {
1249				ret = -EINVAL;
1250				btrfs_abort_transaction(trans, ret);
1251				goto out;
1252			}
1253			path->slots[0]--;
1254			extent_end = end;
1255		}
1256		recow = 1;
1257	}
1258
1259	other_start = end;
1260	other_end = 0;
1261	if (extent_mergeable(leaf, path->slots[0] + 1,
1262			     ino, bytenr, orig_offset,
1263			     &other_start, &other_end)) {
1264		if (recow) {
1265			btrfs_release_path(path);
1266			goto again;
1267		}
1268		extent_end = other_end;
1269		del_slot = path->slots[0] + 1;
1270		del_nr++;
1271		ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1272					0, root->root_key.objectid,
1273					ino, orig_offset);
1274		if (ret) {
1275			btrfs_abort_transaction(trans, ret);
1276			goto out;
1277		}
1278	}
1279	other_start = 0;
1280	other_end = start;
1281	if (extent_mergeable(leaf, path->slots[0] - 1,
1282			     ino, bytenr, orig_offset,
1283			     &other_start, &other_end)) {
1284		if (recow) {
1285			btrfs_release_path(path);
1286			goto again;
1287		}
1288		key.offset = other_start;
1289		del_slot = path->slots[0];
1290		del_nr++;
1291		ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1292					0, root->root_key.objectid,
1293					ino, orig_offset);
1294		if (ret) {
1295			btrfs_abort_transaction(trans, ret);
1296			goto out;
1297		}
1298	}
1299	if (del_nr == 0) {
1300		fi = btrfs_item_ptr(leaf, path->slots[0],
1301			   struct btrfs_file_extent_item);
1302		btrfs_set_file_extent_type(leaf, fi,
1303					   BTRFS_FILE_EXTENT_REG);
1304		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1305		btrfs_mark_buffer_dirty(leaf);
1306	} else {
1307		fi = btrfs_item_ptr(leaf, del_slot - 1,
1308			   struct btrfs_file_extent_item);
1309		btrfs_set_file_extent_type(leaf, fi,
1310					   BTRFS_FILE_EXTENT_REG);
1311		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1312		btrfs_set_file_extent_num_bytes(leaf, fi,
1313						extent_end - key.offset);
1314		btrfs_mark_buffer_dirty(leaf);
1315
1316		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1317		if (ret < 0) {
1318			btrfs_abort_transaction(trans, ret);
1319			goto out;
1320		}
1321	}
1322out:
1323	btrfs_free_path(path);
1324	return 0;
1325}
1326
1327/*
1328 * on error we return an unlocked page and the error value
1329 * on success we return a locked page and 0
1330 */
1331static int prepare_uptodate_page(struct inode *inode,
1332				 struct page *page, u64 pos,
1333				 bool force_uptodate)
1334{
1335	int ret = 0;
1336
1337	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1338	    !PageUptodate(page)) {
1339		ret = btrfs_readpage(NULL, page);
1340		if (ret)
1341			return ret;
1342		lock_page(page);
1343		if (!PageUptodate(page)) {
1344			unlock_page(page);
1345			return -EIO;
1346		}
1347		if (page->mapping != inode->i_mapping) {
1348			unlock_page(page);
1349			return -EAGAIN;
1350		}
1351	}
1352	return 0;
1353}
1354
1355/*
1356 * this just gets pages into the page cache and locks them down.
1357 */
1358static noinline int prepare_pages(struct inode *inode, struct page **pages,
1359				  size_t num_pages, loff_t pos,
1360				  size_t write_bytes, bool force_uptodate)
1361{
1362	int i;
1363	unsigned long index = pos >> PAGE_SHIFT;
1364	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1365	int err = 0;
1366	int faili;
1367
1368	for (i = 0; i < num_pages; i++) {
1369again:
1370		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1371					       mask | __GFP_WRITE);
1372		if (!pages[i]) {
1373			faili = i - 1;
1374			err = -ENOMEM;
1375			goto fail;
1376		}
1377
1378		if (i == 0)
1379			err = prepare_uptodate_page(inode, pages[i], pos,
1380						    force_uptodate);
1381		if (!err && i == num_pages - 1)
1382			err = prepare_uptodate_page(inode, pages[i],
1383						    pos + write_bytes, false);
1384		if (err) {
1385			put_page(pages[i]);
1386			if (err == -EAGAIN) {
1387				err = 0;
1388				goto again;
1389			}
1390			faili = i - 1;
1391			goto fail;
1392		}
1393		wait_on_page_writeback(pages[i]);
1394	}
1395
1396	return 0;
1397fail:
1398	while (faili >= 0) {
1399		unlock_page(pages[faili]);
1400		put_page(pages[faili]);
1401		faili--;
1402	}
1403	return err;
1404
1405}
1406
1407/*
1408 * This function locks the extent and properly waits for data=ordered extents
1409 * to finish before allowing the pages to be modified if need.
1410 *
1411 * The return value:
1412 * 1 - the extent is locked
1413 * 0 - the extent is not locked, and everything is OK
1414 * -EAGAIN - need re-prepare the pages
1415 * the other < 0 number - Something wrong happens
1416 */
1417static noinline int
1418lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1419				size_t num_pages, loff_t pos,
1420				size_t write_bytes,
1421				u64 *lockstart, u64 *lockend,
1422				struct extent_state **cached_state)
1423{
1424	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1425	u64 start_pos;
1426	u64 last_pos;
1427	int i;
1428	int ret = 0;
1429
1430	start_pos = round_down(pos, fs_info->sectorsize);
1431	last_pos = start_pos
1432		+ round_up(pos + write_bytes - start_pos,
1433			   fs_info->sectorsize) - 1;
1434
1435	if (start_pos < inode->i_size) {
1436		struct btrfs_ordered_extent *ordered;
1437		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1438				 start_pos, last_pos, cached_state);
1439		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1440						     last_pos - start_pos + 1);
1441		if (ordered &&
1442		    ordered->file_offset + ordered->len > start_pos &&
1443		    ordered->file_offset <= last_pos) {
1444			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1445					     start_pos, last_pos,
1446					     cached_state, GFP_NOFS);
1447			for (i = 0; i < num_pages; i++) {
1448				unlock_page(pages[i]);
1449				put_page(pages[i]);
1450			}
1451			btrfs_start_ordered_extent(inode, ordered, 1);
1452			btrfs_put_ordered_extent(ordered);
1453			return -EAGAIN;
1454		}
1455		if (ordered)
1456			btrfs_put_ordered_extent(ordered);
1457
1458		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1459				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1460				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1461				  0, 0, cached_state, GFP_NOFS);
1462		*lockstart = start_pos;
1463		*lockend = last_pos;
1464		ret = 1;
1465	}
1466
1467	for (i = 0; i < num_pages; i++) {
1468		if (clear_page_dirty_for_io(pages[i]))
1469			account_page_redirty(pages[i]);
1470		set_page_extent_mapped(pages[i]);
1471		WARN_ON(!PageLocked(pages[i]));
1472	}
1473
1474	return ret;
1475}
1476
1477static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1478				    size_t *write_bytes)
1479{
1480	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1481	struct btrfs_root *root = BTRFS_I(inode)->root;
1482	struct btrfs_ordered_extent *ordered;
1483	u64 lockstart, lockend;
1484	u64 num_bytes;
1485	int ret;
1486
1487	ret = btrfs_start_write_no_snapshoting(root);
1488	if (!ret)
1489		return -ENOSPC;
1490
1491	lockstart = round_down(pos, fs_info->sectorsize);
1492	lockend = round_up(pos + *write_bytes,
1493			   fs_info->sectorsize) - 1;
1494
1495	while (1) {
1496		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1497		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1498						     lockend - lockstart + 1);
1499		if (!ordered) {
1500			break;
1501		}
1502		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1503		btrfs_start_ordered_extent(inode, ordered, 1);
1504		btrfs_put_ordered_extent(ordered);
1505	}
1506
1507	num_bytes = lockend - lockstart + 1;
1508	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1509	if (ret <= 0) {
1510		ret = 0;
1511		btrfs_end_write_no_snapshoting(root);
1512	} else {
1513		*write_bytes = min_t(size_t, *write_bytes ,
1514				     num_bytes - pos + lockstart);
1515	}
1516
1517	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1518
1519	return ret;
1520}
1521
1522static noinline ssize_t __btrfs_buffered_write(struct file *file,
1523					       struct iov_iter *i,
1524					       loff_t pos)
1525{
1526	struct inode *inode = file_inode(file);
1527	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1528	struct btrfs_root *root = BTRFS_I(inode)->root;
1529	struct page **pages = NULL;
1530	struct extent_state *cached_state = NULL;
1531	u64 release_bytes = 0;
1532	u64 lockstart;
1533	u64 lockend;
1534	size_t num_written = 0;
1535	int nrptrs;
1536	int ret = 0;
1537	bool only_release_metadata = false;
1538	bool force_page_uptodate = false;
1539	bool need_unlock;
1540
1541	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1542			PAGE_SIZE / (sizeof(struct page *)));
1543	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1544	nrptrs = max(nrptrs, 8);
1545	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1546	if (!pages)
1547		return -ENOMEM;
1548
1549	while (iov_iter_count(i) > 0) {
1550		size_t offset = pos & (PAGE_SIZE - 1);
1551		size_t sector_offset;
1552		size_t write_bytes = min(iov_iter_count(i),
1553					 nrptrs * (size_t)PAGE_SIZE -
1554					 offset);
1555		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1556						PAGE_SIZE);
1557		size_t reserve_bytes;
1558		size_t dirty_pages;
1559		size_t copied;
1560		size_t dirty_sectors;
1561		size_t num_sectors;
1562
1563		WARN_ON(num_pages > nrptrs);
1564
1565		/*
1566		 * Fault pages before locking them in prepare_pages
1567		 * to avoid recursive lock
1568		 */
1569		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1570			ret = -EFAULT;
1571			break;
1572		}
1573
1574		sector_offset = pos & (fs_info->sectorsize - 1);
1575		reserve_bytes = round_up(write_bytes + sector_offset,
1576				fs_info->sectorsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1577
1578		ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1579		if (ret < 0) {
1580			if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1581						      BTRFS_INODE_PREALLOC)) &&
1582			    check_can_nocow(inode, pos, &write_bytes) > 0) {
1583				/*
1584				 * For nodata cow case, no need to reserve
1585				 * data space.
1586				 */
1587				only_release_metadata = true;
1588				/*
1589				 * our prealloc extent may be smaller than
1590				 * write_bytes, so scale down.
1591				 */
1592				num_pages = DIV_ROUND_UP(write_bytes + offset,
1593							 PAGE_SIZE);
1594				reserve_bytes = round_up(write_bytes +
1595							 sector_offset,
1596							 fs_info->sectorsize);
1597			} else {
1598				break;
1599			}
1600		}
1601
 
1602		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1603		if (ret) {
1604			if (!only_release_metadata)
1605				btrfs_free_reserved_data_space(inode, pos,
1606							       write_bytes);
1607			else
1608				btrfs_end_write_no_snapshoting(root);
1609			break;
1610		}
1611
1612		release_bytes = reserve_bytes;
1613		need_unlock = false;
1614again:
1615		/*
1616		 * This is going to setup the pages array with the number of
1617		 * pages we want, so we don't really need to worry about the
1618		 * contents of pages from loop to loop
1619		 */
1620		ret = prepare_pages(inode, pages, num_pages,
1621				    pos, write_bytes,
1622				    force_page_uptodate);
1623		if (ret)
1624			break;
1625
1626		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1627						pos, write_bytes, &lockstart,
1628						&lockend, &cached_state);
1629		if (ret < 0) {
1630			if (ret == -EAGAIN)
1631				goto again;
1632			break;
1633		} else if (ret > 0) {
1634			need_unlock = true;
1635			ret = 0;
1636		}
1637
1638		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1639
1640		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1641		dirty_sectors = round_up(copied + sector_offset,
1642					fs_info->sectorsize);
1643		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1644
1645		/*
1646		 * if we have trouble faulting in the pages, fall
1647		 * back to one page at a time
1648		 */
1649		if (copied < write_bytes)
1650			nrptrs = 1;
1651
1652		if (copied == 0) {
1653			force_page_uptodate = true;
1654			dirty_sectors = 0;
1655			dirty_pages = 0;
1656		} else {
1657			force_page_uptodate = false;
1658			dirty_pages = DIV_ROUND_UP(copied + offset,
1659						   PAGE_SIZE);
1660		}
1661
1662		/*
1663		 * If we had a short copy we need to release the excess delaloc
1664		 * bytes we reserved.  We need to increment outstanding_extents
1665		 * because btrfs_delalloc_release_space and
1666		 * btrfs_delalloc_release_metadata will decrement it, but
1667		 * we still have an outstanding extent for the chunk we actually
1668		 * managed to copy.
1669		 */
 
 
 
 
 
 
 
1670		if (num_sectors > dirty_sectors) {
1671			/* release everything except the sectors we dirtied */
1672			release_bytes -= dirty_sectors <<
1673						fs_info->sb->s_blocksize_bits;
1674			if (copied > 0) {
1675				spin_lock(&BTRFS_I(inode)->lock);
1676				BTRFS_I(inode)->outstanding_extents++;
1677				spin_unlock(&BTRFS_I(inode)->lock);
1678			}
1679			if (only_release_metadata) {
1680				btrfs_delalloc_release_metadata(inode,
1681								release_bytes);
1682			} else {
1683				u64 __pos;
1684
1685				__pos = round_down(pos,
1686						   fs_info->sectorsize) +
1687					(dirty_pages << PAGE_SHIFT);
1688				btrfs_delalloc_release_space(inode, __pos,
1689							     release_bytes);
1690			}
1691		}
1692
1693		release_bytes = round_up(copied + sector_offset,
1694					fs_info->sectorsize);
1695
1696		if (copied > 0)
1697			ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1698						pos, copied, NULL);
 
1699		if (need_unlock)
1700			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1701					     lockstart, lockend, &cached_state,
1702					     GFP_NOFS);
1703		if (ret) {
1704			btrfs_drop_pages(pages, num_pages);
1705			break;
1706		}
1707
1708		release_bytes = 0;
1709		if (only_release_metadata)
1710			btrfs_end_write_no_snapshoting(root);
1711
1712		if (only_release_metadata && copied > 0) {
1713			lockstart = round_down(pos,
1714					       fs_info->sectorsize);
1715			lockend = round_up(pos + copied,
1716					   fs_info->sectorsize) - 1;
1717
1718			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1719				       lockend, EXTENT_NORESERVE, NULL,
1720				       NULL, GFP_NOFS);
1721			only_release_metadata = false;
1722		}
1723
1724		btrfs_drop_pages(pages, num_pages);
1725
1726		cond_resched();
1727
1728		balance_dirty_pages_ratelimited(inode->i_mapping);
1729		if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1730			btrfs_btree_balance_dirty(fs_info);
1731
1732		pos += copied;
1733		num_written += copied;
1734	}
1735
1736	kfree(pages);
1737
1738	if (release_bytes) {
1739		if (only_release_metadata) {
1740			btrfs_end_write_no_snapshoting(root);
1741			btrfs_delalloc_release_metadata(inode, release_bytes);
1742		} else {
1743			btrfs_delalloc_release_space(inode,
1744						round_down(pos, fs_info->sectorsize),
1745						release_bytes);
1746		}
1747	}
1748
1749	return num_written ? num_written : ret;
1750}
1751
1752static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
 
 
1753{
1754	struct file *file = iocb->ki_filp;
1755	struct inode *inode = file_inode(file);
1756	loff_t pos = iocb->ki_pos;
1757	ssize_t written;
1758	ssize_t written_buffered;
1759	loff_t endbyte;
1760	int err;
1761
1762	written = generic_file_direct_write(iocb, from);
1763
1764	if (written < 0 || !iov_iter_count(from))
1765		return written;
1766
1767	pos += written;
1768	written_buffered = __btrfs_buffered_write(file, from, pos);
1769	if (written_buffered < 0) {
1770		err = written_buffered;
1771		goto out;
1772	}
1773	/*
1774	 * Ensure all data is persisted. We want the next direct IO read to be
1775	 * able to read what was just written.
1776	 */
1777	endbyte = pos + written_buffered - 1;
1778	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1779	if (err)
1780		goto out;
1781	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1782	if (err)
1783		goto out;
1784	written += written_buffered;
1785	iocb->ki_pos = pos + written_buffered;
1786	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1787				 endbyte >> PAGE_SHIFT);
1788out:
1789	return written ? written : err;
1790}
1791
1792static void update_time_for_write(struct inode *inode)
1793{
1794	struct timespec now;
1795
1796	if (IS_NOCMTIME(inode))
1797		return;
1798
1799	now = current_time(inode);
1800	if (!timespec_equal(&inode->i_mtime, &now))
1801		inode->i_mtime = now;
1802
1803	if (!timespec_equal(&inode->i_ctime, &now))
1804		inode->i_ctime = now;
1805
1806	if (IS_I_VERSION(inode))
1807		inode_inc_iversion(inode);
1808}
1809
1810static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1811				    struct iov_iter *from)
1812{
1813	struct file *file = iocb->ki_filp;
1814	struct inode *inode = file_inode(file);
1815	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1816	struct btrfs_root *root = BTRFS_I(inode)->root;
1817	u64 start_pos;
1818	u64 end_pos;
1819	ssize_t num_written = 0;
1820	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1821	ssize_t err;
1822	loff_t pos;
1823	size_t count;
1824	loff_t oldsize;
1825	int clean_page = 0;
1826
1827	inode_lock(inode);
1828	err = generic_write_checks(iocb, from);
1829	if (err <= 0) {
1830		inode_unlock(inode);
1831		return err;
1832	}
1833
1834	current->backing_dev_info = inode_to_bdi(inode);
1835	err = file_remove_privs(file);
1836	if (err) {
1837		inode_unlock(inode);
1838		goto out;
1839	}
1840
1841	/*
1842	 * If BTRFS flips readonly due to some impossible error
1843	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1844	 * although we have opened a file as writable, we have
1845	 * to stop this write operation to ensure FS consistency.
1846	 */
1847	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1848		inode_unlock(inode);
1849		err = -EROFS;
1850		goto out;
1851	}
1852
1853	/*
1854	 * We reserve space for updating the inode when we reserve space for the
1855	 * extent we are going to write, so we will enospc out there.  We don't
1856	 * need to start yet another transaction to update the inode as we will
1857	 * update the inode when we finish writing whatever data we write.
1858	 */
1859	update_time_for_write(inode);
1860
1861	pos = iocb->ki_pos;
1862	count = iov_iter_count(from);
1863	start_pos = round_down(pos, fs_info->sectorsize);
1864	oldsize = i_size_read(inode);
1865	if (start_pos > oldsize) {
1866		/* Expand hole size to cover write data, preventing empty gap */
1867		end_pos = round_up(pos + count,
1868				   fs_info->sectorsize);
1869		err = btrfs_cont_expand(inode, oldsize, end_pos);
1870		if (err) {
1871			inode_unlock(inode);
1872			goto out;
1873		}
1874		if (start_pos > round_up(oldsize, fs_info->sectorsize))
1875			clean_page = 1;
1876	}
1877
1878	if (sync)
1879		atomic_inc(&BTRFS_I(inode)->sync_writers);
1880
1881	if (iocb->ki_flags & IOCB_DIRECT) {
1882		num_written = __btrfs_direct_write(iocb, from);
1883	} else {
1884		num_written = __btrfs_buffered_write(file, from, pos);
1885		if (num_written > 0)
1886			iocb->ki_pos = pos + num_written;
1887		if (clean_page)
1888			pagecache_isize_extended(inode, oldsize,
1889						i_size_read(inode));
1890	}
1891
1892	inode_unlock(inode);
1893
1894	/*
1895	 * We also have to set last_sub_trans to the current log transid,
1896	 * otherwise subsequent syncs to a file that's been synced in this
1897	 * transaction will appear to have already occurred.
1898	 */
1899	spin_lock(&BTRFS_I(inode)->lock);
1900	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1901	spin_unlock(&BTRFS_I(inode)->lock);
1902	if (num_written > 0)
1903		num_written = generic_write_sync(iocb, num_written);
 
 
 
1904
1905	if (sync)
1906		atomic_dec(&BTRFS_I(inode)->sync_writers);
1907out:
1908	current->backing_dev_info = NULL;
1909	return num_written ? num_written : err;
1910}
1911
1912int btrfs_release_file(struct inode *inode, struct file *filp)
1913{
1914	if (filp->private_data)
1915		btrfs_ioctl_trans_end(filp);
1916	/*
1917	 * ordered_data_close is set by settattr when we are about to truncate
1918	 * a file from a non-zero size to a zero size.  This tries to
1919	 * flush down new bytes that may have been written if the
1920	 * application were using truncate to replace a file in place.
1921	 */
1922	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1923			       &BTRFS_I(inode)->runtime_flags))
1924			filemap_flush(inode->i_mapping);
1925	return 0;
1926}
1927
1928static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1929{
1930	int ret;
1931
1932	atomic_inc(&BTRFS_I(inode)->sync_writers);
1933	ret = btrfs_fdatawrite_range(inode, start, end);
1934	atomic_dec(&BTRFS_I(inode)->sync_writers);
1935
1936	return ret;
1937}
1938
1939/*
1940 * fsync call for both files and directories.  This logs the inode into
1941 * the tree log instead of forcing full commits whenever possible.
1942 *
1943 * It needs to call filemap_fdatawait so that all ordered extent updates are
1944 * in the metadata btree are up to date for copying to the log.
1945 *
1946 * It drops the inode mutex before doing the tree log commit.  This is an
1947 * important optimization for directories because holding the mutex prevents
1948 * new operations on the dir while we write to disk.
1949 */
1950int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1951{
1952	struct dentry *dentry = file_dentry(file);
1953	struct inode *inode = d_inode(dentry);
1954	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1955	struct btrfs_root *root = BTRFS_I(inode)->root;
1956	struct btrfs_trans_handle *trans;
1957	struct btrfs_log_ctx ctx;
1958	int ret = 0;
1959	bool full_sync = 0;
1960	u64 len;
1961
1962	/*
1963	 * The range length can be represented by u64, we have to do the typecasts
1964	 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1965	 */
1966	len = (u64)end - (u64)start + 1;
1967	trace_btrfs_sync_file(file, datasync);
1968
1969	/*
1970	 * We write the dirty pages in the range and wait until they complete
1971	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1972	 * multi-task, and make the performance up.  See
1973	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1974	 */
1975	ret = start_ordered_ops(inode, start, end);
1976	if (ret)
1977		return ret;
1978
1979	inode_lock(inode);
1980	atomic_inc(&root->log_batch);
1981	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1982			     &BTRFS_I(inode)->runtime_flags);
1983	/*
1984	 * We might have have had more pages made dirty after calling
1985	 * start_ordered_ops and before acquiring the inode's i_mutex.
1986	 */
1987	if (full_sync) {
1988		/*
1989		 * For a full sync, we need to make sure any ordered operations
1990		 * start and finish before we start logging the inode, so that
1991		 * all extents are persisted and the respective file extent
1992		 * items are in the fs/subvol btree.
1993		 */
1994		ret = btrfs_wait_ordered_range(inode, start, len);
1995	} else {
1996		/*
1997		 * Start any new ordered operations before starting to log the
1998		 * inode. We will wait for them to finish in btrfs_sync_log().
1999		 *
2000		 * Right before acquiring the inode's mutex, we might have new
2001		 * writes dirtying pages, which won't immediately start the
2002		 * respective ordered operations - that is done through the
2003		 * fill_delalloc callbacks invoked from the writepage and
2004		 * writepages address space operations. So make sure we start
2005		 * all ordered operations before starting to log our inode. Not
2006		 * doing this means that while logging the inode, writeback
2007		 * could start and invoke writepage/writepages, which would call
2008		 * the fill_delalloc callbacks (cow_file_range,
2009		 * submit_compressed_extents). These callbacks add first an
2010		 * extent map to the modified list of extents and then create
2011		 * the respective ordered operation, which means in
2012		 * tree-log.c:btrfs_log_inode() we might capture all existing
2013		 * ordered operations (with btrfs_get_logged_extents()) before
2014		 * the fill_delalloc callback adds its ordered operation, and by
2015		 * the time we visit the modified list of extent maps (with
2016		 * btrfs_log_changed_extents()), we see and process the extent
2017		 * map they created. We then use the extent map to construct a
2018		 * file extent item for logging without waiting for the
2019		 * respective ordered operation to finish - this file extent
2020		 * item points to a disk location that might not have yet been
2021		 * written to, containing random data - so after a crash a log
2022		 * replay will make our inode have file extent items that point
2023		 * to disk locations containing invalid data, as we returned
2024		 * success to userspace without waiting for the respective
2025		 * ordered operation to finish, because it wasn't captured by
2026		 * btrfs_get_logged_extents().
2027		 */
2028		ret = start_ordered_ops(inode, start, end);
2029	}
2030	if (ret) {
2031		inode_unlock(inode);
2032		goto out;
2033	}
2034	atomic_inc(&root->log_batch);
2035
2036	/*
2037	 * If the last transaction that changed this file was before the current
2038	 * transaction and we have the full sync flag set in our inode, we can
2039	 * bail out now without any syncing.
2040	 *
2041	 * Note that we can't bail out if the full sync flag isn't set. This is
2042	 * because when the full sync flag is set we start all ordered extents
2043	 * and wait for them to fully complete - when they complete they update
2044	 * the inode's last_trans field through:
2045	 *
2046	 *     btrfs_finish_ordered_io() ->
2047	 *         btrfs_update_inode_fallback() ->
2048	 *             btrfs_update_inode() ->
2049	 *                 btrfs_set_inode_last_trans()
2050	 *
2051	 * So we are sure that last_trans is up to date and can do this check to
2052	 * bail out safely. For the fast path, when the full sync flag is not
2053	 * set in our inode, we can not do it because we start only our ordered
2054	 * extents and don't wait for them to complete (that is when
2055	 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2056	 * value might be less than or equals to fs_info->last_trans_committed,
2057	 * and setting a speculative last_trans for an inode when a buffered
2058	 * write is made (such as fs_info->generation + 1 for example) would not
2059	 * be reliable since after setting the value and before fsync is called
2060	 * any number of transactions can start and commit (transaction kthread
2061	 * commits the current transaction periodically), and a transaction
2062	 * commit does not start nor waits for ordered extents to complete.
2063	 */
2064	smp_mb();
2065	if (btrfs_inode_in_log(inode, fs_info->generation) ||
2066	    (full_sync && BTRFS_I(inode)->last_trans <=
2067	     fs_info->last_trans_committed) ||
2068	    (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2069	     BTRFS_I(inode)->last_trans
2070	     <= fs_info->last_trans_committed)) {
2071		/*
2072		 * We've had everything committed since the last time we were
2073		 * modified so clear this flag in case it was set for whatever
2074		 * reason, it's no longer relevant.
2075		 */
2076		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2077			  &BTRFS_I(inode)->runtime_flags);
2078		/*
2079		 * An ordered extent might have started before and completed
2080		 * already with io errors, in which case the inode was not
2081		 * updated and we end up here. So check the inode's mapping
2082		 * flags for any errors that might have happened while doing
2083		 * writeback of file data.
2084		 */
2085		ret = filemap_check_errors(inode->i_mapping);
2086		inode_unlock(inode);
2087		goto out;
2088	}
2089
2090	/*
2091	 * ok we haven't committed the transaction yet, lets do a commit
2092	 */
2093	if (file->private_data)
2094		btrfs_ioctl_trans_end(file);
2095
2096	/*
2097	 * We use start here because we will need to wait on the IO to complete
2098	 * in btrfs_sync_log, which could require joining a transaction (for
2099	 * example checking cross references in the nocow path).  If we use join
2100	 * here we could get into a situation where we're waiting on IO to
2101	 * happen that is blocked on a transaction trying to commit.  With start
2102	 * we inc the extwriter counter, so we wait for all extwriters to exit
2103	 * before we start blocking join'ers.  This comment is to keep somebody
2104	 * from thinking they are super smart and changing this to
2105	 * btrfs_join_transaction *cough*Josef*cough*.
2106	 */
2107	trans = btrfs_start_transaction(root, 0);
2108	if (IS_ERR(trans)) {
2109		ret = PTR_ERR(trans);
2110		inode_unlock(inode);
2111		goto out;
2112	}
2113	trans->sync = true;
2114
2115	btrfs_init_log_ctx(&ctx, inode);
2116
2117	ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2118	if (ret < 0) {
2119		/* Fallthrough and commit/free transaction. */
2120		ret = 1;
2121	}
2122
2123	/* we've logged all the items and now have a consistent
2124	 * version of the file in the log.  It is possible that
2125	 * someone will come in and modify the file, but that's
2126	 * fine because the log is consistent on disk, and we
2127	 * have references to all of the file's extents
2128	 *
2129	 * It is possible that someone will come in and log the
2130	 * file again, but that will end up using the synchronization
2131	 * inside btrfs_sync_log to keep things safe.
2132	 */
2133	inode_unlock(inode);
2134
2135	/*
2136	 * If any of the ordered extents had an error, just return it to user
2137	 * space, so that the application knows some writes didn't succeed and
2138	 * can take proper action (retry for e.g.). Blindly committing the
2139	 * transaction in this case, would fool userspace that everything was
2140	 * successful. And we also want to make sure our log doesn't contain
2141	 * file extent items pointing to extents that weren't fully written to -
2142	 * just like in the non fast fsync path, where we check for the ordered
2143	 * operation's error flag before writing to the log tree and return -EIO
2144	 * if any of them had this flag set (btrfs_wait_ordered_range) -
2145	 * therefore we need to check for errors in the ordered operations,
2146	 * which are indicated by ctx.io_err.
2147	 */
2148	if (ctx.io_err) {
2149		btrfs_end_transaction(trans);
2150		ret = ctx.io_err;
2151		goto out;
2152	}
2153
2154	if (ret != BTRFS_NO_LOG_SYNC) {
2155		if (!ret) {
2156			ret = btrfs_sync_log(trans, root, &ctx);
2157			if (!ret) {
2158				ret = btrfs_end_transaction(trans);
2159				goto out;
2160			}
2161		}
2162		if (!full_sync) {
2163			ret = btrfs_wait_ordered_range(inode, start, len);
2164			if (ret) {
2165				btrfs_end_transaction(trans);
2166				goto out;
2167			}
2168		}
2169		ret = btrfs_commit_transaction(trans);
2170	} else {
2171		ret = btrfs_end_transaction(trans);
2172	}
2173out:
2174	return ret > 0 ? -EIO : ret;
2175}
2176
2177static const struct vm_operations_struct btrfs_file_vm_ops = {
2178	.fault		= filemap_fault,
2179	.map_pages	= filemap_map_pages,
2180	.page_mkwrite	= btrfs_page_mkwrite,
2181};
2182
2183static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2184{
2185	struct address_space *mapping = filp->f_mapping;
2186
2187	if (!mapping->a_ops->readpage)
2188		return -ENOEXEC;
2189
2190	file_accessed(filp);
2191	vma->vm_ops = &btrfs_file_vm_ops;
2192
2193	return 0;
2194}
2195
2196static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2197			  int slot, u64 start, u64 end)
2198{
2199	struct btrfs_file_extent_item *fi;
2200	struct btrfs_key key;
2201
2202	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2203		return 0;
2204
2205	btrfs_item_key_to_cpu(leaf, &key, slot);
2206	if (key.objectid != btrfs_ino(inode) ||
2207	    key.type != BTRFS_EXTENT_DATA_KEY)
2208		return 0;
2209
2210	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2211
2212	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2213		return 0;
2214
2215	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2216		return 0;
2217
2218	if (key.offset == end)
2219		return 1;
2220	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2221		return 1;
2222	return 0;
2223}
2224
2225static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2226		      struct btrfs_path *path, u64 offset, u64 end)
2227{
2228	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2229	struct btrfs_root *root = BTRFS_I(inode)->root;
2230	struct extent_buffer *leaf;
2231	struct btrfs_file_extent_item *fi;
2232	struct extent_map *hole_em;
2233	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2234	struct btrfs_key key;
2235	int ret;
2236
2237	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2238		goto out;
2239
2240	key.objectid = btrfs_ino(inode);
2241	key.type = BTRFS_EXTENT_DATA_KEY;
2242	key.offset = offset;
2243
2244	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2245	if (ret <= 0) {
2246		/*
2247		 * We should have dropped this offset, so if we find it then
2248		 * something has gone horribly wrong.
2249		 */
2250		if (ret == 0)
2251			ret = -EINVAL;
2252		return ret;
2253	}
2254
2255	leaf = path->nodes[0];
2256	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2257		u64 num_bytes;
2258
2259		path->slots[0]--;
2260		fi = btrfs_item_ptr(leaf, path->slots[0],
2261				    struct btrfs_file_extent_item);
2262		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2263			end - offset;
2264		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2265		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2266		btrfs_set_file_extent_offset(leaf, fi, 0);
2267		btrfs_mark_buffer_dirty(leaf);
2268		goto out;
2269	}
2270
2271	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2272		u64 num_bytes;
2273
2274		key.offset = offset;
2275		btrfs_set_item_key_safe(fs_info, path, &key);
2276		fi = btrfs_item_ptr(leaf, path->slots[0],
2277				    struct btrfs_file_extent_item);
2278		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2279			offset;
2280		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2281		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2282		btrfs_set_file_extent_offset(leaf, fi, 0);
2283		btrfs_mark_buffer_dirty(leaf);
2284		goto out;
2285	}
2286	btrfs_release_path(path);
2287
2288	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2289				       0, 0, end - offset, 0, end - offset,
2290				       0, 0, 0);
2291	if (ret)
2292		return ret;
2293
2294out:
2295	btrfs_release_path(path);
2296
2297	hole_em = alloc_extent_map();
2298	if (!hole_em) {
2299		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2300		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2301			&BTRFS_I(inode)->runtime_flags);
2302	} else {
2303		hole_em->start = offset;
2304		hole_em->len = end - offset;
2305		hole_em->ram_bytes = hole_em->len;
2306		hole_em->orig_start = offset;
2307
2308		hole_em->block_start = EXTENT_MAP_HOLE;
2309		hole_em->block_len = 0;
2310		hole_em->orig_block_len = 0;
2311		hole_em->bdev = fs_info->fs_devices->latest_bdev;
2312		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2313		hole_em->generation = trans->transid;
2314
2315		do {
2316			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2317			write_lock(&em_tree->lock);
2318			ret = add_extent_mapping(em_tree, hole_em, 1);
2319			write_unlock(&em_tree->lock);
2320		} while (ret == -EEXIST);
2321		free_extent_map(hole_em);
2322		if (ret)
2323			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2324				&BTRFS_I(inode)->runtime_flags);
2325	}
2326
2327	return 0;
2328}
2329
2330/*
2331 * Find a hole extent on given inode and change start/len to the end of hole
2332 * extent.(hole/vacuum extent whose em->start <= start &&
2333 *	   em->start + em->len > start)
2334 * When a hole extent is found, return 1 and modify start/len.
2335 */
2336static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2337{
2338	struct extent_map *em;
2339	int ret = 0;
2340
2341	em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2342	if (IS_ERR_OR_NULL(em)) {
2343		if (!em)
2344			ret = -ENOMEM;
2345		else
2346			ret = PTR_ERR(em);
2347		return ret;
2348	}
2349
2350	/* Hole or vacuum extent(only exists in no-hole mode) */
2351	if (em->block_start == EXTENT_MAP_HOLE) {
2352		ret = 1;
2353		*len = em->start + em->len > *start + *len ?
2354		       0 : *start + *len - em->start - em->len;
2355		*start = em->start + em->len;
2356	}
2357	free_extent_map(em);
2358	return ret;
2359}
2360
2361static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2362{
2363	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2364	struct btrfs_root *root = BTRFS_I(inode)->root;
2365	struct extent_state *cached_state = NULL;
2366	struct btrfs_path *path;
2367	struct btrfs_block_rsv *rsv;
2368	struct btrfs_trans_handle *trans;
2369	u64 lockstart;
2370	u64 lockend;
2371	u64 tail_start;
2372	u64 tail_len;
2373	u64 orig_start = offset;
2374	u64 cur_offset;
2375	u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2376	u64 drop_end;
2377	int ret = 0;
2378	int err = 0;
2379	unsigned int rsv_count;
2380	bool same_block;
2381	bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2382	u64 ino_size;
2383	bool truncated_block = false;
2384	bool updated_inode = false;
2385
2386	ret = btrfs_wait_ordered_range(inode, offset, len);
2387	if (ret)
2388		return ret;
2389
2390	inode_lock(inode);
2391	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2392	ret = find_first_non_hole(inode, &offset, &len);
2393	if (ret < 0)
2394		goto out_only_mutex;
2395	if (ret && !len) {
2396		/* Already in a large hole */
2397		ret = 0;
2398		goto out_only_mutex;
2399	}
2400
2401	lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2402	lockend = round_down(offset + len,
2403			     btrfs_inode_sectorsize(inode)) - 1;
2404	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2405		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2406	/*
2407	 * We needn't truncate any block which is beyond the end of the file
2408	 * because we are sure there is no data there.
2409	 */
2410	/*
2411	 * Only do this if we are in the same block and we aren't doing the
2412	 * entire block.
2413	 */
2414	if (same_block && len < fs_info->sectorsize) {
2415		if (offset < ino_size) {
2416			truncated_block = true;
2417			ret = btrfs_truncate_block(inode, offset, len, 0);
2418		} else {
2419			ret = 0;
2420		}
2421		goto out_only_mutex;
2422	}
2423
2424	/* zero back part of the first block */
2425	if (offset < ino_size) {
2426		truncated_block = true;
2427		ret = btrfs_truncate_block(inode, offset, 0, 0);
2428		if (ret) {
2429			inode_unlock(inode);
2430			return ret;
2431		}
2432	}
2433
2434	/* Check the aligned pages after the first unaligned page,
2435	 * if offset != orig_start, which means the first unaligned page
2436	 * including several following pages are already in holes,
2437	 * the extra check can be skipped */
2438	if (offset == orig_start) {
2439		/* after truncate page, check hole again */
2440		len = offset + len - lockstart;
2441		offset = lockstart;
2442		ret = find_first_non_hole(inode, &offset, &len);
2443		if (ret < 0)
2444			goto out_only_mutex;
2445		if (ret && !len) {
2446			ret = 0;
2447			goto out_only_mutex;
2448		}
2449		lockstart = offset;
2450	}
2451
2452	/* Check the tail unaligned part is in a hole */
2453	tail_start = lockend + 1;
2454	tail_len = offset + len - tail_start;
2455	if (tail_len) {
2456		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2457		if (unlikely(ret < 0))
2458			goto out_only_mutex;
2459		if (!ret) {
2460			/* zero the front end of the last page */
2461			if (tail_start + tail_len < ino_size) {
2462				truncated_block = true;
2463				ret = btrfs_truncate_block(inode,
2464							tail_start + tail_len,
2465							0, 1);
2466				if (ret)
2467					goto out_only_mutex;
2468			}
2469		}
2470	}
2471
2472	if (lockend < lockstart) {
2473		ret = 0;
2474		goto out_only_mutex;
2475	}
2476
2477	while (1) {
2478		struct btrfs_ordered_extent *ordered;
2479
2480		truncate_pagecache_range(inode, lockstart, lockend);
2481
2482		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2483				 &cached_state);
2484		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2485
2486		/*
2487		 * We need to make sure we have no ordered extents in this range
2488		 * and nobody raced in and read a page in this range, if we did
2489		 * we need to try again.
2490		 */
2491		if ((!ordered ||
2492		    (ordered->file_offset + ordered->len <= lockstart ||
2493		     ordered->file_offset > lockend)) &&
2494		     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2495			if (ordered)
2496				btrfs_put_ordered_extent(ordered);
2497			break;
2498		}
2499		if (ordered)
2500			btrfs_put_ordered_extent(ordered);
2501		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2502				     lockend, &cached_state, GFP_NOFS);
2503		ret = btrfs_wait_ordered_range(inode, lockstart,
2504					       lockend - lockstart + 1);
2505		if (ret) {
2506			inode_unlock(inode);
2507			return ret;
2508		}
2509	}
2510
2511	path = btrfs_alloc_path();
2512	if (!path) {
2513		ret = -ENOMEM;
2514		goto out;
2515	}
2516
2517	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2518	if (!rsv) {
2519		ret = -ENOMEM;
2520		goto out_free;
2521	}
2522	rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2523	rsv->failfast = 1;
2524
2525	/*
2526	 * 1 - update the inode
2527	 * 1 - removing the extents in the range
2528	 * 1 - adding the hole extent if no_holes isn't set
2529	 */
2530	rsv_count = no_holes ? 2 : 3;
2531	trans = btrfs_start_transaction(root, rsv_count);
2532	if (IS_ERR(trans)) {
2533		err = PTR_ERR(trans);
2534		goto out_free;
2535	}
2536
2537	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2538				      min_size, 0);
2539	BUG_ON(ret);
2540	trans->block_rsv = rsv;
2541
2542	cur_offset = lockstart;
2543	len = lockend - cur_offset;
2544	while (cur_offset < lockend) {
2545		ret = __btrfs_drop_extents(trans, root, inode, path,
2546					   cur_offset, lockend + 1,
2547					   &drop_end, 1, 0, 0, NULL);
2548		if (ret != -ENOSPC)
2549			break;
2550
2551		trans->block_rsv = &fs_info->trans_block_rsv;
2552
2553		if (cur_offset < drop_end && cur_offset < ino_size) {
2554			ret = fill_holes(trans, inode, path, cur_offset,
2555					 drop_end);
2556			if (ret) {
2557				/*
2558				 * If we failed then we didn't insert our hole
2559				 * entries for the area we dropped, so now the
2560				 * fs is corrupted, so we must abort the
2561				 * transaction.
2562				 */
2563				btrfs_abort_transaction(trans, ret);
2564				err = ret;
2565				break;
2566			}
2567		}
2568
2569		cur_offset = drop_end;
2570
2571		ret = btrfs_update_inode(trans, root, inode);
2572		if (ret) {
2573			err = ret;
2574			break;
2575		}
2576
2577		btrfs_end_transaction(trans);
2578		btrfs_btree_balance_dirty(fs_info);
2579
2580		trans = btrfs_start_transaction(root, rsv_count);
2581		if (IS_ERR(trans)) {
2582			ret = PTR_ERR(trans);
2583			trans = NULL;
2584			break;
2585		}
2586
2587		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2588					      rsv, min_size, 0);
2589		BUG_ON(ret);	/* shouldn't happen */
2590		trans->block_rsv = rsv;
2591
2592		ret = find_first_non_hole(inode, &cur_offset, &len);
2593		if (unlikely(ret < 0))
2594			break;
2595		if (ret && !len) {
2596			ret = 0;
2597			break;
2598		}
2599	}
2600
2601	if (ret) {
2602		err = ret;
2603		goto out_trans;
2604	}
2605
2606	trans->block_rsv = &fs_info->trans_block_rsv;
2607	/*
2608	 * If we are using the NO_HOLES feature we might have had already an
2609	 * hole that overlaps a part of the region [lockstart, lockend] and
2610	 * ends at (or beyond) lockend. Since we have no file extent items to
2611	 * represent holes, drop_end can be less than lockend and so we must
2612	 * make sure we have an extent map representing the existing hole (the
2613	 * call to __btrfs_drop_extents() might have dropped the existing extent
2614	 * map representing the existing hole), otherwise the fast fsync path
2615	 * will not record the existence of the hole region
2616	 * [existing_hole_start, lockend].
2617	 */
2618	if (drop_end <= lockend)
2619		drop_end = lockend + 1;
2620	/*
2621	 * Don't insert file hole extent item if it's for a range beyond eof
2622	 * (because it's useless) or if it represents a 0 bytes range (when
2623	 * cur_offset == drop_end).
2624	 */
2625	if (cur_offset < ino_size && cur_offset < drop_end) {
2626		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2627		if (ret) {
2628			/* Same comment as above. */
2629			btrfs_abort_transaction(trans, ret);
2630			err = ret;
2631			goto out_trans;
2632		}
2633	}
2634
2635out_trans:
2636	if (!trans)
2637		goto out_free;
2638
2639	inode_inc_iversion(inode);
2640	inode->i_mtime = inode->i_ctime = current_time(inode);
2641
2642	trans->block_rsv = &fs_info->trans_block_rsv;
2643	ret = btrfs_update_inode(trans, root, inode);
2644	updated_inode = true;
2645	btrfs_end_transaction(trans);
2646	btrfs_btree_balance_dirty(fs_info);
2647out_free:
2648	btrfs_free_path(path);
2649	btrfs_free_block_rsv(fs_info, rsv);
2650out:
2651	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2652			     &cached_state, GFP_NOFS);
2653out_only_mutex:
2654	if (!updated_inode && truncated_block && !ret && !err) {
2655		/*
2656		 * If we only end up zeroing part of a page, we still need to
2657		 * update the inode item, so that all the time fields are
2658		 * updated as well as the necessary btrfs inode in memory fields
2659		 * for detecting, at fsync time, if the inode isn't yet in the
2660		 * log tree or it's there but not up to date.
2661		 */
2662		trans = btrfs_start_transaction(root, 1);
2663		if (IS_ERR(trans)) {
2664			err = PTR_ERR(trans);
2665		} else {
2666			err = btrfs_update_inode(trans, root, inode);
2667			ret = btrfs_end_transaction(trans);
2668		}
2669	}
2670	inode_unlock(inode);
2671	if (ret && !err)
2672		err = ret;
2673	return err;
2674}
2675
2676/* Helper structure to record which range is already reserved */
2677struct falloc_range {
2678	struct list_head list;
2679	u64 start;
2680	u64 len;
2681};
2682
2683/*
2684 * Helper function to add falloc range
2685 *
2686 * Caller should have locked the larger range of extent containing
2687 * [start, len)
2688 */
2689static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2690{
2691	struct falloc_range *prev = NULL;
2692	struct falloc_range *range = NULL;
2693
2694	if (list_empty(head))
2695		goto insert;
2696
2697	/*
2698	 * As fallocate iterate by bytenr order, we only need to check
2699	 * the last range.
2700	 */
2701	prev = list_entry(head->prev, struct falloc_range, list);
2702	if (prev->start + prev->len == start) {
2703		prev->len += len;
2704		return 0;
2705	}
2706insert:
2707	range = kmalloc(sizeof(*range), GFP_KERNEL);
2708	if (!range)
2709		return -ENOMEM;
2710	range->start = start;
2711	range->len = len;
2712	list_add_tail(&range->list, head);
2713	return 0;
2714}
2715
2716static long btrfs_fallocate(struct file *file, int mode,
2717			    loff_t offset, loff_t len)
2718{
2719	struct inode *inode = file_inode(file);
2720	struct extent_state *cached_state = NULL;
2721	struct falloc_range *range;
2722	struct falloc_range *tmp;
2723	struct list_head reserve_list;
2724	u64 cur_offset;
2725	u64 last_byte;
2726	u64 alloc_start;
2727	u64 alloc_end;
2728	u64 alloc_hint = 0;
2729	u64 locked_end;
2730	u64 actual_end = 0;
2731	struct extent_map *em;
2732	int blocksize = btrfs_inode_sectorsize(inode);
2733	int ret;
2734
2735	alloc_start = round_down(offset, blocksize);
2736	alloc_end = round_up(offset + len, blocksize);
2737	cur_offset = alloc_start;
2738
2739	/* Make sure we aren't being give some crap mode */
2740	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2741		return -EOPNOTSUPP;
2742
2743	if (mode & FALLOC_FL_PUNCH_HOLE)
2744		return btrfs_punch_hole(inode, offset, len);
2745
2746	/*
2747	 * Only trigger disk allocation, don't trigger qgroup reserve
2748	 *
2749	 * For qgroup space, it will be checked later.
2750	 */
2751	ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2752	if (ret < 0)
2753		return ret;
2754
2755	inode_lock(inode);
2756
2757	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2758		ret = inode_newsize_ok(inode, offset + len);
2759		if (ret)
2760			goto out;
2761	}
2762
2763	/*
2764	 * TODO: Move these two operations after we have checked
2765	 * accurate reserved space, or fallocate can still fail but
2766	 * with page truncated or size expanded.
2767	 *
2768	 * But that's a minor problem and won't do much harm BTW.
2769	 */
2770	if (alloc_start > inode->i_size) {
2771		ret = btrfs_cont_expand(inode, i_size_read(inode),
2772					alloc_start);
2773		if (ret)
2774			goto out;
2775	} else if (offset + len > inode->i_size) {
2776		/*
2777		 * If we are fallocating from the end of the file onward we
2778		 * need to zero out the end of the block if i_size lands in the
2779		 * middle of a block.
2780		 */
2781		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2782		if (ret)
2783			goto out;
2784	}
2785
2786	/*
2787	 * wait for ordered IO before we have any locks.  We'll loop again
2788	 * below with the locks held.
2789	 */
2790	ret = btrfs_wait_ordered_range(inode, alloc_start,
2791				       alloc_end - alloc_start);
2792	if (ret)
2793		goto out;
2794
2795	locked_end = alloc_end - 1;
2796	while (1) {
2797		struct btrfs_ordered_extent *ordered;
2798
2799		/* the extent lock is ordered inside the running
2800		 * transaction
2801		 */
2802		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2803				 locked_end, &cached_state);
2804		ordered = btrfs_lookup_first_ordered_extent(inode,
2805							    alloc_end - 1);
2806		if (ordered &&
2807		    ordered->file_offset + ordered->len > alloc_start &&
2808		    ordered->file_offset < alloc_end) {
2809			btrfs_put_ordered_extent(ordered);
2810			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2811					     alloc_start, locked_end,
2812					     &cached_state, GFP_KERNEL);
2813			/*
2814			 * we can't wait on the range with the transaction
2815			 * running or with the extent lock held
2816			 */
2817			ret = btrfs_wait_ordered_range(inode, alloc_start,
2818						       alloc_end - alloc_start);
2819			if (ret)
2820				goto out;
2821		} else {
2822			if (ordered)
2823				btrfs_put_ordered_extent(ordered);
2824			break;
2825		}
2826	}
2827
2828	/* First, check if we exceed the qgroup limit */
2829	INIT_LIST_HEAD(&reserve_list);
 
2830	while (1) {
2831		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2832				      alloc_end - cur_offset, 0);
2833		if (IS_ERR_OR_NULL(em)) {
2834			if (!em)
2835				ret = -ENOMEM;
2836			else
2837				ret = PTR_ERR(em);
2838			break;
2839		}
2840		last_byte = min(extent_map_end(em), alloc_end);
2841		actual_end = min_t(u64, extent_map_end(em), offset + len);
2842		last_byte = ALIGN(last_byte, blocksize);
2843		if (em->block_start == EXTENT_MAP_HOLE ||
2844		    (cur_offset >= inode->i_size &&
2845		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2846			ret = add_falloc_range(&reserve_list, cur_offset,
2847					       last_byte - cur_offset);
2848			if (ret < 0) {
2849				free_extent_map(em);
2850				break;
2851			}
2852			ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2853					last_byte - cur_offset);
2854			if (ret < 0)
2855				break;
2856		} else {
2857			/*
2858			 * Do not need to reserve unwritten extent for this
2859			 * range, free reserved data space first, otherwise
2860			 * it'll result in false ENOSPC error.
2861			 */
2862			btrfs_free_reserved_data_space(inode, cur_offset,
2863				last_byte - cur_offset);
2864		}
2865		free_extent_map(em);
2866		cur_offset = last_byte;
2867		if (cur_offset >= alloc_end)
2868			break;
2869	}
2870
2871	/*
2872	 * If ret is still 0, means we're OK to fallocate.
2873	 * Or just cleanup the list and exit.
2874	 */
2875	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2876		if (!ret)
2877			ret = btrfs_prealloc_file_range(inode, mode,
2878					range->start,
2879					range->len, 1 << inode->i_blkbits,
2880					offset + len, &alloc_hint);
2881		else
2882			btrfs_free_reserved_data_space(inode, range->start,
2883						       range->len);
2884		list_del(&range->list);
2885		kfree(range);
2886	}
2887	if (ret < 0)
2888		goto out_unlock;
2889
2890	if (actual_end > inode->i_size &&
2891	    !(mode & FALLOC_FL_KEEP_SIZE)) {
2892		struct btrfs_trans_handle *trans;
2893		struct btrfs_root *root = BTRFS_I(inode)->root;
2894
2895		/*
2896		 * We didn't need to allocate any more space, but we
2897		 * still extended the size of the file so we need to
2898		 * update i_size and the inode item.
2899		 */
2900		trans = btrfs_start_transaction(root, 1);
2901		if (IS_ERR(trans)) {
2902			ret = PTR_ERR(trans);
2903		} else {
2904			inode->i_ctime = current_time(inode);
2905			i_size_write(inode, actual_end);
2906			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2907			ret = btrfs_update_inode(trans, root, inode);
2908			if (ret)
2909				btrfs_end_transaction(trans);
2910			else
2911				ret = btrfs_end_transaction(trans);
2912		}
2913	}
2914out_unlock:
2915	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2916			     &cached_state, GFP_KERNEL);
2917out:
 
 
 
 
 
 
 
 
2918	inode_unlock(inode);
2919	/* Let go of our reservation. */
2920	if (ret != 0)
2921		btrfs_free_reserved_data_space(inode, alloc_start,
2922				       alloc_end - cur_offset);
2923	return ret;
2924}
2925
2926static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2927{
2928	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2929	struct extent_map *em = NULL;
2930	struct extent_state *cached_state = NULL;
2931	u64 lockstart;
2932	u64 lockend;
2933	u64 start;
2934	u64 len;
2935	int ret = 0;
2936
2937	if (inode->i_size == 0)
2938		return -ENXIO;
2939
2940	/*
2941	 * *offset can be negative, in this case we start finding DATA/HOLE from
2942	 * the very start of the file.
2943	 */
2944	start = max_t(loff_t, 0, *offset);
2945
2946	lockstart = round_down(start, fs_info->sectorsize);
2947	lockend = round_up(i_size_read(inode),
2948			   fs_info->sectorsize);
2949	if (lockend <= lockstart)
2950		lockend = lockstart + fs_info->sectorsize;
2951	lockend--;
2952	len = lockend - lockstart + 1;
2953
2954	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2955			 &cached_state);
2956
2957	while (start < inode->i_size) {
2958		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2959		if (IS_ERR(em)) {
2960			ret = PTR_ERR(em);
2961			em = NULL;
2962			break;
2963		}
2964
2965		if (whence == SEEK_HOLE &&
2966		    (em->block_start == EXTENT_MAP_HOLE ||
2967		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2968			break;
2969		else if (whence == SEEK_DATA &&
2970			   (em->block_start != EXTENT_MAP_HOLE &&
2971			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2972			break;
2973
2974		start = em->start + em->len;
2975		free_extent_map(em);
2976		em = NULL;
2977		cond_resched();
2978	}
2979	free_extent_map(em);
2980	if (!ret) {
2981		if (whence == SEEK_DATA && start >= inode->i_size)
2982			ret = -ENXIO;
2983		else
2984			*offset = min_t(loff_t, start, inode->i_size);
2985	}
2986	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2987			     &cached_state, GFP_NOFS);
2988	return ret;
2989}
2990
2991static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2992{
2993	struct inode *inode = file->f_mapping->host;
2994	int ret;
2995
2996	inode_lock(inode);
2997	switch (whence) {
2998	case SEEK_END:
2999	case SEEK_CUR:
3000		offset = generic_file_llseek(file, offset, whence);
3001		goto out;
3002	case SEEK_DATA:
3003	case SEEK_HOLE:
3004		if (offset >= i_size_read(inode)) {
3005			inode_unlock(inode);
3006			return -ENXIO;
3007		}
3008
3009		ret = find_desired_extent(inode, &offset, whence);
3010		if (ret) {
3011			inode_unlock(inode);
3012			return ret;
3013		}
3014	}
3015
3016	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3017out:
3018	inode_unlock(inode);
3019	return offset;
3020}
3021
3022const struct file_operations btrfs_file_operations = {
3023	.llseek		= btrfs_file_llseek,
3024	.read_iter      = generic_file_read_iter,
3025	.splice_read	= generic_file_splice_read,
3026	.write_iter	= btrfs_file_write_iter,
3027	.mmap		= btrfs_file_mmap,
3028	.open		= generic_file_open,
3029	.release	= btrfs_release_file,
3030	.fsync		= btrfs_sync_file,
3031	.fallocate	= btrfs_fallocate,
3032	.unlocked_ioctl	= btrfs_ioctl,
3033#ifdef CONFIG_COMPAT
3034	.compat_ioctl	= btrfs_compat_ioctl,
3035#endif
 
3036	.clone_file_range = btrfs_clone_file_range,
3037	.dedupe_file_range = btrfs_dedupe_file_range,
3038};
3039
3040void btrfs_auto_defrag_exit(void)
3041{
3042	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3043}
3044
3045int btrfs_auto_defrag_init(void)
3046{
3047	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3048					sizeof(struct inode_defrag), 0,
3049					SLAB_MEM_SPREAD,
3050					NULL);
3051	if (!btrfs_inode_defrag_cachep)
3052		return -ENOMEM;
3053
3054	return 0;
3055}
3056
3057int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3058{
3059	int ret;
3060
3061	/*
3062	 * So with compression we will find and lock a dirty page and clear the
3063	 * first one as dirty, setup an async extent, and immediately return
3064	 * with the entire range locked but with nobody actually marked with
3065	 * writeback.  So we can't just filemap_write_and_wait_range() and
3066	 * expect it to work since it will just kick off a thread to do the
3067	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3068	 * since it will wait on the page lock, which won't be unlocked until
3069	 * after the pages have been marked as writeback and so we're good to go
3070	 * from there.  We have to do this otherwise we'll miss the ordered
3071	 * extents and that results in badness.  Please Josef, do not think you
3072	 * know better and pull this out at some point in the future, it is
3073	 * right and you are wrong.
3074	 */
3075	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3076	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3077			     &BTRFS_I(inode)->runtime_flags))
3078		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3079
3080	return ret;
3081}