Loading...
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * DOC: Panel Self Refresh (PSR/SRD)
26 *
27 * Since Haswell Display controller supports Panel Self-Refresh on display
28 * panels witch have a remote frame buffer (RFB) implemented according to PSR
29 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30 * when system is idle but display is on as it eliminates display refresh
31 * request to DDR memory completely as long as the frame buffer for that
32 * display is unchanged.
33 *
34 * Panel Self Refresh must be supported by both Hardware (source) and
35 * Panel (sink).
36 *
37 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38 * to power down the link and memory controller. For DSI panels the same idea
39 * is called "manual mode".
40 *
41 * The implementation uses the hardware-based PSR support which automatically
42 * enters/exits self-refresh mode. The hardware takes care of sending the
43 * required DP aux message and could even retrain the link (that part isn't
44 * enabled yet though). The hardware also keeps track of any frontbuffer
45 * changes to know when to exit self-refresh mode again. Unfortunately that
46 * part doesn't work too well, hence why the i915 PSR support uses the
47 * software frontbuffer tracking to make sure it doesn't miss a screen
48 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49 * get called by the frontbuffer tracking code. Note that because of locking
50 * issues the self-refresh re-enable code is done from a work queue, which
51 * must be correctly synchronized/cancelled when shutting down the pipe."
52 */
53
54#include <drm/drmP.h>
55
56#include "intel_drv.h"
57#include "i915_drv.h"
58
59static bool is_edp_psr(struct intel_dp *intel_dp)
60{
61 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
62}
63
64static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe)
65{
66 struct drm_i915_private *dev_priv = dev->dev_private;
67 uint32_t val;
68
69 val = I915_READ(VLV_PSRSTAT(pipe)) &
70 VLV_EDP_PSR_CURR_STATE_MASK;
71 return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
72 (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE);
73}
74
75static void intel_psr_write_vsc(struct intel_dp *intel_dp,
76 const struct edp_vsc_psr *vsc_psr)
77{
78 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
79 struct drm_device *dev = dig_port->base.base.dev;
80 struct drm_i915_private *dev_priv = dev->dev_private;
81 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
82 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
83 i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
84 uint32_t *data = (uint32_t *) vsc_psr;
85 unsigned int i;
86
87 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
88 the video DIP being updated before program video DIP data buffer
89 registers for DIP being updated. */
90 I915_WRITE(ctl_reg, 0);
91 POSTING_READ(ctl_reg);
92
93 for (i = 0; i < sizeof(*vsc_psr); i += 4) {
94 I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
95 i >> 2), *data);
96 data++;
97 }
98 for (; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4)
99 I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
100 i >> 2), 0);
101
102 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
103 POSTING_READ(ctl_reg);
104}
105
106static void vlv_psr_setup_vsc(struct intel_dp *intel_dp)
107{
108 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
109 struct drm_device *dev = intel_dig_port->base.base.dev;
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
112 enum pipe pipe = to_intel_crtc(crtc)->pipe;
113 uint32_t val;
114
115 /* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
116 val = I915_READ(VLV_VSCSDP(pipe));
117 val &= ~VLV_EDP_PSR_SDP_FREQ_MASK;
118 val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME;
119 I915_WRITE(VLV_VSCSDP(pipe), val);
120}
121
122static void skl_psr_setup_su_vsc(struct intel_dp *intel_dp)
123{
124 struct edp_vsc_psr psr_vsc;
125
126 /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
127 memset(&psr_vsc, 0, sizeof(psr_vsc));
128 psr_vsc.sdp_header.HB0 = 0;
129 psr_vsc.sdp_header.HB1 = 0x7;
130 psr_vsc.sdp_header.HB2 = 0x3;
131 psr_vsc.sdp_header.HB3 = 0xb;
132 intel_psr_write_vsc(intel_dp, &psr_vsc);
133}
134
135static void hsw_psr_setup_vsc(struct intel_dp *intel_dp)
136{
137 struct edp_vsc_psr psr_vsc;
138
139 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
140 memset(&psr_vsc, 0, sizeof(psr_vsc));
141 psr_vsc.sdp_header.HB0 = 0;
142 psr_vsc.sdp_header.HB1 = 0x7;
143 psr_vsc.sdp_header.HB2 = 0x2;
144 psr_vsc.sdp_header.HB3 = 0x8;
145 intel_psr_write_vsc(intel_dp, &psr_vsc);
146}
147
148static void vlv_psr_enable_sink(struct intel_dp *intel_dp)
149{
150 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
151 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
152}
153
154static i915_reg_t psr_aux_ctl_reg(struct drm_i915_private *dev_priv,
155 enum port port)
156{
157 if (INTEL_INFO(dev_priv)->gen >= 9)
158 return DP_AUX_CH_CTL(port);
159 else
160 return EDP_PSR_AUX_CTL;
161}
162
163static i915_reg_t psr_aux_data_reg(struct drm_i915_private *dev_priv,
164 enum port port, int index)
165{
166 if (INTEL_INFO(dev_priv)->gen >= 9)
167 return DP_AUX_CH_DATA(port, index);
168 else
169 return EDP_PSR_AUX_DATA(index);
170}
171
172static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
173{
174 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
175 struct drm_device *dev = dig_port->base.base.dev;
176 struct drm_i915_private *dev_priv = dev->dev_private;
177 uint32_t aux_clock_divider;
178 i915_reg_t aux_ctl_reg;
179 int precharge = 0x3;
180 static const uint8_t aux_msg[] = {
181 [0] = DP_AUX_NATIVE_WRITE << 4,
182 [1] = DP_SET_POWER >> 8,
183 [2] = DP_SET_POWER & 0xff,
184 [3] = 1 - 1,
185 [4] = DP_SET_POWER_D0,
186 };
187 enum port port = dig_port->port;
188 int i;
189
190 BUILD_BUG_ON(sizeof(aux_msg) > 20);
191
192 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
193
194 /* Enable AUX frame sync at sink */
195 if (dev_priv->psr.aux_frame_sync)
196 drm_dp_dpcd_writeb(&intel_dp->aux,
197 DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
198 DP_AUX_FRAME_SYNC_ENABLE);
199
200 aux_ctl_reg = psr_aux_ctl_reg(dev_priv, port);
201
202 /* Setup AUX registers */
203 for (i = 0; i < sizeof(aux_msg); i += 4)
204 I915_WRITE(psr_aux_data_reg(dev_priv, port, i >> 2),
205 intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
206
207 if (INTEL_INFO(dev)->gen >= 9) {
208 uint32_t val;
209
210 val = I915_READ(aux_ctl_reg);
211 val &= ~DP_AUX_CH_CTL_TIME_OUT_MASK;
212 val |= DP_AUX_CH_CTL_TIME_OUT_1600us;
213 val &= ~DP_AUX_CH_CTL_MESSAGE_SIZE_MASK;
214 val |= (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
215 /* Use hardcoded data values for PSR, frame sync and GTC */
216 val &= ~DP_AUX_CH_CTL_PSR_DATA_AUX_REG_SKL;
217 val &= ~DP_AUX_CH_CTL_FS_DATA_AUX_REG_SKL;
218 val &= ~DP_AUX_CH_CTL_GTC_DATA_AUX_REG_SKL;
219 I915_WRITE(aux_ctl_reg, val);
220 } else {
221 I915_WRITE(aux_ctl_reg,
222 DP_AUX_CH_CTL_TIME_OUT_400us |
223 (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
224 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
225 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
226 }
227
228 if (dev_priv->psr.link_standby)
229 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
230 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
231 else
232 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
233 DP_PSR_ENABLE);
234}
235
236static void vlv_psr_enable_source(struct intel_dp *intel_dp)
237{
238 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
239 struct drm_device *dev = dig_port->base.base.dev;
240 struct drm_i915_private *dev_priv = dev->dev_private;
241 struct drm_crtc *crtc = dig_port->base.base.crtc;
242 enum pipe pipe = to_intel_crtc(crtc)->pipe;
243
244 /* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */
245 I915_WRITE(VLV_PSRCTL(pipe),
246 VLV_EDP_PSR_MODE_SW_TIMER |
247 VLV_EDP_PSR_SRC_TRANSMITTER_STATE |
248 VLV_EDP_PSR_ENABLE);
249}
250
251static void vlv_psr_activate(struct intel_dp *intel_dp)
252{
253 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
254 struct drm_device *dev = dig_port->base.base.dev;
255 struct drm_i915_private *dev_priv = dev->dev_private;
256 struct drm_crtc *crtc = dig_port->base.base.crtc;
257 enum pipe pipe = to_intel_crtc(crtc)->pipe;
258
259 /* Let's do the transition from PSR_state 1 to PSR_state 2
260 * that is PSR transition to active - static frame transmission.
261 * Then Hardware is responsible for the transition to PSR_state 3
262 * that is PSR active - no Remote Frame Buffer (RFB) update.
263 */
264 I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) |
265 VLV_EDP_PSR_ACTIVE_ENTRY);
266}
267
268static void hsw_psr_enable_source(struct intel_dp *intel_dp)
269{
270 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
271 struct drm_device *dev = dig_port->base.base.dev;
272 struct drm_i915_private *dev_priv = dev->dev_private;
273
274 uint32_t max_sleep_time = 0x1f;
275 /*
276 * Let's respect VBT in case VBT asks a higher idle_frame value.
277 * Let's use 6 as the minimum to cover all known cases including
278 * the off-by-one issue that HW has in some cases. Also there are
279 * cases where sink should be able to train
280 * with the 5 or 6 idle patterns.
281 */
282 uint32_t idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
283 uint32_t val = 0x0;
284
285 if (IS_HASWELL(dev))
286 val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
287
288 if (dev_priv->psr.link_standby)
289 val |= EDP_PSR_LINK_STANDBY;
290
291 I915_WRITE(EDP_PSR_CTL, val |
292 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
293 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
294 EDP_PSR_ENABLE);
295
296 if (dev_priv->psr.psr2_support)
297 I915_WRITE(EDP_PSR2_CTL, EDP_PSR2_ENABLE |
298 EDP_SU_TRACK_ENABLE | EDP_PSR2_TP2_TIME_100);
299}
300
301static bool intel_psr_match_conditions(struct intel_dp *intel_dp)
302{
303 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
304 struct drm_device *dev = dig_port->base.base.dev;
305 struct drm_i915_private *dev_priv = dev->dev_private;
306 struct drm_crtc *crtc = dig_port->base.base.crtc;
307 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
308
309 lockdep_assert_held(&dev_priv->psr.lock);
310 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
311 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
312
313 dev_priv->psr.source_ok = false;
314
315 /*
316 * HSW spec explicitly says PSR is tied to port A.
317 * BDW+ platforms with DDI implementation of PSR have different
318 * PSR registers per transcoder and we only implement transcoder EDP
319 * ones. Since by Display design transcoder EDP is tied to port A
320 * we can safely escape based on the port A.
321 */
322 if (HAS_DDI(dev) && dig_port->port != PORT_A) {
323 DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
324 return false;
325 }
326
327 if (!i915.enable_psr) {
328 DRM_DEBUG_KMS("PSR disable by flag\n");
329 return false;
330 }
331
332 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
333 !dev_priv->psr.link_standby) {
334 DRM_ERROR("PSR condition failed: Link off requested but not supported on this platform\n");
335 return false;
336 }
337
338 if (IS_HASWELL(dev) &&
339 I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config->cpu_transcoder)) &
340 S3D_ENABLE) {
341 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
342 return false;
343 }
344
345 if (IS_HASWELL(dev) &&
346 intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
347 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
348 return false;
349 }
350
351 dev_priv->psr.source_ok = true;
352 return true;
353}
354
355static void intel_psr_activate(struct intel_dp *intel_dp)
356{
357 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
358 struct drm_device *dev = intel_dig_port->base.base.dev;
359 struct drm_i915_private *dev_priv = dev->dev_private;
360
361 WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
362 WARN_ON(dev_priv->psr.active);
363 lockdep_assert_held(&dev_priv->psr.lock);
364
365 /* Enable/Re-enable PSR on the host */
366 if (HAS_DDI(dev))
367 /* On HSW+ after we enable PSR on source it will activate it
368 * as soon as it match configure idle_frame count. So
369 * we just actually enable it here on activation time.
370 */
371 hsw_psr_enable_source(intel_dp);
372 else
373 vlv_psr_activate(intel_dp);
374
375 dev_priv->psr.active = true;
376}
377
378/**
379 * intel_psr_enable - Enable PSR
380 * @intel_dp: Intel DP
381 *
382 * This function can only be called after the pipe is fully trained and enabled.
383 */
384void intel_psr_enable(struct intel_dp *intel_dp)
385{
386 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
387 struct drm_device *dev = intel_dig_port->base.base.dev;
388 struct drm_i915_private *dev_priv = dev->dev_private;
389 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
390
391 if (!HAS_PSR(dev)) {
392 DRM_DEBUG_KMS("PSR not supported on this platform\n");
393 return;
394 }
395
396 if (!is_edp_psr(intel_dp)) {
397 DRM_DEBUG_KMS("PSR not supported by this panel\n");
398 return;
399 }
400
401 mutex_lock(&dev_priv->psr.lock);
402 if (dev_priv->psr.enabled) {
403 DRM_DEBUG_KMS("PSR already in use\n");
404 goto unlock;
405 }
406
407 if (!intel_psr_match_conditions(intel_dp))
408 goto unlock;
409
410 dev_priv->psr.busy_frontbuffer_bits = 0;
411
412 if (HAS_DDI(dev)) {
413 hsw_psr_setup_vsc(intel_dp);
414
415 if (dev_priv->psr.psr2_support) {
416 /* PSR2 is restricted to work with panel resolutions upto 3200x2000 */
417 if (crtc->config->pipe_src_w > 3200 ||
418 crtc->config->pipe_src_h > 2000)
419 dev_priv->psr.psr2_support = false;
420 else
421 skl_psr_setup_su_vsc(intel_dp);
422 }
423
424 /*
425 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD.
426 * Also mask LPSP to avoid dependency on other drivers that
427 * might block runtime_pm besides preventing other hw tracking
428 * issues now we can rely on frontbuffer tracking.
429 */
430 I915_WRITE(EDP_PSR_DEBUG_CTL, EDP_PSR_DEBUG_MASK_MEMUP |
431 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
432
433 /* Enable PSR on the panel */
434 hsw_psr_enable_sink(intel_dp);
435
436 if (INTEL_INFO(dev)->gen >= 9)
437 intel_psr_activate(intel_dp);
438 } else {
439 vlv_psr_setup_vsc(intel_dp);
440
441 /* Enable PSR on the panel */
442 vlv_psr_enable_sink(intel_dp);
443
444 /* On HSW+ enable_source also means go to PSR entry/active
445 * state as soon as idle_frame achieved and here would be
446 * to soon. However on VLV enable_source just enable PSR
447 * but let it on inactive state. So we might do this prior
448 * to active transition, i.e. here.
449 */
450 vlv_psr_enable_source(intel_dp);
451 }
452
453 /*
454 * FIXME: Activation should happen immediately since this function
455 * is just called after pipe is fully trained and enabled.
456 * However on every platform we face issues when first activation
457 * follows a modeset so quickly.
458 * - On VLV/CHV we get bank screen on first activation
459 * - On HSW/BDW we get a recoverable frozen screen until next
460 * exit-activate sequence.
461 */
462 if (INTEL_INFO(dev)->gen < 9)
463 schedule_delayed_work(&dev_priv->psr.work,
464 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
465
466 dev_priv->psr.enabled = intel_dp;
467unlock:
468 mutex_unlock(&dev_priv->psr.lock);
469}
470
471static void vlv_psr_disable(struct intel_dp *intel_dp)
472{
473 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
474 struct drm_device *dev = intel_dig_port->base.base.dev;
475 struct drm_i915_private *dev_priv = dev->dev_private;
476 struct intel_crtc *intel_crtc =
477 to_intel_crtc(intel_dig_port->base.base.crtc);
478 uint32_t val;
479
480 if (dev_priv->psr.active) {
481 /* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */
482 if (wait_for((I915_READ(VLV_PSRSTAT(intel_crtc->pipe)) &
483 VLV_EDP_PSR_IN_TRANS) == 0, 1))
484 WARN(1, "PSR transition took longer than expected\n");
485
486 val = I915_READ(VLV_PSRCTL(intel_crtc->pipe));
487 val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
488 val &= ~VLV_EDP_PSR_ENABLE;
489 val &= ~VLV_EDP_PSR_MODE_MASK;
490 I915_WRITE(VLV_PSRCTL(intel_crtc->pipe), val);
491
492 dev_priv->psr.active = false;
493 } else {
494 WARN_ON(vlv_is_psr_active_on_pipe(dev, intel_crtc->pipe));
495 }
496}
497
498static void hsw_psr_disable(struct intel_dp *intel_dp)
499{
500 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
501 struct drm_device *dev = intel_dig_port->base.base.dev;
502 struct drm_i915_private *dev_priv = dev->dev_private;
503
504 if (dev_priv->psr.active) {
505 I915_WRITE(EDP_PSR_CTL,
506 I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
507
508 /* Wait till PSR is idle */
509 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
510 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
511 DRM_ERROR("Timed out waiting for PSR Idle State\n");
512
513 dev_priv->psr.active = false;
514 } else {
515 WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
516 }
517}
518
519/**
520 * intel_psr_disable - Disable PSR
521 * @intel_dp: Intel DP
522 *
523 * This function needs to be called before disabling pipe.
524 */
525void intel_psr_disable(struct intel_dp *intel_dp)
526{
527 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
528 struct drm_device *dev = intel_dig_port->base.base.dev;
529 struct drm_i915_private *dev_priv = dev->dev_private;
530
531 mutex_lock(&dev_priv->psr.lock);
532 if (!dev_priv->psr.enabled) {
533 mutex_unlock(&dev_priv->psr.lock);
534 return;
535 }
536
537 /* Disable PSR on Source */
538 if (HAS_DDI(dev))
539 hsw_psr_disable(intel_dp);
540 else
541 vlv_psr_disable(intel_dp);
542
543 /* Disable PSR on Sink */
544 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
545
546 dev_priv->psr.enabled = NULL;
547 mutex_unlock(&dev_priv->psr.lock);
548
549 cancel_delayed_work_sync(&dev_priv->psr.work);
550}
551
552static void intel_psr_work(struct work_struct *work)
553{
554 struct drm_i915_private *dev_priv =
555 container_of(work, typeof(*dev_priv), psr.work.work);
556 struct intel_dp *intel_dp = dev_priv->psr.enabled;
557 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
558 enum pipe pipe = to_intel_crtc(crtc)->pipe;
559
560 /* We have to make sure PSR is ready for re-enable
561 * otherwise it keeps disabled until next full enable/disable cycle.
562 * PSR might take some time to get fully disabled
563 * and be ready for re-enable.
564 */
565 if (HAS_DDI(dev_priv->dev)) {
566 if (wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
567 EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
568 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
569 return;
570 }
571 } else {
572 if (wait_for((I915_READ(VLV_PSRSTAT(pipe)) &
573 VLV_EDP_PSR_IN_TRANS) == 0, 1)) {
574 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
575 return;
576 }
577 }
578 mutex_lock(&dev_priv->psr.lock);
579 intel_dp = dev_priv->psr.enabled;
580
581 if (!intel_dp)
582 goto unlock;
583
584 /*
585 * The delayed work can race with an invalidate hence we need to
586 * recheck. Since psr_flush first clears this and then reschedules we
587 * won't ever miss a flush when bailing out here.
588 */
589 if (dev_priv->psr.busy_frontbuffer_bits)
590 goto unlock;
591
592 intel_psr_activate(intel_dp);
593unlock:
594 mutex_unlock(&dev_priv->psr.lock);
595}
596
597static void intel_psr_exit(struct drm_device *dev)
598{
599 struct drm_i915_private *dev_priv = dev->dev_private;
600 struct intel_dp *intel_dp = dev_priv->psr.enabled;
601 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
602 enum pipe pipe = to_intel_crtc(crtc)->pipe;
603 u32 val;
604
605 if (!dev_priv->psr.active)
606 return;
607
608 if (HAS_DDI(dev)) {
609 val = I915_READ(EDP_PSR_CTL);
610
611 WARN_ON(!(val & EDP_PSR_ENABLE));
612
613 I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
614 } else {
615 val = I915_READ(VLV_PSRCTL(pipe));
616
617 /* Here we do the transition from PSR_state 3 to PSR_state 5
618 * directly once PSR State 4 that is active with single frame
619 * update can be skipped. PSR_state 5 that is PSR exit then
620 * Hardware is responsible to transition back to PSR_state 1
621 * that is PSR inactive. Same state after
622 * vlv_edp_psr_enable_source.
623 */
624 val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
625 I915_WRITE(VLV_PSRCTL(pipe), val);
626
627 /* Send AUX wake up - Spec says after transitioning to PSR
628 * active we have to send AUX wake up by writing 01h in DPCD
629 * 600h of sink device.
630 * XXX: This might slow down the transition, but without this
631 * HW doesn't complete the transition to PSR_state 1 and we
632 * never get the screen updated.
633 */
634 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
635 DP_SET_POWER_D0);
636 }
637
638 dev_priv->psr.active = false;
639}
640
641/**
642 * intel_psr_single_frame_update - Single Frame Update
643 * @dev: DRM device
644 * @frontbuffer_bits: frontbuffer plane tracking bits
645 *
646 * Some platforms support a single frame update feature that is used to
647 * send and update only one frame on Remote Frame Buffer.
648 * So far it is only implemented for Valleyview and Cherryview because
649 * hardware requires this to be done before a page flip.
650 */
651void intel_psr_single_frame_update(struct drm_device *dev,
652 unsigned frontbuffer_bits)
653{
654 struct drm_i915_private *dev_priv = dev->dev_private;
655 struct drm_crtc *crtc;
656 enum pipe pipe;
657 u32 val;
658
659 /*
660 * Single frame update is already supported on BDW+ but it requires
661 * many W/A and it isn't really needed.
662 */
663 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
664 return;
665
666 mutex_lock(&dev_priv->psr.lock);
667 if (!dev_priv->psr.enabled) {
668 mutex_unlock(&dev_priv->psr.lock);
669 return;
670 }
671
672 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
673 pipe = to_intel_crtc(crtc)->pipe;
674
675 if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) {
676 val = I915_READ(VLV_PSRCTL(pipe));
677
678 /*
679 * We need to set this bit before writing registers for a flip.
680 * This bit will be self-clear when it gets to the PSR active state.
681 */
682 I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE);
683 }
684 mutex_unlock(&dev_priv->psr.lock);
685}
686
687/**
688 * intel_psr_invalidate - Invalidade PSR
689 * @dev: DRM device
690 * @frontbuffer_bits: frontbuffer plane tracking bits
691 *
692 * Since the hardware frontbuffer tracking has gaps we need to integrate
693 * with the software frontbuffer tracking. This function gets called every
694 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
695 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
696 *
697 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
698 */
699void intel_psr_invalidate(struct drm_device *dev,
700 unsigned frontbuffer_bits)
701{
702 struct drm_i915_private *dev_priv = dev->dev_private;
703 struct drm_crtc *crtc;
704 enum pipe pipe;
705
706 mutex_lock(&dev_priv->psr.lock);
707 if (!dev_priv->psr.enabled) {
708 mutex_unlock(&dev_priv->psr.lock);
709 return;
710 }
711
712 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
713 pipe = to_intel_crtc(crtc)->pipe;
714
715 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
716 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
717
718 if (frontbuffer_bits)
719 intel_psr_exit(dev);
720
721 mutex_unlock(&dev_priv->psr.lock);
722}
723
724/**
725 * intel_psr_flush - Flush PSR
726 * @dev: DRM device
727 * @frontbuffer_bits: frontbuffer plane tracking bits
728 * @origin: which operation caused the flush
729 *
730 * Since the hardware frontbuffer tracking has gaps we need to integrate
731 * with the software frontbuffer tracking. This function gets called every
732 * time frontbuffer rendering has completed and flushed out to memory. PSR
733 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
734 *
735 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
736 */
737void intel_psr_flush(struct drm_device *dev,
738 unsigned frontbuffer_bits, enum fb_op_origin origin)
739{
740 struct drm_i915_private *dev_priv = dev->dev_private;
741 struct drm_crtc *crtc;
742 enum pipe pipe;
743
744 mutex_lock(&dev_priv->psr.lock);
745 if (!dev_priv->psr.enabled) {
746 mutex_unlock(&dev_priv->psr.lock);
747 return;
748 }
749
750 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
751 pipe = to_intel_crtc(crtc)->pipe;
752
753 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
754 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
755
756 /* By definition flush = invalidate + flush */
757 if (frontbuffer_bits)
758 intel_psr_exit(dev);
759
760 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
761 if (!work_busy(&dev_priv->psr.work.work))
762 schedule_delayed_work(&dev_priv->psr.work,
763 msecs_to_jiffies(100));
764 mutex_unlock(&dev_priv->psr.lock);
765}
766
767/**
768 * intel_psr_init - Init basic PSR work and mutex.
769 * @dev: DRM device
770 *
771 * This function is called only once at driver load to initialize basic
772 * PSR stuff.
773 */
774void intel_psr_init(struct drm_device *dev)
775{
776 struct drm_i915_private *dev_priv = dev->dev_private;
777
778 dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
779 HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
780
781 /* Per platform default */
782 if (i915.enable_psr == -1) {
783 if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
784 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
785 i915.enable_psr = 1;
786 else
787 i915.enable_psr = 0;
788 }
789
790 /* Set link_standby x link_off defaults */
791 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
792 /* HSW and BDW require workarounds that we don't implement. */
793 dev_priv->psr.link_standby = false;
794 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
795 /* On VLV and CHV only standby mode is supported. */
796 dev_priv->psr.link_standby = true;
797 else
798 /* For new platforms let's respect VBT back again */
799 dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
800
801 /* Override link_standby x link_off defaults */
802 if (i915.enable_psr == 2 && !dev_priv->psr.link_standby) {
803 DRM_DEBUG_KMS("PSR: Forcing link standby\n");
804 dev_priv->psr.link_standby = true;
805 }
806 if (i915.enable_psr == 3 && dev_priv->psr.link_standby) {
807 DRM_DEBUG_KMS("PSR: Forcing main link off\n");
808 dev_priv->psr.link_standby = false;
809 }
810
811 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
812 mutex_init(&dev_priv->psr.lock);
813}
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * DOC: Panel Self Refresh (PSR/SRD)
26 *
27 * Since Haswell Display controller supports Panel Self-Refresh on display
28 * panels witch have a remote frame buffer (RFB) implemented according to PSR
29 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30 * when system is idle but display is on as it eliminates display refresh
31 * request to DDR memory completely as long as the frame buffer for that
32 * display is unchanged.
33 *
34 * Panel Self Refresh must be supported by both Hardware (source) and
35 * Panel (sink).
36 *
37 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38 * to power down the link and memory controller. For DSI panels the same idea
39 * is called "manual mode".
40 *
41 * The implementation uses the hardware-based PSR support which automatically
42 * enters/exits self-refresh mode. The hardware takes care of sending the
43 * required DP aux message and could even retrain the link (that part isn't
44 * enabled yet though). The hardware also keeps track of any frontbuffer
45 * changes to know when to exit self-refresh mode again. Unfortunately that
46 * part doesn't work too well, hence why the i915 PSR support uses the
47 * software frontbuffer tracking to make sure it doesn't miss a screen
48 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49 * get called by the frontbuffer tracking code. Note that because of locking
50 * issues the self-refresh re-enable code is done from a work queue, which
51 * must be correctly synchronized/cancelled when shutting down the pipe."
52 */
53
54#include <drm/drmP.h>
55
56#include "intel_drv.h"
57#include "i915_drv.h"
58
59static bool is_edp_psr(struct intel_dp *intel_dp)
60{
61 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
62}
63
64static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe)
65{
66 struct drm_i915_private *dev_priv = to_i915(dev);
67 uint32_t val;
68
69 val = I915_READ(VLV_PSRSTAT(pipe)) &
70 VLV_EDP_PSR_CURR_STATE_MASK;
71 return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
72 (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE);
73}
74
75static void intel_psr_write_vsc(struct intel_dp *intel_dp,
76 const struct edp_vsc_psr *vsc_psr)
77{
78 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
79 struct drm_device *dev = dig_port->base.base.dev;
80 struct drm_i915_private *dev_priv = to_i915(dev);
81 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
82 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
83 i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
84 uint32_t *data = (uint32_t *) vsc_psr;
85 unsigned int i;
86
87 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
88 the video DIP being updated before program video DIP data buffer
89 registers for DIP being updated. */
90 I915_WRITE(ctl_reg, 0);
91 POSTING_READ(ctl_reg);
92
93 for (i = 0; i < sizeof(*vsc_psr); i += 4) {
94 I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
95 i >> 2), *data);
96 data++;
97 }
98 for (; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4)
99 I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
100 i >> 2), 0);
101
102 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
103 POSTING_READ(ctl_reg);
104}
105
106static void vlv_psr_setup_vsc(struct intel_dp *intel_dp)
107{
108 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
109 struct drm_device *dev = intel_dig_port->base.base.dev;
110 struct drm_i915_private *dev_priv = to_i915(dev);
111 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
112 enum pipe pipe = to_intel_crtc(crtc)->pipe;
113 uint32_t val;
114
115 /* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
116 val = I915_READ(VLV_VSCSDP(pipe));
117 val &= ~VLV_EDP_PSR_SDP_FREQ_MASK;
118 val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME;
119 I915_WRITE(VLV_VSCSDP(pipe), val);
120}
121
122static void skl_psr_setup_su_vsc(struct intel_dp *intel_dp)
123{
124 struct edp_vsc_psr psr_vsc;
125
126 /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
127 memset(&psr_vsc, 0, sizeof(psr_vsc));
128 psr_vsc.sdp_header.HB0 = 0;
129 psr_vsc.sdp_header.HB1 = 0x7;
130 psr_vsc.sdp_header.HB2 = 0x3;
131 psr_vsc.sdp_header.HB3 = 0xb;
132 intel_psr_write_vsc(intel_dp, &psr_vsc);
133}
134
135static void hsw_psr_setup_vsc(struct intel_dp *intel_dp)
136{
137 struct edp_vsc_psr psr_vsc;
138
139 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
140 memset(&psr_vsc, 0, sizeof(psr_vsc));
141 psr_vsc.sdp_header.HB0 = 0;
142 psr_vsc.sdp_header.HB1 = 0x7;
143 psr_vsc.sdp_header.HB2 = 0x2;
144 psr_vsc.sdp_header.HB3 = 0x8;
145 intel_psr_write_vsc(intel_dp, &psr_vsc);
146}
147
148static void vlv_psr_enable_sink(struct intel_dp *intel_dp)
149{
150 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
151 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
152}
153
154static i915_reg_t psr_aux_ctl_reg(struct drm_i915_private *dev_priv,
155 enum port port)
156{
157 if (INTEL_INFO(dev_priv)->gen >= 9)
158 return DP_AUX_CH_CTL(port);
159 else
160 return EDP_PSR_AUX_CTL;
161}
162
163static i915_reg_t psr_aux_data_reg(struct drm_i915_private *dev_priv,
164 enum port port, int index)
165{
166 if (INTEL_INFO(dev_priv)->gen >= 9)
167 return DP_AUX_CH_DATA(port, index);
168 else
169 return EDP_PSR_AUX_DATA(index);
170}
171
172static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
173{
174 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
175 struct drm_device *dev = dig_port->base.base.dev;
176 struct drm_i915_private *dev_priv = to_i915(dev);
177 uint32_t aux_clock_divider;
178 i915_reg_t aux_ctl_reg;
179 static const uint8_t aux_msg[] = {
180 [0] = DP_AUX_NATIVE_WRITE << 4,
181 [1] = DP_SET_POWER >> 8,
182 [2] = DP_SET_POWER & 0xff,
183 [3] = 1 - 1,
184 [4] = DP_SET_POWER_D0,
185 };
186 enum port port = dig_port->port;
187 u32 aux_ctl;
188 int i;
189
190 BUILD_BUG_ON(sizeof(aux_msg) > 20);
191
192 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
193
194 /* Enable AUX frame sync at sink */
195 if (dev_priv->psr.aux_frame_sync)
196 drm_dp_dpcd_writeb(&intel_dp->aux,
197 DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
198 DP_AUX_FRAME_SYNC_ENABLE);
199
200 if (dev_priv->psr.link_standby)
201 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
202 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
203 else
204 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
205 DP_PSR_ENABLE);
206
207 aux_ctl_reg = psr_aux_ctl_reg(dev_priv, port);
208
209 /* Setup AUX registers */
210 for (i = 0; i < sizeof(aux_msg); i += 4)
211 I915_WRITE(psr_aux_data_reg(dev_priv, port, i >> 2),
212 intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
213
214 aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, 0, sizeof(aux_msg),
215 aux_clock_divider);
216 I915_WRITE(aux_ctl_reg, aux_ctl);
217}
218
219static void vlv_psr_enable_source(struct intel_dp *intel_dp)
220{
221 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
222 struct drm_device *dev = dig_port->base.base.dev;
223 struct drm_i915_private *dev_priv = to_i915(dev);
224 struct drm_crtc *crtc = dig_port->base.base.crtc;
225 enum pipe pipe = to_intel_crtc(crtc)->pipe;
226
227 /* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */
228 I915_WRITE(VLV_PSRCTL(pipe),
229 VLV_EDP_PSR_MODE_SW_TIMER |
230 VLV_EDP_PSR_SRC_TRANSMITTER_STATE |
231 VLV_EDP_PSR_ENABLE);
232}
233
234static void vlv_psr_activate(struct intel_dp *intel_dp)
235{
236 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
237 struct drm_device *dev = dig_port->base.base.dev;
238 struct drm_i915_private *dev_priv = to_i915(dev);
239 struct drm_crtc *crtc = dig_port->base.base.crtc;
240 enum pipe pipe = to_intel_crtc(crtc)->pipe;
241
242 /* Let's do the transition from PSR_state 1 to PSR_state 2
243 * that is PSR transition to active - static frame transmission.
244 * Then Hardware is responsible for the transition to PSR_state 3
245 * that is PSR active - no Remote Frame Buffer (RFB) update.
246 */
247 I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) |
248 VLV_EDP_PSR_ACTIVE_ENTRY);
249}
250
251static void hsw_psr_enable_source(struct intel_dp *intel_dp)
252{
253 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
254 struct drm_device *dev = dig_port->base.base.dev;
255 struct drm_i915_private *dev_priv = to_i915(dev);
256
257 uint32_t max_sleep_time = 0x1f;
258 /*
259 * Let's respect VBT in case VBT asks a higher idle_frame value.
260 * Let's use 6 as the minimum to cover all known cases including
261 * the off-by-one issue that HW has in some cases. Also there are
262 * cases where sink should be able to train
263 * with the 5 or 6 idle patterns.
264 */
265 uint32_t idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
266 uint32_t val = EDP_PSR_ENABLE;
267
268 val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
269 val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
270
271 if (IS_HASWELL(dev_priv))
272 val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
273
274 if (dev_priv->psr.link_standby)
275 val |= EDP_PSR_LINK_STANDBY;
276
277 if (dev_priv->vbt.psr.tp1_wakeup_time > 5)
278 val |= EDP_PSR_TP1_TIME_2500us;
279 else if (dev_priv->vbt.psr.tp1_wakeup_time > 1)
280 val |= EDP_PSR_TP1_TIME_500us;
281 else if (dev_priv->vbt.psr.tp1_wakeup_time > 0)
282 val |= EDP_PSR_TP1_TIME_100us;
283 else
284 val |= EDP_PSR_TP1_TIME_0us;
285
286 if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 5)
287 val |= EDP_PSR_TP2_TP3_TIME_2500us;
288 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 1)
289 val |= EDP_PSR_TP2_TP3_TIME_500us;
290 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 0)
291 val |= EDP_PSR_TP2_TP3_TIME_100us;
292 else
293 val |= EDP_PSR_TP2_TP3_TIME_0us;
294
295 if (intel_dp_source_supports_hbr2(intel_dp) &&
296 drm_dp_tps3_supported(intel_dp->dpcd))
297 val |= EDP_PSR_TP1_TP3_SEL;
298 else
299 val |= EDP_PSR_TP1_TP2_SEL;
300
301 I915_WRITE(EDP_PSR_CTL, val);
302
303 if (!dev_priv->psr.psr2_support)
304 return;
305
306 /* FIXME: selective update is probably totally broken because it doesn't
307 * mesh at all with our frontbuffer tracking. And the hw alone isn't
308 * good enough. */
309 val = EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
310
311 if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 5)
312 val |= EDP_PSR2_TP2_TIME_2500;
313 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 1)
314 val |= EDP_PSR2_TP2_TIME_500;
315 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 0)
316 val |= EDP_PSR2_TP2_TIME_100;
317 else
318 val |= EDP_PSR2_TP2_TIME_50;
319
320 I915_WRITE(EDP_PSR2_CTL, val);
321}
322
323static bool intel_psr_match_conditions(struct intel_dp *intel_dp)
324{
325 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
326 struct drm_device *dev = dig_port->base.base.dev;
327 struct drm_i915_private *dev_priv = to_i915(dev);
328 struct drm_crtc *crtc = dig_port->base.base.crtc;
329 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
330 const struct drm_display_mode *adjusted_mode =
331 &intel_crtc->config->base.adjusted_mode;
332 int psr_setup_time;
333
334 lockdep_assert_held(&dev_priv->psr.lock);
335 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
336 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
337
338 dev_priv->psr.source_ok = false;
339
340 /*
341 * HSW spec explicitly says PSR is tied to port A.
342 * BDW+ platforms with DDI implementation of PSR have different
343 * PSR registers per transcoder and we only implement transcoder EDP
344 * ones. Since by Display design transcoder EDP is tied to port A
345 * we can safely escape based on the port A.
346 */
347 if (HAS_DDI(dev_priv) && dig_port->port != PORT_A) {
348 DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
349 return false;
350 }
351
352 if (!i915.enable_psr) {
353 DRM_DEBUG_KMS("PSR disable by flag\n");
354 return false;
355 }
356
357 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
358 !dev_priv->psr.link_standby) {
359 DRM_ERROR("PSR condition failed: Link off requested but not supported on this platform\n");
360 return false;
361 }
362
363 if (IS_HASWELL(dev_priv) &&
364 I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config->cpu_transcoder)) &
365 S3D_ENABLE) {
366 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
367 return false;
368 }
369
370 if (IS_HASWELL(dev_priv) &&
371 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
372 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
373 return false;
374 }
375
376 psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
377 if (psr_setup_time < 0) {
378 DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
379 intel_dp->psr_dpcd[1]);
380 return false;
381 }
382
383 if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
384 adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
385 DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
386 psr_setup_time);
387 return false;
388 }
389
390 dev_priv->psr.source_ok = true;
391 return true;
392}
393
394static void intel_psr_activate(struct intel_dp *intel_dp)
395{
396 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
397 struct drm_device *dev = intel_dig_port->base.base.dev;
398 struct drm_i915_private *dev_priv = to_i915(dev);
399
400 WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
401 WARN_ON(dev_priv->psr.active);
402 lockdep_assert_held(&dev_priv->psr.lock);
403
404 /* Enable/Re-enable PSR on the host */
405 if (HAS_DDI(dev_priv))
406 /* On HSW+ after we enable PSR on source it will activate it
407 * as soon as it match configure idle_frame count. So
408 * we just actually enable it here on activation time.
409 */
410 hsw_psr_enable_source(intel_dp);
411 else
412 vlv_psr_activate(intel_dp);
413
414 dev_priv->psr.active = true;
415}
416
417/**
418 * intel_psr_enable - Enable PSR
419 * @intel_dp: Intel DP
420 *
421 * This function can only be called after the pipe is fully trained and enabled.
422 */
423void intel_psr_enable(struct intel_dp *intel_dp)
424{
425 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
426 struct drm_device *dev = intel_dig_port->base.base.dev;
427 struct drm_i915_private *dev_priv = to_i915(dev);
428 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
429
430 if (!HAS_PSR(dev_priv)) {
431 DRM_DEBUG_KMS("PSR not supported on this platform\n");
432 return;
433 }
434
435 if (!is_edp_psr(intel_dp)) {
436 DRM_DEBUG_KMS("PSR not supported by this panel\n");
437 return;
438 }
439
440 mutex_lock(&dev_priv->psr.lock);
441 if (dev_priv->psr.enabled) {
442 DRM_DEBUG_KMS("PSR already in use\n");
443 goto unlock;
444 }
445
446 if (!intel_psr_match_conditions(intel_dp))
447 goto unlock;
448
449 dev_priv->psr.busy_frontbuffer_bits = 0;
450
451 if (HAS_DDI(dev_priv)) {
452 hsw_psr_setup_vsc(intel_dp);
453
454 if (dev_priv->psr.psr2_support) {
455 /* PSR2 is restricted to work with panel resolutions upto 3200x2000 */
456 if (crtc->config->pipe_src_w > 3200 ||
457 crtc->config->pipe_src_h > 2000)
458 dev_priv->psr.psr2_support = false;
459 else
460 skl_psr_setup_su_vsc(intel_dp);
461 }
462
463 /*
464 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD.
465 * Also mask LPSP to avoid dependency on other drivers that
466 * might block runtime_pm besides preventing other hw tracking
467 * issues now we can rely on frontbuffer tracking.
468 */
469 I915_WRITE(EDP_PSR_DEBUG_CTL, EDP_PSR_DEBUG_MASK_MEMUP |
470 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
471
472 /* Enable PSR on the panel */
473 hsw_psr_enable_sink(intel_dp);
474
475 if (INTEL_GEN(dev_priv) >= 9)
476 intel_psr_activate(intel_dp);
477 } else {
478 vlv_psr_setup_vsc(intel_dp);
479
480 /* Enable PSR on the panel */
481 vlv_psr_enable_sink(intel_dp);
482
483 /* On HSW+ enable_source also means go to PSR entry/active
484 * state as soon as idle_frame achieved and here would be
485 * to soon. However on VLV enable_source just enable PSR
486 * but let it on inactive state. So we might do this prior
487 * to active transition, i.e. here.
488 */
489 vlv_psr_enable_source(intel_dp);
490 }
491
492 /*
493 * FIXME: Activation should happen immediately since this function
494 * is just called after pipe is fully trained and enabled.
495 * However on every platform we face issues when first activation
496 * follows a modeset so quickly.
497 * - On VLV/CHV we get bank screen on first activation
498 * - On HSW/BDW we get a recoverable frozen screen until next
499 * exit-activate sequence.
500 */
501 if (INTEL_GEN(dev_priv) < 9)
502 schedule_delayed_work(&dev_priv->psr.work,
503 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
504
505 dev_priv->psr.enabled = intel_dp;
506unlock:
507 mutex_unlock(&dev_priv->psr.lock);
508}
509
510static void vlv_psr_disable(struct intel_dp *intel_dp)
511{
512 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
513 struct drm_device *dev = intel_dig_port->base.base.dev;
514 struct drm_i915_private *dev_priv = to_i915(dev);
515 struct intel_crtc *intel_crtc =
516 to_intel_crtc(intel_dig_port->base.base.crtc);
517 uint32_t val;
518
519 if (dev_priv->psr.active) {
520 /* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */
521 if (intel_wait_for_register(dev_priv,
522 VLV_PSRSTAT(intel_crtc->pipe),
523 VLV_EDP_PSR_IN_TRANS,
524 0,
525 1))
526 WARN(1, "PSR transition took longer than expected\n");
527
528 val = I915_READ(VLV_PSRCTL(intel_crtc->pipe));
529 val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
530 val &= ~VLV_EDP_PSR_ENABLE;
531 val &= ~VLV_EDP_PSR_MODE_MASK;
532 I915_WRITE(VLV_PSRCTL(intel_crtc->pipe), val);
533
534 dev_priv->psr.active = false;
535 } else {
536 WARN_ON(vlv_is_psr_active_on_pipe(dev, intel_crtc->pipe));
537 }
538}
539
540static void hsw_psr_disable(struct intel_dp *intel_dp)
541{
542 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
543 struct drm_device *dev = intel_dig_port->base.base.dev;
544 struct drm_i915_private *dev_priv = to_i915(dev);
545
546 if (dev_priv->psr.active) {
547 I915_WRITE(EDP_PSR_CTL,
548 I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
549
550 /* Wait till PSR is idle */
551 if (intel_wait_for_register(dev_priv,
552 EDP_PSR_STATUS_CTL,
553 EDP_PSR_STATUS_STATE_MASK,
554 0,
555 2000))
556 DRM_ERROR("Timed out waiting for PSR Idle State\n");
557
558 dev_priv->psr.active = false;
559 } else {
560 WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
561 }
562}
563
564/**
565 * intel_psr_disable - Disable PSR
566 * @intel_dp: Intel DP
567 *
568 * This function needs to be called before disabling pipe.
569 */
570void intel_psr_disable(struct intel_dp *intel_dp)
571{
572 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
573 struct drm_device *dev = intel_dig_port->base.base.dev;
574 struct drm_i915_private *dev_priv = to_i915(dev);
575
576 mutex_lock(&dev_priv->psr.lock);
577 if (!dev_priv->psr.enabled) {
578 mutex_unlock(&dev_priv->psr.lock);
579 return;
580 }
581
582 /* Disable PSR on Source */
583 if (HAS_DDI(dev_priv))
584 hsw_psr_disable(intel_dp);
585 else
586 vlv_psr_disable(intel_dp);
587
588 /* Disable PSR on Sink */
589 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
590
591 dev_priv->psr.enabled = NULL;
592 mutex_unlock(&dev_priv->psr.lock);
593
594 cancel_delayed_work_sync(&dev_priv->psr.work);
595}
596
597static void intel_psr_work(struct work_struct *work)
598{
599 struct drm_i915_private *dev_priv =
600 container_of(work, typeof(*dev_priv), psr.work.work);
601 struct intel_dp *intel_dp = dev_priv->psr.enabled;
602 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
603 enum pipe pipe = to_intel_crtc(crtc)->pipe;
604
605 /* We have to make sure PSR is ready for re-enable
606 * otherwise it keeps disabled until next full enable/disable cycle.
607 * PSR might take some time to get fully disabled
608 * and be ready for re-enable.
609 */
610 if (HAS_DDI(dev_priv)) {
611 if (intel_wait_for_register(dev_priv,
612 EDP_PSR_STATUS_CTL,
613 EDP_PSR_STATUS_STATE_MASK,
614 0,
615 50)) {
616 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
617 return;
618 }
619 } else {
620 if (intel_wait_for_register(dev_priv,
621 VLV_PSRSTAT(pipe),
622 VLV_EDP_PSR_IN_TRANS,
623 0,
624 1)) {
625 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
626 return;
627 }
628 }
629 mutex_lock(&dev_priv->psr.lock);
630 intel_dp = dev_priv->psr.enabled;
631
632 if (!intel_dp)
633 goto unlock;
634
635 /*
636 * The delayed work can race with an invalidate hence we need to
637 * recheck. Since psr_flush first clears this and then reschedules we
638 * won't ever miss a flush when bailing out here.
639 */
640 if (dev_priv->psr.busy_frontbuffer_bits)
641 goto unlock;
642
643 intel_psr_activate(intel_dp);
644unlock:
645 mutex_unlock(&dev_priv->psr.lock);
646}
647
648static void intel_psr_exit(struct drm_i915_private *dev_priv)
649{
650 struct intel_dp *intel_dp = dev_priv->psr.enabled;
651 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
652 enum pipe pipe = to_intel_crtc(crtc)->pipe;
653 u32 val;
654
655 if (!dev_priv->psr.active)
656 return;
657
658 if (HAS_DDI(dev_priv)) {
659 val = I915_READ(EDP_PSR_CTL);
660
661 WARN_ON(!(val & EDP_PSR_ENABLE));
662
663 I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
664 } else {
665 val = I915_READ(VLV_PSRCTL(pipe));
666
667 /* Here we do the transition from PSR_state 3 to PSR_state 5
668 * directly once PSR State 4 that is active with single frame
669 * update can be skipped. PSR_state 5 that is PSR exit then
670 * Hardware is responsible to transition back to PSR_state 1
671 * that is PSR inactive. Same state after
672 * vlv_edp_psr_enable_source.
673 */
674 val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
675 I915_WRITE(VLV_PSRCTL(pipe), val);
676
677 /* Send AUX wake up - Spec says after transitioning to PSR
678 * active we have to send AUX wake up by writing 01h in DPCD
679 * 600h of sink device.
680 * XXX: This might slow down the transition, but without this
681 * HW doesn't complete the transition to PSR_state 1 and we
682 * never get the screen updated.
683 */
684 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
685 DP_SET_POWER_D0);
686 }
687
688 dev_priv->psr.active = false;
689}
690
691/**
692 * intel_psr_single_frame_update - Single Frame Update
693 * @dev_priv: i915 device
694 * @frontbuffer_bits: frontbuffer plane tracking bits
695 *
696 * Some platforms support a single frame update feature that is used to
697 * send and update only one frame on Remote Frame Buffer.
698 * So far it is only implemented for Valleyview and Cherryview because
699 * hardware requires this to be done before a page flip.
700 */
701void intel_psr_single_frame_update(struct drm_i915_private *dev_priv,
702 unsigned frontbuffer_bits)
703{
704 struct drm_crtc *crtc;
705 enum pipe pipe;
706 u32 val;
707
708 /*
709 * Single frame update is already supported on BDW+ but it requires
710 * many W/A and it isn't really needed.
711 */
712 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
713 return;
714
715 mutex_lock(&dev_priv->psr.lock);
716 if (!dev_priv->psr.enabled) {
717 mutex_unlock(&dev_priv->psr.lock);
718 return;
719 }
720
721 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
722 pipe = to_intel_crtc(crtc)->pipe;
723
724 if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) {
725 val = I915_READ(VLV_PSRCTL(pipe));
726
727 /*
728 * We need to set this bit before writing registers for a flip.
729 * This bit will be self-clear when it gets to the PSR active state.
730 */
731 I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE);
732 }
733 mutex_unlock(&dev_priv->psr.lock);
734}
735
736/**
737 * intel_psr_invalidate - Invalidade PSR
738 * @dev_priv: i915 device
739 * @frontbuffer_bits: frontbuffer plane tracking bits
740 *
741 * Since the hardware frontbuffer tracking has gaps we need to integrate
742 * with the software frontbuffer tracking. This function gets called every
743 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
744 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
745 *
746 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
747 */
748void intel_psr_invalidate(struct drm_i915_private *dev_priv,
749 unsigned frontbuffer_bits)
750{
751 struct drm_crtc *crtc;
752 enum pipe pipe;
753
754 mutex_lock(&dev_priv->psr.lock);
755 if (!dev_priv->psr.enabled) {
756 mutex_unlock(&dev_priv->psr.lock);
757 return;
758 }
759
760 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
761 pipe = to_intel_crtc(crtc)->pipe;
762
763 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
764 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
765
766 if (frontbuffer_bits)
767 intel_psr_exit(dev_priv);
768
769 mutex_unlock(&dev_priv->psr.lock);
770}
771
772/**
773 * intel_psr_flush - Flush PSR
774 * @dev_priv: i915 device
775 * @frontbuffer_bits: frontbuffer plane tracking bits
776 * @origin: which operation caused the flush
777 *
778 * Since the hardware frontbuffer tracking has gaps we need to integrate
779 * with the software frontbuffer tracking. This function gets called every
780 * time frontbuffer rendering has completed and flushed out to memory. PSR
781 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
782 *
783 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
784 */
785void intel_psr_flush(struct drm_i915_private *dev_priv,
786 unsigned frontbuffer_bits, enum fb_op_origin origin)
787{
788 struct drm_crtc *crtc;
789 enum pipe pipe;
790
791 mutex_lock(&dev_priv->psr.lock);
792 if (!dev_priv->psr.enabled) {
793 mutex_unlock(&dev_priv->psr.lock);
794 return;
795 }
796
797 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
798 pipe = to_intel_crtc(crtc)->pipe;
799
800 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
801 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
802
803 /* By definition flush = invalidate + flush */
804 if (frontbuffer_bits)
805 intel_psr_exit(dev_priv);
806
807 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
808 if (!work_busy(&dev_priv->psr.work.work))
809 schedule_delayed_work(&dev_priv->psr.work,
810 msecs_to_jiffies(100));
811 mutex_unlock(&dev_priv->psr.lock);
812}
813
814/**
815 * intel_psr_init - Init basic PSR work and mutex.
816 * @dev: DRM device
817 *
818 * This function is called only once at driver load to initialize basic
819 * PSR stuff.
820 */
821void intel_psr_init(struct drm_device *dev)
822{
823 struct drm_i915_private *dev_priv = to_i915(dev);
824
825 dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
826 HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
827
828 /* Per platform default: all disabled. */
829 if (i915.enable_psr == -1)
830 i915.enable_psr = 0;
831
832 /* Set link_standby x link_off defaults */
833 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
834 /* HSW and BDW require workarounds that we don't implement. */
835 dev_priv->psr.link_standby = false;
836 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
837 /* On VLV and CHV only standby mode is supported. */
838 dev_priv->psr.link_standby = true;
839 else
840 /* For new platforms let's respect VBT back again */
841 dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
842
843 /* Override link_standby x link_off defaults */
844 if (i915.enable_psr == 2 && !dev_priv->psr.link_standby) {
845 DRM_DEBUG_KMS("PSR: Forcing link standby\n");
846 dev_priv->psr.link_standby = true;
847 }
848 if (i915.enable_psr == 3 && dev_priv->psr.link_standby) {
849 DRM_DEBUG_KMS("PSR: Forcing main link off\n");
850 dev_priv->psr.link_standby = false;
851 }
852
853 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
854 mutex_init(&dev_priv->psr.lock);
855}