Loading...
1/*
2 * regmap based irq_chip
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/device.h>
14#include <linux/export.h>
15#include <linux/interrupt.h>
16#include <linux/irq.h>
17#include <linux/irqdomain.h>
18#include <linux/pm_runtime.h>
19#include <linux/regmap.h>
20#include <linux/slab.h>
21
22#include "internal.h"
23
24struct regmap_irq_chip_data {
25 struct mutex lock;
26 struct irq_chip irq_chip;
27
28 struct regmap *map;
29 const struct regmap_irq_chip *chip;
30
31 int irq_base;
32 struct irq_domain *domain;
33
34 int irq;
35 int wake_count;
36
37 void *status_reg_buf;
38 unsigned int *status_buf;
39 unsigned int *mask_buf;
40 unsigned int *mask_buf_def;
41 unsigned int *wake_buf;
42 unsigned int *type_buf;
43 unsigned int *type_buf_def;
44
45 unsigned int irq_reg_stride;
46 unsigned int type_reg_stride;
47};
48
49static inline const
50struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
51 int irq)
52{
53 return &data->chip->irqs[irq];
54}
55
56static void regmap_irq_lock(struct irq_data *data)
57{
58 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
59
60 mutex_lock(&d->lock);
61}
62
63static void regmap_irq_sync_unlock(struct irq_data *data)
64{
65 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
66 struct regmap *map = d->map;
67 int i, ret;
68 u32 reg;
69 u32 unmask_offset;
70
71 if (d->chip->runtime_pm) {
72 ret = pm_runtime_get_sync(map->dev);
73 if (ret < 0)
74 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
75 ret);
76 }
77
78 /*
79 * If there's been a change in the mask write it back to the
80 * hardware. We rely on the use of the regmap core cache to
81 * suppress pointless writes.
82 */
83 for (i = 0; i < d->chip->num_regs; i++) {
84 reg = d->chip->mask_base +
85 (i * map->reg_stride * d->irq_reg_stride);
86 if (d->chip->mask_invert) {
87 ret = regmap_update_bits(d->map, reg,
88 d->mask_buf_def[i], ~d->mask_buf[i]);
89 } else if (d->chip->unmask_base) {
90 /* set mask with mask_base register */
91 ret = regmap_update_bits(d->map, reg,
92 d->mask_buf_def[i], ~d->mask_buf[i]);
93 if (ret < 0)
94 dev_err(d->map->dev,
95 "Failed to sync unmasks in %x\n",
96 reg);
97 unmask_offset = d->chip->unmask_base -
98 d->chip->mask_base;
99 /* clear mask with unmask_base register */
100 ret = regmap_update_bits(d->map,
101 reg + unmask_offset,
102 d->mask_buf_def[i],
103 d->mask_buf[i]);
104 } else {
105 ret = regmap_update_bits(d->map, reg,
106 d->mask_buf_def[i], d->mask_buf[i]);
107 }
108 if (ret != 0)
109 dev_err(d->map->dev, "Failed to sync masks in %x\n",
110 reg);
111
112 reg = d->chip->wake_base +
113 (i * map->reg_stride * d->irq_reg_stride);
114 if (d->wake_buf) {
115 if (d->chip->wake_invert)
116 ret = regmap_update_bits(d->map, reg,
117 d->mask_buf_def[i],
118 ~d->wake_buf[i]);
119 else
120 ret = regmap_update_bits(d->map, reg,
121 d->mask_buf_def[i],
122 d->wake_buf[i]);
123 if (ret != 0)
124 dev_err(d->map->dev,
125 "Failed to sync wakes in %x: %d\n",
126 reg, ret);
127 }
128
129 if (!d->chip->init_ack_masked)
130 continue;
131 /*
132 * Ack all the masked interrupts unconditionally,
133 * OR if there is masked interrupt which hasn't been Acked,
134 * it'll be ignored in irq handler, then may introduce irq storm
135 */
136 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
137 reg = d->chip->ack_base +
138 (i * map->reg_stride * d->irq_reg_stride);
139 /* some chips ack by write 0 */
140 if (d->chip->ack_invert)
141 ret = regmap_write(map, reg, ~d->mask_buf[i]);
142 else
143 ret = regmap_write(map, reg, d->mask_buf[i]);
144 if (ret != 0)
145 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
146 reg, ret);
147 }
148 }
149
150 for (i = 0; i < d->chip->num_type_reg; i++) {
151 if (!d->type_buf_def[i])
152 continue;
153 reg = d->chip->type_base +
154 (i * map->reg_stride * d->type_reg_stride);
155 if (d->chip->type_invert)
156 ret = regmap_update_bits(d->map, reg,
157 d->type_buf_def[i], ~d->type_buf[i]);
158 else
159 ret = regmap_update_bits(d->map, reg,
160 d->type_buf_def[i], d->type_buf[i]);
161 if (ret != 0)
162 dev_err(d->map->dev, "Failed to sync type in %x\n",
163 reg);
164 }
165
166 if (d->chip->runtime_pm)
167 pm_runtime_put(map->dev);
168
169 /* If we've changed our wakeup count propagate it to the parent */
170 if (d->wake_count < 0)
171 for (i = d->wake_count; i < 0; i++)
172 irq_set_irq_wake(d->irq, 0);
173 else if (d->wake_count > 0)
174 for (i = 0; i < d->wake_count; i++)
175 irq_set_irq_wake(d->irq, 1);
176
177 d->wake_count = 0;
178
179 mutex_unlock(&d->lock);
180}
181
182static void regmap_irq_enable(struct irq_data *data)
183{
184 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
185 struct regmap *map = d->map;
186 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
187
188 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
189}
190
191static void regmap_irq_disable(struct irq_data *data)
192{
193 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
194 struct regmap *map = d->map;
195 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
196
197 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
198}
199
200static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
201{
202 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
203 struct regmap *map = d->map;
204 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
205 int reg = irq_data->type_reg_offset / map->reg_stride;
206
207 if (!(irq_data->type_rising_mask | irq_data->type_falling_mask))
208 return 0;
209
210 d->type_buf[reg] &= ~(irq_data->type_falling_mask |
211 irq_data->type_rising_mask);
212 switch (type) {
213 case IRQ_TYPE_EDGE_FALLING:
214 d->type_buf[reg] |= irq_data->type_falling_mask;
215 break;
216
217 case IRQ_TYPE_EDGE_RISING:
218 d->type_buf[reg] |= irq_data->type_rising_mask;
219 break;
220
221 case IRQ_TYPE_EDGE_BOTH:
222 d->type_buf[reg] |= (irq_data->type_falling_mask |
223 irq_data->type_rising_mask);
224 break;
225
226 default:
227 return -EINVAL;
228 }
229 return 0;
230}
231
232static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
233{
234 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
235 struct regmap *map = d->map;
236 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
237
238 if (on) {
239 if (d->wake_buf)
240 d->wake_buf[irq_data->reg_offset / map->reg_stride]
241 &= ~irq_data->mask;
242 d->wake_count++;
243 } else {
244 if (d->wake_buf)
245 d->wake_buf[irq_data->reg_offset / map->reg_stride]
246 |= irq_data->mask;
247 d->wake_count--;
248 }
249
250 return 0;
251}
252
253static const struct irq_chip regmap_irq_chip = {
254 .irq_bus_lock = regmap_irq_lock,
255 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
256 .irq_disable = regmap_irq_disable,
257 .irq_enable = regmap_irq_enable,
258 .irq_set_type = regmap_irq_set_type,
259 .irq_set_wake = regmap_irq_set_wake,
260};
261
262static irqreturn_t regmap_irq_thread(int irq, void *d)
263{
264 struct regmap_irq_chip_data *data = d;
265 const struct regmap_irq_chip *chip = data->chip;
266 struct regmap *map = data->map;
267 int ret, i;
268 bool handled = false;
269 u32 reg;
270
271 if (chip->runtime_pm) {
272 ret = pm_runtime_get_sync(map->dev);
273 if (ret < 0) {
274 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
275 ret);
276 pm_runtime_put(map->dev);
277 return IRQ_NONE;
278 }
279 }
280
281 /*
282 * Read in the statuses, using a single bulk read if possible
283 * in order to reduce the I/O overheads.
284 */
285 if (!map->use_single_read && map->reg_stride == 1 &&
286 data->irq_reg_stride == 1) {
287 u8 *buf8 = data->status_reg_buf;
288 u16 *buf16 = data->status_reg_buf;
289 u32 *buf32 = data->status_reg_buf;
290
291 BUG_ON(!data->status_reg_buf);
292
293 ret = regmap_bulk_read(map, chip->status_base,
294 data->status_reg_buf,
295 chip->num_regs);
296 if (ret != 0) {
297 dev_err(map->dev, "Failed to read IRQ status: %d\n",
298 ret);
299 return IRQ_NONE;
300 }
301
302 for (i = 0; i < data->chip->num_regs; i++) {
303 switch (map->format.val_bytes) {
304 case 1:
305 data->status_buf[i] = buf8[i];
306 break;
307 case 2:
308 data->status_buf[i] = buf16[i];
309 break;
310 case 4:
311 data->status_buf[i] = buf32[i];
312 break;
313 default:
314 BUG();
315 return IRQ_NONE;
316 }
317 }
318
319 } else {
320 for (i = 0; i < data->chip->num_regs; i++) {
321 ret = regmap_read(map, chip->status_base +
322 (i * map->reg_stride
323 * data->irq_reg_stride),
324 &data->status_buf[i]);
325
326 if (ret != 0) {
327 dev_err(map->dev,
328 "Failed to read IRQ status: %d\n",
329 ret);
330 if (chip->runtime_pm)
331 pm_runtime_put(map->dev);
332 return IRQ_NONE;
333 }
334 }
335 }
336
337 /*
338 * Ignore masked IRQs and ack if we need to; we ack early so
339 * there is no race between handling and acknowleding the
340 * interrupt. We assume that typically few of the interrupts
341 * will fire simultaneously so don't worry about overhead from
342 * doing a write per register.
343 */
344 for (i = 0; i < data->chip->num_regs; i++) {
345 data->status_buf[i] &= ~data->mask_buf[i];
346
347 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
348 reg = chip->ack_base +
349 (i * map->reg_stride * data->irq_reg_stride);
350 ret = regmap_write(map, reg, data->status_buf[i]);
351 if (ret != 0)
352 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
353 reg, ret);
354 }
355 }
356
357 for (i = 0; i < chip->num_irqs; i++) {
358 if (data->status_buf[chip->irqs[i].reg_offset /
359 map->reg_stride] & chip->irqs[i].mask) {
360 handle_nested_irq(irq_find_mapping(data->domain, i));
361 handled = true;
362 }
363 }
364
365 if (chip->runtime_pm)
366 pm_runtime_put(map->dev);
367
368 if (handled)
369 return IRQ_HANDLED;
370 else
371 return IRQ_NONE;
372}
373
374static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
375 irq_hw_number_t hw)
376{
377 struct regmap_irq_chip_data *data = h->host_data;
378
379 irq_set_chip_data(virq, data);
380 irq_set_chip(virq, &data->irq_chip);
381 irq_set_nested_thread(virq, 1);
382 irq_set_parent(virq, data->irq);
383 irq_set_noprobe(virq);
384
385 return 0;
386}
387
388static const struct irq_domain_ops regmap_domain_ops = {
389 .map = regmap_irq_map,
390 .xlate = irq_domain_xlate_twocell,
391};
392
393/**
394 * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
395 *
396 * map: The regmap for the device.
397 * irq: The IRQ the device uses to signal interrupts
398 * irq_flags: The IRQF_ flags to use for the primary interrupt.
399 * chip: Configuration for the interrupt controller.
400 * data: Runtime data structure for the controller, allocated on success
401 *
402 * Returns 0 on success or an errno on failure.
403 *
404 * In order for this to be efficient the chip really should use a
405 * register cache. The chip driver is responsible for restoring the
406 * register values used by the IRQ controller over suspend and resume.
407 */
408int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
409 int irq_base, const struct regmap_irq_chip *chip,
410 struct regmap_irq_chip_data **data)
411{
412 struct regmap_irq_chip_data *d;
413 int i;
414 int ret = -ENOMEM;
415 u32 reg;
416 u32 unmask_offset;
417
418 if (chip->num_regs <= 0)
419 return -EINVAL;
420
421 for (i = 0; i < chip->num_irqs; i++) {
422 if (chip->irqs[i].reg_offset % map->reg_stride)
423 return -EINVAL;
424 if (chip->irqs[i].reg_offset / map->reg_stride >=
425 chip->num_regs)
426 return -EINVAL;
427 }
428
429 if (irq_base) {
430 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
431 if (irq_base < 0) {
432 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
433 irq_base);
434 return irq_base;
435 }
436 }
437
438 d = kzalloc(sizeof(*d), GFP_KERNEL);
439 if (!d)
440 return -ENOMEM;
441
442 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
443 GFP_KERNEL);
444 if (!d->status_buf)
445 goto err_alloc;
446
447 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
448 GFP_KERNEL);
449 if (!d->mask_buf)
450 goto err_alloc;
451
452 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
453 GFP_KERNEL);
454 if (!d->mask_buf_def)
455 goto err_alloc;
456
457 if (chip->wake_base) {
458 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
459 GFP_KERNEL);
460 if (!d->wake_buf)
461 goto err_alloc;
462 }
463
464 if (chip->num_type_reg) {
465 d->type_buf_def = kcalloc(chip->num_type_reg,
466 sizeof(unsigned int), GFP_KERNEL);
467 if (!d->type_buf_def)
468 goto err_alloc;
469
470 d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int),
471 GFP_KERNEL);
472 if (!d->type_buf)
473 goto err_alloc;
474 }
475
476 d->irq_chip = regmap_irq_chip;
477 d->irq_chip.name = chip->name;
478 d->irq = irq;
479 d->map = map;
480 d->chip = chip;
481 d->irq_base = irq_base;
482
483 if (chip->irq_reg_stride)
484 d->irq_reg_stride = chip->irq_reg_stride;
485 else
486 d->irq_reg_stride = 1;
487
488 if (chip->type_reg_stride)
489 d->type_reg_stride = chip->type_reg_stride;
490 else
491 d->type_reg_stride = 1;
492
493 if (!map->use_single_read && map->reg_stride == 1 &&
494 d->irq_reg_stride == 1) {
495 d->status_reg_buf = kmalloc_array(chip->num_regs,
496 map->format.val_bytes,
497 GFP_KERNEL);
498 if (!d->status_reg_buf)
499 goto err_alloc;
500 }
501
502 mutex_init(&d->lock);
503
504 for (i = 0; i < chip->num_irqs; i++)
505 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
506 |= chip->irqs[i].mask;
507
508 /* Mask all the interrupts by default */
509 for (i = 0; i < chip->num_regs; i++) {
510 d->mask_buf[i] = d->mask_buf_def[i];
511 reg = chip->mask_base +
512 (i * map->reg_stride * d->irq_reg_stride);
513 if (chip->mask_invert)
514 ret = regmap_update_bits(map, reg,
515 d->mask_buf[i], ~d->mask_buf[i]);
516 else if (d->chip->unmask_base) {
517 unmask_offset = d->chip->unmask_base -
518 d->chip->mask_base;
519 ret = regmap_update_bits(d->map,
520 reg + unmask_offset,
521 d->mask_buf[i],
522 d->mask_buf[i]);
523 } else
524 ret = regmap_update_bits(map, reg,
525 d->mask_buf[i], d->mask_buf[i]);
526 if (ret != 0) {
527 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
528 reg, ret);
529 goto err_alloc;
530 }
531
532 if (!chip->init_ack_masked)
533 continue;
534
535 /* Ack masked but set interrupts */
536 reg = chip->status_base +
537 (i * map->reg_stride * d->irq_reg_stride);
538 ret = regmap_read(map, reg, &d->status_buf[i]);
539 if (ret != 0) {
540 dev_err(map->dev, "Failed to read IRQ status: %d\n",
541 ret);
542 goto err_alloc;
543 }
544
545 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
546 reg = chip->ack_base +
547 (i * map->reg_stride * d->irq_reg_stride);
548 if (chip->ack_invert)
549 ret = regmap_write(map, reg,
550 ~(d->status_buf[i] & d->mask_buf[i]));
551 else
552 ret = regmap_write(map, reg,
553 d->status_buf[i] & d->mask_buf[i]);
554 if (ret != 0) {
555 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
556 reg, ret);
557 goto err_alloc;
558 }
559 }
560 }
561
562 /* Wake is disabled by default */
563 if (d->wake_buf) {
564 for (i = 0; i < chip->num_regs; i++) {
565 d->wake_buf[i] = d->mask_buf_def[i];
566 reg = chip->wake_base +
567 (i * map->reg_stride * d->irq_reg_stride);
568
569 if (chip->wake_invert)
570 ret = regmap_update_bits(map, reg,
571 d->mask_buf_def[i],
572 0);
573 else
574 ret = regmap_update_bits(map, reg,
575 d->mask_buf_def[i],
576 d->wake_buf[i]);
577 if (ret != 0) {
578 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
579 reg, ret);
580 goto err_alloc;
581 }
582 }
583 }
584
585 if (chip->num_type_reg) {
586 for (i = 0; i < chip->num_irqs; i++) {
587 reg = chip->irqs[i].type_reg_offset / map->reg_stride;
588 d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask |
589 chip->irqs[i].type_falling_mask;
590 }
591 for (i = 0; i < chip->num_type_reg; ++i) {
592 if (!d->type_buf_def[i])
593 continue;
594
595 reg = chip->type_base +
596 (i * map->reg_stride * d->type_reg_stride);
597 if (chip->type_invert)
598 ret = regmap_update_bits(map, reg,
599 d->type_buf_def[i], 0xFF);
600 else
601 ret = regmap_update_bits(map, reg,
602 d->type_buf_def[i], 0x0);
603 if (ret != 0) {
604 dev_err(map->dev,
605 "Failed to set type in 0x%x: %x\n",
606 reg, ret);
607 goto err_alloc;
608 }
609 }
610 }
611
612 if (irq_base)
613 d->domain = irq_domain_add_legacy(map->dev->of_node,
614 chip->num_irqs, irq_base, 0,
615 ®map_domain_ops, d);
616 else
617 d->domain = irq_domain_add_linear(map->dev->of_node,
618 chip->num_irqs,
619 ®map_domain_ops, d);
620 if (!d->domain) {
621 dev_err(map->dev, "Failed to create IRQ domain\n");
622 ret = -ENOMEM;
623 goto err_alloc;
624 }
625
626 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
627 irq_flags | IRQF_ONESHOT,
628 chip->name, d);
629 if (ret != 0) {
630 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
631 irq, chip->name, ret);
632 goto err_domain;
633 }
634
635 *data = d;
636
637 return 0;
638
639err_domain:
640 /* Should really dispose of the domain but... */
641err_alloc:
642 kfree(d->type_buf);
643 kfree(d->type_buf_def);
644 kfree(d->wake_buf);
645 kfree(d->mask_buf_def);
646 kfree(d->mask_buf);
647 kfree(d->status_buf);
648 kfree(d->status_reg_buf);
649 kfree(d);
650 return ret;
651}
652EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
653
654/**
655 * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
656 *
657 * @irq: Primary IRQ for the device
658 * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip()
659 *
660 * This function also dispose all mapped irq on chip.
661 */
662void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
663{
664 unsigned int virq;
665 int hwirq;
666
667 if (!d)
668 return;
669
670 free_irq(irq, d);
671
672 /* Dispose all virtual irq from irq domain before removing it */
673 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
674 /* Ignore hwirq if holes in the IRQ list */
675 if (!d->chip->irqs[hwirq].mask)
676 continue;
677
678 /*
679 * Find the virtual irq of hwirq on chip and if it is
680 * there then dispose it
681 */
682 virq = irq_find_mapping(d->domain, hwirq);
683 if (virq)
684 irq_dispose_mapping(virq);
685 }
686
687 irq_domain_remove(d->domain);
688 kfree(d->type_buf);
689 kfree(d->type_buf_def);
690 kfree(d->wake_buf);
691 kfree(d->mask_buf_def);
692 kfree(d->mask_buf);
693 kfree(d->status_reg_buf);
694 kfree(d->status_buf);
695 kfree(d);
696}
697EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
698
699static void devm_regmap_irq_chip_release(struct device *dev, void *res)
700{
701 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
702
703 regmap_del_irq_chip(d->irq, d);
704}
705
706static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
707
708{
709 struct regmap_irq_chip_data **r = res;
710
711 if (!r || !*r) {
712 WARN_ON(!r || !*r);
713 return 0;
714 }
715 return *r == data;
716}
717
718/**
719 * devm_regmap_add_irq_chip(): Resource manager regmap_add_irq_chip()
720 *
721 * @dev: The device pointer on which irq_chip belongs to.
722 * @map: The regmap for the device.
723 * @irq: The IRQ the device uses to signal interrupts
724 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
725 * @chip: Configuration for the interrupt controller.
726 * @data: Runtime data structure for the controller, allocated on success
727 *
728 * Returns 0 on success or an errno on failure.
729 *
730 * The regmap_irq_chip data automatically be released when the device is
731 * unbound.
732 */
733int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
734 int irq_flags, int irq_base,
735 const struct regmap_irq_chip *chip,
736 struct regmap_irq_chip_data **data)
737{
738 struct regmap_irq_chip_data **ptr, *d;
739 int ret;
740
741 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
742 GFP_KERNEL);
743 if (!ptr)
744 return -ENOMEM;
745
746 ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
747 chip, &d);
748 if (ret < 0) {
749 devres_free(ptr);
750 return ret;
751 }
752
753 *ptr = d;
754 devres_add(dev, ptr);
755 *data = d;
756 return 0;
757}
758EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
759
760/**
761 * devm_regmap_del_irq_chip(): Resource managed regmap_del_irq_chip()
762 *
763 * @dev: Device for which which resource was allocated.
764 * @irq: Primary IRQ for the device
765 * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip()
766 */
767void devm_regmap_del_irq_chip(struct device *dev, int irq,
768 struct regmap_irq_chip_data *data)
769{
770 int rc;
771
772 WARN_ON(irq != data->irq);
773 rc = devres_release(dev, devm_regmap_irq_chip_release,
774 devm_regmap_irq_chip_match, data);
775
776 if (rc != 0)
777 WARN_ON(rc);
778}
779EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
780
781/**
782 * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
783 *
784 * Useful for drivers to request their own IRQs.
785 *
786 * @data: regmap_irq controller to operate on.
787 */
788int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
789{
790 WARN_ON(!data->irq_base);
791 return data->irq_base;
792}
793EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
794
795/**
796 * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
797 *
798 * Useful for drivers to request their own IRQs.
799 *
800 * @data: regmap_irq controller to operate on.
801 * @irq: index of the interrupt requested in the chip IRQs
802 */
803int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
804{
805 /* Handle holes in the IRQ list */
806 if (!data->chip->irqs[irq].mask)
807 return -EINVAL;
808
809 return irq_create_mapping(data->domain, irq);
810}
811EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
812
813/**
814 * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
815 *
816 * Useful for drivers to request their own IRQs and for integration
817 * with subsystems. For ease of integration NULL is accepted as a
818 * domain, allowing devices to just call this even if no domain is
819 * allocated.
820 *
821 * @data: regmap_irq controller to operate on.
822 */
823struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
824{
825 if (data)
826 return data->domain;
827 else
828 return NULL;
829}
830EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1/*
2 * regmap based irq_chip
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/device.h>
14#include <linux/export.h>
15#include <linux/interrupt.h>
16#include <linux/irq.h>
17#include <linux/irqdomain.h>
18#include <linux/pm_runtime.h>
19#include <linux/regmap.h>
20#include <linux/slab.h>
21
22#include "internal.h"
23
24struct regmap_irq_chip_data {
25 struct mutex lock;
26 struct irq_chip irq_chip;
27
28 struct regmap *map;
29 const struct regmap_irq_chip *chip;
30
31 int irq_base;
32 struct irq_domain *domain;
33
34 int irq;
35 int wake_count;
36
37 void *status_reg_buf;
38 unsigned int *status_buf;
39 unsigned int *mask_buf;
40 unsigned int *mask_buf_def;
41 unsigned int *wake_buf;
42 unsigned int *type_buf;
43 unsigned int *type_buf_def;
44
45 unsigned int irq_reg_stride;
46 unsigned int type_reg_stride;
47};
48
49static inline const
50struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
51 int irq)
52{
53 return &data->chip->irqs[irq];
54}
55
56static void regmap_irq_lock(struct irq_data *data)
57{
58 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
59
60 mutex_lock(&d->lock);
61}
62
63static void regmap_irq_sync_unlock(struct irq_data *data)
64{
65 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
66 struct regmap *map = d->map;
67 int i, ret;
68 u32 reg;
69 u32 unmask_offset;
70
71 if (d->chip->runtime_pm) {
72 ret = pm_runtime_get_sync(map->dev);
73 if (ret < 0)
74 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
75 ret);
76 }
77
78 /*
79 * If there's been a change in the mask write it back to the
80 * hardware. We rely on the use of the regmap core cache to
81 * suppress pointless writes.
82 */
83 for (i = 0; i < d->chip->num_regs; i++) {
84 reg = d->chip->mask_base +
85 (i * map->reg_stride * d->irq_reg_stride);
86 if (d->chip->mask_invert) {
87 ret = regmap_update_bits(d->map, reg,
88 d->mask_buf_def[i], ~d->mask_buf[i]);
89 } else if (d->chip->unmask_base) {
90 /* set mask with mask_base register */
91 ret = regmap_update_bits(d->map, reg,
92 d->mask_buf_def[i], ~d->mask_buf[i]);
93 if (ret < 0)
94 dev_err(d->map->dev,
95 "Failed to sync unmasks in %x\n",
96 reg);
97 unmask_offset = d->chip->unmask_base -
98 d->chip->mask_base;
99 /* clear mask with unmask_base register */
100 ret = regmap_update_bits(d->map,
101 reg + unmask_offset,
102 d->mask_buf_def[i],
103 d->mask_buf[i]);
104 } else {
105 ret = regmap_update_bits(d->map, reg,
106 d->mask_buf_def[i], d->mask_buf[i]);
107 }
108 if (ret != 0)
109 dev_err(d->map->dev, "Failed to sync masks in %x\n",
110 reg);
111
112 reg = d->chip->wake_base +
113 (i * map->reg_stride * d->irq_reg_stride);
114 if (d->wake_buf) {
115 if (d->chip->wake_invert)
116 ret = regmap_update_bits(d->map, reg,
117 d->mask_buf_def[i],
118 ~d->wake_buf[i]);
119 else
120 ret = regmap_update_bits(d->map, reg,
121 d->mask_buf_def[i],
122 d->wake_buf[i]);
123 if (ret != 0)
124 dev_err(d->map->dev,
125 "Failed to sync wakes in %x: %d\n",
126 reg, ret);
127 }
128
129 if (!d->chip->init_ack_masked)
130 continue;
131 /*
132 * Ack all the masked interrupts unconditionally,
133 * OR if there is masked interrupt which hasn't been Acked,
134 * it'll be ignored in irq handler, then may introduce irq storm
135 */
136 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
137 reg = d->chip->ack_base +
138 (i * map->reg_stride * d->irq_reg_stride);
139 /* some chips ack by write 0 */
140 if (d->chip->ack_invert)
141 ret = regmap_write(map, reg, ~d->mask_buf[i]);
142 else
143 ret = regmap_write(map, reg, d->mask_buf[i]);
144 if (ret != 0)
145 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
146 reg, ret);
147 }
148 }
149
150 for (i = 0; i < d->chip->num_type_reg; i++) {
151 if (!d->type_buf_def[i])
152 continue;
153 reg = d->chip->type_base +
154 (i * map->reg_stride * d->type_reg_stride);
155 if (d->chip->type_invert)
156 ret = regmap_update_bits(d->map, reg,
157 d->type_buf_def[i], ~d->type_buf[i]);
158 else
159 ret = regmap_update_bits(d->map, reg,
160 d->type_buf_def[i], d->type_buf[i]);
161 if (ret != 0)
162 dev_err(d->map->dev, "Failed to sync type in %x\n",
163 reg);
164 }
165
166 if (d->chip->runtime_pm)
167 pm_runtime_put(map->dev);
168
169 /* If we've changed our wakeup count propagate it to the parent */
170 if (d->wake_count < 0)
171 for (i = d->wake_count; i < 0; i++)
172 irq_set_irq_wake(d->irq, 0);
173 else if (d->wake_count > 0)
174 for (i = 0; i < d->wake_count; i++)
175 irq_set_irq_wake(d->irq, 1);
176
177 d->wake_count = 0;
178
179 mutex_unlock(&d->lock);
180}
181
182static void regmap_irq_enable(struct irq_data *data)
183{
184 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
185 struct regmap *map = d->map;
186 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
187
188 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
189}
190
191static void regmap_irq_disable(struct irq_data *data)
192{
193 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
194 struct regmap *map = d->map;
195 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
196
197 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
198}
199
200static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
201{
202 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
203 struct regmap *map = d->map;
204 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
205 int reg = irq_data->type_reg_offset / map->reg_stride;
206
207 if (!(irq_data->type_rising_mask | irq_data->type_falling_mask))
208 return 0;
209
210 d->type_buf[reg] &= ~(irq_data->type_falling_mask |
211 irq_data->type_rising_mask);
212 switch (type) {
213 case IRQ_TYPE_EDGE_FALLING:
214 d->type_buf[reg] |= irq_data->type_falling_mask;
215 break;
216
217 case IRQ_TYPE_EDGE_RISING:
218 d->type_buf[reg] |= irq_data->type_rising_mask;
219 break;
220
221 case IRQ_TYPE_EDGE_BOTH:
222 d->type_buf[reg] |= (irq_data->type_falling_mask |
223 irq_data->type_rising_mask);
224 break;
225
226 default:
227 return -EINVAL;
228 }
229 return 0;
230}
231
232static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
233{
234 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
235 struct regmap *map = d->map;
236 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
237
238 if (on) {
239 if (d->wake_buf)
240 d->wake_buf[irq_data->reg_offset / map->reg_stride]
241 &= ~irq_data->mask;
242 d->wake_count++;
243 } else {
244 if (d->wake_buf)
245 d->wake_buf[irq_data->reg_offset / map->reg_stride]
246 |= irq_data->mask;
247 d->wake_count--;
248 }
249
250 return 0;
251}
252
253static const struct irq_chip regmap_irq_chip = {
254 .irq_bus_lock = regmap_irq_lock,
255 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
256 .irq_disable = regmap_irq_disable,
257 .irq_enable = regmap_irq_enable,
258 .irq_set_type = regmap_irq_set_type,
259 .irq_set_wake = regmap_irq_set_wake,
260};
261
262static irqreturn_t regmap_irq_thread(int irq, void *d)
263{
264 struct regmap_irq_chip_data *data = d;
265 const struct regmap_irq_chip *chip = data->chip;
266 struct regmap *map = data->map;
267 int ret, i;
268 bool handled = false;
269 u32 reg;
270
271 if (chip->handle_pre_irq)
272 chip->handle_pre_irq(chip->irq_drv_data);
273
274 if (chip->runtime_pm) {
275 ret = pm_runtime_get_sync(map->dev);
276 if (ret < 0) {
277 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
278 ret);
279 pm_runtime_put(map->dev);
280 goto exit;
281 }
282 }
283
284 /*
285 * Read in the statuses, using a single bulk read if possible
286 * in order to reduce the I/O overheads.
287 */
288 if (!map->use_single_read && map->reg_stride == 1 &&
289 data->irq_reg_stride == 1) {
290 u8 *buf8 = data->status_reg_buf;
291 u16 *buf16 = data->status_reg_buf;
292 u32 *buf32 = data->status_reg_buf;
293
294 BUG_ON(!data->status_reg_buf);
295
296 ret = regmap_bulk_read(map, chip->status_base,
297 data->status_reg_buf,
298 chip->num_regs);
299 if (ret != 0) {
300 dev_err(map->dev, "Failed to read IRQ status: %d\n",
301 ret);
302 goto exit;
303 }
304
305 for (i = 0; i < data->chip->num_regs; i++) {
306 switch (map->format.val_bytes) {
307 case 1:
308 data->status_buf[i] = buf8[i];
309 break;
310 case 2:
311 data->status_buf[i] = buf16[i];
312 break;
313 case 4:
314 data->status_buf[i] = buf32[i];
315 break;
316 default:
317 BUG();
318 goto exit;
319 }
320 }
321
322 } else {
323 for (i = 0; i < data->chip->num_regs; i++) {
324 ret = regmap_read(map, chip->status_base +
325 (i * map->reg_stride
326 * data->irq_reg_stride),
327 &data->status_buf[i]);
328
329 if (ret != 0) {
330 dev_err(map->dev,
331 "Failed to read IRQ status: %d\n",
332 ret);
333 if (chip->runtime_pm)
334 pm_runtime_put(map->dev);
335 goto exit;
336 }
337 }
338 }
339
340 /*
341 * Ignore masked IRQs and ack if we need to; we ack early so
342 * there is no race between handling and acknowleding the
343 * interrupt. We assume that typically few of the interrupts
344 * will fire simultaneously so don't worry about overhead from
345 * doing a write per register.
346 */
347 for (i = 0; i < data->chip->num_regs; i++) {
348 data->status_buf[i] &= ~data->mask_buf[i];
349
350 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
351 reg = chip->ack_base +
352 (i * map->reg_stride * data->irq_reg_stride);
353 ret = regmap_write(map, reg, data->status_buf[i]);
354 if (ret != 0)
355 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
356 reg, ret);
357 }
358 }
359
360 for (i = 0; i < chip->num_irqs; i++) {
361 if (data->status_buf[chip->irqs[i].reg_offset /
362 map->reg_stride] & chip->irqs[i].mask) {
363 handle_nested_irq(irq_find_mapping(data->domain, i));
364 handled = true;
365 }
366 }
367
368 if (chip->runtime_pm)
369 pm_runtime_put(map->dev);
370
371exit:
372 if (chip->handle_post_irq)
373 chip->handle_post_irq(chip->irq_drv_data);
374
375 if (handled)
376 return IRQ_HANDLED;
377 else
378 return IRQ_NONE;
379}
380
381static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
382 irq_hw_number_t hw)
383{
384 struct regmap_irq_chip_data *data = h->host_data;
385
386 irq_set_chip_data(virq, data);
387 irq_set_chip(virq, &data->irq_chip);
388 irq_set_nested_thread(virq, 1);
389 irq_set_parent(virq, data->irq);
390 irq_set_noprobe(virq);
391
392 return 0;
393}
394
395static const struct irq_domain_ops regmap_domain_ops = {
396 .map = regmap_irq_map,
397 .xlate = irq_domain_xlate_twocell,
398};
399
400/**
401 * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
402 *
403 * map: The regmap for the device.
404 * irq: The IRQ the device uses to signal interrupts
405 * irq_flags: The IRQF_ flags to use for the primary interrupt.
406 * chip: Configuration for the interrupt controller.
407 * data: Runtime data structure for the controller, allocated on success
408 *
409 * Returns 0 on success or an errno on failure.
410 *
411 * In order for this to be efficient the chip really should use a
412 * register cache. The chip driver is responsible for restoring the
413 * register values used by the IRQ controller over suspend and resume.
414 */
415int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
416 int irq_base, const struct regmap_irq_chip *chip,
417 struct regmap_irq_chip_data **data)
418{
419 struct regmap_irq_chip_data *d;
420 int i;
421 int ret = -ENOMEM;
422 u32 reg;
423 u32 unmask_offset;
424
425 if (chip->num_regs <= 0)
426 return -EINVAL;
427
428 for (i = 0; i < chip->num_irqs; i++) {
429 if (chip->irqs[i].reg_offset % map->reg_stride)
430 return -EINVAL;
431 if (chip->irqs[i].reg_offset / map->reg_stride >=
432 chip->num_regs)
433 return -EINVAL;
434 }
435
436 if (irq_base) {
437 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
438 if (irq_base < 0) {
439 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
440 irq_base);
441 return irq_base;
442 }
443 }
444
445 d = kzalloc(sizeof(*d), GFP_KERNEL);
446 if (!d)
447 return -ENOMEM;
448
449 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
450 GFP_KERNEL);
451 if (!d->status_buf)
452 goto err_alloc;
453
454 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
455 GFP_KERNEL);
456 if (!d->mask_buf)
457 goto err_alloc;
458
459 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
460 GFP_KERNEL);
461 if (!d->mask_buf_def)
462 goto err_alloc;
463
464 if (chip->wake_base) {
465 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
466 GFP_KERNEL);
467 if (!d->wake_buf)
468 goto err_alloc;
469 }
470
471 if (chip->num_type_reg) {
472 d->type_buf_def = kcalloc(chip->num_type_reg,
473 sizeof(unsigned int), GFP_KERNEL);
474 if (!d->type_buf_def)
475 goto err_alloc;
476
477 d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int),
478 GFP_KERNEL);
479 if (!d->type_buf)
480 goto err_alloc;
481 }
482
483 d->irq_chip = regmap_irq_chip;
484 d->irq_chip.name = chip->name;
485 d->irq = irq;
486 d->map = map;
487 d->chip = chip;
488 d->irq_base = irq_base;
489
490 if (chip->irq_reg_stride)
491 d->irq_reg_stride = chip->irq_reg_stride;
492 else
493 d->irq_reg_stride = 1;
494
495 if (chip->type_reg_stride)
496 d->type_reg_stride = chip->type_reg_stride;
497 else
498 d->type_reg_stride = 1;
499
500 if (!map->use_single_read && map->reg_stride == 1 &&
501 d->irq_reg_stride == 1) {
502 d->status_reg_buf = kmalloc_array(chip->num_regs,
503 map->format.val_bytes,
504 GFP_KERNEL);
505 if (!d->status_reg_buf)
506 goto err_alloc;
507 }
508
509 mutex_init(&d->lock);
510
511 for (i = 0; i < chip->num_irqs; i++)
512 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
513 |= chip->irqs[i].mask;
514
515 /* Mask all the interrupts by default */
516 for (i = 0; i < chip->num_regs; i++) {
517 d->mask_buf[i] = d->mask_buf_def[i];
518 reg = chip->mask_base +
519 (i * map->reg_stride * d->irq_reg_stride);
520 if (chip->mask_invert)
521 ret = regmap_update_bits(map, reg,
522 d->mask_buf[i], ~d->mask_buf[i]);
523 else if (d->chip->unmask_base) {
524 unmask_offset = d->chip->unmask_base -
525 d->chip->mask_base;
526 ret = regmap_update_bits(d->map,
527 reg + unmask_offset,
528 d->mask_buf[i],
529 d->mask_buf[i]);
530 } else
531 ret = regmap_update_bits(map, reg,
532 d->mask_buf[i], d->mask_buf[i]);
533 if (ret != 0) {
534 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
535 reg, ret);
536 goto err_alloc;
537 }
538
539 if (!chip->init_ack_masked)
540 continue;
541
542 /* Ack masked but set interrupts */
543 reg = chip->status_base +
544 (i * map->reg_stride * d->irq_reg_stride);
545 ret = regmap_read(map, reg, &d->status_buf[i]);
546 if (ret != 0) {
547 dev_err(map->dev, "Failed to read IRQ status: %d\n",
548 ret);
549 goto err_alloc;
550 }
551
552 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
553 reg = chip->ack_base +
554 (i * map->reg_stride * d->irq_reg_stride);
555 if (chip->ack_invert)
556 ret = regmap_write(map, reg,
557 ~(d->status_buf[i] & d->mask_buf[i]));
558 else
559 ret = regmap_write(map, reg,
560 d->status_buf[i] & d->mask_buf[i]);
561 if (ret != 0) {
562 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
563 reg, ret);
564 goto err_alloc;
565 }
566 }
567 }
568
569 /* Wake is disabled by default */
570 if (d->wake_buf) {
571 for (i = 0; i < chip->num_regs; i++) {
572 d->wake_buf[i] = d->mask_buf_def[i];
573 reg = chip->wake_base +
574 (i * map->reg_stride * d->irq_reg_stride);
575
576 if (chip->wake_invert)
577 ret = regmap_update_bits(map, reg,
578 d->mask_buf_def[i],
579 0);
580 else
581 ret = regmap_update_bits(map, reg,
582 d->mask_buf_def[i],
583 d->wake_buf[i]);
584 if (ret != 0) {
585 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
586 reg, ret);
587 goto err_alloc;
588 }
589 }
590 }
591
592 if (chip->num_type_reg) {
593 for (i = 0; i < chip->num_irqs; i++) {
594 reg = chip->irqs[i].type_reg_offset / map->reg_stride;
595 d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask |
596 chip->irqs[i].type_falling_mask;
597 }
598 for (i = 0; i < chip->num_type_reg; ++i) {
599 if (!d->type_buf_def[i])
600 continue;
601
602 reg = chip->type_base +
603 (i * map->reg_stride * d->type_reg_stride);
604 if (chip->type_invert)
605 ret = regmap_update_bits(map, reg,
606 d->type_buf_def[i], 0xFF);
607 else
608 ret = regmap_update_bits(map, reg,
609 d->type_buf_def[i], 0x0);
610 if (ret != 0) {
611 dev_err(map->dev,
612 "Failed to set type in 0x%x: %x\n",
613 reg, ret);
614 goto err_alloc;
615 }
616 }
617 }
618
619 if (irq_base)
620 d->domain = irq_domain_add_legacy(map->dev->of_node,
621 chip->num_irqs, irq_base, 0,
622 ®map_domain_ops, d);
623 else
624 d->domain = irq_domain_add_linear(map->dev->of_node,
625 chip->num_irqs,
626 ®map_domain_ops, d);
627 if (!d->domain) {
628 dev_err(map->dev, "Failed to create IRQ domain\n");
629 ret = -ENOMEM;
630 goto err_alloc;
631 }
632
633 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
634 irq_flags | IRQF_ONESHOT,
635 chip->name, d);
636 if (ret != 0) {
637 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
638 irq, chip->name, ret);
639 goto err_domain;
640 }
641
642 *data = d;
643
644 return 0;
645
646err_domain:
647 /* Should really dispose of the domain but... */
648err_alloc:
649 kfree(d->type_buf);
650 kfree(d->type_buf_def);
651 kfree(d->wake_buf);
652 kfree(d->mask_buf_def);
653 kfree(d->mask_buf);
654 kfree(d->status_buf);
655 kfree(d->status_reg_buf);
656 kfree(d);
657 return ret;
658}
659EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
660
661/**
662 * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
663 *
664 * @irq: Primary IRQ for the device
665 * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip()
666 *
667 * This function also dispose all mapped irq on chip.
668 */
669void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
670{
671 unsigned int virq;
672 int hwirq;
673
674 if (!d)
675 return;
676
677 free_irq(irq, d);
678
679 /* Dispose all virtual irq from irq domain before removing it */
680 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
681 /* Ignore hwirq if holes in the IRQ list */
682 if (!d->chip->irqs[hwirq].mask)
683 continue;
684
685 /*
686 * Find the virtual irq of hwirq on chip and if it is
687 * there then dispose it
688 */
689 virq = irq_find_mapping(d->domain, hwirq);
690 if (virq)
691 irq_dispose_mapping(virq);
692 }
693
694 irq_domain_remove(d->domain);
695 kfree(d->type_buf);
696 kfree(d->type_buf_def);
697 kfree(d->wake_buf);
698 kfree(d->mask_buf_def);
699 kfree(d->mask_buf);
700 kfree(d->status_reg_buf);
701 kfree(d->status_buf);
702 kfree(d);
703}
704EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
705
706static void devm_regmap_irq_chip_release(struct device *dev, void *res)
707{
708 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
709
710 regmap_del_irq_chip(d->irq, d);
711}
712
713static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
714
715{
716 struct regmap_irq_chip_data **r = res;
717
718 if (!r || !*r) {
719 WARN_ON(!r || !*r);
720 return 0;
721 }
722 return *r == data;
723}
724
725/**
726 * devm_regmap_add_irq_chip(): Resource manager regmap_add_irq_chip()
727 *
728 * @dev: The device pointer on which irq_chip belongs to.
729 * @map: The regmap for the device.
730 * @irq: The IRQ the device uses to signal interrupts
731 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
732 * @chip: Configuration for the interrupt controller.
733 * @data: Runtime data structure for the controller, allocated on success
734 *
735 * Returns 0 on success or an errno on failure.
736 *
737 * The regmap_irq_chip data automatically be released when the device is
738 * unbound.
739 */
740int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
741 int irq_flags, int irq_base,
742 const struct regmap_irq_chip *chip,
743 struct regmap_irq_chip_data **data)
744{
745 struct regmap_irq_chip_data **ptr, *d;
746 int ret;
747
748 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
749 GFP_KERNEL);
750 if (!ptr)
751 return -ENOMEM;
752
753 ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
754 chip, &d);
755 if (ret < 0) {
756 devres_free(ptr);
757 return ret;
758 }
759
760 *ptr = d;
761 devres_add(dev, ptr);
762 *data = d;
763 return 0;
764}
765EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
766
767/**
768 * devm_regmap_del_irq_chip(): Resource managed regmap_del_irq_chip()
769 *
770 * @dev: Device for which which resource was allocated.
771 * @irq: Primary IRQ for the device
772 * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip()
773 */
774void devm_regmap_del_irq_chip(struct device *dev, int irq,
775 struct regmap_irq_chip_data *data)
776{
777 int rc;
778
779 WARN_ON(irq != data->irq);
780 rc = devres_release(dev, devm_regmap_irq_chip_release,
781 devm_regmap_irq_chip_match, data);
782
783 if (rc != 0)
784 WARN_ON(rc);
785}
786EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
787
788/**
789 * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
790 *
791 * Useful for drivers to request their own IRQs.
792 *
793 * @data: regmap_irq controller to operate on.
794 */
795int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
796{
797 WARN_ON(!data->irq_base);
798 return data->irq_base;
799}
800EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
801
802/**
803 * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
804 *
805 * Useful for drivers to request their own IRQs.
806 *
807 * @data: regmap_irq controller to operate on.
808 * @irq: index of the interrupt requested in the chip IRQs
809 */
810int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
811{
812 /* Handle holes in the IRQ list */
813 if (!data->chip->irqs[irq].mask)
814 return -EINVAL;
815
816 return irq_create_mapping(data->domain, irq);
817}
818EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
819
820/**
821 * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
822 *
823 * Useful for drivers to request their own IRQs and for integration
824 * with subsystems. For ease of integration NULL is accepted as a
825 * domain, allowing devices to just call this even if no domain is
826 * allocated.
827 *
828 * @data: regmap_irq controller to operate on.
829 */
830struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
831{
832 if (data)
833 return data->domain;
834 else
835 return NULL;
836}
837EXPORT_SYMBOL_GPL(regmap_irq_get_domain);