Loading...
Note: File does not exist in v4.6.
1/*
2 * Copyright 2007-2008 Pierre Ossman
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or (at
7 * your option) any later version.
8 */
9
10#include <linux/mmc/core.h>
11#include <linux/mmc/card.h>
12#include <linux/mmc/host.h>
13#include <linux/mmc/mmc.h>
14#include <linux/slab.h>
15
16#include <linux/scatterlist.h>
17#include <linux/swap.h> /* For nr_free_buffer_pages() */
18#include <linux/list.h>
19
20#include <linux/debugfs.h>
21#include <linux/uaccess.h>
22#include <linux/seq_file.h>
23#include <linux/module.h>
24
25#define RESULT_OK 0
26#define RESULT_FAIL 1
27#define RESULT_UNSUP_HOST 2
28#define RESULT_UNSUP_CARD 3
29
30#define BUFFER_ORDER 2
31#define BUFFER_SIZE (PAGE_SIZE << BUFFER_ORDER)
32
33#define TEST_ALIGN_END 8
34
35/*
36 * Limit the test area size to the maximum MMC HC erase group size. Note that
37 * the maximum SD allocation unit size is just 4MiB.
38 */
39#define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
40
41/**
42 * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
43 * @page: first page in the allocation
44 * @order: order of the number of pages allocated
45 */
46struct mmc_test_pages {
47 struct page *page;
48 unsigned int order;
49};
50
51/**
52 * struct mmc_test_mem - allocated memory.
53 * @arr: array of allocations
54 * @cnt: number of allocations
55 */
56struct mmc_test_mem {
57 struct mmc_test_pages *arr;
58 unsigned int cnt;
59};
60
61/**
62 * struct mmc_test_area - information for performance tests.
63 * @max_sz: test area size (in bytes)
64 * @dev_addr: address on card at which to do performance tests
65 * @max_tfr: maximum transfer size allowed by driver (in bytes)
66 * @max_segs: maximum segments allowed by driver in scatterlist @sg
67 * @max_seg_sz: maximum segment size allowed by driver
68 * @blocks: number of (512 byte) blocks currently mapped by @sg
69 * @sg_len: length of currently mapped scatterlist @sg
70 * @mem: allocated memory
71 * @sg: scatterlist
72 */
73struct mmc_test_area {
74 unsigned long max_sz;
75 unsigned int dev_addr;
76 unsigned int max_tfr;
77 unsigned int max_segs;
78 unsigned int max_seg_sz;
79 unsigned int blocks;
80 unsigned int sg_len;
81 struct mmc_test_mem *mem;
82 struct scatterlist *sg;
83};
84
85/**
86 * struct mmc_test_transfer_result - transfer results for performance tests.
87 * @link: double-linked list
88 * @count: amount of group of sectors to check
89 * @sectors: amount of sectors to check in one group
90 * @ts: time values of transfer
91 * @rate: calculated transfer rate
92 * @iops: I/O operations per second (times 100)
93 */
94struct mmc_test_transfer_result {
95 struct list_head link;
96 unsigned int count;
97 unsigned int sectors;
98 struct timespec ts;
99 unsigned int rate;
100 unsigned int iops;
101};
102
103/**
104 * struct mmc_test_general_result - results for tests.
105 * @link: double-linked list
106 * @card: card under test
107 * @testcase: number of test case
108 * @result: result of test run
109 * @tr_lst: transfer measurements if any as mmc_test_transfer_result
110 */
111struct mmc_test_general_result {
112 struct list_head link;
113 struct mmc_card *card;
114 int testcase;
115 int result;
116 struct list_head tr_lst;
117};
118
119/**
120 * struct mmc_test_dbgfs_file - debugfs related file.
121 * @link: double-linked list
122 * @card: card under test
123 * @file: file created under debugfs
124 */
125struct mmc_test_dbgfs_file {
126 struct list_head link;
127 struct mmc_card *card;
128 struct dentry *file;
129};
130
131/**
132 * struct mmc_test_card - test information.
133 * @card: card under test
134 * @scratch: transfer buffer
135 * @buffer: transfer buffer
136 * @highmem: buffer for highmem tests
137 * @area: information for performance tests
138 * @gr: pointer to results of current testcase
139 */
140struct mmc_test_card {
141 struct mmc_card *card;
142
143 u8 scratch[BUFFER_SIZE];
144 u8 *buffer;
145#ifdef CONFIG_HIGHMEM
146 struct page *highmem;
147#endif
148 struct mmc_test_area area;
149 struct mmc_test_general_result *gr;
150};
151
152enum mmc_test_prep_media {
153 MMC_TEST_PREP_NONE = 0,
154 MMC_TEST_PREP_WRITE_FULL = 1 << 0,
155 MMC_TEST_PREP_ERASE = 1 << 1,
156};
157
158struct mmc_test_multiple_rw {
159 unsigned int *sg_len;
160 unsigned int *bs;
161 unsigned int len;
162 unsigned int size;
163 bool do_write;
164 bool do_nonblock_req;
165 enum mmc_test_prep_media prepare;
166};
167
168struct mmc_test_async_req {
169 struct mmc_async_req areq;
170 struct mmc_test_card *test;
171};
172
173/*******************************************************************/
174/* General helper functions */
175/*******************************************************************/
176
177/*
178 * Configure correct block size in card
179 */
180static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
181{
182 return mmc_set_blocklen(test->card, size);
183}
184
185static bool mmc_test_card_cmd23(struct mmc_card *card)
186{
187 return mmc_card_mmc(card) ||
188 (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
189}
190
191static void mmc_test_prepare_sbc(struct mmc_test_card *test,
192 struct mmc_request *mrq, unsigned int blocks)
193{
194 struct mmc_card *card = test->card;
195
196 if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
197 !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
198 (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
199 mrq->sbc = NULL;
200 return;
201 }
202
203 mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
204 mrq->sbc->arg = blocks;
205 mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
206}
207
208/*
209 * Fill in the mmc_request structure given a set of transfer parameters.
210 */
211static void mmc_test_prepare_mrq(struct mmc_test_card *test,
212 struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
213 unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
214{
215 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
216 return;
217
218 if (blocks > 1) {
219 mrq->cmd->opcode = write ?
220 MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
221 } else {
222 mrq->cmd->opcode = write ?
223 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
224 }
225
226 mrq->cmd->arg = dev_addr;
227 if (!mmc_card_blockaddr(test->card))
228 mrq->cmd->arg <<= 9;
229
230 mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
231
232 if (blocks == 1)
233 mrq->stop = NULL;
234 else {
235 mrq->stop->opcode = MMC_STOP_TRANSMISSION;
236 mrq->stop->arg = 0;
237 mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
238 }
239
240 mrq->data->blksz = blksz;
241 mrq->data->blocks = blocks;
242 mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
243 mrq->data->sg = sg;
244 mrq->data->sg_len = sg_len;
245
246 mmc_test_prepare_sbc(test, mrq, blocks);
247
248 mmc_set_data_timeout(mrq->data, test->card);
249}
250
251static int mmc_test_busy(struct mmc_command *cmd)
252{
253 return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
254 (R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
255}
256
257/*
258 * Wait for the card to finish the busy state
259 */
260static int mmc_test_wait_busy(struct mmc_test_card *test)
261{
262 int ret, busy;
263 struct mmc_command cmd = {0};
264
265 busy = 0;
266 do {
267 memset(&cmd, 0, sizeof(struct mmc_command));
268
269 cmd.opcode = MMC_SEND_STATUS;
270 cmd.arg = test->card->rca << 16;
271 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
272
273 ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
274 if (ret)
275 break;
276
277 if (!busy && mmc_test_busy(&cmd)) {
278 busy = 1;
279 if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
280 pr_info("%s: Warning: Host did not "
281 "wait for busy state to end.\n",
282 mmc_hostname(test->card->host));
283 }
284 } while (mmc_test_busy(&cmd));
285
286 return ret;
287}
288
289/*
290 * Transfer a single sector of kernel addressable data
291 */
292static int mmc_test_buffer_transfer(struct mmc_test_card *test,
293 u8 *buffer, unsigned addr, unsigned blksz, int write)
294{
295 struct mmc_request mrq = {0};
296 struct mmc_command cmd = {0};
297 struct mmc_command stop = {0};
298 struct mmc_data data = {0};
299
300 struct scatterlist sg;
301
302 mrq.cmd = &cmd;
303 mrq.data = &data;
304 mrq.stop = &stop;
305
306 sg_init_one(&sg, buffer, blksz);
307
308 mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
309
310 mmc_wait_for_req(test->card->host, &mrq);
311
312 if (cmd.error)
313 return cmd.error;
314 if (data.error)
315 return data.error;
316
317 return mmc_test_wait_busy(test);
318}
319
320static void mmc_test_free_mem(struct mmc_test_mem *mem)
321{
322 if (!mem)
323 return;
324 while (mem->cnt--)
325 __free_pages(mem->arr[mem->cnt].page,
326 mem->arr[mem->cnt].order);
327 kfree(mem->arr);
328 kfree(mem);
329}
330
331/*
332 * Allocate a lot of memory, preferably max_sz but at least min_sz. In case
333 * there isn't much memory do not exceed 1/16th total lowmem pages. Also do
334 * not exceed a maximum number of segments and try not to make segments much
335 * bigger than maximum segment size.
336 */
337static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
338 unsigned long max_sz,
339 unsigned int max_segs,
340 unsigned int max_seg_sz)
341{
342 unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
343 unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
344 unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
345 unsigned long page_cnt = 0;
346 unsigned long limit = nr_free_buffer_pages() >> 4;
347 struct mmc_test_mem *mem;
348
349 if (max_page_cnt > limit)
350 max_page_cnt = limit;
351 if (min_page_cnt > max_page_cnt)
352 min_page_cnt = max_page_cnt;
353
354 if (max_seg_page_cnt > max_page_cnt)
355 max_seg_page_cnt = max_page_cnt;
356
357 if (max_segs > max_page_cnt)
358 max_segs = max_page_cnt;
359
360 mem = kzalloc(sizeof(struct mmc_test_mem), GFP_KERNEL);
361 if (!mem)
362 return NULL;
363
364 mem->arr = kzalloc(sizeof(struct mmc_test_pages) * max_segs,
365 GFP_KERNEL);
366 if (!mem->arr)
367 goto out_free;
368
369 while (max_page_cnt) {
370 struct page *page;
371 unsigned int order;
372 gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
373 __GFP_NORETRY;
374
375 order = get_order(max_seg_page_cnt << PAGE_SHIFT);
376 while (1) {
377 page = alloc_pages(flags, order);
378 if (page || !order)
379 break;
380 order -= 1;
381 }
382 if (!page) {
383 if (page_cnt < min_page_cnt)
384 goto out_free;
385 break;
386 }
387 mem->arr[mem->cnt].page = page;
388 mem->arr[mem->cnt].order = order;
389 mem->cnt += 1;
390 if (max_page_cnt <= (1UL << order))
391 break;
392 max_page_cnt -= 1UL << order;
393 page_cnt += 1UL << order;
394 if (mem->cnt >= max_segs) {
395 if (page_cnt < min_page_cnt)
396 goto out_free;
397 break;
398 }
399 }
400
401 return mem;
402
403out_free:
404 mmc_test_free_mem(mem);
405 return NULL;
406}
407
408/*
409 * Map memory into a scatterlist. Optionally allow the same memory to be
410 * mapped more than once.
411 */
412static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
413 struct scatterlist *sglist, int repeat,
414 unsigned int max_segs, unsigned int max_seg_sz,
415 unsigned int *sg_len, int min_sg_len)
416{
417 struct scatterlist *sg = NULL;
418 unsigned int i;
419 unsigned long sz = size;
420
421 sg_init_table(sglist, max_segs);
422 if (min_sg_len > max_segs)
423 min_sg_len = max_segs;
424
425 *sg_len = 0;
426 do {
427 for (i = 0; i < mem->cnt; i++) {
428 unsigned long len = PAGE_SIZE << mem->arr[i].order;
429
430 if (min_sg_len && (size / min_sg_len < len))
431 len = ALIGN(size / min_sg_len, 512);
432 if (len > sz)
433 len = sz;
434 if (len > max_seg_sz)
435 len = max_seg_sz;
436 if (sg)
437 sg = sg_next(sg);
438 else
439 sg = sglist;
440 if (!sg)
441 return -EINVAL;
442 sg_set_page(sg, mem->arr[i].page, len, 0);
443 sz -= len;
444 *sg_len += 1;
445 if (!sz)
446 break;
447 }
448 } while (sz && repeat);
449
450 if (sz)
451 return -EINVAL;
452
453 if (sg)
454 sg_mark_end(sg);
455
456 return 0;
457}
458
459/*
460 * Map memory into a scatterlist so that no pages are contiguous. Allow the
461 * same memory to be mapped more than once.
462 */
463static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
464 unsigned long sz,
465 struct scatterlist *sglist,
466 unsigned int max_segs,
467 unsigned int max_seg_sz,
468 unsigned int *sg_len)
469{
470 struct scatterlist *sg = NULL;
471 unsigned int i = mem->cnt, cnt;
472 unsigned long len;
473 void *base, *addr, *last_addr = NULL;
474
475 sg_init_table(sglist, max_segs);
476
477 *sg_len = 0;
478 while (sz) {
479 base = page_address(mem->arr[--i].page);
480 cnt = 1 << mem->arr[i].order;
481 while (sz && cnt) {
482 addr = base + PAGE_SIZE * --cnt;
483 if (last_addr && last_addr + PAGE_SIZE == addr)
484 continue;
485 last_addr = addr;
486 len = PAGE_SIZE;
487 if (len > max_seg_sz)
488 len = max_seg_sz;
489 if (len > sz)
490 len = sz;
491 if (sg)
492 sg = sg_next(sg);
493 else
494 sg = sglist;
495 if (!sg)
496 return -EINVAL;
497 sg_set_page(sg, virt_to_page(addr), len, 0);
498 sz -= len;
499 *sg_len += 1;
500 }
501 if (i == 0)
502 i = mem->cnt;
503 }
504
505 if (sg)
506 sg_mark_end(sg);
507
508 return 0;
509}
510
511/*
512 * Calculate transfer rate in bytes per second.
513 */
514static unsigned int mmc_test_rate(uint64_t bytes, struct timespec *ts)
515{
516 uint64_t ns;
517
518 ns = ts->tv_sec;
519 ns *= 1000000000;
520 ns += ts->tv_nsec;
521
522 bytes *= 1000000000;
523
524 while (ns > UINT_MAX) {
525 bytes >>= 1;
526 ns >>= 1;
527 }
528
529 if (!ns)
530 return 0;
531
532 do_div(bytes, (uint32_t)ns);
533
534 return bytes;
535}
536
537/*
538 * Save transfer results for future usage
539 */
540static void mmc_test_save_transfer_result(struct mmc_test_card *test,
541 unsigned int count, unsigned int sectors, struct timespec ts,
542 unsigned int rate, unsigned int iops)
543{
544 struct mmc_test_transfer_result *tr;
545
546 if (!test->gr)
547 return;
548
549 tr = kmalloc(sizeof(struct mmc_test_transfer_result), GFP_KERNEL);
550 if (!tr)
551 return;
552
553 tr->count = count;
554 tr->sectors = sectors;
555 tr->ts = ts;
556 tr->rate = rate;
557 tr->iops = iops;
558
559 list_add_tail(&tr->link, &test->gr->tr_lst);
560}
561
562/*
563 * Print the transfer rate.
564 */
565static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
566 struct timespec *ts1, struct timespec *ts2)
567{
568 unsigned int rate, iops, sectors = bytes >> 9;
569 struct timespec ts;
570
571 ts = timespec_sub(*ts2, *ts1);
572
573 rate = mmc_test_rate(bytes, &ts);
574 iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
575
576 pr_info("%s: Transfer of %u sectors (%u%s KiB) took %lu.%09lu "
577 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
578 mmc_hostname(test->card->host), sectors, sectors >> 1,
579 (sectors & 1 ? ".5" : ""), (unsigned long)ts.tv_sec,
580 (unsigned long)ts.tv_nsec, rate / 1000, rate / 1024,
581 iops / 100, iops % 100);
582
583 mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
584}
585
586/*
587 * Print the average transfer rate.
588 */
589static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
590 unsigned int count, struct timespec *ts1,
591 struct timespec *ts2)
592{
593 unsigned int rate, iops, sectors = bytes >> 9;
594 uint64_t tot = bytes * count;
595 struct timespec ts;
596
597 ts = timespec_sub(*ts2, *ts1);
598
599 rate = mmc_test_rate(tot, &ts);
600 iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
601
602 pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
603 "%lu.%09lu seconds (%u kB/s, %u KiB/s, "
604 "%u.%02u IOPS, sg_len %d)\n",
605 mmc_hostname(test->card->host), count, sectors, count,
606 sectors >> 1, (sectors & 1 ? ".5" : ""),
607 (unsigned long)ts.tv_sec, (unsigned long)ts.tv_nsec,
608 rate / 1000, rate / 1024, iops / 100, iops % 100,
609 test->area.sg_len);
610
611 mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
612}
613
614/*
615 * Return the card size in sectors.
616 */
617static unsigned int mmc_test_capacity(struct mmc_card *card)
618{
619 if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
620 return card->ext_csd.sectors;
621 else
622 return card->csd.capacity << (card->csd.read_blkbits - 9);
623}
624
625/*******************************************************************/
626/* Test preparation and cleanup */
627/*******************************************************************/
628
629/*
630 * Fill the first couple of sectors of the card with known data
631 * so that bad reads/writes can be detected
632 */
633static int __mmc_test_prepare(struct mmc_test_card *test, int write)
634{
635 int ret, i;
636
637 ret = mmc_test_set_blksize(test, 512);
638 if (ret)
639 return ret;
640
641 if (write)
642 memset(test->buffer, 0xDF, 512);
643 else {
644 for (i = 0;i < 512;i++)
645 test->buffer[i] = i;
646 }
647
648 for (i = 0;i < BUFFER_SIZE / 512;i++) {
649 ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
650 if (ret)
651 return ret;
652 }
653
654 return 0;
655}
656
657static int mmc_test_prepare_write(struct mmc_test_card *test)
658{
659 return __mmc_test_prepare(test, 1);
660}
661
662static int mmc_test_prepare_read(struct mmc_test_card *test)
663{
664 return __mmc_test_prepare(test, 0);
665}
666
667static int mmc_test_cleanup(struct mmc_test_card *test)
668{
669 int ret, i;
670
671 ret = mmc_test_set_blksize(test, 512);
672 if (ret)
673 return ret;
674
675 memset(test->buffer, 0, 512);
676
677 for (i = 0;i < BUFFER_SIZE / 512;i++) {
678 ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
679 if (ret)
680 return ret;
681 }
682
683 return 0;
684}
685
686/*******************************************************************/
687/* Test execution helpers */
688/*******************************************************************/
689
690/*
691 * Modifies the mmc_request to perform the "short transfer" tests
692 */
693static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
694 struct mmc_request *mrq, int write)
695{
696 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
697 return;
698
699 if (mrq->data->blocks > 1) {
700 mrq->cmd->opcode = write ?
701 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
702 mrq->stop = NULL;
703 } else {
704 mrq->cmd->opcode = MMC_SEND_STATUS;
705 mrq->cmd->arg = test->card->rca << 16;
706 }
707}
708
709/*
710 * Checks that a normal transfer didn't have any errors
711 */
712static int mmc_test_check_result(struct mmc_test_card *test,
713 struct mmc_request *mrq)
714{
715 int ret;
716
717 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
718 return -EINVAL;
719
720 ret = 0;
721
722 if (mrq->sbc && mrq->sbc->error)
723 ret = mrq->sbc->error;
724 if (!ret && mrq->cmd->error)
725 ret = mrq->cmd->error;
726 if (!ret && mrq->data->error)
727 ret = mrq->data->error;
728 if (!ret && mrq->stop && mrq->stop->error)
729 ret = mrq->stop->error;
730 if (!ret && mrq->data->bytes_xfered !=
731 mrq->data->blocks * mrq->data->blksz)
732 ret = RESULT_FAIL;
733
734 if (ret == -EINVAL)
735 ret = RESULT_UNSUP_HOST;
736
737 return ret;
738}
739
740static enum mmc_blk_status mmc_test_check_result_async(struct mmc_card *card,
741 struct mmc_async_req *areq)
742{
743 struct mmc_test_async_req *test_async =
744 container_of(areq, struct mmc_test_async_req, areq);
745 int ret;
746
747 mmc_test_wait_busy(test_async->test);
748
749 /*
750 * FIXME: this would earlier just casts a regular error code,
751 * either of the kernel type -ERRORCODE or the local test framework
752 * RESULT_* errorcode, into an enum mmc_blk_status and return as
753 * result check. Instead, convert it to some reasonable type by just
754 * returning either MMC_BLK_SUCCESS or MMC_BLK_CMD_ERR.
755 * If possible, a reasonable error code should be returned.
756 */
757 ret = mmc_test_check_result(test_async->test, areq->mrq);
758 if (ret)
759 return MMC_BLK_CMD_ERR;
760
761 return MMC_BLK_SUCCESS;
762}
763
764/*
765 * Checks that a "short transfer" behaved as expected
766 */
767static int mmc_test_check_broken_result(struct mmc_test_card *test,
768 struct mmc_request *mrq)
769{
770 int ret;
771
772 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
773 return -EINVAL;
774
775 ret = 0;
776
777 if (!ret && mrq->cmd->error)
778 ret = mrq->cmd->error;
779 if (!ret && mrq->data->error == 0)
780 ret = RESULT_FAIL;
781 if (!ret && mrq->data->error != -ETIMEDOUT)
782 ret = mrq->data->error;
783 if (!ret && mrq->stop && mrq->stop->error)
784 ret = mrq->stop->error;
785 if (mrq->data->blocks > 1) {
786 if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
787 ret = RESULT_FAIL;
788 } else {
789 if (!ret && mrq->data->bytes_xfered > 0)
790 ret = RESULT_FAIL;
791 }
792
793 if (ret == -EINVAL)
794 ret = RESULT_UNSUP_HOST;
795
796 return ret;
797}
798
799/*
800 * Tests nonblock transfer with certain parameters
801 */
802static void mmc_test_nonblock_reset(struct mmc_request *mrq,
803 struct mmc_command *cmd,
804 struct mmc_command *stop,
805 struct mmc_data *data)
806{
807 memset(mrq, 0, sizeof(struct mmc_request));
808 memset(cmd, 0, sizeof(struct mmc_command));
809 memset(data, 0, sizeof(struct mmc_data));
810 memset(stop, 0, sizeof(struct mmc_command));
811
812 mrq->cmd = cmd;
813 mrq->data = data;
814 mrq->stop = stop;
815}
816static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
817 struct scatterlist *sg, unsigned sg_len,
818 unsigned dev_addr, unsigned blocks,
819 unsigned blksz, int write, int count)
820{
821 struct mmc_request mrq1;
822 struct mmc_command cmd1;
823 struct mmc_command stop1;
824 struct mmc_data data1;
825
826 struct mmc_request mrq2;
827 struct mmc_command cmd2;
828 struct mmc_command stop2;
829 struct mmc_data data2;
830
831 struct mmc_test_async_req test_areq[2];
832 struct mmc_async_req *done_areq;
833 struct mmc_async_req *cur_areq = &test_areq[0].areq;
834 struct mmc_async_req *other_areq = &test_areq[1].areq;
835 enum mmc_blk_status status;
836 int i;
837 int ret = RESULT_OK;
838
839 test_areq[0].test = test;
840 test_areq[1].test = test;
841
842 mmc_test_nonblock_reset(&mrq1, &cmd1, &stop1, &data1);
843 mmc_test_nonblock_reset(&mrq2, &cmd2, &stop2, &data2);
844
845 cur_areq->mrq = &mrq1;
846 cur_areq->err_check = mmc_test_check_result_async;
847 other_areq->mrq = &mrq2;
848 other_areq->err_check = mmc_test_check_result_async;
849
850 for (i = 0; i < count; i++) {
851 mmc_test_prepare_mrq(test, cur_areq->mrq, sg, sg_len, dev_addr,
852 blocks, blksz, write);
853 done_areq = mmc_start_req(test->card->host, cur_areq, &status);
854
855 if (status != MMC_BLK_SUCCESS || (!done_areq && i > 0)) {
856 ret = RESULT_FAIL;
857 goto err;
858 }
859
860 if (done_areq) {
861 if (done_areq->mrq == &mrq2)
862 mmc_test_nonblock_reset(&mrq2, &cmd2,
863 &stop2, &data2);
864 else
865 mmc_test_nonblock_reset(&mrq1, &cmd1,
866 &stop1, &data1);
867 }
868 swap(cur_areq, other_areq);
869 dev_addr += blocks;
870 }
871
872 done_areq = mmc_start_req(test->card->host, NULL, &status);
873 if (status != MMC_BLK_SUCCESS)
874 ret = RESULT_FAIL;
875
876 return ret;
877err:
878 return ret;
879}
880
881/*
882 * Tests a basic transfer with certain parameters
883 */
884static int mmc_test_simple_transfer(struct mmc_test_card *test,
885 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
886 unsigned blocks, unsigned blksz, int write)
887{
888 struct mmc_request mrq = {0};
889 struct mmc_command cmd = {0};
890 struct mmc_command stop = {0};
891 struct mmc_data data = {0};
892
893 mrq.cmd = &cmd;
894 mrq.data = &data;
895 mrq.stop = &stop;
896
897 mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
898 blocks, blksz, write);
899
900 mmc_wait_for_req(test->card->host, &mrq);
901
902 mmc_test_wait_busy(test);
903
904 return mmc_test_check_result(test, &mrq);
905}
906
907/*
908 * Tests a transfer where the card will fail completely or partly
909 */
910static int mmc_test_broken_transfer(struct mmc_test_card *test,
911 unsigned blocks, unsigned blksz, int write)
912{
913 struct mmc_request mrq = {0};
914 struct mmc_command cmd = {0};
915 struct mmc_command stop = {0};
916 struct mmc_data data = {0};
917
918 struct scatterlist sg;
919
920 mrq.cmd = &cmd;
921 mrq.data = &data;
922 mrq.stop = &stop;
923
924 sg_init_one(&sg, test->buffer, blocks * blksz);
925
926 mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
927 mmc_test_prepare_broken_mrq(test, &mrq, write);
928
929 mmc_wait_for_req(test->card->host, &mrq);
930
931 mmc_test_wait_busy(test);
932
933 return mmc_test_check_broken_result(test, &mrq);
934}
935
936/*
937 * Does a complete transfer test where data is also validated
938 *
939 * Note: mmc_test_prepare() must have been done before this call
940 */
941static int mmc_test_transfer(struct mmc_test_card *test,
942 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
943 unsigned blocks, unsigned blksz, int write)
944{
945 int ret, i;
946 unsigned long flags;
947
948 if (write) {
949 for (i = 0;i < blocks * blksz;i++)
950 test->scratch[i] = i;
951 } else {
952 memset(test->scratch, 0, BUFFER_SIZE);
953 }
954 local_irq_save(flags);
955 sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
956 local_irq_restore(flags);
957
958 ret = mmc_test_set_blksize(test, blksz);
959 if (ret)
960 return ret;
961
962 ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
963 blocks, blksz, write);
964 if (ret)
965 return ret;
966
967 if (write) {
968 int sectors;
969
970 ret = mmc_test_set_blksize(test, 512);
971 if (ret)
972 return ret;
973
974 sectors = (blocks * blksz + 511) / 512;
975 if ((sectors * 512) == (blocks * blksz))
976 sectors++;
977
978 if ((sectors * 512) > BUFFER_SIZE)
979 return -EINVAL;
980
981 memset(test->buffer, 0, sectors * 512);
982
983 for (i = 0;i < sectors;i++) {
984 ret = mmc_test_buffer_transfer(test,
985 test->buffer + i * 512,
986 dev_addr + i, 512, 0);
987 if (ret)
988 return ret;
989 }
990
991 for (i = 0;i < blocks * blksz;i++) {
992 if (test->buffer[i] != (u8)i)
993 return RESULT_FAIL;
994 }
995
996 for (;i < sectors * 512;i++) {
997 if (test->buffer[i] != 0xDF)
998 return RESULT_FAIL;
999 }
1000 } else {
1001 local_irq_save(flags);
1002 sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
1003 local_irq_restore(flags);
1004 for (i = 0;i < blocks * blksz;i++) {
1005 if (test->scratch[i] != (u8)i)
1006 return RESULT_FAIL;
1007 }
1008 }
1009
1010 return 0;
1011}
1012
1013/*******************************************************************/
1014/* Tests */
1015/*******************************************************************/
1016
1017struct mmc_test_case {
1018 const char *name;
1019
1020 int (*prepare)(struct mmc_test_card *);
1021 int (*run)(struct mmc_test_card *);
1022 int (*cleanup)(struct mmc_test_card *);
1023};
1024
1025static int mmc_test_basic_write(struct mmc_test_card *test)
1026{
1027 int ret;
1028 struct scatterlist sg;
1029
1030 ret = mmc_test_set_blksize(test, 512);
1031 if (ret)
1032 return ret;
1033
1034 sg_init_one(&sg, test->buffer, 512);
1035
1036 return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1037}
1038
1039static int mmc_test_basic_read(struct mmc_test_card *test)
1040{
1041 int ret;
1042 struct scatterlist sg;
1043
1044 ret = mmc_test_set_blksize(test, 512);
1045 if (ret)
1046 return ret;
1047
1048 sg_init_one(&sg, test->buffer, 512);
1049
1050 return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1051}
1052
1053static int mmc_test_verify_write(struct mmc_test_card *test)
1054{
1055 struct scatterlist sg;
1056
1057 sg_init_one(&sg, test->buffer, 512);
1058
1059 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1060}
1061
1062static int mmc_test_verify_read(struct mmc_test_card *test)
1063{
1064 struct scatterlist sg;
1065
1066 sg_init_one(&sg, test->buffer, 512);
1067
1068 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1069}
1070
1071static int mmc_test_multi_write(struct mmc_test_card *test)
1072{
1073 unsigned int size;
1074 struct scatterlist sg;
1075
1076 if (test->card->host->max_blk_count == 1)
1077 return RESULT_UNSUP_HOST;
1078
1079 size = PAGE_SIZE * 2;
1080 size = min(size, test->card->host->max_req_size);
1081 size = min(size, test->card->host->max_seg_size);
1082 size = min(size, test->card->host->max_blk_count * 512);
1083
1084 if (size < 1024)
1085 return RESULT_UNSUP_HOST;
1086
1087 sg_init_one(&sg, test->buffer, size);
1088
1089 return mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1090}
1091
1092static int mmc_test_multi_read(struct mmc_test_card *test)
1093{
1094 unsigned int size;
1095 struct scatterlist sg;
1096
1097 if (test->card->host->max_blk_count == 1)
1098 return RESULT_UNSUP_HOST;
1099
1100 size = PAGE_SIZE * 2;
1101 size = min(size, test->card->host->max_req_size);
1102 size = min(size, test->card->host->max_seg_size);
1103 size = min(size, test->card->host->max_blk_count * 512);
1104
1105 if (size < 1024)
1106 return RESULT_UNSUP_HOST;
1107
1108 sg_init_one(&sg, test->buffer, size);
1109
1110 return mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1111}
1112
1113static int mmc_test_pow2_write(struct mmc_test_card *test)
1114{
1115 int ret, i;
1116 struct scatterlist sg;
1117
1118 if (!test->card->csd.write_partial)
1119 return RESULT_UNSUP_CARD;
1120
1121 for (i = 1; i < 512;i <<= 1) {
1122 sg_init_one(&sg, test->buffer, i);
1123 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1124 if (ret)
1125 return ret;
1126 }
1127
1128 return 0;
1129}
1130
1131static int mmc_test_pow2_read(struct mmc_test_card *test)
1132{
1133 int ret, i;
1134 struct scatterlist sg;
1135
1136 if (!test->card->csd.read_partial)
1137 return RESULT_UNSUP_CARD;
1138
1139 for (i = 1; i < 512;i <<= 1) {
1140 sg_init_one(&sg, test->buffer, i);
1141 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1142 if (ret)
1143 return ret;
1144 }
1145
1146 return 0;
1147}
1148
1149static int mmc_test_weird_write(struct mmc_test_card *test)
1150{
1151 int ret, i;
1152 struct scatterlist sg;
1153
1154 if (!test->card->csd.write_partial)
1155 return RESULT_UNSUP_CARD;
1156
1157 for (i = 3; i < 512;i += 7) {
1158 sg_init_one(&sg, test->buffer, i);
1159 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1160 if (ret)
1161 return ret;
1162 }
1163
1164 return 0;
1165}
1166
1167static int mmc_test_weird_read(struct mmc_test_card *test)
1168{
1169 int ret, i;
1170 struct scatterlist sg;
1171
1172 if (!test->card->csd.read_partial)
1173 return RESULT_UNSUP_CARD;
1174
1175 for (i = 3; i < 512;i += 7) {
1176 sg_init_one(&sg, test->buffer, i);
1177 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1178 if (ret)
1179 return ret;
1180 }
1181
1182 return 0;
1183}
1184
1185static int mmc_test_align_write(struct mmc_test_card *test)
1186{
1187 int ret, i;
1188 struct scatterlist sg;
1189
1190 for (i = 1; i < TEST_ALIGN_END; i++) {
1191 sg_init_one(&sg, test->buffer + i, 512);
1192 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1193 if (ret)
1194 return ret;
1195 }
1196
1197 return 0;
1198}
1199
1200static int mmc_test_align_read(struct mmc_test_card *test)
1201{
1202 int ret, i;
1203 struct scatterlist sg;
1204
1205 for (i = 1; i < TEST_ALIGN_END; i++) {
1206 sg_init_one(&sg, test->buffer + i, 512);
1207 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1208 if (ret)
1209 return ret;
1210 }
1211
1212 return 0;
1213}
1214
1215static int mmc_test_align_multi_write(struct mmc_test_card *test)
1216{
1217 int ret, i;
1218 unsigned int size;
1219 struct scatterlist sg;
1220
1221 if (test->card->host->max_blk_count == 1)
1222 return RESULT_UNSUP_HOST;
1223
1224 size = PAGE_SIZE * 2;
1225 size = min(size, test->card->host->max_req_size);
1226 size = min(size, test->card->host->max_seg_size);
1227 size = min(size, test->card->host->max_blk_count * 512);
1228
1229 if (size < 1024)
1230 return RESULT_UNSUP_HOST;
1231
1232 for (i = 1; i < TEST_ALIGN_END; i++) {
1233 sg_init_one(&sg, test->buffer + i, size);
1234 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1235 if (ret)
1236 return ret;
1237 }
1238
1239 return 0;
1240}
1241
1242static int mmc_test_align_multi_read(struct mmc_test_card *test)
1243{
1244 int ret, i;
1245 unsigned int size;
1246 struct scatterlist sg;
1247
1248 if (test->card->host->max_blk_count == 1)
1249 return RESULT_UNSUP_HOST;
1250
1251 size = PAGE_SIZE * 2;
1252 size = min(size, test->card->host->max_req_size);
1253 size = min(size, test->card->host->max_seg_size);
1254 size = min(size, test->card->host->max_blk_count * 512);
1255
1256 if (size < 1024)
1257 return RESULT_UNSUP_HOST;
1258
1259 for (i = 1; i < TEST_ALIGN_END; i++) {
1260 sg_init_one(&sg, test->buffer + i, size);
1261 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1262 if (ret)
1263 return ret;
1264 }
1265
1266 return 0;
1267}
1268
1269static int mmc_test_xfersize_write(struct mmc_test_card *test)
1270{
1271 int ret;
1272
1273 ret = mmc_test_set_blksize(test, 512);
1274 if (ret)
1275 return ret;
1276
1277 return mmc_test_broken_transfer(test, 1, 512, 1);
1278}
1279
1280static int mmc_test_xfersize_read(struct mmc_test_card *test)
1281{
1282 int ret;
1283
1284 ret = mmc_test_set_blksize(test, 512);
1285 if (ret)
1286 return ret;
1287
1288 return mmc_test_broken_transfer(test, 1, 512, 0);
1289}
1290
1291static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1292{
1293 int ret;
1294
1295 if (test->card->host->max_blk_count == 1)
1296 return RESULT_UNSUP_HOST;
1297
1298 ret = mmc_test_set_blksize(test, 512);
1299 if (ret)
1300 return ret;
1301
1302 return mmc_test_broken_transfer(test, 2, 512, 1);
1303}
1304
1305static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1306{
1307 int ret;
1308
1309 if (test->card->host->max_blk_count == 1)
1310 return RESULT_UNSUP_HOST;
1311
1312 ret = mmc_test_set_blksize(test, 512);
1313 if (ret)
1314 return ret;
1315
1316 return mmc_test_broken_transfer(test, 2, 512, 0);
1317}
1318
1319#ifdef CONFIG_HIGHMEM
1320
1321static int mmc_test_write_high(struct mmc_test_card *test)
1322{
1323 struct scatterlist sg;
1324
1325 sg_init_table(&sg, 1);
1326 sg_set_page(&sg, test->highmem, 512, 0);
1327
1328 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1329}
1330
1331static int mmc_test_read_high(struct mmc_test_card *test)
1332{
1333 struct scatterlist sg;
1334
1335 sg_init_table(&sg, 1);
1336 sg_set_page(&sg, test->highmem, 512, 0);
1337
1338 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1339}
1340
1341static int mmc_test_multi_write_high(struct mmc_test_card *test)
1342{
1343 unsigned int size;
1344 struct scatterlist sg;
1345
1346 if (test->card->host->max_blk_count == 1)
1347 return RESULT_UNSUP_HOST;
1348
1349 size = PAGE_SIZE * 2;
1350 size = min(size, test->card->host->max_req_size);
1351 size = min(size, test->card->host->max_seg_size);
1352 size = min(size, test->card->host->max_blk_count * 512);
1353
1354 if (size < 1024)
1355 return RESULT_UNSUP_HOST;
1356
1357 sg_init_table(&sg, 1);
1358 sg_set_page(&sg, test->highmem, size, 0);
1359
1360 return mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1361}
1362
1363static int mmc_test_multi_read_high(struct mmc_test_card *test)
1364{
1365 unsigned int size;
1366 struct scatterlist sg;
1367
1368 if (test->card->host->max_blk_count == 1)
1369 return RESULT_UNSUP_HOST;
1370
1371 size = PAGE_SIZE * 2;
1372 size = min(size, test->card->host->max_req_size);
1373 size = min(size, test->card->host->max_seg_size);
1374 size = min(size, test->card->host->max_blk_count * 512);
1375
1376 if (size < 1024)
1377 return RESULT_UNSUP_HOST;
1378
1379 sg_init_table(&sg, 1);
1380 sg_set_page(&sg, test->highmem, size, 0);
1381
1382 return mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1383}
1384
1385#else
1386
1387static int mmc_test_no_highmem(struct mmc_test_card *test)
1388{
1389 pr_info("%s: Highmem not configured - test skipped\n",
1390 mmc_hostname(test->card->host));
1391 return 0;
1392}
1393
1394#endif /* CONFIG_HIGHMEM */
1395
1396/*
1397 * Map sz bytes so that it can be transferred.
1398 */
1399static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1400 int max_scatter, int min_sg_len)
1401{
1402 struct mmc_test_area *t = &test->area;
1403 int err;
1404
1405 t->blocks = sz >> 9;
1406
1407 if (max_scatter) {
1408 err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1409 t->max_segs, t->max_seg_sz,
1410 &t->sg_len);
1411 } else {
1412 err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1413 t->max_seg_sz, &t->sg_len, min_sg_len);
1414 }
1415 if (err)
1416 pr_info("%s: Failed to map sg list\n",
1417 mmc_hostname(test->card->host));
1418 return err;
1419}
1420
1421/*
1422 * Transfer bytes mapped by mmc_test_area_map().
1423 */
1424static int mmc_test_area_transfer(struct mmc_test_card *test,
1425 unsigned int dev_addr, int write)
1426{
1427 struct mmc_test_area *t = &test->area;
1428
1429 return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1430 t->blocks, 512, write);
1431}
1432
1433/*
1434 * Map and transfer bytes for multiple transfers.
1435 */
1436static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1437 unsigned int dev_addr, int write,
1438 int max_scatter, int timed, int count,
1439 bool nonblock, int min_sg_len)
1440{
1441 struct timespec ts1, ts2;
1442 int ret = 0;
1443 int i;
1444 struct mmc_test_area *t = &test->area;
1445
1446 /*
1447 * In the case of a maximally scattered transfer, the maximum transfer
1448 * size is further limited by using PAGE_SIZE segments.
1449 */
1450 if (max_scatter) {
1451 struct mmc_test_area *t = &test->area;
1452 unsigned long max_tfr;
1453
1454 if (t->max_seg_sz >= PAGE_SIZE)
1455 max_tfr = t->max_segs * PAGE_SIZE;
1456 else
1457 max_tfr = t->max_segs * t->max_seg_sz;
1458 if (sz > max_tfr)
1459 sz = max_tfr;
1460 }
1461
1462 ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len);
1463 if (ret)
1464 return ret;
1465
1466 if (timed)
1467 getnstimeofday(&ts1);
1468 if (nonblock)
1469 ret = mmc_test_nonblock_transfer(test, t->sg, t->sg_len,
1470 dev_addr, t->blocks, 512, write, count);
1471 else
1472 for (i = 0; i < count && ret == 0; i++) {
1473 ret = mmc_test_area_transfer(test, dev_addr, write);
1474 dev_addr += sz >> 9;
1475 }
1476
1477 if (ret)
1478 return ret;
1479
1480 if (timed)
1481 getnstimeofday(&ts2);
1482
1483 if (timed)
1484 mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1485
1486 return 0;
1487}
1488
1489static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1490 unsigned int dev_addr, int write, int max_scatter,
1491 int timed)
1492{
1493 return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1494 timed, 1, false, 0);
1495}
1496
1497/*
1498 * Write the test area entirely.
1499 */
1500static int mmc_test_area_fill(struct mmc_test_card *test)
1501{
1502 struct mmc_test_area *t = &test->area;
1503
1504 return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1505}
1506
1507/*
1508 * Erase the test area entirely.
1509 */
1510static int mmc_test_area_erase(struct mmc_test_card *test)
1511{
1512 struct mmc_test_area *t = &test->area;
1513
1514 if (!mmc_can_erase(test->card))
1515 return 0;
1516
1517 return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1518 MMC_ERASE_ARG);
1519}
1520
1521/*
1522 * Cleanup struct mmc_test_area.
1523 */
1524static int mmc_test_area_cleanup(struct mmc_test_card *test)
1525{
1526 struct mmc_test_area *t = &test->area;
1527
1528 kfree(t->sg);
1529 mmc_test_free_mem(t->mem);
1530
1531 return 0;
1532}
1533
1534/*
1535 * Initialize an area for testing large transfers. The test area is set to the
1536 * middle of the card because cards may have different charateristics at the
1537 * front (for FAT file system optimization). Optionally, the area is erased
1538 * (if the card supports it) which may improve write performance. Optionally,
1539 * the area is filled with data for subsequent read tests.
1540 */
1541static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1542{
1543 struct mmc_test_area *t = &test->area;
1544 unsigned long min_sz = 64 * 1024, sz;
1545 int ret;
1546
1547 ret = mmc_test_set_blksize(test, 512);
1548 if (ret)
1549 return ret;
1550
1551 /* Make the test area size about 4MiB */
1552 sz = (unsigned long)test->card->pref_erase << 9;
1553 t->max_sz = sz;
1554 while (t->max_sz < 4 * 1024 * 1024)
1555 t->max_sz += sz;
1556 while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1557 t->max_sz -= sz;
1558
1559 t->max_segs = test->card->host->max_segs;
1560 t->max_seg_sz = test->card->host->max_seg_size;
1561 t->max_seg_sz -= t->max_seg_sz % 512;
1562
1563 t->max_tfr = t->max_sz;
1564 if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1565 t->max_tfr = test->card->host->max_blk_count << 9;
1566 if (t->max_tfr > test->card->host->max_req_size)
1567 t->max_tfr = test->card->host->max_req_size;
1568 if (t->max_tfr / t->max_seg_sz > t->max_segs)
1569 t->max_tfr = t->max_segs * t->max_seg_sz;
1570
1571 /*
1572 * Try to allocate enough memory for a max. sized transfer. Less is OK
1573 * because the same memory can be mapped into the scatterlist more than
1574 * once. Also, take into account the limits imposed on scatterlist
1575 * segments by the host driver.
1576 */
1577 t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1578 t->max_seg_sz);
1579 if (!t->mem)
1580 return -ENOMEM;
1581
1582 t->sg = kmalloc(sizeof(struct scatterlist) * t->max_segs, GFP_KERNEL);
1583 if (!t->sg) {
1584 ret = -ENOMEM;
1585 goto out_free;
1586 }
1587
1588 t->dev_addr = mmc_test_capacity(test->card) / 2;
1589 t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1590
1591 if (erase) {
1592 ret = mmc_test_area_erase(test);
1593 if (ret)
1594 goto out_free;
1595 }
1596
1597 if (fill) {
1598 ret = mmc_test_area_fill(test);
1599 if (ret)
1600 goto out_free;
1601 }
1602
1603 return 0;
1604
1605out_free:
1606 mmc_test_area_cleanup(test);
1607 return ret;
1608}
1609
1610/*
1611 * Prepare for large transfers. Do not erase the test area.
1612 */
1613static int mmc_test_area_prepare(struct mmc_test_card *test)
1614{
1615 return mmc_test_area_init(test, 0, 0);
1616}
1617
1618/*
1619 * Prepare for large transfers. Do erase the test area.
1620 */
1621static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1622{
1623 return mmc_test_area_init(test, 1, 0);
1624}
1625
1626/*
1627 * Prepare for large transfers. Erase and fill the test area.
1628 */
1629static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1630{
1631 return mmc_test_area_init(test, 1, 1);
1632}
1633
1634/*
1635 * Test best-case performance. Best-case performance is expected from
1636 * a single large transfer.
1637 *
1638 * An additional option (max_scatter) allows the measurement of the same
1639 * transfer but with no contiguous pages in the scatter list. This tests
1640 * the efficiency of DMA to handle scattered pages.
1641 */
1642static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1643 int max_scatter)
1644{
1645 struct mmc_test_area *t = &test->area;
1646
1647 return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1648 max_scatter, 1);
1649}
1650
1651/*
1652 * Best-case read performance.
1653 */
1654static int mmc_test_best_read_performance(struct mmc_test_card *test)
1655{
1656 return mmc_test_best_performance(test, 0, 0);
1657}
1658
1659/*
1660 * Best-case write performance.
1661 */
1662static int mmc_test_best_write_performance(struct mmc_test_card *test)
1663{
1664 return mmc_test_best_performance(test, 1, 0);
1665}
1666
1667/*
1668 * Best-case read performance into scattered pages.
1669 */
1670static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1671{
1672 return mmc_test_best_performance(test, 0, 1);
1673}
1674
1675/*
1676 * Best-case write performance from scattered pages.
1677 */
1678static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1679{
1680 return mmc_test_best_performance(test, 1, 1);
1681}
1682
1683/*
1684 * Single read performance by transfer size.
1685 */
1686static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1687{
1688 struct mmc_test_area *t = &test->area;
1689 unsigned long sz;
1690 unsigned int dev_addr;
1691 int ret;
1692
1693 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1694 dev_addr = t->dev_addr + (sz >> 9);
1695 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1696 if (ret)
1697 return ret;
1698 }
1699 sz = t->max_tfr;
1700 dev_addr = t->dev_addr;
1701 return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1702}
1703
1704/*
1705 * Single write performance by transfer size.
1706 */
1707static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1708{
1709 struct mmc_test_area *t = &test->area;
1710 unsigned long sz;
1711 unsigned int dev_addr;
1712 int ret;
1713
1714 ret = mmc_test_area_erase(test);
1715 if (ret)
1716 return ret;
1717 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1718 dev_addr = t->dev_addr + (sz >> 9);
1719 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1720 if (ret)
1721 return ret;
1722 }
1723 ret = mmc_test_area_erase(test);
1724 if (ret)
1725 return ret;
1726 sz = t->max_tfr;
1727 dev_addr = t->dev_addr;
1728 return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1729}
1730
1731/*
1732 * Single trim performance by transfer size.
1733 */
1734static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1735{
1736 struct mmc_test_area *t = &test->area;
1737 unsigned long sz;
1738 unsigned int dev_addr;
1739 struct timespec ts1, ts2;
1740 int ret;
1741
1742 if (!mmc_can_trim(test->card))
1743 return RESULT_UNSUP_CARD;
1744
1745 if (!mmc_can_erase(test->card))
1746 return RESULT_UNSUP_HOST;
1747
1748 for (sz = 512; sz < t->max_sz; sz <<= 1) {
1749 dev_addr = t->dev_addr + (sz >> 9);
1750 getnstimeofday(&ts1);
1751 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1752 if (ret)
1753 return ret;
1754 getnstimeofday(&ts2);
1755 mmc_test_print_rate(test, sz, &ts1, &ts2);
1756 }
1757 dev_addr = t->dev_addr;
1758 getnstimeofday(&ts1);
1759 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1760 if (ret)
1761 return ret;
1762 getnstimeofday(&ts2);
1763 mmc_test_print_rate(test, sz, &ts1, &ts2);
1764 return 0;
1765}
1766
1767static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1768{
1769 struct mmc_test_area *t = &test->area;
1770 unsigned int dev_addr, i, cnt;
1771 struct timespec ts1, ts2;
1772 int ret;
1773
1774 cnt = t->max_sz / sz;
1775 dev_addr = t->dev_addr;
1776 getnstimeofday(&ts1);
1777 for (i = 0; i < cnt; i++) {
1778 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1779 if (ret)
1780 return ret;
1781 dev_addr += (sz >> 9);
1782 }
1783 getnstimeofday(&ts2);
1784 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1785 return 0;
1786}
1787
1788/*
1789 * Consecutive read performance by transfer size.
1790 */
1791static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1792{
1793 struct mmc_test_area *t = &test->area;
1794 unsigned long sz;
1795 int ret;
1796
1797 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1798 ret = mmc_test_seq_read_perf(test, sz);
1799 if (ret)
1800 return ret;
1801 }
1802 sz = t->max_tfr;
1803 return mmc_test_seq_read_perf(test, sz);
1804}
1805
1806static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1807{
1808 struct mmc_test_area *t = &test->area;
1809 unsigned int dev_addr, i, cnt;
1810 struct timespec ts1, ts2;
1811 int ret;
1812
1813 ret = mmc_test_area_erase(test);
1814 if (ret)
1815 return ret;
1816 cnt = t->max_sz / sz;
1817 dev_addr = t->dev_addr;
1818 getnstimeofday(&ts1);
1819 for (i = 0; i < cnt; i++) {
1820 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1821 if (ret)
1822 return ret;
1823 dev_addr += (sz >> 9);
1824 }
1825 getnstimeofday(&ts2);
1826 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1827 return 0;
1828}
1829
1830/*
1831 * Consecutive write performance by transfer size.
1832 */
1833static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1834{
1835 struct mmc_test_area *t = &test->area;
1836 unsigned long sz;
1837 int ret;
1838
1839 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1840 ret = mmc_test_seq_write_perf(test, sz);
1841 if (ret)
1842 return ret;
1843 }
1844 sz = t->max_tfr;
1845 return mmc_test_seq_write_perf(test, sz);
1846}
1847
1848/*
1849 * Consecutive trim performance by transfer size.
1850 */
1851static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1852{
1853 struct mmc_test_area *t = &test->area;
1854 unsigned long sz;
1855 unsigned int dev_addr, i, cnt;
1856 struct timespec ts1, ts2;
1857 int ret;
1858
1859 if (!mmc_can_trim(test->card))
1860 return RESULT_UNSUP_CARD;
1861
1862 if (!mmc_can_erase(test->card))
1863 return RESULT_UNSUP_HOST;
1864
1865 for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1866 ret = mmc_test_area_erase(test);
1867 if (ret)
1868 return ret;
1869 ret = mmc_test_area_fill(test);
1870 if (ret)
1871 return ret;
1872 cnt = t->max_sz / sz;
1873 dev_addr = t->dev_addr;
1874 getnstimeofday(&ts1);
1875 for (i = 0; i < cnt; i++) {
1876 ret = mmc_erase(test->card, dev_addr, sz >> 9,
1877 MMC_TRIM_ARG);
1878 if (ret)
1879 return ret;
1880 dev_addr += (sz >> 9);
1881 }
1882 getnstimeofday(&ts2);
1883 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1884 }
1885 return 0;
1886}
1887
1888static unsigned int rnd_next = 1;
1889
1890static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1891{
1892 uint64_t r;
1893
1894 rnd_next = rnd_next * 1103515245 + 12345;
1895 r = (rnd_next >> 16) & 0x7fff;
1896 return (r * rnd_cnt) >> 15;
1897}
1898
1899static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1900 unsigned long sz)
1901{
1902 unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1903 unsigned int ssz;
1904 struct timespec ts1, ts2, ts;
1905 int ret;
1906
1907 ssz = sz >> 9;
1908
1909 rnd_addr = mmc_test_capacity(test->card) / 4;
1910 range1 = rnd_addr / test->card->pref_erase;
1911 range2 = range1 / ssz;
1912
1913 getnstimeofday(&ts1);
1914 for (cnt = 0; cnt < UINT_MAX; cnt++) {
1915 getnstimeofday(&ts2);
1916 ts = timespec_sub(ts2, ts1);
1917 if (ts.tv_sec >= 10)
1918 break;
1919 ea = mmc_test_rnd_num(range1);
1920 if (ea == last_ea)
1921 ea -= 1;
1922 last_ea = ea;
1923 dev_addr = rnd_addr + test->card->pref_erase * ea +
1924 ssz * mmc_test_rnd_num(range2);
1925 ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1926 if (ret)
1927 return ret;
1928 }
1929 if (print)
1930 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1931 return 0;
1932}
1933
1934static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1935{
1936 struct mmc_test_area *t = &test->area;
1937 unsigned int next;
1938 unsigned long sz;
1939 int ret;
1940
1941 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1942 /*
1943 * When writing, try to get more consistent results by running
1944 * the test twice with exactly the same I/O but outputting the
1945 * results only for the 2nd run.
1946 */
1947 if (write) {
1948 next = rnd_next;
1949 ret = mmc_test_rnd_perf(test, write, 0, sz);
1950 if (ret)
1951 return ret;
1952 rnd_next = next;
1953 }
1954 ret = mmc_test_rnd_perf(test, write, 1, sz);
1955 if (ret)
1956 return ret;
1957 }
1958 sz = t->max_tfr;
1959 if (write) {
1960 next = rnd_next;
1961 ret = mmc_test_rnd_perf(test, write, 0, sz);
1962 if (ret)
1963 return ret;
1964 rnd_next = next;
1965 }
1966 return mmc_test_rnd_perf(test, write, 1, sz);
1967}
1968
1969/*
1970 * Random read performance by transfer size.
1971 */
1972static int mmc_test_random_read_perf(struct mmc_test_card *test)
1973{
1974 return mmc_test_random_perf(test, 0);
1975}
1976
1977/*
1978 * Random write performance by transfer size.
1979 */
1980static int mmc_test_random_write_perf(struct mmc_test_card *test)
1981{
1982 return mmc_test_random_perf(test, 1);
1983}
1984
1985static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
1986 unsigned int tot_sz, int max_scatter)
1987{
1988 struct mmc_test_area *t = &test->area;
1989 unsigned int dev_addr, i, cnt, sz, ssz;
1990 struct timespec ts1, ts2;
1991 int ret;
1992
1993 sz = t->max_tfr;
1994
1995 /*
1996 * In the case of a maximally scattered transfer, the maximum transfer
1997 * size is further limited by using PAGE_SIZE segments.
1998 */
1999 if (max_scatter) {
2000 unsigned long max_tfr;
2001
2002 if (t->max_seg_sz >= PAGE_SIZE)
2003 max_tfr = t->max_segs * PAGE_SIZE;
2004 else
2005 max_tfr = t->max_segs * t->max_seg_sz;
2006 if (sz > max_tfr)
2007 sz = max_tfr;
2008 }
2009
2010 ssz = sz >> 9;
2011 dev_addr = mmc_test_capacity(test->card) / 4;
2012 if (tot_sz > dev_addr << 9)
2013 tot_sz = dev_addr << 9;
2014 cnt = tot_sz / sz;
2015 dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2016
2017 getnstimeofday(&ts1);
2018 for (i = 0; i < cnt; i++) {
2019 ret = mmc_test_area_io(test, sz, dev_addr, write,
2020 max_scatter, 0);
2021 if (ret)
2022 return ret;
2023 dev_addr += ssz;
2024 }
2025 getnstimeofday(&ts2);
2026
2027 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2028
2029 return 0;
2030}
2031
2032static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2033{
2034 int ret, i;
2035
2036 for (i = 0; i < 10; i++) {
2037 ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2038 if (ret)
2039 return ret;
2040 }
2041 for (i = 0; i < 5; i++) {
2042 ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2043 if (ret)
2044 return ret;
2045 }
2046 for (i = 0; i < 3; i++) {
2047 ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2048 if (ret)
2049 return ret;
2050 }
2051
2052 return ret;
2053}
2054
2055/*
2056 * Large sequential read performance.
2057 */
2058static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2059{
2060 return mmc_test_large_seq_perf(test, 0);
2061}
2062
2063/*
2064 * Large sequential write performance.
2065 */
2066static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2067{
2068 return mmc_test_large_seq_perf(test, 1);
2069}
2070
2071static int mmc_test_rw_multiple(struct mmc_test_card *test,
2072 struct mmc_test_multiple_rw *tdata,
2073 unsigned int reqsize, unsigned int size,
2074 int min_sg_len)
2075{
2076 unsigned int dev_addr;
2077 struct mmc_test_area *t = &test->area;
2078 int ret = 0;
2079
2080 /* Set up test area */
2081 if (size > mmc_test_capacity(test->card) / 2 * 512)
2082 size = mmc_test_capacity(test->card) / 2 * 512;
2083 if (reqsize > t->max_tfr)
2084 reqsize = t->max_tfr;
2085 dev_addr = mmc_test_capacity(test->card) / 4;
2086 if ((dev_addr & 0xffff0000))
2087 dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2088 else
2089 dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2090 if (!dev_addr)
2091 goto err;
2092
2093 if (reqsize > size)
2094 return 0;
2095
2096 /* prepare test area */
2097 if (mmc_can_erase(test->card) &&
2098 tdata->prepare & MMC_TEST_PREP_ERASE) {
2099 ret = mmc_erase(test->card, dev_addr,
2100 size / 512, MMC_SECURE_ERASE_ARG);
2101 if (ret)
2102 ret = mmc_erase(test->card, dev_addr,
2103 size / 512, MMC_ERASE_ARG);
2104 if (ret)
2105 goto err;
2106 }
2107
2108 /* Run test */
2109 ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2110 tdata->do_write, 0, 1, size / reqsize,
2111 tdata->do_nonblock_req, min_sg_len);
2112 if (ret)
2113 goto err;
2114
2115 return ret;
2116 err:
2117 pr_info("[%s] error\n", __func__);
2118 return ret;
2119}
2120
2121static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2122 struct mmc_test_multiple_rw *rw)
2123{
2124 int ret = 0;
2125 int i;
2126 void *pre_req = test->card->host->ops->pre_req;
2127 void *post_req = test->card->host->ops->post_req;
2128
2129 if (rw->do_nonblock_req &&
2130 ((!pre_req && post_req) || (pre_req && !post_req))) {
2131 pr_info("error: only one of pre/post is defined\n");
2132 return -EINVAL;
2133 }
2134
2135 for (i = 0 ; i < rw->len && ret == 0; i++) {
2136 ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2137 if (ret)
2138 break;
2139 }
2140 return ret;
2141}
2142
2143static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2144 struct mmc_test_multiple_rw *rw)
2145{
2146 int ret = 0;
2147 int i;
2148
2149 for (i = 0 ; i < rw->len && ret == 0; i++) {
2150 ret = mmc_test_rw_multiple(test, rw, 512*1024, rw->size,
2151 rw->sg_len[i]);
2152 if (ret)
2153 break;
2154 }
2155 return ret;
2156}
2157
2158/*
2159 * Multiple blocking write 4k to 4 MB chunks
2160 */
2161static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2162{
2163 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2164 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2165 struct mmc_test_multiple_rw test_data = {
2166 .bs = bs,
2167 .size = TEST_AREA_MAX_SIZE,
2168 .len = ARRAY_SIZE(bs),
2169 .do_write = true,
2170 .do_nonblock_req = false,
2171 .prepare = MMC_TEST_PREP_ERASE,
2172 };
2173
2174 return mmc_test_rw_multiple_size(test, &test_data);
2175};
2176
2177/*
2178 * Multiple non-blocking write 4k to 4 MB chunks
2179 */
2180static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2181{
2182 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2183 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2184 struct mmc_test_multiple_rw test_data = {
2185 .bs = bs,
2186 .size = TEST_AREA_MAX_SIZE,
2187 .len = ARRAY_SIZE(bs),
2188 .do_write = true,
2189 .do_nonblock_req = true,
2190 .prepare = MMC_TEST_PREP_ERASE,
2191 };
2192
2193 return mmc_test_rw_multiple_size(test, &test_data);
2194}
2195
2196/*
2197 * Multiple blocking read 4k to 4 MB chunks
2198 */
2199static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2200{
2201 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2202 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2203 struct mmc_test_multiple_rw test_data = {
2204 .bs = bs,
2205 .size = TEST_AREA_MAX_SIZE,
2206 .len = ARRAY_SIZE(bs),
2207 .do_write = false,
2208 .do_nonblock_req = false,
2209 .prepare = MMC_TEST_PREP_NONE,
2210 };
2211
2212 return mmc_test_rw_multiple_size(test, &test_data);
2213}
2214
2215/*
2216 * Multiple non-blocking read 4k to 4 MB chunks
2217 */
2218static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2219{
2220 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2221 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2222 struct mmc_test_multiple_rw test_data = {
2223 .bs = bs,
2224 .size = TEST_AREA_MAX_SIZE,
2225 .len = ARRAY_SIZE(bs),
2226 .do_write = false,
2227 .do_nonblock_req = true,
2228 .prepare = MMC_TEST_PREP_NONE,
2229 };
2230
2231 return mmc_test_rw_multiple_size(test, &test_data);
2232}
2233
2234/*
2235 * Multiple blocking write 1 to 512 sg elements
2236 */
2237static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2238{
2239 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2240 1 << 7, 1 << 8, 1 << 9};
2241 struct mmc_test_multiple_rw test_data = {
2242 .sg_len = sg_len,
2243 .size = TEST_AREA_MAX_SIZE,
2244 .len = ARRAY_SIZE(sg_len),
2245 .do_write = true,
2246 .do_nonblock_req = false,
2247 .prepare = MMC_TEST_PREP_ERASE,
2248 };
2249
2250 return mmc_test_rw_multiple_sg_len(test, &test_data);
2251};
2252
2253/*
2254 * Multiple non-blocking write 1 to 512 sg elements
2255 */
2256static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2257{
2258 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2259 1 << 7, 1 << 8, 1 << 9};
2260 struct mmc_test_multiple_rw test_data = {
2261 .sg_len = sg_len,
2262 .size = TEST_AREA_MAX_SIZE,
2263 .len = ARRAY_SIZE(sg_len),
2264 .do_write = true,
2265 .do_nonblock_req = true,
2266 .prepare = MMC_TEST_PREP_ERASE,
2267 };
2268
2269 return mmc_test_rw_multiple_sg_len(test, &test_data);
2270}
2271
2272/*
2273 * Multiple blocking read 1 to 512 sg elements
2274 */
2275static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2276{
2277 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2278 1 << 7, 1 << 8, 1 << 9};
2279 struct mmc_test_multiple_rw test_data = {
2280 .sg_len = sg_len,
2281 .size = TEST_AREA_MAX_SIZE,
2282 .len = ARRAY_SIZE(sg_len),
2283 .do_write = false,
2284 .do_nonblock_req = false,
2285 .prepare = MMC_TEST_PREP_NONE,
2286 };
2287
2288 return mmc_test_rw_multiple_sg_len(test, &test_data);
2289}
2290
2291/*
2292 * Multiple non-blocking read 1 to 512 sg elements
2293 */
2294static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2295{
2296 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2297 1 << 7, 1 << 8, 1 << 9};
2298 struct mmc_test_multiple_rw test_data = {
2299 .sg_len = sg_len,
2300 .size = TEST_AREA_MAX_SIZE,
2301 .len = ARRAY_SIZE(sg_len),
2302 .do_write = false,
2303 .do_nonblock_req = true,
2304 .prepare = MMC_TEST_PREP_NONE,
2305 };
2306
2307 return mmc_test_rw_multiple_sg_len(test, &test_data);
2308}
2309
2310/*
2311 * eMMC hardware reset.
2312 */
2313static int mmc_test_reset(struct mmc_test_card *test)
2314{
2315 struct mmc_card *card = test->card;
2316 struct mmc_host *host = card->host;
2317 int err;
2318
2319 err = mmc_hw_reset(host);
2320 if (!err)
2321 return RESULT_OK;
2322 else if (err == -EOPNOTSUPP)
2323 return RESULT_UNSUP_HOST;
2324
2325 return RESULT_FAIL;
2326}
2327
2328struct mmc_test_req {
2329 struct mmc_request mrq;
2330 struct mmc_command sbc;
2331 struct mmc_command cmd;
2332 struct mmc_command stop;
2333 struct mmc_command status;
2334 struct mmc_data data;
2335};
2336
2337static struct mmc_test_req *mmc_test_req_alloc(void)
2338{
2339 struct mmc_test_req *rq = kzalloc(sizeof(*rq), GFP_KERNEL);
2340
2341 if (rq) {
2342 rq->mrq.cmd = &rq->cmd;
2343 rq->mrq.data = &rq->data;
2344 rq->mrq.stop = &rq->stop;
2345 }
2346
2347 return rq;
2348}
2349
2350static int mmc_test_send_status(struct mmc_test_card *test,
2351 struct mmc_command *cmd)
2352{
2353 memset(cmd, 0, sizeof(*cmd));
2354
2355 cmd->opcode = MMC_SEND_STATUS;
2356 if (!mmc_host_is_spi(test->card->host))
2357 cmd->arg = test->card->rca << 16;
2358 cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2359
2360 return mmc_wait_for_cmd(test->card->host, cmd, 0);
2361}
2362
2363static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2364 unsigned int dev_addr, int use_sbc,
2365 int repeat_cmd, int write, int use_areq)
2366{
2367 struct mmc_test_req *rq = mmc_test_req_alloc();
2368 struct mmc_host *host = test->card->host;
2369 struct mmc_test_area *t = &test->area;
2370 struct mmc_test_async_req test_areq = { .test = test };
2371 struct mmc_request *mrq;
2372 unsigned long timeout;
2373 bool expired = false;
2374 enum mmc_blk_status blkstat = MMC_BLK_SUCCESS;
2375 int ret = 0, cmd_ret;
2376 u32 status = 0;
2377 int count = 0;
2378
2379 if (!rq)
2380 return -ENOMEM;
2381
2382 mrq = &rq->mrq;
2383 if (use_sbc)
2384 mrq->sbc = &rq->sbc;
2385 mrq->cap_cmd_during_tfr = true;
2386
2387 test_areq.areq.mrq = mrq;
2388 test_areq.areq.err_check = mmc_test_check_result_async;
2389
2390 mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2391 512, write);
2392
2393 if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2394 ret = mmc_host_cmd23(host) ?
2395 RESULT_UNSUP_CARD :
2396 RESULT_UNSUP_HOST;
2397 goto out_free;
2398 }
2399
2400 /* Start ongoing data request */
2401 if (use_areq) {
2402 mmc_start_req(host, &test_areq.areq, &blkstat);
2403 if (blkstat != MMC_BLK_SUCCESS) {
2404 ret = RESULT_FAIL;
2405 goto out_free;
2406 }
2407 } else {
2408 mmc_wait_for_req(host, mrq);
2409 }
2410
2411 timeout = jiffies + msecs_to_jiffies(3000);
2412 do {
2413 count += 1;
2414
2415 /* Send status command while data transfer in progress */
2416 cmd_ret = mmc_test_send_status(test, &rq->status);
2417 if (cmd_ret)
2418 break;
2419
2420 status = rq->status.resp[0];
2421 if (status & R1_ERROR) {
2422 cmd_ret = -EIO;
2423 break;
2424 }
2425
2426 if (mmc_is_req_done(host, mrq))
2427 break;
2428
2429 expired = time_after(jiffies, timeout);
2430 if (expired) {
2431 pr_info("%s: timeout waiting for Tran state status %#x\n",
2432 mmc_hostname(host), status);
2433 cmd_ret = -ETIMEDOUT;
2434 break;
2435 }
2436 } while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2437
2438 /* Wait for data request to complete */
2439 if (use_areq) {
2440 mmc_start_req(host, NULL, &blkstat);
2441 if (blkstat != MMC_BLK_SUCCESS)
2442 ret = RESULT_FAIL;
2443 } else {
2444 mmc_wait_for_req_done(test->card->host, mrq);
2445 }
2446
2447 /*
2448 * For cap_cmd_during_tfr request, upper layer must send stop if
2449 * required.
2450 */
2451 if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2452 if (ret)
2453 mmc_wait_for_cmd(host, mrq->data->stop, 0);
2454 else
2455 ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2456 }
2457
2458 if (ret)
2459 goto out_free;
2460
2461 if (cmd_ret) {
2462 pr_info("%s: Send Status failed: status %#x, error %d\n",
2463 mmc_hostname(test->card->host), status, cmd_ret);
2464 }
2465
2466 ret = mmc_test_check_result(test, mrq);
2467 if (ret)
2468 goto out_free;
2469
2470 ret = mmc_test_wait_busy(test);
2471 if (ret)
2472 goto out_free;
2473
2474 if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2475 pr_info("%s: %d commands completed during transfer of %u blocks\n",
2476 mmc_hostname(test->card->host), count, t->blocks);
2477
2478 if (cmd_ret)
2479 ret = cmd_ret;
2480out_free:
2481 kfree(rq);
2482
2483 return ret;
2484}
2485
2486static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2487 unsigned long sz, int use_sbc, int write,
2488 int use_areq)
2489{
2490 struct mmc_test_area *t = &test->area;
2491 int ret;
2492
2493 if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2494 return RESULT_UNSUP_HOST;
2495
2496 ret = mmc_test_area_map(test, sz, 0, 0);
2497 if (ret)
2498 return ret;
2499
2500 ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2501 use_areq);
2502 if (ret)
2503 return ret;
2504
2505 return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2506 use_areq);
2507}
2508
2509static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2510 int write, int use_areq)
2511{
2512 struct mmc_test_area *t = &test->area;
2513 unsigned long sz;
2514 int ret;
2515
2516 for (sz = 512; sz <= t->max_tfr; sz += 512) {
2517 ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2518 use_areq);
2519 if (ret)
2520 return ret;
2521 }
2522 return 0;
2523}
2524
2525/*
2526 * Commands during read - no Set Block Count (CMD23).
2527 */
2528static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2529{
2530 return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2531}
2532
2533/*
2534 * Commands during write - no Set Block Count (CMD23).
2535 */
2536static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2537{
2538 return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2539}
2540
2541/*
2542 * Commands during read - use Set Block Count (CMD23).
2543 */
2544static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2545{
2546 return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2547}
2548
2549/*
2550 * Commands during write - use Set Block Count (CMD23).
2551 */
2552static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2553{
2554 return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2555}
2556
2557/*
2558 * Commands during non-blocking read - use Set Block Count (CMD23).
2559 */
2560static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2561{
2562 return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2563}
2564
2565/*
2566 * Commands during non-blocking write - use Set Block Count (CMD23).
2567 */
2568static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2569{
2570 return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2571}
2572
2573static const struct mmc_test_case mmc_test_cases[] = {
2574 {
2575 .name = "Basic write (no data verification)",
2576 .run = mmc_test_basic_write,
2577 },
2578
2579 {
2580 .name = "Basic read (no data verification)",
2581 .run = mmc_test_basic_read,
2582 },
2583
2584 {
2585 .name = "Basic write (with data verification)",
2586 .prepare = mmc_test_prepare_write,
2587 .run = mmc_test_verify_write,
2588 .cleanup = mmc_test_cleanup,
2589 },
2590
2591 {
2592 .name = "Basic read (with data verification)",
2593 .prepare = mmc_test_prepare_read,
2594 .run = mmc_test_verify_read,
2595 .cleanup = mmc_test_cleanup,
2596 },
2597
2598 {
2599 .name = "Multi-block write",
2600 .prepare = mmc_test_prepare_write,
2601 .run = mmc_test_multi_write,
2602 .cleanup = mmc_test_cleanup,
2603 },
2604
2605 {
2606 .name = "Multi-block read",
2607 .prepare = mmc_test_prepare_read,
2608 .run = mmc_test_multi_read,
2609 .cleanup = mmc_test_cleanup,
2610 },
2611
2612 {
2613 .name = "Power of two block writes",
2614 .prepare = mmc_test_prepare_write,
2615 .run = mmc_test_pow2_write,
2616 .cleanup = mmc_test_cleanup,
2617 },
2618
2619 {
2620 .name = "Power of two block reads",
2621 .prepare = mmc_test_prepare_read,
2622 .run = mmc_test_pow2_read,
2623 .cleanup = mmc_test_cleanup,
2624 },
2625
2626 {
2627 .name = "Weird sized block writes",
2628 .prepare = mmc_test_prepare_write,
2629 .run = mmc_test_weird_write,
2630 .cleanup = mmc_test_cleanup,
2631 },
2632
2633 {
2634 .name = "Weird sized block reads",
2635 .prepare = mmc_test_prepare_read,
2636 .run = mmc_test_weird_read,
2637 .cleanup = mmc_test_cleanup,
2638 },
2639
2640 {
2641 .name = "Badly aligned write",
2642 .prepare = mmc_test_prepare_write,
2643 .run = mmc_test_align_write,
2644 .cleanup = mmc_test_cleanup,
2645 },
2646
2647 {
2648 .name = "Badly aligned read",
2649 .prepare = mmc_test_prepare_read,
2650 .run = mmc_test_align_read,
2651 .cleanup = mmc_test_cleanup,
2652 },
2653
2654 {
2655 .name = "Badly aligned multi-block write",
2656 .prepare = mmc_test_prepare_write,
2657 .run = mmc_test_align_multi_write,
2658 .cleanup = mmc_test_cleanup,
2659 },
2660
2661 {
2662 .name = "Badly aligned multi-block read",
2663 .prepare = mmc_test_prepare_read,
2664 .run = mmc_test_align_multi_read,
2665 .cleanup = mmc_test_cleanup,
2666 },
2667
2668 {
2669 .name = "Correct xfer_size at write (start failure)",
2670 .run = mmc_test_xfersize_write,
2671 },
2672
2673 {
2674 .name = "Correct xfer_size at read (start failure)",
2675 .run = mmc_test_xfersize_read,
2676 },
2677
2678 {
2679 .name = "Correct xfer_size at write (midway failure)",
2680 .run = mmc_test_multi_xfersize_write,
2681 },
2682
2683 {
2684 .name = "Correct xfer_size at read (midway failure)",
2685 .run = mmc_test_multi_xfersize_read,
2686 },
2687
2688#ifdef CONFIG_HIGHMEM
2689
2690 {
2691 .name = "Highmem write",
2692 .prepare = mmc_test_prepare_write,
2693 .run = mmc_test_write_high,
2694 .cleanup = mmc_test_cleanup,
2695 },
2696
2697 {
2698 .name = "Highmem read",
2699 .prepare = mmc_test_prepare_read,
2700 .run = mmc_test_read_high,
2701 .cleanup = mmc_test_cleanup,
2702 },
2703
2704 {
2705 .name = "Multi-block highmem write",
2706 .prepare = mmc_test_prepare_write,
2707 .run = mmc_test_multi_write_high,
2708 .cleanup = mmc_test_cleanup,
2709 },
2710
2711 {
2712 .name = "Multi-block highmem read",
2713 .prepare = mmc_test_prepare_read,
2714 .run = mmc_test_multi_read_high,
2715 .cleanup = mmc_test_cleanup,
2716 },
2717
2718#else
2719
2720 {
2721 .name = "Highmem write",
2722 .run = mmc_test_no_highmem,
2723 },
2724
2725 {
2726 .name = "Highmem read",
2727 .run = mmc_test_no_highmem,
2728 },
2729
2730 {
2731 .name = "Multi-block highmem write",
2732 .run = mmc_test_no_highmem,
2733 },
2734
2735 {
2736 .name = "Multi-block highmem read",
2737 .run = mmc_test_no_highmem,
2738 },
2739
2740#endif /* CONFIG_HIGHMEM */
2741
2742 {
2743 .name = "Best-case read performance",
2744 .prepare = mmc_test_area_prepare_fill,
2745 .run = mmc_test_best_read_performance,
2746 .cleanup = mmc_test_area_cleanup,
2747 },
2748
2749 {
2750 .name = "Best-case write performance",
2751 .prepare = mmc_test_area_prepare_erase,
2752 .run = mmc_test_best_write_performance,
2753 .cleanup = mmc_test_area_cleanup,
2754 },
2755
2756 {
2757 .name = "Best-case read performance into scattered pages",
2758 .prepare = mmc_test_area_prepare_fill,
2759 .run = mmc_test_best_read_perf_max_scatter,
2760 .cleanup = mmc_test_area_cleanup,
2761 },
2762
2763 {
2764 .name = "Best-case write performance from scattered pages",
2765 .prepare = mmc_test_area_prepare_erase,
2766 .run = mmc_test_best_write_perf_max_scatter,
2767 .cleanup = mmc_test_area_cleanup,
2768 },
2769
2770 {
2771 .name = "Single read performance by transfer size",
2772 .prepare = mmc_test_area_prepare_fill,
2773 .run = mmc_test_profile_read_perf,
2774 .cleanup = mmc_test_area_cleanup,
2775 },
2776
2777 {
2778 .name = "Single write performance by transfer size",
2779 .prepare = mmc_test_area_prepare,
2780 .run = mmc_test_profile_write_perf,
2781 .cleanup = mmc_test_area_cleanup,
2782 },
2783
2784 {
2785 .name = "Single trim performance by transfer size",
2786 .prepare = mmc_test_area_prepare_fill,
2787 .run = mmc_test_profile_trim_perf,
2788 .cleanup = mmc_test_area_cleanup,
2789 },
2790
2791 {
2792 .name = "Consecutive read performance by transfer size",
2793 .prepare = mmc_test_area_prepare_fill,
2794 .run = mmc_test_profile_seq_read_perf,
2795 .cleanup = mmc_test_area_cleanup,
2796 },
2797
2798 {
2799 .name = "Consecutive write performance by transfer size",
2800 .prepare = mmc_test_area_prepare,
2801 .run = mmc_test_profile_seq_write_perf,
2802 .cleanup = mmc_test_area_cleanup,
2803 },
2804
2805 {
2806 .name = "Consecutive trim performance by transfer size",
2807 .prepare = mmc_test_area_prepare,
2808 .run = mmc_test_profile_seq_trim_perf,
2809 .cleanup = mmc_test_area_cleanup,
2810 },
2811
2812 {
2813 .name = "Random read performance by transfer size",
2814 .prepare = mmc_test_area_prepare,
2815 .run = mmc_test_random_read_perf,
2816 .cleanup = mmc_test_area_cleanup,
2817 },
2818
2819 {
2820 .name = "Random write performance by transfer size",
2821 .prepare = mmc_test_area_prepare,
2822 .run = mmc_test_random_write_perf,
2823 .cleanup = mmc_test_area_cleanup,
2824 },
2825
2826 {
2827 .name = "Large sequential read into scattered pages",
2828 .prepare = mmc_test_area_prepare,
2829 .run = mmc_test_large_seq_read_perf,
2830 .cleanup = mmc_test_area_cleanup,
2831 },
2832
2833 {
2834 .name = "Large sequential write from scattered pages",
2835 .prepare = mmc_test_area_prepare,
2836 .run = mmc_test_large_seq_write_perf,
2837 .cleanup = mmc_test_area_cleanup,
2838 },
2839
2840 {
2841 .name = "Write performance with blocking req 4k to 4MB",
2842 .prepare = mmc_test_area_prepare,
2843 .run = mmc_test_profile_mult_write_blocking_perf,
2844 .cleanup = mmc_test_area_cleanup,
2845 },
2846
2847 {
2848 .name = "Write performance with non-blocking req 4k to 4MB",
2849 .prepare = mmc_test_area_prepare,
2850 .run = mmc_test_profile_mult_write_nonblock_perf,
2851 .cleanup = mmc_test_area_cleanup,
2852 },
2853
2854 {
2855 .name = "Read performance with blocking req 4k to 4MB",
2856 .prepare = mmc_test_area_prepare,
2857 .run = mmc_test_profile_mult_read_blocking_perf,
2858 .cleanup = mmc_test_area_cleanup,
2859 },
2860
2861 {
2862 .name = "Read performance with non-blocking req 4k to 4MB",
2863 .prepare = mmc_test_area_prepare,
2864 .run = mmc_test_profile_mult_read_nonblock_perf,
2865 .cleanup = mmc_test_area_cleanup,
2866 },
2867
2868 {
2869 .name = "Write performance blocking req 1 to 512 sg elems",
2870 .prepare = mmc_test_area_prepare,
2871 .run = mmc_test_profile_sglen_wr_blocking_perf,
2872 .cleanup = mmc_test_area_cleanup,
2873 },
2874
2875 {
2876 .name = "Write performance non-blocking req 1 to 512 sg elems",
2877 .prepare = mmc_test_area_prepare,
2878 .run = mmc_test_profile_sglen_wr_nonblock_perf,
2879 .cleanup = mmc_test_area_cleanup,
2880 },
2881
2882 {
2883 .name = "Read performance blocking req 1 to 512 sg elems",
2884 .prepare = mmc_test_area_prepare,
2885 .run = mmc_test_profile_sglen_r_blocking_perf,
2886 .cleanup = mmc_test_area_cleanup,
2887 },
2888
2889 {
2890 .name = "Read performance non-blocking req 1 to 512 sg elems",
2891 .prepare = mmc_test_area_prepare,
2892 .run = mmc_test_profile_sglen_r_nonblock_perf,
2893 .cleanup = mmc_test_area_cleanup,
2894 },
2895
2896 {
2897 .name = "Reset test",
2898 .run = mmc_test_reset,
2899 },
2900
2901 {
2902 .name = "Commands during read - no Set Block Count (CMD23)",
2903 .prepare = mmc_test_area_prepare,
2904 .run = mmc_test_cmds_during_read,
2905 .cleanup = mmc_test_area_cleanup,
2906 },
2907
2908 {
2909 .name = "Commands during write - no Set Block Count (CMD23)",
2910 .prepare = mmc_test_area_prepare,
2911 .run = mmc_test_cmds_during_write,
2912 .cleanup = mmc_test_area_cleanup,
2913 },
2914
2915 {
2916 .name = "Commands during read - use Set Block Count (CMD23)",
2917 .prepare = mmc_test_area_prepare,
2918 .run = mmc_test_cmds_during_read_cmd23,
2919 .cleanup = mmc_test_area_cleanup,
2920 },
2921
2922 {
2923 .name = "Commands during write - use Set Block Count (CMD23)",
2924 .prepare = mmc_test_area_prepare,
2925 .run = mmc_test_cmds_during_write_cmd23,
2926 .cleanup = mmc_test_area_cleanup,
2927 },
2928
2929 {
2930 .name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2931 .prepare = mmc_test_area_prepare,
2932 .run = mmc_test_cmds_during_read_cmd23_nonblock,
2933 .cleanup = mmc_test_area_cleanup,
2934 },
2935
2936 {
2937 .name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2938 .prepare = mmc_test_area_prepare,
2939 .run = mmc_test_cmds_during_write_cmd23_nonblock,
2940 .cleanup = mmc_test_area_cleanup,
2941 },
2942};
2943
2944static DEFINE_MUTEX(mmc_test_lock);
2945
2946static LIST_HEAD(mmc_test_result);
2947
2948static void mmc_test_run(struct mmc_test_card *test, int testcase)
2949{
2950 int i, ret;
2951
2952 pr_info("%s: Starting tests of card %s...\n",
2953 mmc_hostname(test->card->host), mmc_card_id(test->card));
2954
2955 mmc_claim_host(test->card->host);
2956
2957 for (i = 0;i < ARRAY_SIZE(mmc_test_cases);i++) {
2958 struct mmc_test_general_result *gr;
2959
2960 if (testcase && ((i + 1) != testcase))
2961 continue;
2962
2963 pr_info("%s: Test case %d. %s...\n",
2964 mmc_hostname(test->card->host), i + 1,
2965 mmc_test_cases[i].name);
2966
2967 if (mmc_test_cases[i].prepare) {
2968 ret = mmc_test_cases[i].prepare(test);
2969 if (ret) {
2970 pr_info("%s: Result: Prepare "
2971 "stage failed! (%d)\n",
2972 mmc_hostname(test->card->host),
2973 ret);
2974 continue;
2975 }
2976 }
2977
2978 gr = kzalloc(sizeof(struct mmc_test_general_result),
2979 GFP_KERNEL);
2980 if (gr) {
2981 INIT_LIST_HEAD(&gr->tr_lst);
2982
2983 /* Assign data what we know already */
2984 gr->card = test->card;
2985 gr->testcase = i;
2986
2987 /* Append container to global one */
2988 list_add_tail(&gr->link, &mmc_test_result);
2989
2990 /*
2991 * Save the pointer to created container in our private
2992 * structure.
2993 */
2994 test->gr = gr;
2995 }
2996
2997 ret = mmc_test_cases[i].run(test);
2998 switch (ret) {
2999 case RESULT_OK:
3000 pr_info("%s: Result: OK\n",
3001 mmc_hostname(test->card->host));
3002 break;
3003 case RESULT_FAIL:
3004 pr_info("%s: Result: FAILED\n",
3005 mmc_hostname(test->card->host));
3006 break;
3007 case RESULT_UNSUP_HOST:
3008 pr_info("%s: Result: UNSUPPORTED "
3009 "(by host)\n",
3010 mmc_hostname(test->card->host));
3011 break;
3012 case RESULT_UNSUP_CARD:
3013 pr_info("%s: Result: UNSUPPORTED "
3014 "(by card)\n",
3015 mmc_hostname(test->card->host));
3016 break;
3017 default:
3018 pr_info("%s: Result: ERROR (%d)\n",
3019 mmc_hostname(test->card->host), ret);
3020 }
3021
3022 /* Save the result */
3023 if (gr)
3024 gr->result = ret;
3025
3026 if (mmc_test_cases[i].cleanup) {
3027 ret = mmc_test_cases[i].cleanup(test);
3028 if (ret) {
3029 pr_info("%s: Warning: Cleanup "
3030 "stage failed! (%d)\n",
3031 mmc_hostname(test->card->host),
3032 ret);
3033 }
3034 }
3035 }
3036
3037 mmc_release_host(test->card->host);
3038
3039 pr_info("%s: Tests completed.\n",
3040 mmc_hostname(test->card->host));
3041}
3042
3043static void mmc_test_free_result(struct mmc_card *card)
3044{
3045 struct mmc_test_general_result *gr, *grs;
3046
3047 mutex_lock(&mmc_test_lock);
3048
3049 list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3050 struct mmc_test_transfer_result *tr, *trs;
3051
3052 if (card && gr->card != card)
3053 continue;
3054
3055 list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3056 list_del(&tr->link);
3057 kfree(tr);
3058 }
3059
3060 list_del(&gr->link);
3061 kfree(gr);
3062 }
3063
3064 mutex_unlock(&mmc_test_lock);
3065}
3066
3067static LIST_HEAD(mmc_test_file_test);
3068
3069static int mtf_test_show(struct seq_file *sf, void *data)
3070{
3071 struct mmc_card *card = (struct mmc_card *)sf->private;
3072 struct mmc_test_general_result *gr;
3073
3074 mutex_lock(&mmc_test_lock);
3075
3076 list_for_each_entry(gr, &mmc_test_result, link) {
3077 struct mmc_test_transfer_result *tr;
3078
3079 if (gr->card != card)
3080 continue;
3081
3082 seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3083
3084 list_for_each_entry(tr, &gr->tr_lst, link) {
3085 seq_printf(sf, "%u %d %lu.%09lu %u %u.%02u\n",
3086 tr->count, tr->sectors,
3087 (unsigned long)tr->ts.tv_sec,
3088 (unsigned long)tr->ts.tv_nsec,
3089 tr->rate, tr->iops / 100, tr->iops % 100);
3090 }
3091 }
3092
3093 mutex_unlock(&mmc_test_lock);
3094
3095 return 0;
3096}
3097
3098static int mtf_test_open(struct inode *inode, struct file *file)
3099{
3100 return single_open(file, mtf_test_show, inode->i_private);
3101}
3102
3103static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3104 size_t count, loff_t *pos)
3105{
3106 struct seq_file *sf = (struct seq_file *)file->private_data;
3107 struct mmc_card *card = (struct mmc_card *)sf->private;
3108 struct mmc_test_card *test;
3109 long testcase;
3110 int ret;
3111
3112 ret = kstrtol_from_user(buf, count, 10, &testcase);
3113 if (ret)
3114 return ret;
3115
3116 test = kzalloc(sizeof(struct mmc_test_card), GFP_KERNEL);
3117 if (!test)
3118 return -ENOMEM;
3119
3120 /*
3121 * Remove all test cases associated with given card. Thus we have only
3122 * actual data of the last run.
3123 */
3124 mmc_test_free_result(card);
3125
3126 test->card = card;
3127
3128 test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3129#ifdef CONFIG_HIGHMEM
3130 test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3131#endif
3132
3133#ifdef CONFIG_HIGHMEM
3134 if (test->buffer && test->highmem) {
3135#else
3136 if (test->buffer) {
3137#endif
3138 mutex_lock(&mmc_test_lock);
3139 mmc_test_run(test, testcase);
3140 mutex_unlock(&mmc_test_lock);
3141 }
3142
3143#ifdef CONFIG_HIGHMEM
3144 __free_pages(test->highmem, BUFFER_ORDER);
3145#endif
3146 kfree(test->buffer);
3147 kfree(test);
3148
3149 return count;
3150}
3151
3152static const struct file_operations mmc_test_fops_test = {
3153 .open = mtf_test_open,
3154 .read = seq_read,
3155 .write = mtf_test_write,
3156 .llseek = seq_lseek,
3157 .release = single_release,
3158};
3159
3160static int mtf_testlist_show(struct seq_file *sf, void *data)
3161{
3162 int i;
3163
3164 mutex_lock(&mmc_test_lock);
3165
3166 seq_printf(sf, "0:\tRun all tests\n");
3167 for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3168 seq_printf(sf, "%d:\t%s\n", i+1, mmc_test_cases[i].name);
3169
3170 mutex_unlock(&mmc_test_lock);
3171
3172 return 0;
3173}
3174
3175static int mtf_testlist_open(struct inode *inode, struct file *file)
3176{
3177 return single_open(file, mtf_testlist_show, inode->i_private);
3178}
3179
3180static const struct file_operations mmc_test_fops_testlist = {
3181 .open = mtf_testlist_open,
3182 .read = seq_read,
3183 .llseek = seq_lseek,
3184 .release = single_release,
3185};
3186
3187static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3188{
3189 struct mmc_test_dbgfs_file *df, *dfs;
3190
3191 mutex_lock(&mmc_test_lock);
3192
3193 list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3194 if (card && df->card != card)
3195 continue;
3196 debugfs_remove(df->file);
3197 list_del(&df->link);
3198 kfree(df);
3199 }
3200
3201 mutex_unlock(&mmc_test_lock);
3202}
3203
3204static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3205 const char *name, umode_t mode, const struct file_operations *fops)
3206{
3207 struct dentry *file = NULL;
3208 struct mmc_test_dbgfs_file *df;
3209
3210 if (card->debugfs_root)
3211 file = debugfs_create_file(name, mode, card->debugfs_root,
3212 card, fops);
3213
3214 if (IS_ERR_OR_NULL(file)) {
3215 dev_err(&card->dev,
3216 "Can't create %s. Perhaps debugfs is disabled.\n",
3217 name);
3218 return -ENODEV;
3219 }
3220
3221 df = kmalloc(sizeof(struct mmc_test_dbgfs_file), GFP_KERNEL);
3222 if (!df) {
3223 debugfs_remove(file);
3224 dev_err(&card->dev,
3225 "Can't allocate memory for internal usage.\n");
3226 return -ENOMEM;
3227 }
3228
3229 df->card = card;
3230 df->file = file;
3231
3232 list_add(&df->link, &mmc_test_file_test);
3233 return 0;
3234}
3235
3236static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3237{
3238 int ret;
3239
3240 mutex_lock(&mmc_test_lock);
3241
3242 ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3243 &mmc_test_fops_test);
3244 if (ret)
3245 goto err;
3246
3247 ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3248 &mmc_test_fops_testlist);
3249 if (ret)
3250 goto err;
3251
3252err:
3253 mutex_unlock(&mmc_test_lock);
3254
3255 return ret;
3256}
3257
3258static int mmc_test_probe(struct mmc_card *card)
3259{
3260 int ret;
3261
3262 if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3263 return -ENODEV;
3264
3265 ret = mmc_test_register_dbgfs_file(card);
3266 if (ret)
3267 return ret;
3268
3269 dev_info(&card->dev, "Card claimed for testing.\n");
3270
3271 return 0;
3272}
3273
3274static void mmc_test_remove(struct mmc_card *card)
3275{
3276 mmc_test_free_result(card);
3277 mmc_test_free_dbgfs_file(card);
3278}
3279
3280static void mmc_test_shutdown(struct mmc_card *card)
3281{
3282}
3283
3284static struct mmc_driver mmc_driver = {
3285 .drv = {
3286 .name = "mmc_test",
3287 },
3288 .probe = mmc_test_probe,
3289 .remove = mmc_test_remove,
3290 .shutdown = mmc_test_shutdown,
3291};
3292
3293static int __init mmc_test_init(void)
3294{
3295 return mmc_register_driver(&mmc_driver);
3296}
3297
3298static void __exit mmc_test_exit(void)
3299{
3300 /* Clear stalled data if card is still plugged */
3301 mmc_test_free_result(NULL);
3302 mmc_test_free_dbgfs_file(NULL);
3303
3304 mmc_unregister_driver(&mmc_driver);
3305}
3306
3307module_init(mmc_test_init);
3308module_exit(mmc_test_exit);
3309
3310MODULE_LICENSE("GPL");
3311MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3312MODULE_AUTHOR("Pierre Ossman");