Loading...
1/*
2 * core.h - DesignWare HS OTG Controller common declarations
3 *
4 * Copyright (C) 2004-2013 Synopsys, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
18 *
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37#ifndef __DWC2_CORE_H__
38#define __DWC2_CORE_H__
39
40#include <linux/phy/phy.h>
41#include <linux/regulator/consumer.h>
42#include <linux/usb/gadget.h>
43#include <linux/usb/otg.h>
44#include <linux/usb/phy.h>
45#include "hw.h"
46
47/*
48 * Suggested defines for tracers:
49 * - no_printk: Disable tracing
50 * - pr_info: Print this info to the console
51 * - trace_printk: Print this info to trace buffer (good for verbose logging)
52 */
53
54#define DWC2_TRACE_SCHEDULER no_printk
55#define DWC2_TRACE_SCHEDULER_VB no_printk
56
57/* Detailed scheduler tracing, but won't overwhelm console */
58#define dwc2_sch_dbg(hsotg, fmt, ...) \
59 DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt), \
60 dev_name(hsotg->dev), ##__VA_ARGS__)
61
62/* Verbose scheduler tracing */
63#define dwc2_sch_vdbg(hsotg, fmt, ...) \
64 DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt), \
65 dev_name(hsotg->dev), ##__VA_ARGS__)
66
67static inline u32 dwc2_readl(const void __iomem *addr)
68{
69 u32 value = __raw_readl(addr);
70
71 /* In order to preserve endianness __raw_* operation is used. Therefore
72 * a barrier is needed to ensure IO access is not re-ordered across
73 * reads or writes
74 */
75 mb();
76 return value;
77}
78
79static inline void dwc2_writel(u32 value, void __iomem *addr)
80{
81 __raw_writel(value, addr);
82
83 /*
84 * In order to preserve endianness __raw_* operation is used. Therefore
85 * a barrier is needed to ensure IO access is not re-ordered across
86 * reads or writes
87 */
88 mb();
89#ifdef DWC2_LOG_WRITES
90 pr_info("INFO:: wrote %08x to %p\n", value, addr);
91#endif
92}
93
94/* Maximum number of Endpoints/HostChannels */
95#define MAX_EPS_CHANNELS 16
96
97/* dwc2-hsotg declarations */
98static const char * const dwc2_hsotg_supply_names[] = {
99 "vusb_d", /* digital USB supply, 1.2V */
100 "vusb_a", /* analog USB supply, 1.1V */
101};
102
103/*
104 * EP0_MPS_LIMIT
105 *
106 * Unfortunately there seems to be a limit of the amount of data that can
107 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
108 * packets (which practically means 1 packet and 63 bytes of data) when the
109 * MPS is set to 64.
110 *
111 * This means if we are wanting to move >127 bytes of data, we need to
112 * split the transactions up, but just doing one packet at a time does
113 * not work (this may be an implicit DATA0 PID on first packet of the
114 * transaction) and doing 2 packets is outside the controller's limits.
115 *
116 * If we try to lower the MPS size for EP0, then no transfers work properly
117 * for EP0, and the system will fail basic enumeration. As no cause for this
118 * has currently been found, we cannot support any large IN transfers for
119 * EP0.
120 */
121#define EP0_MPS_LIMIT 64
122
123struct dwc2_hsotg;
124struct dwc2_hsotg_req;
125
126/**
127 * struct dwc2_hsotg_ep - driver endpoint definition.
128 * @ep: The gadget layer representation of the endpoint.
129 * @name: The driver generated name for the endpoint.
130 * @queue: Queue of requests for this endpoint.
131 * @parent: Reference back to the parent device structure.
132 * @req: The current request that the endpoint is processing. This is
133 * used to indicate an request has been loaded onto the endpoint
134 * and has yet to be completed (maybe due to data move, or simply
135 * awaiting an ack from the core all the data has been completed).
136 * @debugfs: File entry for debugfs file for this endpoint.
137 * @lock: State lock to protect contents of endpoint.
138 * @dir_in: Set to true if this endpoint is of the IN direction, which
139 * means that it is sending data to the Host.
140 * @index: The index for the endpoint registers.
141 * @mc: Multi Count - number of transactions per microframe
142 * @interval - Interval for periodic endpoints
143 * @name: The name array passed to the USB core.
144 * @halted: Set if the endpoint has been halted.
145 * @periodic: Set if this is a periodic ep, such as Interrupt
146 * @isochronous: Set if this is a isochronous ep
147 * @send_zlp: Set if we need to send a zero-length packet.
148 * @total_data: The total number of data bytes done.
149 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
150 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
151 * @last_load: The offset of data for the last start of request.
152 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
153 *
154 * This is the driver's state for each registered enpoint, allowing it
155 * to keep track of transactions that need doing. Each endpoint has a
156 * lock to protect the state, to try and avoid using an overall lock
157 * for the host controller as much as possible.
158 *
159 * For periodic IN endpoints, we have fifo_size and fifo_load to try
160 * and keep track of the amount of data in the periodic FIFO for each
161 * of these as we don't have a status register that tells us how much
162 * is in each of them. (note, this may actually be useless information
163 * as in shared-fifo mode periodic in acts like a single-frame packet
164 * buffer than a fifo)
165 */
166struct dwc2_hsotg_ep {
167 struct usb_ep ep;
168 struct list_head queue;
169 struct dwc2_hsotg *parent;
170 struct dwc2_hsotg_req *req;
171 struct dentry *debugfs;
172
173 unsigned long total_data;
174 unsigned int size_loaded;
175 unsigned int last_load;
176 unsigned int fifo_load;
177 unsigned short fifo_size;
178 unsigned short fifo_index;
179
180 unsigned char dir_in;
181 unsigned char index;
182 unsigned char mc;
183 unsigned char interval;
184
185 unsigned int halted:1;
186 unsigned int periodic:1;
187 unsigned int isochronous:1;
188 unsigned int send_zlp:1;
189 unsigned int has_correct_parity:1;
190
191 char name[10];
192};
193
194/**
195 * struct dwc2_hsotg_req - data transfer request
196 * @req: The USB gadget request
197 * @queue: The list of requests for the endpoint this is queued for.
198 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
199 */
200struct dwc2_hsotg_req {
201 struct usb_request req;
202 struct list_head queue;
203 void *saved_req_buf;
204};
205
206#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
207#define call_gadget(_hs, _entry) \
208do { \
209 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
210 (_hs)->driver && (_hs)->driver->_entry) { \
211 spin_unlock(&_hs->lock); \
212 (_hs)->driver->_entry(&(_hs)->gadget); \
213 spin_lock(&_hs->lock); \
214 } \
215} while (0)
216#else
217#define call_gadget(_hs, _entry) do {} while (0)
218#endif
219
220struct dwc2_hsotg;
221struct dwc2_host_chan;
222
223/* Device States */
224enum dwc2_lx_state {
225 DWC2_L0, /* On state */
226 DWC2_L1, /* LPM sleep state */
227 DWC2_L2, /* USB suspend state */
228 DWC2_L3, /* Off state */
229};
230
231/*
232 * Gadget periodic tx fifo sizes as used by legacy driver
233 * EP0 is not included
234 */
235#define DWC2_G_P_LEGACY_TX_FIFO_SIZE {256, 256, 256, 256, 768, 768, 768, \
236 768, 0, 0, 0, 0, 0, 0, 0}
237
238/* Gadget ep0 states */
239enum dwc2_ep0_state {
240 DWC2_EP0_SETUP,
241 DWC2_EP0_DATA_IN,
242 DWC2_EP0_DATA_OUT,
243 DWC2_EP0_STATUS_IN,
244 DWC2_EP0_STATUS_OUT,
245};
246
247/**
248 * struct dwc2_core_params - Parameters for configuring the core
249 *
250 * @otg_cap: Specifies the OTG capabilities.
251 * 0 - HNP and SRP capable
252 * 1 - SRP Only capable
253 * 2 - No HNP/SRP capable (always available)
254 * Defaults to best available option (0, 1, then 2)
255 * @otg_ver: OTG version supported
256 * 0 - 1.3 (default)
257 * 1 - 2.0
258 * @dma_enable: Specifies whether to use slave or DMA mode for accessing
259 * the data FIFOs. The driver will automatically detect the
260 * value for this parameter if none is specified.
261 * 0 - Slave (always available)
262 * 1 - DMA (default, if available)
263 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use
264 * address DMA mode or descriptor DMA mode for accessing
265 * the data FIFOs. The driver will automatically detect the
266 * value for this if none is specified.
267 * 0 - Address DMA
268 * 1 - Descriptor DMA (default, if available)
269 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
270 * address DMA mode or descriptor DMA mode for accessing
271 * the data FIFOs in Full Speed mode only. The driver
272 * will automatically detect the value for this if none is
273 * specified.
274 * 0 - Address DMA
275 * 1 - Descriptor DMA in FS (default, if available)
276 * @speed: Specifies the maximum speed of operation in host and
277 * device mode. The actual speed depends on the speed of
278 * the attached device and the value of phy_type.
279 * 0 - High Speed
280 * (default when phy_type is UTMI+ or ULPI)
281 * 1 - Full Speed
282 * (default when phy_type is Full Speed)
283 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
284 * 1 - Allow dynamic FIFO sizing (default, if available)
285 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
286 * are enabled
287 * @host_rx_fifo_size: Number of 4-byte words in the Rx FIFO in host mode when
288 * dynamic FIFO sizing is enabled
289 * 16 to 32768
290 * Actual maximum value is autodetected and also
291 * the default.
292 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
293 * in host mode when dynamic FIFO sizing is enabled
294 * 16 to 32768
295 * Actual maximum value is autodetected and also
296 * the default.
297 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
298 * host mode when dynamic FIFO sizing is enabled
299 * 16 to 32768
300 * Actual maximum value is autodetected and also
301 * the default.
302 * @max_transfer_size: The maximum transfer size supported, in bytes
303 * 2047 to 65,535
304 * Actual maximum value is autodetected and also
305 * the default.
306 * @max_packet_count: The maximum number of packets in a transfer
307 * 15 to 511
308 * Actual maximum value is autodetected and also
309 * the default.
310 * @host_channels: The number of host channel registers to use
311 * 1 to 16
312 * Actual maximum value is autodetected and also
313 * the default.
314 * @phy_type: Specifies the type of PHY interface to use. By default,
315 * the driver will automatically detect the phy_type.
316 * 0 - Full Speed Phy
317 * 1 - UTMI+ Phy
318 * 2 - ULPI Phy
319 * Defaults to best available option (2, 1, then 0)
320 * @phy_utmi_width: Specifies the UTMI+ Data Width (in bits). This parameter
321 * is applicable for a phy_type of UTMI+ or ULPI. (For a
322 * ULPI phy_type, this parameter indicates the data width
323 * between the MAC and the ULPI Wrapper.) Also, this
324 * parameter is applicable only if the OTG_HSPHY_WIDTH cC
325 * parameter was set to "8 and 16 bits", meaning that the
326 * core has been configured to work at either data path
327 * width.
328 * 8 or 16 (default 16 if available)
329 * @phy_ulpi_ddr: Specifies whether the ULPI operates at double or single
330 * data rate. This parameter is only applicable if phy_type
331 * is ULPI.
332 * 0 - single data rate ULPI interface with 8 bit wide
333 * data bus (default)
334 * 1 - double data rate ULPI interface with 4 bit wide
335 * data bus
336 * @phy_ulpi_ext_vbus: For a ULPI phy, specifies whether to use the internal or
337 * external supply to drive the VBus
338 * 0 - Internal supply (default)
339 * 1 - External supply
340 * @i2c_enable: Specifies whether to use the I2Cinterface for a full
341 * speed PHY. This parameter is only applicable if phy_type
342 * is FS.
343 * 0 - No (default)
344 * 1 - Yes
345 * @ulpi_fs_ls: Make ULPI phy operate in FS/LS mode only
346 * 0 - No (default)
347 * 1 - Yes
348 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
349 * when attached to a Full Speed or Low Speed device in
350 * host mode.
351 * 0 - Don't support low power mode (default)
352 * 1 - Support low power mode
353 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
354 * when connected to a Low Speed device in host
355 * mode. This parameter is applicable only if
356 * host_support_fs_ls_low_power is enabled.
357 * 0 - 48 MHz
358 * (default when phy_type is UTMI+ or ULPI)
359 * 1 - 6 MHz
360 * (default when phy_type is Full Speed)
361 * @ts_dline: Enable Term Select Dline pulsing
362 * 0 - No (default)
363 * 1 - Yes
364 * @reload_ctl: Allow dynamic reloading of HFIR register during runtime
365 * 0 - No (default for core < 2.92a)
366 * 1 - Yes (default for core >= 2.92a)
367 * @ahbcfg: This field allows the default value of the GAHBCFG
368 * register to be overridden
369 * -1 - GAHBCFG value will be set to 0x06
370 * (INCR4, default)
371 * all others - GAHBCFG value will be overridden with
372 * this value
373 * Not all bits can be controlled like this, the
374 * bits defined by GAHBCFG_CTRL_MASK are controlled
375 * by the driver and are ignored in this
376 * configuration value.
377 * @uframe_sched: True to enable the microframe scheduler
378 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
379 * Disable CONIDSTSCHNG controller interrupt in such
380 * case.
381 * 0 - No (default)
382 * 1 - Yes
383 * @hibernation: Specifies whether the controller support hibernation.
384 * If hibernation is enabled, the controller will enter
385 * hibernation in both peripheral and host mode when
386 * needed.
387 * 0 - No (default)
388 * 1 - Yes
389 *
390 * The following parameters may be specified when starting the module. These
391 * parameters define how the DWC_otg controller should be configured. A
392 * value of -1 (or any other out of range value) for any parameter means
393 * to read the value from hardware (if possible) or use the builtin
394 * default described above.
395 */
396struct dwc2_core_params {
397 /*
398 * Don't add any non-int members here, this will break
399 * dwc2_set_all_params!
400 */
401 int otg_cap;
402 int otg_ver;
403 int dma_enable;
404 int dma_desc_enable;
405 int dma_desc_fs_enable;
406 int speed;
407 int enable_dynamic_fifo;
408 int en_multiple_tx_fifo;
409 int host_rx_fifo_size;
410 int host_nperio_tx_fifo_size;
411 int host_perio_tx_fifo_size;
412 int max_transfer_size;
413 int max_packet_count;
414 int host_channels;
415 int phy_type;
416 int phy_utmi_width;
417 int phy_ulpi_ddr;
418 int phy_ulpi_ext_vbus;
419 int i2c_enable;
420 int ulpi_fs_ls;
421 int host_support_fs_ls_low_power;
422 int host_ls_low_power_phy_clk;
423 int ts_dline;
424 int reload_ctl;
425 int ahbcfg;
426 int uframe_sched;
427 int external_id_pin_ctl;
428 int hibernation;
429};
430
431/**
432 * struct dwc2_hw_params - Autodetected parameters.
433 *
434 * These parameters are the various parameters read from hardware
435 * registers during initialization. They typically contain the best
436 * supported or maximum value that can be configured in the
437 * corresponding dwc2_core_params value.
438 *
439 * The values that are not in dwc2_core_params are documented below.
440 *
441 * @op_mode Mode of Operation
442 * 0 - HNP- and SRP-Capable OTG (Host & Device)
443 * 1 - SRP-Capable OTG (Host & Device)
444 * 2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
445 * 3 - SRP-Capable Device
446 * 4 - Non-OTG Device
447 * 5 - SRP-Capable Host
448 * 6 - Non-OTG Host
449 * @arch Architecture
450 * 0 - Slave only
451 * 1 - External DMA
452 * 2 - Internal DMA
453 * @power_optimized Are power optimizations enabled?
454 * @num_dev_ep Number of device endpoints available
455 * @num_dev_perio_in_ep Number of device periodic IN endpoints
456 * available
457 * @dev_token_q_depth Device Mode IN Token Sequence Learning Queue
458 * Depth
459 * 0 to 30
460 * @host_perio_tx_q_depth
461 * Host Mode Periodic Request Queue Depth
462 * 2, 4 or 8
463 * @nperio_tx_q_depth
464 * Non-Periodic Request Queue Depth
465 * 2, 4 or 8
466 * @hs_phy_type High-speed PHY interface type
467 * 0 - High-speed interface not supported
468 * 1 - UTMI+
469 * 2 - ULPI
470 * 3 - UTMI+ and ULPI
471 * @fs_phy_type Full-speed PHY interface type
472 * 0 - Full speed interface not supported
473 * 1 - Dedicated full speed interface
474 * 2 - FS pins shared with UTMI+ pins
475 * 3 - FS pins shared with ULPI pins
476 * @total_fifo_size: Total internal RAM for FIFOs (bytes)
477 * @utmi_phy_data_width UTMI+ PHY data width
478 * 0 - 8 bits
479 * 1 - 16 bits
480 * 2 - 8 or 16 bits
481 * @snpsid: Value from SNPSID register
482 * @dev_ep_dirs: Direction of device endpoints (GHWCFG1)
483 */
484struct dwc2_hw_params {
485 unsigned op_mode:3;
486 unsigned arch:2;
487 unsigned dma_desc_enable:1;
488 unsigned dma_desc_fs_enable:1;
489 unsigned enable_dynamic_fifo:1;
490 unsigned en_multiple_tx_fifo:1;
491 unsigned host_rx_fifo_size:16;
492 unsigned host_nperio_tx_fifo_size:16;
493 unsigned dev_nperio_tx_fifo_size:16;
494 unsigned host_perio_tx_fifo_size:16;
495 unsigned nperio_tx_q_depth:3;
496 unsigned host_perio_tx_q_depth:3;
497 unsigned dev_token_q_depth:5;
498 unsigned max_transfer_size:26;
499 unsigned max_packet_count:11;
500 unsigned host_channels:5;
501 unsigned hs_phy_type:2;
502 unsigned fs_phy_type:2;
503 unsigned i2c_enable:1;
504 unsigned num_dev_ep:4;
505 unsigned num_dev_perio_in_ep:4;
506 unsigned total_fifo_size:16;
507 unsigned power_optimized:1;
508 unsigned utmi_phy_data_width:2;
509 u32 snpsid;
510 u32 dev_ep_dirs;
511};
512
513/* Size of control and EP0 buffers */
514#define DWC2_CTRL_BUFF_SIZE 8
515
516/**
517 * struct dwc2_gregs_backup - Holds global registers state before entering partial
518 * power down
519 * @gotgctl: Backup of GOTGCTL register
520 * @gintmsk: Backup of GINTMSK register
521 * @gahbcfg: Backup of GAHBCFG register
522 * @gusbcfg: Backup of GUSBCFG register
523 * @grxfsiz: Backup of GRXFSIZ register
524 * @gnptxfsiz: Backup of GNPTXFSIZ register
525 * @gi2cctl: Backup of GI2CCTL register
526 * @hptxfsiz: Backup of HPTXFSIZ register
527 * @gdfifocfg: Backup of GDFIFOCFG register
528 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint
529 * @gpwrdn: Backup of GPWRDN register
530 */
531struct dwc2_gregs_backup {
532 u32 gotgctl;
533 u32 gintmsk;
534 u32 gahbcfg;
535 u32 gusbcfg;
536 u32 grxfsiz;
537 u32 gnptxfsiz;
538 u32 gi2cctl;
539 u32 hptxfsiz;
540 u32 pcgcctl;
541 u32 gdfifocfg;
542 u32 dtxfsiz[MAX_EPS_CHANNELS];
543 u32 gpwrdn;
544 bool valid;
545};
546
547/**
548 * struct dwc2_dregs_backup - Holds device registers state before entering partial
549 * power down
550 * @dcfg: Backup of DCFG register
551 * @dctl: Backup of DCTL register
552 * @daintmsk: Backup of DAINTMSK register
553 * @diepmsk: Backup of DIEPMSK register
554 * @doepmsk: Backup of DOEPMSK register
555 * @diepctl: Backup of DIEPCTL register
556 * @dieptsiz: Backup of DIEPTSIZ register
557 * @diepdma: Backup of DIEPDMA register
558 * @doepctl: Backup of DOEPCTL register
559 * @doeptsiz: Backup of DOEPTSIZ register
560 * @doepdma: Backup of DOEPDMA register
561 */
562struct dwc2_dregs_backup {
563 u32 dcfg;
564 u32 dctl;
565 u32 daintmsk;
566 u32 diepmsk;
567 u32 doepmsk;
568 u32 diepctl[MAX_EPS_CHANNELS];
569 u32 dieptsiz[MAX_EPS_CHANNELS];
570 u32 diepdma[MAX_EPS_CHANNELS];
571 u32 doepctl[MAX_EPS_CHANNELS];
572 u32 doeptsiz[MAX_EPS_CHANNELS];
573 u32 doepdma[MAX_EPS_CHANNELS];
574 bool valid;
575};
576
577/**
578 * struct dwc2_hregs_backup - Holds host registers state before entering partial
579 * power down
580 * @hcfg: Backup of HCFG register
581 * @haintmsk: Backup of HAINTMSK register
582 * @hcintmsk: Backup of HCINTMSK register
583 * @hptr0: Backup of HPTR0 register
584 * @hfir: Backup of HFIR register
585 */
586struct dwc2_hregs_backup {
587 u32 hcfg;
588 u32 haintmsk;
589 u32 hcintmsk[MAX_EPS_CHANNELS];
590 u32 hprt0;
591 u32 hfir;
592 bool valid;
593};
594
595/*
596 * Constants related to high speed periodic scheduling
597 *
598 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long. From a
599 * reservation point of view it's assumed that the schedule goes right back to
600 * the beginning after the end of the schedule.
601 *
602 * What does that mean for scheduling things with a long interval? It means
603 * we'll reserve time for them in every possible microframe that they could
604 * ever be scheduled in. ...but we'll still only actually schedule them as
605 * often as they were requested.
606 *
607 * We keep our schedule in a "bitmap" structure. This simplifies having
608 * to keep track of and merge intervals: we just let the bitmap code do most
609 * of the heavy lifting. In a way scheduling is much like memory allocation.
610 *
611 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
612 * supposed to schedule for periodic transfers). That's according to spec.
613 *
614 * Note that though we only schedule 80% of each microframe, the bitmap that we
615 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
616 * space for each uFrame).
617 *
618 * Requirements:
619 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
620 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
621 * could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
622 * be bugs). The 8 comes from the USB spec: number of microframes per frame.
623 */
624#define DWC2_US_PER_UFRAME 125
625#define DWC2_HS_PERIODIC_US_PER_UFRAME 100
626
627#define DWC2_HS_SCHEDULE_UFRAMES 8
628#define DWC2_HS_SCHEDULE_US (DWC2_HS_SCHEDULE_UFRAMES * \
629 DWC2_HS_PERIODIC_US_PER_UFRAME)
630
631/*
632 * Constants related to low speed scheduling
633 *
634 * For high speed we schedule every 1us. For low speed that's a bit overkill,
635 * so we make up a unit called a "slice" that's worth 25us. There are 40
636 * slices in a full frame and we can schedule 36 of those (90%) for periodic
637 * transfers.
638 *
639 * Our low speed schedule can be as short as 1 frame or could be longer. When
640 * we only schedule 1 frame it means that we'll need to reserve a time every
641 * frame even for things that only transfer very rarely, so something that runs
642 * every 2048 frames will get time reserved in every frame. Our low speed
643 * schedule can be longer and we'll be able to handle more overlap, but that
644 * will come at increased memory cost and increased time to schedule.
645 *
646 * Note: one other advantage of a short low speed schedule is that if we mess
647 * up and miss scheduling we can jump in and use any of the slots that we
648 * happened to reserve.
649 *
650 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
651 * the schedule. There will be one schedule per TT.
652 *
653 * Requirements:
654 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
655 */
656#define DWC2_US_PER_SLICE 25
657#define DWC2_SLICES_PER_UFRAME (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
658
659#define DWC2_ROUND_US_TO_SLICE(us) \
660 (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
661 DWC2_US_PER_SLICE)
662
663#define DWC2_LS_PERIODIC_US_PER_FRAME \
664 900
665#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
666 (DWC2_LS_PERIODIC_US_PER_FRAME / \
667 DWC2_US_PER_SLICE)
668
669#define DWC2_LS_SCHEDULE_FRAMES 1
670#define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \
671 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
672
673/**
674 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
675 * and periodic schedules
676 *
677 * These are common for both host and peripheral modes:
678 *
679 * @dev: The struct device pointer
680 * @regs: Pointer to controller regs
681 * @hw_params: Parameters that were autodetected from the
682 * hardware registers
683 * @core_params: Parameters that define how the core should be configured
684 * @op_state: The operational State, during transitions (a_host=>
685 * a_peripheral and b_device=>b_host) this may not match
686 * the core, but allows the software to determine
687 * transitions
688 * @dr_mode: Requested mode of operation, one of following:
689 * - USB_DR_MODE_PERIPHERAL
690 * - USB_DR_MODE_HOST
691 * - USB_DR_MODE_OTG
692 * @hcd_enabled Host mode sub-driver initialization indicator.
693 * @gadget_enabled Peripheral mode sub-driver initialization indicator.
694 * @ll_hw_enabled Status of low-level hardware resources.
695 * @phy: The otg phy transceiver structure for phy control.
696 * @uphy: The otg phy transceiver structure for old USB phy control.
697 * @plat: The platform specific configuration data. This can be removed once
698 * all SoCs support usb transceiver.
699 * @supplies: Definition of USB power supplies
700 * @phyif: PHY interface width
701 * @lock: Spinlock that protects all the driver data structures
702 * @priv: Stores a pointer to the struct usb_hcd
703 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
704 * transfer are in process of being queued
705 * @srp_success: Stores status of SRP request in the case of a FS PHY
706 * with an I2C interface
707 * @wq_otg: Workqueue object used for handling of some interrupts
708 * @wf_otg: Work object for handling Connector ID Status Change
709 * interrupt
710 * @wkp_timer: Timer object for handling Wakeup Detected interrupt
711 * @lx_state: Lx state of connected device
712 * @gregs_backup: Backup of global registers during suspend
713 * @dregs_backup: Backup of device registers during suspend
714 * @hregs_backup: Backup of host registers during suspend
715 *
716 * These are for host mode:
717 *
718 * @flags: Flags for handling root port state changes
719 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
720 * Transfers associated with these QHs are not currently
721 * assigned to a host channel.
722 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
723 * Transfers associated with these QHs are currently
724 * assigned to a host channel.
725 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
726 * non-periodic schedule
727 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
728 * list of QHs for periodic transfers that are _not_
729 * scheduled for the next frame. Each QH in the list has an
730 * interval counter that determines when it needs to be
731 * scheduled for execution. This scheduling mechanism
732 * allows only a simple calculation for periodic bandwidth
733 * used (i.e. must assume that all periodic transfers may
734 * need to execute in the same frame). However, it greatly
735 * simplifies scheduling and should be sufficient for the
736 * vast majority of OTG hosts, which need to connect to a
737 * small number of peripherals at one time. Items move from
738 * this list to periodic_sched_ready when the QH interval
739 * counter is 0 at SOF.
740 * @periodic_sched_ready: List of periodic QHs that are ready for execution in
741 * the next frame, but have not yet been assigned to host
742 * channels. Items move from this list to
743 * periodic_sched_assigned as host channels become
744 * available during the current frame.
745 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
746 * frame that are assigned to host channels. Items move
747 * from this list to periodic_sched_queued as the
748 * transactions for the QH are queued to the DWC_otg
749 * controller.
750 * @periodic_sched_queued: List of periodic QHs that have been queued for
751 * execution. Items move from this list to either
752 * periodic_sched_inactive or periodic_sched_ready when the
753 * channel associated with the transfer is released. If the
754 * interval for the QH is 1, the item moves to
755 * periodic_sched_ready because it must be rescheduled for
756 * the next frame. Otherwise, the item moves to
757 * periodic_sched_inactive.
758 * @split_order: List keeping track of channels doing splits, in order.
759 * @periodic_usecs: Total bandwidth claimed so far for periodic transfers.
760 * This value is in microseconds per (micro)frame. The
761 * assumption is that all periodic transfers may occur in
762 * the same (micro)frame.
763 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
764 * host is in high speed mode; low speed schedules are
765 * stored elsewhere since we need one per TT.
766 * @frame_number: Frame number read from the core at SOF. The value ranges
767 * from 0 to HFNUM_MAX_FRNUM.
768 * @periodic_qh_count: Count of periodic QHs, if using several eps. Used for
769 * SOF enable/disable.
770 * @free_hc_list: Free host channels in the controller. This is a list of
771 * struct dwc2_host_chan items.
772 * @periodic_channels: Number of host channels assigned to periodic transfers.
773 * Currently assuming that there is a dedicated host
774 * channel for each periodic transaction and at least one
775 * host channel is available for non-periodic transactions.
776 * @non_periodic_channels: Number of host channels assigned to non-periodic
777 * transfers
778 * @available_host_channels Number of host channels available for the microframe
779 * scheduler to use
780 * @hc_ptr_array: Array of pointers to the host channel descriptors.
781 * Allows accessing a host channel descriptor given the
782 * host channel number. This is useful in interrupt
783 * handlers.
784 * @status_buf: Buffer used for data received during the status phase of
785 * a control transfer.
786 * @status_buf_dma: DMA address for status_buf
787 * @start_work: Delayed work for handling host A-cable connection
788 * @reset_work: Delayed work for handling a port reset
789 * @otg_port: OTG port number
790 * @frame_list: Frame list
791 * @frame_list_dma: Frame list DMA address
792 * @frame_list_sz: Frame list size
793 * @desc_gen_cache: Kmem cache for generic descriptors
794 * @desc_hsisoc_cache: Kmem cache for hs isochronous descriptors
795 *
796 * These are for peripheral mode:
797 *
798 * @driver: USB gadget driver
799 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
800 * @num_of_eps: Number of available EPs (excluding EP0)
801 * @debug_root: Root directrory for debugfs.
802 * @debug_file: Main status file for debugfs.
803 * @debug_testmode: Testmode status file for debugfs.
804 * @debug_fifo: FIFO status file for debugfs.
805 * @ep0_reply: Request used for ep0 reply.
806 * @ep0_buff: Buffer for EP0 reply data, if needed.
807 * @ctrl_buff: Buffer for EP0 control requests.
808 * @ctrl_req: Request for EP0 control packets.
809 * @ep0_state: EP0 control transfers state
810 * @test_mode: USB test mode requested by the host
811 * @eps: The endpoints being supplied to the gadget framework
812 * @g_using_dma: Indicate if dma usage is enabled
813 * @g_rx_fifo_sz: Contains rx fifo size value
814 * @g_np_g_tx_fifo_sz: Contains Non-Periodic tx fifo size value
815 * @g_tx_fifo_sz: Contains tx fifo size value per endpoints
816 */
817struct dwc2_hsotg {
818 struct device *dev;
819 void __iomem *regs;
820 /** Params detected from hardware */
821 struct dwc2_hw_params hw_params;
822 /** Params to actually use */
823 struct dwc2_core_params *core_params;
824 enum usb_otg_state op_state;
825 enum usb_dr_mode dr_mode;
826 unsigned int hcd_enabled:1;
827 unsigned int gadget_enabled:1;
828 unsigned int ll_hw_enabled:1;
829
830 struct phy *phy;
831 struct usb_phy *uphy;
832 struct dwc2_hsotg_plat *plat;
833 struct regulator_bulk_data supplies[ARRAY_SIZE(dwc2_hsotg_supply_names)];
834 u32 phyif;
835
836 spinlock_t lock;
837 void *priv;
838 int irq;
839 struct clk *clk;
840
841 unsigned int queuing_high_bandwidth:1;
842 unsigned int srp_success:1;
843
844 struct workqueue_struct *wq_otg;
845 struct work_struct wf_otg;
846 struct timer_list wkp_timer;
847 enum dwc2_lx_state lx_state;
848 struct dwc2_gregs_backup gr_backup;
849 struct dwc2_dregs_backup dr_backup;
850 struct dwc2_hregs_backup hr_backup;
851
852 struct dentry *debug_root;
853 struct debugfs_regset32 *regset;
854
855 /* DWC OTG HW Release versions */
856#define DWC2_CORE_REV_2_71a 0x4f54271a
857#define DWC2_CORE_REV_2_90a 0x4f54290a
858#define DWC2_CORE_REV_2_92a 0x4f54292a
859#define DWC2_CORE_REV_2_94a 0x4f54294a
860#define DWC2_CORE_REV_3_00a 0x4f54300a
861
862#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
863 union dwc2_hcd_internal_flags {
864 u32 d32;
865 struct {
866 unsigned port_connect_status_change:1;
867 unsigned port_connect_status:1;
868 unsigned port_reset_change:1;
869 unsigned port_enable_change:1;
870 unsigned port_suspend_change:1;
871 unsigned port_over_current_change:1;
872 unsigned port_l1_change:1;
873 unsigned reserved:25;
874 } b;
875 } flags;
876
877 struct list_head non_periodic_sched_inactive;
878 struct list_head non_periodic_sched_active;
879 struct list_head *non_periodic_qh_ptr;
880 struct list_head periodic_sched_inactive;
881 struct list_head periodic_sched_ready;
882 struct list_head periodic_sched_assigned;
883 struct list_head periodic_sched_queued;
884 struct list_head split_order;
885 u16 periodic_usecs;
886 unsigned long hs_periodic_bitmap[
887 DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
888 u16 frame_number;
889 u16 periodic_qh_count;
890 bool bus_suspended;
891 bool new_connection;
892
893 u16 last_frame_num;
894
895#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
896#define FRAME_NUM_ARRAY_SIZE 1000
897 u16 *frame_num_array;
898 u16 *last_frame_num_array;
899 int frame_num_idx;
900 int dumped_frame_num_array;
901#endif
902
903 struct list_head free_hc_list;
904 int periodic_channels;
905 int non_periodic_channels;
906 int available_host_channels;
907 struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
908 u8 *status_buf;
909 dma_addr_t status_buf_dma;
910#define DWC2_HCD_STATUS_BUF_SIZE 64
911
912 struct delayed_work start_work;
913 struct delayed_work reset_work;
914 u8 otg_port;
915 u32 *frame_list;
916 dma_addr_t frame_list_dma;
917 u32 frame_list_sz;
918 struct kmem_cache *desc_gen_cache;
919 struct kmem_cache *desc_hsisoc_cache;
920
921#ifdef DEBUG
922 u32 frrem_samples;
923 u64 frrem_accum;
924
925 u32 hfnum_7_samples_a;
926 u64 hfnum_7_frrem_accum_a;
927 u32 hfnum_0_samples_a;
928 u64 hfnum_0_frrem_accum_a;
929 u32 hfnum_other_samples_a;
930 u64 hfnum_other_frrem_accum_a;
931
932 u32 hfnum_7_samples_b;
933 u64 hfnum_7_frrem_accum_b;
934 u32 hfnum_0_samples_b;
935 u64 hfnum_0_frrem_accum_b;
936 u32 hfnum_other_samples_b;
937 u64 hfnum_other_frrem_accum_b;
938#endif
939#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
940
941#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
942 /* Gadget structures */
943 struct usb_gadget_driver *driver;
944 int fifo_mem;
945 unsigned int dedicated_fifos:1;
946 unsigned char num_of_eps;
947 u32 fifo_map;
948
949 struct usb_request *ep0_reply;
950 struct usb_request *ctrl_req;
951 void *ep0_buff;
952 void *ctrl_buff;
953 enum dwc2_ep0_state ep0_state;
954 u8 test_mode;
955
956 struct usb_gadget gadget;
957 unsigned int enabled:1;
958 unsigned int connected:1;
959 struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
960 struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
961 u32 g_using_dma;
962 u32 g_rx_fifo_sz;
963 u32 g_np_g_tx_fifo_sz;
964 u32 g_tx_fifo_sz[MAX_EPS_CHANNELS];
965#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
966};
967
968/* Reasons for halting a host channel */
969enum dwc2_halt_status {
970 DWC2_HC_XFER_NO_HALT_STATUS,
971 DWC2_HC_XFER_COMPLETE,
972 DWC2_HC_XFER_URB_COMPLETE,
973 DWC2_HC_XFER_ACK,
974 DWC2_HC_XFER_NAK,
975 DWC2_HC_XFER_NYET,
976 DWC2_HC_XFER_STALL,
977 DWC2_HC_XFER_XACT_ERR,
978 DWC2_HC_XFER_FRAME_OVERRUN,
979 DWC2_HC_XFER_BABBLE_ERR,
980 DWC2_HC_XFER_DATA_TOGGLE_ERR,
981 DWC2_HC_XFER_AHB_ERR,
982 DWC2_HC_XFER_PERIODIC_INCOMPLETE,
983 DWC2_HC_XFER_URB_DEQUEUE,
984};
985
986/*
987 * The following functions support initialization of the core driver component
988 * and the DWC_otg controller
989 */
990extern int dwc2_core_reset(struct dwc2_hsotg *hsotg);
991extern int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
992extern int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg);
993extern int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore);
994
995void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
996
997extern bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
998
999/*
1000 * Common core Functions.
1001 * The following functions support managing the DWC_otg controller in either
1002 * device or host mode.
1003 */
1004extern void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1005extern void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1006extern void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1007
1008extern void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1009extern void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1010
1011/* This function should be called on every hardware interrupt. */
1012extern irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1013
1014/* OTG Core Parameters */
1015
1016/*
1017 * Specifies the OTG capabilities. The driver will automatically
1018 * detect the value for this parameter if none is specified.
1019 * 0 - HNP and SRP capable (default)
1020 * 1 - SRP Only capable
1021 * 2 - No HNP/SRP capable
1022 */
1023extern void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val);
1024#define DWC2_CAP_PARAM_HNP_SRP_CAPABLE 0
1025#define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE 1
1026#define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
1027
1028/*
1029 * Specifies whether to use slave or DMA mode for accessing the data
1030 * FIFOs. The driver will automatically detect the value for this
1031 * parameter if none is specified.
1032 * 0 - Slave
1033 * 1 - DMA (default, if available)
1034 */
1035extern void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val);
1036
1037/*
1038 * When DMA mode is enabled specifies whether to use
1039 * address DMA or DMA Descritor mode for accessing the data
1040 * FIFOs in device mode. The driver will automatically detect
1041 * the value for this parameter if none is specified.
1042 * 0 - address DMA
1043 * 1 - DMA Descriptor(default, if available)
1044 */
1045extern void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val);
1046
1047/*
1048 * When DMA mode is enabled specifies whether to use
1049 * address DMA or DMA Descritor mode with full speed devices
1050 * for accessing the data FIFOs in host mode.
1051 * 0 - address DMA
1052 * 1 - FS DMA Descriptor(default, if available)
1053 */
1054extern void dwc2_set_param_dma_desc_fs_enable(struct dwc2_hsotg *hsotg,
1055 int val);
1056
1057/*
1058 * Specifies the maximum speed of operation in host and device mode.
1059 * The actual speed depends on the speed of the attached device and
1060 * the value of phy_type. The actual speed depends on the speed of the
1061 * attached device.
1062 * 0 - High Speed (default)
1063 * 1 - Full Speed
1064 */
1065extern void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val);
1066#define DWC2_SPEED_PARAM_HIGH 0
1067#define DWC2_SPEED_PARAM_FULL 1
1068
1069/*
1070 * Specifies whether low power mode is supported when attached
1071 * to a Full Speed or Low Speed device in host mode.
1072 *
1073 * 0 - Don't support low power mode (default)
1074 * 1 - Support low power mode
1075 */
1076extern void dwc2_set_param_host_support_fs_ls_low_power(
1077 struct dwc2_hsotg *hsotg, int val);
1078
1079/*
1080 * Specifies the PHY clock rate in low power mode when connected to a
1081 * Low Speed device in host mode. This parameter is applicable only if
1082 * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
1083 * then defaults to 6 MHZ otherwise 48 MHZ.
1084 *
1085 * 0 - 48 MHz
1086 * 1 - 6 MHz
1087 */
1088extern void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg,
1089 int val);
1090#define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
1091#define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
1092
1093/*
1094 * 0 - Use cC FIFO size parameters
1095 * 1 - Allow dynamic FIFO sizing (default)
1096 */
1097extern void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg,
1098 int val);
1099
1100/*
1101 * Number of 4-byte words in the Rx FIFO in host mode when dynamic
1102 * FIFO sizing is enabled.
1103 * 16 to 32768 (default 1024)
1104 */
1105extern void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val);
1106
1107/*
1108 * Number of 4-byte words in the non-periodic Tx FIFO in host mode
1109 * when Dynamic FIFO sizing is enabled in the core.
1110 * 16 to 32768 (default 256)
1111 */
1112extern void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg,
1113 int val);
1114
1115/*
1116 * Number of 4-byte words in the host periodic Tx FIFO when dynamic
1117 * FIFO sizing is enabled.
1118 * 16 to 32768 (default 256)
1119 */
1120extern void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg,
1121 int val);
1122
1123/*
1124 * The maximum transfer size supported in bytes.
1125 * 2047 to 65,535 (default 65,535)
1126 */
1127extern void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val);
1128
1129/*
1130 * The maximum number of packets in a transfer.
1131 * 15 to 511 (default 511)
1132 */
1133extern void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val);
1134
1135/*
1136 * The number of host channel registers to use.
1137 * 1 to 16 (default 11)
1138 * Note: The FPGA configuration supports a maximum of 11 host channels.
1139 */
1140extern void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val);
1141
1142/*
1143 * Specifies the type of PHY interface to use. By default, the driver
1144 * will automatically detect the phy_type.
1145 *
1146 * 0 - Full Speed PHY
1147 * 1 - UTMI+ (default)
1148 * 2 - ULPI
1149 */
1150extern void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val);
1151#define DWC2_PHY_TYPE_PARAM_FS 0
1152#define DWC2_PHY_TYPE_PARAM_UTMI 1
1153#define DWC2_PHY_TYPE_PARAM_ULPI 2
1154
1155/*
1156 * Specifies the UTMI+ Data Width. This parameter is
1157 * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
1158 * PHY_TYPE, this parameter indicates the data width between
1159 * the MAC and the ULPI Wrapper.) Also, this parameter is
1160 * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
1161 * to "8 and 16 bits", meaning that the core has been
1162 * configured to work at either data path width.
1163 *
1164 * 8 or 16 bits (default 16)
1165 */
1166extern void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val);
1167
1168/*
1169 * Specifies whether the ULPI operates at double or single
1170 * data rate. This parameter is only applicable if PHY_TYPE is
1171 * ULPI.
1172 *
1173 * 0 - single data rate ULPI interface with 8 bit wide data
1174 * bus (default)
1175 * 1 - double data rate ULPI interface with 4 bit wide data
1176 * bus
1177 */
1178extern void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val);
1179
1180/*
1181 * Specifies whether to use the internal or external supply to
1182 * drive the vbus with a ULPI phy.
1183 */
1184extern void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val);
1185#define DWC2_PHY_ULPI_INTERNAL_VBUS 0
1186#define DWC2_PHY_ULPI_EXTERNAL_VBUS 1
1187
1188/*
1189 * Specifies whether to use the I2Cinterface for full speed PHY. This
1190 * parameter is only applicable if PHY_TYPE is FS.
1191 * 0 - No (default)
1192 * 1 - Yes
1193 */
1194extern void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val);
1195
1196extern void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val);
1197
1198extern void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val);
1199
1200/*
1201 * Specifies whether dedicated transmit FIFOs are
1202 * enabled for non periodic IN endpoints in device mode
1203 * 0 - No
1204 * 1 - Yes
1205 */
1206extern void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg,
1207 int val);
1208
1209extern void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val);
1210
1211extern void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val);
1212
1213extern void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val);
1214
1215extern void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
1216 const struct dwc2_core_params *params);
1217
1218extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
1219
1220extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1221
1222extern int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1223extern int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1224
1225/*
1226 * The following functions check the controller's OTG operation mode
1227 * capability (GHWCFG2.OTG_MODE).
1228 *
1229 * These functions can be used before the internal hsotg->hw_params
1230 * are read in and cached so they always read directly from the
1231 * GHWCFG2 register.
1232 */
1233unsigned dwc2_op_mode(struct dwc2_hsotg *hsotg);
1234bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1235bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1236bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1237
1238/*
1239 * Returns the mode of operation, host or device
1240 */
1241static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1242{
1243 return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1244}
1245static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1246{
1247 return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1248}
1249
1250/*
1251 * Dump core registers and SPRAM
1252 */
1253extern void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1254extern void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1255extern void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1256
1257/*
1258 * Return OTG version - either 1.3 or 2.0
1259 */
1260extern u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg);
1261
1262/* Gadget defines */
1263#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1264extern int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1265extern int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1266extern int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1267extern int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq);
1268extern void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1269 bool reset);
1270extern void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1271extern void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1272extern int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1273#define dwc2_is_device_connected(hsotg) (hsotg->connected)
1274int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1275int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
1276#else
1277static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1278{ return 0; }
1279static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1280{ return 0; }
1281static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1282{ return 0; }
1283static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
1284{ return 0; }
1285static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1286 bool reset) {}
1287static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1288static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1289static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1290 int testmode)
1291{ return 0; }
1292#define dwc2_is_device_connected(hsotg) (0)
1293static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1294{ return 0; }
1295static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
1296{ return 0; }
1297#endif
1298
1299#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1300extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1301extern int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1302extern void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1303extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1304extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1305int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1306int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1307#else
1308static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1309{ return 0; }
1310static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1311 int us)
1312{ return 0; }
1313static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1314static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1315static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1316static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1317static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
1318{ return 0; }
1319static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1320{ return 0; }
1321static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1322{ return 0; }
1323
1324#endif
1325
1326#endif /* __DWC2_CORE_H__ */
1/*
2 * core.h - DesignWare HS OTG Controller common declarations
3 *
4 * Copyright (C) 2004-2013 Synopsys, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
18 *
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37#ifndef __DWC2_CORE_H__
38#define __DWC2_CORE_H__
39
40#include <linux/phy/phy.h>
41#include <linux/regulator/consumer.h>
42#include <linux/usb/gadget.h>
43#include <linux/usb/otg.h>
44#include <linux/usb/phy.h>
45#include "hw.h"
46
47/*
48 * Suggested defines for tracers:
49 * - no_printk: Disable tracing
50 * - pr_info: Print this info to the console
51 * - trace_printk: Print this info to trace buffer (good for verbose logging)
52 */
53
54#define DWC2_TRACE_SCHEDULER no_printk
55#define DWC2_TRACE_SCHEDULER_VB no_printk
56
57/* Detailed scheduler tracing, but won't overwhelm console */
58#define dwc2_sch_dbg(hsotg, fmt, ...) \
59 DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt), \
60 dev_name(hsotg->dev), ##__VA_ARGS__)
61
62/* Verbose scheduler tracing */
63#define dwc2_sch_vdbg(hsotg, fmt, ...) \
64 DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt), \
65 dev_name(hsotg->dev), ##__VA_ARGS__)
66
67#ifdef CONFIG_MIPS
68/*
69 * There are some MIPS machines that can run in either big-endian
70 * or little-endian mode and that use the dwc2 register without
71 * a byteswap in both ways.
72 * Unlike other architectures, MIPS apparently does not require a
73 * barrier before the __raw_writel() to synchronize with DMA but does
74 * require the barrier after the __raw_writel() to serialize a set of
75 * writes. This set of operations was added specifically for MIPS and
76 * should only be used there.
77 */
78static inline u32 dwc2_readl(const void __iomem *addr)
79{
80 u32 value = __raw_readl(addr);
81
82 /* In order to preserve endianness __raw_* operation is used. Therefore
83 * a barrier is needed to ensure IO access is not re-ordered across
84 * reads or writes
85 */
86 mb();
87 return value;
88}
89
90static inline void dwc2_writel(u32 value, void __iomem *addr)
91{
92 __raw_writel(value, addr);
93
94 /*
95 * In order to preserve endianness __raw_* operation is used. Therefore
96 * a barrier is needed to ensure IO access is not re-ordered across
97 * reads or writes
98 */
99 mb();
100#ifdef DWC2_LOG_WRITES
101 pr_info("INFO:: wrote %08x to %p\n", value, addr);
102#endif
103}
104#else
105/* Normal architectures just use readl/write */
106static inline u32 dwc2_readl(const void __iomem *addr)
107{
108 return readl(addr);
109}
110
111static inline void dwc2_writel(u32 value, void __iomem *addr)
112{
113 writel(value, addr);
114
115#ifdef DWC2_LOG_WRITES
116 pr_info("info:: wrote %08x to %p\n", value, addr);
117#endif
118}
119#endif
120
121/* Maximum number of Endpoints/HostChannels */
122#define MAX_EPS_CHANNELS 16
123
124/* dwc2-hsotg declarations */
125static const char * const dwc2_hsotg_supply_names[] = {
126 "vusb_d", /* digital USB supply, 1.2V */
127 "vusb_a", /* analog USB supply, 1.1V */
128};
129
130/*
131 * EP0_MPS_LIMIT
132 *
133 * Unfortunately there seems to be a limit of the amount of data that can
134 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
135 * packets (which practically means 1 packet and 63 bytes of data) when the
136 * MPS is set to 64.
137 *
138 * This means if we are wanting to move >127 bytes of data, we need to
139 * split the transactions up, but just doing one packet at a time does
140 * not work (this may be an implicit DATA0 PID on first packet of the
141 * transaction) and doing 2 packets is outside the controller's limits.
142 *
143 * If we try to lower the MPS size for EP0, then no transfers work properly
144 * for EP0, and the system will fail basic enumeration. As no cause for this
145 * has currently been found, we cannot support any large IN transfers for
146 * EP0.
147 */
148#define EP0_MPS_LIMIT 64
149
150struct dwc2_hsotg;
151struct dwc2_hsotg_req;
152
153/**
154 * struct dwc2_hsotg_ep - driver endpoint definition.
155 * @ep: The gadget layer representation of the endpoint.
156 * @name: The driver generated name for the endpoint.
157 * @queue: Queue of requests for this endpoint.
158 * @parent: Reference back to the parent device structure.
159 * @req: The current request that the endpoint is processing. This is
160 * used to indicate an request has been loaded onto the endpoint
161 * and has yet to be completed (maybe due to data move, or simply
162 * awaiting an ack from the core all the data has been completed).
163 * @debugfs: File entry for debugfs file for this endpoint.
164 * @lock: State lock to protect contents of endpoint.
165 * @dir_in: Set to true if this endpoint is of the IN direction, which
166 * means that it is sending data to the Host.
167 * @index: The index for the endpoint registers.
168 * @mc: Multi Count - number of transactions per microframe
169 * @interval - Interval for periodic endpoints, in frames or microframes.
170 * @name: The name array passed to the USB core.
171 * @halted: Set if the endpoint has been halted.
172 * @periodic: Set if this is a periodic ep, such as Interrupt
173 * @isochronous: Set if this is a isochronous ep
174 * @send_zlp: Set if we need to send a zero-length packet.
175 * @desc_list_dma: The DMA address of descriptor chain currently in use.
176 * @desc_list: Pointer to descriptor DMA chain head currently in use.
177 * @desc_count: Count of entries within the DMA descriptor chain of EP.
178 * @isoc_chain_num: Number of ISOC chain currently in use - either 0 or 1.
179 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
180 * @total_data: The total number of data bytes done.
181 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
182 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
183 * @last_load: The offset of data for the last start of request.
184 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
185 * @target_frame: Targeted frame num to setup next ISOC transfer
186 * @frame_overrun: Indicates SOF number overrun in DSTS
187 *
188 * This is the driver's state for each registered enpoint, allowing it
189 * to keep track of transactions that need doing. Each endpoint has a
190 * lock to protect the state, to try and avoid using an overall lock
191 * for the host controller as much as possible.
192 *
193 * For periodic IN endpoints, we have fifo_size and fifo_load to try
194 * and keep track of the amount of data in the periodic FIFO for each
195 * of these as we don't have a status register that tells us how much
196 * is in each of them. (note, this may actually be useless information
197 * as in shared-fifo mode periodic in acts like a single-frame packet
198 * buffer than a fifo)
199 */
200struct dwc2_hsotg_ep {
201 struct usb_ep ep;
202 struct list_head queue;
203 struct dwc2_hsotg *parent;
204 struct dwc2_hsotg_req *req;
205 struct dentry *debugfs;
206
207 unsigned long total_data;
208 unsigned int size_loaded;
209 unsigned int last_load;
210 unsigned int fifo_load;
211 unsigned short fifo_size;
212 unsigned short fifo_index;
213
214 unsigned char dir_in;
215 unsigned char index;
216 unsigned char mc;
217 unsigned char interval;
218
219 unsigned int halted:1;
220 unsigned int periodic:1;
221 unsigned int isochronous:1;
222 unsigned int send_zlp:1;
223 unsigned int target_frame;
224#define TARGET_FRAME_INITIAL 0xFFFFFFFF
225 bool frame_overrun;
226
227 dma_addr_t desc_list_dma;
228 struct dwc2_dma_desc *desc_list;
229 u8 desc_count;
230
231 unsigned char isoc_chain_num;
232 unsigned int next_desc;
233
234 char name[10];
235};
236
237/**
238 * struct dwc2_hsotg_req - data transfer request
239 * @req: The USB gadget request
240 * @queue: The list of requests for the endpoint this is queued for.
241 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
242 */
243struct dwc2_hsotg_req {
244 struct usb_request req;
245 struct list_head queue;
246 void *saved_req_buf;
247};
248
249#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
250#define call_gadget(_hs, _entry) \
251do { \
252 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
253 (_hs)->driver && (_hs)->driver->_entry) { \
254 spin_unlock(&_hs->lock); \
255 (_hs)->driver->_entry(&(_hs)->gadget); \
256 spin_lock(&_hs->lock); \
257 } \
258} while (0)
259#else
260#define call_gadget(_hs, _entry) do {} while (0)
261#endif
262
263struct dwc2_hsotg;
264struct dwc2_host_chan;
265
266/* Device States */
267enum dwc2_lx_state {
268 DWC2_L0, /* On state */
269 DWC2_L1, /* LPM sleep state */
270 DWC2_L2, /* USB suspend state */
271 DWC2_L3, /* Off state */
272};
273
274/*
275 * Gadget periodic tx fifo sizes as used by legacy driver
276 * EP0 is not included
277 */
278#define DWC2_G_P_LEGACY_TX_FIFO_SIZE {256, 256, 256, 256, 768, 768, 768, \
279 768, 0, 0, 0, 0, 0, 0, 0}
280
281/* Gadget ep0 states */
282enum dwc2_ep0_state {
283 DWC2_EP0_SETUP,
284 DWC2_EP0_DATA_IN,
285 DWC2_EP0_DATA_OUT,
286 DWC2_EP0_STATUS_IN,
287 DWC2_EP0_STATUS_OUT,
288};
289
290/**
291 * struct dwc2_core_params - Parameters for configuring the core
292 *
293 * @otg_cap: Specifies the OTG capabilities.
294 * 0 - HNP and SRP capable
295 * 1 - SRP Only capable
296 * 2 - No HNP/SRP capable (always available)
297 * Defaults to best available option (0, 1, then 2)
298 * @otg_ver: OTG version supported
299 * 0 - 1.3 (default)
300 * 1 - 2.0
301 * @host_dma: Specifies whether to use slave or DMA mode for accessing
302 * the data FIFOs. The driver will automatically detect the
303 * value for this parameter if none is specified.
304 * 0 - Slave (always available)
305 * 1 - DMA (default, if available)
306 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use
307 * address DMA mode or descriptor DMA mode for accessing
308 * the data FIFOs. The driver will automatically detect the
309 * value for this if none is specified.
310 * 0 - Address DMA
311 * 1 - Descriptor DMA (default, if available)
312 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
313 * address DMA mode or descriptor DMA mode for accessing
314 * the data FIFOs in Full Speed mode only. The driver
315 * will automatically detect the value for this if none is
316 * specified.
317 * 0 - Address DMA
318 * 1 - Descriptor DMA in FS (default, if available)
319 * @speed: Specifies the maximum speed of operation in host and
320 * device mode. The actual speed depends on the speed of
321 * the attached device and the value of phy_type.
322 * 0 - High Speed
323 * (default when phy_type is UTMI+ or ULPI)
324 * 1 - Full Speed
325 * (default when phy_type is Full Speed)
326 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
327 * 1 - Allow dynamic FIFO sizing (default, if available)
328 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
329 * are enabled for non-periodic IN endpoints in device
330 * mode.
331 * @host_rx_fifo_size: Number of 4-byte words in the Rx FIFO in host mode when
332 * dynamic FIFO sizing is enabled
333 * 16 to 32768
334 * Actual maximum value is autodetected and also
335 * the default.
336 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
337 * in host mode when dynamic FIFO sizing is enabled
338 * 16 to 32768
339 * Actual maximum value is autodetected and also
340 * the default.
341 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
342 * host mode when dynamic FIFO sizing is enabled
343 * 16 to 32768
344 * Actual maximum value is autodetected and also
345 * the default.
346 * @max_transfer_size: The maximum transfer size supported, in bytes
347 * 2047 to 65,535
348 * Actual maximum value is autodetected and also
349 * the default.
350 * @max_packet_count: The maximum number of packets in a transfer
351 * 15 to 511
352 * Actual maximum value is autodetected and also
353 * the default.
354 * @host_channels: The number of host channel registers to use
355 * 1 to 16
356 * Actual maximum value is autodetected and also
357 * the default.
358 * @phy_type: Specifies the type of PHY interface to use. By default,
359 * the driver will automatically detect the phy_type.
360 * 0 - Full Speed Phy
361 * 1 - UTMI+ Phy
362 * 2 - ULPI Phy
363 * Defaults to best available option (2, 1, then 0)
364 * @phy_utmi_width: Specifies the UTMI+ Data Width (in bits). This parameter
365 * is applicable for a phy_type of UTMI+ or ULPI. (For a
366 * ULPI phy_type, this parameter indicates the data width
367 * between the MAC and the ULPI Wrapper.) Also, this
368 * parameter is applicable only if the OTG_HSPHY_WIDTH cC
369 * parameter was set to "8 and 16 bits", meaning that the
370 * core has been configured to work at either data path
371 * width.
372 * 8 or 16 (default 16 if available)
373 * @phy_ulpi_ddr: Specifies whether the ULPI operates at double or single
374 * data rate. This parameter is only applicable if phy_type
375 * is ULPI.
376 * 0 - single data rate ULPI interface with 8 bit wide
377 * data bus (default)
378 * 1 - double data rate ULPI interface with 4 bit wide
379 * data bus
380 * @phy_ulpi_ext_vbus: For a ULPI phy, specifies whether to use the internal or
381 * external supply to drive the VBus
382 * 0 - Internal supply (default)
383 * 1 - External supply
384 * @i2c_enable: Specifies whether to use the I2Cinterface for a full
385 * speed PHY. This parameter is only applicable if phy_type
386 * is FS.
387 * 0 - No (default)
388 * 1 - Yes
389 * @ulpi_fs_ls: Make ULPI phy operate in FS/LS mode only
390 * 0 - No (default)
391 * 1 - Yes
392 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
393 * when attached to a Full Speed or Low Speed device in
394 * host mode.
395 * 0 - Don't support low power mode (default)
396 * 1 - Support low power mode
397 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
398 * when connected to a Low Speed device in host
399 * mode. This parameter is applicable only if
400 * host_support_fs_ls_low_power is enabled.
401 * 0 - 48 MHz
402 * (default when phy_type is UTMI+ or ULPI)
403 * 1 - 6 MHz
404 * (default when phy_type is Full Speed)
405 * @ts_dline: Enable Term Select Dline pulsing
406 * 0 - No (default)
407 * 1 - Yes
408 * @reload_ctl: Allow dynamic reloading of HFIR register during runtime
409 * 0 - No (default for core < 2.92a)
410 * 1 - Yes (default for core >= 2.92a)
411 * @ahbcfg: This field allows the default value of the GAHBCFG
412 * register to be overridden
413 * -1 - GAHBCFG value will be set to 0x06
414 * (INCR4, default)
415 * all others - GAHBCFG value will be overridden with
416 * this value
417 * Not all bits can be controlled like this, the
418 * bits defined by GAHBCFG_CTRL_MASK are controlled
419 * by the driver and are ignored in this
420 * configuration value.
421 * @uframe_sched: True to enable the microframe scheduler
422 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
423 * Disable CONIDSTSCHNG controller interrupt in such
424 * case.
425 * 0 - No (default)
426 * 1 - Yes
427 * @hibernation: Specifies whether the controller support hibernation.
428 * If hibernation is enabled, the controller will enter
429 * hibernation in both peripheral and host mode when
430 * needed.
431 * 0 - No (default)
432 * 1 - Yes
433 * @g_dma: Enables gadget dma usage (default: autodetect).
434 * @g_dma_desc: Enables gadget descriptor DMA (default: autodetect).
435 * @g_rx_fifo_size: The periodic rx fifo size for the device, in
436 * DWORDS from 16-32768 (default: 2048 if
437 * possible, otherwise autodetect).
438 * @g_np_tx_fifo_size: The non-periodic tx fifo size for the device in
439 * DWORDS from 16-32768 (default: 1024 if
440 * possible, otherwise autodetect).
441 * @g_tx_fifo_size: An array of TX fifo sizes in dedicated fifo
442 * mode. Each value corresponds to one EP
443 * starting from EP1 (max 15 values). Sizes are
444 * in DWORDS with possible values from from
445 * 16-32768 (default: 256, 256, 256, 256, 768,
446 * 768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
447 *
448 * The following parameters may be specified when starting the module. These
449 * parameters define how the DWC_otg controller should be configured. A
450 * value of -1 (or any other out of range value) for any parameter means
451 * to read the value from hardware (if possible) or use the builtin
452 * default described above.
453 */
454struct dwc2_core_params {
455 /*
456 * Don't add any non-int members here, this will break
457 * dwc2_set_all_params!
458 */
459 int otg_cap;
460#define DWC2_CAP_PARAM_HNP_SRP_CAPABLE 0
461#define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE 1
462#define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
463
464 int otg_ver;
465 int dma_desc_enable;
466 int dma_desc_fs_enable;
467 int speed;
468#define DWC2_SPEED_PARAM_HIGH 0
469#define DWC2_SPEED_PARAM_FULL 1
470#define DWC2_SPEED_PARAM_LOW 2
471
472 int enable_dynamic_fifo;
473 int en_multiple_tx_fifo;
474 int host_rx_fifo_size;
475 int host_nperio_tx_fifo_size;
476 int host_perio_tx_fifo_size;
477 int max_transfer_size;
478 int max_packet_count;
479 int host_channels;
480 int phy_type;
481#define DWC2_PHY_TYPE_PARAM_FS 0
482#define DWC2_PHY_TYPE_PARAM_UTMI 1
483#define DWC2_PHY_TYPE_PARAM_ULPI 2
484
485 int phy_utmi_width;
486 int phy_ulpi_ddr;
487 int phy_ulpi_ext_vbus;
488#define DWC2_PHY_ULPI_INTERNAL_VBUS 0
489#define DWC2_PHY_ULPI_EXTERNAL_VBUS 1
490
491 int i2c_enable;
492 int ulpi_fs_ls;
493 int host_support_fs_ls_low_power;
494 int host_ls_low_power_phy_clk;
495#define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
496#define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
497
498 int ts_dline;
499 int reload_ctl;
500 int ahbcfg;
501 int uframe_sched;
502 int external_id_pin_ctl;
503 int hibernation;
504
505 /*
506 * The following parameters are *only* set via device
507 * properties and cannot be set directly in this structure.
508 */
509
510 /* Host parameters */
511 bool host_dma;
512
513 /* Gadget parameters */
514 bool g_dma;
515 bool g_dma_desc;
516 u32 g_rx_fifo_size;
517 u32 g_np_tx_fifo_size;
518 u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
519};
520
521/**
522 * struct dwc2_hw_params - Autodetected parameters.
523 *
524 * These parameters are the various parameters read from hardware
525 * registers during initialization. They typically contain the best
526 * supported or maximum value that can be configured in the
527 * corresponding dwc2_core_params value.
528 *
529 * The values that are not in dwc2_core_params are documented below.
530 *
531 * @op_mode Mode of Operation
532 * 0 - HNP- and SRP-Capable OTG (Host & Device)
533 * 1 - SRP-Capable OTG (Host & Device)
534 * 2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
535 * 3 - SRP-Capable Device
536 * 4 - Non-OTG Device
537 * 5 - SRP-Capable Host
538 * 6 - Non-OTG Host
539 * @arch Architecture
540 * 0 - Slave only
541 * 1 - External DMA
542 * 2 - Internal DMA
543 * @power_optimized Are power optimizations enabled?
544 * @num_dev_ep Number of device endpoints available
545 * @num_dev_perio_in_ep Number of device periodic IN endpoints
546 * available
547 * @dev_token_q_depth Device Mode IN Token Sequence Learning Queue
548 * Depth
549 * 0 to 30
550 * @host_perio_tx_q_depth
551 * Host Mode Periodic Request Queue Depth
552 * 2, 4 or 8
553 * @nperio_tx_q_depth
554 * Non-Periodic Request Queue Depth
555 * 2, 4 or 8
556 * @hs_phy_type High-speed PHY interface type
557 * 0 - High-speed interface not supported
558 * 1 - UTMI+
559 * 2 - ULPI
560 * 3 - UTMI+ and ULPI
561 * @fs_phy_type Full-speed PHY interface type
562 * 0 - Full speed interface not supported
563 * 1 - Dedicated full speed interface
564 * 2 - FS pins shared with UTMI+ pins
565 * 3 - FS pins shared with ULPI pins
566 * @total_fifo_size: Total internal RAM for FIFOs (bytes)
567 * @utmi_phy_data_width UTMI+ PHY data width
568 * 0 - 8 bits
569 * 1 - 16 bits
570 * 2 - 8 or 16 bits
571 * @snpsid: Value from SNPSID register
572 * @dev_ep_dirs: Direction of device endpoints (GHWCFG1)
573 */
574struct dwc2_hw_params {
575 unsigned op_mode:3;
576 unsigned arch:2;
577 unsigned dma_desc_enable:1;
578 unsigned enable_dynamic_fifo:1;
579 unsigned en_multiple_tx_fifo:1;
580 unsigned rx_fifo_size:16;
581 unsigned host_nperio_tx_fifo_size:16;
582 unsigned dev_nperio_tx_fifo_size:16;
583 unsigned host_perio_tx_fifo_size:16;
584 unsigned nperio_tx_q_depth:3;
585 unsigned host_perio_tx_q_depth:3;
586 unsigned dev_token_q_depth:5;
587 unsigned max_transfer_size:26;
588 unsigned max_packet_count:11;
589 unsigned host_channels:5;
590 unsigned hs_phy_type:2;
591 unsigned fs_phy_type:2;
592 unsigned i2c_enable:1;
593 unsigned num_dev_ep:4;
594 unsigned num_dev_perio_in_ep:4;
595 unsigned total_fifo_size:16;
596 unsigned power_optimized:1;
597 unsigned utmi_phy_data_width:2;
598 u32 snpsid;
599 u32 dev_ep_dirs;
600};
601
602/* Size of control and EP0 buffers */
603#define DWC2_CTRL_BUFF_SIZE 8
604
605/**
606 * struct dwc2_gregs_backup - Holds global registers state before entering partial
607 * power down
608 * @gotgctl: Backup of GOTGCTL register
609 * @gintmsk: Backup of GINTMSK register
610 * @gahbcfg: Backup of GAHBCFG register
611 * @gusbcfg: Backup of GUSBCFG register
612 * @grxfsiz: Backup of GRXFSIZ register
613 * @gnptxfsiz: Backup of GNPTXFSIZ register
614 * @gi2cctl: Backup of GI2CCTL register
615 * @hptxfsiz: Backup of HPTXFSIZ register
616 * @gdfifocfg: Backup of GDFIFOCFG register
617 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint
618 * @gpwrdn: Backup of GPWRDN register
619 */
620struct dwc2_gregs_backup {
621 u32 gotgctl;
622 u32 gintmsk;
623 u32 gahbcfg;
624 u32 gusbcfg;
625 u32 grxfsiz;
626 u32 gnptxfsiz;
627 u32 gi2cctl;
628 u32 hptxfsiz;
629 u32 pcgcctl;
630 u32 gdfifocfg;
631 u32 dtxfsiz[MAX_EPS_CHANNELS];
632 u32 gpwrdn;
633 bool valid;
634};
635
636/**
637 * struct dwc2_dregs_backup - Holds device registers state before entering partial
638 * power down
639 * @dcfg: Backup of DCFG register
640 * @dctl: Backup of DCTL register
641 * @daintmsk: Backup of DAINTMSK register
642 * @diepmsk: Backup of DIEPMSK register
643 * @doepmsk: Backup of DOEPMSK register
644 * @diepctl: Backup of DIEPCTL register
645 * @dieptsiz: Backup of DIEPTSIZ register
646 * @diepdma: Backup of DIEPDMA register
647 * @doepctl: Backup of DOEPCTL register
648 * @doeptsiz: Backup of DOEPTSIZ register
649 * @doepdma: Backup of DOEPDMA register
650 */
651struct dwc2_dregs_backup {
652 u32 dcfg;
653 u32 dctl;
654 u32 daintmsk;
655 u32 diepmsk;
656 u32 doepmsk;
657 u32 diepctl[MAX_EPS_CHANNELS];
658 u32 dieptsiz[MAX_EPS_CHANNELS];
659 u32 diepdma[MAX_EPS_CHANNELS];
660 u32 doepctl[MAX_EPS_CHANNELS];
661 u32 doeptsiz[MAX_EPS_CHANNELS];
662 u32 doepdma[MAX_EPS_CHANNELS];
663 bool valid;
664};
665
666/**
667 * struct dwc2_hregs_backup - Holds host registers state before entering partial
668 * power down
669 * @hcfg: Backup of HCFG register
670 * @haintmsk: Backup of HAINTMSK register
671 * @hcintmsk: Backup of HCINTMSK register
672 * @hptr0: Backup of HPTR0 register
673 * @hfir: Backup of HFIR register
674 */
675struct dwc2_hregs_backup {
676 u32 hcfg;
677 u32 haintmsk;
678 u32 hcintmsk[MAX_EPS_CHANNELS];
679 u32 hprt0;
680 u32 hfir;
681 bool valid;
682};
683
684/*
685 * Constants related to high speed periodic scheduling
686 *
687 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long. From a
688 * reservation point of view it's assumed that the schedule goes right back to
689 * the beginning after the end of the schedule.
690 *
691 * What does that mean for scheduling things with a long interval? It means
692 * we'll reserve time for them in every possible microframe that they could
693 * ever be scheduled in. ...but we'll still only actually schedule them as
694 * often as they were requested.
695 *
696 * We keep our schedule in a "bitmap" structure. This simplifies having
697 * to keep track of and merge intervals: we just let the bitmap code do most
698 * of the heavy lifting. In a way scheduling is much like memory allocation.
699 *
700 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
701 * supposed to schedule for periodic transfers). That's according to spec.
702 *
703 * Note that though we only schedule 80% of each microframe, the bitmap that we
704 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
705 * space for each uFrame).
706 *
707 * Requirements:
708 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
709 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
710 * could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
711 * be bugs). The 8 comes from the USB spec: number of microframes per frame.
712 */
713#define DWC2_US_PER_UFRAME 125
714#define DWC2_HS_PERIODIC_US_PER_UFRAME 100
715
716#define DWC2_HS_SCHEDULE_UFRAMES 8
717#define DWC2_HS_SCHEDULE_US (DWC2_HS_SCHEDULE_UFRAMES * \
718 DWC2_HS_PERIODIC_US_PER_UFRAME)
719
720/*
721 * Constants related to low speed scheduling
722 *
723 * For high speed we schedule every 1us. For low speed that's a bit overkill,
724 * so we make up a unit called a "slice" that's worth 25us. There are 40
725 * slices in a full frame and we can schedule 36 of those (90%) for periodic
726 * transfers.
727 *
728 * Our low speed schedule can be as short as 1 frame or could be longer. When
729 * we only schedule 1 frame it means that we'll need to reserve a time every
730 * frame even for things that only transfer very rarely, so something that runs
731 * every 2048 frames will get time reserved in every frame. Our low speed
732 * schedule can be longer and we'll be able to handle more overlap, but that
733 * will come at increased memory cost and increased time to schedule.
734 *
735 * Note: one other advantage of a short low speed schedule is that if we mess
736 * up and miss scheduling we can jump in and use any of the slots that we
737 * happened to reserve.
738 *
739 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
740 * the schedule. There will be one schedule per TT.
741 *
742 * Requirements:
743 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
744 */
745#define DWC2_US_PER_SLICE 25
746#define DWC2_SLICES_PER_UFRAME (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
747
748#define DWC2_ROUND_US_TO_SLICE(us) \
749 (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
750 DWC2_US_PER_SLICE)
751
752#define DWC2_LS_PERIODIC_US_PER_FRAME \
753 900
754#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
755 (DWC2_LS_PERIODIC_US_PER_FRAME / \
756 DWC2_US_PER_SLICE)
757
758#define DWC2_LS_SCHEDULE_FRAMES 1
759#define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \
760 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
761
762/**
763 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
764 * and periodic schedules
765 *
766 * These are common for both host and peripheral modes:
767 *
768 * @dev: The struct device pointer
769 * @regs: Pointer to controller regs
770 * @hw_params: Parameters that were autodetected from the
771 * hardware registers
772 * @core_params: Parameters that define how the core should be configured
773 * @op_state: The operational State, during transitions (a_host=>
774 * a_peripheral and b_device=>b_host) this may not match
775 * the core, but allows the software to determine
776 * transitions
777 * @dr_mode: Requested mode of operation, one of following:
778 * - USB_DR_MODE_PERIPHERAL
779 * - USB_DR_MODE_HOST
780 * - USB_DR_MODE_OTG
781 * @hcd_enabled Host mode sub-driver initialization indicator.
782 * @gadget_enabled Peripheral mode sub-driver initialization indicator.
783 * @ll_hw_enabled Status of low-level hardware resources.
784 * @phy: The otg phy transceiver structure for phy control.
785 * @uphy: The otg phy transceiver structure for old USB phy control.
786 * @plat: The platform specific configuration data. This can be removed once
787 * all SoCs support usb transceiver.
788 * @supplies: Definition of USB power supplies
789 * @phyif: PHY interface width
790 * @lock: Spinlock that protects all the driver data structures
791 * @priv: Stores a pointer to the struct usb_hcd
792 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
793 * transfer are in process of being queued
794 * @srp_success: Stores status of SRP request in the case of a FS PHY
795 * with an I2C interface
796 * @wq_otg: Workqueue object used for handling of some interrupts
797 * @wf_otg: Work object for handling Connector ID Status Change
798 * interrupt
799 * @wkp_timer: Timer object for handling Wakeup Detected interrupt
800 * @lx_state: Lx state of connected device
801 * @gregs_backup: Backup of global registers during suspend
802 * @dregs_backup: Backup of device registers during suspend
803 * @hregs_backup: Backup of host registers during suspend
804 *
805 * These are for host mode:
806 *
807 * @flags: Flags for handling root port state changes
808 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
809 * Transfers associated with these QHs are not currently
810 * assigned to a host channel.
811 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
812 * Transfers associated with these QHs are currently
813 * assigned to a host channel.
814 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
815 * non-periodic schedule
816 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
817 * list of QHs for periodic transfers that are _not_
818 * scheduled for the next frame. Each QH in the list has an
819 * interval counter that determines when it needs to be
820 * scheduled for execution. This scheduling mechanism
821 * allows only a simple calculation for periodic bandwidth
822 * used (i.e. must assume that all periodic transfers may
823 * need to execute in the same frame). However, it greatly
824 * simplifies scheduling and should be sufficient for the
825 * vast majority of OTG hosts, which need to connect to a
826 * small number of peripherals at one time. Items move from
827 * this list to periodic_sched_ready when the QH interval
828 * counter is 0 at SOF.
829 * @periodic_sched_ready: List of periodic QHs that are ready for execution in
830 * the next frame, but have not yet been assigned to host
831 * channels. Items move from this list to
832 * periodic_sched_assigned as host channels become
833 * available during the current frame.
834 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
835 * frame that are assigned to host channels. Items move
836 * from this list to periodic_sched_queued as the
837 * transactions for the QH are queued to the DWC_otg
838 * controller.
839 * @periodic_sched_queued: List of periodic QHs that have been queued for
840 * execution. Items move from this list to either
841 * periodic_sched_inactive or periodic_sched_ready when the
842 * channel associated with the transfer is released. If the
843 * interval for the QH is 1, the item moves to
844 * periodic_sched_ready because it must be rescheduled for
845 * the next frame. Otherwise, the item moves to
846 * periodic_sched_inactive.
847 * @split_order: List keeping track of channels doing splits, in order.
848 * @periodic_usecs: Total bandwidth claimed so far for periodic transfers.
849 * This value is in microseconds per (micro)frame. The
850 * assumption is that all periodic transfers may occur in
851 * the same (micro)frame.
852 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
853 * host is in high speed mode; low speed schedules are
854 * stored elsewhere since we need one per TT.
855 * @frame_number: Frame number read from the core at SOF. The value ranges
856 * from 0 to HFNUM_MAX_FRNUM.
857 * @periodic_qh_count: Count of periodic QHs, if using several eps. Used for
858 * SOF enable/disable.
859 * @free_hc_list: Free host channels in the controller. This is a list of
860 * struct dwc2_host_chan items.
861 * @periodic_channels: Number of host channels assigned to periodic transfers.
862 * Currently assuming that there is a dedicated host
863 * channel for each periodic transaction and at least one
864 * host channel is available for non-periodic transactions.
865 * @non_periodic_channels: Number of host channels assigned to non-periodic
866 * transfers
867 * @available_host_channels Number of host channels available for the microframe
868 * scheduler to use
869 * @hc_ptr_array: Array of pointers to the host channel descriptors.
870 * Allows accessing a host channel descriptor given the
871 * host channel number. This is useful in interrupt
872 * handlers.
873 * @status_buf: Buffer used for data received during the status phase of
874 * a control transfer.
875 * @status_buf_dma: DMA address for status_buf
876 * @start_work: Delayed work for handling host A-cable connection
877 * @reset_work: Delayed work for handling a port reset
878 * @otg_port: OTG port number
879 * @frame_list: Frame list
880 * @frame_list_dma: Frame list DMA address
881 * @frame_list_sz: Frame list size
882 * @desc_gen_cache: Kmem cache for generic descriptors
883 * @desc_hsisoc_cache: Kmem cache for hs isochronous descriptors
884 *
885 * These are for peripheral mode:
886 *
887 * @driver: USB gadget driver
888 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
889 * @num_of_eps: Number of available EPs (excluding EP0)
890 * @debug_root: Root directrory for debugfs.
891 * @debug_file: Main status file for debugfs.
892 * @debug_testmode: Testmode status file for debugfs.
893 * @debug_fifo: FIFO status file for debugfs.
894 * @ep0_reply: Request used for ep0 reply.
895 * @ep0_buff: Buffer for EP0 reply data, if needed.
896 * @ctrl_buff: Buffer for EP0 control requests.
897 * @ctrl_req: Request for EP0 control packets.
898 * @ep0_state: EP0 control transfers state
899 * @test_mode: USB test mode requested by the host
900 * @setup_desc_dma: EP0 setup stage desc chain DMA address
901 * @setup_desc: EP0 setup stage desc chain pointer
902 * @ctrl_in_desc_dma: EP0 IN data phase desc chain DMA address
903 * @ctrl_in_desc: EP0 IN data phase desc chain pointer
904 * @ctrl_out_desc_dma: EP0 OUT data phase desc chain DMA address
905 * @ctrl_out_desc: EP0 OUT data phase desc chain pointer
906 * @eps: The endpoints being supplied to the gadget framework
907 */
908struct dwc2_hsotg {
909 struct device *dev;
910 void __iomem *regs;
911 /** Params detected from hardware */
912 struct dwc2_hw_params hw_params;
913 /** Params to actually use */
914 struct dwc2_core_params params;
915 enum usb_otg_state op_state;
916 enum usb_dr_mode dr_mode;
917 unsigned int hcd_enabled:1;
918 unsigned int gadget_enabled:1;
919 unsigned int ll_hw_enabled:1;
920
921 struct phy *phy;
922 struct usb_phy *uphy;
923 struct dwc2_hsotg_plat *plat;
924 struct regulator_bulk_data supplies[ARRAY_SIZE(dwc2_hsotg_supply_names)];
925 u32 phyif;
926
927 spinlock_t lock;
928 void *priv;
929 int irq;
930 struct clk *clk;
931 struct reset_control *reset;
932
933 unsigned int queuing_high_bandwidth:1;
934 unsigned int srp_success:1;
935
936 struct workqueue_struct *wq_otg;
937 struct work_struct wf_otg;
938 struct timer_list wkp_timer;
939 enum dwc2_lx_state lx_state;
940 struct dwc2_gregs_backup gr_backup;
941 struct dwc2_dregs_backup dr_backup;
942 struct dwc2_hregs_backup hr_backup;
943
944 struct dentry *debug_root;
945 struct debugfs_regset32 *regset;
946
947 /* DWC OTG HW Release versions */
948#define DWC2_CORE_REV_2_71a 0x4f54271a
949#define DWC2_CORE_REV_2_90a 0x4f54290a
950#define DWC2_CORE_REV_2_92a 0x4f54292a
951#define DWC2_CORE_REV_2_94a 0x4f54294a
952#define DWC2_CORE_REV_3_00a 0x4f54300a
953#define DWC2_CORE_REV_3_10a 0x4f54310a
954#define DWC2_FS_IOT_REV_1_00a 0x5531100a
955#define DWC2_HS_IOT_REV_1_00a 0x5532100a
956
957#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
958 union dwc2_hcd_internal_flags {
959 u32 d32;
960 struct {
961 unsigned port_connect_status_change:1;
962 unsigned port_connect_status:1;
963 unsigned port_reset_change:1;
964 unsigned port_enable_change:1;
965 unsigned port_suspend_change:1;
966 unsigned port_over_current_change:1;
967 unsigned port_l1_change:1;
968 unsigned reserved:25;
969 } b;
970 } flags;
971
972 struct list_head non_periodic_sched_inactive;
973 struct list_head non_periodic_sched_active;
974 struct list_head *non_periodic_qh_ptr;
975 struct list_head periodic_sched_inactive;
976 struct list_head periodic_sched_ready;
977 struct list_head periodic_sched_assigned;
978 struct list_head periodic_sched_queued;
979 struct list_head split_order;
980 u16 periodic_usecs;
981 unsigned long hs_periodic_bitmap[
982 DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
983 u16 frame_number;
984 u16 periodic_qh_count;
985 bool bus_suspended;
986 bool new_connection;
987
988 u16 last_frame_num;
989
990#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
991#define FRAME_NUM_ARRAY_SIZE 1000
992 u16 *frame_num_array;
993 u16 *last_frame_num_array;
994 int frame_num_idx;
995 int dumped_frame_num_array;
996#endif
997
998 struct list_head free_hc_list;
999 int periodic_channels;
1000 int non_periodic_channels;
1001 int available_host_channels;
1002 struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1003 u8 *status_buf;
1004 dma_addr_t status_buf_dma;
1005#define DWC2_HCD_STATUS_BUF_SIZE 64
1006
1007 struct delayed_work start_work;
1008 struct delayed_work reset_work;
1009 u8 otg_port;
1010 u32 *frame_list;
1011 dma_addr_t frame_list_dma;
1012 u32 frame_list_sz;
1013 struct kmem_cache *desc_gen_cache;
1014 struct kmem_cache *desc_hsisoc_cache;
1015
1016#ifdef DEBUG
1017 u32 frrem_samples;
1018 u64 frrem_accum;
1019
1020 u32 hfnum_7_samples_a;
1021 u64 hfnum_7_frrem_accum_a;
1022 u32 hfnum_0_samples_a;
1023 u64 hfnum_0_frrem_accum_a;
1024 u32 hfnum_other_samples_a;
1025 u64 hfnum_other_frrem_accum_a;
1026
1027 u32 hfnum_7_samples_b;
1028 u64 hfnum_7_frrem_accum_b;
1029 u32 hfnum_0_samples_b;
1030 u64 hfnum_0_frrem_accum_b;
1031 u32 hfnum_other_samples_b;
1032 u64 hfnum_other_frrem_accum_b;
1033#endif
1034#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1035
1036#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1037 /* Gadget structures */
1038 struct usb_gadget_driver *driver;
1039 int fifo_mem;
1040 unsigned int dedicated_fifos:1;
1041 unsigned char num_of_eps;
1042 u32 fifo_map;
1043
1044 struct usb_request *ep0_reply;
1045 struct usb_request *ctrl_req;
1046 void *ep0_buff;
1047 void *ctrl_buff;
1048 enum dwc2_ep0_state ep0_state;
1049 u8 test_mode;
1050
1051 dma_addr_t setup_desc_dma[2];
1052 struct dwc2_dma_desc *setup_desc[2];
1053 dma_addr_t ctrl_in_desc_dma;
1054 struct dwc2_dma_desc *ctrl_in_desc;
1055 dma_addr_t ctrl_out_desc_dma;
1056 struct dwc2_dma_desc *ctrl_out_desc;
1057
1058 struct usb_gadget gadget;
1059 unsigned int enabled:1;
1060 unsigned int connected:1;
1061 struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1062 struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1063#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1064};
1065
1066/* Reasons for halting a host channel */
1067enum dwc2_halt_status {
1068 DWC2_HC_XFER_NO_HALT_STATUS,
1069 DWC2_HC_XFER_COMPLETE,
1070 DWC2_HC_XFER_URB_COMPLETE,
1071 DWC2_HC_XFER_ACK,
1072 DWC2_HC_XFER_NAK,
1073 DWC2_HC_XFER_NYET,
1074 DWC2_HC_XFER_STALL,
1075 DWC2_HC_XFER_XACT_ERR,
1076 DWC2_HC_XFER_FRAME_OVERRUN,
1077 DWC2_HC_XFER_BABBLE_ERR,
1078 DWC2_HC_XFER_DATA_TOGGLE_ERR,
1079 DWC2_HC_XFER_AHB_ERR,
1080 DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1081 DWC2_HC_XFER_URB_DEQUEUE,
1082};
1083
1084/* Core version information */
1085static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1086{
1087 return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1088}
1089
1090static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1091{
1092 return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1093}
1094
1095static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1096{
1097 return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1098}
1099
1100/*
1101 * The following functions support initialization of the core driver component
1102 * and the DWC_otg controller
1103 */
1104extern int dwc2_core_reset(struct dwc2_hsotg *hsotg);
1105extern int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
1106extern int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg);
1107extern int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore);
1108
1109bool dwc2_force_mode_if_needed(struct dwc2_hsotg *hsotg, bool host);
1110void dwc2_clear_force_mode(struct dwc2_hsotg *hsotg);
1111void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1112
1113extern bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1114
1115/*
1116 * Common core Functions.
1117 * The following functions support managing the DWC_otg controller in either
1118 * device or host mode.
1119 */
1120extern void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1121extern void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1122extern void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1123
1124extern void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1125extern void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1126
1127/* This function should be called on every hardware interrupt. */
1128extern irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1129
1130/* The device ID match table */
1131extern const struct of_device_id dwc2_of_match_table[];
1132
1133extern int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1134extern int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1135
1136/* Parameters */
1137int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1138int dwc2_init_params(struct dwc2_hsotg *hsotg);
1139
1140/*
1141 * The following functions check the controller's OTG operation mode
1142 * capability (GHWCFG2.OTG_MODE).
1143 *
1144 * These functions can be used before the internal hsotg->hw_params
1145 * are read in and cached so they always read directly from the
1146 * GHWCFG2 register.
1147 */
1148unsigned dwc2_op_mode(struct dwc2_hsotg *hsotg);
1149bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1150bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1151bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1152
1153/*
1154 * Returns the mode of operation, host or device
1155 */
1156static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1157{
1158 return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1159}
1160static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1161{
1162 return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1163}
1164
1165/*
1166 * Dump core registers and SPRAM
1167 */
1168extern void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1169extern void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1170extern void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1171
1172/*
1173 * Return OTG version - either 1.3 or 2.0
1174 */
1175extern u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg);
1176
1177/* Gadget defines */
1178#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1179extern int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1180extern int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1181extern int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1182extern int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq);
1183extern void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1184 bool reset);
1185extern void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1186extern void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1187extern int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1188#define dwc2_is_device_connected(hsotg) (hsotg->connected)
1189int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1190int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
1191#else
1192static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1193{ return 0; }
1194static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1195{ return 0; }
1196static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1197{ return 0; }
1198static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
1199{ return 0; }
1200static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1201 bool reset) {}
1202static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1203static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1204static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1205 int testmode)
1206{ return 0; }
1207#define dwc2_is_device_connected(hsotg) (0)
1208static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1209{ return 0; }
1210static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
1211{ return 0; }
1212#endif
1213
1214#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1215extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1216extern int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1217extern void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1218extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1219extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1220int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1221int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1222#else
1223static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1224{ return 0; }
1225static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1226 int us)
1227{ return 0; }
1228static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1229static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1230static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1231static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1232static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
1233{ return 0; }
1234static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1235{ return 0; }
1236static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1237{ return 0; }
1238
1239#endif
1240
1241#endif /* __DWC2_CORE_H__ */