Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * RapidIO interconnect services
   3 * (RapidIO Interconnect Specification, http://www.rapidio.org)
   4 *
   5 * Copyright 2005 MontaVista Software, Inc.
   6 * Matt Porter <mporter@kernel.crashing.org>
   7 *
   8 * Copyright 2009 - 2013 Integrated Device Technology, Inc.
   9 * Alex Bounine <alexandre.bounine@idt.com>
  10 *
  11 * This program is free software; you can redistribute  it and/or modify it
  12 * under  the terms of  the GNU General  Public License as published by the
  13 * Free Software Foundation;  either version 2 of the  License, or (at your
  14 * option) any later version.
  15 */
  16
  17#include <linux/types.h>
  18#include <linux/kernel.h>
  19
  20#include <linux/delay.h>
  21#include <linux/init.h>
  22#include <linux/rio.h>
  23#include <linux/rio_drv.h>
  24#include <linux/rio_ids.h>
  25#include <linux/rio_regs.h>
  26#include <linux/module.h>
  27#include <linux/spinlock.h>
  28#include <linux/slab.h>
  29#include <linux/interrupt.h>
  30
  31#include "rio.h"
  32
  33/*
  34 * struct rio_pwrite - RIO portwrite event
  35 * @node:    Node in list of doorbell events
  36 * @pwcback: Doorbell event callback
  37 * @context: Handler specific context to pass on event
  38 */
  39struct rio_pwrite {
  40	struct list_head node;
  41
  42	int (*pwcback)(struct rio_mport *mport, void *context,
  43		       union rio_pw_msg *msg, int step);
  44	void *context;
  45};
  46
  47MODULE_DESCRIPTION("RapidIO Subsystem Core");
  48MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
  49MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
  50MODULE_LICENSE("GPL");
  51
  52static int hdid[RIO_MAX_MPORTS];
  53static int ids_num;
  54module_param_array(hdid, int, &ids_num, 0);
  55MODULE_PARM_DESC(hdid,
  56	"Destination ID assignment to local RapidIO controllers");
  57
  58static LIST_HEAD(rio_devices);
  59static LIST_HEAD(rio_nets);
  60static DEFINE_SPINLOCK(rio_global_list_lock);
  61
  62static LIST_HEAD(rio_mports);
  63static LIST_HEAD(rio_scans);
  64static DEFINE_MUTEX(rio_mport_list_lock);
  65static unsigned char next_portid;
  66static DEFINE_SPINLOCK(rio_mmap_lock);
  67
  68/**
  69 * rio_local_get_device_id - Get the base/extended device id for a port
  70 * @port: RIO master port from which to get the deviceid
  71 *
  72 * Reads the base/extended device id from the local device
  73 * implementing the master port. Returns the 8/16-bit device
  74 * id.
  75 */
  76u16 rio_local_get_device_id(struct rio_mport *port)
  77{
  78	u32 result;
  79
  80	rio_local_read_config_32(port, RIO_DID_CSR, &result);
  81
  82	return (RIO_GET_DID(port->sys_size, result));
  83}
  84
  85/**
  86 * rio_query_mport - Query mport device attributes
  87 * @port: mport device to query
  88 * @mport_attr: mport attributes data structure
  89 *
  90 * Returns attributes of specified mport through the
  91 * pointer to attributes data structure.
  92 */
  93int rio_query_mport(struct rio_mport *port,
  94		    struct rio_mport_attr *mport_attr)
  95{
  96	if (!port->ops->query_mport)
  97		return -ENODATA;
  98	return port->ops->query_mport(port, mport_attr);
  99}
 100EXPORT_SYMBOL(rio_query_mport);
 101
 102/**
 103 * rio_alloc_net- Allocate and initialize a new RIO network data structure
 104 * @mport: Master port associated with the RIO network
 105 *
 106 * Allocates a RIO network structure, initializes per-network
 107 * list heads, and adds the associated master port to the
 108 * network list of associated master ports. Returns a
 109 * RIO network pointer on success or %NULL on failure.
 110 */
 111struct rio_net *rio_alloc_net(struct rio_mport *mport)
 112{
 113	struct rio_net *net;
 114
 115	net = kzalloc(sizeof(struct rio_net), GFP_KERNEL);
 116	if (net) {
 117		INIT_LIST_HEAD(&net->node);
 118		INIT_LIST_HEAD(&net->devices);
 119		INIT_LIST_HEAD(&net->switches);
 120		INIT_LIST_HEAD(&net->mports);
 121		mport->net = net;
 122	}
 123	return net;
 124}
 125EXPORT_SYMBOL_GPL(rio_alloc_net);
 126
 127int rio_add_net(struct rio_net *net)
 128{
 129	int err;
 130
 131	err = device_register(&net->dev);
 132	if (err)
 133		return err;
 134	spin_lock(&rio_global_list_lock);
 135	list_add_tail(&net->node, &rio_nets);
 136	spin_unlock(&rio_global_list_lock);
 137
 138	return 0;
 139}
 140EXPORT_SYMBOL_GPL(rio_add_net);
 141
 142void rio_free_net(struct rio_net *net)
 143{
 144	spin_lock(&rio_global_list_lock);
 145	if (!list_empty(&net->node))
 146		list_del(&net->node);
 147	spin_unlock(&rio_global_list_lock);
 148	if (net->release)
 149		net->release(net);
 150	device_unregister(&net->dev);
 151}
 152EXPORT_SYMBOL_GPL(rio_free_net);
 153
 154/**
 155 * rio_local_set_device_id - Set the base/extended device id for a port
 156 * @port: RIO master port
 157 * @did: Device ID value to be written
 158 *
 159 * Writes the base/extended device id from a device.
 160 */
 161void rio_local_set_device_id(struct rio_mport *port, u16 did)
 162{
 163	rio_local_write_config_32(port, RIO_DID_CSR,
 164				  RIO_SET_DID(port->sys_size, did));
 165}
 166EXPORT_SYMBOL_GPL(rio_local_set_device_id);
 167
 168/**
 169 * rio_add_device- Adds a RIO device to the device model
 170 * @rdev: RIO device
 171 *
 172 * Adds the RIO device to the global device list and adds the RIO
 173 * device to the RIO device list.  Creates the generic sysfs nodes
 174 * for an RIO device.
 175 */
 176int rio_add_device(struct rio_dev *rdev)
 177{
 178	int err;
 179
 180	atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
 181	err = device_register(&rdev->dev);
 182	if (err)
 183		return err;
 184
 185	spin_lock(&rio_global_list_lock);
 186	list_add_tail(&rdev->global_list, &rio_devices);
 187	if (rdev->net) {
 188		list_add_tail(&rdev->net_list, &rdev->net->devices);
 189		if (rdev->pef & RIO_PEF_SWITCH)
 190			list_add_tail(&rdev->rswitch->node,
 191				      &rdev->net->switches);
 192	}
 193	spin_unlock(&rio_global_list_lock);
 194
 195	rio_create_sysfs_dev_files(rdev);
 196
 197	return 0;
 198}
 199EXPORT_SYMBOL_GPL(rio_add_device);
 200
 201/*
 202 * rio_del_device - removes a RIO device from the device model
 203 * @rdev: RIO device
 204 * @state: device state to set during removal process
 205 *
 206 * Removes the RIO device to the kernel device list and subsystem's device list.
 207 * Clears sysfs entries for the removed device.
 208 */
 209void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
 210{
 211	pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
 212	atomic_set(&rdev->state, state);
 213	spin_lock(&rio_global_list_lock);
 214	list_del(&rdev->global_list);
 215	if (rdev->net) {
 216		list_del(&rdev->net_list);
 217		if (rdev->pef & RIO_PEF_SWITCH) {
 218			list_del(&rdev->rswitch->node);
 219			kfree(rdev->rswitch->route_table);
 220		}
 221	}
 222	spin_unlock(&rio_global_list_lock);
 223	rio_remove_sysfs_dev_files(rdev);
 224	device_unregister(&rdev->dev);
 225}
 226EXPORT_SYMBOL_GPL(rio_del_device);
 227
 228/**
 229 * rio_request_inb_mbox - request inbound mailbox service
 230 * @mport: RIO master port from which to allocate the mailbox resource
 231 * @dev_id: Device specific pointer to pass on event
 232 * @mbox: Mailbox number to claim
 233 * @entries: Number of entries in inbound mailbox queue
 234 * @minb: Callback to execute when inbound message is received
 235 *
 236 * Requests ownership of an inbound mailbox resource and binds
 237 * a callback function to the resource. Returns %0 on success.
 238 */
 239int rio_request_inb_mbox(struct rio_mport *mport,
 240			 void *dev_id,
 241			 int mbox,
 242			 int entries,
 243			 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
 244				       int slot))
 245{
 246	int rc = -ENOSYS;
 247	struct resource *res;
 248
 249	if (mport->ops->open_inb_mbox == NULL)
 250		goto out;
 251
 252	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 253
 254	if (res) {
 255		rio_init_mbox_res(res, mbox, mbox);
 256
 257		/* Make sure this mailbox isn't in use */
 258		if ((rc =
 259		     request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
 260				      res)) < 0) {
 261			kfree(res);
 262			goto out;
 263		}
 264
 265		mport->inb_msg[mbox].res = res;
 266
 267		/* Hook the inbound message callback */
 268		mport->inb_msg[mbox].mcback = minb;
 269
 270		rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
 
 
 
 
 
 
 271	} else
 272		rc = -ENOMEM;
 273
 274      out:
 275	return rc;
 276}
 277
 278/**
 279 * rio_release_inb_mbox - release inbound mailbox message service
 280 * @mport: RIO master port from which to release the mailbox resource
 281 * @mbox: Mailbox number to release
 282 *
 283 * Releases ownership of an inbound mailbox resource. Returns 0
 284 * if the request has been satisfied.
 285 */
 286int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
 287{
 288	if (mport->ops->close_inb_mbox) {
 289		mport->ops->close_inb_mbox(mport, mbox);
 290
 291		/* Release the mailbox resource */
 292		return release_resource(mport->inb_msg[mbox].res);
 293	} else
 294		return -ENOSYS;
 
 
 
 
 
 
 
 
 
 
 295}
 296
 297/**
 298 * rio_request_outb_mbox - request outbound mailbox service
 299 * @mport: RIO master port from which to allocate the mailbox resource
 300 * @dev_id: Device specific pointer to pass on event
 301 * @mbox: Mailbox number to claim
 302 * @entries: Number of entries in outbound mailbox queue
 303 * @moutb: Callback to execute when outbound message is sent
 304 *
 305 * Requests ownership of an outbound mailbox resource and binds
 306 * a callback function to the resource. Returns 0 on success.
 307 */
 308int rio_request_outb_mbox(struct rio_mport *mport,
 309			  void *dev_id,
 310			  int mbox,
 311			  int entries,
 312			  void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
 313{
 314	int rc = -ENOSYS;
 315	struct resource *res;
 316
 317	if (mport->ops->open_outb_mbox == NULL)
 318		goto out;
 319
 320	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 321
 322	if (res) {
 323		rio_init_mbox_res(res, mbox, mbox);
 324
 325		/* Make sure this outbound mailbox isn't in use */
 326		if ((rc =
 327		     request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
 328				      res)) < 0) {
 329			kfree(res);
 330			goto out;
 331		}
 332
 333		mport->outb_msg[mbox].res = res;
 334
 335		/* Hook the inbound message callback */
 336		mport->outb_msg[mbox].mcback = moutb;
 337
 338		rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
 
 
 
 
 
 
 339	} else
 340		rc = -ENOMEM;
 341
 342      out:
 343	return rc;
 344}
 345
 346/**
 347 * rio_release_outb_mbox - release outbound mailbox message service
 348 * @mport: RIO master port from which to release the mailbox resource
 349 * @mbox: Mailbox number to release
 350 *
 351 * Releases ownership of an inbound mailbox resource. Returns 0
 352 * if the request has been satisfied.
 353 */
 354int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
 355{
 356	if (mport->ops->close_outb_mbox) {
 357		mport->ops->close_outb_mbox(mport, mbox);
 358
 359		/* Release the mailbox resource */
 360		return release_resource(mport->outb_msg[mbox].res);
 361	} else
 362		return -ENOSYS;
 
 
 
 
 
 
 
 
 
 
 363}
 364
 365/**
 366 * rio_setup_inb_dbell - bind inbound doorbell callback
 367 * @mport: RIO master port to bind the doorbell callback
 368 * @dev_id: Device specific pointer to pass on event
 369 * @res: Doorbell message resource
 370 * @dinb: Callback to execute when doorbell is received
 371 *
 372 * Adds a doorbell resource/callback pair into a port's
 373 * doorbell event list. Returns 0 if the request has been
 374 * satisfied.
 375 */
 376static int
 377rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
 378		    void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
 379				  u16 info))
 380{
 381	int rc = 0;
 382	struct rio_dbell *dbell;
 383
 384	if (!(dbell = kmalloc(sizeof(struct rio_dbell), GFP_KERNEL))) {
 385		rc = -ENOMEM;
 386		goto out;
 387	}
 388
 389	dbell->res = res;
 390	dbell->dinb = dinb;
 391	dbell->dev_id = dev_id;
 392
 393	mutex_lock(&mport->lock);
 394	list_add_tail(&dbell->node, &mport->dbells);
 395	mutex_unlock(&mport->lock);
 396
 397      out:
 398	return rc;
 399}
 400
 401/**
 402 * rio_request_inb_dbell - request inbound doorbell message service
 403 * @mport: RIO master port from which to allocate the doorbell resource
 404 * @dev_id: Device specific pointer to pass on event
 405 * @start: Doorbell info range start
 406 * @end: Doorbell info range end
 407 * @dinb: Callback to execute when doorbell is received
 408 *
 409 * Requests ownership of an inbound doorbell resource and binds
 410 * a callback function to the resource. Returns 0 if the request
 411 * has been satisfied.
 412 */
 413int rio_request_inb_dbell(struct rio_mport *mport,
 414			  void *dev_id,
 415			  u16 start,
 416			  u16 end,
 417			  void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
 418					u16 dst, u16 info))
 419{
 420	int rc = 0;
 421
 422	struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 423
 424	if (res) {
 425		rio_init_dbell_res(res, start, end);
 426
 427		/* Make sure these doorbells aren't in use */
 428		if ((rc =
 429		     request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
 430				      res)) < 0) {
 431			kfree(res);
 432			goto out;
 433		}
 434
 435		/* Hook the doorbell callback */
 436		rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
 437	} else
 438		rc = -ENOMEM;
 439
 440      out:
 441	return rc;
 442}
 443
 444/**
 445 * rio_release_inb_dbell - release inbound doorbell message service
 446 * @mport: RIO master port from which to release the doorbell resource
 447 * @start: Doorbell info range start
 448 * @end: Doorbell info range end
 449 *
 450 * Releases ownership of an inbound doorbell resource and removes
 451 * callback from the doorbell event list. Returns 0 if the request
 452 * has been satisfied.
 453 */
 454int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
 455{
 456	int rc = 0, found = 0;
 457	struct rio_dbell *dbell;
 458
 459	mutex_lock(&mport->lock);
 460	list_for_each_entry(dbell, &mport->dbells, node) {
 461		if ((dbell->res->start == start) && (dbell->res->end == end)) {
 462			list_del(&dbell->node);
 463			found = 1;
 464			break;
 465		}
 466	}
 467	mutex_unlock(&mport->lock);
 468
 469	/* If we can't find an exact match, fail */
 470	if (!found) {
 471		rc = -EINVAL;
 472		goto out;
 473	}
 474
 475	/* Release the doorbell resource */
 476	rc = release_resource(dbell->res);
 477
 478	/* Free the doorbell event */
 479	kfree(dbell);
 480
 481      out:
 482	return rc;
 483}
 484
 485/**
 486 * rio_request_outb_dbell - request outbound doorbell message range
 487 * @rdev: RIO device from which to allocate the doorbell resource
 488 * @start: Doorbell message range start
 489 * @end: Doorbell message range end
 490 *
 491 * Requests ownership of a doorbell message range. Returns a resource
 492 * if the request has been satisfied or %NULL on failure.
 493 */
 494struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
 495					u16 end)
 496{
 497	struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 498
 499	if (res) {
 500		rio_init_dbell_res(res, start, end);
 501
 502		/* Make sure these doorbells aren't in use */
 503		if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
 504		    < 0) {
 505			kfree(res);
 506			res = NULL;
 507		}
 508	}
 509
 510	return res;
 511}
 512
 513/**
 514 * rio_release_outb_dbell - release outbound doorbell message range
 515 * @rdev: RIO device from which to release the doorbell resource
 516 * @res: Doorbell resource to be freed
 517 *
 518 * Releases ownership of a doorbell message range. Returns 0 if the
 519 * request has been satisfied.
 520 */
 521int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
 522{
 523	int rc = release_resource(res);
 524
 525	kfree(res);
 526
 527	return rc;
 528}
 529
 530/**
 531 * rio_add_mport_pw_handler - add port-write message handler into the list
 532 *                            of mport specific pw handlers
 533 * @mport:   RIO master port to bind the portwrite callback
 534 * @context: Handler specific context to pass on event
 535 * @pwcback: Callback to execute when portwrite is received
 536 *
 537 * Returns 0 if the request has been satisfied.
 538 */
 539int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
 540			     int (*pwcback)(struct rio_mport *mport,
 541			     void *context, union rio_pw_msg *msg, int step))
 542{
 543	int rc = 0;
 544	struct rio_pwrite *pwrite;
 545
 546	pwrite = kzalloc(sizeof(struct rio_pwrite), GFP_KERNEL);
 547	if (!pwrite) {
 548		rc = -ENOMEM;
 549		goto out;
 550	}
 551
 552	pwrite->pwcback = pwcback;
 553	pwrite->context = context;
 554	mutex_lock(&mport->lock);
 555	list_add_tail(&pwrite->node, &mport->pwrites);
 556	mutex_unlock(&mport->lock);
 557out:
 558	return rc;
 559}
 560EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
 561
 562/**
 563 * rio_del_mport_pw_handler - remove port-write message handler from the list
 564 *                            of mport specific pw handlers
 565 * @mport:   RIO master port to bind the portwrite callback
 566 * @context: Registered handler specific context to pass on event
 567 * @pwcback: Registered callback function
 568 *
 569 * Returns 0 if the request has been satisfied.
 570 */
 571int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
 572			     int (*pwcback)(struct rio_mport *mport,
 573			     void *context, union rio_pw_msg *msg, int step))
 574{
 575	int rc = -EINVAL;
 576	struct rio_pwrite *pwrite;
 577
 578	mutex_lock(&mport->lock);
 579	list_for_each_entry(pwrite, &mport->pwrites, node) {
 580		if (pwrite->pwcback == pwcback && pwrite->context == context) {
 581			list_del(&pwrite->node);
 582			kfree(pwrite);
 583			rc = 0;
 584			break;
 585		}
 586	}
 587	mutex_unlock(&mport->lock);
 588
 589	return rc;
 590}
 591EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
 592
 593/**
 594 * rio_request_inb_pwrite - request inbound port-write message service for
 595 *                          specific RapidIO device
 596 * @rdev: RIO device to which register inbound port-write callback routine
 597 * @pwcback: Callback routine to execute when port-write is received
 598 *
 599 * Binds a port-write callback function to the RapidIO device.
 600 * Returns 0 if the request has been satisfied.
 601 */
 602int rio_request_inb_pwrite(struct rio_dev *rdev,
 603	int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
 604{
 605	int rc = 0;
 606
 607	spin_lock(&rio_global_list_lock);
 608	if (rdev->pwcback != NULL)
 609		rc = -ENOMEM;
 610	else
 611		rdev->pwcback = pwcback;
 612
 613	spin_unlock(&rio_global_list_lock);
 614	return rc;
 615}
 616EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
 617
 618/**
 619 * rio_release_inb_pwrite - release inbound port-write message service
 620 *                          associated with specific RapidIO device
 621 * @rdev: RIO device which registered for inbound port-write callback
 622 *
 623 * Removes callback from the rio_dev structure. Returns 0 if the request
 624 * has been satisfied.
 625 */
 626int rio_release_inb_pwrite(struct rio_dev *rdev)
 627{
 628	int rc = -ENOMEM;
 629
 630	spin_lock(&rio_global_list_lock);
 631	if (rdev->pwcback) {
 632		rdev->pwcback = NULL;
 633		rc = 0;
 634	}
 635
 636	spin_unlock(&rio_global_list_lock);
 637	return rc;
 638}
 639EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
 640
 641/**
 642 * rio_pw_enable - Enables/disables port-write handling by a master port
 643 * @mport: Master port associated with port-write handling
 644 * @enable:  1=enable,  0=disable
 645 */
 646void rio_pw_enable(struct rio_mport *mport, int enable)
 647{
 648	if (mport->ops->pwenable) {
 649		mutex_lock(&mport->lock);
 650
 651		if ((enable && ++mport->pwe_refcnt == 1) ||
 652		    (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
 653			mport->ops->pwenable(mport, enable);
 654		mutex_unlock(&mport->lock);
 655	}
 656}
 657EXPORT_SYMBOL_GPL(rio_pw_enable);
 658
 659/**
 660 * rio_map_inb_region -- Map inbound memory region.
 661 * @mport: Master port.
 662 * @local: physical address of memory region to be mapped
 663 * @rbase: RIO base address assigned to this window
 664 * @size: Size of the memory region
 665 * @rflags: Flags for mapping.
 666 *
 667 * Return: 0 -- Success.
 668 *
 669 * This function will create the mapping from RIO space to local memory.
 670 */
 671int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
 672			u64 rbase, u32 size, u32 rflags)
 673{
 674	int rc = 0;
 675	unsigned long flags;
 676
 677	if (!mport->ops->map_inb)
 678		return -1;
 679	spin_lock_irqsave(&rio_mmap_lock, flags);
 680	rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
 681	spin_unlock_irqrestore(&rio_mmap_lock, flags);
 682	return rc;
 683}
 684EXPORT_SYMBOL_GPL(rio_map_inb_region);
 685
 686/**
 687 * rio_unmap_inb_region -- Unmap the inbound memory region
 688 * @mport: Master port
 689 * @lstart: physical address of memory region to be unmapped
 690 */
 691void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
 692{
 693	unsigned long flags;
 694	if (!mport->ops->unmap_inb)
 695		return;
 696	spin_lock_irqsave(&rio_mmap_lock, flags);
 697	mport->ops->unmap_inb(mport, lstart);
 698	spin_unlock_irqrestore(&rio_mmap_lock, flags);
 699}
 700EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
 701
 702/**
 703 * rio_map_outb_region -- Map outbound memory region.
 704 * @mport: Master port.
 705 * @destid: destination id window points to
 706 * @rbase: RIO base address window translates to
 707 * @size: Size of the memory region
 708 * @rflags: Flags for mapping.
 709 * @local: physical address of memory region mapped
 710 *
 711 * Return: 0 -- Success.
 712 *
 713 * This function will create the mapping from RIO space to local memory.
 714 */
 715int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
 716			u32 size, u32 rflags, dma_addr_t *local)
 717{
 718	int rc = 0;
 719	unsigned long flags;
 720
 721	if (!mport->ops->map_outb)
 722		return -ENODEV;
 723
 724	spin_lock_irqsave(&rio_mmap_lock, flags);
 725	rc = mport->ops->map_outb(mport, destid, rbase, size,
 726		rflags, local);
 727	spin_unlock_irqrestore(&rio_mmap_lock, flags);
 728
 729	return rc;
 730}
 731EXPORT_SYMBOL_GPL(rio_map_outb_region);
 732
 733/**
 734 * rio_unmap_inb_region -- Unmap the inbound memory region
 735 * @mport: Master port
 736 * @destid: destination id mapping points to
 737 * @rstart: RIO base address window translates to
 738 */
 739void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
 740{
 741	unsigned long flags;
 742
 743	if (!mport->ops->unmap_outb)
 744		return;
 745
 746	spin_lock_irqsave(&rio_mmap_lock, flags);
 747	mport->ops->unmap_outb(mport, destid, rstart);
 748	spin_unlock_irqrestore(&rio_mmap_lock, flags);
 749}
 750EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
 751
 752/**
 753 * rio_mport_get_physefb - Helper function that returns register offset
 754 *                      for Physical Layer Extended Features Block.
 755 * @port: Master port to issue transaction
 756 * @local: Indicate a local master port or remote device access
 757 * @destid: Destination ID of the device
 758 * @hopcount: Number of switch hops to the device
 
 759 */
 760u32
 761rio_mport_get_physefb(struct rio_mport *port, int local,
 762		      u16 destid, u8 hopcount)
 763{
 764	u32 ext_ftr_ptr;
 765	u32 ftr_header;
 766
 767	ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
 768
 769	while (ext_ftr_ptr)  {
 770		if (local)
 771			rio_local_read_config_32(port, ext_ftr_ptr,
 772						 &ftr_header);
 773		else
 774			rio_mport_read_config_32(port, destid, hopcount,
 775						 ext_ftr_ptr, &ftr_header);
 776
 777		ftr_header = RIO_GET_BLOCK_ID(ftr_header);
 778		switch (ftr_header) {
 779
 780		case RIO_EFB_SER_EP_ID_V13P:
 781		case RIO_EFB_SER_EP_REC_ID_V13P:
 782		case RIO_EFB_SER_EP_FREE_ID_V13P:
 783		case RIO_EFB_SER_EP_ID:
 784		case RIO_EFB_SER_EP_REC_ID:
 785		case RIO_EFB_SER_EP_FREE_ID:
 786		case RIO_EFB_SER_EP_FREC_ID:
 
 
 
 
 
 787
 
 
 
 
 
 788			return ext_ftr_ptr;
 789
 790		default:
 791			break;
 792		}
 793
 794		ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
 795						hopcount, ext_ftr_ptr);
 796	}
 797
 798	return ext_ftr_ptr;
 799}
 800EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
 801
 802/**
 803 * rio_get_comptag - Begin or continue searching for a RIO device by component tag
 804 * @comp_tag: RIO component tag to match
 805 * @from: Previous RIO device found in search, or %NULL for new search
 806 *
 807 * Iterates through the list of known RIO devices. If a RIO device is
 808 * found with a matching @comp_tag, a pointer to its device
 809 * structure is returned. Otherwise, %NULL is returned. A new search
 810 * is initiated by passing %NULL to the @from argument. Otherwise, if
 811 * @from is not %NULL, searches continue from next device on the global
 812 * list.
 813 */
 814struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
 815{
 816	struct list_head *n;
 817	struct rio_dev *rdev;
 818
 819	spin_lock(&rio_global_list_lock);
 820	n = from ? from->global_list.next : rio_devices.next;
 821
 822	while (n && (n != &rio_devices)) {
 823		rdev = rio_dev_g(n);
 824		if (rdev->comp_tag == comp_tag)
 825			goto exit;
 826		n = n->next;
 827	}
 828	rdev = NULL;
 829exit:
 830	spin_unlock(&rio_global_list_lock);
 831	return rdev;
 832}
 833EXPORT_SYMBOL_GPL(rio_get_comptag);
 834
 835/**
 836 * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
 837 * @rdev: Pointer to RIO device control structure
 838 * @pnum: Switch port number to set LOCKOUT bit
 839 * @lock: Operation : set (=1) or clear (=0)
 840 */
 841int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
 842{
 843	u32 regval;
 844
 845	rio_read_config_32(rdev,
 846				 rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum),
 847				 &regval);
 848	if (lock)
 849		regval |= RIO_PORT_N_CTL_LOCKOUT;
 850	else
 851		regval &= ~RIO_PORT_N_CTL_LOCKOUT;
 852
 853	rio_write_config_32(rdev,
 854				  rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum),
 855				  regval);
 856	return 0;
 857}
 858EXPORT_SYMBOL_GPL(rio_set_port_lockout);
 859
 860/**
 861 * rio_enable_rx_tx_port - enable input receiver and output transmitter of
 862 * given port
 863 * @port: Master port associated with the RIO network
 864 * @local: local=1 select local port otherwise a far device is reached
 865 * @destid: Destination ID of the device to check host bit
 866 * @hopcount: Number of hops to reach the target
 867 * @port_num: Port (-number on switch) to enable on a far end device
 868 *
 869 * Returns 0 or 1 from on General Control Command and Status Register
 870 * (EXT_PTR+0x3C)
 871 */
 872int rio_enable_rx_tx_port(struct rio_mport *port,
 873			  int local, u16 destid,
 874			  u8 hopcount, u8 port_num)
 875{
 876#ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
 877	u32 regval;
 878	u32 ext_ftr_ptr;
 
 879
 880	/*
 881	* enable rx input tx output port
 882	*/
 883	pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
 884		 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
 885
 886	ext_ftr_ptr = rio_mport_get_physefb(port, local, destid, hopcount);
 
 887
 888	if (local) {
 889		rio_local_read_config_32(port, ext_ftr_ptr +
 890				RIO_PORT_N_CTL_CSR(0),
 891				&regval);
 892	} else {
 893		if (rio_mport_read_config_32(port, destid, hopcount,
 894		ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), &regval) < 0)
 
 895			return -EIO;
 896	}
 897
 898	if (regval & RIO_PORT_N_CTL_P_TYP_SER) {
 899		/* serial */
 900		regval = regval | RIO_PORT_N_CTL_EN_RX_SER
 901				| RIO_PORT_N_CTL_EN_TX_SER;
 902	} else {
 903		/* parallel */
 904		regval = regval | RIO_PORT_N_CTL_EN_RX_PAR
 905				| RIO_PORT_N_CTL_EN_TX_PAR;
 906	}
 907
 908	if (local) {
 909		rio_local_write_config_32(port, ext_ftr_ptr +
 910					  RIO_PORT_N_CTL_CSR(0), regval);
 911	} else {
 912		if (rio_mport_write_config_32(port, destid, hopcount,
 913		    ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), regval) < 0)
 
 914			return -EIO;
 915	}
 916#endif
 917	return 0;
 918}
 919EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
 920
 921
 922/**
 923 * rio_chk_dev_route - Validate route to the specified device.
 924 * @rdev:  RIO device failed to respond
 925 * @nrdev: Last active device on the route to rdev
 926 * @npnum: nrdev's port number on the route to rdev
 927 *
 928 * Follows a route to the specified RIO device to determine the last available
 929 * device (and corresponding RIO port) on the route.
 930 */
 931static int
 932rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
 933{
 934	u32 result;
 935	int p_port, rc = -EIO;
 936	struct rio_dev *prev = NULL;
 937
 938	/* Find switch with failed RIO link */
 939	while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
 940		if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
 941			prev = rdev->prev;
 942			break;
 943		}
 944		rdev = rdev->prev;
 945	}
 946
 947	if (prev == NULL)
 948		goto err_out;
 949
 950	p_port = prev->rswitch->route_table[rdev->destid];
 951
 952	if (p_port != RIO_INVALID_ROUTE) {
 953		pr_debug("RIO: link failed on [%s]-P%d\n",
 954			 rio_name(prev), p_port);
 955		*nrdev = prev;
 956		*npnum = p_port;
 957		rc = 0;
 958	} else
 959		pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
 960err_out:
 961	return rc;
 962}
 963
 964/**
 965 * rio_mport_chk_dev_access - Validate access to the specified device.
 966 * @mport: Master port to send transactions
 967 * @destid: Device destination ID in network
 968 * @hopcount: Number of hops into the network
 969 */
 970int
 971rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
 972{
 973	int i = 0;
 974	u32 tmp;
 975
 976	while (rio_mport_read_config_32(mport, destid, hopcount,
 977					RIO_DEV_ID_CAR, &tmp)) {
 978		i++;
 979		if (i == RIO_MAX_CHK_RETRY)
 980			return -EIO;
 981		mdelay(1);
 982	}
 983
 984	return 0;
 985}
 986EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
 987
 988/**
 989 * rio_chk_dev_access - Validate access to the specified device.
 990 * @rdev: Pointer to RIO device control structure
 991 */
 992static int rio_chk_dev_access(struct rio_dev *rdev)
 993{
 994	return rio_mport_chk_dev_access(rdev->net->hport,
 995					rdev->destid, rdev->hopcount);
 996}
 997
 998/**
 999 * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
1000 *                        returns link-response (if requested).
1001 * @rdev: RIO devive to issue Input-status command
1002 * @pnum: Device port number to issue the command
1003 * @lnkresp: Response from a link partner
1004 */
1005static int
1006rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
1007{
1008	u32 regval;
1009	int checkcount;
1010
1011	if (lnkresp) {
1012		/* Read from link maintenance response register
1013		 * to clear valid bit */
1014		rio_read_config_32(rdev,
1015			rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum),
1016			&regval);
1017		udelay(50);
1018	}
1019
1020	/* Issue Input-status command */
1021	rio_write_config_32(rdev,
1022		rdev->phys_efptr + RIO_PORT_N_MNT_REQ_CSR(pnum),
1023		RIO_MNT_REQ_CMD_IS);
1024
1025	/* Exit if the response is not expected */
1026	if (lnkresp == NULL)
1027		return 0;
1028
1029	checkcount = 3;
1030	while (checkcount--) {
1031		udelay(50);
1032		rio_read_config_32(rdev,
1033			rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum),
1034			&regval);
1035		if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
1036			*lnkresp = regval;
1037			return 0;
1038		}
1039	}
1040
1041	return -EIO;
1042}
1043
1044/**
1045 * rio_clr_err_stopped - Clears port Error-stopped states.
1046 * @rdev: Pointer to RIO device control structure
1047 * @pnum: Switch port number to clear errors
1048 * @err_status: port error status (if 0 reads register from device)
 
 
 
 
 
 
 
1049 */
1050static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
1051{
1052	struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
1053	u32 regval;
1054	u32 far_ackid, far_linkstat, near_ackid;
1055
1056	if (err_status == 0)
1057		rio_read_config_32(rdev,
1058			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
1059			&err_status);
1060
1061	if (err_status & RIO_PORT_N_ERR_STS_PW_OUT_ES) {
1062		pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
1063		/*
1064		 * Send a Link-Request/Input-Status control symbol
1065		 */
1066		if (rio_get_input_status(rdev, pnum, &regval)) {
1067			pr_debug("RIO_EM: Input-status response timeout\n");
1068			goto rd_err;
1069		}
1070
1071		pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
1072			 pnum, regval);
1073		far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
1074		far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
1075		rio_read_config_32(rdev,
1076			rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum),
1077			&regval);
1078		pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
1079		near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
1080		pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
1081			 " near_ackID=0x%02x\n",
1082			pnum, far_ackid, far_linkstat, near_ackid);
1083
1084		/*
1085		 * If required, synchronize ackIDs of near and
1086		 * far sides.
1087		 */
1088		if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
1089		    (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
1090			/* Align near outstanding/outbound ackIDs with
1091			 * far inbound.
1092			 */
1093			rio_write_config_32(rdev,
1094				rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum),
1095				(near_ackid << 24) |
1096					(far_ackid << 8) | far_ackid);
1097			/* Align far outstanding/outbound ackIDs with
1098			 * near inbound.
1099			 */
1100			far_ackid++;
1101			if (nextdev)
1102				rio_write_config_32(nextdev,
1103					nextdev->phys_efptr +
1104					RIO_PORT_N_ACK_STS_CSR(RIO_GET_PORT_NUM(nextdev->swpinfo)),
1105					(far_ackid << 24) |
1106					(near_ackid << 8) | near_ackid);
1107			else
1108				pr_debug("RIO_EM: Invalid nextdev pointer (NULL)\n");
 
 
1109		}
1110rd_err:
1111		rio_read_config_32(rdev,
1112			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
1113			&err_status);
1114		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1115	}
1116
1117	if ((err_status & RIO_PORT_N_ERR_STS_PW_INP_ES) && nextdev) {
1118		pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
1119		rio_get_input_status(nextdev,
1120				     RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
1121		udelay(50);
1122
1123		rio_read_config_32(rdev,
1124			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
1125			&err_status);
1126		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1127	}
1128
1129	return (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES |
1130			      RIO_PORT_N_ERR_STS_PW_INP_ES)) ? 1 : 0;
1131}
1132
1133/**
1134 * rio_inb_pwrite_handler - inbound port-write message handler
1135 * @mport:  mport device associated with port-write
1136 * @pw_msg: pointer to inbound port-write message
1137 *
1138 * Processes an inbound port-write message. Returns 0 if the request
1139 * has been satisfied.
1140 */
1141int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
1142{
1143	struct rio_dev *rdev;
1144	u32 err_status, em_perrdet, em_ltlerrdet;
1145	int rc, portnum;
1146	struct rio_pwrite *pwrite;
1147
1148#ifdef DEBUG_PW
1149	{
1150		u32 i;
1151
1152		pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
1153		for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
1154			pr_debug("0x%02x: %08x %08x %08x %08x\n",
1155				i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
1156				pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
1157		}
1158	}
1159#endif
1160
1161	rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
1162	if (rdev) {
1163		pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
1164	} else {
1165		pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
1166			__func__, pw_msg->em.comptag);
1167	}
1168
1169	/* Call a device-specific handler (if it is registered for the device).
1170	 * This may be the service for endpoints that send device-specific
1171	 * port-write messages. End-point messages expected to be handled
1172	 * completely by EP specific device driver.
1173	 * For switches rc==0 signals that no standard processing required.
1174	 */
1175	if (rdev && rdev->pwcback) {
1176		rc = rdev->pwcback(rdev, pw_msg, 0);
1177		if (rc == 0)
1178			return 0;
1179	}
1180
1181	mutex_lock(&mport->lock);
1182	list_for_each_entry(pwrite, &mport->pwrites, node)
1183		pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
1184	mutex_unlock(&mport->lock);
1185
1186	if (!rdev)
1187		return 0;
1188
1189	/*
1190	 * FIXME: The code below stays as it was before for now until we decide
1191	 * how to do default PW handling in combination with per-mport callbacks
1192	 */
1193
1194	portnum = pw_msg->em.is_port & 0xFF;
1195
1196	/* Check if device and route to it are functional:
1197	 * Sometimes devices may send PW message(s) just before being
1198	 * powered down (or link being lost).
1199	 */
1200	if (rio_chk_dev_access(rdev)) {
1201		pr_debug("RIO: device access failed - get link partner\n");
1202		/* Scan route to the device and identify failed link.
1203		 * This will replace device and port reported in PW message.
1204		 * PW message should not be used after this point.
1205		 */
1206		if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
1207			pr_err("RIO: Route trace for %s failed\n",
1208				rio_name(rdev));
1209			return -EIO;
1210		}
1211		pw_msg = NULL;
1212	}
1213
1214	/* For End-point devices processing stops here */
1215	if (!(rdev->pef & RIO_PEF_SWITCH))
1216		return 0;
1217
1218	if (rdev->phys_efptr == 0) {
1219		pr_err("RIO_PW: Bad switch initialization for %s\n",
1220			rio_name(rdev));
1221		return 0;
1222	}
1223
1224	/*
1225	 * Process the port-write notification from switch
1226	 */
1227	if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
1228		rdev->rswitch->ops->em_handle(rdev, portnum);
1229
1230	rio_read_config_32(rdev,
1231			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum),
1232			&err_status);
1233	pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
1234
1235	if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
1236
1237		if (!(rdev->rswitch->port_ok & (1 << portnum))) {
1238			rdev->rswitch->port_ok |= (1 << portnum);
1239			rio_set_port_lockout(rdev, portnum, 0);
1240			/* Schedule Insertion Service */
1241			pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
1242			       rio_name(rdev), portnum);
1243		}
1244
1245		/* Clear error-stopped states (if reported).
1246		 * Depending on the link partner state, two attempts
1247		 * may be needed for successful recovery.
1248		 */
1249		if (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES |
1250				  RIO_PORT_N_ERR_STS_PW_INP_ES)) {
1251			if (rio_clr_err_stopped(rdev, portnum, err_status))
1252				rio_clr_err_stopped(rdev, portnum, 0);
1253		}
1254	}  else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
1255
1256		if (rdev->rswitch->port_ok & (1 << portnum)) {
1257			rdev->rswitch->port_ok &= ~(1 << portnum);
1258			rio_set_port_lockout(rdev, portnum, 1);
1259
 
1260			rio_write_config_32(rdev,
1261				rdev->phys_efptr +
1262					RIO_PORT_N_ACK_STS_CSR(portnum),
1263				RIO_PORT_N_ACK_CLEAR);
 
 
 
 
 
 
 
 
1264
1265			/* Schedule Extraction Service */
1266			pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
1267			       rio_name(rdev), portnum);
1268		}
1269	}
1270
1271	rio_read_config_32(rdev,
1272		rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
1273	if (em_perrdet) {
1274		pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
1275			 portnum, em_perrdet);
1276		/* Clear EM Port N Error Detect CSR */
1277		rio_write_config_32(rdev,
1278			rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
1279	}
1280
1281	rio_read_config_32(rdev,
1282		rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1283	if (em_ltlerrdet) {
1284		pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1285			 em_ltlerrdet);
1286		/* Clear EM L/T Layer Error Detect CSR */
1287		rio_write_config_32(rdev,
1288			rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1289	}
1290
1291	/* Clear remaining error bits and Port-Write Pending bit */
1292	rio_write_config_32(rdev,
1293			rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum),
1294			err_status);
1295
1296	return 0;
1297}
1298EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1299
1300/**
1301 * rio_mport_get_efb - get pointer to next extended features block
1302 * @port: Master port to issue transaction
1303 * @local: Indicate a local master port or remote device access
1304 * @destid: Destination ID of the device
1305 * @hopcount: Number of switch hops to the device
1306 * @from: Offset of  current Extended Feature block header (if 0 starts
1307 * from	ExtFeaturePtr)
1308 */
1309u32
1310rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1311		      u8 hopcount, u32 from)
1312{
1313	u32 reg_val;
1314
1315	if (from == 0) {
1316		if (local)
1317			rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1318						 &reg_val);
1319		else
1320			rio_mport_read_config_32(port, destid, hopcount,
1321						 RIO_ASM_INFO_CAR, &reg_val);
1322		return reg_val & RIO_EXT_FTR_PTR_MASK;
1323	} else {
1324		if (local)
1325			rio_local_read_config_32(port, from, &reg_val);
1326		else
1327			rio_mport_read_config_32(port, destid, hopcount,
1328						 from, &reg_val);
1329		return RIO_GET_BLOCK_ID(reg_val);
1330	}
1331}
1332EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1333
1334/**
1335 * rio_mport_get_feature - query for devices' extended features
1336 * @port: Master port to issue transaction
1337 * @local: Indicate a local master port or remote device access
1338 * @destid: Destination ID of the device
1339 * @hopcount: Number of switch hops to the device
1340 * @ftr: Extended feature code
1341 *
1342 * Tell if a device supports a given RapidIO capability.
1343 * Returns the offset of the requested extended feature
1344 * block within the device's RIO configuration space or
1345 * 0 in case the device does not support it.  Possible
1346 * values for @ftr:
1347 *
1348 * %RIO_EFB_PAR_EP_ID		LP/LVDS EP Devices
1349 *
1350 * %RIO_EFB_PAR_EP_REC_ID	LP/LVDS EP Recovery Devices
1351 *
1352 * %RIO_EFB_PAR_EP_FREE_ID	LP/LVDS EP Free Devices
1353 *
1354 * %RIO_EFB_SER_EP_ID		LP/Serial EP Devices
1355 *
1356 * %RIO_EFB_SER_EP_REC_ID	LP/Serial EP Recovery Devices
1357 *
1358 * %RIO_EFB_SER_EP_FREE_ID	LP/Serial EP Free Devices
1359 */
1360u32
1361rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1362		      u8 hopcount, int ftr)
1363{
1364	u32 asm_info, ext_ftr_ptr, ftr_header;
1365
1366	if (local)
1367		rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1368	else
1369		rio_mport_read_config_32(port, destid, hopcount,
1370					 RIO_ASM_INFO_CAR, &asm_info);
1371
1372	ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1373
1374	while (ext_ftr_ptr) {
1375		if (local)
1376			rio_local_read_config_32(port, ext_ftr_ptr,
1377						 &ftr_header);
1378		else
1379			rio_mport_read_config_32(port, destid, hopcount,
1380						 ext_ftr_ptr, &ftr_header);
1381		if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1382			return ext_ftr_ptr;
1383		if (!(ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header)))
1384			break;
1385	}
1386
1387	return 0;
1388}
1389EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1390
1391/**
1392 * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
1393 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1394 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1395 * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
1396 * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
1397 * @from: Previous RIO device found in search, or %NULL for new search
1398 *
1399 * Iterates through the list of known RIO devices. If a RIO device is
1400 * found with a matching @vid, @did, @asm_vid, @asm_did, the reference
1401 * count to the device is incrememted and a pointer to its device
1402 * structure is returned. Otherwise, %NULL is returned. A new search
1403 * is initiated by passing %NULL to the @from argument. Otherwise, if
1404 * @from is not %NULL, searches continue from next device on the global
1405 * list. The reference count for @from is always decremented if it is
1406 * not %NULL.
1407 */
1408struct rio_dev *rio_get_asm(u16 vid, u16 did,
1409			    u16 asm_vid, u16 asm_did, struct rio_dev *from)
1410{
1411	struct list_head *n;
1412	struct rio_dev *rdev;
1413
1414	WARN_ON(in_interrupt());
1415	spin_lock(&rio_global_list_lock);
1416	n = from ? from->global_list.next : rio_devices.next;
1417
1418	while (n && (n != &rio_devices)) {
1419		rdev = rio_dev_g(n);
1420		if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
1421		    (did == RIO_ANY_ID || rdev->did == did) &&
1422		    (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
1423		    (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
1424			goto exit;
1425		n = n->next;
1426	}
1427	rdev = NULL;
1428      exit:
1429	rio_dev_put(from);
1430	rdev = rio_dev_get(rdev);
1431	spin_unlock(&rio_global_list_lock);
1432	return rdev;
1433}
1434
1435/**
1436 * rio_get_device - Begin or continue searching for a RIO device by vid/did
1437 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1438 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1439 * @from: Previous RIO device found in search, or %NULL for new search
1440 *
1441 * Iterates through the list of known RIO devices. If a RIO device is
1442 * found with a matching @vid and @did, the reference count to the
1443 * device is incrememted and a pointer to its device structure is returned.
1444 * Otherwise, %NULL is returned. A new search is initiated by passing %NULL
1445 * to the @from argument. Otherwise, if @from is not %NULL, searches
1446 * continue from next device on the global list. The reference count for
1447 * @from is always decremented if it is not %NULL.
1448 */
1449struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
1450{
1451	return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
1452}
1453
1454/**
1455 * rio_std_route_add_entry - Add switch route table entry using standard
1456 *   registers defined in RIO specification rev.1.3
1457 * @mport: Master port to issue transaction
1458 * @destid: Destination ID of the device
1459 * @hopcount: Number of switch hops to the device
1460 * @table: routing table ID (global or port-specific)
1461 * @route_destid: destID entry in the RT
1462 * @route_port: destination port for specified destID
1463 */
1464static int
1465rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1466			u16 table, u16 route_destid, u8 route_port)
1467{
1468	if (table == RIO_GLOBAL_TABLE) {
1469		rio_mport_write_config_32(mport, destid, hopcount,
1470				RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1471				(u32)route_destid);
1472		rio_mport_write_config_32(mport, destid, hopcount,
1473				RIO_STD_RTE_CONF_PORT_SEL_CSR,
1474				(u32)route_port);
1475	}
1476
1477	udelay(10);
1478	return 0;
1479}
1480
1481/**
1482 * rio_std_route_get_entry - Read switch route table entry (port number)
1483 *   associated with specified destID using standard registers defined in RIO
1484 *   specification rev.1.3
1485 * @mport: Master port to issue transaction
1486 * @destid: Destination ID of the device
1487 * @hopcount: Number of switch hops to the device
1488 * @table: routing table ID (global or port-specific)
1489 * @route_destid: destID entry in the RT
1490 * @route_port: returned destination port for specified destID
1491 */
1492static int
1493rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1494			u16 table, u16 route_destid, u8 *route_port)
1495{
1496	u32 result;
1497
1498	if (table == RIO_GLOBAL_TABLE) {
1499		rio_mport_write_config_32(mport, destid, hopcount,
1500				RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1501		rio_mport_read_config_32(mport, destid, hopcount,
1502				RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1503
1504		*route_port = (u8)result;
1505	}
1506
1507	return 0;
1508}
1509
1510/**
1511 * rio_std_route_clr_table - Clear swotch route table using standard registers
1512 *   defined in RIO specification rev.1.3.
1513 * @mport: Master port to issue transaction
1514 * @destid: Destination ID of the device
1515 * @hopcount: Number of switch hops to the device
1516 * @table: routing table ID (global or port-specific)
1517 */
1518static int
1519rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1520			u16 table)
1521{
1522	u32 max_destid = 0xff;
1523	u32 i, pef, id_inc = 1, ext_cfg = 0;
1524	u32 port_sel = RIO_INVALID_ROUTE;
1525
1526	if (table == RIO_GLOBAL_TABLE) {
1527		rio_mport_read_config_32(mport, destid, hopcount,
1528					 RIO_PEF_CAR, &pef);
1529
1530		if (mport->sys_size) {
1531			rio_mport_read_config_32(mport, destid, hopcount,
1532						 RIO_SWITCH_RT_LIMIT,
1533						 &max_destid);
1534			max_destid &= RIO_RT_MAX_DESTID;
1535		}
1536
1537		if (pef & RIO_PEF_EXT_RT) {
1538			ext_cfg = 0x80000000;
1539			id_inc = 4;
1540			port_sel = (RIO_INVALID_ROUTE << 24) |
1541				   (RIO_INVALID_ROUTE << 16) |
1542				   (RIO_INVALID_ROUTE << 8) |
1543				   RIO_INVALID_ROUTE;
1544		}
1545
1546		for (i = 0; i <= max_destid;) {
1547			rio_mport_write_config_32(mport, destid, hopcount,
1548					RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1549					ext_cfg | i);
1550			rio_mport_write_config_32(mport, destid, hopcount,
1551					RIO_STD_RTE_CONF_PORT_SEL_CSR,
1552					port_sel);
1553			i += id_inc;
1554		}
1555	}
1556
1557	udelay(10);
1558	return 0;
1559}
1560
1561/**
1562 * rio_lock_device - Acquires host device lock for specified device
1563 * @port: Master port to send transaction
1564 * @destid: Destination ID for device/switch
1565 * @hopcount: Hopcount to reach switch
1566 * @wait_ms: Max wait time in msec (0 = no timeout)
1567 *
1568 * Attepts to acquire host device lock for specified device
1569 * Returns 0 if device lock acquired or EINVAL if timeout expires.
1570 */
1571int rio_lock_device(struct rio_mport *port, u16 destid,
1572		    u8 hopcount, int wait_ms)
1573{
1574	u32 result;
1575	int tcnt = 0;
1576
1577	/* Attempt to acquire device lock */
1578	rio_mport_write_config_32(port, destid, hopcount,
1579				  RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1580	rio_mport_read_config_32(port, destid, hopcount,
1581				 RIO_HOST_DID_LOCK_CSR, &result);
1582
1583	while (result != port->host_deviceid) {
1584		if (wait_ms != 0 && tcnt == wait_ms) {
1585			pr_debug("RIO: timeout when locking device %x:%x\n",
1586				destid, hopcount);
1587			return -EINVAL;
1588		}
1589
1590		/* Delay a bit */
1591		mdelay(1);
1592		tcnt++;
1593		/* Try to acquire device lock again */
1594		rio_mport_write_config_32(port, destid,
1595			hopcount,
1596			RIO_HOST_DID_LOCK_CSR,
1597			port->host_deviceid);
1598		rio_mport_read_config_32(port, destid,
1599			hopcount,
1600			RIO_HOST_DID_LOCK_CSR, &result);
1601	}
1602
1603	return 0;
1604}
1605EXPORT_SYMBOL_GPL(rio_lock_device);
1606
1607/**
1608 * rio_unlock_device - Releases host device lock for specified device
1609 * @port: Master port to send transaction
1610 * @destid: Destination ID for device/switch
1611 * @hopcount: Hopcount to reach switch
1612 *
1613 * Returns 0 if device lock released or EINVAL if fails.
1614 */
1615int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1616{
1617	u32 result;
1618
1619	/* Release device lock */
1620	rio_mport_write_config_32(port, destid,
1621				  hopcount,
1622				  RIO_HOST_DID_LOCK_CSR,
1623				  port->host_deviceid);
1624	rio_mport_read_config_32(port, destid, hopcount,
1625		RIO_HOST_DID_LOCK_CSR, &result);
1626	if ((result & 0xffff) != 0xffff) {
1627		pr_debug("RIO: badness when releasing device lock %x:%x\n",
1628			 destid, hopcount);
1629		return -EINVAL;
1630	}
1631
1632	return 0;
1633}
1634EXPORT_SYMBOL_GPL(rio_unlock_device);
1635
1636/**
1637 * rio_route_add_entry- Add a route entry to a switch routing table
1638 * @rdev: RIO device
1639 * @table: Routing table ID
1640 * @route_destid: Destination ID to be routed
1641 * @route_port: Port number to be routed
1642 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1643 *
1644 * If available calls the switch specific add_entry() method to add a route
1645 * entry into a switch routing table. Otherwise uses standard RT update method
1646 * as defined by RapidIO specification. A specific routing table can be selected
1647 * using the @table argument if a switch has per port routing tables or
1648 * the standard (or global) table may be used by passing
1649 * %RIO_GLOBAL_TABLE in @table.
1650 *
1651 * Returns %0 on success or %-EINVAL on failure.
1652 */
1653int rio_route_add_entry(struct rio_dev *rdev,
1654			u16 table, u16 route_destid, u8 route_port, int lock)
1655{
1656	int rc = -EINVAL;
1657	struct rio_switch_ops *ops = rdev->rswitch->ops;
1658
1659	if (lock) {
1660		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1661				     rdev->hopcount, 1000);
1662		if (rc)
1663			return rc;
1664	}
1665
1666	spin_lock(&rdev->rswitch->lock);
1667
1668	if (ops == NULL || ops->add_entry == NULL) {
1669		rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1670					     rdev->hopcount, table,
1671					     route_destid, route_port);
1672	} else if (try_module_get(ops->owner)) {
1673		rc = ops->add_entry(rdev->net->hport, rdev->destid,
1674				    rdev->hopcount, table, route_destid,
1675				    route_port);
1676		module_put(ops->owner);
1677	}
1678
1679	spin_unlock(&rdev->rswitch->lock);
1680
1681	if (lock)
1682		rio_unlock_device(rdev->net->hport, rdev->destid,
1683				  rdev->hopcount);
1684
1685	return rc;
1686}
1687EXPORT_SYMBOL_GPL(rio_route_add_entry);
1688
1689/**
1690 * rio_route_get_entry- Read an entry from a switch routing table
1691 * @rdev: RIO device
1692 * @table: Routing table ID
1693 * @route_destid: Destination ID to be routed
1694 * @route_port: Pointer to read port number into
1695 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1696 *
1697 * If available calls the switch specific get_entry() method to fetch a route
1698 * entry from a switch routing table. Otherwise uses standard RT read method
1699 * as defined by RapidIO specification. A specific routing table can be selected
1700 * using the @table argument if a switch has per port routing tables or
1701 * the standard (or global) table may be used by passing
1702 * %RIO_GLOBAL_TABLE in @table.
1703 *
1704 * Returns %0 on success or %-EINVAL on failure.
1705 */
1706int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1707			u16 route_destid, u8 *route_port, int lock)
1708{
1709	int rc = -EINVAL;
1710	struct rio_switch_ops *ops = rdev->rswitch->ops;
1711
1712	if (lock) {
1713		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1714				     rdev->hopcount, 1000);
1715		if (rc)
1716			return rc;
1717	}
1718
1719	spin_lock(&rdev->rswitch->lock);
1720
1721	if (ops == NULL || ops->get_entry == NULL) {
1722		rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1723					     rdev->hopcount, table,
1724					     route_destid, route_port);
1725	} else if (try_module_get(ops->owner)) {
1726		rc = ops->get_entry(rdev->net->hport, rdev->destid,
1727				    rdev->hopcount, table, route_destid,
1728				    route_port);
1729		module_put(ops->owner);
1730	}
1731
1732	spin_unlock(&rdev->rswitch->lock);
1733
1734	if (lock)
1735		rio_unlock_device(rdev->net->hport, rdev->destid,
1736				  rdev->hopcount);
1737	return rc;
1738}
1739EXPORT_SYMBOL_GPL(rio_route_get_entry);
1740
1741/**
1742 * rio_route_clr_table - Clear a switch routing table
1743 * @rdev: RIO device
1744 * @table: Routing table ID
1745 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1746 *
1747 * If available calls the switch specific clr_table() method to clear a switch
1748 * routing table. Otherwise uses standard RT write method as defined by RapidIO
1749 * specification. A specific routing table can be selected using the @table
1750 * argument if a switch has per port routing tables or the standard (or global)
1751 * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1752 *
1753 * Returns %0 on success or %-EINVAL on failure.
1754 */
1755int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1756{
1757	int rc = -EINVAL;
1758	struct rio_switch_ops *ops = rdev->rswitch->ops;
1759
1760	if (lock) {
1761		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1762				     rdev->hopcount, 1000);
1763		if (rc)
1764			return rc;
1765	}
1766
1767	spin_lock(&rdev->rswitch->lock);
1768
1769	if (ops == NULL || ops->clr_table == NULL) {
1770		rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1771					     rdev->hopcount, table);
1772	} else if (try_module_get(ops->owner)) {
1773		rc = ops->clr_table(rdev->net->hport, rdev->destid,
1774				    rdev->hopcount, table);
1775
1776		module_put(ops->owner);
1777	}
1778
1779	spin_unlock(&rdev->rswitch->lock);
1780
1781	if (lock)
1782		rio_unlock_device(rdev->net->hport, rdev->destid,
1783				  rdev->hopcount);
1784
1785	return rc;
1786}
1787EXPORT_SYMBOL_GPL(rio_route_clr_table);
1788
1789#ifdef CONFIG_RAPIDIO_DMA_ENGINE
1790
1791static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1792{
1793	struct rio_mport *mport = arg;
1794
1795	/* Check that DMA device belongs to the right MPORT */
1796	return mport == container_of(chan->device, struct rio_mport, dma);
1797}
1798
1799/**
1800 * rio_request_mport_dma - request RapidIO capable DMA channel associated
1801 *   with specified local RapidIO mport device.
1802 * @mport: RIO mport to perform DMA data transfers
1803 *
1804 * Returns pointer to allocated DMA channel or NULL if failed.
1805 */
1806struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1807{
1808	dma_cap_mask_t mask;
1809
1810	dma_cap_zero(mask);
1811	dma_cap_set(DMA_SLAVE, mask);
1812	return dma_request_channel(mask, rio_chan_filter, mport);
1813}
1814EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1815
1816/**
1817 * rio_request_dma - request RapidIO capable DMA channel that supports
1818 *   specified target RapidIO device.
1819 * @rdev: RIO device associated with DMA transfer
1820 *
1821 * Returns pointer to allocated DMA channel or NULL if failed.
1822 */
1823struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1824{
1825	return rio_request_mport_dma(rdev->net->hport);
1826}
1827EXPORT_SYMBOL_GPL(rio_request_dma);
1828
1829/**
1830 * rio_release_dma - release specified DMA channel
1831 * @dchan: DMA channel to release
1832 */
1833void rio_release_dma(struct dma_chan *dchan)
1834{
1835	dma_release_channel(dchan);
1836}
1837EXPORT_SYMBOL_GPL(rio_release_dma);
1838
1839/**
1840 * rio_dma_prep_xfer - RapidIO specific wrapper
1841 *   for device_prep_slave_sg callback defined by DMAENGINE.
1842 * @dchan: DMA channel to configure
1843 * @destid: target RapidIO device destination ID
1844 * @data: RIO specific data descriptor
1845 * @direction: DMA data transfer direction (TO or FROM the device)
1846 * @flags: dmaengine defined flags
1847 *
1848 * Initializes RapidIO capable DMA channel for the specified data transfer.
1849 * Uses DMA channel private extension to pass information related to remote
1850 * target RIO device.
1851 * Returns pointer to DMA transaction descriptor or NULL if failed.
 
 
1852 */
1853struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1854	u16 destid, struct rio_dma_data *data,
1855	enum dma_transfer_direction direction, unsigned long flags)
1856{
1857	struct rio_dma_ext rio_ext;
1858
1859	if (dchan->device->device_prep_slave_sg == NULL) {
1860		pr_err("%s: prep_rio_sg == NULL\n", __func__);
1861		return NULL;
1862	}
1863
1864	rio_ext.destid = destid;
1865	rio_ext.rio_addr_u = data->rio_addr_u;
1866	rio_ext.rio_addr = data->rio_addr;
1867	rio_ext.wr_type = data->wr_type;
1868
1869	return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1870				     direction, flags, &rio_ext);
1871}
1872EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1873
1874/**
1875 * rio_dma_prep_slave_sg - RapidIO specific wrapper
1876 *   for device_prep_slave_sg callback defined by DMAENGINE.
1877 * @rdev: RIO device control structure
1878 * @dchan: DMA channel to configure
1879 * @data: RIO specific data descriptor
1880 * @direction: DMA data transfer direction (TO or FROM the device)
1881 * @flags: dmaengine defined flags
1882 *
1883 * Initializes RapidIO capable DMA channel for the specified data transfer.
1884 * Uses DMA channel private extension to pass information related to remote
1885 * target RIO device.
1886 * Returns pointer to DMA transaction descriptor or NULL if failed.
 
 
1887 */
1888struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1889	struct dma_chan *dchan, struct rio_dma_data *data,
1890	enum dma_transfer_direction direction, unsigned long flags)
1891{
1892	return rio_dma_prep_xfer(dchan,	rdev->destid, data, direction, flags);
1893}
1894EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1895
1896#endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1897
1898/**
1899 * rio_find_mport - find RIO mport by its ID
1900 * @mport_id: number (ID) of mport device
1901 *
1902 * Given a RIO mport number, the desired mport is located
1903 * in the global list of mports. If the mport is found, a pointer to its
1904 * data structure is returned.  If no mport is found, %NULL is returned.
1905 */
1906struct rio_mport *rio_find_mport(int mport_id)
1907{
1908	struct rio_mport *port;
1909
1910	mutex_lock(&rio_mport_list_lock);
1911	list_for_each_entry(port, &rio_mports, node) {
1912		if (port->id == mport_id)
1913			goto found;
1914	}
1915	port = NULL;
1916found:
1917	mutex_unlock(&rio_mport_list_lock);
1918
1919	return port;
1920}
1921
1922/**
1923 * rio_register_scan - enumeration/discovery method registration interface
1924 * @mport_id: mport device ID for which fabric scan routine has to be set
1925 *            (RIO_MPORT_ANY = set for all available mports)
1926 * @scan_ops: enumeration/discovery operations structure
1927 *
1928 * Registers enumeration/discovery operations with RapidIO subsystem and
1929 * attaches it to the specified mport device (or all available mports
1930 * if RIO_MPORT_ANY is specified).
1931 *
1932 * Returns error if the mport already has an enumerator attached to it.
1933 * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1934 */
1935int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1936{
1937	struct rio_mport *port;
1938	struct rio_scan_node *scan;
1939	int rc = 0;
1940
1941	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1942
1943	if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1944	    !scan_ops)
1945		return -EINVAL;
1946
1947	mutex_lock(&rio_mport_list_lock);
1948
1949	/*
1950	 * Check if there is another enumerator already registered for
1951	 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1952	 * for the same mport ID are not supported.
1953	 */
1954	list_for_each_entry(scan, &rio_scans, node) {
1955		if (scan->mport_id == mport_id) {
1956			rc = -EBUSY;
1957			goto err_out;
1958		}
1959	}
1960
1961	/*
1962	 * Allocate and initialize new scan registration node.
1963	 */
1964	scan = kzalloc(sizeof(*scan), GFP_KERNEL);
1965	if (!scan) {
1966		rc = -ENOMEM;
1967		goto err_out;
1968	}
1969
1970	scan->mport_id = mport_id;
1971	scan->ops = scan_ops;
1972
1973	/*
1974	 * Traverse the list of registered mports to attach this new scan.
1975	 *
1976	 * The new scan with matching mport ID overrides any previously attached
1977	 * scan assuming that old scan (if any) is the default one (based on the
1978	 * enumerator registration check above).
1979	 * If the new scan is the global one, it will be attached only to mports
1980	 * that do not have their own individual operations already attached.
1981	 */
1982	list_for_each_entry(port, &rio_mports, node) {
1983		if (port->id == mport_id) {
1984			port->nscan = scan_ops;
1985			break;
1986		} else if (mport_id == RIO_MPORT_ANY && !port->nscan)
1987			port->nscan = scan_ops;
1988	}
1989
1990	list_add_tail(&scan->node, &rio_scans);
1991
1992err_out:
1993	mutex_unlock(&rio_mport_list_lock);
1994
1995	return rc;
1996}
1997EXPORT_SYMBOL_GPL(rio_register_scan);
1998
1999/**
2000 * rio_unregister_scan - removes enumeration/discovery method from mport
2001 * @mport_id: mport device ID for which fabric scan routine has to be
2002 *            unregistered (RIO_MPORT_ANY = apply to all mports that use
2003 *            the specified scan_ops)
2004 * @scan_ops: enumeration/discovery operations structure
2005 *
2006 * Removes enumeration or discovery method assigned to the specified mport
2007 * device. If RIO_MPORT_ANY is specified, removes the specified operations from
2008 * all mports that have them attached.
2009 */
2010int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
2011{
2012	struct rio_mport *port;
2013	struct rio_scan_node *scan;
2014
2015	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
2016
2017	if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
2018		return -EINVAL;
2019
2020	mutex_lock(&rio_mport_list_lock);
2021
2022	list_for_each_entry(port, &rio_mports, node)
2023		if (port->id == mport_id ||
2024		    (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
2025			port->nscan = NULL;
2026
2027	list_for_each_entry(scan, &rio_scans, node) {
2028		if (scan->mport_id == mport_id) {
2029			list_del(&scan->node);
2030			kfree(scan);
2031			break;
2032		}
2033	}
2034
2035	mutex_unlock(&rio_mport_list_lock);
2036
2037	return 0;
2038}
2039EXPORT_SYMBOL_GPL(rio_unregister_scan);
2040
2041/**
2042 * rio_mport_scan - execute enumeration/discovery on the specified mport
2043 * @mport_id: number (ID) of mport device
2044 */
2045int rio_mport_scan(int mport_id)
2046{
2047	struct rio_mport *port = NULL;
2048	int rc;
2049
2050	mutex_lock(&rio_mport_list_lock);
2051	list_for_each_entry(port, &rio_mports, node) {
2052		if (port->id == mport_id)
2053			goto found;
2054	}
2055	mutex_unlock(&rio_mport_list_lock);
2056	return -ENODEV;
2057found:
2058	if (!port->nscan) {
2059		mutex_unlock(&rio_mport_list_lock);
2060		return -EINVAL;
2061	}
2062
2063	if (!try_module_get(port->nscan->owner)) {
2064		mutex_unlock(&rio_mport_list_lock);
2065		return -ENODEV;
2066	}
2067
2068	mutex_unlock(&rio_mport_list_lock);
2069
2070	if (port->host_deviceid >= 0)
2071		rc = port->nscan->enumerate(port, 0);
2072	else
2073		rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
2074
2075	module_put(port->nscan->owner);
2076	return rc;
2077}
2078
2079static void rio_fixup_device(struct rio_dev *dev)
2080{
2081}
2082
2083static int rio_init(void)
2084{
2085	struct rio_dev *dev = NULL;
2086
2087	while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
2088		rio_fixup_device(dev);
2089	}
2090	return 0;
2091}
2092
2093static struct workqueue_struct *rio_wq;
2094
2095struct rio_disc_work {
2096	struct work_struct	work;
2097	struct rio_mport	*mport;
2098};
2099
2100static void disc_work_handler(struct work_struct *_work)
2101{
2102	struct rio_disc_work *work;
2103
2104	work = container_of(_work, struct rio_disc_work, work);
2105	pr_debug("RIO: discovery work for mport %d %s\n",
2106		 work->mport->id, work->mport->name);
2107	if (try_module_get(work->mport->nscan->owner)) {
2108		work->mport->nscan->discover(work->mport, 0);
2109		module_put(work->mport->nscan->owner);
2110	}
2111}
2112
2113int rio_init_mports(void)
2114{
2115	struct rio_mport *port;
2116	struct rio_disc_work *work;
2117	int n = 0;
2118
2119	if (!next_portid)
2120		return -ENODEV;
2121
2122	/*
2123	 * First, run enumerations and check if we need to perform discovery
2124	 * on any of the registered mports.
2125	 */
2126	mutex_lock(&rio_mport_list_lock);
2127	list_for_each_entry(port, &rio_mports, node) {
2128		if (port->host_deviceid >= 0) {
2129			if (port->nscan && try_module_get(port->nscan->owner)) {
2130				port->nscan->enumerate(port, 0);
2131				module_put(port->nscan->owner);
2132			}
2133		} else
2134			n++;
2135	}
2136	mutex_unlock(&rio_mport_list_lock);
2137
2138	if (!n)
2139		goto no_disc;
2140
2141	/*
2142	 * If we have mports that require discovery schedule a discovery work
2143	 * for each of them. If the code below fails to allocate needed
2144	 * resources, exit without error to keep results of enumeration
2145	 * process (if any).
2146	 * TODO: Implement restart of discovery process for all or
2147	 * individual discovering mports.
2148	 */
2149	rio_wq = alloc_workqueue("riodisc", 0, 0);
2150	if (!rio_wq) {
2151		pr_err("RIO: unable allocate rio_wq\n");
2152		goto no_disc;
2153	}
2154
2155	work = kcalloc(n, sizeof *work, GFP_KERNEL);
2156	if (!work) {
2157		pr_err("RIO: no memory for work struct\n");
2158		destroy_workqueue(rio_wq);
2159		goto no_disc;
2160	}
2161
2162	n = 0;
2163	mutex_lock(&rio_mport_list_lock);
2164	list_for_each_entry(port, &rio_mports, node) {
2165		if (port->host_deviceid < 0 && port->nscan) {
2166			work[n].mport = port;
2167			INIT_WORK(&work[n].work, disc_work_handler);
2168			queue_work(rio_wq, &work[n].work);
2169			n++;
2170		}
2171	}
2172
2173	flush_workqueue(rio_wq);
2174	mutex_unlock(&rio_mport_list_lock);
2175	pr_debug("RIO: destroy discovery workqueue\n");
2176	destroy_workqueue(rio_wq);
2177	kfree(work);
2178
2179no_disc:
2180	rio_init();
2181
2182	return 0;
2183}
2184
2185static int rio_get_hdid(int index)
2186{
2187	if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
2188		return -1;
2189
2190	return hdid[index];
2191}
2192
2193int rio_mport_initialize(struct rio_mport *mport)
2194{
2195	if (next_portid >= RIO_MAX_MPORTS) {
2196		pr_err("RIO: reached specified max number of mports\n");
2197		return -ENODEV;
2198	}
2199
2200	atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
2201	mport->id = next_portid++;
2202	mport->host_deviceid = rio_get_hdid(mport->id);
2203	mport->nscan = NULL;
2204	mutex_init(&mport->lock);
2205	mport->pwe_refcnt = 0;
2206	INIT_LIST_HEAD(&mport->pwrites);
2207
2208	return 0;
2209}
2210EXPORT_SYMBOL_GPL(rio_mport_initialize);
2211
2212int rio_register_mport(struct rio_mport *port)
2213{
2214	struct rio_scan_node *scan = NULL;
2215	int res = 0;
2216
2217	mutex_lock(&rio_mport_list_lock);
2218
2219	/*
2220	 * Check if there are any registered enumeration/discovery operations
2221	 * that have to be attached to the added mport.
2222	 */
2223	list_for_each_entry(scan, &rio_scans, node) {
2224		if (port->id == scan->mport_id ||
2225		    scan->mport_id == RIO_MPORT_ANY) {
2226			port->nscan = scan->ops;
2227			if (port->id == scan->mport_id)
2228				break;
2229		}
2230	}
2231
2232	list_add_tail(&port->node, &rio_mports);
2233	mutex_unlock(&rio_mport_list_lock);
2234
2235	dev_set_name(&port->dev, "rapidio%d", port->id);
2236	port->dev.class = &rio_mport_class;
2237	atomic_set(&port->state, RIO_DEVICE_RUNNING);
2238
2239	res = device_register(&port->dev);
2240	if (res)
2241		dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
2242			port->id, res);
2243	else
2244		dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
2245
2246	return res;
2247}
2248EXPORT_SYMBOL_GPL(rio_register_mport);
2249
2250static int rio_mport_cleanup_callback(struct device *dev, void *data)
2251{
2252	struct rio_dev *rdev = to_rio_dev(dev);
2253
2254	if (dev->bus == &rio_bus_type)
2255		rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
2256	return 0;
2257}
2258
2259static int rio_net_remove_children(struct rio_net *net)
2260{
2261	/*
2262	 * Unregister all RapidIO devices residing on this net (this will
2263	 * invoke notification of registered subsystem interfaces as well).
2264	 */
2265	device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
2266	return 0;
2267}
2268
2269int rio_unregister_mport(struct rio_mport *port)
2270{
2271	pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
2272
2273	/* Transition mport to the SHUTDOWN state */
2274	if (atomic_cmpxchg(&port->state,
2275			   RIO_DEVICE_RUNNING,
2276			   RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
2277		pr_err("RIO: %s unexpected state transition for mport %s\n",
2278			__func__, port->name);
2279	}
2280
2281	if (port->net && port->net->hport == port) {
2282		rio_net_remove_children(port->net);
2283		rio_free_net(port->net);
2284	}
2285
2286	/*
2287	 * Unregister all RapidIO devices attached to this mport (this will
2288	 * invoke notification of registered subsystem interfaces as well).
2289	 */
2290	mutex_lock(&rio_mport_list_lock);
2291	list_del(&port->node);
2292	mutex_unlock(&rio_mport_list_lock);
2293	device_unregister(&port->dev);
2294
2295	return 0;
2296}
2297EXPORT_SYMBOL_GPL(rio_unregister_mport);
2298
2299EXPORT_SYMBOL_GPL(rio_local_get_device_id);
2300EXPORT_SYMBOL_GPL(rio_get_device);
2301EXPORT_SYMBOL_GPL(rio_get_asm);
2302EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
2303EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
2304EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
2305EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
2306EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
2307EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
2308EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
2309EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
2310EXPORT_SYMBOL_GPL(rio_init_mports);
v4.10.11
   1/*
   2 * RapidIO interconnect services
   3 * (RapidIO Interconnect Specification, http://www.rapidio.org)
   4 *
   5 * Copyright 2005 MontaVista Software, Inc.
   6 * Matt Porter <mporter@kernel.crashing.org>
   7 *
   8 * Copyright 2009 - 2013 Integrated Device Technology, Inc.
   9 * Alex Bounine <alexandre.bounine@idt.com>
  10 *
  11 * This program is free software; you can redistribute  it and/or modify it
  12 * under  the terms of  the GNU General  Public License as published by the
  13 * Free Software Foundation;  either version 2 of the  License, or (at your
  14 * option) any later version.
  15 */
  16
  17#include <linux/types.h>
  18#include <linux/kernel.h>
  19
  20#include <linux/delay.h>
  21#include <linux/init.h>
  22#include <linux/rio.h>
  23#include <linux/rio_drv.h>
  24#include <linux/rio_ids.h>
  25#include <linux/rio_regs.h>
  26#include <linux/module.h>
  27#include <linux/spinlock.h>
  28#include <linux/slab.h>
  29#include <linux/interrupt.h>
  30
  31#include "rio.h"
  32
  33/*
  34 * struct rio_pwrite - RIO portwrite event
  35 * @node:    Node in list of doorbell events
  36 * @pwcback: Doorbell event callback
  37 * @context: Handler specific context to pass on event
  38 */
  39struct rio_pwrite {
  40	struct list_head node;
  41
  42	int (*pwcback)(struct rio_mport *mport, void *context,
  43		       union rio_pw_msg *msg, int step);
  44	void *context;
  45};
  46
  47MODULE_DESCRIPTION("RapidIO Subsystem Core");
  48MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
  49MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
  50MODULE_LICENSE("GPL");
  51
  52static int hdid[RIO_MAX_MPORTS];
  53static int ids_num;
  54module_param_array(hdid, int, &ids_num, 0);
  55MODULE_PARM_DESC(hdid,
  56	"Destination ID assignment to local RapidIO controllers");
  57
  58static LIST_HEAD(rio_devices);
  59static LIST_HEAD(rio_nets);
  60static DEFINE_SPINLOCK(rio_global_list_lock);
  61
  62static LIST_HEAD(rio_mports);
  63static LIST_HEAD(rio_scans);
  64static DEFINE_MUTEX(rio_mport_list_lock);
  65static unsigned char next_portid;
  66static DEFINE_SPINLOCK(rio_mmap_lock);
  67
  68/**
  69 * rio_local_get_device_id - Get the base/extended device id for a port
  70 * @port: RIO master port from which to get the deviceid
  71 *
  72 * Reads the base/extended device id from the local device
  73 * implementing the master port. Returns the 8/16-bit device
  74 * id.
  75 */
  76u16 rio_local_get_device_id(struct rio_mport *port)
  77{
  78	u32 result;
  79
  80	rio_local_read_config_32(port, RIO_DID_CSR, &result);
  81
  82	return (RIO_GET_DID(port->sys_size, result));
  83}
  84
  85/**
  86 * rio_query_mport - Query mport device attributes
  87 * @port: mport device to query
  88 * @mport_attr: mport attributes data structure
  89 *
  90 * Returns attributes of specified mport through the
  91 * pointer to attributes data structure.
  92 */
  93int rio_query_mport(struct rio_mport *port,
  94		    struct rio_mport_attr *mport_attr)
  95{
  96	if (!port->ops->query_mport)
  97		return -ENODATA;
  98	return port->ops->query_mport(port, mport_attr);
  99}
 100EXPORT_SYMBOL(rio_query_mport);
 101
 102/**
 103 * rio_alloc_net- Allocate and initialize a new RIO network data structure
 104 * @mport: Master port associated with the RIO network
 105 *
 106 * Allocates a RIO network structure, initializes per-network
 107 * list heads, and adds the associated master port to the
 108 * network list of associated master ports. Returns a
 109 * RIO network pointer on success or %NULL on failure.
 110 */
 111struct rio_net *rio_alloc_net(struct rio_mport *mport)
 112{
 113	struct rio_net *net;
 114
 115	net = kzalloc(sizeof(struct rio_net), GFP_KERNEL);
 116	if (net) {
 117		INIT_LIST_HEAD(&net->node);
 118		INIT_LIST_HEAD(&net->devices);
 119		INIT_LIST_HEAD(&net->switches);
 120		INIT_LIST_HEAD(&net->mports);
 121		mport->net = net;
 122	}
 123	return net;
 124}
 125EXPORT_SYMBOL_GPL(rio_alloc_net);
 126
 127int rio_add_net(struct rio_net *net)
 128{
 129	int err;
 130
 131	err = device_register(&net->dev);
 132	if (err)
 133		return err;
 134	spin_lock(&rio_global_list_lock);
 135	list_add_tail(&net->node, &rio_nets);
 136	spin_unlock(&rio_global_list_lock);
 137
 138	return 0;
 139}
 140EXPORT_SYMBOL_GPL(rio_add_net);
 141
 142void rio_free_net(struct rio_net *net)
 143{
 144	spin_lock(&rio_global_list_lock);
 145	if (!list_empty(&net->node))
 146		list_del(&net->node);
 147	spin_unlock(&rio_global_list_lock);
 148	if (net->release)
 149		net->release(net);
 150	device_unregister(&net->dev);
 151}
 152EXPORT_SYMBOL_GPL(rio_free_net);
 153
 154/**
 155 * rio_local_set_device_id - Set the base/extended device id for a port
 156 * @port: RIO master port
 157 * @did: Device ID value to be written
 158 *
 159 * Writes the base/extended device id from a device.
 160 */
 161void rio_local_set_device_id(struct rio_mport *port, u16 did)
 162{
 163	rio_local_write_config_32(port, RIO_DID_CSR,
 164				  RIO_SET_DID(port->sys_size, did));
 165}
 166EXPORT_SYMBOL_GPL(rio_local_set_device_id);
 167
 168/**
 169 * rio_add_device- Adds a RIO device to the device model
 170 * @rdev: RIO device
 171 *
 172 * Adds the RIO device to the global device list and adds the RIO
 173 * device to the RIO device list.  Creates the generic sysfs nodes
 174 * for an RIO device.
 175 */
 176int rio_add_device(struct rio_dev *rdev)
 177{
 178	int err;
 179
 180	atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
 181	err = device_register(&rdev->dev);
 182	if (err)
 183		return err;
 184
 185	spin_lock(&rio_global_list_lock);
 186	list_add_tail(&rdev->global_list, &rio_devices);
 187	if (rdev->net) {
 188		list_add_tail(&rdev->net_list, &rdev->net->devices);
 189		if (rdev->pef & RIO_PEF_SWITCH)
 190			list_add_tail(&rdev->rswitch->node,
 191				      &rdev->net->switches);
 192	}
 193	spin_unlock(&rio_global_list_lock);
 194
 195	rio_create_sysfs_dev_files(rdev);
 196
 197	return 0;
 198}
 199EXPORT_SYMBOL_GPL(rio_add_device);
 200
 201/*
 202 * rio_del_device - removes a RIO device from the device model
 203 * @rdev: RIO device
 204 * @state: device state to set during removal process
 205 *
 206 * Removes the RIO device to the kernel device list and subsystem's device list.
 207 * Clears sysfs entries for the removed device.
 208 */
 209void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
 210{
 211	pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
 212	atomic_set(&rdev->state, state);
 213	spin_lock(&rio_global_list_lock);
 214	list_del(&rdev->global_list);
 215	if (rdev->net) {
 216		list_del(&rdev->net_list);
 217		if (rdev->pef & RIO_PEF_SWITCH) {
 218			list_del(&rdev->rswitch->node);
 219			kfree(rdev->rswitch->route_table);
 220		}
 221	}
 222	spin_unlock(&rio_global_list_lock);
 223	rio_remove_sysfs_dev_files(rdev);
 224	device_unregister(&rdev->dev);
 225}
 226EXPORT_SYMBOL_GPL(rio_del_device);
 227
 228/**
 229 * rio_request_inb_mbox - request inbound mailbox service
 230 * @mport: RIO master port from which to allocate the mailbox resource
 231 * @dev_id: Device specific pointer to pass on event
 232 * @mbox: Mailbox number to claim
 233 * @entries: Number of entries in inbound mailbox queue
 234 * @minb: Callback to execute when inbound message is received
 235 *
 236 * Requests ownership of an inbound mailbox resource and binds
 237 * a callback function to the resource. Returns %0 on success.
 238 */
 239int rio_request_inb_mbox(struct rio_mport *mport,
 240			 void *dev_id,
 241			 int mbox,
 242			 int entries,
 243			 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
 244				       int slot))
 245{
 246	int rc = -ENOSYS;
 247	struct resource *res;
 248
 249	if (mport->ops->open_inb_mbox == NULL)
 250		goto out;
 251
 252	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 253
 254	if (res) {
 255		rio_init_mbox_res(res, mbox, mbox);
 256
 257		/* Make sure this mailbox isn't in use */
 258		if ((rc =
 259		     request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
 260				      res)) < 0) {
 261			kfree(res);
 262			goto out;
 263		}
 264
 265		mport->inb_msg[mbox].res = res;
 266
 267		/* Hook the inbound message callback */
 268		mport->inb_msg[mbox].mcback = minb;
 269
 270		rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
 271		if (rc) {
 272			mport->inb_msg[mbox].mcback = NULL;
 273			mport->inb_msg[mbox].res = NULL;
 274			release_resource(res);
 275			kfree(res);
 276		}
 277	} else
 278		rc = -ENOMEM;
 279
 280      out:
 281	return rc;
 282}
 283
 284/**
 285 * rio_release_inb_mbox - release inbound mailbox message service
 286 * @mport: RIO master port from which to release the mailbox resource
 287 * @mbox: Mailbox number to release
 288 *
 289 * Releases ownership of an inbound mailbox resource. Returns 0
 290 * if the request has been satisfied.
 291 */
 292int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
 293{
 294	int rc;
 
 295
 296	if (!mport->ops->close_inb_mbox || !mport->inb_msg[mbox].res)
 297		return -EINVAL;
 298
 299	mport->ops->close_inb_mbox(mport, mbox);
 300	mport->inb_msg[mbox].mcback = NULL;
 301
 302	rc = release_resource(mport->inb_msg[mbox].res);
 303	if (rc)
 304		return rc;
 305
 306	kfree(mport->inb_msg[mbox].res);
 307	mport->inb_msg[mbox].res = NULL;
 308
 309	return 0;
 310}
 311
 312/**
 313 * rio_request_outb_mbox - request outbound mailbox service
 314 * @mport: RIO master port from which to allocate the mailbox resource
 315 * @dev_id: Device specific pointer to pass on event
 316 * @mbox: Mailbox number to claim
 317 * @entries: Number of entries in outbound mailbox queue
 318 * @moutb: Callback to execute when outbound message is sent
 319 *
 320 * Requests ownership of an outbound mailbox resource and binds
 321 * a callback function to the resource. Returns 0 on success.
 322 */
 323int rio_request_outb_mbox(struct rio_mport *mport,
 324			  void *dev_id,
 325			  int mbox,
 326			  int entries,
 327			  void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
 328{
 329	int rc = -ENOSYS;
 330	struct resource *res;
 331
 332	if (mport->ops->open_outb_mbox == NULL)
 333		goto out;
 334
 335	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 336
 337	if (res) {
 338		rio_init_mbox_res(res, mbox, mbox);
 339
 340		/* Make sure this outbound mailbox isn't in use */
 341		if ((rc =
 342		     request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
 343				      res)) < 0) {
 344			kfree(res);
 345			goto out;
 346		}
 347
 348		mport->outb_msg[mbox].res = res;
 349
 350		/* Hook the inbound message callback */
 351		mport->outb_msg[mbox].mcback = moutb;
 352
 353		rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
 354		if (rc) {
 355			mport->outb_msg[mbox].mcback = NULL;
 356			mport->outb_msg[mbox].res = NULL;
 357			release_resource(res);
 358			kfree(res);
 359		}
 360	} else
 361		rc = -ENOMEM;
 362
 363      out:
 364	return rc;
 365}
 366
 367/**
 368 * rio_release_outb_mbox - release outbound mailbox message service
 369 * @mport: RIO master port from which to release the mailbox resource
 370 * @mbox: Mailbox number to release
 371 *
 372 * Releases ownership of an inbound mailbox resource. Returns 0
 373 * if the request has been satisfied.
 374 */
 375int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
 376{
 377	int rc;
 
 378
 379	if (!mport->ops->close_outb_mbox || !mport->outb_msg[mbox].res)
 380		return -EINVAL;
 381
 382	mport->ops->close_outb_mbox(mport, mbox);
 383	mport->outb_msg[mbox].mcback = NULL;
 384
 385	rc = release_resource(mport->outb_msg[mbox].res);
 386	if (rc)
 387		return rc;
 388
 389	kfree(mport->outb_msg[mbox].res);
 390	mport->outb_msg[mbox].res = NULL;
 391
 392	return 0;
 393}
 394
 395/**
 396 * rio_setup_inb_dbell - bind inbound doorbell callback
 397 * @mport: RIO master port to bind the doorbell callback
 398 * @dev_id: Device specific pointer to pass on event
 399 * @res: Doorbell message resource
 400 * @dinb: Callback to execute when doorbell is received
 401 *
 402 * Adds a doorbell resource/callback pair into a port's
 403 * doorbell event list. Returns 0 if the request has been
 404 * satisfied.
 405 */
 406static int
 407rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
 408		    void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
 409				  u16 info))
 410{
 411	int rc = 0;
 412	struct rio_dbell *dbell;
 413
 414	if (!(dbell = kmalloc(sizeof(struct rio_dbell), GFP_KERNEL))) {
 415		rc = -ENOMEM;
 416		goto out;
 417	}
 418
 419	dbell->res = res;
 420	dbell->dinb = dinb;
 421	dbell->dev_id = dev_id;
 422
 423	mutex_lock(&mport->lock);
 424	list_add_tail(&dbell->node, &mport->dbells);
 425	mutex_unlock(&mport->lock);
 426
 427      out:
 428	return rc;
 429}
 430
 431/**
 432 * rio_request_inb_dbell - request inbound doorbell message service
 433 * @mport: RIO master port from which to allocate the doorbell resource
 434 * @dev_id: Device specific pointer to pass on event
 435 * @start: Doorbell info range start
 436 * @end: Doorbell info range end
 437 * @dinb: Callback to execute when doorbell is received
 438 *
 439 * Requests ownership of an inbound doorbell resource and binds
 440 * a callback function to the resource. Returns 0 if the request
 441 * has been satisfied.
 442 */
 443int rio_request_inb_dbell(struct rio_mport *mport,
 444			  void *dev_id,
 445			  u16 start,
 446			  u16 end,
 447			  void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
 448					u16 dst, u16 info))
 449{
 450	int rc = 0;
 451
 452	struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 453
 454	if (res) {
 455		rio_init_dbell_res(res, start, end);
 456
 457		/* Make sure these doorbells aren't in use */
 458		if ((rc =
 459		     request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
 460				      res)) < 0) {
 461			kfree(res);
 462			goto out;
 463		}
 464
 465		/* Hook the doorbell callback */
 466		rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
 467	} else
 468		rc = -ENOMEM;
 469
 470      out:
 471	return rc;
 472}
 473
 474/**
 475 * rio_release_inb_dbell - release inbound doorbell message service
 476 * @mport: RIO master port from which to release the doorbell resource
 477 * @start: Doorbell info range start
 478 * @end: Doorbell info range end
 479 *
 480 * Releases ownership of an inbound doorbell resource and removes
 481 * callback from the doorbell event list. Returns 0 if the request
 482 * has been satisfied.
 483 */
 484int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
 485{
 486	int rc = 0, found = 0;
 487	struct rio_dbell *dbell;
 488
 489	mutex_lock(&mport->lock);
 490	list_for_each_entry(dbell, &mport->dbells, node) {
 491		if ((dbell->res->start == start) && (dbell->res->end == end)) {
 492			list_del(&dbell->node);
 493			found = 1;
 494			break;
 495		}
 496	}
 497	mutex_unlock(&mport->lock);
 498
 499	/* If we can't find an exact match, fail */
 500	if (!found) {
 501		rc = -EINVAL;
 502		goto out;
 503	}
 504
 505	/* Release the doorbell resource */
 506	rc = release_resource(dbell->res);
 507
 508	/* Free the doorbell event */
 509	kfree(dbell);
 510
 511      out:
 512	return rc;
 513}
 514
 515/**
 516 * rio_request_outb_dbell - request outbound doorbell message range
 517 * @rdev: RIO device from which to allocate the doorbell resource
 518 * @start: Doorbell message range start
 519 * @end: Doorbell message range end
 520 *
 521 * Requests ownership of a doorbell message range. Returns a resource
 522 * if the request has been satisfied or %NULL on failure.
 523 */
 524struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
 525					u16 end)
 526{
 527	struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 528
 529	if (res) {
 530		rio_init_dbell_res(res, start, end);
 531
 532		/* Make sure these doorbells aren't in use */
 533		if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
 534		    < 0) {
 535			kfree(res);
 536			res = NULL;
 537		}
 538	}
 539
 540	return res;
 541}
 542
 543/**
 544 * rio_release_outb_dbell - release outbound doorbell message range
 545 * @rdev: RIO device from which to release the doorbell resource
 546 * @res: Doorbell resource to be freed
 547 *
 548 * Releases ownership of a doorbell message range. Returns 0 if the
 549 * request has been satisfied.
 550 */
 551int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
 552{
 553	int rc = release_resource(res);
 554
 555	kfree(res);
 556
 557	return rc;
 558}
 559
 560/**
 561 * rio_add_mport_pw_handler - add port-write message handler into the list
 562 *                            of mport specific pw handlers
 563 * @mport:   RIO master port to bind the portwrite callback
 564 * @context: Handler specific context to pass on event
 565 * @pwcback: Callback to execute when portwrite is received
 566 *
 567 * Returns 0 if the request has been satisfied.
 568 */
 569int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
 570			     int (*pwcback)(struct rio_mport *mport,
 571			     void *context, union rio_pw_msg *msg, int step))
 572{
 573	int rc = 0;
 574	struct rio_pwrite *pwrite;
 575
 576	pwrite = kzalloc(sizeof(struct rio_pwrite), GFP_KERNEL);
 577	if (!pwrite) {
 578		rc = -ENOMEM;
 579		goto out;
 580	}
 581
 582	pwrite->pwcback = pwcback;
 583	pwrite->context = context;
 584	mutex_lock(&mport->lock);
 585	list_add_tail(&pwrite->node, &mport->pwrites);
 586	mutex_unlock(&mport->lock);
 587out:
 588	return rc;
 589}
 590EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
 591
 592/**
 593 * rio_del_mport_pw_handler - remove port-write message handler from the list
 594 *                            of mport specific pw handlers
 595 * @mport:   RIO master port to bind the portwrite callback
 596 * @context: Registered handler specific context to pass on event
 597 * @pwcback: Registered callback function
 598 *
 599 * Returns 0 if the request has been satisfied.
 600 */
 601int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
 602			     int (*pwcback)(struct rio_mport *mport,
 603			     void *context, union rio_pw_msg *msg, int step))
 604{
 605	int rc = -EINVAL;
 606	struct rio_pwrite *pwrite;
 607
 608	mutex_lock(&mport->lock);
 609	list_for_each_entry(pwrite, &mport->pwrites, node) {
 610		if (pwrite->pwcback == pwcback && pwrite->context == context) {
 611			list_del(&pwrite->node);
 612			kfree(pwrite);
 613			rc = 0;
 614			break;
 615		}
 616	}
 617	mutex_unlock(&mport->lock);
 618
 619	return rc;
 620}
 621EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
 622
 623/**
 624 * rio_request_inb_pwrite - request inbound port-write message service for
 625 *                          specific RapidIO device
 626 * @rdev: RIO device to which register inbound port-write callback routine
 627 * @pwcback: Callback routine to execute when port-write is received
 628 *
 629 * Binds a port-write callback function to the RapidIO device.
 630 * Returns 0 if the request has been satisfied.
 631 */
 632int rio_request_inb_pwrite(struct rio_dev *rdev,
 633	int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
 634{
 635	int rc = 0;
 636
 637	spin_lock(&rio_global_list_lock);
 638	if (rdev->pwcback != NULL)
 639		rc = -ENOMEM;
 640	else
 641		rdev->pwcback = pwcback;
 642
 643	spin_unlock(&rio_global_list_lock);
 644	return rc;
 645}
 646EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
 647
 648/**
 649 * rio_release_inb_pwrite - release inbound port-write message service
 650 *                          associated with specific RapidIO device
 651 * @rdev: RIO device which registered for inbound port-write callback
 652 *
 653 * Removes callback from the rio_dev structure. Returns 0 if the request
 654 * has been satisfied.
 655 */
 656int rio_release_inb_pwrite(struct rio_dev *rdev)
 657{
 658	int rc = -ENOMEM;
 659
 660	spin_lock(&rio_global_list_lock);
 661	if (rdev->pwcback) {
 662		rdev->pwcback = NULL;
 663		rc = 0;
 664	}
 665
 666	spin_unlock(&rio_global_list_lock);
 667	return rc;
 668}
 669EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
 670
 671/**
 672 * rio_pw_enable - Enables/disables port-write handling by a master port
 673 * @mport: Master port associated with port-write handling
 674 * @enable:  1=enable,  0=disable
 675 */
 676void rio_pw_enable(struct rio_mport *mport, int enable)
 677{
 678	if (mport->ops->pwenable) {
 679		mutex_lock(&mport->lock);
 680
 681		if ((enable && ++mport->pwe_refcnt == 1) ||
 682		    (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
 683			mport->ops->pwenable(mport, enable);
 684		mutex_unlock(&mport->lock);
 685	}
 686}
 687EXPORT_SYMBOL_GPL(rio_pw_enable);
 688
 689/**
 690 * rio_map_inb_region -- Map inbound memory region.
 691 * @mport: Master port.
 692 * @local: physical address of memory region to be mapped
 693 * @rbase: RIO base address assigned to this window
 694 * @size: Size of the memory region
 695 * @rflags: Flags for mapping.
 696 *
 697 * Return: 0 -- Success.
 698 *
 699 * This function will create the mapping from RIO space to local memory.
 700 */
 701int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
 702			u64 rbase, u32 size, u32 rflags)
 703{
 704	int rc = 0;
 705	unsigned long flags;
 706
 707	if (!mport->ops->map_inb)
 708		return -1;
 709	spin_lock_irqsave(&rio_mmap_lock, flags);
 710	rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
 711	spin_unlock_irqrestore(&rio_mmap_lock, flags);
 712	return rc;
 713}
 714EXPORT_SYMBOL_GPL(rio_map_inb_region);
 715
 716/**
 717 * rio_unmap_inb_region -- Unmap the inbound memory region
 718 * @mport: Master port
 719 * @lstart: physical address of memory region to be unmapped
 720 */
 721void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
 722{
 723	unsigned long flags;
 724	if (!mport->ops->unmap_inb)
 725		return;
 726	spin_lock_irqsave(&rio_mmap_lock, flags);
 727	mport->ops->unmap_inb(mport, lstart);
 728	spin_unlock_irqrestore(&rio_mmap_lock, flags);
 729}
 730EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
 731
 732/**
 733 * rio_map_outb_region -- Map outbound memory region.
 734 * @mport: Master port.
 735 * @destid: destination id window points to
 736 * @rbase: RIO base address window translates to
 737 * @size: Size of the memory region
 738 * @rflags: Flags for mapping.
 739 * @local: physical address of memory region mapped
 740 *
 741 * Return: 0 -- Success.
 742 *
 743 * This function will create the mapping from RIO space to local memory.
 744 */
 745int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
 746			u32 size, u32 rflags, dma_addr_t *local)
 747{
 748	int rc = 0;
 749	unsigned long flags;
 750
 751	if (!mport->ops->map_outb)
 752		return -ENODEV;
 753
 754	spin_lock_irqsave(&rio_mmap_lock, flags);
 755	rc = mport->ops->map_outb(mport, destid, rbase, size,
 756		rflags, local);
 757	spin_unlock_irqrestore(&rio_mmap_lock, flags);
 758
 759	return rc;
 760}
 761EXPORT_SYMBOL_GPL(rio_map_outb_region);
 762
 763/**
 764 * rio_unmap_inb_region -- Unmap the inbound memory region
 765 * @mport: Master port
 766 * @destid: destination id mapping points to
 767 * @rstart: RIO base address window translates to
 768 */
 769void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
 770{
 771	unsigned long flags;
 772
 773	if (!mport->ops->unmap_outb)
 774		return;
 775
 776	spin_lock_irqsave(&rio_mmap_lock, flags);
 777	mport->ops->unmap_outb(mport, destid, rstart);
 778	spin_unlock_irqrestore(&rio_mmap_lock, flags);
 779}
 780EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
 781
 782/**
 783 * rio_mport_get_physefb - Helper function that returns register offset
 784 *                      for Physical Layer Extended Features Block.
 785 * @port: Master port to issue transaction
 786 * @local: Indicate a local master port or remote device access
 787 * @destid: Destination ID of the device
 788 * @hopcount: Number of switch hops to the device
 789 * @rmap: pointer to location to store register map type info
 790 */
 791u32
 792rio_mport_get_physefb(struct rio_mport *port, int local,
 793		      u16 destid, u8 hopcount, u32 *rmap)
 794{
 795	u32 ext_ftr_ptr;
 796	u32 ftr_header;
 797
 798	ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
 799
 800	while (ext_ftr_ptr)  {
 801		if (local)
 802			rio_local_read_config_32(port, ext_ftr_ptr,
 803						 &ftr_header);
 804		else
 805			rio_mport_read_config_32(port, destid, hopcount,
 806						 ext_ftr_ptr, &ftr_header);
 807
 808		ftr_header = RIO_GET_BLOCK_ID(ftr_header);
 809		switch (ftr_header) {
 810
 
 
 
 811		case RIO_EFB_SER_EP_ID:
 812		case RIO_EFB_SER_EP_REC_ID:
 813		case RIO_EFB_SER_EP_FREE_ID:
 814		case RIO_EFB_SER_EP_M1_ID:
 815		case RIO_EFB_SER_EP_SW_M1_ID:
 816		case RIO_EFB_SER_EPF_M1_ID:
 817		case RIO_EFB_SER_EPF_SW_M1_ID:
 818			*rmap = 1;
 819			return ext_ftr_ptr;
 820
 821		case RIO_EFB_SER_EP_M2_ID:
 822		case RIO_EFB_SER_EP_SW_M2_ID:
 823		case RIO_EFB_SER_EPF_M2_ID:
 824		case RIO_EFB_SER_EPF_SW_M2_ID:
 825			*rmap = 2;
 826			return ext_ftr_ptr;
 827
 828		default:
 829			break;
 830		}
 831
 832		ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
 833						hopcount, ext_ftr_ptr);
 834	}
 835
 836	return ext_ftr_ptr;
 837}
 838EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
 839
 840/**
 841 * rio_get_comptag - Begin or continue searching for a RIO device by component tag
 842 * @comp_tag: RIO component tag to match
 843 * @from: Previous RIO device found in search, or %NULL for new search
 844 *
 845 * Iterates through the list of known RIO devices. If a RIO device is
 846 * found with a matching @comp_tag, a pointer to its device
 847 * structure is returned. Otherwise, %NULL is returned. A new search
 848 * is initiated by passing %NULL to the @from argument. Otherwise, if
 849 * @from is not %NULL, searches continue from next device on the global
 850 * list.
 851 */
 852struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
 853{
 854	struct list_head *n;
 855	struct rio_dev *rdev;
 856
 857	spin_lock(&rio_global_list_lock);
 858	n = from ? from->global_list.next : rio_devices.next;
 859
 860	while (n && (n != &rio_devices)) {
 861		rdev = rio_dev_g(n);
 862		if (rdev->comp_tag == comp_tag)
 863			goto exit;
 864		n = n->next;
 865	}
 866	rdev = NULL;
 867exit:
 868	spin_unlock(&rio_global_list_lock);
 869	return rdev;
 870}
 871EXPORT_SYMBOL_GPL(rio_get_comptag);
 872
 873/**
 874 * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
 875 * @rdev: Pointer to RIO device control structure
 876 * @pnum: Switch port number to set LOCKOUT bit
 877 * @lock: Operation : set (=1) or clear (=0)
 878 */
 879int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
 880{
 881	u32 regval;
 882
 883	rio_read_config_32(rdev,
 884		RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
 885		&regval);
 886	if (lock)
 887		regval |= RIO_PORT_N_CTL_LOCKOUT;
 888	else
 889		regval &= ~RIO_PORT_N_CTL_LOCKOUT;
 890
 891	rio_write_config_32(rdev,
 892		RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
 893		regval);
 894	return 0;
 895}
 896EXPORT_SYMBOL_GPL(rio_set_port_lockout);
 897
 898/**
 899 * rio_enable_rx_tx_port - enable input receiver and output transmitter of
 900 * given port
 901 * @port: Master port associated with the RIO network
 902 * @local: local=1 select local port otherwise a far device is reached
 903 * @destid: Destination ID of the device to check host bit
 904 * @hopcount: Number of hops to reach the target
 905 * @port_num: Port (-number on switch) to enable on a far end device
 906 *
 907 * Returns 0 or 1 from on General Control Command and Status Register
 908 * (EXT_PTR+0x3C)
 909 */
 910int rio_enable_rx_tx_port(struct rio_mport *port,
 911			  int local, u16 destid,
 912			  u8 hopcount, u8 port_num)
 913{
 914#ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
 915	u32 regval;
 916	u32 ext_ftr_ptr;
 917	u32 rmap;
 918
 919	/*
 920	* enable rx input tx output port
 921	*/
 922	pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
 923		 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
 924
 925	ext_ftr_ptr = rio_mport_get_physefb(port, local, destid,
 926					    hopcount, &rmap);
 927
 928	if (local) {
 929		rio_local_read_config_32(port,
 930				ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap),
 931				&regval);
 932	} else {
 933		if (rio_mport_read_config_32(port, destid, hopcount,
 934			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
 935				&regval) < 0)
 936			return -EIO;
 937	}
 938
 939	regval = regval | RIO_PORT_N_CTL_EN_RX | RIO_PORT_N_CTL_EN_TX;
 
 
 
 
 
 
 
 
 940
 941	if (local) {
 942		rio_local_write_config_32(port,
 943			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), regval);
 944	} else {
 945		if (rio_mport_write_config_32(port, destid, hopcount,
 946			ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
 947				regval) < 0)
 948			return -EIO;
 949	}
 950#endif
 951	return 0;
 952}
 953EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
 954
 955
 956/**
 957 * rio_chk_dev_route - Validate route to the specified device.
 958 * @rdev:  RIO device failed to respond
 959 * @nrdev: Last active device on the route to rdev
 960 * @npnum: nrdev's port number on the route to rdev
 961 *
 962 * Follows a route to the specified RIO device to determine the last available
 963 * device (and corresponding RIO port) on the route.
 964 */
 965static int
 966rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
 967{
 968	u32 result;
 969	int p_port, rc = -EIO;
 970	struct rio_dev *prev = NULL;
 971
 972	/* Find switch with failed RIO link */
 973	while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
 974		if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
 975			prev = rdev->prev;
 976			break;
 977		}
 978		rdev = rdev->prev;
 979	}
 980
 981	if (prev == NULL)
 982		goto err_out;
 983
 984	p_port = prev->rswitch->route_table[rdev->destid];
 985
 986	if (p_port != RIO_INVALID_ROUTE) {
 987		pr_debug("RIO: link failed on [%s]-P%d\n",
 988			 rio_name(prev), p_port);
 989		*nrdev = prev;
 990		*npnum = p_port;
 991		rc = 0;
 992	} else
 993		pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
 994err_out:
 995	return rc;
 996}
 997
 998/**
 999 * rio_mport_chk_dev_access - Validate access to the specified device.
1000 * @mport: Master port to send transactions
1001 * @destid: Device destination ID in network
1002 * @hopcount: Number of hops into the network
1003 */
1004int
1005rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
1006{
1007	int i = 0;
1008	u32 tmp;
1009
1010	while (rio_mport_read_config_32(mport, destid, hopcount,
1011					RIO_DEV_ID_CAR, &tmp)) {
1012		i++;
1013		if (i == RIO_MAX_CHK_RETRY)
1014			return -EIO;
1015		mdelay(1);
1016	}
1017
1018	return 0;
1019}
1020EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
1021
1022/**
1023 * rio_chk_dev_access - Validate access to the specified device.
1024 * @rdev: Pointer to RIO device control structure
1025 */
1026static int rio_chk_dev_access(struct rio_dev *rdev)
1027{
1028	return rio_mport_chk_dev_access(rdev->net->hport,
1029					rdev->destid, rdev->hopcount);
1030}
1031
1032/**
1033 * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
1034 *                        returns link-response (if requested).
1035 * @rdev: RIO devive to issue Input-status command
1036 * @pnum: Device port number to issue the command
1037 * @lnkresp: Response from a link partner
1038 */
1039static int
1040rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
1041{
1042	u32 regval;
1043	int checkcount;
1044
1045	if (lnkresp) {
1046		/* Read from link maintenance response register
1047		 * to clear valid bit */
1048		rio_read_config_32(rdev,
1049			RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1050			&regval);
1051		udelay(50);
1052	}
1053
1054	/* Issue Input-status command */
1055	rio_write_config_32(rdev,
1056		RIO_DEV_PORT_N_MNT_REQ_CSR(rdev, pnum),
1057		RIO_MNT_REQ_CMD_IS);
1058
1059	/* Exit if the response is not expected */
1060	if (lnkresp == NULL)
1061		return 0;
1062
1063	checkcount = 3;
1064	while (checkcount--) {
1065		udelay(50);
1066		rio_read_config_32(rdev,
1067			RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1068			&regval);
1069		if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
1070			*lnkresp = regval;
1071			return 0;
1072		}
1073	}
1074
1075	return -EIO;
1076}
1077
1078/**
1079 * rio_clr_err_stopped - Clears port Error-stopped states.
1080 * @rdev: Pointer to RIO device control structure
1081 * @pnum: Switch port number to clear errors
1082 * @err_status: port error status (if 0 reads register from device)
1083 *
1084 * TODO: Currently this routine is not compatible with recovery process
1085 * specified for idt_gen3 RapidIO switch devices. It has to be reviewed
1086 * to implement universal recovery process that is compatible full range
1087 * off available devices.
1088 * IDT gen3 switch driver now implements HW-specific error handler that
1089 * issues soft port reset to the port to reset ERR_STOP bits and ackIDs.
1090 */
1091static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
1092{
1093	struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
1094	u32 regval;
1095	u32 far_ackid, far_linkstat, near_ackid;
1096
1097	if (err_status == 0)
1098		rio_read_config_32(rdev,
1099			RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1100			&err_status);
1101
1102	if (err_status & RIO_PORT_N_ERR_STS_OUT_ES) {
1103		pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
1104		/*
1105		 * Send a Link-Request/Input-Status control symbol
1106		 */
1107		if (rio_get_input_status(rdev, pnum, &regval)) {
1108			pr_debug("RIO_EM: Input-status response timeout\n");
1109			goto rd_err;
1110		}
1111
1112		pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
1113			 pnum, regval);
1114		far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
1115		far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
1116		rio_read_config_32(rdev,
1117			RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1118			&regval);
1119		pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
1120		near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
1121		pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
1122			 " near_ackID=0x%02x\n",
1123			pnum, far_ackid, far_linkstat, near_ackid);
1124
1125		/*
1126		 * If required, synchronize ackIDs of near and
1127		 * far sides.
1128		 */
1129		if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
1130		    (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
1131			/* Align near outstanding/outbound ackIDs with
1132			 * far inbound.
1133			 */
1134			rio_write_config_32(rdev,
1135				RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1136				(near_ackid << 24) |
1137					(far_ackid << 8) | far_ackid);
1138			/* Align far outstanding/outbound ackIDs with
1139			 * near inbound.
1140			 */
1141			far_ackid++;
1142			if (!nextdev) {
1143				pr_debug("RIO_EM: nextdev pointer == NULL\n");
1144				goto rd_err;
1145			}
1146
1147			rio_write_config_32(nextdev,
1148				RIO_DEV_PORT_N_ACK_STS_CSR(nextdev,
1149					RIO_GET_PORT_NUM(nextdev->swpinfo)),
1150				(far_ackid << 24) |
1151				(near_ackid << 8) | near_ackid);
1152		}
1153rd_err:
1154		rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1155				   &err_status);
 
1156		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1157	}
1158
1159	if ((err_status & RIO_PORT_N_ERR_STS_INP_ES) && nextdev) {
1160		pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
1161		rio_get_input_status(nextdev,
1162				     RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
1163		udelay(50);
1164
1165		rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1166				   &err_status);
 
1167		pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1168	}
1169
1170	return (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1171			      RIO_PORT_N_ERR_STS_INP_ES)) ? 1 : 0;
1172}
1173
1174/**
1175 * rio_inb_pwrite_handler - inbound port-write message handler
1176 * @mport:  mport device associated with port-write
1177 * @pw_msg: pointer to inbound port-write message
1178 *
1179 * Processes an inbound port-write message. Returns 0 if the request
1180 * has been satisfied.
1181 */
1182int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
1183{
1184	struct rio_dev *rdev;
1185	u32 err_status, em_perrdet, em_ltlerrdet;
1186	int rc, portnum;
1187	struct rio_pwrite *pwrite;
1188
1189#ifdef DEBUG_PW
1190	{
1191		u32 i;
1192
1193		pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
1194		for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
1195			pr_debug("0x%02x: %08x %08x %08x %08x\n",
1196				i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
1197				pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
1198		}
1199	}
1200#endif
1201
1202	rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
1203	if (rdev) {
1204		pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
1205	} else {
1206		pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
1207			__func__, pw_msg->em.comptag);
1208	}
1209
1210	/* Call a device-specific handler (if it is registered for the device).
1211	 * This may be the service for endpoints that send device-specific
1212	 * port-write messages. End-point messages expected to be handled
1213	 * completely by EP specific device driver.
1214	 * For switches rc==0 signals that no standard processing required.
1215	 */
1216	if (rdev && rdev->pwcback) {
1217		rc = rdev->pwcback(rdev, pw_msg, 0);
1218		if (rc == 0)
1219			return 0;
1220	}
1221
1222	mutex_lock(&mport->lock);
1223	list_for_each_entry(pwrite, &mport->pwrites, node)
1224		pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
1225	mutex_unlock(&mport->lock);
1226
1227	if (!rdev)
1228		return 0;
1229
1230	/*
1231	 * FIXME: The code below stays as it was before for now until we decide
1232	 * how to do default PW handling in combination with per-mport callbacks
1233	 */
1234
1235	portnum = pw_msg->em.is_port & 0xFF;
1236
1237	/* Check if device and route to it are functional:
1238	 * Sometimes devices may send PW message(s) just before being
1239	 * powered down (or link being lost).
1240	 */
1241	if (rio_chk_dev_access(rdev)) {
1242		pr_debug("RIO: device access failed - get link partner\n");
1243		/* Scan route to the device and identify failed link.
1244		 * This will replace device and port reported in PW message.
1245		 * PW message should not be used after this point.
1246		 */
1247		if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
1248			pr_err("RIO: Route trace for %s failed\n",
1249				rio_name(rdev));
1250			return -EIO;
1251		}
1252		pw_msg = NULL;
1253	}
1254
1255	/* For End-point devices processing stops here */
1256	if (!(rdev->pef & RIO_PEF_SWITCH))
1257		return 0;
1258
1259	if (rdev->phys_efptr == 0) {
1260		pr_err("RIO_PW: Bad switch initialization for %s\n",
1261			rio_name(rdev));
1262		return 0;
1263	}
1264
1265	/*
1266	 * Process the port-write notification from switch
1267	 */
1268	if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
1269		rdev->rswitch->ops->em_handle(rdev, portnum);
1270
1271	rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1272			   &err_status);
 
1273	pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
1274
1275	if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
1276
1277		if (!(rdev->rswitch->port_ok & (1 << portnum))) {
1278			rdev->rswitch->port_ok |= (1 << portnum);
1279			rio_set_port_lockout(rdev, portnum, 0);
1280			/* Schedule Insertion Service */
1281			pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
1282			       rio_name(rdev), portnum);
1283		}
1284
1285		/* Clear error-stopped states (if reported).
1286		 * Depending on the link partner state, two attempts
1287		 * may be needed for successful recovery.
1288		 */
1289		if (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1290				  RIO_PORT_N_ERR_STS_INP_ES)) {
1291			if (rio_clr_err_stopped(rdev, portnum, err_status))
1292				rio_clr_err_stopped(rdev, portnum, 0);
1293		}
1294	}  else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
1295
1296		if (rdev->rswitch->port_ok & (1 << portnum)) {
1297			rdev->rswitch->port_ok &= ~(1 << portnum);
1298			rio_set_port_lockout(rdev, portnum, 1);
1299
1300			if (rdev->phys_rmap == 1) {
1301			rio_write_config_32(rdev,
1302				RIO_DEV_PORT_N_ACK_STS_CSR(rdev, portnum),
 
1303				RIO_PORT_N_ACK_CLEAR);
1304			} else {
1305				rio_write_config_32(rdev,
1306					RIO_DEV_PORT_N_OB_ACK_CSR(rdev, portnum),
1307					RIO_PORT_N_OB_ACK_CLEAR);
1308				rio_write_config_32(rdev,
1309					RIO_DEV_PORT_N_IB_ACK_CSR(rdev, portnum),
1310					0);
1311			}
1312
1313			/* Schedule Extraction Service */
1314			pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
1315			       rio_name(rdev), portnum);
1316		}
1317	}
1318
1319	rio_read_config_32(rdev,
1320		rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
1321	if (em_perrdet) {
1322		pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
1323			 portnum, em_perrdet);
1324		/* Clear EM Port N Error Detect CSR */
1325		rio_write_config_32(rdev,
1326			rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
1327	}
1328
1329	rio_read_config_32(rdev,
1330		rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1331	if (em_ltlerrdet) {
1332		pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1333			 em_ltlerrdet);
1334		/* Clear EM L/T Layer Error Detect CSR */
1335		rio_write_config_32(rdev,
1336			rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1337	}
1338
1339	/* Clear remaining error bits and Port-Write Pending bit */
1340	rio_write_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1341			    err_status);
 
1342
1343	return 0;
1344}
1345EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1346
1347/**
1348 * rio_mport_get_efb - get pointer to next extended features block
1349 * @port: Master port to issue transaction
1350 * @local: Indicate a local master port or remote device access
1351 * @destid: Destination ID of the device
1352 * @hopcount: Number of switch hops to the device
1353 * @from: Offset of  current Extended Feature block header (if 0 starts
1354 * from	ExtFeaturePtr)
1355 */
1356u32
1357rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1358		      u8 hopcount, u32 from)
1359{
1360	u32 reg_val;
1361
1362	if (from == 0) {
1363		if (local)
1364			rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1365						 &reg_val);
1366		else
1367			rio_mport_read_config_32(port, destid, hopcount,
1368						 RIO_ASM_INFO_CAR, &reg_val);
1369		return reg_val & RIO_EXT_FTR_PTR_MASK;
1370	} else {
1371		if (local)
1372			rio_local_read_config_32(port, from, &reg_val);
1373		else
1374			rio_mport_read_config_32(port, destid, hopcount,
1375						 from, &reg_val);
1376		return RIO_GET_BLOCK_ID(reg_val);
1377	}
1378}
1379EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1380
1381/**
1382 * rio_mport_get_feature - query for devices' extended features
1383 * @port: Master port to issue transaction
1384 * @local: Indicate a local master port or remote device access
1385 * @destid: Destination ID of the device
1386 * @hopcount: Number of switch hops to the device
1387 * @ftr: Extended feature code
1388 *
1389 * Tell if a device supports a given RapidIO capability.
1390 * Returns the offset of the requested extended feature
1391 * block within the device's RIO configuration space or
1392 * 0 in case the device does not support it.
 
 
 
 
 
 
 
 
 
 
 
 
 
1393 */
1394u32
1395rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1396		      u8 hopcount, int ftr)
1397{
1398	u32 asm_info, ext_ftr_ptr, ftr_header;
1399
1400	if (local)
1401		rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1402	else
1403		rio_mport_read_config_32(port, destid, hopcount,
1404					 RIO_ASM_INFO_CAR, &asm_info);
1405
1406	ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1407
1408	while (ext_ftr_ptr) {
1409		if (local)
1410			rio_local_read_config_32(port, ext_ftr_ptr,
1411						 &ftr_header);
1412		else
1413			rio_mport_read_config_32(port, destid, hopcount,
1414						 ext_ftr_ptr, &ftr_header);
1415		if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1416			return ext_ftr_ptr;
1417		if (!(ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header)))
1418			break;
1419	}
1420
1421	return 0;
1422}
1423EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1424
1425/**
1426 * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
1427 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1428 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1429 * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
1430 * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
1431 * @from: Previous RIO device found in search, or %NULL for new search
1432 *
1433 * Iterates through the list of known RIO devices. If a RIO device is
1434 * found with a matching @vid, @did, @asm_vid, @asm_did, the reference
1435 * count to the device is incrememted and a pointer to its device
1436 * structure is returned. Otherwise, %NULL is returned. A new search
1437 * is initiated by passing %NULL to the @from argument. Otherwise, if
1438 * @from is not %NULL, searches continue from next device on the global
1439 * list. The reference count for @from is always decremented if it is
1440 * not %NULL.
1441 */
1442struct rio_dev *rio_get_asm(u16 vid, u16 did,
1443			    u16 asm_vid, u16 asm_did, struct rio_dev *from)
1444{
1445	struct list_head *n;
1446	struct rio_dev *rdev;
1447
1448	WARN_ON(in_interrupt());
1449	spin_lock(&rio_global_list_lock);
1450	n = from ? from->global_list.next : rio_devices.next;
1451
1452	while (n && (n != &rio_devices)) {
1453		rdev = rio_dev_g(n);
1454		if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
1455		    (did == RIO_ANY_ID || rdev->did == did) &&
1456		    (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
1457		    (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
1458			goto exit;
1459		n = n->next;
1460	}
1461	rdev = NULL;
1462      exit:
1463	rio_dev_put(from);
1464	rdev = rio_dev_get(rdev);
1465	spin_unlock(&rio_global_list_lock);
1466	return rdev;
1467}
1468
1469/**
1470 * rio_get_device - Begin or continue searching for a RIO device by vid/did
1471 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1472 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1473 * @from: Previous RIO device found in search, or %NULL for new search
1474 *
1475 * Iterates through the list of known RIO devices. If a RIO device is
1476 * found with a matching @vid and @did, the reference count to the
1477 * device is incrememted and a pointer to its device structure is returned.
1478 * Otherwise, %NULL is returned. A new search is initiated by passing %NULL
1479 * to the @from argument. Otherwise, if @from is not %NULL, searches
1480 * continue from next device on the global list. The reference count for
1481 * @from is always decremented if it is not %NULL.
1482 */
1483struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
1484{
1485	return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
1486}
1487
1488/**
1489 * rio_std_route_add_entry - Add switch route table entry using standard
1490 *   registers defined in RIO specification rev.1.3
1491 * @mport: Master port to issue transaction
1492 * @destid: Destination ID of the device
1493 * @hopcount: Number of switch hops to the device
1494 * @table: routing table ID (global or port-specific)
1495 * @route_destid: destID entry in the RT
1496 * @route_port: destination port for specified destID
1497 */
1498static int
1499rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1500			u16 table, u16 route_destid, u8 route_port)
1501{
1502	if (table == RIO_GLOBAL_TABLE) {
1503		rio_mport_write_config_32(mport, destid, hopcount,
1504				RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1505				(u32)route_destid);
1506		rio_mport_write_config_32(mport, destid, hopcount,
1507				RIO_STD_RTE_CONF_PORT_SEL_CSR,
1508				(u32)route_port);
1509	}
1510
1511	udelay(10);
1512	return 0;
1513}
1514
1515/**
1516 * rio_std_route_get_entry - Read switch route table entry (port number)
1517 *   associated with specified destID using standard registers defined in RIO
1518 *   specification rev.1.3
1519 * @mport: Master port to issue transaction
1520 * @destid: Destination ID of the device
1521 * @hopcount: Number of switch hops to the device
1522 * @table: routing table ID (global or port-specific)
1523 * @route_destid: destID entry in the RT
1524 * @route_port: returned destination port for specified destID
1525 */
1526static int
1527rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1528			u16 table, u16 route_destid, u8 *route_port)
1529{
1530	u32 result;
1531
1532	if (table == RIO_GLOBAL_TABLE) {
1533		rio_mport_write_config_32(mport, destid, hopcount,
1534				RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1535		rio_mport_read_config_32(mport, destid, hopcount,
1536				RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1537
1538		*route_port = (u8)result;
1539	}
1540
1541	return 0;
1542}
1543
1544/**
1545 * rio_std_route_clr_table - Clear swotch route table using standard registers
1546 *   defined in RIO specification rev.1.3.
1547 * @mport: Master port to issue transaction
1548 * @destid: Destination ID of the device
1549 * @hopcount: Number of switch hops to the device
1550 * @table: routing table ID (global or port-specific)
1551 */
1552static int
1553rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1554			u16 table)
1555{
1556	u32 max_destid = 0xff;
1557	u32 i, pef, id_inc = 1, ext_cfg = 0;
1558	u32 port_sel = RIO_INVALID_ROUTE;
1559
1560	if (table == RIO_GLOBAL_TABLE) {
1561		rio_mport_read_config_32(mport, destid, hopcount,
1562					 RIO_PEF_CAR, &pef);
1563
1564		if (mport->sys_size) {
1565			rio_mport_read_config_32(mport, destid, hopcount,
1566						 RIO_SWITCH_RT_LIMIT,
1567						 &max_destid);
1568			max_destid &= RIO_RT_MAX_DESTID;
1569		}
1570
1571		if (pef & RIO_PEF_EXT_RT) {
1572			ext_cfg = 0x80000000;
1573			id_inc = 4;
1574			port_sel = (RIO_INVALID_ROUTE << 24) |
1575				   (RIO_INVALID_ROUTE << 16) |
1576				   (RIO_INVALID_ROUTE << 8) |
1577				   RIO_INVALID_ROUTE;
1578		}
1579
1580		for (i = 0; i <= max_destid;) {
1581			rio_mport_write_config_32(mport, destid, hopcount,
1582					RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1583					ext_cfg | i);
1584			rio_mport_write_config_32(mport, destid, hopcount,
1585					RIO_STD_RTE_CONF_PORT_SEL_CSR,
1586					port_sel);
1587			i += id_inc;
1588		}
1589	}
1590
1591	udelay(10);
1592	return 0;
1593}
1594
1595/**
1596 * rio_lock_device - Acquires host device lock for specified device
1597 * @port: Master port to send transaction
1598 * @destid: Destination ID for device/switch
1599 * @hopcount: Hopcount to reach switch
1600 * @wait_ms: Max wait time in msec (0 = no timeout)
1601 *
1602 * Attepts to acquire host device lock for specified device
1603 * Returns 0 if device lock acquired or EINVAL if timeout expires.
1604 */
1605int rio_lock_device(struct rio_mport *port, u16 destid,
1606		    u8 hopcount, int wait_ms)
1607{
1608	u32 result;
1609	int tcnt = 0;
1610
1611	/* Attempt to acquire device lock */
1612	rio_mport_write_config_32(port, destid, hopcount,
1613				  RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1614	rio_mport_read_config_32(port, destid, hopcount,
1615				 RIO_HOST_DID_LOCK_CSR, &result);
1616
1617	while (result != port->host_deviceid) {
1618		if (wait_ms != 0 && tcnt == wait_ms) {
1619			pr_debug("RIO: timeout when locking device %x:%x\n",
1620				destid, hopcount);
1621			return -EINVAL;
1622		}
1623
1624		/* Delay a bit */
1625		mdelay(1);
1626		tcnt++;
1627		/* Try to acquire device lock again */
1628		rio_mport_write_config_32(port, destid,
1629			hopcount,
1630			RIO_HOST_DID_LOCK_CSR,
1631			port->host_deviceid);
1632		rio_mport_read_config_32(port, destid,
1633			hopcount,
1634			RIO_HOST_DID_LOCK_CSR, &result);
1635	}
1636
1637	return 0;
1638}
1639EXPORT_SYMBOL_GPL(rio_lock_device);
1640
1641/**
1642 * rio_unlock_device - Releases host device lock for specified device
1643 * @port: Master port to send transaction
1644 * @destid: Destination ID for device/switch
1645 * @hopcount: Hopcount to reach switch
1646 *
1647 * Returns 0 if device lock released or EINVAL if fails.
1648 */
1649int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1650{
1651	u32 result;
1652
1653	/* Release device lock */
1654	rio_mport_write_config_32(port, destid,
1655				  hopcount,
1656				  RIO_HOST_DID_LOCK_CSR,
1657				  port->host_deviceid);
1658	rio_mport_read_config_32(port, destid, hopcount,
1659		RIO_HOST_DID_LOCK_CSR, &result);
1660	if ((result & 0xffff) != 0xffff) {
1661		pr_debug("RIO: badness when releasing device lock %x:%x\n",
1662			 destid, hopcount);
1663		return -EINVAL;
1664	}
1665
1666	return 0;
1667}
1668EXPORT_SYMBOL_GPL(rio_unlock_device);
1669
1670/**
1671 * rio_route_add_entry- Add a route entry to a switch routing table
1672 * @rdev: RIO device
1673 * @table: Routing table ID
1674 * @route_destid: Destination ID to be routed
1675 * @route_port: Port number to be routed
1676 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1677 *
1678 * If available calls the switch specific add_entry() method to add a route
1679 * entry into a switch routing table. Otherwise uses standard RT update method
1680 * as defined by RapidIO specification. A specific routing table can be selected
1681 * using the @table argument if a switch has per port routing tables or
1682 * the standard (or global) table may be used by passing
1683 * %RIO_GLOBAL_TABLE in @table.
1684 *
1685 * Returns %0 on success or %-EINVAL on failure.
1686 */
1687int rio_route_add_entry(struct rio_dev *rdev,
1688			u16 table, u16 route_destid, u8 route_port, int lock)
1689{
1690	int rc = -EINVAL;
1691	struct rio_switch_ops *ops = rdev->rswitch->ops;
1692
1693	if (lock) {
1694		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1695				     rdev->hopcount, 1000);
1696		if (rc)
1697			return rc;
1698	}
1699
1700	spin_lock(&rdev->rswitch->lock);
1701
1702	if (ops == NULL || ops->add_entry == NULL) {
1703		rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1704					     rdev->hopcount, table,
1705					     route_destid, route_port);
1706	} else if (try_module_get(ops->owner)) {
1707		rc = ops->add_entry(rdev->net->hport, rdev->destid,
1708				    rdev->hopcount, table, route_destid,
1709				    route_port);
1710		module_put(ops->owner);
1711	}
1712
1713	spin_unlock(&rdev->rswitch->lock);
1714
1715	if (lock)
1716		rio_unlock_device(rdev->net->hport, rdev->destid,
1717				  rdev->hopcount);
1718
1719	return rc;
1720}
1721EXPORT_SYMBOL_GPL(rio_route_add_entry);
1722
1723/**
1724 * rio_route_get_entry- Read an entry from a switch routing table
1725 * @rdev: RIO device
1726 * @table: Routing table ID
1727 * @route_destid: Destination ID to be routed
1728 * @route_port: Pointer to read port number into
1729 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1730 *
1731 * If available calls the switch specific get_entry() method to fetch a route
1732 * entry from a switch routing table. Otherwise uses standard RT read method
1733 * as defined by RapidIO specification. A specific routing table can be selected
1734 * using the @table argument if a switch has per port routing tables or
1735 * the standard (or global) table may be used by passing
1736 * %RIO_GLOBAL_TABLE in @table.
1737 *
1738 * Returns %0 on success or %-EINVAL on failure.
1739 */
1740int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1741			u16 route_destid, u8 *route_port, int lock)
1742{
1743	int rc = -EINVAL;
1744	struct rio_switch_ops *ops = rdev->rswitch->ops;
1745
1746	if (lock) {
1747		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1748				     rdev->hopcount, 1000);
1749		if (rc)
1750			return rc;
1751	}
1752
1753	spin_lock(&rdev->rswitch->lock);
1754
1755	if (ops == NULL || ops->get_entry == NULL) {
1756		rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1757					     rdev->hopcount, table,
1758					     route_destid, route_port);
1759	} else if (try_module_get(ops->owner)) {
1760		rc = ops->get_entry(rdev->net->hport, rdev->destid,
1761				    rdev->hopcount, table, route_destid,
1762				    route_port);
1763		module_put(ops->owner);
1764	}
1765
1766	spin_unlock(&rdev->rswitch->lock);
1767
1768	if (lock)
1769		rio_unlock_device(rdev->net->hport, rdev->destid,
1770				  rdev->hopcount);
1771	return rc;
1772}
1773EXPORT_SYMBOL_GPL(rio_route_get_entry);
1774
1775/**
1776 * rio_route_clr_table - Clear a switch routing table
1777 * @rdev: RIO device
1778 * @table: Routing table ID
1779 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1780 *
1781 * If available calls the switch specific clr_table() method to clear a switch
1782 * routing table. Otherwise uses standard RT write method as defined by RapidIO
1783 * specification. A specific routing table can be selected using the @table
1784 * argument if a switch has per port routing tables or the standard (or global)
1785 * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1786 *
1787 * Returns %0 on success or %-EINVAL on failure.
1788 */
1789int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1790{
1791	int rc = -EINVAL;
1792	struct rio_switch_ops *ops = rdev->rswitch->ops;
1793
1794	if (lock) {
1795		rc = rio_lock_device(rdev->net->hport, rdev->destid,
1796				     rdev->hopcount, 1000);
1797		if (rc)
1798			return rc;
1799	}
1800
1801	spin_lock(&rdev->rswitch->lock);
1802
1803	if (ops == NULL || ops->clr_table == NULL) {
1804		rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1805					     rdev->hopcount, table);
1806	} else if (try_module_get(ops->owner)) {
1807		rc = ops->clr_table(rdev->net->hport, rdev->destid,
1808				    rdev->hopcount, table);
1809
1810		module_put(ops->owner);
1811	}
1812
1813	spin_unlock(&rdev->rswitch->lock);
1814
1815	if (lock)
1816		rio_unlock_device(rdev->net->hport, rdev->destid,
1817				  rdev->hopcount);
1818
1819	return rc;
1820}
1821EXPORT_SYMBOL_GPL(rio_route_clr_table);
1822
1823#ifdef CONFIG_RAPIDIO_DMA_ENGINE
1824
1825static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1826{
1827	struct rio_mport *mport = arg;
1828
1829	/* Check that DMA device belongs to the right MPORT */
1830	return mport == container_of(chan->device, struct rio_mport, dma);
1831}
1832
1833/**
1834 * rio_request_mport_dma - request RapidIO capable DMA channel associated
1835 *   with specified local RapidIO mport device.
1836 * @mport: RIO mport to perform DMA data transfers
1837 *
1838 * Returns pointer to allocated DMA channel or NULL if failed.
1839 */
1840struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1841{
1842	dma_cap_mask_t mask;
1843
1844	dma_cap_zero(mask);
1845	dma_cap_set(DMA_SLAVE, mask);
1846	return dma_request_channel(mask, rio_chan_filter, mport);
1847}
1848EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1849
1850/**
1851 * rio_request_dma - request RapidIO capable DMA channel that supports
1852 *   specified target RapidIO device.
1853 * @rdev: RIO device associated with DMA transfer
1854 *
1855 * Returns pointer to allocated DMA channel or NULL if failed.
1856 */
1857struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1858{
1859	return rio_request_mport_dma(rdev->net->hport);
1860}
1861EXPORT_SYMBOL_GPL(rio_request_dma);
1862
1863/**
1864 * rio_release_dma - release specified DMA channel
1865 * @dchan: DMA channel to release
1866 */
1867void rio_release_dma(struct dma_chan *dchan)
1868{
1869	dma_release_channel(dchan);
1870}
1871EXPORT_SYMBOL_GPL(rio_release_dma);
1872
1873/**
1874 * rio_dma_prep_xfer - RapidIO specific wrapper
1875 *   for device_prep_slave_sg callback defined by DMAENGINE.
1876 * @dchan: DMA channel to configure
1877 * @destid: target RapidIO device destination ID
1878 * @data: RIO specific data descriptor
1879 * @direction: DMA data transfer direction (TO or FROM the device)
1880 * @flags: dmaengine defined flags
1881 *
1882 * Initializes RapidIO capable DMA channel for the specified data transfer.
1883 * Uses DMA channel private extension to pass information related to remote
1884 * target RIO device.
1885 *
1886 * Returns: pointer to DMA transaction descriptor if successful,
1887 *          error-valued pointer or NULL if failed.
1888 */
1889struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1890	u16 destid, struct rio_dma_data *data,
1891	enum dma_transfer_direction direction, unsigned long flags)
1892{
1893	struct rio_dma_ext rio_ext;
1894
1895	if (dchan->device->device_prep_slave_sg == NULL) {
1896		pr_err("%s: prep_rio_sg == NULL\n", __func__);
1897		return NULL;
1898	}
1899
1900	rio_ext.destid = destid;
1901	rio_ext.rio_addr_u = data->rio_addr_u;
1902	rio_ext.rio_addr = data->rio_addr;
1903	rio_ext.wr_type = data->wr_type;
1904
1905	return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1906				     direction, flags, &rio_ext);
1907}
1908EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1909
1910/**
1911 * rio_dma_prep_slave_sg - RapidIO specific wrapper
1912 *   for device_prep_slave_sg callback defined by DMAENGINE.
1913 * @rdev: RIO device control structure
1914 * @dchan: DMA channel to configure
1915 * @data: RIO specific data descriptor
1916 * @direction: DMA data transfer direction (TO or FROM the device)
1917 * @flags: dmaengine defined flags
1918 *
1919 * Initializes RapidIO capable DMA channel for the specified data transfer.
1920 * Uses DMA channel private extension to pass information related to remote
1921 * target RIO device.
1922 *
1923 * Returns: pointer to DMA transaction descriptor if successful,
1924 *          error-valued pointer or NULL if failed.
1925 */
1926struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1927	struct dma_chan *dchan, struct rio_dma_data *data,
1928	enum dma_transfer_direction direction, unsigned long flags)
1929{
1930	return rio_dma_prep_xfer(dchan,	rdev->destid, data, direction, flags);
1931}
1932EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1933
1934#endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1935
1936/**
1937 * rio_find_mport - find RIO mport by its ID
1938 * @mport_id: number (ID) of mport device
1939 *
1940 * Given a RIO mport number, the desired mport is located
1941 * in the global list of mports. If the mport is found, a pointer to its
1942 * data structure is returned.  If no mport is found, %NULL is returned.
1943 */
1944struct rio_mport *rio_find_mport(int mport_id)
1945{
1946	struct rio_mport *port;
1947
1948	mutex_lock(&rio_mport_list_lock);
1949	list_for_each_entry(port, &rio_mports, node) {
1950		if (port->id == mport_id)
1951			goto found;
1952	}
1953	port = NULL;
1954found:
1955	mutex_unlock(&rio_mport_list_lock);
1956
1957	return port;
1958}
1959
1960/**
1961 * rio_register_scan - enumeration/discovery method registration interface
1962 * @mport_id: mport device ID for which fabric scan routine has to be set
1963 *            (RIO_MPORT_ANY = set for all available mports)
1964 * @scan_ops: enumeration/discovery operations structure
1965 *
1966 * Registers enumeration/discovery operations with RapidIO subsystem and
1967 * attaches it to the specified mport device (or all available mports
1968 * if RIO_MPORT_ANY is specified).
1969 *
1970 * Returns error if the mport already has an enumerator attached to it.
1971 * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1972 */
1973int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1974{
1975	struct rio_mport *port;
1976	struct rio_scan_node *scan;
1977	int rc = 0;
1978
1979	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1980
1981	if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1982	    !scan_ops)
1983		return -EINVAL;
1984
1985	mutex_lock(&rio_mport_list_lock);
1986
1987	/*
1988	 * Check if there is another enumerator already registered for
1989	 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1990	 * for the same mport ID are not supported.
1991	 */
1992	list_for_each_entry(scan, &rio_scans, node) {
1993		if (scan->mport_id == mport_id) {
1994			rc = -EBUSY;
1995			goto err_out;
1996		}
1997	}
1998
1999	/*
2000	 * Allocate and initialize new scan registration node.
2001	 */
2002	scan = kzalloc(sizeof(*scan), GFP_KERNEL);
2003	if (!scan) {
2004		rc = -ENOMEM;
2005		goto err_out;
2006	}
2007
2008	scan->mport_id = mport_id;
2009	scan->ops = scan_ops;
2010
2011	/*
2012	 * Traverse the list of registered mports to attach this new scan.
2013	 *
2014	 * The new scan with matching mport ID overrides any previously attached
2015	 * scan assuming that old scan (if any) is the default one (based on the
2016	 * enumerator registration check above).
2017	 * If the new scan is the global one, it will be attached only to mports
2018	 * that do not have their own individual operations already attached.
2019	 */
2020	list_for_each_entry(port, &rio_mports, node) {
2021		if (port->id == mport_id) {
2022			port->nscan = scan_ops;
2023			break;
2024		} else if (mport_id == RIO_MPORT_ANY && !port->nscan)
2025			port->nscan = scan_ops;
2026	}
2027
2028	list_add_tail(&scan->node, &rio_scans);
2029
2030err_out:
2031	mutex_unlock(&rio_mport_list_lock);
2032
2033	return rc;
2034}
2035EXPORT_SYMBOL_GPL(rio_register_scan);
2036
2037/**
2038 * rio_unregister_scan - removes enumeration/discovery method from mport
2039 * @mport_id: mport device ID for which fabric scan routine has to be
2040 *            unregistered (RIO_MPORT_ANY = apply to all mports that use
2041 *            the specified scan_ops)
2042 * @scan_ops: enumeration/discovery operations structure
2043 *
2044 * Removes enumeration or discovery method assigned to the specified mport
2045 * device. If RIO_MPORT_ANY is specified, removes the specified operations from
2046 * all mports that have them attached.
2047 */
2048int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
2049{
2050	struct rio_mport *port;
2051	struct rio_scan_node *scan;
2052
2053	pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
2054
2055	if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
2056		return -EINVAL;
2057
2058	mutex_lock(&rio_mport_list_lock);
2059
2060	list_for_each_entry(port, &rio_mports, node)
2061		if (port->id == mport_id ||
2062		    (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
2063			port->nscan = NULL;
2064
2065	list_for_each_entry(scan, &rio_scans, node) {
2066		if (scan->mport_id == mport_id) {
2067			list_del(&scan->node);
2068			kfree(scan);
2069			break;
2070		}
2071	}
2072
2073	mutex_unlock(&rio_mport_list_lock);
2074
2075	return 0;
2076}
2077EXPORT_SYMBOL_GPL(rio_unregister_scan);
2078
2079/**
2080 * rio_mport_scan - execute enumeration/discovery on the specified mport
2081 * @mport_id: number (ID) of mport device
2082 */
2083int rio_mport_scan(int mport_id)
2084{
2085	struct rio_mport *port = NULL;
2086	int rc;
2087
2088	mutex_lock(&rio_mport_list_lock);
2089	list_for_each_entry(port, &rio_mports, node) {
2090		if (port->id == mport_id)
2091			goto found;
2092	}
2093	mutex_unlock(&rio_mport_list_lock);
2094	return -ENODEV;
2095found:
2096	if (!port->nscan) {
2097		mutex_unlock(&rio_mport_list_lock);
2098		return -EINVAL;
2099	}
2100
2101	if (!try_module_get(port->nscan->owner)) {
2102		mutex_unlock(&rio_mport_list_lock);
2103		return -ENODEV;
2104	}
2105
2106	mutex_unlock(&rio_mport_list_lock);
2107
2108	if (port->host_deviceid >= 0)
2109		rc = port->nscan->enumerate(port, 0);
2110	else
2111		rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
2112
2113	module_put(port->nscan->owner);
2114	return rc;
2115}
2116
2117static void rio_fixup_device(struct rio_dev *dev)
2118{
2119}
2120
2121static int rio_init(void)
2122{
2123	struct rio_dev *dev = NULL;
2124
2125	while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
2126		rio_fixup_device(dev);
2127	}
2128	return 0;
2129}
2130
2131static struct workqueue_struct *rio_wq;
2132
2133struct rio_disc_work {
2134	struct work_struct	work;
2135	struct rio_mport	*mport;
2136};
2137
2138static void disc_work_handler(struct work_struct *_work)
2139{
2140	struct rio_disc_work *work;
2141
2142	work = container_of(_work, struct rio_disc_work, work);
2143	pr_debug("RIO: discovery work for mport %d %s\n",
2144		 work->mport->id, work->mport->name);
2145	if (try_module_get(work->mport->nscan->owner)) {
2146		work->mport->nscan->discover(work->mport, 0);
2147		module_put(work->mport->nscan->owner);
2148	}
2149}
2150
2151int rio_init_mports(void)
2152{
2153	struct rio_mport *port;
2154	struct rio_disc_work *work;
2155	int n = 0;
2156
2157	if (!next_portid)
2158		return -ENODEV;
2159
2160	/*
2161	 * First, run enumerations and check if we need to perform discovery
2162	 * on any of the registered mports.
2163	 */
2164	mutex_lock(&rio_mport_list_lock);
2165	list_for_each_entry(port, &rio_mports, node) {
2166		if (port->host_deviceid >= 0) {
2167			if (port->nscan && try_module_get(port->nscan->owner)) {
2168				port->nscan->enumerate(port, 0);
2169				module_put(port->nscan->owner);
2170			}
2171		} else
2172			n++;
2173	}
2174	mutex_unlock(&rio_mport_list_lock);
2175
2176	if (!n)
2177		goto no_disc;
2178
2179	/*
2180	 * If we have mports that require discovery schedule a discovery work
2181	 * for each of them. If the code below fails to allocate needed
2182	 * resources, exit without error to keep results of enumeration
2183	 * process (if any).
2184	 * TODO: Implement restart of discovery process for all or
2185	 * individual discovering mports.
2186	 */
2187	rio_wq = alloc_workqueue("riodisc", 0, 0);
2188	if (!rio_wq) {
2189		pr_err("RIO: unable allocate rio_wq\n");
2190		goto no_disc;
2191	}
2192
2193	work = kcalloc(n, sizeof *work, GFP_KERNEL);
2194	if (!work) {
2195		pr_err("RIO: no memory for work struct\n");
2196		destroy_workqueue(rio_wq);
2197		goto no_disc;
2198	}
2199
2200	n = 0;
2201	mutex_lock(&rio_mport_list_lock);
2202	list_for_each_entry(port, &rio_mports, node) {
2203		if (port->host_deviceid < 0 && port->nscan) {
2204			work[n].mport = port;
2205			INIT_WORK(&work[n].work, disc_work_handler);
2206			queue_work(rio_wq, &work[n].work);
2207			n++;
2208		}
2209	}
2210
2211	flush_workqueue(rio_wq);
2212	mutex_unlock(&rio_mport_list_lock);
2213	pr_debug("RIO: destroy discovery workqueue\n");
2214	destroy_workqueue(rio_wq);
2215	kfree(work);
2216
2217no_disc:
2218	rio_init();
2219
2220	return 0;
2221}
2222
2223static int rio_get_hdid(int index)
2224{
2225	if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
2226		return -1;
2227
2228	return hdid[index];
2229}
2230
2231int rio_mport_initialize(struct rio_mport *mport)
2232{
2233	if (next_portid >= RIO_MAX_MPORTS) {
2234		pr_err("RIO: reached specified max number of mports\n");
2235		return -ENODEV;
2236	}
2237
2238	atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
2239	mport->id = next_portid++;
2240	mport->host_deviceid = rio_get_hdid(mport->id);
2241	mport->nscan = NULL;
2242	mutex_init(&mport->lock);
2243	mport->pwe_refcnt = 0;
2244	INIT_LIST_HEAD(&mport->pwrites);
2245
2246	return 0;
2247}
2248EXPORT_SYMBOL_GPL(rio_mport_initialize);
2249
2250int rio_register_mport(struct rio_mport *port)
2251{
2252	struct rio_scan_node *scan = NULL;
2253	int res = 0;
2254
2255	mutex_lock(&rio_mport_list_lock);
2256
2257	/*
2258	 * Check if there are any registered enumeration/discovery operations
2259	 * that have to be attached to the added mport.
2260	 */
2261	list_for_each_entry(scan, &rio_scans, node) {
2262		if (port->id == scan->mport_id ||
2263		    scan->mport_id == RIO_MPORT_ANY) {
2264			port->nscan = scan->ops;
2265			if (port->id == scan->mport_id)
2266				break;
2267		}
2268	}
2269
2270	list_add_tail(&port->node, &rio_mports);
2271	mutex_unlock(&rio_mport_list_lock);
2272
2273	dev_set_name(&port->dev, "rapidio%d", port->id);
2274	port->dev.class = &rio_mport_class;
2275	atomic_set(&port->state, RIO_DEVICE_RUNNING);
2276
2277	res = device_register(&port->dev);
2278	if (res)
2279		dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
2280			port->id, res);
2281	else
2282		dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
2283
2284	return res;
2285}
2286EXPORT_SYMBOL_GPL(rio_register_mport);
2287
2288static int rio_mport_cleanup_callback(struct device *dev, void *data)
2289{
2290	struct rio_dev *rdev = to_rio_dev(dev);
2291
2292	if (dev->bus == &rio_bus_type)
2293		rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
2294	return 0;
2295}
2296
2297static int rio_net_remove_children(struct rio_net *net)
2298{
2299	/*
2300	 * Unregister all RapidIO devices residing on this net (this will
2301	 * invoke notification of registered subsystem interfaces as well).
2302	 */
2303	device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
2304	return 0;
2305}
2306
2307int rio_unregister_mport(struct rio_mport *port)
2308{
2309	pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
2310
2311	/* Transition mport to the SHUTDOWN state */
2312	if (atomic_cmpxchg(&port->state,
2313			   RIO_DEVICE_RUNNING,
2314			   RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
2315		pr_err("RIO: %s unexpected state transition for mport %s\n",
2316			__func__, port->name);
2317	}
2318
2319	if (port->net && port->net->hport == port) {
2320		rio_net_remove_children(port->net);
2321		rio_free_net(port->net);
2322	}
2323
2324	/*
2325	 * Unregister all RapidIO devices attached to this mport (this will
2326	 * invoke notification of registered subsystem interfaces as well).
2327	 */
2328	mutex_lock(&rio_mport_list_lock);
2329	list_del(&port->node);
2330	mutex_unlock(&rio_mport_list_lock);
2331	device_unregister(&port->dev);
2332
2333	return 0;
2334}
2335EXPORT_SYMBOL_GPL(rio_unregister_mport);
2336
2337EXPORT_SYMBOL_GPL(rio_local_get_device_id);
2338EXPORT_SYMBOL_GPL(rio_get_device);
2339EXPORT_SYMBOL_GPL(rio_get_asm);
2340EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
2341EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
2342EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
2343EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
2344EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
2345EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
2346EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
2347EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
2348EXPORT_SYMBOL_GPL(rio_init_mports);